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CONSTRAINED BURN OPTIMIZATION FOR THE
INTERNATIONAL SPACE STATION

Aaron J. Brown∗ and Brandon A. Jones†

In long-term trajectory planning for the International Space Station (ISS), trans-
lational burns are currently targeted sequentially to meet the immediate trajec-
tory constraints, rather than simultaneously to meet all constraints, do not employ
gradient-based search techniques, and are not optimized for a minimum total delta-
v (∆v) solution. An analytic formulation of the constraint gradients is developed
and used in an optimization solver to overcome these obstacles. Two trajectory ex-
amples are explored, highlighting the advantage of the proposed method over the
current approach, as well as the potential ∆v and propellant savings in the event
of propellant shortages.

INTRODUCTION

The first module of the ISS, Zarya (“sunrise” in Russian), was launched on November 20, 1998
from Baikonur Cosmodrome in Kazakhstan. It was launched into a 400 km altitude, roughly circular
orbit, and an inclination of 51.6◦. Each module that followed was launched into the same orbit and
added to the ISS main body. With only minor fluctuations in altitude (between roughly 330 km and
420 km), the ISS has ostensibly remained in the same orbit ever since.

The primary perturbing forces acting on the ISS orbit include Earth’s non-spherical gravity, third-
body perturbations from the Sun and Moon, and atmospheric drag. Except for the secular effect of
J2 and atmospheric drag, the effects of these forces on the ISS orbit are either relatively small in
magnitude, periodic in nature, or both, and therefore do not affect the orbit’s long-term evolution.

The ISS orbit is planned and maintained in part by the ISS Trajectory Operations (TOPO) group
at the NASA Johnson Space Center. TOPO personnel routinely generate look-ahead trajectory plans
for the ISS, ranging in length from six weeks to almost two years. Each plan contains the trajectory-
related events that occur during the plan’s time frame, including visiting vehicle launches, dockings,
undockings, landings, and ISS translation burns.

One of the goals in generating a given plan is to target the ISS translation burns that satisfy the ISS
trajectory constraints. The burns are scheduled to occur on agreed-to dates by the ISS International
Partners (IPs). The constraints are imposed by Russian Soyuz (crewed) and Progress (cargo) vehicle
launches and Soyuz vehicle landings, which require the ISS orbit to fall within a specified Longitude
of Ascending Node (LAN) range on the day of the launch or landing. The ISS LAN itself shifts
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approximately 23.3◦ westward per orbit due to the combination of Earth rotating to the east and
the ISS orbit precessing to the west. Additionally, one or more semi-major axis (SMA) altitude
constraints may be imposed on the trajectory. These constraints ensure the ISS achieves a certain
mean SMA altitude on a certain date, or maintains a mean SMA altitude across a range of dates.

Unfortunately, the legacy software used by TOPO personnel for targeting these burns does not
utilize any gradient-based search techniques for finding feasible burn solutions. This makes for a
cumbersome process in which burns are targeted manually rather than automatically, thereby forcing
users to find burn solutions sequentially (i.e, burn by burn), rather than simultaneously for all burns.
Furthermore, this process does not at all enable finding optimal solutions that minimize total ∆v
over the trajectory plan time frame.

In recent years, however, a large-scale project has been underway to replace this legacy software
with a set of trajectory tools that can utilize differential correction to find feasible burn solutions,
or can be embedded in a larger optimization framework to find optimal burn solutions. The goal
of this work is to provide the mathematical formulation of the constraint gradients in the ISS burn
optimization problem, and to use these gradients in an optimization solver to find either feasible or
minimum ∆v burn solutions for ISS trajectory planning.

Reboost Burn Modeling

In ISS trajectory planning, translation burns are modeled in the Local-Vertical, Local Horizontal
(LVLH) reference frame. The LVLH frame is centered on the vehicle, with the Z-axis (the LV axis)
opposite the radius vector (i.e. down), the Y-axis opposite the orbit’s angular momentum vector,
and the X-axis (i.e. the LH-axis) completing the right-handed system, as shown in Figure 1.SSP 30219 Revision F 26 October 2001

3 – 12

FIGURE 3.0–11   LOCAL ORBITAL:  LOCAL VERTICAL LOCAL HORIZONTAL

NAME:  Local Orbital (LVLH) Coordinate System

ORIGIN: Vehicle center of mass.

ORIENTATION: The XLO – ZLO plane is the instantaneous orbit plane at the time of interest.

The ZLO axis lies along the geocentric radius vector to the vehicle and is
positive toward the center of the Earth.
The YLO axis is normal to the orbit plane, opposite of the orbit momentum
vector.
The XLO axis completes the right–handed orthogonal system and positive in
the direction of the vehicle motion.

