The Interactions of Cyanobacterial Cytochrome c₆ and Cytochrome f, Characterized by NMR*§

Received for publication, April 24, 2002, and in revised form, September 26, 2002
Published, JBC Papers in Press, September 27, 2002, DOI 10.1074/jbc.M203983200

Peter B. Crowley‡, Antonio Díaz-Quintana§, Fernando P. Molina-Heredia§, Pedro Nieto§, Martin Sutter¶, Wolfgang Hahnke§, Miguel A. De la Rosa§, and Marcellus Ubbink‡‡

From the ‡Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P. O. Box 9502, 2300 RA Leiden, The Netherlands, §Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, América Vespucio s/n, 41092 Sevilla, Spain, and ¶Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.

During oxygenic photosynthesis, cytochrome c₆ shuttles electrons between the membrane-bound complexes cytochrome bf and photosystem I. Complex formation between Phormidium laminosum cytochrome f and cytochrome c₆ from both Anabaena sp. PCC 7119 and Synechococcus elongatus has been investigated by nuclear magnetic resonance spectroscopy. Chemical-shift perturbation analysis reveals a binding site on Anabaena cytochrome c₆, which consists of a predominantly hydrophobic patch surrounding the heme substituent, methyl 5. This region of the protein was implicated previously in the formation of the reactive complex with photosystem I. In contrast to the results obtained for Anabaena cytochrome c₆, there is no evidence for specific complex formation with the acidic cytochrome c₆ from Synechococcus. This remarkable variability between analogous cytochromes c₆ supports the idea that different organisms utilize distinct mechanisms of photosynthetic intermolecular electron transfer.

Electron transport between the membrane-bound complexes cytochrome bf and photosystem I (PSI) is maintained by mobile electron carriers. In plants, this task is fulfilled by plastocyanin (Pc), whereas cytochrome c₆ (cytc₆) is the only carrier in certain cyanobacteria. There also exist eukaryotic algae and cyanobacteria, which have the capacity to replace Pc with cytc₆ (6). In a few instances, the acidic protein from Phormidium laminosum (pI 9.0) demonstrates similar redox potentials of around 350 mV. Further, both proteins provide similar recognition information, demonstrated by the parallel variation of their isoelectric points, being acidic in green algae while ranging from acidic to basic in cyanobacteria (1, 4, 5).

To date there has been a considerable amount of kinetic and mutational analysis of the electron transfer reaction between both Pc and cytc₆ and their partner PSI (6–11). A hierarchy of mechanisms for interprotein electron transport has emerged from this work. Reduction of PSI by Pc or cytc₆, isolated from different organisms, can follow an oriented collision mechanism (type I), a two-step mechanism requiring complex formation (type II), or a complex formation with rearrangement of the interface before electron transfer occurs (type III). A remarkable homology between the arrangement of charged and hydrophobic recognition patches on the surfaces of Pc and cytc₆ has also been revealed (12, 13). In particular, a conserved arginine found in cyanobacterial Pc and cytc₆ was shown to be critical for bimolecular association with PSI (9).

Two structures of the cyt/f-Pc complex from plant (14) and cyanobacterial (15) sources have been determined. A combination of charged and hydrophobic patches defines the complex interface between turnip cyt/f and spinach Pc. In contrast, the complex from Phormidium laminosum, a thermophilic cyanobacterium, was found to be predominantly hydrophobic. At present there are no kinetic or structural data for the interaction of cytc₆ and cyt/f. Although mutagenesis studies have identified key residues for the reaction with PSI, there is no knowledge of the interaction site involved with cyt/f.

To address the question of molecular recognition in cytc₆, we have investigated complex formation with cyt/f using heteronuclear NMR. We have aimed to identify the surface features involved in complex formation and to draw comparisons with cytc₆-PSI interactions. Two cyanobacterial variants of cytc₆ (Fig. 1), the basic protein from Anabaena sp. PCC 7119 (pI 9.0) and the acidic protein from Synechococcus elongatus (pI 4.8), have been studied. In this way, the role of electrostatics in protein interactions could be investigated explicitly. Cyt/f from P. laminosum, with a net charge of −14, was used as the partner protein. It is important to note that P. laminosum cyt/f shares 74 and 72% sequence identity with Anabaena cyt/f and S. elongatus cyt/f, respectively. Furthermore, the net charge is intermediate of cyt/f from Anabaena (−16) and S. elongatus (−12). This study reports the first structural characterization of the interactions of cyt/f and cyt/c₆.

