

July 2017

NASA/TM-2017-219638

An Autonomous Distributed Fault-Tolerant

Local Positioning System

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20170007192 2019-08-31T06:55:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/84913371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

July 2017

NASA/TM-2017-219638

An Autonomous Distributed Fault-Tolerant

Local Positioning System

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

i

Abstract

We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed

autonomous positioning system for static/mobile objects and present solutions for providing

highly-accurate geo-location data for the static/mobile objects in dynamic environments. The

reliability and accuracy of a positioning system fundamentally depends on two factors; its

timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and

distances of the beacons. Existing distributed positioning systems either synchronize to a

common external source like GPS or establish their own time synchrony using a scheme similar

to a master-slave by designating a particular beacon as the master and other beacons synchronize

to it, resulting in a single point of failure. Another drawback of existing positioning systems is

their lack of addressing various fault manifestations, in particular, communication link failures,

which, as in wireless networks, are increasingly dominating the process failures and are typically

transient and mobile, in the sense that they typically affect different messages to/from different

processes over time. We solve this problem by first employing fault-tolerant distributed clock

synchronization protocols to achieve the theoretical synchrony of one-clock tick across the

distributed system of nodes (beacons) and, consequently, determine the geometry of the network,

and then use trilateration to accurately determine the current location of the intended object.

Keywords: GPS, independent, positioning system, autonomous, geo-location, dynamic, mobile,

fault-tolerant, synchronization, distributed

ii

Table of Contents

ABSTRACT ... I

TABLE OF CONTENTS ...II

1. INTRODUCTION .. 1

2. FAULT MODELS .. 3

3. SYSTEM OVERVIEW .. 4
3.1. COMMUNICATION DELAY .. 5
3.2. THE SYNC MESSAGE AND ITS VALIDITY .. 5

4. THE PRIMARY CLOCK SYNCHRONIZATION PROTOCOL ... 5
Protocol Assumptions ... 6

4.1. THE MONITOR, THE SYNCHRONIZER, AND PROTOCOL FUNCTIONS ... 6
4.2. THE SYMMETRIC-FAULT-TOLERANT CLOCK SYNCHRONIZATION PROTOCOL .. 7
4.3. WHAT SELF-STABILIZATION PROPERTIES MEAN ... 8

5. THE SECONDARY CLOCK SYNCHRONIZATION PROTOCOL ... 9
Protocol Assumptions ... 9

The Secondary Clock Synchronization Protocol .. 10
Recovery() ... 11
Recovering Invalid Init ... 11

Recovering Invalid Echo ... 12
Adjust() .. 13

6. LOCATING AN OBJECT ... 13
6.1. PASSIVE DISTRIBUTED DETECTION AND RANGING SYSTEM (PADIDAR) .. 14
6.2. DYNAMIC GEOMETRY AND MOBILITY ... 15

7. INTEGRATED SELF-SYNCHRONIZING ALGORITHM .. 16
Recovering Invalid Echo Revisited ... 19

UpdateEcho() .. 19

8. CONCLUSIONS ... 20

REFERENCES .. 20

APPENDIX A ... 22

APPENDIX B ... 25
Recovering Invalid Init ... 25

Recovering Invalid Echo ... 26

1

1. Introduction

The Global Positioning System (GPS) is a versatile, generally available worldwide navigational

system based on the reception of signals from a network of satellites orbiting the globe. GPS is

widely used as an external source for geo-location in 2D and 3D Local Positioning Systems

(LPS), e.g., automobile navigation and unmanned aerial vehicles (UAV). The growing reliance

upon a single source of positioning information introduces a significant vulnerability. Since GPS

is a weak signal, it is vulnerable to jamming. Furthermore, the multitude of satellites forming

GPS was intended to provide accurate signals and not necessarily support a degree of fault-

tolerance, and so GPS is vulnerable to spoofing (i.e., the purposeful sending of inaccurate data to

the receiver). The European Union (Galileo), Russia (GLONASS), China (BeiDou) and other

countries have deployed and are in the process of deploying more satellites in order to improve

the accuracy and reliability of Global Navigation Satellite Systems (GNSSs). Nevertheless, as

Rizos [Riz 2013] pointed out, “the most severe limitation of GNSS performance will still remain;

the accuracy of positioning deteriorates very rapidly when the user receiver loses direct view of

the satellites, which typically occurs indoors, or in severely obstructed urban environments, steep

terrain and in deep open-cut mines.” As a result, LPS are often used in either a complementary

or alternative fashion to the satellite systems, especially in areas where GPS signals are

sufficiently degraded. Although Long-range LPS, e.g., Decca Navigator System and LORAN

(LOng RAnge Navigation), have been used for navigation of ships and aircraft, nowadays, a LPS

typically refers to a system with limited range used for outdoor and/or indoor applications.

Positioning systems that consists of a network of three or more signaling beacons have been used

for navigation and surveying by providing location information within the coverage area. The

reliability and accuracy of such a positioning system fundamentally depends on two factors; first,

its timeliness in broadcasting signals, i.e., whether or not the signals are transmitted at the same

time or as close to the same time as possible, and second, the knowledge of its geometry, i.e.,

locations and distances of its beacons. The more accurate the time at each beacon and the higher

the precision across the network, the more accurate the estimated position at the receivers.

Similarly, the more accurate the geometry and knowledge of the location and distances of the

beacons from each other, the more accurate the estimated position at the receivers will be.

Distributed LPSs (DLPS) either synchronize to a common external source like GPS or establish

their time synchrony internally. GPS satellites operate on very high precision atomic clocks that

"tick" with an accuracy of one nanosecond (providing position accuracy within 5 to 10 meters)

and are synchronized to the Coordinated Universal Time (UTC), which is the primary time

standard by which the world regulates clocks and time [GPS]. The atomic clocks on these

satellites are very accurate (drift rate 10-13, or less) and very expensive, thus, cost prohibitive for

most applications. LPSs on the other hand operate with lower quality clocks, i.e., have a higher

drift rate, that are more affordable. These clocks, however, need to be periodically

resynchronized to account for their inherent drift and far more frequently than the atomic clocks.

In DLPSs that use master-slave scheme to internally establish their time synchrony, typically, a

particular beacon is designated as the master and other beacons synchronize to it, e.g., the Locata

system [Riz 2013]. Due to its centralized nature, a network with master-slave scheme results in a

single point of failure. Another drawback of existing DLPSs is their lack of addressing various

2

fault manifestations, in particular, communication link failures. In [Bie 2011] Biely et al. make

the following two points; first, due to the high reliability of modern processors, communication-

related failures like receiver overruns (run out of buffers), unrecognized packets (synchronization

errors), and CRC errors (data reception problems) in all sorts of wireless networks are

increasingly dominating process failures, and second, such link failures are typically transient

and mobile, in the sense that they typically affect different messages to/from different processes

over time.

The geo-location and time-synchrony problems have a lot in common. Geo-location requires a

distributed system of at least four beacons to estimate the location in 3-dimensions [GPS]. The

fourth beacon is necessary to account for discrepancies in value of time readings, ((x, y, z), t),

which is primarily due to low quality of the receiver’s local oscillator. Similarly, the time-

synchrony problem requires a minimum of four nodes (beacons) to tolerate a malicious faulty

behavior [Lam 1982, 1985][Dol 1984]. The capability of a distributed network of beacons to

autonomously self-synchronize and, subsequently, provide reliable signaling for proper geo-

location, at the receivers and independent of GPS, is essential in reducing total reliance on an

external source like GPS. The internal timing of an independently self-synchronizing network

can readily be realigned to GPS time when it becomes available. Similarly, prior knowledge of

the exact locations of the beacons and their network geometry is not necessary; an autonomous

distributed fault-tolerant local positioning system should be able to first determine its own

geometry and then realign it to the world map when GPS data is available.