CHARACTERISTICS: Rotating right–handed Cartesian Coordinate System.
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Figure 1: LVLH Coordinate System1

Each burn is modeled as impulsive, with ∆v ≥ 0, and in a fixed direction defined by LVLH yaw
(ψ) and pitch (θ) angles in a yaw-pitch-roll sequence. These angles are typically small, resulting in
a posigrade or reboost burn. Reboost burns serve to restore orbit altitude lost due to atmospheric
drag. Each burn is scheduled to occur on a specific date, with the burn’s Time of Ignition (TIG) on
that date occurring at apogee (ν = 180◦) of Daily Orbit 1 (DO1). Since the ISS orbital period is
roughly 92 minutes, there are either 15 or 16 DOs each day. On a given day, DO1 is defined to be
the first orbit with a Longitude of Ascending Node (LAN) that is west of 20◦E. Burns are nominally
scheduled to occur on DO1 to allow for their visibility via Russian ground stations.
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Burn Optimization Problem Statement

Given the ISS reboost burn model in the previous section, the burn optimization problem can be
stated as follows. Given a fixed timespan from t0 to tf , with n reboost burns to occur on fixed dates
t1, t2, . . . , tn,

minimize J =

n∑

i=1

∆vi. (1)

Since each ∆vi ≥ 0, J in Equation 1 is effectively the `1-norm of an n-element vector containing
the ∆v magnitudes.

The controls in this problem are the burn ∆v magnitudes and the constraints, as noted in the
Introduction, are given by the Russian Soyuz and Progress launches, and Soyuz vehicle landings.

• Soyuz launch LAN constraints: 13.9◦ ≤ λ ≤ 15.4◦

• Soyuz landing LAN constraints: 12.7◦ ≤ λ ≤ 16.5◦

• Progress launch LAN constraints: 26.5◦ ≤ λ ≤ 38.9◦

• SMA altitude constraints

Given the cost function J in Equation 1, the objective partial derivatives are easily given by

∂J

∂ (∆vi)
= 1, i = 1, . . . , n. (2)

The constraint partial derivatives are now developed by first examining the total state differential for
a generic trajectory segment. This differential is used repeatedly to formulate state partial deriva-
tives, which are then used to arrive at the desired constraint partial derivative expressions.

Total State Differential for a Generic Trajectory Segment

The development in this sub-section follows and expands on work done by Ocampo and Munoz.2

Consider the generic trajectory segment in Figure 2. Let the state x be defined as

x ,
[
rT vT

]T
, (3)

where r and v are the J2000 position and velocity vectors. Furthermore let dx+
f be the total state

differential at tf following ∆xf . The goal of this sub-section is to express dx+
f as a function of

the independent variables dt0, dx−0 , d (∆x0), dtf , and d (∆xf ). The final result for dx+
f is used

repeatedly in the next section to develop state partial derivatives for a notional set of ISS trajectory
events.

Begin by noting that the time-fixed variations δx−f and δx+
0 are related through the state transition

matrix (STM) Φ(tf , t0), abbreviated as Φf,0, through

δx−f = Φf,0 δx
+
0 . (4)

Next note that the plus and minus states at t0 and tf are related through ∆x0 and ∆xf , and also
lead to the following total differential expressions for dx+

0 and dx+
f .

x+
0 = x−0 + ∆x0 ⇒ dx+

0 = dx−0 + d (∆x0) (5)

x+
f = x−f + ∆xf ⇒ dx+

f = dx−f + d (∆xf ) (6)
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Figure 2: Generic Trajectory Segment, as depicted by Ocampo and Munoz.2 The state x evolves
as:
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The total differentials dx−f and dx+
0 are also related to their respective time-fixed variations through

dx−f = δx−f + ẋ−f dtf (7)

dx+
0 = δx+

0 + ẋ+
0 dt0 ⇒ δx+

0 = dx+
0 − ẋ+

0 dt0. (8)

Using Equations 4 through 8, it is readily shown that

dx+
f = Φf,0

[
dx−0 − ẋ+

0 dt0 + d (∆x0)
]

+ ẋ−f dtf + d (∆xf ) . (9)

which is the desired result in terms of the independent variables. Ultimately though, the real inde-
pendent variables, or controls, in this problem are the burn ∆v magnitudes as noted previously. The
quantities ∆x0 and ∆xf in Equation 9 therefore become dependent variables, themselves functions
of the burn ∆v magnitudes. This effect is addressed in the next section on state partial derivatives.

State Partial Derivatives

The state partial derivatives are best related by examining a notional set of ISS trajectory events,
as shown in Figure 3. This figure depicts seven trajectory events that occur at times t1 through t7,
with an initial coast arc that occurs from t0 to t1. Reboost burns (∆v) occur at Events 1, 3, and 6,
while LAN constraints (λ) occur at Events 2, 4, 5, and 7.

State differentials are now developed, event by event, using Equation 9 as a guide. The state
partial derivatives are obtained directly from these expressions and used in the next section to form
the desired constraint partial derivatives.

