

https://ntrs.nasa.gov/search.jsp?R=20170007333 2019-08-31T06:50:08+00:00Z

ESC 2017 Ottawa, Canada

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

Co-authors: Sujay Kumar¹, Jacqueline Le Moigne², and Sreeja Nag^{2,3}

Bart Forman

Assistant Professor, University of Maryland **The Deborah J. Goodings Professor of Global Sustainability** Department of Civil and Environmental Engineering

June 7th, 2017

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

Hyperplanes Eulerian Grid Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

Hyperplanes Eulerian Grid Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

Hyperplanes Eulerian Grid Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

- TAT-0
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments

Conclusions

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- ④ How can future mission costs be minimized while ensuring Science requirements are fulfilled?

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments

Conclusions

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- ④ How can future mission costs be minimized while ensuring Science requirements are fulfilled?

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Evocriments

Conclusions

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- ④ How can future mission costs be minimized while ensuring Science requirements are fulfilled?

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learnin Emulators Variability

Conclusions

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- How can future mission costs be minimized while ensuring Science requirements are fulfilled?

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSI

TAT-0

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Bart Forman

Observation Types

Objectives

OSSI

TAT-0

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learnin Emulators Variability Experiments

ESC 2017 Ottawa, Canada Bart Forman

Observing System Simulation Experiment

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-0

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Bart Forman

Observation Types

Objectives

OSSE

TAT-C Hyperp

Eulerian Grid Single Platforn Constellation Trade-off Spac

Emulators Variability Experiments

- Bart Forman
- Observation Types
- Objectives
- OSSI
- TAT-C Hyperplanes Eulerian Grid Single Platfor Constellation Trade-off Spa Machine Learn
- Emulators Variability Experiments
- Conclusions

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Spac Machine Learni Emulators

Variability Experiments

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space Machine Learnin Emulators

Experiments

ESC 2017 Ottawa, Canad

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Gri

Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canad

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Gri

Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canad

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Gri

Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

ESC 2017 Ottawa, Canad

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Gri

Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

ESC 2017

TAT-C Orbital Simulator

Ottawa, Canada
Bart Forman
Eulerian Grid

Experiments

"Comb" Viewing \mapsto Single Platform

ESC 2017 Ottawa, Canada
Bart Forman
Dart Forman
Single Platform

"Comb" Viewing \mapsto Constellation

ESC 2017 Ottawa, Canada
Bart Forman
TAT-C Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Trade-off Space: Coverage vs. Resolution

ESC 2017 Ottawa, Canada

- Bart Forman
- Observatio Types
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions

- Explore trade-off between engineering and science
 - Field-of-View (FOV)?
 - Platform altitude?
 - Repeat cycle?
 - Single platform vs. constellation?
 - Orbital configuration(s)?
- How do we get the most scientific bang for our buck?

Machine Learning "Emulators"

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objective

OSSE

TAT-C Hyperplanes Eulerian Grid Single Platforr Constellation Trade-off Space

Machine Learning

Variability Experiments

Conclusions

Physically-based Land Surface Model(s)

Xue and Forman, 2015 Remote Sensing of Environ.

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

brightness temperature 36 GHz, V-pol 36 GHz, H-pol 18 GHz, V-pol 18 GHz, H-pol 10 GHz, V-pol 10 GHz, H-pol

Multi-frequency, Multi-polarization Training Targets

Machine Learning "Emulators"

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objective

OSSE

TAT-C Hyperplanes Eulerian Grid Single Platforr Constellation Trade-off Space

Machine Learning

Variability Experiments

Conclusions

Physically-based Land Surface Model(s)

Xue and Forman, 2015 Remote Sensing of Environ.

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

spectral difference 18V - 36V 18H - 36H 10V - 36V 10H - 36H

Multi-frequency, Multi-polarization Training Targets

Machine Learning "Emulators"

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objective

OSSE

TAT-C Hyperplanes Eulerian Grid Single Platforr Constellation Trade-off Space

Machine Learning

Variability Experiments

Conclusions

Physically-based Land Surface Model(s)

Xue and Forman, 2015 Remote Sensing of Environ.

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

Multi-frequency, Multi-polarization Training Targets

Spatiotemporal Variability

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning

Emulators Variability Experiments

Spatiotemporal Variability

- Bart Forman
- Observation Types
- Objective
- OSSE
- TAT-C Hyperplanes Eulerian Grid Single Platfor Constellation Trade-off Spa Machine Learr
- Emulators Variability
- Conclusions

Relevancy Scenarios

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation

Machine Learning Emulators Variability

Experiments

- Scenario 1: Benchmark Analysis
 - Passive MW Assimilation only
- Scenario 2: Comparative Analysis
 - Passive MW vs. Active MW vs. LIDAR
- Scenario 3: Multi-sensor Analysis
 - single-sensor platform
 - multi-sensor platform
 - constellation of sensors

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

- Global snow mission planning will require evidence of achievable science via OSSE
- Land Information System (LIS) provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to suggestions!

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation

Machine Learning Emulators Variability

- Global snow mission planning will require evidence of achievable science via OSSE
- Land Information System (LIS) provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to suggestions!

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

- Global snow mission planning will require evidence of achievable science via OSSE
- Land Information System (LIS) provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to suggestions!

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

- Global snow mission planning will require evidence of achievable science via OSSE
- Land Information System (LIS) provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and $\sigma_0)$
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to suggestions!

ESC 2017 Ottawa, Canada

Bart Forman

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

- Global snow mission planning will require evidence of achievable science via OSSE
- Land Information System (LIS) provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and $\sigma_0)$
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to suggestions!

ESC 2017 Ottawa, Canada

Bart Forman

Observatior Types

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platforn Constellation Trade-off Spac

Machine Learning Emulators Variability Experiments

Conclusions

Thank You. Questions and/or Comments?

Financial support provided by: NASA New Investigator Program (NNX14AI49G) NASA GRACE-FO Science Team (NNX16AF17G) NASA High Mountain Asia Science Team (NNX17AC15G)

High-performance computing support provided by UMD's Division of Information Technology