EXPERIMENTAL PROCEDURES

Protein Preparation—The soluble fragment of cyt/f was prepared according to previously published methods (15, 16). Unlabeled Ana-cyt/f, produced in Escherichia coli GM119 (17) transformed with both pEAC-WT (18) and pEC86 (19). The culture was grown in LB

This paper is available on line at http://www.jbc.org

48685
medium (20) supplemented with 100 μg/ml ampicillin, 10 μg/ml chloramphenicol, and 1 mM FeCl₃. Aerobic growth was maintained at 37 °C for 18 h before harvesting. A similar expression system in E. coli JM109 was used for the production of uniformly 15N-labeled Ana-cytc₆. The culture was grown in M9 minimal media additionally supplemented with 1 g/liter 15NH₄Cl and 1 mM thiamine. Aerobic growth was maintained at 37 °C for 72 h before harvesting. Isolation and purification of Ana-cytc₆ were achieved as described previously (8, 18). The preparation and purification of 15N, 13C double-labeled Syn-cytc₆ have been reported previously (21).

NMR Samples—Protein interactions were investigated for the diamagnetic species only, and reducing conditions were maintained in the presence of sodium ascorbate. Protein solutions were concentrated to the required volume using ultrafiltration methods (Amicon; YM3 membrane) and exchanged into 10 mM potassium phosphate, pH 6.0, 10% D₂O, 1.0 mM sodium ascorbate. Protein concentrations were determined spectrophotometrically using an ε₅₅₀ of 26.2 mM⁻¹ cm⁻¹ for the ferrous form of both Ana-cytc₆ (22) and Syn-cytc₆ and an ε₅₅₀ of 31.5 mM⁻¹ cm⁻¹ for the ferrous form of cyt f. For the assignment of Ana-cytc₆, 0.7 mM

FIG. 1. Electrostatic potential surfaces of Ana-cytc₆ model (A) (see “Results and Discussion”) and Syn-cytc₆ (B) (25). All images were created with a color ramp for positive (blue) or negative (red) surface potentials saturating at 10 kT. Potentials were calculated, for formal charges only, and surfaces were rendered in GRASP (43). The arrows indicate the location of the exposed heme edge.

FIG. 2. Spectral region from overlaid ¹H-¹⁵N HSQC spectra of free Ana-cytc₆ (black) and Ana-cytc₆ in the presence of two equivalents of cyt f (gray).

FIG. 3. Line broadening effects. A, cross-sections along the F₂ dimension through the ¹H resonance of Ser-16 in Ana-cytc₆. The resonance in the free protein (8.07 ppm) has a line width at half-height of 15 Hz. In the presence of two equivalents of cyt f, the resonance shifts to 8.18 ppm, and the line width at half-height increases to 34 Hz. B, cross-sections along the F₁ dimension through the ¹H resonance of Gly-12 in Syn-cytc₆. Despite the presence of two equivalents of cyt f, the resonance is unperturbed (compare Ala-12 of Ana-cytc₆, Fig. 4), and the line width at half-height increases by only 2 Hz.

FIG. 4. Binding curves for the interaction of Ana-cytc₆ and cyt f. As shown in A, a 0.3 mM sample of ¹⁵N-Ana-cytc₆ was titrated with a 1.9 mM solution of cyt f. The data were simultaneously fitted (nonlinear, least-squares) to a 1:1 model (27), yielding a binding constant of ~1 × 10⁴ M⁻¹. As shown in B, in the reverse titration, a 0.5 mM sample of cyt f was titrated with a 3.0 mM Ana-cytc₆ stock. Fits to the 1:1 model yielded a binding constant of 8 (±2) × 10³ M⁻¹.
of 15N, 13C-Syn-cyt$_f$ was titrated with a 1.9 mM cyt$_f$ solution. After each addition of protein, the pH of the samples was verified, and 1H-15N HSQC spectra were recorded.