Event 1

Applying Equation 9 to Event 1, and assuming x0, t0, and t1 are fixed, then dx−0 = d (∆x0) = 0,
and dt0 = dt1 = 0, leaving

dx+
1 = d (∆x1). (10)

However, as noted in earlier, ∆x1 is itself a function of ∆v1, namely

∆x1 =


 03×1

T I
L(r1,v

−
1 ) · û1 ∆v1


, (11)
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Figure 3: Altitude (h) vs. time (t) for a notional set of seven ISS trajectory events. These events
include reboost burns (∆v) and LAN constraints (λ) that must be met by those burns.

where T I
L is the transformation matrix from the LVLH frame (L) to the J2000 frame (I), and û1 is

the ∆v unit vector in the LVLH frame defined by ψ1 and θ1,

û1 =
[

cos θ1 cosψ1 cos θ1 sinψ1 sin θ1

]T
. (12)

Equation 10 therefore becomes

dx+
1 =


 03×1

T I
L(r1,v

−
1 ) · û1


d (∆v1). (13)

Event 2

Applying Equation 9 now to Event 2, with x−1 and t1 fixed, and ∆x2 = 0,

dx2 = Φ2,1 d (∆x1) + ẋ2 dt2. (14)

Ignoring the ẋ2 dt2 term for a moment, the rest of Equation 14 takes an arbitrary perturbation in
∆x1, i.e. d (∆x1), and maps it via the STM to the corresponding perturbation in x2, i.e., dx2.
Now along the nominal, unperturbed trajectory, x2 occurs at an ascending node, since the LAN
constraint at Event 2, by definition, requires evaluating the spacecraft’s longitude when it is at the
ascending node. Any perturbed trajectory must likewise have its x2 occurring at the ascending
node in order to facilitate an apples-to-apples comparison of LAN values between the perturbed and
nominal trajectories.

Now being at the ascending node in both the nominal and perturbed cases requires the z-component
of r2 (i.e. z2) to be 0 in the True-of-Date (TOD) Earth Equator coordinate system. The TOD system
is similar to J2000, but is defined using the true Earth equator and true equinox of date. While the
ascending node can be referenced to either J2000 or TOD, the TOD system is used since the LAN
by definition is measured along Earth’s true equator. The z2 = 0 requirement is already satisfied
by definition along the nominal trajectory. Along the perturbed trajectory, however, d (∆x1) prop-
agated to the same t2 results in a perturbed x2 that is no longer at the ascending node, falling above
or below the node, depending on the nature of d (∆x1). Left uncorrected, the perturbed x2 cannot
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be compared with the nominal trajectory since it is not at the ascending node, thus leaving the LAN
undefined, or at least unknown.

To remedy the situation, the ẋ2 dt2 term is re-introduced and utilized to enforce the z2 = 0
requirement, thereby bringing the perturbed x2 up to or down to the ascending node as needed.
This is accomplished by first expressing the z2 = 0 requirement more formally as

z2 = kTλ2x2 = 0, kTλ2 ,
[

0 0 1 0 0 0
]

 T

TOD

J2K
03x3

03x3 T
TOD

J2K


, (15)

where T
TOD

J2K
is the 3x3 transformation matrix from J2000 to TOD, the λ subscript denotes the

z2 = 0 requirement on LAN, and the event number (2) sub-subscript defines the epoch at which
T
TOD

J2K
is evaluated. Proceeding,

z2 = kTλ2x2 = 0 ⇒ dz2 = kTλ2dx2 = 0, (16)

and Equation 14 therefore becomes

kTλ2dx2 = 0 = kTλ2Φ2,1 d (∆x1) + kTλ2 ẋ2 dt2. (17)

Solving Equation 17 for dt2,

dt2 = −
kTλ2

kTλ2 ẋ2
Φ2,1 d (∆x1). (18)

dx2 is then found by substituting dt2 back into Equation 14 to obtain

dx2 =

[
I6×6 −

ẋ2k
T
λ2

kTλ2 ẋ2

]
Φ2,1 d (∆x1). (19)

The preceding development is best understood by re-examining Equation 14 in light of the time-
fixed variation δx,

dx2 = δx2 + ẋ2 dt2, δx2 = Φ2,1 d (∆x1), (20)

and in conjunction with Figure 4. This figure shows a nominal trajectory that stops at the ascending
node and a perturbed trajectory that stops above the ascending node, both at time t2. The quantity
δx2 represents the time-fixed variation in x2. The quantity dt2 then represents a time slip in t2,
computed such that dx2 = δx2 + ẋ2 dt2 lies along the TOD equator, thus satisfying the dz2 = 0
requirement. This process is dubbed “ascending node shaping,” since it takes an x2 that is initially
dispersed in all six components, and flattens the dispersion such that dx2 lies along the TOD equator.
As mentioned earlier, this shaping is necessary in order to properly compare LAN values between
the perturbed and nominal trajectories.

Defining the following shaping matrices,

Sλt2 , −
kTλ2

kTλ2 ẋ2
and Sλx2

,

[
I6×6 −

ẋ2k
T
λ2

kTλ2 ẋ2

]
, (21)
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Figure 4: Ascending Node Shaping

Equations 18 and 19 become

dt2 = Sλt2Φ2,1 d (∆x1) (22)

dx2 = Sλx2
Φ2,1 d (∆x1). (23)

The terms “time slip” and “shaping matrix” are borrowed from Moesser,3 who uses Equations 18
and 19 in the context of linear covariance analysis to examine the Lunar powered descent problem.
Moesser further notes that Sλx2

is an idempotent shaping matrix, which exhibits the property

(
Sλx2

)2
= Sλx2

Sλx2
= Sλx2

. (24)

Another property worth noting is that Sλx2
contains at least one zero eigenvalue and is therefore

rank deficient. This can be deduced geometrically by noting that Sλx2
always zeros out (and therefore

removes information from) the z-channel by enforcing z2 = 0.

