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A C K N O W L E D G M E N T S

There are a number of people who contributed directly or indirectly to this dissertation. I

would like to thank them at this place.

First, and foremost I would like to thank Martin Wagner for providing the opportunity to

write a thesis under his guidance. His points and remarks are always sharp and excellent,

and I’ve got to know him as a motivating academic with a lot of energy. His enthusiasm for

econometrics and statistics had always had a motivating effect on my wanting to dig deeper,

and to look precisely behind the concepts. I believe, that this attitude towards academia

and academic research is invaluable. I’m glad to have learned a lot from him.
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1
I N T R O D U C T I O N

“Fed increases interest rates as inflation pressures loom.” – Financial Times1

“Merkel: Germany will raise defense spending, but slowly.” – Daily Mail2

“China rolls out fresh tax cuts in bid to support economic growth.” – Bloomberg3

Headlines like the above often dominate the economic, financial, or even general interest

sections of newspapers. Policy makers, industry professionals and the general public are

equally interested in how policy actions will affect the economy, and, ultimately them.

The economic crisis of 2007–2008 has shown that there is still a lot to learn about these

economic issues, especially from an empirical point of view. Central banks have opted to

use “non-standard” monetary policy measures in response to the financial and sovereign

debt crisis. Economic theory and empirical economics have started to devote more attention

to the study of the interplay between financial markets and monetary and fiscal policy. Oil

prices have dropped significantly in the past two years. In light of these developments, it

seems ever more important to gain a more precise understanding of the effects of so-called

macroeconomic shocks on the economy.

In economic theory, a (macroeconomic) shock is an exogenous innovation to the equation

that describes the behavior of the variable under scrutiny. As a simple example, a demand

shock is an exogenous event that shifts the demand curve in the basic economic model

of supply and demand. More precisely, assume, that the demand and supply curves are

characterized by the following equations:

q = −βp + εD, (Demand)

p = γq + εS, (Supply)

where q is the quantity of an object on the market, and p is the price for one unit of the

same object. A demand shock is the random variable εD that is uncorrelated with (or

independent of) p and εS.

The study of economic shocks is also a statistical problem. The above set of equations im-

mediately suggests that we can estimate the supply and demand shocks as residuals from

a system of simultaneous equations for p and q if the sample {qt, pt}T
t=1 is available to us.

Since macroeconomic data often exhibit serial correlation, it is advantageous in the macroe-

conometric context to include lags of qt and pt in the equation system. Indeed, since the

seminal article of Sims (1980), effects of macroeconomic shocks have been investigated prin-

cipally by means of structural vector autoregressive (SVAR) models that are an important

special case of dynamic simultaneous equation models.

1 https://www.ft.com/content/6723f69c-09a4-11e7-ac5a-903b21361b43, last accessed on 01.06.2017.
2 www.dailymail.co.uk/wires/ap/article-4234890/Merkel-Germany-raise-defense-spending-slowly.html, last ac-

cessed on 01.06.2017.
3 https://www.bloomberg.com/news/articles/2017-04-19/china-rolls-out-fresh-tax-cuts-in-bid-to-support-

economic-growth, last accessed on 01.06.2017.
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12 introduction

In this thesis I present results on identification in SVAR models. The supply and demand

example above can serve as an intuitive illustration of the identification problem. It is

well-known that the observed data points (qt, pt) are the results of market clearing. That

is, they represent an equilibrium relationship. If a macroeconomic shock hits the system,

and pushes (qt, pt) to the observed data point (q′t, p′t) > (qt, pt), then, without additional

knowledge, we cannot find out which curve has shifted. If, however, we postulate, e.g.,

that the demand curve is downward sloping, whereas the supply curve is upward sloping,

then a basic supply-demand analysis makes it possible to decide, whether it was a supply

shock or a demand shock (or both) that hit the system. Such additional assumptions are

termed “structural.” The central question of structural identification research is under what

structural assumptions are the objects under scrutiny (e.g., demand shocks) identifiable.

The thesis proceeds as follows: in the next section of the present chapter, I demonstrate

precisely the identification problem in structural vector autoregressions. Then I highlight

recent selected advances in SVAR identification research in order to put the summary of

main results into a wider context. In the summary of main results I explicitly list the

findings in the thesis that are new to the literature. The main body of the thesis is made up

of three chapters, corresponding to three independent and self-contained research papers.

The full (bibliographic) details of these papers are listed in the last section of the present

chapter. The thesis is concluded by a chapter in which I present an outlook on future

research based on the findings in the contributing chapters.

1.1 the identification problem

The focus of this thesis is the identification problem in dynamic simultaneous equation

systems of special form: structural vector autoregressions.4

A vector autoregressive process {yt} of order 1 is the stationary solution of the stochastic

vector difference equation

yt = B1yt−1 + ut, t ∈ Z, (1)

where yt ∈ R
K, 0 6= B1 ∈ R

K×K, and {ut} is a white noise process with mean zero and

positive definite variance-covariance matrix Σu ∈ R
K×K. The qualifier “structural” refers to

the following modification of (1):

A0yt = A1yt−1 + εt, t ∈ Z, (2)

where A1 ∈ R
K×K, {εt} is a white noise process with mean zero and the identity variance-

covariance matrix IK. The two crucial elements of SVARs are 1.) the non-singular A0 ∈

R
K×K structural matrix that describes the contemporaneous relationship between the K

variables in yt, 2.) the structural innovations εt whose elements are uncorrelated or inde-

pendent for any t.5 The representation (1) can be obtained from (2) by multiplication with

A−1
0 , the structural impact matrix. In this case ut = A−1

0 εt, and Σu = A−1
0 A−1′

0 .

4 The definitions and observations that follow are standard. Hence, in this section I do not give explicit references.

Further details can be found in, e.g. Brockwell and Davis (1991) or Lütkepohl (2005).
5 If {εt} is Gaussian, then uncorrelatedness and independence coincide. Some contributions on SVARs, however,

have focused on explicitly assuming that {εt} is non-Gaussian, but independent, see Herwartz (2016), and

Lanne, Meitz, and Saikkonen (2017).
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One of the main objectives of SVAR analysis is to investigate the reaction of elements of

yt to an innovation in εt. In the stationary, causal case the VMA(∞) representation of yt is

written as

yt =
∞

∑
j=0

Φjut−j =
∞

∑
j=0

Θjεt−j, Φ0 = IK, (3)

where Φj = B
j
1 for j ≥ 1, and Θj = Φj A

−1
0 ∀j, the structural impulse response coefficient

matrix. Under the assumptions stated above, as long as the ordinary least squares estimator

for B̂1 exists, it is also unique, the reduced form is identified, and the parameters B1, Φj,

and Σu can be consistently estimated. We are now ready to state the structural identification

problem in econometrics that has two aspects:

1. The decomposition of Σ̂u = ̂A−1
0 A−1′

0 into Â−1
0 Â−1

0

′
is not unique without additional

assumptions. Thus, A−1
0 (or A0) cannot be consistently estimated without these addi-

tional, so-called structural assumptions.

2. The labeling of elements of εt as particular economic shocks (supply shock, monetary

policy shock, etc.) requires economically founded interpretation, often in form of

structural assumptions.

In the early history of SVAR research there was a genuine interplay between these two

aspects. Economic (labeling) assumptions provided restrictions that made the matrix de-

composition unique. And, vice versa, assumptions that make the matrix decomposition

unique were interpreted also economically. As a typical example, cosider the Cholesky

decomposition L̂ of Σ̂u that yields a unique triangular Â−1
0 = L̂. The triangular structure

implies which shock has an effect on yt at the time of the arrival of the shock. For instance,

it has been usually assumed that the monetary policy shock does not affect the real vari-

ables instantaneously. Thus, a monetary policy shock is an element of εt that is ordered

after the real variables. We remark here, without further elaboration, that any structural

impact matrix A−1
0 can be consistently estimated as L̂Q, for an appropriate orthogonal ro-

tation matrix Q′Q = QQ′ = IK that depends on the true A−1
0 . The structural identification

problem can then be viewed as “looking for Q.”

The preceding paragraphs assumed that the underlying data generating process (DGP)

is, in fact, a vector autoregressive process of finite order. If the true DGP is, e.g., a VARMA

process, then we can consistently estimate with a finite order VAR the correct structural

innovations as long as the model is fundamental. Let {xt}t∈Z ∈ L2(Ω,F , P) on some given

probability space (Ω,F , P), and consider Hx
t := span{xt−k : k ≥ 0}, the closed linear span

generated by xt and its past values. The causal VARMA process {yt} with white noise

innovations {εt} is fundamental if and only if H
y
t = Hε

t for all t. Note, that for the reduced

form innovations {ut} from a VAR fitted on yt it holds by construction, that H
y
t = Hu

t ∀t.

If the data generating VARMA process is not fundamental, then Hε
t ) H

y
t = Hu

t for some t.

That is, we cannot recover the correct structural innovations from the innovations of a finite

order VAR. Thus, in my view, fundamentalness is the third (often neglected) aspect of the

structural identification problem.
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1.2 recent advances in svar identification research

The identification problem has been extensively studied for the past 50 years, not only

in the context of VARs, but also, in general, for simultaneous equation systems. Sufficient

assumptions for the solution of the identification problem have been treated in, e.g., Hannan

and Deistler (1988), or Lütkepohl (2005). There is an abundance of approaches in the

econometric literature that aim to solve the identification problem. The only comprehensive

book covering recent developments in SVAR analysis is still to appear at the Cambridge

University Press (Kilian and Lütkepohl, to appear). This indicates that, despite the classical

nature of the problem, research on identification in SVARs is still an active area.

In order to place the chapters of this thesis into a wider context, I selectively highlight

three avenues of research, and some of the questions that I perceive as important open

issues. Precise references to each of these can be found in the subsequent chapters.

First, sign restrictions on certain entries of the structural impulse response matrices Θj

have become increasingly popular in the literature. The reason for this is, that agreeing on

the assumption that a certain economic shock has negative (or positive) effect on an eco-

nomic variable for the first several periods after the impact of the shock is less controversial

than claiming that that effect is, e.g., zero in the impact period. However, it is important to

note that sign restrictions do not point identify the structural parameters, since they only

restrict the set of Q rotation matrices that are compatible with the sign restrictions. Further,

sign restrictions, and in general set identifying restrictions may allow for structural models

several of which are highly plausible from an economic viewpoint. It is, in my view, an

advantage of this avenue of research. Note, however, that the set of structural parameters

(and thus impulse responses) can be both theoretically and empirically quite large. Thus,

there remain important open questions about, first, how to analyze the set of impulse re-

sponses, second, how to shrink the set further, and, third, how to discriminate between

models compatible with sign restrictions.

Second, a recent development in the SVAR literature is the concept of proxy SVARs.

Proxy SVARs use variables external to the VAR system (proxies) in order to solve the identi-

fication problem in a data-oriented way. In doing so, the researcher does not have to postu-

late structural economic assumptions, but rather the assumed exogeneity properties of the

external variables provide enough additional moment conditions to identify the structural

parameters. The proxy variables that are most often used in the SVAR context are bench-

mark policy shock measures that have been estimated outside of the VAR system, and for

whom the postulated exogeneity properties (are assumed to) hold. In light of the previous

paragraph, it might be that the researcher’s aim is not exact identification. Then the ques-

tion is, how can the proxies that produced credible results in the proxy SVAR context be

used to aid identification in a milder, set-identifying context?

Third, some very recent contributions turned the focus of identification not on the struc-

tural parameters or the implied impulse responses, but on the identified shocks themselves.

This is an equivalent approach insofar as to each structural form innovation εt corresponds

an A0 such that εt = A0ut. Restrictions on the series {εt} that are based on a priori eco-

nomic arguments, established empirical facts, etc., can be beneficial in set-identifying the

structural parameters. Since this approach is compatible with sign restrictions, or general
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set identifying restrictions, it also fits into the context of “shrinking the identified set” in

order to discover meaningful empirical results.

As I highlight in the next section, the following chapters contribute to, and extend the

ideas and questions of contemporary SVAR research outlined above.

1.3 summary of main contributions

In light of recent advances in SVAR research, this thesis makes the following contributions:

In Chapter 2, we introduce new sign restrictions to the fiscal policy literature that

are based solely on the fundamental assumption of constant returns to scale (CRS) in

the aggregate production function. We argue, that earlier classical results in the fis-

cal SVAR literature are not compatible with the CRS production function assumption,

and we investigate the implications of explicitly imposing that assumption. Besides

our restrictions being new to the literature, they are also methodologically new: we

constrain the relative signs and magnitudes of certain impulse responses. Our empiri-

cal results, contrary to classical results, point towards contractionary effects of positive

government spending shocks for a fiscal VAR model on quarterly US data. This find-

ing opens up a debate about either the validity of empirical results established in the

literature to date, or the validity of the CRS production function assumption.

In Chapter 3, we investigate the effect of including more (forward-looking) informa-

tion in classical monetary policy SVAR models for monthly US data. To this end

we augment a classical monetary policy SVAR with the federal fund futures series

that arguably captures market expectations regarding policy, and Granger causes sev-

eral variables in the specification. Besides futures-augmentation, we also estimate a

FAVAR. We test explicitly, and establish that non-fundamentalness is not a problem in

any of the empirical specifications. We contrast the estimated monetary policy shocks

to two monetary policy benchmark shocks and conclude that information augmenta-

tion does not necessarily yield shocks that are more correlated with the benchmark

measures. The empirical conclusions regarding the effects of monetary policy shocks

are very similar among all specifications. The main finding of this chapter is, thus,

that information-augmentation is not necessary from a methodological point of view,

and the gains from using information-augmented models are negligible.

