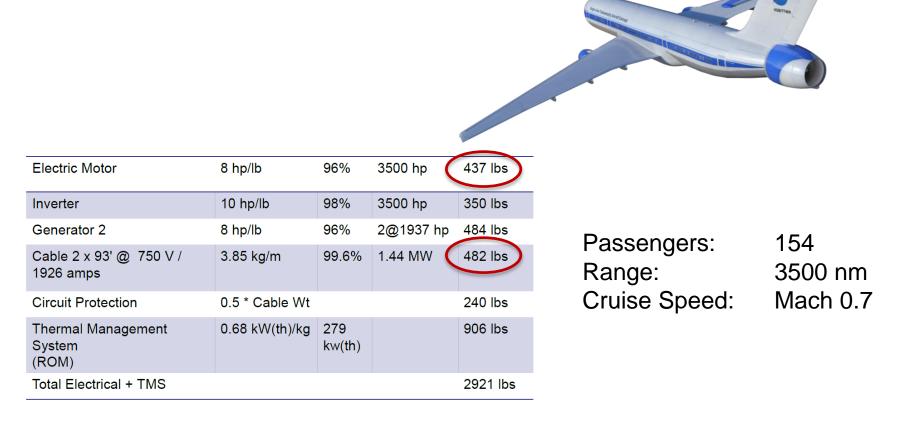


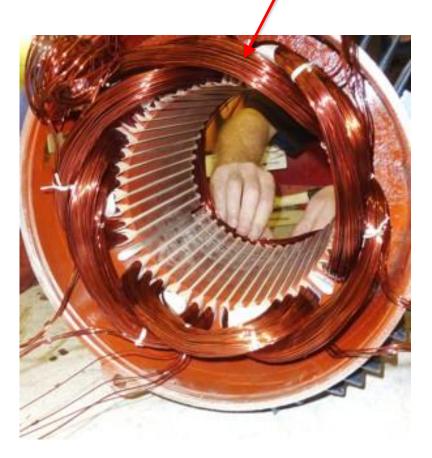
Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity


MRS Fall Meeting Symposium NM₃- Nanotubes and Related Nanostructures

Henry de Groh III High Temperature and Smart Alloys Branch NASA Glenn Research Center Cleveland, Ohio

Dec. 1, 2016

NASA


Compared to baseline aircraft 7% to 12% fuel reduction depending on mission; aft motor resulting in boundary layer ingestion.

Welstead et al., Presented at AIAA Sci Tech Jan. 2016

Improvements in Magnet Wire.

Program Goals

- Increase Motor Wire Conductivity
 - Lower i^2 R losses;
 - Lower cooling requirements;
 - Higher power-to-weight ratio.
- Lower Wire Density

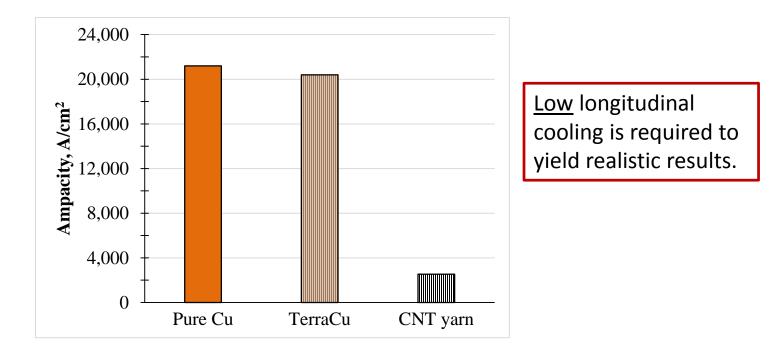
- Ampacity (current/unit area, A/cm²);
 - To test claims of high current carrying capacity of CNT-Cu composite wire.
- Raman Spectroscopy of CNT sources;
 - To develop metallic and semiconductor CNT characterization methods.
- Buckypaper Resistivity;
 - To test the dependence of resistivity on CNT characteristics: metallic vs. semiconductor.

Experimental Procedures- Ampacity

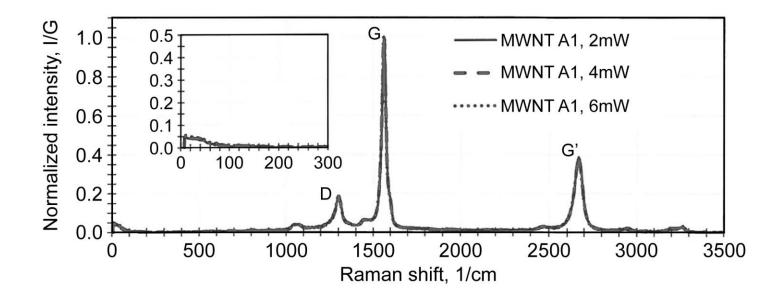
- Ampacity = max Amp/cm²
 - 20 AWG pure Cu magnet wire;
 - 20 AWG Cu-5vol%CNT composite wire from NanoRidge Materials Incorporated;
 - 28 AWG MWCNT yarn from Nanocomp Technologies.