Finally, substituting ∆x1 from Equation 11 into Equations 22 and 23 yields

dt2 = Sλt2Φ2,1


 03×1

T I
L(r1,v

−
1 ) · û1


d (∆v1) (25)

dx2 = Sλx2
Φ2,1


 03×1

T I
L(r1,v

−
1 ) · û1


d (∆v1). (26)

These expressions can also be written more compactly by utilizing δx in Equation 9 again to yield

dt2 = Sλt2δx2 (27)

dx2 = Sλx2
δx2. (28)

This form of the time and state differential expressions is useful since it is identical for subsequent
events and therefore reduces code complexity.
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Event 3

Applying Equation 9 now to Event 3, with ∆x2 = 0,

dx+
3 = Φ3,2 [dx2 − ẋ2 dt2] + ẋ−3 dt3 + d (∆x3). (29)

Substituting dt2 from Equation 18 and dx2 from Equation 19 into Equation 29 yields

dx+
3 = Φ3,2 Φ2,1 d (∆x1) + ẋ−3 dt3 + d (∆x3). (30)

At this point a similar shaping analysis must be performed for Event 3. This event, a reboost
burn, does not occur at an ascending node as in Event 2, but rather at apogee, and is therefore
dubbed “apogee shaping.” Whereas the requirement by ascending node shaping was z2 = 0 in the
TOD system, the analogous requirement by apogee shaping is

cos γ−3 = rT3 v
−
3 = 0. (31)

This requirement, and the shaping derived from it, ensures that the reboost burn is in fact performed
at apogee. Left uncorrected, a perturbed x−3 resulting from d (∆v1) would not be at apogee, and
therefore the reboost burn would not occur at apogee as needed. Mathematically, this requirement
also holds at perigee. This ambiguity, however, is eschewed by noting that

∂
(
rT3 v

−
3

)

∂t
= rT3 v̇

−
3 + (v−3 )2 (32)

is negative at apogee and positive at perigee. Proceeding,

d(cos γ−3 ) = kTγ3dx
−
3 = 0, kTγ3 ,

[
(v−3 )T rT3

]
, (33)

where the γ subscript denotes the cos γ requirement at apogee. Returning to Equation 30,

dx+
3 = dx−3 + d (∆x3) , dx−3 = Φ3,2 Φ2,1 d (∆x1) + ẋ−3 dt3. (34)

Therefore,

kTγ3dx
−
3 = 0 = kTγ3Φ3,2 Φ2,1 d (∆x1) + kTγ3 ẋ

−
3 dt3. (35)

Following a procedure similar to Event 2 results in

dt3 = −
kTγ3

kTγ3 ẋ
−
3

Φ3,2 Φ2,1 d (∆x1) (36)

dx−3 =

[
I6×6 −

ẋ−3 k
T
γ3

kTγ3 ẋ
−
3

]
Φ3,2 Φ2,1 d (∆x1). (37)

As before, the preceding development is best understood by examining dx−3 in Equation 34 in light
of δx,

dx−3 = δx−3 + ẋ−3 dt3, δx−3 = Φ3,2 Φ2,1 d (∆x1), (38)
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and Figures 5 through 7. Figure 5 shows a nominal trajectory that stops at apogee and a perturbed
trajectory that considers only position dispersions about apogee, both at time t3∗. The quantity δr3

represents the time-fixed variation in r3, and r′3 represents r3 along the perturbed trajectory. The
quantity dt3 then represents a time slip in t3, computed such that dr3 = δr3 + ṙ−3 dt3 is orthogonal
to v−3 , thus ensuring that

(
v−3
)T
dr3 = 0 is satisfied. Figure 6 shows the opposite case, considering

only pre-burn velocity dispersions at apogee. dt3 in this case is the time slip in t3 required such that
dv−3 = δv−3 + v̇−3 dt3 is orthogonal to r3, thus ensuring that (r3)Tdv−3 = 0 is satisfied. Finally,
Figure 7 shows both position and pre-burn velocity dispersions at t3 resulting from d (∆v1). dt3
is now the time slip in t3 required to ensure d

(
rT3 v

−
3

)
= 0 is satisfied. This enables the burn at

Event 3 to be performed at apogee along the perturbed trajectory (denoted by (r′3)a and
(
v′−3
)
a

in
Figure 7), as desired.