Thus, our research goals were to provide a highly reliable, GPS-independent, fault-tolerant,

redundant system for geo-location of UAVs for various projects within the center and across the

agency, such as NASA’s Unmanned Aircraft Systems (UAS) Integration in the National Airspace

System (NAS) Project and Langley Research Center’s CERTAIN (City Environment for Range

Testing of Autonomous Integrated Navigation). Our goals also included a DLPS suitable for

high-dynamic systems by accommodating capabilities for UAVs to maneuver at high speed, and

in dynamic and mobile environments. Such a DLPS has to be able to autonomously and

continually establish its time-synchrony and determine its geometry independent of an external

source. NASA views autonomy as distinct from automation in accordance with its space

initiatives. Automated systems provide control or execution of a system without human

intervention or commands. This does not preclude the possibility of operator input, but such

input is explicitly not required for an automated function [Con 2006][Hay 2014, 2015].

We use the terms protocol and algorithm interchangeably. We also use the terms nodes and

object generically as the protocols discussed in this paper are applicable to various applications.

For geo-location applications, however, the terms nodes and object refer to beacons and vehicle

(or target), respectively.

We present our research results and solutions to the autonomous distributed positioning problem.

We solve this problem by first employing distributed clock synchronization protocols to achieve

the theoretical synchrony of one-clock tick across the distributed system of nodes and,

consequently, determine the geometry of the network, and then use trilateration* to accurately

* Trilateration is the process of determining absolute or relative location of a point given a set of sphere centers, their

locations, and their radii, using the geometry of circles, spheres or triangles.

3

determine the current location of the intended object. Achieving fine synchrony is in turn a two-

step process using two complementary protocols. First, we use a primary distributed clock

synchronization protocol to establish coarse synchrony across the distributed system of nodes.

Second, we use a secondary protocol to achieve fine synchrony, which is a theoretical limit

bounded to one clock tick across the system.

Based on fault-tolerance requirements, we employ one of the two mechanically verified

distributed clock synchronization algorithms to establish coarse synchrony across the nodes,

namely, the Digraph Protocol [Mal 2011] that handles detectable faults and is versatile, in terms

of the variety of topologies it is applicable to, and the Symmetric-Fault-Tolerant Protocol [Mal

2015] which, as its name implies, tolerates symmetric faults. A fault is symmetric when all good

nodes observe consistent error manifestations, but do not know that it is bad [Min 2002]. These

protocols guarantee synchrony, with an initial precision of f(γ), where γ is the maximum

communication delay between any two nodes, across a distributed system of nodes, from a

random start and in the presence of their representative fault types. Since γ can be greater than

one clock tick, this achieves coarse synchrony. Once coarse synchrony is achieved, a secondary

algorithm subsequently attains the theoretical precision of one clock tick. Once the fine

synchrony among the nodes is achieved, geometry of the network is determined, and location of

the object is estimated, at the object and/or at the nodes, using trilateration. We would like to

point out that this report is not about developing a new physical layer for wireless

communication. We believe, however, that the technological knowledge and capabilities do

exist for developing a system that meets the physical layer requirements of the ideas and

solutions described here.

This report is organized as follows. In Section 2 we describe the fault models. In Section 3 we

provide a system overview. We present the Primary and Secondary clock synchronization

protocols in Sections 4 and 5, respectively. In Section 6 we present locating an object in static

and dynamic environments. In Section 7 we present an algorithm integrating the Primary and

Secondary protocols. Finally, we present concluding remarks in Section 8.

2. Fault Models

A distributed system is synchronous if there is a known upper bound on the transmission delay of

messages and if there is a known upper bound on the processing time of a piece of code. In

synchronous message-based distributed systems, a fault is typically defined as a message that

was not transmitted when it was expected, a message that was transmitted but not received, or

received but not accepted, i.e., deemed invalid by a receiver. Consequently, there are two

viewpoints, in the node-fault model, the faults are associated with the source node of the message

and all fault manifestations between the source and the destination nodes for the messages from

that source count as a single fault, which is specially the case when the faults are associated with

an arbitrary (Byzantine) faulty node [Lam 1982][Dri 2003][Min 2004]. In this model all links

are assumed to be good. Miner et al. [Min 2004] for instance, model the absence of a link as a

link fault and even though both nodes and links failures are considered, they abstractly model

link failures as failures of the source node.

4

In the link-fault model, a fault is associated with the communication means connecting the source

node to the destination node. In this model, all nodes are assumed to be good and an invalid

message at the receiving node is counted as a single fault for the corresponding input link. Thus,

from the global perspective, a Byzantine faulty node manifests as one or more link failures.

A link-fault model introduced by Schmid et al. [Sch 2002] is called perception-based hybrid

fault model, where faults are viewed from the perspective of the receiving nodes. Faults are

associated with their input links, and all nodes are assumed to be good. They argued that since F

faulty nodes can produce at most F faulty perceptions in any node, the link-fault model is

compatible with the traditional node-fault model and so, all existing lower bound and

impossibility results remain valid.

In this report, we consider both types of faults. To protect against spoofing, we consider node-

fault model, where a node is detectable faulty, symmetric faulty, or Byzantine (arbitrary) faulty,

provided the fault manifests itself to at most F other nodes, or experiences no more than F faults

if it is a good node, where F ≥ 0. To tolerate sporadic link failures, we also consider the link-fault

model, where the nodes are assumed to be good and, at any round, no more than F link faults are

perceived at a receiving good node. As described in [Mal 2017], for both types of faults, we

assume that the maximum number of simultaneous faults in the network is limited to F.

3. System Overview

We consider synchronous message-passing wireless distributed systems and model the system as

a graph with a set of nodes (vertices) that communicate with each other by sending messages via

a set of wireless communication links (edges) that represent the nodes’ interconnectivity. The

underlying topology considered is a fully connected network of K nodes that exchange messages

through a set of wireless communication links. We leave the generalization to other topologies

for future work, but the system considered consists of a set of good nodes and a set of faulty

nodes. A good node is assumed to be an active participant and correctly execute the algorithms.

A faulty node is either benign (detectably bad), symmetric, or bounded-arbitrary (Byzantine)

faulty.

A fully connected graph of K nodes consists of K(K-1) unidirectional links. A good link between

any two nodes is assumed to correctly deliver a message from its source node to its destination

node within a bounded communication delay time. A faulty link does not deliver the message,

delivers a corrupted message, or delivers a message outside the expected communication delay

time. The communication means is wireless broadcast, i.e., one-to-many, with each node

broadcasting on a separate and dedicated channel.

Broadcast of a message by a node is realized by transmitting the message, at the same time, to all

nodes. The communication network does not guarantee any relative order of arrival of a

broadcast message at the receiving nodes, that is, a consistent delivery order of a set of messages

does not necessarily reflect the temporal or causal order of the message transmissions

[Kop 1997]. We assume F < K/3 and define the minimum number of good nodes in the system,

5

G, by G > 2K/3 nodes. For node-fault model the minimum number of nodes needed to maintain

synchrony is well established to be 3F+1 [Lam 1982, 1985][Dol 1984].

3.1. Communication Delay

The communication delay between the nodes is expressed in terms of the minimum event-

response delay, D, and network imprecision, d. These parameters are measured at the network

level. A message broadcast by a node at real time t is expected to arrive at all other nodes, be

processed, and subsequent messages generated by those nodes within the time interval [t+D,

t+D+d]. Communication between independently-clocked nodes is inherently imprecise. The

network imprecision, d, is the maximum time difference among all receivers of a message from a

transmitting node with respect to real time. The imprecision is due to many factors including,

but not limited to, the drift of the oscillators with respect to real time, hence, variation is

processing time, jitter, discretization error, temperature effects and especially differences in the

distances between the nodes, i.e., the lengths of the links, which is more a prevalent factor in

wireless communication. These parameters are assumed to be bounded, D > 0, d ≥ 0, and both

have units of real-time clock ticks and their values known in the network. The communication

delay, denoted , is expressed in terms of D and d, is defined as = D+d, and has units of real-

time clock ticks. In other words, we assume synchronous communication and bound the

communication delay between any two nodes by [D,].