In Chapter 4, we develop two arguments new to the literature parallel to each other.

First, our empirical motivation is to investigate the effects of monetary policy shocks

on asset prices. To this end we augment standard monetary policy VARs with an

asset price index, and use established sign and zero restrictions as structural identi-

fying assumptions. To the best of our knowledge, these assumptions have not been

utilized in the monetary policy – asset prices context. Second, we contrast the iden-

tified monetary policy shock estimates to an existing monetary policy shock bench-

mark measure. We propose to restrict attention only to those structural models that

yield shocks highly correlated with the benchmark measure. We argue that such

an analysis is highly successful in discovering empirical conclusions hidden by the
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usual practice of analyzing set-identified impulse responses. Thus, our methodolog-

ical contributions challenge the interpretation of frequentist set-identified (sign- and

zero-restricted) analyses in the empirical SVAR literature. Ultimately, we uncover

negative but near-zero asset price responses to monetary policy shocks, coupled with

mildly positive output responses.

1.4 contributing material

The present thesis is comprised of three independent and self-contained research papers,

two of which have been published in working paper form before.6 The full details are:

1. Ludger Linnemann, Gábor B. Uhrin, and Martin Wagner (2016): “Government Spend-

ing Shocks and Labor Productivity,” Discussion paper Nr. 9/2016, SFB 823.

2. Gábor B. Uhrin, Martin Wagner, and Uroš Herman (2017): “Monetary Policy Shocks

and the Effect of the Information Set,” Unpublished manuscript.

3. Gábor B. Uhrin and Helmut Herwartz (2016): “Monetary Policy Shocks, Set-Identifying

Restrictions, and Asset prices: A Benchmarking Approach for Analyzing Set-Identified

Models,” Cege discussion papers Nr. 295.

The first item has been presented by GU as a contributed talk at the Conference of the Euro-

pean Economic Association in Genève, August 2016, and by MW at the Economics Research

Seminar at the University of Graz. The third item has been presented by GU as an invited

talk at the DIW Berlin Macroeconomics and Econometrics Seminar, in November 2016; as

a contributed talk at the European Meeting of the Econometric Society in Genève, August

2016; and as a contributed talk at the Summer Workshop of the Institute of Economics of the

Hungarian Academy of Sciences in Budapest, August 2016. It is, at the time of this writing,

under review at the Journal of Monetary Economics. An earlier version of the third item

has been circulated under the title: “Monetary Policy Shocks, Sign Restrictions, and Asset

Prices: A Novel Approach for Analyzing Sign Restricted Models.”

As the three papers were written independently of each other in the sequence 1, 3, 2,

some parts and arguments may coincide, especially with regards to standard definitions

and descriptions of standard methods. The individual papers’ bibliographies have been

combined and they appear at the end of this thesis. Due to submission prescriptions of

certain journals, the original papers contain all figures and tables at the end. In this thesis

all the figures and tables are displayed where they were intended to be displayed.

The research work culminating in the papers above has been supported by the German

Research Foundation (DFG). Research papers 1 and 2 were written in the context of sub-

project A4 of the Collaborative Research Center (SFB) 823: “Statistical modelling of nonlin-

ear dynamic processes.” Research papers 2 and 3 benefited from the DFG Project “Macroe-

conomic fundamentals of asset prices: State dependence and implications for the conduct

of monetary policy” (HE 2188/8-1). The financial support is gratefully acknowledged.

6 The publication of these materials was done in accordance with the regulations for the doctoral degree (“Pro-

motionsordnung”).
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G O V E R N M E N T S P E N D I N G S H O C K S A N D L A B O R P R O D U C T I V I T Y

Ludger Linnemann, Gábor B. Uhrin, and Martin Wagner

Abstract. A central question in the empirical fiscal policy literature is the magnitude,

in fact even the sign, of the fiscal multiplier. Standard identification schemes for fiscal

VAR models typically imply positive output as well as labor productivity responses to

expansionary government spending shocks. The standard macro assumption of decreas-

ing returns to labor, however, implies that expansionary government spending shocks

should lead to increasing output and hours, but to decreasing labor productivity. To

potentially reconcile theory and empirical analysis we impose, amongst other sign re-

strictions, opposite signs of the impulse responses of output and labor productivity to

government spending shocks in eight- to ten-variable VAR models, estimated on quar-

terly US data. Doing so leads to contractionary effects of positive government spending

shocks. This potentially surprising finding is robust to the inclusion of variable capital

utilization rates and total factor productivity.

2.1 introduction

There is a large empirical literature (starting with Blanchard and Perotti (2002)) that uses

structural VAR models to estimate the effects of shocks to government spending on the

business cycle. A particular focus of this literature is on the identification of the fiscal mul-

tiplier, i.e., the effect of changes in government spending on aggregate output. Empirically,

most studies find that an unexpected increase in government spending raises real output

for at least a number of quarters, though the exact size of the multiplier is controversial.

The central problem for the empirical fiscal policy literature is, of course, the problem of

identification of exogenous changes in government spending. There is no consensus in the

literature concerning which set of identifying restrictions should be used to disentangle

government spending shocks from other shocks that affect cyclical variations in macroeco-

nomic data.

In this paper, we propose to use the response of (hourly) labor productivity to help

identify government spending shocks. The basic idea is straightforward: Consider the

fiscal transmission mechanism that is embedded in most current DSGE models. If the

government unexpectedly increases its spending, the resulting intertemporal tax burden

imparts a negative wealth effect on households, which consequently expand their labor

supply. Since the capital stock is predetermined in the short run, under a standard constant

returns to scale aggregate production function there are decreasing returns to labor. As a

consequence, the fiscal expansion should be associated with rising hours and output, but

17
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with decreasing hourly productivity.1 Based on this stylized observation, we propose to

use the restriction that output and labor productivity should respond with opposite signs

as one of the identification conditions in a sign restricted VAR model.

We first review some popular alternative ways of identifying government shocks, namely

that of Blanchard and Perotti (2002) who rely on a recursive ordering where government

spending is assumed to be exogenous within the quarter; and the one proposed by Ramey

(2011) who additionally controls for anticipation effects by estimating responses to the in-

novations to her narrative measure of the present discounted value of expected military

expenditures. We demonstrate that either of these approaches implies an increase in labor

productivity after a positive government spending shock in quarterly US macroeconomic

data, opposite to the theoretical expectation based on the standard view of the fiscal trans-

mission mechanism. Utilizing the above considerations on the relation between output

and productivity responses to government spending shocks we estimate several variants of

sign restricted VAR models for US quarterly macroeconomic time series. Sign restrictions

have been used earlier in the literature on fiscal policy effects, e.g., by Mountford and Uhlig

(2009) or Pappa (2009). The distinctive feature of our approach is the use of a sign restriction

invoking the response of labor productivity that forces the estimated government spending

shock responses to be compatible with the existence of an aggregate production function

with constant returns to scale. In particular, we identify a government spending shock

through the restrictions that the resultant impulse responses lead to positive comovement

between government spending and public deficits, positive comovement between hours

and output, and negative comovement between output (or hours) and labor productivity.

Using these restrictions, we find that the median target impulse response, as defined in

detail in appendix 2.A, of private (non-farm business) output to a positive shock to gov-

ernment spending is negative. Since negative output reactions to government spending

increases are in obvious contradiction to the consensus in the previous empirical literature,

we undertake various robustness checks. In particular, we allow for cyclical capital uti-

lization, and also include a measure of total factor productivity. The basic result remains:

as soon as we impose that productivity and output have to comove negatively after gov-

ernment spending shocks, the median target impulse response implies a negative output

reaction. Bootstrap confidence bands around the median target impulse response indicate

that this negative response is statistically significantly different from zero for several peri-

ods.

Note that there are two possible interpretations of our result: First, it could be the case

that government spending shocks do indeed have negative short run consequences for out-

put and hours. In this case, one would have to assume that other identification schemes

leading to the opposite result tend to confound the fluctuations due to government spend-

ing shocks with those due to other disturbances, e.g. technology shocks. Second, the

transmission of government spending shocks needs to be analyzed in a setting featuring

increasing returns to scale, since the data do not appear to be compatible with the combi-

nation of positive output effects of government spending and a constant returns to scale

production function.

1 We consider the alternative possibility that government spending is productive in the sense of immediately

shifting the aggregate production function unlikely for reasons discussed in section 3.2.
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The empirical result that government spending seems to increase labor productivity is,

of course, related to a finding emphasized earlier in the literature, viz., that positive gov-

ernment spending shocks appear to have a positive effect on the real wage rate (e.g., Perotti

(2007), Monacelli and Perotti (2008)). With decreasing returns to labor, the real wage is,

from a theory perspective, expected to fall if a government spending shock induces in-

creasing labor supply. However, several authors, e.g., Hall (2009), Monacelli and Perotti

(2008), or Ravn, Schmitt-Grohé, and Uribe (2012), have pointed out that higher wages may

be compatible with higher employment if the price-marginal cost markup that imperfectly

competitive firms charge declines in response to higher government spending. The point

emphasized in the present paper is that even if declining markups make rising employment

compatible with higher real wages, the increase in labor productivity that is also present in

the data can still not be explained. Put differently, whatever the behavior of the markup is,

it does not contribute to solving the question how sizably more output can be produced,

following a government spending shock, with labor input changing only weakly.

Methodologically, we essentially use sign restrictions to impose a log-linear approxima-

tion to a standard neoclassical production function on the impulse responses. We propose

to view this method as a combination of the a-theoretical nature of VAR modelling with

a structural assumption concerning an aggregate production function underlying the US

economy, whilst leaving all other equations unrestricted. This approach is similar in spirit

to Arias, Caldara, and Rubio-Ramı́rez (2015), who use sign (and zero) restrictions to con-

strain impulse responses in a monetary VAR model such that they are compatible with a

plausible central bank reaction function. Whereas Arias, Caldara, and Rubio-Ramı́rez (2015)

require impulse responses to a monetary policy shock to reproduce a standard monetary

policy rule, we impose a standard production function on the impulse responses to distin-

guish demand side disturbances, like government spending shocks, from supply side shifts

in the production function itself. In both instances, the idea is to use only the structural in-

formation from relatively uncontroversial parts of a macroeconomic model that is implicitly

thought of as the data generating process.

The paper proceeds as follows. In section 2.2, we discuss the sign restrictions that are

used for identification of government spending shocks in more detail. In section 2.3, we

first demonstrate the tendency for procyclical productivity responses under the Blanchard

and Perotti (2002) and Ramey (2011) identifications of government spending shocks. We

then discuss possible interpretations and present our own results based on sign restrictions.

Finally, we show the central result to be robust to the inclusion of cyclical capacity utiliza-

tion and total factor productivity. When including both additional variables we combine

sign restrictions with standard short run (point) restrictions. Section 2.4 concludes. Two

appendices follow the main text. Appendix 2.A presents some details of the econometric

approach and appendix 2.B contains some further results.

2.2 government spending shocks and labor productivity

Our main goal is to distinguish empirically between the effects of government spending

shocks and of productivity shocks on the private business sector. To this end, we start by
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assuming that private (i.e., non-farm business) sector output Yt is generated by a constant

returns to scale production function that is standard in macroeconomics, i.e.,

Yt = F(Zt, Ht, St), (4)

where Zt is unobservable technology, Ht is labor input (measured in hours worked in

the non-farm business sector), and St are the services derived from the installed capital

stock. We concentrate on a log-linear approximation to this production function, where log-

deviations from the balanced growth path are denoted by lower case letters. The log-linear

representation of the production function is:

yt = zt + aht + (1 − a)st, (5)

with a ∈ (0, 1). This representation is exact in the special case that the production function is

Cobb-Douglas, whereas for more general functional forms it is a first order approximation.

The parameter a ∈ (0, 1) is the production elasticity of labor input, which in the Cobb-

Douglas case is equal to the share of labor in total output. For other constant returns to

scale production functions, that do not imply constancy of the labor share, the parameter a

can also assume other values in the interval between zero and one. Macroeconomic models

typically calibrate values for a in the range from 0.6 to 0.7.

Now consider estimating a VAR model containing (among others) the variables from

above. Then, following any shock hitting the economy, the estimated impulse responses

of output, technology, hours worked and capital services should, to a first order approxi-

mation at least, be related to each other as the variables in (5). In the following we will

repeatedly compare relations between impulse response functions of VAR models and log-

linearized structural economic relations.

We use this idea to disentangle government spending shocks from other shocks, in partic-

ular from technology shocks. If in period t a shock that does not change technology occurs,

then zt = 0 holds in this period and the impulse responses hence fulfill:

yt − ht = (a − 1)ht + (1 − a)st. (6)

However, capital services are typically not directly observable. We consider two alternative

specifications to deal with this problem. The first assumes that capital services st are equal

to the stock of installed capital (or are a fixed proportion of it), and the second assumes that

capital services are given by the product of a time variable utilization rate and the capital

stock. We present the first specification in the current section, and defer the discussion of

the second as a robustness exercise to section 2.3.4.

If capital services are identical to the capital stock, then—since the capital stock is pre-

determined in the short run and slowly moving in response to shocks in general—their

contribution can be neglected as long as the focus is on the economy’s behavior in the im-

mediate aftermath of a few quarters after a shock hits. Thus, the impact or short run effect

of a non-technological shock on labor productivity is well approximated by:

yt − ht ≈ (a − 1)ht, (7)

since st ≈ 0 on impact. Given the standard range of estimates of a ∈ [0.6, 0.7], this implies

that in the short run, if a non-technological shock increases hours worked by one percent,
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labor productivity should decline by between −2.5 to −3.3 percent. In the limiting case

where a → 1, the effect on labor productivity vanishes. Importantly, however, it cannot be

positive for any value of a that implies decreasing or constant returns to labor in production.