�r3

r3 r03

ṙ3 dt3

dr3

Nominal
Trajectory

v�
3

Perturbed
Trajectory
(dv�

3 = 0)

Figure 5: Apogee Shaping, Considering Position Dispersions

r3

Nominal
Trajectory

Perturbed
Trajectory
(dr3 = 0)

v�
3

v̇�
3 dt3

�v�
3

dv�
3

v0�
3

Figure 6: Apogee Shaping, Considering Pre-Burn Velocity Dispersions

∗Note that this is a fictitious perturbed trajectory, since a perturbation in ∆v1, d (∆v1), would result in both position
and pre-burn velocity dispersions at t3, as shown in Figure 7. Considering these two dispersions separately, however,
aids in understanding the mechanism of apogee shaping in the combined dispersion case.
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Figure 7: Apogee Shaping, Considering Position and Pre-Burn Velocity Dispersions

Defining shaping matrices similar to Event 2,∗

Mγ
t3
, −

kTγ3
kTγ3 ẋ

−
3

and Mγ
x3

,

[
I6×6 −

ẋ−3 k
T
γ3

kTγ3 ẋ
−
3

]
, (39)

Equations 36 and 37 become

dt3 = Mγ
t3

Φ3,2 Φ2,1 d (∆x1) (40)

dx−3 = Mγ
x3

Φ3,2 Φ2,1 d (∆x1). (41)

And again, substituting ∆x1 from Equation 11 yields

dt3 = Mγ
t3

Φ3,2 Φ2,1


 03×1

T I
L(r1,v

−
1 ) · û1


d (∆v1) (42)

dx−3 = Mγ
x3

Φ3,2 Φ2,1


 03×1

T I
L(r1,v

−
1 ) · û1


d (∆v1). (43)

Similar to Equations 27 and 28 for Event 2, Equations 42 and 43 can be formulated as

dt3 = Mγ
t3
δx−3 (44)

dx−3 = Mγ
x3
δx−3 . (45)

Returning to Equation 34,

dx+
3 = dx−3 + d (∆x3). (46)

∗Mγ is used here for the apogee shaping matrix instead of Sγ because the apogee shaping matrix for the state takes
one form (defined by Mγ

x ) when examining the burn event itself, and a different form (defined by Sγx ) when examining
a downstream event, such as Event 4.
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The quantity d(∆x3), however, is a function of d(∆v1) and d(∆v3). Therefore,

dx+
3 =

∂x−3
∂(∆v1)

d(∆v1) +
∂(∆x3)

∂(∆v1)
d(∆v1) +

∂(∆x3)

∂(∆v3)
d(∆v3) (47)

=

[
I6×6 +

︸ ︷︷ ︸
A

∂(∆x3)

∂x−3

]
∂(x−3 )

∂(∆v1)
d(∆v1) +

∂(∆x3)

∂(∆v3)
d(∆v3)

︸ ︷︷ ︸
B

. (48)

Before proceeding, it is worthwhile to understand the physical effects of d(∆v1) and d(∆v3) on
d(∆x3). B is the more obvious effect, representing the change in ∆x3 due to a change in ∆v3. A, in
contrast, represents the change in ∆x3 due to a change in ∆v1, even if ∆v3 is zero. This is because
a change in ∆v1 causes a change in the inertial location of apogee at Event 3, thus changing the
LVLH frame at Event 3. Since all burns are expressed in the LVLH frame, a change in the LVLH
frame translates to a change in the inertial burn ∆v, and therefore a change to ∆x3.

Returning to Equation 48,

∂(∆x3)

∂(∆v3)
=


 03×1

T I
L(r3,v

−
3 ) · û3


 (49)

∂x−3
∂(∆v1)

= Mγ
x3

Φ3,2 Φ2,1


 03×1

T I
L(r1,v

−
1 ) · û1


, (50)

and the only unknown partial now is ∂(∆x3)/∂x−3 . To obtain this partial, first note that

∂(∆x3)

∂x−3
=

∂

∂x−3


 03×1

T I
L(r3,v

−
3 ) · û3 ∆v3


 =

∂

∂x−3


 03×1

T 3 (∆v3)L


, (51)

T 3 itself is given by
T 3 =

[
ˆ(h−3 × r3) −ĥ−3 −r̂3

]
, (52)

where h−3 = r3×v−3 is the pre-burn instantaneous angular momentum vector of the orbit. This form
of the transformation matrix can be deduced from Figure 1. Temporarily dropping the 3 subscript,
the non-trivial derivative in Equation 51 is

∂ (T (∆v)L)

∂x−
=
∂ ˆ(h−× r)

∂x−
(∆vx)

L
− ∂ĥ−

∂x−
(∆vy)

L
− ∂r̂

∂x−
(∆vz)L . (53)

The (∆v)
L

components are outside the partial derivative since (∆v)
L

is not a function of x−. Re-
calling that

x− =
[
rT (v−)T

]T
, (54)

the three partial derivatives on the right-hand side of Equation 53 are given by

∂b̂−

∂x−
=

1

|b−|

(
I3×3 −

b−b−T

|b−|2

)[
[h−×]+[r×][v−×] −[r×]2

]
(55)
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∂ĥ−

∂x−
=

1

|h−|

(
I3×3 −

h−h−T

|h−|2

)[
−[v−×] [r×]

]
(56)

∂r̂

∂x−
=

1

r

(
I3×3 −

r rT

r2

)[
I3×3 03×3

]
, (57)

where b−, h− × r and [a×] (a is r, v, or h−) is the cross product matrix

[a×] =




0 −a3 a2

a3 0 −a1

−a2 a1 0


. (58)

Therefore,

∂(∆x3)

