

Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

Sam Lee

Vantage Partners, LLC

Harold E. Addy, Jr., retired Andy P. Broeren NASA Glenn Research Center

David M. Orchard National Research Council Canada

Outline

- Introduction
- Experimental Methods
- Results and Discussion
- Conclusion

Introduction Motivation for Study

- Most thermal Ice Protection System (IPS) development and testing done in atmospheric icing tunnels that cannot simulate altitude effects.
- Altitude scaling is required to test IPS in atmospheric wind tunnels.
- Re-based scaling methods with empirical corrections typically used.
- A more robust scaling methods desired for development of current and future generation aircraft
- Joint NASA and NRCC research program conducted to study the issue.

Introduction NRC AIWT Tests (2012, 2014, 2015)

- 18" chord NACA 0018 model with simple heated air IPS
- Re-based scaling method found to be inadequate
 - Airfoil surface temperatures well matched between altitude and ground conditions.
 - Accreted ice mass much larger than reference
 - Ice formed farther downstream than reference
 - Visual evidence of water re-entrainment into air flow.
- Two Weber number based method for scaling investigated.
 - One method matched We_{DW} (water density based)
 - Other method matched We_{DA} (air density based) and m_w/m_e (defined as Pi3).

Introduction AIWT Tests (2012, 2014, 2015)

- We-based scaling methods produced ice accretions much closer in size and location to altitude reference conditions than Re-based scaling method.
- Provided means of altitude scaling based on primary physics and not empirical corrections.

Reference

WePi3 Scaling

Introduction 2016 IRT Test

- Compared different scaling methods with a much larger business jet airfoil model.
- Ice protection system more similar to what is used on commercial aircraft.
- IRT cannot simulate altitude conditions.
- Results of different scaling methods can be compared to one another and trends compared to AIWT results.

Experimental Procedure

- Test conducted in Icing Research Tunnel at NASA Glenn Research Center.
- 60 in. chord model representative of modern business jet.
- Piccolo tube IPS.
- Built for 2006 Wichita State University IPS analysis and modelling study.
- Extensively instrumented with temperature and pressure sensors.

Experimental Procedure

- Surface temperatures (32 TCs)
- 4 TCs in piccolo tubes (Inlet T)
- 4 TCs in diffuser liner (Outlet T)

Reference Conditions

Flight Phase	Altitude	V	α	Ts	Tt	LWC	MVD
	(ft)	(kts)	(deg)	(deg C)	(deg C)	(g/m ²)	(µm)
Descent	10000	180	-1	-14.2	-10	0.35	19.1
Cold Hold	15000	180	3	-20.1	-15.8	0.24	17.5
Warm Hold	15000	180	3	-8.6	-4.3	0.49	17.4

Scaling Parameters

Scaling Method	Scaling	Paramete	ers Held Co	onstant
Re	Re _{2r}	m _w	K ₀	Τ _r
WePi3	WeDA	Pi3	K_0	Τ _r
WeDW	WeDW	m _w	K ₀	Τ _r

- Required 2 step process to obtain scaled conditions
 - Run at Re-scaled conditions to obtain L.E. temperatures.
 - Run at We-scaled conditions with IPS adjusted to match the L.E. temperatures obtained at Re-scaled conditions.

Descent Scenario

Scale Method	Alt (ft)	V (kts)	T _s (deg C)	LWC (g/m ³)	MVD (μm)	m _w (g/m²s)	Re _{2r} (x10 ⁶)	WeDA	Pi3	WeDW (x10 ⁶)	lce Mass (g)
Referenc	10000	180	-14.2	0.35	19.1	17.6	0.224	5814	1.6	6.21	N/A
Re	1066	133	-12.7	0.48	22.8	17.6	0.224	4315	2.24	3.38	20
WePi3	1439	159	-13.5	0.35	19.4	14.4	0.265	5814	1.62	4.84	8.5
WeDW	1782	180	-14.2	0.34	21.6	17.6	0.297	7769	1.88	6.21	12.7

Re Scaling

WePi3 Scaling

WeDW Scaling

Descent Scenario

LE Surface Temperature

Descent Scenario

Cold Hold Scenario

Scale Method	Alt (ft)	V (kts)	T _s (deg C)	LWC (g/m ³)	MVD (μm)	m _w (g/m²s)	Re _{2r} (x10 ⁶)	WeDA	Pi3	WeDW (x10 ⁶)	lce Mass (g)
Reference	15000	185	-20.1	0.31	14.6	13.4	0.193	5147	1.06	6.54	N/A
Re	976	109	-16.4	0.52	20.1	13.4	0.193	3065	1.87	2.27	54.2
WePi3	1495	149	-16	0.28	16.9	9.5	0.253	5147	1.06	4.22	5.0
WeDW	2087	185	-15.7	0.27	18.9	13.3	0.31	8346	1.37	6.54	16.4*

WePi3 Scaling

WeDW Scaling

Cold Hold Scenario

LE Surface Temperature

Cold Hold Scenario

Heated Air Temp.

Heated Air Energy Input

Warm Hold Scenario

Scale Method	Alt (ft)	V (kts)	T _s (deg C)	LWC (g/m ³)	MVD (μm)	m _w (g/m²s)	Re _{2r} (x10 ⁶)	WeDA	Pi3	WeDW (x10 ⁶)	lce Mass (g)
Reference	15000	185	-8.6	0.39	18.3	20.0	0.186	4922	1.74	6.55	N/A
Re	1336	109	-6.3	0.66	25.4	20.0	0.186	2923	3.09	2.26	207.5
WePi3	1814	147	-7.3	0.36	19.6	13.6	0.241	4922	1.74	4.12	64.5
WeDW	2454	184	-8.6	0.37	22	20.0	0.299	8005	2.24	6.55	138.8

Re Scaling

WePi3 Scaling

WeDW Scaling

Warm Hold Scenario

LE Surface Temperature

Warm Hold Scenario

Conclusion

- Test conducted at NASA Icing Research Tunnel to evaluate new altitude scaling methods for thermal ice protection systems.
- Two Weber number-based scaled methods developed during a series of joint NASA and NRCC tests at AIWT.
- Results from IRT generally agreed with and supported the results from previous tests in NRCC.
- We-based scaling methods resulted in smaller ice accretion that formed farther upstream than the Re-based scaling methods.
- Additional tests required in altitude capable tunnels using fullscale models to better define the limits of physical relationships used to develop these scaling methods.

National Aeronautics and Space Administration

Extra Slides

www.nasa.gov 21

WSU Warm Hold Scenario

Scale Method	Alt (ft)	V (kts)	T _s (deg C)	LWC (g/m ³)	MVD (μm)	m _w (g/m²s)	Re _{2r} (x10 ⁶)	WeDA	Pi3	WeDW (x10 ⁶)	lce Mass (g)
Reference	15000	205	-9.4	0.5	20	31.1	0.205	6065	1.73	8.04	N/A
Re	1312	126	-6.3	0.82	27.2	31.1	0.205	3769	2.98	3.01	236.5
WePi3	1835	164	-7.6	0.43	24	21.0	0.264	6065	1.73	5.13	68.9
WeDW	2446	205	-9.2	0.5	22.4	31.1	0.324	9715	2.23	8.04	266.2
WSU	1191	115	-9.4	0.87	29	30.8	0.192	3229	3.03	2.53	483.3

WSU Warm Hold Scenario

Re Scaling

WeDW Scaling

WePi3 Scaling

WSU Scaling

WSU Warm Hold Scenario

Heated Air Temp.