While the exact value of a is unknown in general, (7) is nonetheless useful as the ba-

sis for identifying government spending shocks based on the signs of impulse responses.

In particular, suppose we have estimates of a reduced form VAR model, and consider

a particular candidate orthogonalization of the residuals in order to identify structural

government spending shocks. Denote the impulse responses for the candidate orthogo-

nalization at horizon j ≥ 0 to a government spending shock ft by a tilde over variables

(e.g., ỹj = ∂ log Yt+j/∂ ft). Our maintained hypothesis is that government spending does

not have a direct effect on technology (see below for further discussion of this point) and

that the capital stock is predetermined in the short run. Therefore, a structural govern-

ment spending shock should produce impulse responses that are compatible with (7) with

a ∈ (0, 1) and that, hence, need to have the following properties:

(i) ỹj and h̃j have the same sign;

(ii) ỹj and ỹj − h̃j have opposite signs.

Since these properties of impulse responses can be expected to be present, in the short

run, after any type of non-technological (or demand side) shock that leaves total factor pro-

ductivity unchanged, we need a further restriction to ensure that the particular demand

side shock we identify is indeed a government spending shock. Therefore, letting g̃j and d̃j

denote the impulse responses at horizon j of government spending and the deficit, respec-

tively, we add:

(iii) g̃j and d̃j have the same sign.

Below, we make use of these properties in the form of sign restrictions on the impulse

responses of VAR models to identify government spending shocks. Restriction (i) requires

that output and labor must comove positively, which is a basic requirement if a non-

technological shock is considered and capital is predetermined in the short run. In this

case labor is the only variable factor that can adjust in the short run to produce more or

less output. Restriction (ii) is crucial for our approach. It imposes the decreasing returns to

labor property following from a constant returns to scale production function with prede-

termined capital. Under non-technological shocks, output can only rise if measured labor

productivity declines, such that we observe a positive response ỹj only if ỹj − h̃j declines at

the same time, or vice versa. This restriction is pivotal in the present context, since it im-

poses the condition that a government spending shock is a pure demand side disturbance

that does not shift the aggregate production function as, e.g., a technology shock would.

Finally, condition (iii) serves to single out government spending shocks from other non-

technological disturbances. It imposes that government spending shocks are at least partly

deficit financed over the short run. This assumption is plausible in view of the political

decision process, with spending changes rarely linked to specific tax changes required to

finance them.
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Note, importantly, that conditions (i) to (iii) neither constrain the signs of the reactions of

output nor of hours worked to a government spending shock. It is only the relation between

these two reactions that is restricted. The idea is that the basic notion of a demand side

disturbance brought about by government spending changes imposes the required pattern

of comovement between the impulse responses, as long as the data generating process is

characterized by a constant returns to scale production function. It is left unrestricted,

and hence decided by the data, whether this implies that output and hours increase while

productivity decreases, or that output and hours decline while productivity rises.

In the next section, we proceed in three steps. First, in section 2.3.1 we review some

popular identification schemes that have been used in the fiscal VAR literature to identify

government spending shocks. We discuss whether the impulse response functions gen-

erated by these models are compatible with the theoretical requirements that characterize

responses to government spending shocks as set out in conditions (i) to (iii) in section 2.3.2.

Since the answer turns out to be negative, we proceed in section 2.3.3 by directly imposing

conditions (i) to (iii) as the restrictions to identify government spending shocks via sign

restrictions on VAR model impulse responses. Finally, in section 2.3.4 we investigate the

robustness of the results with respect to allowing for variable capital utilization.

2.3 empirical results

2.3.1 Review of existing fiscal VAR model results

We start off by reviewing standard findings of the empirical literature on the effects of

government spending shocks. Given the above discussion, negative comovement between

the impulse responses of output and labor productivity to government spending shocks

should prevail. Consequently, the first question we ask is whether the available fiscal VAR

model results are compatible with this restriction. The answer is no. In section 3.3 we

therefore present results where we impose this negative comovement between the output

and productivity responses to government spending shocks via sign restrictions.

All VAR models considered in this paper are estimated with quarterly US data from

1948q1 to 2013q4, which is the longest period over which all variables are available. The

variables used in the baseline specification in this section are the logarithm of real govern-

ment consumption and investment spending, log Gt; the logarithm of real output in the

non-farm business sector, log Yt; the logarithm of hourly labor productivity, log Yt − log Ht,

where Ht is hours worked in the non-farm business sector; the logarithm of real net taxes,

log τt;
2 the nominal three months treasury bill rate, Rt; the inflation rate as measured by

the annualized log change in the deflator of non-farm business output, πt; the government

deficit, Dt, defined as minus total government saving as a fraction of GDP; and the loga-

rithm of real private nonresidential investment, log It.

We have checked the robustness of our results by using, instead of τt as defined above,

the Barro and Redlick (2011) measure of the average marginal tax rate, which is available

only up to 2008q4 and thus requires using a shorter sample. The results do not change by

2 Here τt is defined as government current tax receipts plus contributions for government social insurance less

government current transfer payments, deflated by the GDP implicit price deflator.
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much, and therefore we use in our analysis the tax measure τt and the longer sample until

2013q4. The data on hours worked and the Barro–Redlick tax rate have been downloaded

from Valerie Ramey’s website, the other variables are obtained from the Federal Reserve

Bank of St. Louis FRED database, except for private nonresidential investment, which is

from the Bureau of Economic Analysis. Expressing the flow variables as per capita values

by dividing through population does not change the results appreciably. To match the

approach commonly used in the literature, all models also contain a constant as well as

linear and quadratic time trends and are estimated with four lags of each endogenous

variable.

Note that in all estimates below both output and hours, and thus productivity, are

measured for the private (non-farm business) sector only. This seems important in the

present context, because using economy-wide measures—such as real GDP and total hours

worked—could be misleading. The reason for this is that GDP also contains the public

sector output, which is difficult to measure and for which the existence of a standard pro-

duction function is not necessarily guaranteed. Therefore, we only investigate the response

of private output and private hourly productivity to government spending shocks. That

being said, the results reported below only change very little if economy-wide GDP based

measures for output and productivity are used instead of the non-farm business data, as

we have ascertained by running this specification as another robustness check.

For comparison with our own results shown in the next subsection, as a first step we

show the implications of three commonly used VAR identification methods for the response

of labor productivity in the private non-farm business sector to a government spending

shock. The first approach imposes Blanchard and Perotti’s 2002 assumption that govern-

ment spending does not react endogenously to the state of the economy within the quarter,

but only with at least a one quarter lag. Thus, the government spending shock is in this

setting identified by using the recursively orthogonalized residuals from a VAR model with

the variables mentioned above with government spending ordered first. For brevity, this

is called BP or recursive identification, henceforth. The BP approach has been criticized by

Ramey (2011), who argues that the possible presence of anticipated changes in government

expenditure invalidates the BP identifying assumption. If news of future rising expen-

diture arise, the private sector will respond before the econometrician actually observes

an increase in measured spending. The resulting mismatch of timing could then lead to

erroneous estimates of the shock responses. To overcome this problem, Ramey (2011) pro-

poses the use of a narrative measure of the present discounted value of anticipated military

spending to identify government spending shocks (orthogonal in addition to this variable).

Therefore, the second approach shown below adds Ramey’s 2011 variable for the present

discounted value of expected future military expenditure as the first variable in the VAR

model, and calculates an anticipated government shock as an orthogonalized innovation

to this variable. This is called the Ramey identification for short. The third approach uses

the same VAR model specification as the previous one, i.e., with the Ramey news variable

ordered first and government spending ordered second, but considers a shock not to the

anticipation variable, but to the spending variable itself. In this way, this identification can

be seen as an attempt to capture an unanticipated spending shock while at the same time
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Figure 1: Impulse responses to government spending shock: BP, Ramey and BP-R identifi-

cation schemes.

controlling for anticipation effects through the inclusion of Ramey’s news variable, which

continues to be ordered first. This third specification is abbreviated as BP-R below.

Figure 1 shows the results in terms of impulse responses to a one standard deviation

shock to government spending or Ramey’s 2011 news variable using these three identifi-

cation schemes, along with ±1.96 bootstrapped standard erros to capture symmetric 95%

confidence bands. For brevity, only the responses of the most interesting variables for the

question at hand are shown. The full set of impulse responses for all variables included

in the VAR models is available upon request. In all identification schemes, a positive gov-

ernment spending shock raises private sector output (though only insignificantly so in the

Ramey version), and the government deficit (though less clearly and with a lag in the

Ramey specification). Most importantly for the present purpose, however, is the fact that

under all identification schemes labor productivity (shown in the last but one row of figure

1) rises slightly. The increase in productivity is certainly not large, and in the Ramey case

again not significantly different from zero. However, as argued above, if one believes that

these models truly identify a government spending shock, then one expects a pronounced

decrease in labor productivity.

In principle, it is possible that the increase in measured labor productivity is explained

by the effect of a decline in hours worked on marginal productivity of labor. However, this

does not seem to be the case. Replacing the productivity variable log Yt − log Ht, used in the

VAR models above, by the logarithm of hours worked, log Ht, and re-estimating (leaving

the rest of the VAR model unchanged) yields the estimated impulse responses of hours to

a positive government spending shock in the three specifications shown in figure 2.
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Figure 2: Impulse response of non-farm business hours to government spending shock: BP,

Ramey and BP-R identification schemes.

In all cases, the response of hours appears to be close to zero or slightly positive, at

least for the first couple of quarters after the shock, but not markedly negative. Thus, the

behavior of hours does not seem to explain the estimated increase in productivity. Moreover,

even if the hours response were indeed negative, this would raise the question how, in that

case, a positive short run output response could be explained if the maintained assumption

that these models correctly identify a purely non-technological government spending shock

is correct. If technology does not change and the capital stock is predetermined in the short

run, then rising output is associated with increases in hours worked (the possible caveat in

the case that the output expansion is explained by a large concomitant increase in capital

utilization is explored in section 2.3.4 below).

To sum up, the conclusion obtained so far from standard structural VAR model ap-

proaches is that output increases following a government spending expansion are difficult

to explain without rising productivity. The very fact that the VAR model results point to

productivity increases following rising government spending, casts doubt on their ability to

identify a pure demand side innovation like a government spending shock. If the popular

identification methods shown above truly identify government spending shocks, and if gov-

ernment spending shocks are truly non-technological in nature, one expects that impulse

responses of output and hours have the same sign and are both of the opposite sign of the

response of labor productivity. Yet, in the estimates it appears that output comoves pos-

itively with productivity, conditional on the identified shock, and weakly positively with

hours. Thus, to the extent that these conventional identification schemes indeed succeed in
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isolating government spending shocks, one needs to explain how an increase in government

spending is able to raise labor productivity.

2.3.2 Discussion

While in the recent literature the debate has revolved around estimating the magnitude of

the effect of government spending shocks on output so far (the fiscal multiplier debate), the

empirical evidence provided above highlights a different aspect: However large the output

effects may be, they tend to derive not only from comparably large increases in hours or

employment, but also from increases in labor productivity.

This poses an interesting challenge to our understanding of the fiscal transmission mech-

anism. The evidence given above seems incompatible with the usual view of the way

government spending affects the economy, as it is embedded in most DSGE models. The

standard transmission mechanism implies that an increase in government spending raises

output because higher spending, through its associated tax burden, exerts a negative wealth

effect on households. This gives households an incentive to reduce their consumption of

leisure, which boosts labor supply such that output rises. Along a neoclassical production

function with capital predetermined in the short run, this implies that decreasing returns

to labor set in. Hence, a decrease in measured labor productivity results.

Three principally different reactions to the apparent conflict between theory and empiri-

cal evidence are conceivable. First, the standard view of the fiscal transmission mechanism

needs to be augmented. If the positive labor productivity response is structural, one has to

adjust theoretical models to accommodate it. Second, the identification methods discussed

above tend to confound government spending shocks with other shocks, in particular with

technological shocks that are known to raise productivity. A positive technology shock

raises productivity and could be mistaken for a government spending shock in a recursive

identification scheme, if the government immediately increases spending in response to the

positive technological shock. Third, an increase in activity following a government spend-

ing shock triggers a rise in unmeasured factor utilization, in particular capital utilization.

This might counteract decreasing returns to labor since the unobserved variable utilization

rate of capital increases too. We discuss each of these possibilities in turn.

If one adopts the first view and maintains that the orthogonalizations applied in the

VAR models shown above succeed in identifying structural government spending shocks,

it could indeed be that the measured increase in labor productivity is structural. One

possibility for this is that government spending is productive, in the sense of entering

private sector production functions with a positive output elasticity. Higher government

spending then shifts up the production functions of private firms and leads to a labor

productivity increase. However, direct productivity effects of government spending most

likely result from investment in public infrastructure. This, as a part of the economy’s total

capital stock, only changes slowly and therefore can be considered as predetermined in the

short run following a spending boost.