3.2. The Sync Message And Its Validity

In order to achieve and maintain desired synchrony, the nodes communicate by exchanging Sync

messages, where synchrony is defined as a measure of the relative imprecision of the values of

the local clocks of the good nodes, which is algorithm dependent and typically a multiples of .
In a following section, a formal definition of synchrony is provided for the algorithm used in this

paper. A Sync message from a given source is valid if it arrives at or after one D of an

immediately preceding Sync message from that source, that is, the message validity in the value

domain, i.e., valid Sync messages are rate-constrained. Assuming physical-layer error detection

is dealt with separately, the reception of a Sync message is indicative of its validity in the value

and time domains. A node assumes own message to be valid locally clock ticks since it was

broadcast.

4. The Primary Clock Synchronization Protocol

There exist a family of mechanically verified clock synchronization protocols that address

different types of faults [Mal 2011, 2015]. In [Mal 2015] a strategy was proposed to tolerate

Byzantine faults indirectly by first converting a Byzantine fault to a symmetric fault, which the

3ROM algorithm [Mal 2017] does in three communication rounds, and then using a symmetric-

fault-tolerant protocol to synchronize the system of K nodes, where F < K/3. A symmetric-fault-

tolerant protocol was also introduced in [Mal 2015], that we refer to as the Primary protocol, and

reproduce it in this section for references but refer the reader to [Mal 2015] for a more in depth

analysis and the details of its mechanical verification.

6

If the types of faults to be tolerated are assumed to be detectable type, the Digraph protocol

presented in [Mal 2011] is more suitable since it is more versatile and readily applies to any

static and/or dynamic topology. But since detectable faults are a subset of symmetric faults, the

symmetric-fault-tolerant protocol presented below is also capable of addressing detectable faults.

Thus far, mechanical verification of this protocol has been limited to fully connected graphs. We

leave the generalization to other topologies for future works.

Protocol Assumptions
1. The topology is a fully connected graph

2. F is the maximum number of symmetric faults in the network

3. The number of nodes constituting the network is K, where, for node-fault model, F < K/3

nodes

4. The bound on the oscillator drift rate is ρ, where 0 ≤ ρ << 1

5. A message sent by a node will be received and processed by the destination nodes within

, where = (D + d)

6. Physical-layer error detection is dealt with separately, thus, the reception of a Sync

message is indicative of its validity in value and time domains

4.1. The Monitor, The Synchronizer, And Protocol Functions

A node consists of a synchronizer and a set of monitors. To assess the behavior of other nodes,

a node employs as many monitors as the number of nodes that are directly connected to it, with

one monitor for each source of incoming message. A monitor keeps track of the activities of its

corresponding source node. A valid Sync message is conveyed to the local synchronizer. The

assessment results of the monitored nodes are then utilized by the synchronizer in the

synchronization process. A monitor disposes of the valid message after its life-span expires.

Figure 1. The protocol functions.

ValidateMessage():

if (incoming message = Sync) and (MessageTimer ≥ D)

 MessageValid = true, // store it,

MessageTimer = 0,

elseif (MessageTimer ≥ MessageLifeSpan)

MessageValid = false, // it expired

elseif (MessageTimer < MessageLifeSpan)

MessageTimer = MessageTimer + 1.

Accept():

if (number of stored Sync messages ≥ TA)

return true,

else

return false.

7

The function ValidateMessage(), shown in Figure 1, is used by the monitors to determine

whether a received Sync message meets the minimum timing requirement, and thus is valid in

both value and time domains, and whether a stored valid Sync message has reached its lifespan

and expired. The function Accept(), used by the synchronizer, examines availability of sufficient

valid Sync messages. The sufficiency of available, valid messages, denoted by TA, is a function

of the type and number of faults tolerated. For tolerating FS simultaneous symmetric faults, TA ≥

K/2. When a sufficient number of messages have been received, the Accept() function returns a

Boolean value of true.

4.2. The Symmetric-Fault-Tolerant Clock Synchronization Protocol

Due to inherent drift in local oscillators in the nodes, their clocks are bound to drift apart

resulting in gradual degradation of synchrony, as a result, the nodes have to periodically

resynchronize, referred to as the resynchronization process. The resynchronization process

begins when the first good node times out and transmits a Sync message and ends after an accept

event (as defined in the protocol) occurs in every good node. Upon start of a new round of a

resynchronization process, a node continually sends out Sync messages, once per , to other

nodes that are connected to it. Consequently, the life-span of a Sync message at the receiving

nodes is set to be . The protocol, executed by all good nodes, is presented in Figure 2 and

consists of a synchronizer and a set of monitors that execute once every local clock tick. Four

concurrent if statements collectively describe the synchronizer. These statements are labeled ST

(StateTimer), LT (LocalTimer), TS (Transmit Sync), and TT (TransmitTimer). The function

ValidateMessage() describes the monitor.

Figure 2. The symmetric-fault-tolerant protocol.

Synchronizer:

ST1: if (StateTimer < 0) or (Accept())

StateTimer := 0, // reset

ST2: elseif (StateTimer < PST)

StateTimer := StateTimer + 1.

LT1: if (LocalTimer < 0) or

 (LocalTimer PLT) or

 (StateTimer = πinit)

LocalTimer := 0, // reset

LT2: else

LocalTimer := LocalTimer + 1.

TT1: if (TransmitTimer < 0) or

 ((TransmitTimer) and

 (StateTimer PST))

TransmitTimer := 0,

TT1: elseif (TransmitTimer <)
TransmitTimer := TransmitTimer + 1.

TS1: if (StateTimer PST) and // timed out

 (TransmitTimer) and

 (not Accept())

Transmit Sync.

Monitor:

ValidateMessage().

8

The following symbols are used in Figure 2 and in stating the following self-stabilization

properties:

 PLT has units of real time clock ticks, and is defined as the upper bound on the time

interval between any two consecutive resets of the LocalTimer by a node, PLT >> 0.

 PST has units of real time clock ticks, and is defined as the upper bound on the time

interval between any two consecutive resets of the StateTimer by a node, PST >> 0.

 Net(t), for real time t, is the maximum difference of values of the LocalTimers of any two

nodes (i.e., the relative clock skew) for t t0.

 π, the synchronization precision, is the guaranteed upper bound on Net(t) for all t C,

0 ≤ π << PLT.

 C, the convergence time, is defined as the bound on the maximum time for the network to

achieve the guaranteed precision π.

A distributed system is defined to be self-stabilizing if, from an arbitrary initial state, it is

guaranteed to reach a legitimate state in a finite amount of time and remain in a legitimate state.

For clock synchronization, a legitimate state is a state where all parts in the system are in

synchrony which is formally defined below [Mal 2011]. To prove that a protocol is self-

stabilizing (self-synchronizing), it suffices to show that the following self-stabilization properties

hold.

1. Convergence: Net(C) π, 0 π << PLT

2. Closure: For all t C, Net(t) π

3. Congruence: For all nodes Ni, for all t C, (Ni.LocalTimer(t) π) Net(t) π.

4. Liveness: For all t C, good node Ni, i = 1..K, there exists (PST - π -) ≤ U ≤ PST,

such that Ni.LocalTimer(t+1) = mod(Ni.LocalTimer(t)+1, U).

In the context of this paper, we set C = PLT + ResetLocalTimerAt + 2, where ResetLocalTimerAt

is a time when the LocalTimer is reset and we chose πinit as the earliest time when all good

nodes have completed the resynchronization process. Since 0 < << PST < PLT, and the

LocalTimer is reset after reaching PLT (worst-case wraparound), a trivial solution is not possible.

The presented algorithm provides a guaranteed initial precision of πinit = d + + δ(d+) < 2
clock ticks [Mal 2015], which is referred to as coarse synchrony. Hereafter, we refer to this

protocol as the Primary clock synchronization algorithm, or simply the Primary algorithm. In the

next section, we introduce a secondary clock synchronization protocol that achieves the

theoretical precision of one clock tick.

