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Research Objectives

Science and mission planning questions:

Objectives

@ What observational records are needed (in space and time) to
maximize terrestrial snow experimental utility?

@® How might observations be coordinated (in space and time) to
maximize this utility?

® What is the additional utility associated with an additional
observation?

@ How can future mission costs be minimized while ensuring
Science requirements are fulfilled?




LRSI
iy X
5 .
18

Observing System Simulation Experiment

LA
TRy

Nature Run Snow Depth & SWE
aver North America
—

LIS + MERRAZ
- model-based




Observing System Simulation Experiment

Nature Rn Snow Depth & SWE | | TAT-C Permutation of
aver North America Qrbit(s} + Sensor(s)
Sub-sample 5
in space / time Bl 1

b

LIS + MERRAZ
- model-based




Observing System Simulation Experiment

Nature Run

LIS + MERRAZ
- model-based

Pes ion of

Orbit(s) + Sensor(s)

TAT-C

Mission cost estimate
and risk analysis

Snow Depth & SWE TAT-C
aver North America
Sub-sample
in space / time

b




Observing System Simulation Experiment

Nature Run Snow Depth & SWE TAT-C Perr ion of Mission cost estimate
aver North America Orbit(s) + Sensor(s) | | tar.c and risk analysis
Sub-sample 1]
>~ . T} and &h
LIS + MERRAZ in space / time @ [ -
- model-based ¥, Operators
p Lot
whine Learning
Synthetic Obs,




1EET ]
_}\\\f ”";

Observing System Simulation Experiment

Nature Run Snow Depth & SWE | | TAT-C Permutation of Mission cost estimate
aver North America Orbit(s) + Sensor(s) | | tar.c and risk analysis
Sub-sample 1]
= . Tj and h
LIS + MERRAZ in space / time @ [ -
- model-based ¥, Operators
p Lot
whine Learning
LIS Open Loop Synthetic Obs,

LIS + GLDAS i
- apply representative B.C. error
- no assimilation (ak.a, Open Loop)
- with assimilation {merge with
ohservations from suite of sensors)




1EET ]
_}\\\f ”";

Observing System Simulation Experiment

Nature Run Snow Depth & SWE | | TAT-C Permutation of Mission cost estimate
aver North America Orbit(s) + Sensor(s) | | tar.c and risk analysis
Sub-sample 1]
= . Tj and h
LIS + MERRAZ in space / time @ [ -
- model-based ¥, Operators
p Lot
Machine Learning
LIS Open Loop nilation Emulators Synthetic Obs,

LIS + GLDAS i
- apply representative B.C. error
- no assimilation (ak.a, Open Loop)
- with assimilation {merge with
ohservations from suite of sensors)




1EET ]
_}\\\f ”";

Observing System Simulation Experiment

Nature Run Snow Depth & SWE TAT-C Perr ion of Mission cost estimate
aver North America Orbit(s) + Sensor(s) | | tar.c and risk analysis
Sub-sample 1]
. T} and &h
LIS + MERRAZ in space / time @ b T AN
- model-based ¥, Operators
o Y (
hine L ]
LIS Open Loop i il Synthetic Obs,
- no assimilation) ——
LIS + GLDAS . \ Data Assimilation | o

- apply representative B.C. error
- no assimilation (ak.a, Open Loop)
- with assimilation {merge with
ohservations from suite of sensors)

(Bayesian merger w/ synthetic ohs.)

t




1EET ]
_}\\\f ”";

Observing System Simulation Experiment

- apply representative B.C. error
- no assimilation (ak.a, Open Loop)
- with assimilation {merge with
ohservations from suite of sensors)

(Bayesian merger w/ synthetic ohs.)

t
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Land Validation Toolkit (LVT)
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Trade-off Space

Trade-off Space:

Revisit Time [arbitrary units]

Revisit Time [arbitrary units]

—— FOV=15deg
—— FOV=130deg

QS .

-

Total Mumber of Satellites [integer value]

— Altitude = 400 km
——— Altitude = 700 km
—— Altitude = 1000 km

—

Y

Instrument Elevation Angle [arbitrary units]

Coverage vs. Resolution

e Explore trade-off between
engineering and science
> Field-of-View (FOV)?
> Platform altitude?
> Repeat cycle?
> Single platform vs.
constellation?
» Orbital configuration(s)?

e How do we get the most
scientific bang for our buck?
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Spatiotemporal Variability
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e Scenario 1: Benchmark Analysis

> Passive MW Assimilation only
e Scenario 2: Comparative Analysis

» Passive MW vs. Active MW vs. LIDAR
e Scenario 3: Multi-sensor Analysis

> single-sensor platform
» multi-sensor platform
» constellation of sensors

Experiments
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e Land Information System (LIS) provides “nature run” plus
assimilation framework

e TAT-C provides spatiotemporal sub-sampling of observations,
including cost estimates and risk assessments
e Machine learning maps model state(s) into observation space
(i.e., Ty and og)
> Enables integration of Ty, 0o, and dh in geophysical realm (i.e.,
SWE and snow depth)
» Multiple frequencies/polarizations/observations allow for
flexibility and modularity in DA framework

Conclusions

e Snow OSSE is on-going — open to suggestions!
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Thank You.

Questions and/or Comments?
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