Experimental Procedures- Raman Spectroscopy

- Samples
 - <u>MWNT</u>- Multi-wall CNT Buckypaper m-CNT:s-CNT ratio debatable.
 - <u>FWNT</u>- few-walled CNT, by Southwest NanoTechnologies, reported to be metallic.
 - Mixed SWNT- Super PureTubes 66% s-SWNT:33% m-SWNT.
 - Sorted SWNT- IsoNanotubes-M (95%) claimed to be 95% m-SWNT.
- Raman Spectroscopy conditions
 - wavelength λ = 633 nm, 3500 cm⁻¹ upper cutoff, laser powers 2 to7 mW.
 - Top, bottom, different areas.
 - Examined G-band, D-band, G'-band, RBM.

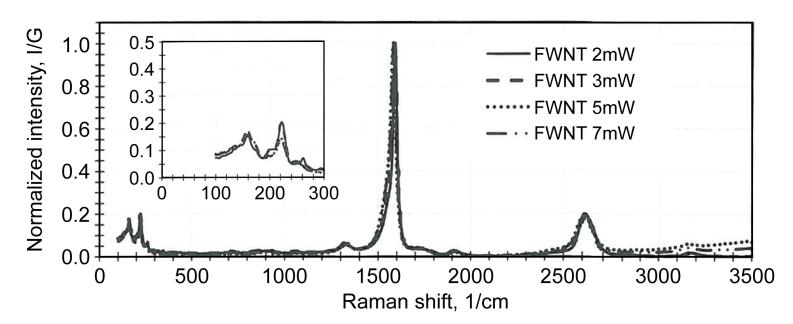


Results- Ampacity



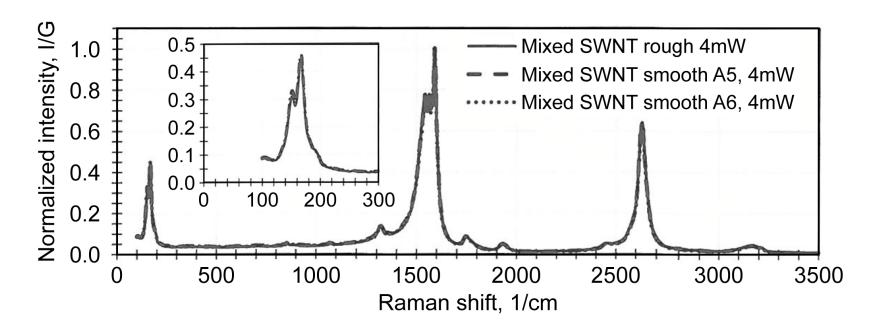
Average of 2 or 3 Ampacity measurements of Pure Cu, Cu-CNT composite TerraCopper, and a CNT yarn.

Results- Raman Spectroscopy


MWNT Buckypaper: Lorentzian G-band peak, no RBM, low D-band and G'-band intensities.

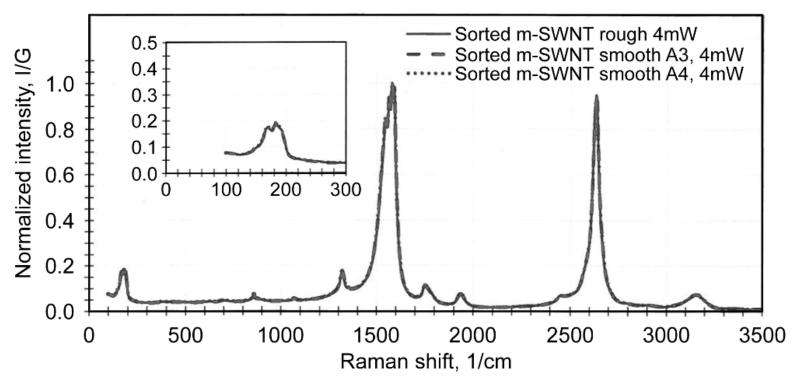
FWNT Powder:

- Lorentzian G-band peak;
- RBM: Strong 221 ((13,1) or (11,4)) and 158 cm⁻¹ peaks; Weak peaks near 198 ((14,2) or (12,5)) and 172 cm⁻¹ (18,0). ^{1,2,3}
- Low D-band and G'-band intensities.