∂x−3
=




03×6

∂b̂−3
∂x−3

(∆v3x)
L
− ∂ĥ−3
∂x−3

(
∆v3y

)
L
− ∂r̂3

∂x−3
(∆v3z)L


. (59)

Events 4 through 7

Events 4 through 7 work in much the same way, using the concepts and equations developed for
Events 1 through 4. The result for Event 7 is

dx7 = Sλx7
δx7, (60)

where

δx7 =

[(
Φ7,6 S

γ
x6

)(
Φ6,3 S

γ
x3

)
Φ3,1

∂(∆x1)

∂(∆v1)
+

(
Φ7,6 S

γ
x6

)
Φ6,3

∂(∆x3)

∂x−3

∂(x−3 )

∂(∆v1)
+ Φ7,6

∂(∆x6)

∂x−6

∂(x−6 )

∂(∆v1)

]
d(∆v1) +

[(
Φ7,6 S

γ
x6

)
Φ6,3

∂(∆x3)

∂(∆v3)
+ Φ7,6

∂(∆x6)

∂x−6

∂(x−6 )

∂(∆v3)

]
d(∆v3) +

[
Φ7,6

∂(∆x6)

∂(∆v6)

]
d(∆v6),

(61)

and Sγxk is defined by

Sγxk ,

[
I6×6 +

(
ẋ+
k − ẋ−k

)
kTγk

kTγk ẋ
−
k

]
, k = 3, 6. (62)

The apogee shaping matrix Sγx is different from Mγ
x discussed in Event 3, thus requiring a change

in notation. In the case of Event 3, this difference emerges from the fact that dx+
3 (and therefore

Mγ
x3

) is not a function of ẋ+
3 , whereas dx4 (and therefore Sγx3

) is a function of ẋ+
3 . In order to

arrive at Event 4, first a time slip in t3 must be applied in order for the burn at Event 3 to occur
at apogee, as discussed previously. If the trajectory simply stopped there, no further action would
be required and Mγ

x3
would be sufficient. To move forward from Event 3, however, dt3, must

effectively be undone in order to maintain time coherence from Event 3 to Event 4.
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Event k

Equations 60 and 61 can be generalized to determine the state differential at an arbitrary Event k.
Assume there are n burns prior to tk. The ith burn (i = 1, . . . , n) occurs at tf(i) < tk, where f(i)
is the event number on which burn i occurs. Using the above example, with n = 3 and k = 7, the
burns i = 1, 2, 3 occur at events f(i) = 1, 3, 6, respectively. If Event k has a constraint, then

dtk = Sλtkδxk (63)

dxk = Sλxkδxk, (64)

where δxk is a lengthy expression that is omitted for brevity. The general pattern of δxk, however,
can be inferred from Equation 61.

Constraint Partial Derivatives

The analysis now turns to the LAN and SMA altitude constraint partial derivatives, which require
the state partial derivatives developed in the previous section. The goal is to develop the partial
derivatives of LAN and SMA altitude with respect to the burn ∆v magnitudes.

LAN (λ) is a function of position in the TOD frame (rTOD ) and time (t). Temporarily dropping
the TOD subscript for notational simplicity, the x and y components of r in the TOD frame are

x = r cosφ cos θL (65)

y = r cosφ sin θL, (66)

where φ is the geocentric latitude and θL is the local sidereal time. θL in turn is given by

θL = θG + λ, (67)

where θG is the Greenwich mean sidereal time and λ is the longitude. Without loss of generality,
set φ = 0 since λ is not a function of φ. The partial derivatives of λ with respect to x and y are then

∂λ

∂x
= − y

r2
and

∂λ

∂y
=

x

r2
. (68)

Resuming the TOD notation,

∂λ

∂xTOD
=

[
∂λ

∂rTOD

∂λ

∂vTOD

]
=

1

r2

[
−yTOD xTOD 0 0 0 0

]
. (69)

Therefore,

∂λ

∂x
= mT

λ ,
1

r2

[
−yTOD xTOD 0 0 0 0

]

 T

TOD

J2K
03×3

03×3 T
TOD

J2K


. (70)

Returning to Equation 67,

λ = θL − θG = θL − ωE (t− t0)− θG0 , (71)

where ωE is the magnitude of Earth’s rotation rate in rad/sec, t0 is an arbitrary reference time, and
θG0 is the value of θG at t0. Therefore,

∂λ

∂t
= −ωE . (72)
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Using the chain rule, the total differential of λ at Event k is

dλk =
∂λk
∂xk

dxk +
∂λk
∂tk

dtk =
[
mT
λk
Sλxk− ωE Sλtk

]
δxk, (73)

from which the partial derivatives for ∂λk/∂
(
∆vf(i)

)
can be obtained.