4.3. What Self-Stabilization Properties Mean

The Convergence and Closure properties address achieving and maintaining network synchrony,

respectively. As formally defined in the previous section, given sufficient time, C, the

convergence property examines whether or not the system has reached a point where all nodes

are within the specified precision. The closure property, on the other hand, examines whether or

not the system starting within the specified precision will remain within that precision thereafter.

9

The convergence and closure properties provide an external view of the system, whereby the

external viewer can examine whether or not the system has self-stabilized.

In safety-critical TDMA (Time Division Multiple Access) architectures [Kop 1997][Min 2002]

[Tor 2005A, 2005B], synchronization is the most crucial element of these systems. More

precisely, TDMA-type applications are based on the fundamental assumption of the existence of

initial synchrony. The protocol presented in this report is meant to provide this fundamental

requirement of TDMA-type applications to higher-level protocols. One of the challenges in

employing multiple protocols in distributed system has been the integration of these protocols

operating at different levels of application. Previously, the integration of a lower-level protocol

with higher-levels either has not been addressed or had simply been overlooked. The

Congruence property, therefore, addresses this essential requirement. Unlike the convergence

and closure properties that provide system view from the perspective of an external viewer, the

Congruence property provides a local view from the perspective of a node by providing the

necessary and sufficient conditions for the node to locally determine whether or not the system

has converged. The Congruence property, therefore, is essential in the integration of this

underlying self-stabilization protocol with higher-level protocols in the system.

The Liveness property examines whether or not a node takes on all possible discrete values

within an expected range. In other words, the system is “alive” and the good nodes execute the

protocol properly, and time advances within each node.

5. The Secondary Clock Synchronization Protocol

The protocol presented in this section achieves fine synchrony, i.e., the theoretical precision of

one clock tick, across a distributed network of K nodes. We do not assume prior knowledge of

the location of each node or the distances between any two nodes; however, we assume the

following.

Protocol Assumptions
1. The topology is a fully connected graph.

2. F is the maximum number of asymmetric (Byzantine) faults in the network

3. The number of nodes constituting the network is K, where, for node-fault model, F < K/3

nodes

4. The bound on the oscillator drift rate is ρ, where 0 ≤ ρ << 1

5. Known maximum communication delay between any two nodes, ≥ (D + d)

6. Coarse initial synchrony with πinit ≤ 2γ clock ticks

7. Unique identifier (ID) for each node and nodes are ordered counter clockwise, looking

down from high above and assuming nodes not to be in the same plane as the reference

point

8. Each node broadcasts its messages on a separate channel

9. Physical-layer error detection is dealt with separately, thus, the reception of a Sync

message is indicative of its validity in value and time domains

10

The Secondary Clock Synchronization Protocol

The protocol below is executed by all nodes Ni, for all i, every clock tick. This protocol is based

on the assumption of initial coarse synchrony (πinit << PLT). To maintain consistency with

terminologies used in the literature, we use the terms Init and Echo for messages as in [Sri 1987];

however, in our protocol, the Echo message is a vector of locally time-stamped events. We

should add that there are other clock synchronization algorithms that are based on the assumption

of initial synchrony, e.g., [Pea 1980], [Wel 1988], and the broadcast primitive algorithm in [Sri

1987]. The three referenced algorithms, [Sri 1987][Pea 1980][Wel 1988], achieve optimum

synchrony in multiple rounds of iterations while our solution achieves optimum synchrony in

only one iteration. Furthermore, although not explicitly stated, these algorithms assume a fully

connected graph with traditional node-fault model and are not necessarily tailored for wireless

communications. Our proposed solution, however, is specifically designed with wireless

communications in mind. Since we accommodate for larger variation in the communication

latencies among the nodes than the algorithms tailored for wired networks, our solution equally

applies to both wireless and wired networks.

A Fault-Tolerant Clock Synchronization Protocol For Wireless Networks, Figure 3, hereafter

referred to as the Secondary algorithm, starts executing when prompted by the Primary

algorithm, via the Congruence property, that the network is in synchrony, albeit, coarse

synchrony. Assertion of the Congruence property also resets local state of the node in

preparation for the Secondary algorithm. Conversely, execution of the Secondary algorithm is

halted when the Congruence property no longer holds.

 ω = πinit +

 ψ = ResetLocalTimerAt

 Init, a message broadcast by a node to all others.

 Echo, a message broadcast by a node to all others and is a vector of K entries of time-

stamped events indicative of arrival times of the Init messages. A node assumes its own

messages (Init and Echo) to be valid γ clock ticks after it broadcasts them. We assume

similar validity measures (given the expected time intervals) for the Init and Echo

messages as we did for the Sync message.

Figure 3. A Fault-Tolerant Clock Synchronization Protocol For Wireless Networks.

We now describe the Recovery() and Adjust() functions used by the protocol. Let, at any node

Nx, M be the matrix of received messages, where a row i is a vector of locally time-stamped

values received from node Ni (content of received Echo message from Ni). Hence, a column j is

BI: if (LocalTimer = ψ)

Broadcast Init

BE: if (LocalTimer = ω + ψ)

Broadcast Echo

RCA: if (LocalTimer = 2ω + ψ)

Recover(), Adjust()

11

the vector of reportedly received values from Nj. Thus, M(i, j) is the time when Ni is reported to

have received a message from Nj. Let T be a matrix of time-differences between nodes Ni and Nj.

T(i,j) = (M(i,j) - M(j,i)) / 2 (1)

Thus, matrices M and T have same dimensions. In evaluating Equation 1, T(i,j) is invalid if the

right hand side of the equation contains an invalid value. It follows from Equation 1 that T is

skew-symmetric and an invalid entry in M, ex. M(i,j), will result in two invalid entries in T, T(i,j)

and T(j,i).

The distance between any two nodes Ni and Nj is the average of the time of received messages

exchanged between the two nodes multiplied by the speed of light, C, and is determined by the

following equation. The distance is unknown if the right-hand side contains an invalid value.

Dij = C (M(i,j) + M(j,i)) / 2 (2)

Recovery()
In this section we describe the Recovery() function that, in turn, consists of two parts, recovering

invalid Init and recovering invalid, or missing, Echo messages.

As we discussed earlier in this paper, synchrony is a prerequisite in using trilateration for

determining the location and, consequently, distances to the intended object. Matrix T is

introduced to aid with the recovery of missing data, provide fault-tolerance, and achieving fine

synchrony given initial contents of matrix M. Once faults are recovered, fine synchrony is

achieved and the contents of matrix M is restored.

Recovering Invalid Init
Recall that a fault is defined as no message or an invalid received message. A faulty/no Init

message manifests as an invalid entry in matrix M. As long as the fault assumptions are not

violated, recovery of an invalid Init is possible by using valid data received by other nodes. In

particular, a fault between nodes Ni and Nj can be recovered as long as there is valid data

between these nodes and a third node Nx.

T(i,j) = T(i,x) - T(x,j) (3)

Note that a missing entry in M(i,j) is synonymous to a link fault. Having T(i,j) and either M(i,j)

or M(j,i), missing either M(j,i) or M(i,j) is reconstructed by using Equation 1. An example is

provided in Appendix B. But, as we mentioned earlier, after the network has reached fine

synchrony, Dif is determined using trilateration and data in M, provided there is sufficient data in

M. Using Equation 4, derived from Equations 1 and 2, M(i,f), and subsequently M(f,i), are

recovered. In case of marginally sufficient data, where two possible solutions exist, the

assumption of an ordered network lends itself to determining the correct solution.

M(i,j) = T(i,j) + Dij (4)

We would like to point out that a missing entry in M(i,j) is synonymous to a link fault. Also, it

follows from Equation 3 that if a node is silent and does not broadcast Init and Echo messages, it

cannot be recovered. On the other hand, if a node broadcasts Init message to at least three good

nodes but does not broadcast an Echo message, it can be recovered as described next. We leave

diagnosis of the network and analysis under various fault scenarios to future work.