Another possibility is that there are increasing returns to scale, and more stringently in-

creasing returns to labor. In this case any increases in the scale of production, including

those brought about by an increase in government spending, lower average costs and thus
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endogenously raise overall productivity. However, while this could, if the relevant effects

are strong enough, also lead to a rise in measured labor productivity, one expects that (as

also in the case of infrastructure effects from higher spending) private investment increases

too, since private investors would attempt to take advantage of higher productivity. The

impulse responses of investment are, however, not significantly different from zero in the

three discussed structural VAR models. It is positive but not significantly different from

zero in the specifications using the Ramey news variable, and negative (albeit not signifi-

cantly different from zero) in the BP identification. Several other studies have also found

negative investment responses to government spending shocks (e.g., Galı́, López-Salido,

and Vallés (2007)). Thus, the positive investment response that one expects if higher gov-

ernment spending truly increases productivity (either by shifting the production function

by adding public capital, or by shifting the economy along an increasing returns to scale

production function) does not seem to receive much empirical support.

Hence, we conclude that while we cannot strictly rule out the possibility that procyclical

productivity is indeed a structural feature of government spending shocks, we consider the

evidence in favor of this hypothesis to be weak. Note that this also rules out the possibil-

ity that labor productivity simply increases, because higher private investment raises the

capital stock quickly enough. Even if there were a positive private investment response,

this effect is expected to work intertemporally, with some delay because of the short run

predetermined nature of the capital stock. The productivity response instead appears to be

immediate.

In sum, this leaves us with either the second or the third view, namely that the non-

negative productivity response either follows from failure to identify and disentangle gov-

ernment spending shocks from technological shocks with the methods employed above,

or that it is the result of unaccounted increases of capacity utilization. The following two

sections are dedicated to our attempt to distinguish between these possibilities.

2.3.3 Results with sign restrictions imposed

In this subsection, we present the results when we impose the discussed sign restrictions

on the impulse responses from VAR models. We impose restrictions (i) to (iii) introduced

above (positive comovement of output and hours, negative comovement of output and

productivity, positive comovement of government spending and the budget deficit) on the

impulse responses of the VAR model to identify government spending shocks. The crucial

restriction is (ii), which has to be fulfilled by responses to demand side shocks like gov-

ernment spending shocks, but not by responses to technology shocks. In this way, the sign

restrictions are used to separate government spending shocks, whose effects we want to

analyze, from technology shocks.

The estimated VAR model contains essentially the same variables as discussed in the pre-

ceding subsection. The difference is that we include output and hours separately in order

to be able to constrain their impulse response relation. Thus, the following variables are

included log Gt, log Yt, log Ht, log τt, Rt, πt, Dt, log It. Furthermore, we again include four

lags, a constant and linear and quadratic time trends. We implement the sign restrictions

following the methodology outlined in Rubio-Ramı́rez, Waggoner, and Zha (2010). In brief
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Figure 3: Median target impulse responses to government spending shock identified

through restrictions (i) – (iii).

(for more details see appendix A), we randomly draw orthogonal matrices to rotate the so-

called structural impact matrix until we have 5000 models in which the impulse response

patterns to a government spending shock match restrictions (i) – (iii) over a horizon of

four quarters. Robustness checks show that imposing the restrictions only for one or two

quarters following a shock does not change the conclusions. From the responses fulfilling

the sign restrictions, we calculate the median target (MT, henceforth) impulse response as

advocated by Fry and Pagan (2011). The MT impulse response is the impulse response

that is closest in a (variance weighted) squared distance sense to the (pointwise) median

curve of the 5000 impulse responses satisfying the sign restrictions. To allow for inference,

we quantify the uncertainty around the estimated MT responses by a bootstrap method

described in appendix 2.A, and use this to construct 90 percent confidence bands that are

depicted in the figures below as dashed lines.

Figure 3 shows the estimated effects of a positive impulse in government spending. In

terms of the median target responses, a positive government spending shock is associated

with an increase in the deficit and labor productivity, but with an initial decrease in output

and hours worked. Note that while spending and the deficit have been restricted to be

positive, output and hours are unrestricted. Only their relation is restricted by (i) and

(ii) given above. The median target effect of government spending shocks on output is

significantly negative for several periods.
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The result that government spending expansions are associated with negative output

and hours responses is, of course, surprising. As mentioned above, a large number of pre-

vious studies—using different identification assumptions—finds that positive government

spending shocks are associated with short run increases in output. Hence, it is crucial to

understand why our results differ markedly in this respect. The reason is, of course, that

we restrict the relation between the responses of labor productivity by our restriction (ii) to

be in accord with our view of the consequences of demand shocks, i.e., negative comove-

ment between the impulse responses of output and productivity. In other words, if labor

productivity rises when a government spending shock has occurred, this must have been

due to the increase in the marginal product of labor. This increasing marginal product of

labor is implied by the decline in hours, and thus in output. Hence, by using restriction

(ii) we in a sense force the data to decide whether, conditional on a government spending

increase, either an increase in output and hours with lower productivity, or a decrease in

output and hours associated with a rise in productivity is more likely. The results shown

in figure 3 indicate that the data appear to favor the latter possibility.

The results in figure 3 allow for different possible interpretations. One possible con-

clusion is that previous estimates that find a positive response of output to government

spending increases (like those summarized in the preceding subsections) fail to disentangle

government spending shocks from other confounding disturbances, like technology shocks.

Our estimates, in contrast, explicitly rule out the influence of shocks that shift the short run

production function and thus could be seen as identifying the pure demand side effects of

government spending shocks.

It is important to stress that the results shown in figure 3, as well as in figures 4 and 5

to be discussed later, display the median target response. The corresponding figures 6 to

8 in appendix 2.B show the range of the sign-restricted impulse responses as generated by

our simulation approach. The results from the appendix show that the largest part of the

impulse responses has qualitatively the same shape as the median target impulse that we

focus on, since the pointwise median curve over all impulse responses throughout is close

to the median target impulse response. The figures in appendix 2.B, however, also show

that there are feasible sign-restricted impulse responses with the opposite implications re-

garding the effects of government spending shocks on output and hours worked. There is

no statistical way of discriminating between these different feasible orthogonalizations, as

they are all observationally equivalent to the estimated reduced form VAR model. In the lit-

erature it is customary to focus on either the pointwise median curve (not itself an impulse

response function) or the median target impulse response to capture the main tendency in

the data. Both lead to very similar conclusions in our case. Second, and more problemat-

ically, we have thus far assumed that labor is the only variable factor of production that

can adjust in the short run. This is debatable when the amount of services derived from

the capital stock varies over the business cycle, as is implied by many theoretical models

with variable capital utilization. We thus turn to an enlarged model where we allow for

utilization changes in the following section.
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2.3.4 Robustness checks: variable capital utilization and total factor productivity

So far, we have assumed that capital services st are identical (or proportional) to the capital

stock kt. This is a useful simplification, because the capital stock is predetermined in the

short run, and moves only slowly even over the medium run. Hence, under this assumption

it is possible to abstract from changes in capital services, at least for the small number of

time periods for which sign restrictions are imposed on impulse responses. However, it

is indeed likely that capital services are more variable than the capital stock itself, if the

utilization rate of the latter is time varying. The question thus arises in how far our results

are robust to allowing for variable capital utilization.

Time varying capital utilization is found to be an important feature of business cycles

in several recent papers, e.g., Justiniano, Primiceri, and Tambalotti (2010). Empirically,

Fernald (2014) provides a measure of the change in utilization that he computes based

on the methodology described in Basu, Fernald, and Kimball (2006).3 In the following,

since the other variables in our VAR models are in log-levels as well, we use his measure

of utilization change and integrate it (from a starting value of one) to obtain the level of

utilization Ut (which is then taken to logarithms in the empirical model), and allow the

services of capital to depend on it through St = UtKt, where Kt is the stock of installed

capital.

Allowing for variable capital utilization, the log-linearly approximated production func-

tion thus reads as:

yt = zt + aht + (1 − a)(ut + kt). (8)

Under non-technological shocks, i.e., with zt = 0, and upon neglecting movements in the

capital stock which continues to be predetermined, it follows that measured labor produc-

tivity is approximately given by:

yt − ht ≈ (1 − a)(ut − ht). (9)

Hence, given a ∈ (0, 1), labor productivity rises in response to a non-technological shock

only if utilization ut increases more strongly than hours worked ht. Thus, with variable

capital utilization our previous restriction (ii), which requires output and productivity to

have opposite signs, may be too restrictive.

We thus extend the VAR model of the previous section with the logarithm of the level of

utilization as an additional variable. The variables used are thus log Gt, log Yt, log Ht, log τt,

Rt, πt, Dt, log It, log Ut. Using the same notation as in section 2, let ũj denote the impulse

response at horizon j of log Ut to a government spending shock. In terms of identification

restrictions on the impulse responses, we replace the sign restriction (ii) by a new sign

restriction (iv):

(iv) The difference of the impulse responses ỹj and h̃j has the same sign as the difference

of the impulse responses ũj and h̃j.

3 The data are available at John Fernald’s web site http://www.frbsf.org/economic-research/economists/john-

fernald/.
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Figure 4: Median target impulse responses to government spending shock identified

through restrictions (i), (iii) and (iv).

Figure 4 shows the MT impulse responses of the utilization-augmented VAR, with the

government spending shock identified using sign restrictions (i), (iii), and (iv). A positive

shock to government spending appears to trigger a strong negative adjustment of utilization

in the short run. Note that the utilization response itself is not sign-restricted by (iv), but

only its relation to the output and hours responses. As can be seen by a comparison

with the results shown in figure 3 above, the other responses do not change qualitatively

compared to the case without time varying utilization, although the magnitudes and the

persistence of the responses differs. In particular, the median target output and hours

reactions are still negative in the short run, even though less strongly so, since the decrease

in utilization picks up part of the variation. Capital utilization itself is, as theoretically

expected, procyclical, which in the current context means that it declines alongside output.

Since utilization declines by less than hours, labor productivity rises by implication.

Thus, allowing for time varying utilization does not change the basic conclusion reached

above that imposing constant returns to scale (in hours and in utilized capital, given the

predetermined capital stock) leads, in the short run, to a negative median target response of

output and hours to a government spending shock, accompanied by a positive productivity

response.

Recall that the main purpose of the restrictions we use is to help disentangle government

spending shocks from other shocks that directly shift the production function. Therefore, it

might be useful, as a further robustness check, to control directly for a measure of technol-

ogy in the VAR model. It is well known that standard measures of total factor productivity
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(TFP) that are based on the classic Solow residual contain a component that is endogenous

to the business cycle. The reason is that with procyclical utilization and possibly imperfect

competition, the productive contribution of the input factors is larger than their income

shares, with the latter commonly used as production elasticities in the computation of

Solow residuals. Fernald (2014) also provides a corrected TFP measure that takes account

of these effects, based on a methodology to purge spurious cyclicality due to utilization

changes and markups expounded in Basu, Fernald, and Kimball (2006). Thus, his utiliza-

tion corrected TFP series is likely to be a better proxy for exogenous shocks to the aggregate

production function, and hence an appropriate control variable for us. Since his measure is

in growth rates, we integrate it from a starting value of one to get the variable TFPt, and

use its log-level as an additional variable in the VAR model.

After a government spending shock that has no impact on technology, the impulse re-

sponse at horizon j of the total factor productivity measure to this government spending

shock, t̃ f pj, should be zero, at least in the vicinity of the shock impact at short horizons j.

We thus impose, as an additional identifying restriction, the exact zero-at-impact restriction:

(v) The impulse response t̃ f pj does not change on impact under government spending

shocks.

This model version thus mixes the sign restrictions (i), (iii), and (iv) with the exact zero

restriction (v). The implementation is based on the methodology set out in Arias, Rubio-

Ramı́rez, and Waggoner (2014) described in appendix 2.A. Figure 5 shows the median target

impulse responses of the VAR model with the variables log Gt, log Yt, log Ht, log τt, Rt, πt,

Dt, log It, log Ut, log TFPt.

The MT impulse responses shown in figure 5 show some differences compared to those

previously discussed. In particular, while output and hours still decline in the short run,

the size of the negative response is somewhat mitigated. To the extent that the inclusion of

the log TFP variable succeeds in controlling for residual technological disturbances unac-

counted for in the previous models, the estimates shown in figure 5 give a cleaner indication

of the consequences of a government spending shock. Most clearly visible, the response

of utilization now appears rather unclear, and statistically not significantly different from

zero. This is also true for the TFP response itself, which is only constrained to be exactly

zero in the impact period, and shows some endogenous but altogether insignificant varia-

tion thereafter. Labor productivity reacts less strongly than in the previous models, but the

response is still positive. However, the main pattern found in the simpler models above still

holds: Output and hours tend to decline for some periods following a government spend-

ing increase, whereas labor productivity rises slightly. We thus conclude that the central

result presented in the previous subsection is robust to the consideration of both variable

capital utilization and total factor productivity as additional control variables.
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Figure 5: Median target impulse responses to government spending shock identified

through restrictions (i), (iii), (iv) and (v).
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2.4 conclusions

Taking stock, the estimates presented above all highlight the central point: As soon as we

impose the crucial requirement that the impulse responses of structural VAR models aimed

at identifying government spending shocks exhibit behavior required to be consistent with a

standard constant returns to scale aggregate production function, we find that the median

target responses to a government spending increase imply short run declines in private

sector output and hours, along with rising labor productivity. This result is robust to

the inclusion of variable capacity utilization and to additionally including a measure of

utilization-adjusted total factor productivity. Since the majority of previous studies has

found positive output responses following government spending increases, the question

arises, of course, how to interpret the results presented here.

Our results certainly cannot be taken to necessarily imply that other identification schemes

that tend to find positive output responses to government spending increases are wrong.