NMR Spectroscopy—For sequence-specific assignment of the backbone resonances of Ana-cyt$_c$, two-dimensional 1H-15N HSQC, three-dimensional 1H-15N NOESY-HSQC (100 ms mixing time), and three-dimensional 1H-15N TOCSY-HSQC (80 ms mixing time) spectra were recorded on a Bruker DRX 600 NMR spectrometer. For assignment of the side-chain protons, two-dimensional homonuclear NOESY and TOCSY spectra were recorded. XWINMR was used for spectral processing, and the assignment was performed in XEASY (23). Complete assignments of the 1H and 15N resonances were determined for all backbone amides (see Supplementary material, Table S1). The non-exchangeable side-chain protons were also assigned. This assignment is consistent with those reported previously for Monoraphidium braunii cyt$_c$ (24) and Syn-cyt$_c$ (25).

Measurements on samples containing cyt$_f$ and either 15N-Ana-cyt$_c$ or 15N, 13C-Syn-cyt$_f$ were performed on a Bruker DRX 600 NMR spectrometer operating at 300 K. Two-dimensional 1H-15N HSQC spectra (26) were recorded with spectral widths of 20.0 ppm (15N) and 13.9 ppm (1H). Analysis of the chemical-shift perturbation ($\Delta\delta_{	ext{bind}}$) with respect to the free protein was performed in XEASY.

Binding Curves—Titration curves were obtained by plotting $\Delta\delta_{	ext{bind}}$ against the molar ratio (R) of [cyt$_f$/Ana-cyt$_c$]. For the reverse titration, $\Delta\delta_{	ext{bind}}$ was plotted versus [Ana-cyt$_c$]/[cyt$_f$]. Non-linear least-squares fits to a one-site model (27) were performed in Origin (Originlab, Northampton, MA). This model explicitly treats the concentration of both proteins with R and $\Delta\delta_{	ext{bind}}$ as the independent and dependent variables, respectively (27). The binding constant (K_b) and the maximum chemical-shift change ($\Delta\delta_{\text{max}}$) were the fitted parameters. A global fit was performed in which the curves were fitted simultaneously to a single K_b value, whereas $\Delta\delta_{\text{max}}$ was allowed to vary for each resonance.

RESULTS AND DISCUSSION

The Complex of cyt$_f$ and Ana-cyt$_c$—Comparison of 1H-15N HSQC spectra of free Ana-cyt$_c$ and Ana-cyt$_c$ in the presence of cyt$_f$ revealed distinct differences arising from complex formation (Fig. 2). When cyt$_f$ was titrated into Ana-cyt$_c$, 33 of the backbone amides experienced chemical-shift perturbation, $\Delta\delta_{	ext{bind}} \approx 0.03$ ppm (1H) and/or ≈ 0.10 ppm (15N). A single averaged resonance was observed for each backbone amide, indicating that the free and bound forms of cyt$_c$ were in fast exchange on the NMR time scale. In addition to chemical-shift perturbation, the presence of cyt$_f$ caused a general broadening of about 20 Hz of the amide resonances (Fig. 3A), as expected for complex formation (28).

Titrations curves of $\Delta\delta_{	ext{bind}}$ versus the molar ratio of cyt$_f$/Ana-cyt$_c$ were plotted for the 15N nuclei of the four most strongly shifted resonances (Fig. 4A). The curves clearly illustrate that the chemical-shift perturbation increases as a function of the cyt$_f$ concentration. Despite the addition of two equivalents of cyt$_f$, however, saturation of the chemical-shift changes was not observed. The binding curves were fitted to a 1:1 model with a binding constant of -1×10^4 M$^{-1}$. The quality of the fit is poor, particularly at the beginning of the curve, which is perhaps due to a small systematic error in the determination of the protein ratio. To investigate this further, a reverse titration was performed in which a sample of cyt$_f$ was titrated with Ana-cyt$_c$. In this case, the binding curves were fitted satisfactorily with a binding constant of 8×10^3 M$^{-1}$ (Fig. 4B). It can be concluded that the binding affinity of cyt$_f$ for Ana-cyt$_c$ is 10^4 M$^{-1}$, which is about 2 orders of magnitude greater than the affinity for the physiological partner, P. laminosum Pc (15, 29).

From the ratio of the observed $\Delta\delta_{	ext{bind}}$ to the fitted $\Delta\delta_{\text{max}}$ (Fig. 4B), it was calculated that 63% of the Ana-cyt$_c$ was bound in the first point of the reverse titration.