12

Recovering Invalid Echo
A faulty Echo message manifests as an invalid row in matrix M. Let, at Ni, Nf be the faulty node

whose corresponding row in M contains no data. Let V be a vector of data associated with all

nodes that received valid Init messages from Nf, i.e., V is in the column f in M and V = M(i,f) =

valid. The following iterative algorithm recovers from this fault and restores invalid row f of M,

provided the fault assumptions are not violated, i.e., there exist sufficient valid entries in V. The

number of iteration is captured by w.

1. Determine Dij using Equation 2, for all i, j, Ni ≠ Nf and Nj ≠ Nf.

Reset iteration counter w.

2. Realign all nodes in V, around node Nj from the set of nodes whose values constitute the

vector V, excluding Nf, by adjusting the content of the vector V as described in the

Equation 5. Although typically a node uses itself as reference, an optimum reference for

alignment would be choosing the node whose value is at the midpoint of the values in V.

V(i) = M(i, f) + T(j,i), for all i (5)

3. Use trilateration with entries in V – modulo the faulty node’s – and the location of those

nodes relative to each other, i.e., Dij, to determine the time when Nf had broadcast its

message. Repeat this process until one of the following conditions a or b is satisfied,

otherwise, adjust V by some amount 0 < x < γ and continue, where x is a fraction/multiple

of clock ticks.

V(j) = V(j) - x, for all j

Increment iteration counter w

a. Trilateration (using the values in V) results in a closest intersecting point, where any

two intersecting points are within δ ≥ 0 of each other, and so a solution exists. The

amount of imprecision, 0 ≤ δ << γ, is due to drift and noise.

b. Trilateration does not converge to a closest intersecting point after w ≥ πinit/x

iterations and so there does not exist a solution.

4. If there exists a solution, the intersecting point is indicative of the time when Nf had

broadcast its Echo message and xw is the amount of time it took to reach the convergence

point. Reconstruct T(i,f) as follows.

T(j,f) = xw, where Nj is the reference node used in Step 2

T(i,f) = T(j,f) - T(j,i), for all i and i ≠ j

T(f,i) = -T(i,f), to preserve symmetry in T

Repair M using T and Equation 1.

M(f,i) = M(i,f) - 2T(i,f), for all i

Find the remaining distances Dij between all nodes using Equation 2.

Having accurately measured the distances between any two nodes, and since the node ID’s are

assumed to be ordered, the geometry of the network in 3-dimensions is uniquely determined if

the projection of the nodes onto the x-plane (ground) maintains their ID order.

13

Adjust()
The purpose of this function is to adjust the local time of the nodes to a reference point in time

and, thus, establish an optimum synchrony across the network. Construct a timeline of

transmission times of Init messages of all nodes using a given row of the matrix T (typically a

node uses own row). Although the reference point in time can be anywhere on the timeline, to

tolerate F faults, given the assumptions hold, we discard F values from both extremes and

choose the midpoint of the two remaining extremes values (transmission times). The process of

choosing the reference point has to be consistent at all nodes. Let LT and RT be the left and right

most transmission times of the remaining nodes on the timeline, respectively.

tMidPoint = (RT + LT) / 2

The adjustment amount is determined by the following equation that is then incorporated into the

node’s local timer.

Adj = (RT + LT) / 2 = tMidPoint

LocalTimer = LocalTimer - Adj

Hereafter, by synchronized network we mean the network precision is within the theoretical

bound of one clock tick.

6. Locating An Object

Assuming a network of synchronized nodes, an object is accurately located based on its

capabilities and the extent of its interactions with the nodes. We enumerate the following

scenarios. Figure 4 is a depiction of typical section of a farm for crop-dusting application.

1. Active Participant - If the object has similar capabilities to the nodes and participates in

the synchronization process, it determines its own location from the exchanged messages,

Figure 4(a).

2. Passive Participant - If the object has similar but fewer capabilities to the nodes, where

it receives all exchanged messages between the nodes but does not participate in the

synchronization process, i.e., it is a passive participant, it determines its own location

from the exchanged messages between the nodes, Figure 4(b).

3. DLPS - Analogous to GPS satellites, the nodes periodically broadcast their locations and

times, ((x, y, z), t), and the object determines its location from the received data, Figure 4.

4. DLPS Radar - The object periodically broadcasts a signal or emits a signature whereby

it is identified by the nodes, its location is accurately determined by the nodes (as

described in the following section), and the nodes broadcast the object’s location, ((x, y,

z), t), back to the object. The object determines its own location with a simple vote (or

any other method of combining data), which is a drastic reduction in on-board processing

requirement of the received data from multiple nodes, Figure 4.

14

Figure 4. Active and passive participants.

In practice, options 3 and 4 can be implemented even if the object’s capability is limited to one

receiver; the nodes broadcast their data using a TDMA schedule on a single communication

channel, thus, preventing interference when communicating with the object.

6.1. PAssive DIstributed Detection And Ranging System (PADIDAR)

The Oxford Dictionary defines a radar as “a system for detecting the presence, direction,

distance, and speed of aircraft, ships, and other objects, by sending out pulses of high-frequency

electromagnetic waves that are reflected off the object back to the source.” We call such a

system an active radar. In contrast, similar functionality can be achieved by a set of sensors at

the nodes that are tailored to the object’s signature or a signal broadcast by the object. We call

such a system a passive radar.

Indeed, given a set of connected and synchronized nodes with appropriate sensors, and given an

object periodically broadcasting a signal or emitting a signature (whereby it is identified by the

nodes), the nodes can detect the presence, distance, location, and, subsequently, determine the

trajectory of the object properly and accurately and, thus, constitutes a PAssive DIstributed

Detection And Ranging system (PADIDAR). In this context, PADIDAR is a one-way ranging

system. We define PADIDAR as R = f(Sensor, Object). The following table lists some

examples of the Sensor-Object pairs.

Table 1. Examples of Sensors and Objects.

Sensor Object Intent

Sound/Noise Bullet, Missile, UAV,

Ball (tennis, football, etc.)

Location, Projection

Vision/Light/Heat UAV, Missile, Meteor Location, Projection

Wave/Vibration Water, Light Locating earthquake epicenter

We consider the following two scenarios for different behaviors of the object.

Scenario A: The object actively and periodically broadcasts a signal, Figure 4(a) – Since an

object’s data arrives out of synchrony with the synchronized nodes, the nodes need to first

determine when the object had broadcast its signal in order to locate its position. Thus, when a

node receives/detects a signal from the object, it immediately broadcasts this locally time-

stamped event to other nodes. Since the nodes are synchronized with each other, each node will

a b

15

receive the object data from all other nodes within one γ. As a result, initial precision (time lag)

of the object data among the nodes is now γ. The exchanged object data is stored locally in a

vector V at a node (similar to the previous section).

To accurately locate the object, the nodes execute the following algorithm that is a shorter

version (Steps 3 and 4) of the algorithm presented in a previous section entitled “Recovering

Invalid Echo”, keeping in mind that Dij is the distance between nodes i and j, and Nf is now

referred to the object.

1. If received/detected signal from object, broadcast it.

2. Use trilateration with entries in V and Dij to determine the time when the object had

broadcast its message. Repeat this process until one of the following conditions a or b is

satisfied, otherwise, adjust V by some amount 0 < x < γ and continue, where x is a

fraction/multiple of clock ticks.

V(i) = V(i) - x, for all i

Increment the iteration counter w

a. They converge to a closest intersecting point so that the difference between any two

values in V is within δ, 0 ≤ δ << γ, and so a solution exists.

b. They do not converge after w ≥ γ/x iterations and so there does not exist a solution.

3. If there exists a solution, the intersecting point is the time when the object had broadcast

its message and xw is the amount of time it took to reach the convergence point and the

current content of V holds the broadcast time of the object’s message.