SMA altitude, in contrast, is given by a−Re. Beginning with the vis-viva equation,

v2

2
− µ

r
= − µ

2a
, (74)

it is straight forward to show that

∂a

∂x
= mT

a , 2a2

[
1

r3
rT

1

µ
vT

]
. (75)

Since SMA altitude constraints do not need to occur at a condition such as the ascending node
or apogee, no shaping of the state dispersions about a nominal trajectory is required. Therefore
dxk = δxk for SMA altitude constraints, and the total differential of a at Event k is

dak =
∂ak
∂xk

dxk = mT
ak
δxk, (76)

from which the partial derivatives for ∂ak/∂
(
∆vf(i)

)
can be obtained. Note that this formula-

tion assumes an osculating or Keplerian value for SMA. In practice however, the ISS trajectory is
planned using a mean value for SMA, given by

ā = p− 3

2
J2
R2
e

p

[
1− 3

2
sin2i+ sin2i cos 2u

]
, (77)

where p = a(1 − e2) is the semi-parameter and u is the argument of latitude. Equation 77 comes
from internal TOPO documentation and is stated here without attempt to verify its pedigree. The
partial derivative of ā with respect to x is is given by

∂ā

∂x
= mT

ā ,
∂ā

∂p

[
∂p

∂a

∂a

∂x
+
∂p

∂e

∂e

∂x

]
+
∂ā

∂i

∂i

∂x
+
∂ā

∂u

∂u

∂x
, (78)

where the partial derivatives on the right-hand side of Equation 78 have been omitted for brevity.
Similar to osculating SMA, the total differential of ā at Event k is

dāk =
∂āk
∂xk

dxk = mT
āk
δxk (79)

from which the partial derivatives ∂āk/∂
(
∆vf(i)

)
can be obtained.

The preceding developments for λ, a, and ā can be extended to other constraint functions as
needed. Assume c is a generic, scalar constraint function at Event k of the form

ck = f(xk, tk). (80)

If ck is differentiable with respect to both x and t, then

dck =

[
∂ck
∂xk

Scxk+
∂ck
∂tk

Sctk

]
δxk, (81)

from which the partial derivatives ∂ck/∂
(
∆vf(i)

)
can be obtained. In this expression, Scxk and

Sctk are the appropriate state and time shaping matrices for ck, respectively. These matrices may be
identity, zero, or non-trivial depending on the nature of ck.
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REAL-WORLD ISS PROBLEMS AND RESULTS

The above framework is now used to analyze two ISS trajectory event sequences. For each se-
quence, the ISS trajectory is numerically integrated from event to event using FreeFlyer v7.2.1.37946
under the following assumptions.

• Force model: Non-spherical Earth gravity (EGM-96 7x7), Sun and Moon point mass gravity
(DE430), and atmospheric drag (analytic density model, based on a constant temperature
hydrostatic model).

• Docking and undocking events are ignored, and the ISS total mass, coefficient of drag (Cd),
and drag area are fixed to constant values.

• All burns are assumed to have yaw = pitch = 0◦.

FreeFlyer numerically integrates the six-element state (position and velocity) along with the thirty-
six element STM from event to event, saving off the state, STM, and other necessary results at each
event. After reaching tf , a FreeFlyer script performs chain rule operations on the saved results in
order to form the constraint gradients. Given the time frames spanned by ISS look-ahead trajectory
plans—six weeks to roughly two years—obtaining the constraint gradients in this manner (via single
propagation from t0 to tf ) is generally more efficient than using finite differences.

This entire integration process can be thought of as a black box, which is called by MATLAB’s
fmincon function to solve the constrained burn optimization problem. fmincon begins with an initial
estimate of the ∆v values (discussed further below), which are the controls in the optimization
problem. At each iteration, MATLAB sends the current ∆v values to FreeFlyer, which in turn
updates the event sequence with these values, re-integrates the ISS trajectory from t0 to tf , computes
the constraint gradients at tf , and returns the results to MATLAB. fmincon then uses these gradients
along with the objective gradient in Equation 2 to update its estimate of the ∆v values. This process
repeats until MATLAB converges on a locally-optimal (i.e. minimum total ∆v) solution, assuming
one exists. A feasible solution—one that simply adjusts the ∆v values to meet the constraints—can
also be obtained by simply setting J = 0 instead of using J from Equation 1.

The first sequence to be analyzed consists of events taken from a TOPO look-ahead plan gen-
erated in February, 2016. The relevant events (i.e., those having burns or constraints) are listed in
truncated form in Table 1. In this table as well as in Table 2 for the second sequence, “sm” means
a reboost performed using the ISS Service Module (SM) main engines, “#s” means a Soyuz event,
and “#p” means a Progress event. The initial ∆v values in Table 1 are taken directly from the look-
ahead plan, while the final ∆v values are the optimized values. Figure 8 shows the mean SMA
altitude plot using both initial and optimized ∆v values. Figures 9 and 10 show the total ∆v vs.
iteration and the maximum constraint violation vs. total ∆v, respectively.

In order to avoid event overlap, the second sequence consists of events from a different TOPO
look-ahead plan generated slightly more than a year later, in March, 2017. The table and figures
that follow mirror those used in the previous sequence. One difference in this sequence is that the
initial ∆v values in Table 2 are obtained using rules of thumb that relate ∆v to the value of the next
downstream constraint. These rules of thumb and their derivation have been omitted for brevity.