While there is the possibility that identification schemes that do not take into account the

restrictions we impose on productivity behavior confound demand shocks deriving from

government spending variations with technology shocks, we need to be cautious here for

at least three reasons. First, sign restriction methods do not allow to exactly identify gov-

ernment spending shocks, but only the set of admissible model impulse responses given

the restrictions. The range of admissible models includes impulse responses for output and

hours of both signs. However, as demonstrated by the median target impulse responses

shown above (and by the figures in appendix B), the majority of admissible impulse re-

sponses points towards a negative reaction of these variables, when forced to have a nega-

tive correlation of the responses of output and labor productivity in the short run.

Second, we use an estimated regressor as our variable capital utilization rate, which itself

is not directly observable. Hence, although the measure is carefully constructed by Fernald

(2014), there might still be unaccounted residual variation in true capital utilization that

is not captured in the measured variable. As a consequence, observed labor productivity

behavior could still be misleading and not fully capture movements in the marginal product

of labor.

Finally, it might be that the main identifying restriction we use, namely constant returns

to scale in the aggregate production function, does not hold empirically. In this case, the

negative impulse response correlation between output and utilization-adjusted productivity

need not hold. This would invalidate our central identification assumption. While this is

possible in principle, we note that a large majority of business cycle models assumes the

standard assumption of constant returns to scale. Allowing for increasing returns to scale

requires an altogether rethinking of the fiscal transmission process in such models. The

distinction between these possibilities is arguably an important topic of future research. At

this point, we conclude that the data seem to imply that shocks to government spending

either have negative output consequences, or if they have not, then this can, in our view,

only be explained through the existence of aggregate increasing returns to scale.
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2.a econometric details

The VAR model

We describe the employed econometric model in this section for the sake of completeness

and, mainly, to fix notation. A k-variable structural VAR model for xt is given by:

A0xt = µ + C1t + C2t2 + A1xt−1 + A2xt−2 + · · ·+ Apxt−p + εt, (10)

where xt ∈ R
k, εt ∼ WN(0, Ik), A0, . . . , Ap ∈ R

k×k, µ, C1, C2 ∈ R
k. A0, the so-called

structural matrix, is assumed to be non-singular. In order to define a unique lag length p we

assume Ap 6= 0, in our application p = 4. The corresponding reduced form, obtained from

(34) by pre-multiplication with A−1
0 , is given by:

xt = ν + D1t + D2t2 + B1xt−1 + · · ·+ Bpxt−p + ut, (11)

with Bi = A−1
0 Ai, i = 1, . . . , p, Dj = A−1

0 Cj, j = 1, 2, ν = A−1
0 µ, and A−1

0 εt = ut ∼

WN(0, Σu), with consequently Σu = A−1
0 A−1′

0 .

Denoting with B(z) = Ik − B1z−· · ·− Bpzp, we impose the causality assumption, det(B(z)) 6=

0 ∀ |z| ≤ 1. Under this assumption, the errors ut correspond to the one-step prediction

errors from the Wold decomposition, i.e., we obtain an infinite order moving average repre-

sentation of the form:

xt = ν̃ + D̃1t + D̃2t2 +
∞

∑
j=0

Φjut−j (12)

= ν̃ + D̃1t + D̃2t2 +
∞

∑
j=0

Φj A
−1
0 εt−j (13)

The (r, s)-element of Θj = Φj A
−1
0 describes the change of variable r to a unit increase of

εt,s after j-periods, i.e., at horizon j. In the main text we use the short-hand notation m̃j for

this, with m denoting an element of the vector of variables xt, since we are throughout only

interested in the effects of government spending shocks, i.e., for one particular s only.

Identification schemes

As is well-known, the structural form (10) is not identified, for a detailed discussion see

Hannan and Deistler (1988). The literature provides a large array of approaches to point or

set identification of structural VAR models. In our paper we employ the following ones:

(1) Recursive identification: The structural matrix, A0 is lower (upper) triangular, or,

equivalently, A−1
0 , the structural impact matrix, is lower (upper) triangular.

(2) Sign restrictions: Θ
(r,s)
j is restricted to be either nonnegative or nonpositive for some

combinations of (r, s, j), r, z ∈ { 1, . . . , k }, j ∈ N0.

(3) Zero and sign restrictions: Θ
(r̄,s̄)

j̄
= 0 for some (r̄, s̄, j̄), and some Θ

(r,s)
j are sign re-

stricted as defined in the previous item (2). Note already here that in our paper we

only consider zero-at-impact restrictions, i.e., j̄ = 0.
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The recursive identification scheme yields an exactly identified structural VAR. It is im-

portant to note, however, that sign restrictions and the mixture of zero and sign restrictions,

in general do not yield exactly identified structural forms. The identified set for the impulse

responses is, thus, in general non-singleton for the second and third cases.4

Impulse response functions

The reduced form parameters are estimated by ordinary least squares, resulting in B̂1, . . . , B̂p

and Σ̂u. Thus, an estimate of the reduced form impulse response sequence (Φ̂j)j≥0 follows

immediately. The approach to obtain structural impulse responses differs across cases (1)

to (3). In every case, however, the starting point is the identity Σu = A−1
0 A−1′

0 and the

available estimate Σ̂u.

For recursive identification consider the (unique) Cholesky decomposition of Σ̂u = L̂L̂′,

with L̂ lower triangular (and positive elements along the diagonal), and set Â−1
0 = L̂.

Now, observe that for any unitary matrix Q ∈ R
k×k, with QQ′ = Q′Q = Ik, it holds that

Σ̂u = L̂QQ′ L̂′ = L̂Q L̂′
Q (14)

is another valid decomposition of Σ̂u. Thus, the whole range of structural impulse re-

sponses consistent with the reduced form error variance matrix Σu is given by varying

Q ∈ R
k×k over all unitary matrices (for given Cholesky factor L). This is clearly not feasi-

ble and thus approximate solutions are required. Here we follow the approach of Rubio-

Ramı́rez, Waggoner, and Zha (2010) to generate uniformly distributed Q-matrices:

1. Draw a matrix M with i.i.d. standard normal entries and perform the QR-decomposition

of the matrix M = QR. Doing so, Q is unitary and has the uniform (or Haar) distri-

bution.

2. Calculate the corresponding structural impulse response function {Θ̂
Q
j }j=0,...,J =

{Φ̂j L̂Q}j=0,...,J and verify whether the formulated sign restrictions are fulfilled. If so,

keep
{

Θ̂
Q
j

}
j=0,...,J

, otherwise discard it.

3. Repeat these calculations until the set of retained structural impulse responses con-

tains n = 5000 elements.

From the 5000 elements the median target impulse response function is then calculated as

described below.

It remains to discuss the implementation of the combination of zero and sign restrictions,

where we follow Arias, Rubio-Ramı́rez, and Waggoner (2014). As can be guessed by now,

the solution consists of drawing random unitary matrices that imply that the resultant Θ̂
Q
0

satisfies the required zero-at-impact restrictions in addition to the formulated sign restric-

tions. We describe the approach here only for our specific application, in which TFP is

ordered last in the VAR model where we combine zero and sign restrictions:

4 Note that imposing too many sign restrictions can reduce the set of feasible impulse responses to the empty set.

The same is, a fortiori, true for the combination of zero and sign restrictions.
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1. Find a matrix N1 ∈ R
k×(k−1) with N′

1N1 = Ik−1 such that L̂[k,•]N1 = 0, with L̂[k,•]

denoting the k-th row of L̂.

2. Generate a vector z ∈ R
k with i.i.d. standard normally distributed entries and form

the vector:

q =
1

||[N1 0k×1]z||
[N1 0k×1]z, (15)

i.e., project the vector z on the space spanned by N1 and normalize it to unit length.

3. Find a matrix N2 ∈ R
k×(k−1) with N′

2N2 = Ik−1 such that q′N2 = 0.

4. Draw a matrix M ∈ R
(k−1)×(k−1) with i.i.d. standard normal entries and calculate the

QR decomposition of N2M, i.e.,

N2M = [Q̃1 Q̃2]

[
R1

0

]
, (16)

with Q̃1 ∈ R
k×(k−1).

5. Form the matrix Q+ = [q Q̃1] and calculate the corresponding structural impulse re-

sponse function {Θ̂
Q+

j }j=0,...,J = {Φ̂j L̂Q+}j=0,...,J , with L̂Q+ = L̂Q+, and verify whether

the formulated sign restrictions are fulfilled. If so, keep
{

Θ̂
Q+

j

}
j=0,...,J

, otherwise dis-

card it. Note that by construction, the zero-at-impact restriction on the structural

impulse response of log TFP holds for all draws.

6. Repeat these calculations until the set of retained structural impulse responses con-

tains n = 5000 elements.

In the discussion of results with sign restrictions we focus on the median target (MT)

impulse response functions, compare Fry and Pagan (2011). The MT impulse response

function is the element-wise closest impulse response function—out of the retained 5000

impulse responses—to the median curve, which itself is not an impulse response function

corresponding to any of the structural models. Thus, we consider the set of structural im-

pulse responses Θ̂n = {Θ̂n
j }j=0,...,J for n = 1, . . . , 5000 and denote the (element-wise) median

curve as Θ̂med = {Θ̂j,med}j=0,...,J . The median target impulse response is defined as:

Θ̂MT = argminn=1,...,5000 ∑
r∈R

∑
s∈S

1

V̂r,s
∑
j∈J

(
Θ̂

(r,s)
j,n − Θ̂

(r,s)
j,med

)2
, (17)

with R,S ⊆ {1, . . . , k} and J ⊆ {0, . . . , J}. V̂r,s is a measure of variability of the set of

sign-restricted impulse responses for variable r and shock s. Starting with V̂ar(Θ̂
(r,s)
j,n ) =

1
5000 ∑

5000
n=1(Θ̂

(r,s)
j,n − Θ̂

(r,s)
j,n )2, with Θ̂

(r,s)
j,n = 1

5000 ∑
5000
n=1 Θ̂

(r,s)
j,n , we use two variability measures

V̂r,s:

V̂max
r,s = max

j∈J
V̂ar(Θ̂

(r,s)
j,n ) (18)

V̂
avg
r,s =

1

|J | ∑
j∈J

V̂ar(Θ̂
(r,s)
j,n ), (19)
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with |J | denoting the cardinality of J . In our application the results do not differ markedly

when using either the maximum or the average variation measure. The results in the paper

are based on the average measure V̂
avg
r,s .

Note that the general formulation above, with the index sets R,S and J allows to calcu-

late the distances for any combination of variables, shocks and horizons deemed impor-

tant for the econometric analysis at hand.5 In relation to our application we consider

only on the impulse responses to the government spending shock, i.e., S = {1} and

the restricted impulse responses. Thus, for the three specifications considered, we have

R = {1, 2, 5, 7} (baseline specification), {1, 2, 5, 7, 9} (utilization rate augmented specifica-

tion) or {1, 2, 5, 7, 9, 10} (utilization rate and TFP augmented specification). The horizons

considered are J = {0, 1, 2, 3}, with the results robust to choosing only one or two quarters.

Inference on impulse response functions

The confidence bands for the recursive identification scheme are obtained using the boot-

strap algorithm proposed in Kilian (1998), which is based on a preliminary (simulation

based) bias correction step. The 5000 bootstrap samples are then drawn using bias cor-

rected parameter estimates.

Some more care has to be taken into account when bootstrapping the median target so-

lution. The median target structural impulse response function by construction depends

upon B̂1, . . . , B̂p as well as L̂QMT = L̂QMT, with QMT denoting the rotation matrix corre-

sponding to the minimizer of (17). Thus, resampling data from the reduced form model

has to be combined with the structural decomposition given by L̂QMT , which is done by a

modification of the previous algorithm:

1. As in the standard case, generate a bootstrap sample, x∗1 , . . . , x∗T using the Kilian (1998)

bootstrap, i.e., bias corrected parameter estimates.

2. Estimate the parameters of the VAR model using x∗t , resulting in parameter estimates

B̂∗
1 , . . . , B̂∗

p. Calculate the structural impulse response function using these parameter

estimates and the original L̂QMT .

3. Verify whether the impulse response function from the previous item, {Θ̂
QMT∗
j }j=0,...,J ,

satisfies the formulated sign restrictions. If it does, keep it, otherwise discard it.

4. Repeat the above steps until 1000 impulse responses are retained and calculate point-

wise bootstrap confidence bands as usual from these 1000 impulse responses.

2.b further results

In Sections 3.3–3.4 in the main text we present the median target impulse responses as

summaries or typical representatives of the set of sign-restricted impulse responses. In the

following we augment this information by additionally plotting the element-wise median

curve as well as the element-wise 10-th and 90-th quantile curves. As already mentioned,

5 Clearly, the difference can also be calculated with any other quantile or the mean as target.
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Figure 6: Set of sign-restricted impulse responses to government spending shock identified

through restrictions (i) – (iii).

the median curve, and similarly the quantile curves, do not themselves correspond to struc-

tural models. This is, since for any variable, shock and horizon the median or quantile

may—and in general will—correspond to a different structural model.

The structure of the following plots is the same as that of figures 3 – 5 in the main text.

Figure 6 corresponds to the specification shown in figure 3, figure 7 to the specification

of figure 4 and figure 8 to the specification of figure 5. The figures show that the feasible

set of sign-restricted impulse responses includes elements with both positive and negative

responses of output, hours and labor productivity to a government spending shock. The

figures also show, however, that the main tendency points towards the direction discussed

in the main text and represented by the median target impulse responses. There is only

one small noticeable difference: the median target response of the utilization rate shown in

figure 5 shows a positive albeit not significant value in the first period, whereas the median

curve (shown in figure 8) starts off negatively.
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Figure 7: Set of sign-restricted impulse responses to government spending shock identified

through restrictions (i), (iii) and (iv).
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Figure 8: Set of point- and sign-restricted impulse responses to government spending shock

identified through restrictions (i), (iii), (iv) and (v).