Scenario B: The object is passive and does not periodically broadcast a signal, Figure 4(b) –

The object is assumed to continuously emit a signature, e.g., sound/light/heat emanating from a

meteor or the object’s presence is detected using visual sensors/cameras at the nodes. In this

scenario, the synchronized nodes sample the object’s signature at specific intervals. To simplify

the process, the nodes sample and exchange object data with each other along with their

synchronization message exchange activities, therefore, eliminating the need for timing

alignment that was necessary for Scenario A. The exchanged object data is stored at a node in a

vector V, similar to Scenario A.

At the end of either Scenario A or B, the proper timing of the object data is reflected in V and,

thus, the distances between the nodes and the object are readily computed and the location of the

object is determined using trilateration. Note that since the timing values in V are optimum, this

final localization step does not require further iterations.

6.2. Dynamic Geometry And Mobility

The reliability and accuracy of such a positioning system fundamentally depends on two factors;

the accuracy of its time-synchrony, at the node and network level, and its geometry, i.e.,

locations and distances of its nodes from each other. Just as geo-location using GPS data is

based on the knowledge of the locations and current times of the satellites, current ground-based

geo-location solutions are also based on prior knowledge of the exact location of the beacons

16

(nodes) and the distances between them; the more accurate the data (time and distances), the

more accurate the location of the object is estimated. For instance, Locata [Riz 2013] ground-

based LPS, requires exact knowledge of the location of its beacons and their distances; thus, a

survey of the locations of the beacons and their geometry has to be conducted and the survey

results shared by all beacons prior to its intended operation. The requirement of prior knowledge

of network geometry imposes a restriction on the applications and precludes scenarios where the

nodes are mobile.

In contrast, the self-synchronization protocols presented in this paper are autonomous and not

only establish an accurate time-synchrony, they also determine the network geometry (the

relative locations and distances of the nodes with respect to each other) without requiring such

prior knowledge or the help of an external source. The autonomous distributed fault-tolerant

local positioning system presented, therefore, provides added capability for high-dynamic

environments, where not only the object is assumed to be mobile and maneuver at high speed,

but the nodes are also assumed to be static and/or mobile and their locations, potentially, change

as a function of time. The only restriction being that the nodes and the object remain within the

maximum communication range of γ of each other. Figure 5 depicts a 2D (the concept is equally

applicable to 3D) example of a fully mobile system, where the locations of the nodes and the

object change as a function of time.

Figure 5. Dynamic geometry and mobility.

7. Integrated Self-Synchronizing Algorithm

Together, the Primary and Secondary algorithms presented in previous sections guarantee

bringing a system to a safe (legitimate) state, even when started from an arbitrary initial

configuration, and achieve network level fine synchrony. These algorithms are the building

blocks of the autonomous distributed fault-tolerant local positioning system.

The accuracy of the localization provided by this local positioning system is a function of the

frequency of data it broadcasts, e.g., ((x, y, z), t), and the measure of synchrony among its

a b c

17

distributed components, which, in turn, is a function of the drift of their local oscillators. Thus,

to provide data with the highest accuracy, we must broadcast localization data as frequently as

possible and maintain synchrony among the nodes as often as practicable. Note that

performances of the synchronization and localization algorithms are bounded by the

communication latency γ, thus, imposing a limit on broadcast frequency.

Earlier in this report we had also pointed out that, due to drift in local oscillators, undergoing the

periodic resynchronization process is a necessary part of these algorithms. The Congruence

property indicates the Primary algorithm’s successful completion of the resynchronization

process, and triggers start of a new round of resynchronization process by the Secondary

algorithm. Executing these algorithms in sequence, however, introduces undesirable hiccups in

the system. As discussed in [Mal 2014], in the Primary algorithm, the LocalTimer is used to

provide a jitter-free clock to the higher level protocols by properly filtering out inherent

deviation (hiccup) in the StateTimer during the resynchronization process. During this process

accuracy of the local positioning system data is less than desired. In addition, as the clocks drift

the accuracy of the geo-location data diminishes. Thus, the more the rate of drift of the

oscillators, the more frequent the resynchronization process needs to take place; however, if the

nodes’ local timers maintain a high degree of relative synchrony, we may not need to undergo

the periodic resynchronization process by the Primary algorithm. We would like to point out that

the need for the resynchronization process cannot be fully eliminated and will be reserved for

circumstances when the system experiences unexpected loss of synchrony that will be indicated

by the Congruence property.

When the nodes are synchronized, BI and BE phases of the Secondary algorithm each take one γ

to complete while RCA phase takes negligible time to compute compared to the communication

latency γ, Figure 3. In other words, each iteration of the Secondary algorithm takes 2γ clock

ticks. Proper overlapping of the BI and BE phases halves the time interval of iteration of the

Secondary algorithm, reduces the amount of drift among the local timers of the nodes, thus,

maintaining higher synchrony in the system, provides higher frequency and more accurate

localization data. In this section we introduce an algorithm that is an amalgamation of the

Primary and Secondary algorithms while eliminating inefficiencies and, at the same time,

speeding up the resynchronization process.

Since broadcast frequency is bounded by γ, for geo-location purposes, localization data is

broadcast periodically at γ intervals; however, when augmented by adding an Echo message, it

also facilitates maintaining a higher level of relative synchrony in the system. The benefits of

this approach far outweighs the extra overhead of adding Echo since it eliminates the need to

undergo the periodic resynchronization process and the resulting hiccups in the system.

The integration of the two algorithms is subtle and based on the idea of augmenting the geo-

location data, that includes nodes’ local times, ((x, y, z), t), for clock synchronization purposes.

To properly integrate the two algorithms, the statements ST1 and TS1 of the Primary algorithm

need to be modified in order to prevent unnecessary periodic resynchronization after achieving

synchrony, Figure 2 and Figure 6.

18

Figure 6. Modification to symmetric-fault-tolerant protocol.

The integrated self-synchronization algorithm is presented in Figure 7. Start of this algorithm is

triggered by the Congruence property when the Primary algorithm achieves coarse synchrony.

Figure 7. The fault-tolerant integrated self-synchronizing algorithm.

SnotT: While ((not InTransition) and (InSynch))

if ((LocalTimer mod) = 0)

Recover(), Adjust(), UpdateEcho()

Broadcast Echo

TnotS: if (InTransition and (not InSynch))

if (LocalTimer = ψ)

Broadcast Init

if (LocalTimer = ω + ψ)

Broadcast Echo

if (LocalTimer = 2ω + ψ)

Recover(), Adjust(), UpdateEcho()

if (LocalTimer = 3ω)

InSynch = true

InTransition = false

Broadcast Echo

TS1: if (StateTimer PST) and // timed out

 (TransmitTimer) and

 (not Accept()) and (not InSynch)

Transmit Sync.

Synchronizer:

ST1: if (StateTimer < 0) or (Accept()) or (StateTimer ≥ PST and

InSynch)

StateTimer := 0, // reset

ST2: elseif (not InSynch)

if (StateTimer < PST)

StateTimer := StateTimer + 1

 else

StateTimer := (StateTimer + 1) mod PST.

19

 ω = πinit + , and ψ = ResetLocalTimerAt

 InTransition

o Set by the Primary algorithm, Congruence property

o Reset by the Primary algorithm when synchrony is lost, Congruence property, or by

the Secondary algorithm upon completion of the transitory interval, statement TnotS.

 InSynch

o Set by the Secondary algorithm upon completion of the transitory interval

o Reset by the Primary algorithm when synchrony is lost, Congruence property

The Recovery() and Adjust() functions were described earlier. We describe UpdateEhco()

function here. But, since the Echo message is broadcast at γ intervals (after achieving network-

level synchrony), the Recovery() function is revisited. An example of execution of this algorithm

is provided in the Appendix A.