Examining the first event sequence, Figure 9 is suspect since the initial estimate, taken directly
from the actual look-ahead plan, results in an infeasible point, and the optimal total ∆v is in fact
higher (8.084 m/s) than the initial total ∆v (7.900 m/s). This effect, however, is attributed to dif-
ferences in force models, propagators, environment parameters (e.g. Earth’s rotation rate), event

15



Figure 8: Mean SMA Altitude Plot, February through Mid-August, 2016. The final burn and SMA
altitude constraint “normalize” the solution so that both the initial estimate and optimal solution end
at the same altitude.

Figure 9: Total ∆v vs. Iteration Figure 10: Max Constraint Violation vs. ∆v

16



Figure 11: Mean SMA Altitude Plot, March through Early September, 2017. Normalized solution.

Figure 12: Total ∆v vs. Iteration Figure 13: Max Constraint Violation vs. ∆v
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Table 1: ISS Trajectory Events, February through Mid-August, 2016

Initial ∆v Final ∆v Min LAN/Alt Max LAN/Alt
Name Date Type (m/s) (m/s) (deg/km) (deg/km)

61p reboost3 01/27/2016 Burn 0.800 0.954
61p reboost4 02/17/2016 Burn 0.600 0.772
44s landing 03/02/2016 LAN 12.7 16.5

...
...

...
...

...
...

...
63p reboost7 08/18/2016 Burn 0.000 1.794
SMA altitude 08/19/2016 Alt 405.5 405.5

TOTAL 7.900 8.084

Table 2: ISS Trajectory Events, March through Early September, 2017

Initial ∆v Final ∆v Min LAN/Alt Max LAN/Alt
Name Date Type (m/s) (m/s) (deg/km) (deg/km)

sm reboost1 03/02/2017 Burn 1.575 1.201
sm reboost2 04/05/2017 Burn 0.000 2.539
48s landing 04/10/2017 LAN 12.7 16.5

...
...

...
...

...
...

...
sm reboost8 09/05/2017 Burn 0.855 0.000
SMA altitude 09/07/2017 Alt 405.0 405.0

TOTAL 8.282 8.189

triggers, etc. between this approach and the currently process for creating the trajectory plan. In
general, direct comparison between trajectory plans generated using the approach outlined here and
those generated using the current process is limited. This is especially so given the multi-month
propagations that amplify these differences over time. Notwithstanding, in this case the optimizer
takes the initial, infeasible point, and converges on an optimal solution that meets the constraints.
The second sequence exhibits similar behavior, starting from an infeasible point and converging on
an optimal solution subject to the constraints. However, in this case the optimal solution is at least
not worse than the initial estimate.

In both sequences, as noted in Figures 8 and 11, the final burn and SMA altitude constraint
“normalize” the solution to ensure consistency. Absent this normalization, a lower total ∆v solution
may be available, but the resulting SMA altitude at tf will likely also be lower. Since the ISS is
continuously subject to atmospheric drag, this reduction in altitude, or equivalently, energy, must
be made up at some point in the future, beyond the time horizon being analyzed. Thus any ∆v
reduction achieved over [t0, tf ] is arguably only temporary. Normalizing the solution via a final
burn and SMA altitude constraint resolves this issue, however when coupled with the tight LAN
constraints, it leaves little room for substantive ∆v savings.

This being said, a non-normalized solution, one that does not have a final burn and SMA altitude
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constraint, still has value for trajectory planning. In a situation where it becomes necessary to ration
propellant, a non-normalized solution can provide non-trivial ∆v savings over a given period of time
without considering longer-term altitude degradation. Such a situation is in fact feasible, given that
there have been three Progress vehicle failures since 2011, each of which was carrying ISS resupply
propellant that was obviously lost with the vehicle. While propellant rationing was not required
in these cases, had it been required, a non-normalized minimum ∆v solution would provide key
information to program managers.

Returning to the March, 2017 event sequence, Figures 14 through 16 show this same sequence,
but excluding the final burn and SMA altitude constraint. The optimizer in this case is able to
quickly find an optimal solution that meets the constraints, and deliver almost a full 1.5 m/s of ∆v
savings over the normalized solution. This represents a significant savings, given that a typical
six-month plan requires anywhere from 6 to 10 m/s of ∆v. These savings, of course, will vary
depending on several factors, such as the pedigree of the initial estimate, the number and type of
events in the plan, and the plan duration.

Figure 14: Mean SMA Altitude Plot, March through Early September, 2017. The non-normalized
solution and its effect on the trajectory are clearly visible at tf .

CONCLUSIONS

This work provides a formulation and solution of the constrained burn optimization problem
for the ISS. The formulation includes analytic derivatives for the objective function, and varia-
tional equations using STMs for the constraint functions. These equations are used in a combined
MATLAB-FreeFlyer framework to provide locally-minimal total ∆v solutions to real-world ISS
burn planning problems.

This framework provides several unique advantages over the current process for obtaining ISS
burn solutions. First, it introduces automatic computation of constraint gradients with a single
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Figure 15: Total ∆v vs. Iteration Figure 16: Max Constraint Violation vs. ∆v

trajectory propagation from t0 to tf . These gradients can then be utilized in any gradient-based
solver to generate feasible or optimal burn solutions for ISS burn planning. Finally, the constraint
gradient formulation can easily be extended to other functions of the state as needed.
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