Six structures of cyt$_c$$_o$ from green algal (30–32), red algal (33), and cyanobacterial (12, 25) sources, have been determined previously. All of the known structures exhibit high structural homology. At present, the structure of Ana-cyt$_c$ is unavailable, and therefore, a model was built in Swiss-MODEL (34) using the NMR structure of Syn-cyt$_c$ (25) as a template. The chemical-shift map in Fig. 5 illustrates the location of the affected residues in this model with each residue colored according to its observed $\Delta\delta_{	ext{bind}}$. The complex interface consists of a well defined patch, which surrounds the exposed methyl groups (methyl 3, thioether 4 methyl, and methyl 5) of the heme. This patch is composed mainly of three stretches of the primary structure, residues 9–19, 23–26, and 51–61. The first of these includes the heme-binding motif CXYCH, whereas the sixth ligand, Met-58, occurs in the third stretch. Val-25, which was shown to be important for the interaction between cyt$_c$ and PSI (8), is found in the second stretch. Cys-17, Met-58, and Ala-60 experience the largest shifts in the complex. Alanine and asparagine are the most abundant residues in the interface, accounting for one-third of all the affected residues. Although 60% of the interface can be classified as hydrophobic, only 4 residues are charged (Lys-55, Lys-66, Gln-68, and Lys-80). Notably the conserved arginine, Arg-64, which has been implicated in the reaction with PSI (9), was not shifted in the complex. Fragata (35) has produced a theoretical model of the complex formed between M. braunii cyt$_c$ and turnip cyt$_f$ (Protein Data Bank accession code 1jx8). There is good agreement between the binding site on cyt$_c$ identified in this model and the experimentally observed interaction site on Ana-cyt$_c$.

The complex of cyt$_f$ and Ana-cyt$_c$ was also investigated at 50, 100, and 200 mM NaCl. The observed $\Delta\delta_{	ext{bind}}$ for the 33 affected amides is plotted as a function of the salt concentration in Fig. 6. As the salt concentration was increased, $\Delta\delta_{	ext{bind}}$ decreased. At 200 mM NaCl, the $\Delta\delta_{	ext{bind}}$ is zero for most residues. This suggests that the binding constant is considerably re-
Salt dependence of $\Delta \delta_{\text{bind}}$ for all 33 affected backbone amide resonances, observed in the complex of Ana-cyt$_{c_6}$ and cyt$_{f}$ at 0 mM NaCl (\bullet), 50 mM NaCl (\circ), 100 mM NaCl (\bullet), and 200 mM NaCl (\Diamond).

The Interactions of cyt$_{f}$ and Syn-cyt$_{c_6}$—In contrast to the case of Ana-cyt$_{c_6}$, titration of cyt$_{f}$ into Syn-cyt$_{c_6}$ produced only minor effects in the 1H-15N HSQC spectra. Despite the presence of two equivalents of cyt$_{f}$, the amide resonances of Syn-cyt$_{c_6}$ did not experience chemical-shift perturbation. Line broadening effects on the order of 2 Hz were observed (Fig. 3B), consistent with a weak and highly dynamic interaction (36). Increasing the ionic strength by the addition of 200 mM NaCl had no effect on the protein interactions. In contrast to the clearly defined complex between cyt$_{f}$ and Ana-cyt$_{c_6}$, there is no evidence for specific complex formation with Syn-cyt$_{c_6}$.

Biological Implications—From our results, it is clear that Ana-cyt$_{c_6}$ and cyt$_{f}$ form a well-defined complex and that the amount of complex formed is dependent on the ionic strength. It has been shown previously that Ana-cyt$_{c_6}$ forms a complex with Anabaena PSI, the affinity of which decreases with increasing ionic strength (7). Although Ana-cyt$_{c_6}$ has a net charge close to zero, the presence of positive residues in the vicinity of the heme group promotes favorable electrostatic docking to cyt$_{f}$. The role of electrostatics in this complex is therefore analogous to the complex formed between plant cyt$_{f}$ and Pc in vitro (14, 27, 37–39). As illustrated in Fig. 5, the interaction site of Ana-cyt$_{c_6}$ is composed mainly of hydrophobic residues, which is necessary to achieve specific complex formation between the two proteins. Such a hydrophobic site is similar to that proposed previously for the interaction of Ana-cyt$_{c_6}$ with PSI (8).