3
M O N E TA RY P O L I C Y S H O C K S A N D T H E E F F E C T S O F T H E

I N F O R M AT I O N S E T

Gábor B. Uhrin and Martin Wagner, with contributions by Uroš

Herman

Abstract. Including more (forward-looking) information in monetary policy SVARs is

generally considered to be a good practice. In this paper we revisit the classical mone-

tary policy SVAR of Bernanke and Mihov (1998) for monthly US data from 1989:01 to

2007:11. We augment the baseline VAR with more information in two ways. First, we

add the federal funds futures series to the specification, second, we estimate a factor-

augmented VAR (FAVAR) similar to Bernanke, Boivin, and Eliasz (2005). We first argue

that the federal funds futures series is a reasonable variable to include in the present

empirical specification. We explicitly test the fundamentalness of the structural shocks,

and establish that they are fundamental even with respect to the variables in the baseline

VAR. We compare the estimated monetary policy shocks to two benchmark monetary

policy shock series, and conclude that information-augmentation does not necessarily

lead to monetary policy shocks more highly correlated with the benchmark measures.

By means of impulse response analysis and counterfactual analysis we establish that

monetary policy shocks do not contribute much to the evolution of other (real) vari-

ables. We also find, however, that information-augmentation can help mitigating the

price puzzle.

3.1 introduction

One of the central questions of the empirical monetary policy literature is how to identify

and estimate exogenous monetary policy shocks. Since Sims (1980), a large empirical lit-

erature has been using structural vector autoregressions (SVARs) to this end. Monetary

policy SVARs, however, are generally prone to the problem of foresight, that may render

the empirically estimated monetary policy shocks not exogenous. If the forward-looking

information incorporating agents’ foresight is missing from the empirical model, then the

conclusions based on the SVAR estimates are unreliable. In particular, missing (forward-

looking) information may imply the non-fundamentalness of the structural innovations.

While foresight problems have been recognized early in the literature (Sims, 1992; Rude-

busch, 1998), there is a recent surge of contributions that suggest ways to test and correct

for non-fundamentalness in empirical models (Chen, Choi, and Escanciano, 2017; Forni and

Gambetti, 2014; Giannone and Reichlin, 2006).

In this paper we revisit the classical monetary policy SVAR model of Bernanke and Mi-

hov (1998) for monthly US data from 1989 to 2007. We explicitly test whether the estimated

monetary policy VAR model is non-fundamental. Then we evaluate the adequateness of

43
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two conceivable answers to problems caused by insufficient information. First, we augment

the baseline specification with a variable that is argued to capture market information on

policy expectations: the federal funds futures. This series is available since 1989. Second,

we estimate a factor augmented vector autoregression (FAVAR), as in Bernanke, Boivin,

and Eliasz (2005). As proponents of FAVAR and dynamic factor models argue, first, the

factors that are estimated from 113 time series are likely to capture and condense infor-

mation that is not necessarily contained in few-variable VARs, and, second, factor models

are generically expected to be fundamental (Anderson and Deistler, 2008; Alessi, Barigozzi,

and Capasso, 2011).

Our second motivation to include forward looking information stems from the following

consideration: the estimated monetary policy shocks will, by construction, be orthogonal to

the expectations contained in these informational variables. Thus, we can a priori expect the

monetary policy shocks to be closer to being “pure”, exogenous monetary policy shocks.

Our empirical results suggest that non-fundamentalness does, in fact, not appear in our

baseline empirical specification. While federal funds futures augmentation and factor aug-

mentation seem a priori sensible, we conclude that the resulting monetary policy shocks

are not necessarily “better” than those obtained from the baseline classical monetary policy

SVAR. In particular, the estimated monetary policy shocks’ correlation with the (extended)

Romer and Romer (2004) measure is lower for the augmented specifications than for the

baseline specification. Impulse response analysis and counterfactual simulations suggest

that empirical conclusions based on the classical monetary policy SVAR are very similar to

those based on the information augmented specifications.

The paper proceeds as follows: In Section 3.2 we motivate the need to address non-fun-

damentalness in the monetary policy modelling context, and we detail possible answers to

the problem. In Section 3.3 we describe the econometric models, structural identifying as-

sumptions, and the idea behind the monetary policy benchmark measures of Kuttner (2001)

and Romer and Romer (2004). Section 3.4 contains our empirical results including testing

for non-fundamentalness, comparing estimated monetary policy shocks to the benchmark

measures, impulse response analysis, and counterfactual simulations. Finally, Section 3.5

concludes.

3.2 information and fundamentalness

Consider the following K-dimensional infinite order moving average (MA(∞)) process

yt =
∞

∑
j=0

Θjεt, t ∈ Z (20)

where yt ∈ R
K, {εt} ∼ WN(0, IK), is a sequence of white noise structural innovations; Θj ∈

R
K×K are the structural impulse response matrices. Throughout this paper we assume

that the relationship between yt and εt given in Equation (20) indeed exists. That is, we

assume that {εt} is a causal function of {yt}, or, in short, εt is yt-causal.1 In a traditional

1 For this notion of causality, as a relation between two processes {εt} and {yt}, see further Brockwell and Davis

(1991, p. 418).
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structural vector autoregressive (SVAR) analysis one is interested in recovering {εt} and

{Θj}. This is typically achieved by fitting a p-order vector autoregression on yt, recovering

the reduced form residuals {ût}, their variance-covariance matrix Σ̂u, and the corresponding

reduced form impulse response matrices {Φ̂j}. The sequence {ε̂t} is then estimated as,

e.g., ε̂t = Â0ût, where the estimate of the structural matrix, Â0, is a rotation of the lower

triangular Cholesky decomposition L̂ of Σ̂u. That is, Â0 = (L̂Q)−1 for some Q such that

Q′Q = QQ′ = I. If the assumptions on A0 correspond to some economic intuition, then the

structural shocks are consistently estimated with this procedure.

For any stochastic process {xt}t∈Z ∈ L2(Ω,F , P) for some given probability space (Ω,F , P),

consider Hx
t := span{xt−k : k ≥ 0}, the closed linear span generated by xt and its past val-

ues. There are four such sets of interest to us. The sets H
y
t and Hε

t , and the sets Hu
t

and Hu(y)

t . Here the series {u
(y)
t } is the Wold innovation series corresponding to a VAR(p)

model imposed on yt.
2 If u

(y)
t is yt-causal, then by construction Hu(y)

t = H
y
t ∀t. Further, the

equality Hε
t = Hu

t ∀t holds because ut is a linear combination of the elements in εt. The

discussion in the preceding paragraph implicitly assumed a more demanding equality, viz.,

Hu(y)

t = Hu
t ∀t. The yt-causal process {εt} is called yt-fundamental if H

y
t = Hε

t for all t.3 That

is, the information contained in yt and its past values corresponds to the information con-

tained in εt and its past values. If Hu(y)

t = Hu
t ∀t holds, then εt is yt-fundamental, and fitting

a VAR recovers the correct structural innovations—at least up to an orthogonal rotation.

Fundamentalness is very closely related to invertibility.4 The process {εt} is an invert-

ible function of the process {yt} if there is a sequence of matrices {Πj} with absolutely

summable components such that5

εt =
∞

∑
j=0

Πjyt−j . (21)

If {εt} is an invertible function of {yt}, then {εt} is yt-fundamental.6 The reverse statement

is generally not true, and a fundamental process need not be invertible. However, this

happens only in borderline cases, c.f., the discussion in Alessi, Barigozzi, and Capasso

(2011). This case is detectable (Tsay, 1993), and it can be argued, that it is empirically rare

(Watson, 1986). In light of this, we treat fundamentalness and invertibility interchangably

2 Note, that the true data generating process may not be a finite order vector autoregression. In this case fitting

a finite order VAR will only yield an approximation, see the discussion in Lütkepohl (2005, Chapter 15).

3 Causality implies H
y
t ⊆ Hε

t . Fundamentalness alone means the reverse: H
y
t ⊇ Hε

t . Both conditions imply the

equality between the two sets.
4 We note here that there is a “tower of Babel” situation with respect to terminology concerning invertibility

and fundamentalness. First, our definition of fundamentalness originates, to our knowledge, in Rozanov (1967,

pp. 56-57). Second, Brockwell and Davis (1991) views fundamentalness as “extended invertibility”, and does

not give weight to explicitly distinguishing between invertibility and fundamentalness. Thus, fundamentalness

as a word does not appear in Brockwell and Davis (1991). Third, the miniphase assumption of Hannan and

Deistler (1988) is equivalent to fundemantalness. Invertibility is, in turn, equivalent to the strict miniphase

assumption. To complicate matters further, the minimum phase of Rosenblatt (2000) is, in fact, invertibility. In

the recent econometrics literature the term “fundamentalness” is what appears most frequently, hence we settle

on this term.
5 See Brockwell and Davis (1991, p. 418).
6 This is an immediate consequence of Theorem 3.1.2 and Proposition 4.4.1 on pages 86 and 127, respectively, in

Brockwell and Davis (1991). The multivariate analogue follows from the respective multivariate statements.
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in this paper. We note also that our empirical results below support the hypothesis of

invertibility, hence, fundamentalness. Thus, the discussion of the borderline case where the

two concepts are not equivalent is not necessary.

Non-fundamentalness can arise for several, related reasons that are equally prevalent in

econometric research. First, it can be the result of an omitted variables problem (Lütkepohl,

2012; Kilian and Lütkepohl, to appear; Sims, 2012), where key variables are missing from

the estimated VAR. Second, the underlying data generating process, motivated by, e.g., an

economic model might analytically imply non-fundamental innovations. A particular ex-

ample of such a model is the growth model with fiscal foresight in Leeper, Walker, and

Yang (2013), where economic agents have (unbiased) expectations about future tax rates at

the time t of their decision making. Since the tax rate change is implemented at time t′ > t,

the agents—having foreseen the policy change—base their decisions between t and t′ already

upon the new tax rate arriving at t′. The recent Handbook of Macroeconomics chapter of

Ramey (2016) devotes a separate section to the problem of foresight, which can imply non-

fundamentalness. There are two sides to this problem. On the one hand, as discussed above,

economic agents might foresee policy actions. On the other hand, the policy makers might

observe more information on the state of the economy than economic actors. In both cases,

the investigated structural shock might include the policy maker’s endogenous response

to expectations about the future of key macroeconomic variables. Besides fiscal foresight,

these problems are all prevalent in macroeconometric research on monetary policy. An

early critique recognizing the issue explicitly is Rudebusch (1998), but already Sims (1980,

p. 7) suggests that expectations regarding policy actions may be crucial to the question of

identification. Furthermore, the motivating examples in the seminal Bernanke, Boivin, and

Eliasz (2005) article proposing the use of factor augmented VARs (FAVARs) seem to implic-

itly refer to the problem of foresight and non-fundamentalness. Ramey (2016, Section 3.3.2)

contains an up-to-date and accessible overview about the problem of foresight in empirical

monetary policy research.

Once we have established that non-fundamentalness might be present theoretically, the

question is if it does indeed appear empirically for the problem at hand. Several con-

tributions on testing non-fundamentalness appeared recently in the literature. Forni and

Gambetti (2014) and Beaudry, Fève, Guay, and Portier (2015) propose extending the VAR

information set with factors extracted from a large dataset and then testing whether the

additional variables contribute significantly to forecasts of the original variables. A critique

of this approach is given by Canova and Sahneh (2016). In our paper we, however, utilize

the non-fundamentalness test of Sahneh (2015) that relies on the result, that if the yt-causal

innovations {εt} are serially independent and non-Gaussian, then they form a martingale

difference sequence (MDS) if and only if they are an invertible function of {yt}.7 That

is, if {εt} is not a martingale difference sequence, then it is not an invertible function of

{yt}. The key insight is, that under the Gaussian case, fundamental and non-fundamental

representations are observationally equivalent. Under non-Gaussianity, however, funda-

mental and non-fundamental representations generally imply different moment structures.

7 This statement can also be found in the similar contribution of Chen, Choi, and Escanciano (2017), who, how-

ever, assume that the innovations are iid. This is more restrictive than the approach of Sahneh (2015). Both

contributions ultimately stem from the results in Rosenblatt (2000, Section 5.4).



3.2 information and fundamentalness 47

As Chen, Choi, and Escanciano (2017) argue, if the residuals are indeed not Gaussian, then

this approach is more fruitful, since the residual-based tests for non-fundamentalness have

power against alternatives that are not contained in the information set spanned by the

larger dataset available to the researcher. The point that the researcher has the sufficient

amount of data available is the implicit assumption made in the approach of, e.g., Forni

and Gambetti (2014).

An exogenous policy shock has to be fundamental with respect to the information con-

tained in the empirical model with variables yt in order to reach sensible conlcusions based

on such a model. For a yt-causal εt non-fundamentalness means that H
y
t ( Hε

t . That is,

the information contained in yt and its past values is less than what εt and its past values

contain. Sims (2012) argues that (non-)fundamentalness is not an “either/or problem” by

comparing, in a Monte Carlo experiment based on a DSGE model, the impulse responses

to non-fundamental shocks with those of the impulse responses to fundamental shocks.