¹Baik et al. J. Phys. Chem. B. Vol. 108, No. 40, 2004. ²Hennrich et al. J. Phys. Chem. B, Vol. 109, 2005. ³Maultzsch et al. Phys. Rev. B, Vol. 72, 205438, 2005.

Mixed SWNT:


- Breit-Wigner-Fano (BWF) G-band line shape;
- RBM: 192 (11,7) or (12,6), 167 and 152 cm⁻¹;
- Low D-band and moderate G'-band intensity.

Sorted SWNT:

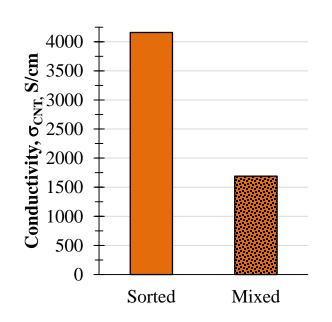
- Breit-Wigner-Fano (BWF) G-band line shape;
- RBM: 181 (15,3), 196 (13,4), 200 (14,2) cm⁻¹;
- Low D-band and high G'-band intensity.

Table I.—Average Raman Shift peak ratios; the average % standard deviation for all measurements was 2.8%.

Sample, # of samples in average	G/D	G/G'
MWNT, 3	5.44	2.62
FWNT, 5	16.0	5.32
Mixed SWNT, 3	7.20	1.60
Sorted m-SWNT, 11	6.06	1.00

Results – Buckypaper Resistivity

Mixed SWNT – ρ_{mixed} = 0.00296 Ohm-cm

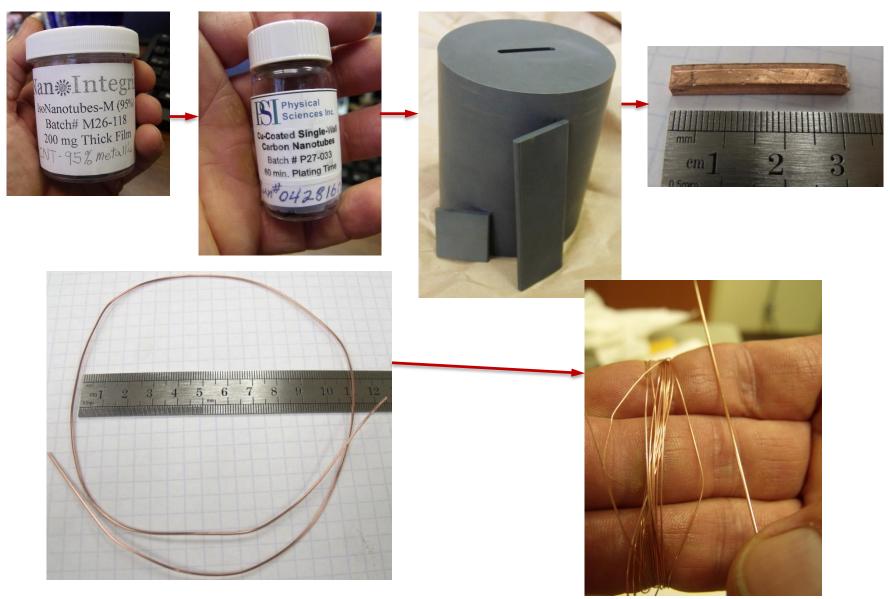

Sorted SWNT – ρ_{sorted} = 0.0019 Ohm-cm

10 to100 times lower resistivity than others found in the literature; due to the cleanliness of the CNT which enables good, low resistance contacts among CNT.

Conductivity = $\sigma_B = 1/\rho_B = \sigma_{CNT}(\phi_{CNT}) + \sigma_{void}(\phi_{void})$

where σ_{void} is void conductivity which is set to zero, and ϕ is volume fraction.

 σ_{CNT} includes interfacial resistances and is not the intrinsic conductivity of the CNT.


Conclusions

- Improvement of ampacity was not achieved by adding 5vol% CNT to Cu;
- Raman spectroscopy and G/G' provide indications of metallic CNT;
- A measure of m-CNT:s-CNT might be possible for a give batch subjected to sorting;
- Clean, unfunctionalized SWNT yielded unusually high Buckypaper conductivities. The conductivity of sorted SWNT BP 246% higher than unsorted, which implies conductivity improvements can be achieved through the use of sorted m-CNT.

Current & Future Work

Advanced Air Transport Technology Project Advanced Air Vehicle Program