Recovering Invalid Echo Revisited
A faulty Echo message manifests as an invalid row in matrix M. Let, at Ni, Nf be the faulty node

whose corresponding row in M contains no data. Let V be a vector of data associated with all

nodes that received valid Init messages from Nf, i.e., V is the column f in M and V = M(i,f) =

valid. For error detection and recovery purposes, we build a new matrix, M-New, for the newly

arrived messages. If Nf had broadcast in previous round (equivalent to Init messages) to

sufficient number of good nodes (three/four) but did not broadcast Echo, Nf is recovered using

trilateration. The matrix M is restored using the algorithm described in a previous section

entitled “Recovering Invalid Echo.” With the integrated algorithm of Figure 7, if the

assumptions hold, a node exhibiting faults at every other interval is readily tolerated.

If the nodes are not mobile and the assumptions hold, a simpler (shortcut) solution to recovery is

to copy the Nf column/row in the M-New matrix using timing values from its Init message in the

M matrix.

M-New(i,Nf) = M(i,Nf)

and

M-New(Nf,j) = M(Nf,j), for all i and j.

UpdateEcho()
Construct the Echo vector, as the messages arrive, in preparation for the next round.

For all sources of a messages i,

if (InSynch)

 Echo(i) = LocalTimer mod γ

 if Echo(i) = 0

Echo(i) = γ

An implication of the above modulus operation is that PLT needs to be a multiples of γ to avoid

complications arising due to fractions of γ that would result otherwise.

20

8. Conclusions

We have described an autonomous distributed fault-tolerant local positioning system, a fault-

tolerant GPS-independent distributed autonomous distributed local positioning system, for static

and/or mobile objects and presented solutions for providing highly-accurate geo-location data for

the static and/or mobile objects in dynamic environments. We have explored the fundamental

issues governing a distributed local positioning system, namely, timeliness of its broadcasting

signals and the knowledge of its geometry, i.e., locations and distances of the beacons. We also

addressed shortcomings of existing distributed positioning systems, namely, a single point of

failure and lack of addressing various fault manifestations, in particular, communication link

failures. Our proposed solution, solves this problem by first employing fault-tolerant distributed

clock synchronization protocols to achieve the theoretical synchrony of one-clock tick across the

distributed system of nodes (beacons) and, consequently, determine the geometry of the network,

and then use trilateration to accurately determine the current location of the intended object. The

presented solution is an algorithm that is an amalgamation of the Primary and Secondary

algorithms while eliminating inefficiencies and, at the same time, speeding up the

resynchronization process. We presented a new synchronization protocol entitled “A Fault-

Tolerant Clock Synchronization Protocol For Wireless Networks,” which we referred to as the

Secondary algorithm. We also addressed subtleties of integrating the two algorithms, which are

based on the idea of augmenting the geo-location data, which includes nodes’ local times,

((x, y, z), t), for clock synchronization purposes. Although we addressed fault detection to some

extent, we leave full investigation of this issue to future work. We would like to point out that

comparisons of various matrices at proper timing events can help with the detection of various

faults. Also, due to time constraints we restricted our topology to fully connected graphs and

leave generalization of this work to future work. Mechanical verification and formal proof of the

proposed solution are left to future work.

References

[Bie 2011] Biely, M.; Schmid, U.; Weiss, B.: Synchronous consensus under hybrid process

and link failures, Journal of Theoretical Computer Science, vol. 412, no. 40, pp.

5602-5630, 2011.

[Con 2006] Constellation CxP 70024 (BASELINE), Constellation Program Human-Systems

Integration Requirements, Glossary, December 2006.

[Dol 1984] Dolev, D.; Halpern, J.Y.; Strong, R.: On the Possibility and Impossibility of

Achieving Clock Synchronization, proceedings of the 16th Annual ACM STOC

(Washington D.C., Apr.). ACM, New York, 1984, pp. 504-511. (Also appear in J.

Comput. Syst. Sci.)

[Dri 2003] Driscoll, K.; Hall, B.; Sivencrona, H.; Zumsteg, P.:, Byzantine Fault Tolerance,

from Theory to Reality, LNCS, 22nd International Conference on Computer

Safety, Reliability and Security, pp. 235-248, September 2003.

[Hay 2014] Hayhurst, K.J.; Maddalon, J.M.; Morris, A.T.; Neogi, N.; Verstynen, H.A.: A

Review of Current and Prospective Factors for Classification of Civil Unmanned

Aircraft Systems, NASA/TM-2014-218511, August 2014.

21

[Hay 2015] Hayhurst, K.J.; Maddalon, J.M.; Neogi, N.; Verstynen, H.A.: A case study for

assured containment, 2015 International Conference on Unmanned Aircraft

Systems (ICUAS), pp. 260-269, June 2015.

[Kop 1997] Kopetz, H: Real-Time Systems, Design Principles for Distributed Embedded

Applications, Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.

[Lam 1982] Lamport, L.; Shostak, R.; Pease, M.: The Byzantine General Problem, ACM

Transactions on Programming Languages and Systems, 4(3), pp. 382-401, July

1982.

[Mal 2011] Malekpour, M.R.: A Self-Stabilizing Synchronization Protocol For Arbitrary

Digraphs, The 17th IEEE Pacific Rim International Symposium on Dependable

Computing (PRDC 2011), pp. 10, December 2011.

[Mal 2015] Malekpour, M.R.: A Self-Stabilizing Hybrid-Fault Tolerant Synchronization

Protocol, 2015 IEEE Aerospace Conference, pp. 11, March 2015.

[Mal 2017] Mahyar R. Malekpour: Achieving Agreement In Three Rounds With Bounded-

Byzantine Faults, AIAA SciTech 2017, pp. 10, January 2017, to appear.

[Min 2004] Miner, P.S.; Geser, A.; Pike, L.; Maddalon, J.: A Unified Fault-tolerance

Protocol, In Yassine Lakhnech and Sergio Yovine, editors, Formal Techniques,

Modeling and Analysis of Timed and Fault-Tolerant Systems, volume 3253, pp.

167-182, Springer, 2004.

[Pea 1980] Pease, M.; Shostak, R.; and Lamport, L.: Reaching agreement in the presence of

faults, Journal of the ACM, 27(2): 228-234, April 1980.

[Riz 2013] Rizos, C.: Locata: A Positinging System for Indoor and Outdoor Applications

Where GNSS does not Work, Proceedings of the 18th Association of Public

Authority Surveyors Conference, 2013.

[Sch 2002] Schmid, U.; Weiss, B.; Rushby, J.: Formally Verified Byzantine Agreement in

Presence of Link Faults, in 22nd International Conference on Distributed

Computing Systems (ICDCS’02), pp. 608–616, July 2002.

[Sri 1987] Srikanth, T.K.; Toueg, S.: Optimal clock synchronization, Journal of the ACM,

34(3), pp. 626–645, July 1987.

[Wel 1988] Welch, J.L.; Lynch, N.: A New Fault-Tolerant Algorithm for Clock

Synchronization, Information and Computation volume 77, no. 1, pp.1-36, April

1988.

[GPS] http://www.gps.gov/

http://www.gps.gov/

22

Appendix A

The purpose of this example is to give the reader a quick review of and help in understanding the

behavior of the integration algorithm. The following is an example of a fully connected graph

consisting of 4 nodes, where F = 0. Table A.1 shows an execution trace of the network and has

six columns; one for time reference, one for each good node listing value of its LocalTimer, and

the last column is for network precision, π. Each row depicts activities of all good nodes at the

corresponding time. Cell contents for the node columns consist of a number corresponding to

the value of the LocalTimer of the node in conjunction with an activity: 1) Init and Echo if the

node transmits the message, and 2) Update if the node corrects its local timer. The received

messages at a node are depicted in superscripts, one position for each corresponding node, where

a ‘-’ means no messages from that node and an ‘i’ or ’e’ means an Init or Echo message,

respectively, was received.