According to his results, the biases stemming from non-fundamentalness may be moder-

ate. The more comprehensive study of Leeper, Walker, and Yang (2013), on the other hand,

discovers more serious distortions in the empirical analysis if non-fundamentalness is not

taken into account. We side with the latter conclusions, adding that we believe that the

underlying data generating process is, in principle, unknowable. Thus, quantifying such

a “bias” or “distortion” emprically is, at best, a challenging problem—if not impossible.

Therefore, in our view it is better to remain on the “safe side” and ask for the structural

shocks to be fundamental with respect to the variables contained in the empirical model.

In order to overcome the problem of non-fundamentalness, Giannone and Reichlin (2006)

propose to simply extend the information set of the (S)VAR.8 This can be achieved either

by simply augmenting the VAR with additional variables that contribute significantly to

the forecasting ability of the VAR system, or by including principal components obtained

from a large dataset. The former approach has been taken by, e.g., Ramey (2011) in the

context of fiscal policy. In the context of monetary policy, the latter approach also resonates

in the motivation of Bernanke, Boivin, and Eliasz (2005), who propose factor augmented

vector autoregressions as useful empirical tools for monetary policy. The factor-augmented

approach is theoretically strengthened by the finding that dynamic factor models are gener-

ically fundamental (Alessi, Barigozzi, and Capasso, 2011; Forni, Giannone, Lippi, and Re-

ichlin, 2009). Or, put differently, a tall transfer function—typical of dynamic factor models—

implies a pure AR representation, thus, by construction, fundamentalness (Anderson and

8 Other authors consider turning the non-fundamental representation into a fundamental one by using so-called

Blaschke matrices. As Lütkepohl (2012) and Kilian and Lütkepohl (to appear) convincingly argue, however, it is

more fruitful to view the non-fundamentalness problem as an omitted variable problem and try to ameliorate

it as such. This is the avenue that we pursue in this paper.
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Deistler, 2008).9 That is, in a factor-augmented context, non-fundamentalness is an unlikely

problem.10

In this paper we explore the implications of both directions to correct for the problem of

non-fundamentalness. First, we augment the VAR specification with an arguably forward-

looking variable that contains (market) expectations regarding policy, the federal funds

futures. As it turns out, the federal funds futures Granger-causes two out of six variables

in our VAR (industrial production and the federal funds rate) at a significance level of 0.01.

We also test, whether the federal funds rate Granger causes the rest of the variables in

the VAR jointly, employing the multivariate out-of-sample Granger causality test of Gelper

and Croux (2007). Further, we contrast the results obtained from this augmentation to the

benchmark non-augmented model and a FAVAR model similar to Bernanke, Boivin, and

Eliasz (2005).

3.3 models of monetary policy and identifying assumptions

The empirical monetary policy literature that utilizes SVARs has employed a variety of

specifications and identifying assumptions, see the comprehensive surveys of Christiano,

Eichenbaum, and Evans (1999) and Ramey (2016). In the present paper we use the specifi-

cation of the classical paper of Bernanke and Mihov (1998), since their aim in the structural

analysis is to estimate a measure of the stance of monetary policy. That is, they explicitly

concentrate on the monetary policy shock series in their analysis. Our approach is closest

in spirit to this classical approach. Thus, we consider a standard monetary policy VAR of

order p with the following variables: output, prices, commodity prices, and a set of mone-

tary policy instruments: the federal funds rate (ffr), non-borrowed reserves (nbr) and total

reserves (tr). The identification schemes of Bernanke and Mihov (1998), in short BM, are

based on two ideas. First, the reduced form innovations corresponding to the monetary

policy instruments (in short, policy block) are jointly orthogonal to the reduced form in-

novations corresponding to the non-policy variables. Second, the structural identification

within the policy block is based on the following set of equations:

utr,t = −αuffr,t + εdt (22)

ubr,t = βuffr,t + εbt (23)

unbr,t = φdεdt + φbεbt + εst. (24)

9 The papers Anderson and Deistler (2008, 2009) prove this statement precisely. The starting point of these papers

is an n × q rational transfer function matrix W(z) with minimal realization { A, B, C, D } of dimension m. The

matrices A, B, C, D are similar to those in Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007). If

B and C have q columns and n rows, respectively, where n > q, and if the entries of A, B, C, D assume generic

values, then W(z) has no finite or infinite zeros (Anderson and Deistler, 2008, Proposition 1, p. 285). The

situation described in the previous statement corresponds to that encountered in dynamic factor models, viz.,

strictly more outputs than inputs. The zero-free property of W(z) implies stability and (strict) miniphase as in

Hannan and Deistler (1988). Stability is equivalent to our notion of causality. Then, as discussed in a previous

footnote, these conditions together imply fundamentalness. Note, that a precise treatment of the terms used in

the present footnote can be found in Hannan and Deistler (1988).
10 On the precise connection between dynamic factor models and FAVARs see Stock and Watson (2016).
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where ε
pol
t ≡ (εdt, εbt, εst)′ are the structural innovations, and u

pol
t ≡ (utr,t, unbr,t, uffr,t)

′ are

the reduced form innovations.11 Of particular interest to us is {εst}, the monetary policy

shock series.

We can write the above system of equations in a more compact way as:

A
pol
0 (α, β, φd, φb)u

pol
t = ε

pol
t , (25)

where A
pol
0 is a 3-by-3 matrix, whose values depend on the parameters α, β, φd, φb.12 Based

on economic arguments, certain parametric assumptions can be put on A
pol
0 depending on

the economic model being considered. The structural models put forth in Bernanke and

Mihov (1998) are contained in Table 1.

Table 1: Identifying restrictions in Bernanke and Mihov (1998).

Structural model

BM-JI BM-BR BM-FFR BM-NBR BM-STR

α 0 × × × 0

β × × × × ×

φd × 1 1 0 ×

φb × α/β −1 0 0

Notes: The symbol × means that the parameter is left unre-

stricted. The mnemonics stand for: JI – just identified, BR – bor-

rowed reserves, FFR – federal funds rate, NBR – non-borrowed

reserves, STR – Strongin, as in Strongin (1995).

In addition to a standard monetary policy SVAR, we also estimate monetary policy

shocks by means of a factor augmented VAR (FAVAR) model. Similar to Bernanke, Boivin,

and Eliasz (2005), the model is described by the following equations:

Xt = Λ f Ft + ΛyYt + et (26)

Φ(L)

[
Ft

Yt

]
= ν + ut, (27)

Ft ∈ R
r, Yt ∈ R

K, Xt ∈ R
M, and Φ(L) ≡ I − Φ1L − · · · − ΦpLp, an autoregressive lag

polynomial of order p, and et ∼ WN(0, Σe) and vt ∼ WN(0, Σu) are assumed to be inde-

pendent of each other for all t.13 We refer to Equation (26) as the observation equation, and

to Equation (27) as the state equation. We estimate the unobservable factors Ft as principal

components from the standardized dataset Xt that excludes the observable factors Yt.

The identification scheme for recovering the structural innovations εt from the reduced

form innovations ut involves two considerations. First, the identification scheme is recur-

sive, with the monetary policy instrument ordered last. Second, notice that the monetary

policy instrument might be contained in the space spanned by the estimated factors F̂t. If

11 Note, that nbr is the difference between tr and br.

12 A
pol
0 is the lower-right 3-by-3 submatrix of the structural matrix A0.

13 Note, that the autoregressive lag order p need not be the same for the BM models and the FAVAR.
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this is the case, the recursive identification assumption is invalid, since then the identified

monetary policy shock is not guaranteed to be orthogonal to (the space spanned by) the

unobserved factors. To overcome this problem, Bernanke, Boivin, and Eliasz (2005) uses

transformed factors F̃t in order to remove this dependence from the space spanned by F̂t.

Therefore, in effect, instead of (27), we estimate the VAR:14

Φ̃(L)

[
F̃t

Yt

]
= ν̃ + ũt, (28)

where F̃t ∈ R
r are linear transformations of F̂t that are, based on economic grounds, as-

sumed to be orthogonal to Yt.
15After estimating ˆ̃ut as the ordinary least squares residuals

from (28), a Cholesky decomposition of Σ̂u yields the structural impact matrix and the struc-

tural innovations ε̂t = Â0 ˆ̃ut. The monetary policy shock is the last element in εt, and, as

such it is also last in the recursive order imposed by a Cholesky decomposition. We assume

that the VAR in (28) is stationary and causal. Then the reduced form impulse responses

for the variables in (28) are calculated recursively as coefficients of the moving average

representation of (F̃t, Yt)′: [
F̃t

Yt

]
=

∞

∑
j=0

Ψjut−j. (29)

One advantage of the factor augmentation is that we can calculate impulse responses to

shocks ũt of variables in Xt. This is achieved by estimating the factor loadings Λ = (Λ f , Λy)

from (26) by OLS and calculating the impulse response coefficients as Λ̂Ψ̂j.

3.3.1 Monetary policy shock benchmark measures

A monetary policy shock is an unexpected, exogenous innovation to the equation guiding

monetary policy, e.g., a Taylor-type rule. There are two avenues in the literature that aim to

construct monetary policy shock measures not assuming a VAR system. First, the narrative-

based monetary policy shock series of Romer and Romer (2004) identifies changes in the

federal funds rate around the meetings of the Federal Open Market Committee (FOMC),

and exogenizes these with respect to the forecasts about the real economy available to the

FOMC directly prior to the meeting. In particular, the monetary policy shock series are

constructed as the estimated residuals from the following regression (Romer and Romer,

2004, Eq. 1, p. 1061):

∆ f fm = α + β f f bm +
2

∑
i=−1

γi∆̃ymi+

+
2

∑
i=−1

λi(∆̃ymi − ∆̃ym−1,i) +
2

∑
i=−1

φiπ̃mi +
2

∑
i=−1

θi(π̃mi − π̃m−1,i) + ρũm0 + νm, (30)

14 As usual in the FAVAR literature, we assume in this second step that the variables F̃t are given.
15 This orthogonalization is achieved by obtaining F̃t in a way such that it is contained in the space spanned

by principal components extracted from so-called “slow-moving” variables, span{F̂
(s)
t }. These variables are

assumed to not react to the policy variables contemporaneously. This assumption is justified economically

in Bernanke, Boivin, and Eliasz (2005), and is almost always employed in the FAVAR literature. Note, that

span{F̂
(s)
t } ⊆ span{F̂t}.
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where ∆ f fm is the change in the intended federal funds rate at the FOMC meeting m, f f bm

is the intended federal funds rate before any changes decided on meeting m, and ∆̃ymi, π̃mi,

ũm0 are the forecasts of real output growth, inflation and unemployment, respectively, for

quarter i at the time of meeting m.16 Arguably, this method results in a monetary policy

shock series {ν̂m} that is exogenous to the FOMC’s information about future developments

in the economy. As there can be several meetings, or no meetings at all in any given month,

{ν̂m} is converted to the monthly monetary policy shock series {ε̂rr
t } by averaging over the

respective month. In the following we refer to this series as the RR measure.

The second type of methodology, exemplified by Kuttner (2001), investigates the changes

in the spot price of the federal funds futures in a window around the federal funds rate

announcement. The federal funds futures is a contract on the average federal funds rate’s

level at the time of the contract’s expiry. The argument here is that any endogenous change

in the federal funds rate should be incorporated in the market price of the federal funds

futures. Any change that is above, or below this expected change is interpreted as an

unexpected, exogenous change in the federal funds rate. More precisely, following the

notation of Thornton (2014, Equations (3)–(6)), the expectation of the average of the effective

funds rate through the current month on day d of a month with s days is

f f f 0
d =

1

s

{
(d − 1)

( d−1

∑
i=1

f fi

)
+ (s − d + 1)Et

[ s

∑
i=d

f fi

] }
, (31)

where f f f 0
d is the current-month federal funds futures rate, and f fd is the effective federal

funds rate. The monetary policy surprise ∆ f f u
d can then be calculated as

∆ f f u
d =

s

s − d
( f f f 0

d − f f f 0
d−1). (32)

The intuition is the following: if the market expects the federal funds rate to change on day

d, but not later during the month, then ∆ f f u
d would be zero. If it is not, then the change

is unexpected from the market’s perspective. The measure can be calculated for any day,

except for the first and last day of the month. Taking this into account, Kuttner (2001)

proposes to calculate

∆ f f u
d = ( f f f 1

d − f f f 1
d−1), (33)

for the last three days of the month, where f f f 1
d is the federal funds futures rate of the

futures contract for the next month (one-month-ahead rate). For the first day of the month,

f f f 0
d−1 in (32) is replaced with the one-month-ahead rate on the last day of the previous

month. Calculating ∆ f f u
d for all days on which a federal funds rate announcement took

place, and averaging it within months yields a monthly monetary policy surprise measure

{ε̂u
t }. In the following we use the terms Kuttner measure and surprise measure to refer to

this series.

For any monetary policy SVAR, we can estimate a monetary policy shock series as the

identified structural form innovations ε̂
mp
t that is an element of ε̂t from section 3.2. The

16 As an example: Assume that the meeting takes place on the 17th of May, 2017. This is the 287-th meeting in

the dataset. Then for this meeting m = 287. The index i = 0 denotes the current (2nd) quarter forecast from

the Greenbook forecast prepared for meeting m. Similarly, i = −1 is the forecast for the first quarter, etc.
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monthly measure ε̂rr
t represents monetary policy shocks that are exogenous with respect to

the information of the central bank. On the other hand, {ε̂u
t } is a measure that is derived

from the market’s bet on the federal funds futures. Hence, it arguably contains the eco-

nomic actors best information on the (future) stance of monetary policy.17 In light of the

discussion in section 3.2, we postulate that a monetary policy shock estimated from a SVAR

should, ideally, be similar to both of the benchmark monetary policy shock series above.