A type I mechanism has been reported for the reduction of PSI by Syn-cyt$_{c_6}$ (21). In this mechanism, the electron transfer rate is proportional to the number of collisions in which the redox centers of both proteins are aligned. The NMR titration of cyt$_{f}$ into Syn-cyt$_{c_6}$ provides no evidence for specific complex formation but suggests a highly dynamic interaction between these partners, in agreement with a type I mechanism. The optimal orientation for productive collisions is facilitated by the prominent acidic patch on the backside of Syn-cyt$_{c_6}$ (Fig. 1) since the front face will be the energetically more favorable approach with the acidic partners, cyt$_{f}$ and PSI. Apparently, cyt$_{c_6}$ from different organisms utilizes different mechanisms for the electron transfer reaction with its partners. A similar conclusion has been reached for the interactions of cyt$_{f}$ and Pc from different organisms (15). The source of this different reactivity can be traced to the nature of the protein surfaces and ultimately to variations in the primary structures. The sequences of Ana-cyt$_{c_6}$ and Syn-cyt$_{c_6}$ share 67% identity. Of the 33 residues identified in the Ana-cyt$_{c_6}$ interaction site, 22 are conserved in the Syn-cyt$_{c_6}$ sequence. Only 6 residues, located around the periphery of the complex interface, are significantly different in Syn-cyt$_{c_6}$. Ala-19 and Gln-26 are replaced by methionines, which have been implicated as endogenous antioxidants (25, 40). Ala-49 is replaced by a tyrosine, whereas glutamine and histidine replace Thr-52 and Asn-53, respectively. This cluster of three variations in Syn-cyt$_{c_6}$ results in a bulkier surface, which may hinder interactions with cyt$_{f}$. The replacement of Lys-66 by a threonine in Syn-cyt$_{c_6}$ is representative of the most striking difference between the two sequences. Five additional lysines in Ana-cyt$_{c_6}$ contribute to the significantly higher pl of this protein and enable attractive electrostatic interactions with the acidic cyt$_{f}$.

The different roles of electrostatics and hydrophobics can be
Protein docking simulations, using an NMR filter implemented in BiGGER (42), identified the cyt binding sites as the front (Site I) and back (Site II) faces of the heme region of cytc_6 (Fig. 7C). A similar docking simulation using the Ana-cytc_6 model gave slightly different results. Although the front face of the heme remains the favored site of interaction, there is a significant fraction of favorable docking orientations beneath the heme, resulting in a less extensive interaction site (29) (Fig. 7, A and B). Furthermore, the chemical-shift perturbation was on average 50% smaller than that observed in the complex with Ana-cytc_6. The prevalence of electrostatic attractions may reduce the amount of time spent in a single orientation, as determined by hydrophobic contacts, and consequently, fewer and smaller chemical-shift changes are observed. Alternatively, the diminished interaction site observed for cytc_6 may be explained in terms of “goodness of fit.” It can be assumed that the hydrophobic patch surrounding the heme is better adapted in Ana-cytc_6 than in yeast cytc_6 for binding to cytf. This complementarity favors closer contact between the protein surfaces and thus a larger interaction site.

Acknowledgments—P. B. Crowley is grateful to Dr. J. A. R. Worrall for helpful discussions and to C. Erkelens for assistance with the NMR facilities. A. Diaz-Quintana and P. Nieto thank Dr. M. Bruix for help with recording NMR spectra for the assignment of Ana-cytc_6. Dr. M. Hervás is kindly acknowledged for helpful discussions and for critical reading of the manuscript.

REFERENCES
The Interactions of Cyanobacterial Cytochrome \(c_6 \) and Cytochrome \(f \), Characterized by NMR

Peter B. Crowley, Antonio Diaz-Quintana, Fernando P. Molina-Heredia, Pedro Nieto, Martin Sutter, Wolfgang Haehnel, Miguel A. De la Rosa and Marcellus Ubbink

doi: 10.1074/jbc.M203983200 originally published online September 27, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M203983200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2002/12/06/277.50.48685.DC1

This article cites 42 references, 6 of which can be accessed free at http://www.jbc.org/content/277/50/48685.full.html#ref-list-1