4

8

4

8

7

7

4

2

3

1

Figure A1. A 4-node network

System parameters:

D = 4 clock ticks, d = 4 clock tick = 8 clock ticks

K = 4 nodes, G = 4 nodes, F = 0 nodes

ψ = ResetLocalTimerAt = = 8 clock ticks

PST = 1000 clock ticks

0 ≤ << 1 δ(PST) = 0 clock ticks

πinit = d + + δ(d +) πinit = 16 clock ticks (worse case)

ω = πinit + = 3 = 24

π = πinit + 2δ(PST) 0 π = 16 clock ticks

r = π (1 + ρ) = 16 clock ticks

PLT = 1030 clock ticks

23

Table A.1. An execution trace of a network of 4 nodes.

Time N1.LocalTimer N2.LocalTimer N3.LocalTimer N4.LocalTimer π InTrs InSyc

t + 0 8----, Init 2---- ?---- 2---- ? T F

t + 4 12---- 6---- ?---- 6i--- ? T F

t + 6 14---- 8----, Init ?---- 8i---, Init ? T F

t + 7 15---- 9i--- ?---- 9i--- ? T F

t + 8 16i--- 10i--- 0i--- 10i--- 16 T F

t + 10 18i--i 12i--- 2ii-- 12i--- 16 T F

t + 11 19i--i 13i--- 3ii-- 13i--- 16 T F

t + 13 21ii-i 15i--- 5ii-i 15ii-- 16 T F

t + 14 22ii-i 16ii-- 6ii-i 16ii-i 16 T F

t + 16 24ii-i 18ii-i 8ii-i, Init 19ii-i 16 T F

t + 20 28ii-i 22iiii 12ii-i 22ii-i 16 T F

t + 23 31ii-i 25iiii 15ii-i 25iiii 16 T F

t + 24 32iiii, Echo 26iiii 16iiii 26iiii 16 T F

t + 28 36iiii 30iiii 20iiii 30eiii 16 T F

t + 30 38iiii 32iiii, Echo 22iiii 32iiii, Echo 16 T F

t + 31 39iiii 33eiii 23iiii 33eiii 16 T F

t + 32 40eiii 34eiii 24eii 34eiii 16 T F

t + 34 42eiie 36eiii 26eeii 36eiii 16 T F

t + 37 45eeie 39eiii 29eeie 39eiii 16 T F

t + 38 46eeie 40eeie 30eeie 40eeie 16 T F

t + 40 48eeie 42eeie 32eeie, Echo 42eeie 16 T F

t + 44 52eeie 46eeee 36eeie 46eeie 16 T F

t + 47 55eeie 49eeee 39eeie 49eeee 16 T F

t + 48 56 50eeee 50eeee 40eeee 50eeee 10 T F

t + 54 56eeee 56 56eeee 46eeee 56 56eeee 10 T F

t + 64 66eeee 66eeee 56 66eeee 66eeee 10 T F

t + 70 72eeee, Echo 72eeee, Echo 72eeee, Echo 72eeee, Echo 0 F T

t + 78 80eeee, Echo 80eeee, Echo 80eeee, Echo 80eeee, Echo 0 F T

t + 86 88eeee, Echo 88eeee, Echo 88eeee, Echo 88eeee, Echo 0 F T

… … … … … 0 F T

24

Matrices M and T at N1 at LocalTimer = 7γ = 56 when all received Init messages are valid.

 Matrix M Matrix T

Timeline of activities at N1: 0 --- 6,6 -------- 16

Ignoring extreme values of 0 and 16, the adjustment Amount is: (6 + 6) / 2 = 6

D12 = M(1,2) + M(2,1) / 2 = 15 * C

D13 = M(1,3) + M(3,1) / 2 = 16 * C

D14 = M(1,4) + M(4,1) / 2 = 12 * C

D23 = M(2,3) + M(3,2) / 2 = 12 * C

D24 = M(2,4) + M(4,2) / 2 = 16 * C

D34 = M(3,4) + M(4,3) / 2 = 15 * C

Matrices M and T at N1 at LocalTimer = 10γ = 80 when all received Echo messages are valid.

 Matrix M Matrix T

Timeline of activities at N1: --- 0,0,0,0 ----

Ignoring extreme values of 0 and 0, the adjustment Amount is: (0 + 0) / 2 = 0

D12 = M(1,2) + M(2,1) / 2 = 7 * C

D13 = M(1,3) + M(3,1) / 2 = 8 * C

D14 = M(1,4) + M(4,1) / 2 = 4 * C

D23 = M(2,3) + M(3,2) / 2 = 4 * C

D24 = M(2,4) + M(4,2) / 2 = 8 * C

D34 = M(3,4) + M(4,3) / 2 = 7 * C

16 21 32 18

9 16 22 16

0 2 16 5

6 16 25 16

0 6 16 6

-6 0 10 0

-16 -10 0 -10

-6 0 10 0

8 7 8 4

7 8 4 8

8 4 8 7

4 8 7 8

0 0 0 0

-0 0 0 0

-0 -0 0 0

-0 -0 -0 0

25

Appendix B

Matrices M and T at N1 at LocalTimer = 7γ when all received Init and Echo messages are valid.

 Matrix M Matrix T

D12 = M(1,2) + M(2,1) / 2 = 15 * C

D13 = M(1,3) + M(3,1) / 2 = 16 * C

D14 = M(1,4) + M(4,1) / 2 = 12 * C

D23 = M(2,3) + M(3,2) / 2 = 12 * C

D24 = M(2,4) + M(4,2) / 2 = 16 * C

D34 = M(3,4) + M(4,3) / 2 = 15 * C

Recovering Invalid Init
Matrices M and T at N1 at LocalTimer = 7γ with some invalid entries (Init messages) but all Echo

messages are valid, i.e., no faults during Echo exchange.

 Matrix M Matrix T

T(1,2) = T(1,4) - T(2,4) = 6 - 0 = 6, T(2,1) = -T(1,2) = -6

T(2,3) = T(1,3) - T(1,2) = 16 - 6 = 10, T(3,2) = -T(2,3) = -10

T(3,4) = T(1,4) - T(1,3) = 6 - 16 = -10, T(4,3) = -T(3,4) = 10

And M is readily restored using Equation 1.

For K = 4, three, i.e., K-1, simultaneous Init link faults were tolerated (recovered).

16 21 32 18

9 16 22 16

0 2 16 5

6 16 25 16

0 6 16 6

-6 0 10 0

-16 -10 0 -10

-6 0 10 0

16 - 32 18

9 16 - 16

0 2 16 -

6 16 25 16

0 - 16 6

- 0 - 0

-16 - 0 -

-6 0 - 0

26

Recovering Invalid Echo
Matrices M and T at N1 at LocalTimer = 7γ with some invalid entries in Init and Echo messages,

specifically, given 4 nodes and allowing for one fault per stage.

 Matrix M Matrix T

T(2,3) = T(1,3) - T(1,2) = 16 - 6 = 10, T(3,2) = -T(2,3) = -10

From Equation 1, M(2,3) = 22

 Matrix M Matrix T

Note N4 did not broadcast Echo message to N1.

V = M(1,4) = (18, 16, 5)

Using V, Dij, and trilateration, timing of N4 in T is restored. M is subsequently restored using

Equation 1.

16 21 32 18

9 16 - 16

0 2 16 5

- - - -

0 6 16 -

-6 0 - -

-16 - 0 -

- - - -

16 21 32 18

9 16 22 16

0 2 16 5

- - - -

0 6 16 -

-6 0 10 -

-16 -10 0 -

- - - -

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF

 ABSTRACT

18. NUMBER

 OF

 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
 (757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2017-219638

L-20782

01-07-2017 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

Autonomous; Distributed; Dynamic; Fault-tolerant; Geo-location; Independent; Mobile; Positioning system; Synchronization

 An Autonomous Distributed Fault-Tolerant Local Positioning System

Malekpour, Mahyar R.

33

NASA

 999182.02.85.07.01

Unclassified
Subject Category 62
Availability: NASA STI Program (757) 864-9658

We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for
providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally
depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning
systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular
beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing
various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically
transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