In the context of this paper we describe similarity by the empirical correlation between the

benchmark measure and the estimated monetary policy shock. Thus, in the following we

evaluate the various monetary policy models normatively by examining how strongly the

implied monetary policy shock series correlate to the narrative-, or market-based bench-

mark monetary policy shock measures.

3.4 empirical results

All SVAR and FAVAR models are estimated with monthly US data from January 1989 to

November 2007. Our data source is an updated Stock–Watson dataset based on series from

the FRED database of the St. Louis Fed. During the initial drafts of this manuscript the

FRED-MD dataset (McCracken and Ng, 2016) was not yet available to us, but our data set

is almost identical to the FRED-MD. The federal funds futures series are obtained from

Bloomberg. The starting date, January 1989, depends on the fact that January 2, 1989 was

the first (week)day of trading federal funds futures for a full month. We end the sample in

November 2007 for two reasons: First, after the 2008 crisis the practice of monetary policy

has changed notably compared to that of the previous decades, thus we do not believe that

a model estimated on pre-crisis data would be valid for post-crisis monetary policy analysis.

Second, including December 2007 in the data yields reduced form parameter estimates in

the VAR model with a maximal eigenvalue greater than 1 for the companion form matrix,

i.e., an explosive solution. Our sample size is, thus, T = 227.

The BM models are estimated with the following variable ordering: industrial produc-

tion (IP), consumer price index (CPI), commodity price index (COMM), total reserves (TR),

non-borrowed reserves (NBR), and federal funds rate (FFR).18 The FFR, TR, and NBR are

considered in levels; the IP, CPI, and COMM are in logarithms. In the subsequent analysis,

we also augment the VAR specification with the federal funds futures (FUT) variable, con-

sidered in levels, and ordered first in the VAR. Note, that the ordering of FUT within the

non-policy block (see section 3.3) is not consequential to the identification. We use p = 12

lags in the VAR specification due to the fact that we have monthly data available, and this

is consistent with the empirical monetary policy literature using monthly US data (cf., Uh-

lig (2005); Bernanke and Mihov (1998)). We include a constant in our specification. We

estimate the reduced form VAR parameters and innovations by ordinary least squares. The

structural parameters are estimated by generalized method of moments, as described in de-

17 As Piazzesi and Swanson (2008) point out, the Kuttner measure is also robust to time-varying risk premia that

could potentially invalidate the expectations hypothesis for the federal funds futures series. This is due to the

short-window transformation (∆) in the Kuttner measure.
18 Bernanke and Mihov (1998) uses an approximated monthly GDP and GDP deflator series instead of IP and CPI,

respectively. We have also employed this specification, and the results did not change markedly. We decided

to retain the IP and CPI variables since they are available to us as monthly data by default.
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tail in Bernanke and Mihov (1998). We obtain confidence bands for the impulse responses

using the bias-corrected bootstrap of Kilian (1998).

For estimating the FAVAR model one has to decide on the set of observable factors, Yt.

As a baseline specification, following Bernanke, Boivin, and Eliasz (2005), we include only

the federal funds rate in Yt. Similar to Bernanke, Boivin, and Eliasz (2005), two other

specifications for Yt are as follows. First, non-borrowed reserves, total reserves, and federal

funds rate. Second, industrial production, consumer price index, and federal funds rate.

Note, that in all specifications, the federal funds rate is ordered last in Yt. We estimate the

unobserved factors in the observation equation (Eq. (26)) as principal components from Xt

not containing the observable factors. We extract the first r = 3 principal components. The

lag order for the state equation (Eq. (27)) is p = 13, in accordance with Bernanke, Boivin,

and Eliasz (2005). We estimate the state equation by ordinary least squares, including

a constant. The confidence bands for the impulse responses are obtained following the

procedure in Bernanke, Boivin, and Eliasz (2005). It is ultimately based on the Kilian (1998)

bootstrap.

In order to estimate the principal components, a stationary panel Xt is necessary. Thus,

we apply the stationarity corrections reported in Bernanke, Boivin, and Eliasz (2005) to the

113 macroeconomic time series in our dataset.19 In particular, IP, CPI, TR and NBR are in

differenced logarithms in the panel Xt, whereas the FFR is in levels. The fact, that the vari-

ables in the BM specifications are transformed differently than in the FAVAR specifications

might raise the suspicion, that the estimation results are not directly comparable. We note

the following points regarding this issue. First, the monetary policy shock is ultimately an

innovation to the FFR equation in either the BM-VAR model, or in the state equation of

the FAVAR. The FFR is in levels, the economic model described by Equations (22) – (24) is

specified in levels, and the policy block variables in the BM-VAR are, accordingly, in levels.

Thus, the monetary policy shock series is an innovation series “in levels”. Second, there

is no loss of information through the stationarity transformations in Xt, as there are also

several variables that are left untransformed. Third, the shocks estimated in the FAVAR

specification and in the BM specifications are monetary policy shock candidates in their

own right. Our focus in this paper is the information content of the “vehicle” used to es-

timate these monetary policy shocks. In light of these points, we can see that there is no

impediment to comparing the monetary policy shocks from the FAVAR specification with

those obtained from the BM specifications.20

3.4.1 Additional information and fundamentalness

The federal funds futures arguably contains forward-looking market information about

monetary policy actions, and federal funds futures outperform several other variables in

predicting changes in the federal funds rate up until six months in the future (Gürkaynak,

19 We also conduct stationarity tests and establish that the transformations indeed result in stationary variables.
20 As a robustness check, we have also estimated the BM models with the same transformations as used for the

FAVAR models. Since the statistical results and conclusions in the following sections did not change markedly,

we decided to remain within the spirit of Bernanke and Mihov (1998).
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Sack, and Swanson, 2007).21 Thus, a priori, it is a useful variable to include in the empirical

specification for two reasons. First, it can correct for possible non-fundamentalness in the

empirical model. Second, in any case, including the federal funds futures renders the

estimated monetary policy shock orthogonal to the information that is contained in this

variable. Thus, we can a priori expect our monetary policy shock estimates to be closer to

the “pure”, unexpected monetary policy shocks.

Following the recommendations of Giannone and Reichlin (2006) and Forni and Gam-

betti (2014), we test empirically the following hypotheses. First, whether the federal funds

futures Granger-causes any of the variables in the non-augmented VAR. Second, whether

the federal funds futures has forecasting power for the non-augmented VAR as a whole,

controlling for past information in the non-augmented VAR (multivariate Granger causal-

ity). The former, textbook Granger causality test (see, e.g., Lütkepohl, 2005, pp. 44–45)

rejects the null hypothesis that the futures series does not Granger cause the federal funds

rate and the industrial production at 1% significance level. For the rest of the variables the

causality test does not reject the null hypothesis of no Granger causality at 1% significance

level. The lag length for the test statistic was selected based on information criteria in each

of the preceding cases. For testing multivariate Granger causality, we implemented the

multivariate out-of-sample Granger causality test of Gelper and Croux (2007).22 Based on

5000 bootstrap replications, the test’s p-value is approximately zero for lag orders smaller

than or equal to the lag order in the BM VAR specification, i.e., 1, . . . , 12. This indicates

the rejection of the null hypothesis of no Granger causality: the federal funds futures can

significantly contribute to joint forecasts of the variables in the baseline VAR. Both of these

results empirically support our claim that the federal funds futures can be a useful source

of information mitigating the problem of non-fundamentalness—should the problem be

present.

As discussed in the previous section, non-fundamentalness can only be detected from

the error terms ut if their joint distribution is not Gaussian, see also Chen, Choi, and Es-

canciano (2017). We apply the Lomnicki–Jarque–Bera (LJB, Lütkepohl, 2005, p. 175) test for

multivariate normality on the reduced form residuals of the baseline, and the fed funds

futures augmented specification, respectively. The p-value is numerically zero in both cases

and, thus, the null hypothesis of joint normality is rejected at all significance levels. This

result is robust to all reasonable lag length specifications.

Besides non-Gaussianity, we have to test for serial independence of the reduced form

innovations ut in order to apply the invertibility test of Sahneh (2015). In Table 2 we re-

port the p-values of the multivariate serial independece test of Kojadinovic and Yan (2011),

implemented in the R-package copula.23 The null hypothesis is serial independence, and

there are two types of test statistics. CvM is a copula-based Cramér–von Mises-type test

statistic, similar to Genest and Rémillard (2004), and Möbius (M) is based on the Möbius de-

composition thereof. The maximal lag order l is specified so that the potential dependence

21 Gürkaynak, Sack, and Swanson (2007) contrast the federal funds futures’ performance in measuring monetary

policy expectations with term federal funds loans, term eurodollar deposits, eurodollar futures, treasury bills,

and commercial paper.
22 There are three test statistics suggested in Gelper and Croux (2007). Based on the paper’s recommendation, we

implement the test statistic termed ‘Reg’, defined in the first display on page 3322 of the paper.
23 We use version 0.999-16 of the copula package, and our R version is 3.2.4 Revised (“Very Secure Dishes”).
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Table 2: Tests for serial independence of the reduced form innovations.

p-value

Maximal lag VAR specification CvM M–Fisher M–Tippett

2 With futures 0.9126 0.8806 0.7827

Without futures 0.7298 0.6109 0.5649

6 With futures 0.7300 0.4481 0.2652

Without futures 0.4271 0.3881 0.2173

12 With futures 0.1264 0.7458 0.8297

Without futures 0.1024 0.5639 0.6778

Notes: p-values of the tests of the null hypothesis of serial independence for

multivariate time series of Kojadinovic and Yan (2011). Based on 1000 bootstrap

replications. CvM is the test statistic in Equation (6), on p. 352, ibid. The statistic

behind the M(öbius) columns is MA,n on p. 355, ibid. The Fisher and Tippett

methods for obtaining p-values for M are detailed on p. 357, ibid. Maximal lag

lengths are the assumed embedding dimensions, see p. 348, ibid.

within the l-blocks (ut, . . . , ut+l) is taken into account. There are 2l−1 − 1 p-values obtained

with the M method, and the authors propose to combine them in two ways: according to

Fisher (1932) and according to Tippett (1931). We report the p-values obtained from both

methods. We specify l = 1, . . . , 12, and report the results for l ∈ { 2, 6, 12 }.24 The p-values

are obtained from 1000 bootstrap replications, and the bootstrap procedure has been shown

to be consistent in Kojadinovic and Yan (2011). The results imply that we cannot reject the

null hypothesis of serial independence at reasonable significance levels.

Table 3: Invertibility test for the reduced form monetary policy VAR model.

Baseline VAR Futures augmented VAR

h̄ Parzen Daniell Quadratic Parzen Daniell Quadratic

2 0.7593 0.7337 0.7315 0.6269 0.5586 0.5910

5 0.8198 0.7977 0.7956 0.6793 0.6741 0.6707

10 0.8625 0.8385 0.8408 0.6920 0.7003 0.6940

Notes: p-values of Sahneh’s (2015) test for the null hypothesis of invertibility.

There are three kernels (Parzen, Daniell, and Quadratic), and h̄ are the initial

bandwidths needed for the computation of the test statistic.

In light of these test results, table 3 contains the p-values of Sahneh’s (2015) test for the

null hypothesis of invertibility. The test statistic is based on the generalized spectral tests

in Hong and Lee (2005). The computation of the test requires that one specifies a kernel

and a bandwidth. For the calculation of a data-driven bandwidth it is necessary that we

specify an initial bandwidth. We report our results for the Parzen, Daniell, and quadratic

kernels and several initial bandwidths. The results show that the null hypothesis of ut

24 Other specifications of l do not change the statistical conclusions. Estimation results are available upon request.
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being a martingale difference sequence cannot be rejected for either model specifications

for significance levels smaller than 55.86%. As a consequence, the investigated monetary

policy VAR specifications, in fact, imply shocks that are fundamental regardless of whether

we include forward-looking information or not.

One motivation for the inclusion of the federal funds futures in the VAR by its forward-

looking nature, capturing market expectations. However, the results from this section imply

that including more (forward-looking) information in the VAR analysis is not necessary

from the fundamentalness point of view. Our second motivation is that by the inclusion of

a more forward-looking variable, we can get “better” monetary policy shock estimates that

are closer to being pure, exogenous monetary policy shock. Thus, the question whether

we gain any additional empirical insight through federal funds futures augmentation in the

empirical analysis remains. We explore this issue in the following sections.

It is important to note, that the test of non-fundamentalness is applied to the reduced form

residuals; the structural identification is, at this step, irrelevant. Thus, according to our

results, any VAR model fitted to the same data with the same specifications is fundamental,

regardless of the structural identification scheme. Since our data and specifications are

standard in the monetary policy literature, we have reason to believe that our specific result

about fundamentalness might carry over to several other contributions in the literature.

That is, we have reason to believe that the literature on monetary policy SVARs by and

large investigates shocks that are indeed fundamental.

3.4.2 Investigating the monetary policy shocks

While SVAR analysis usually focuses on impulse response analysis and forecast error vari-

ance decompositions, it is also important to investigate the identified monetary policy shock

series {ε̂
mp
t } alone. A correctly estimated and identified shock series should, ideally, resem-

ble established empirical facts about monetary policy shocks. This principle could aid both

identification and analysis, and could provide a useful “backtesting” of the estimation of

the monetary policy shock series.25

In the following we report the empirical correlations between the identified monetary

policy shocks from our various estimated structural models and, first, the monetary policy

surprise measure proposed by Kuttner (2001), updated through 2007 by Uroš Herman for

the purposes of the present project, second, the monetary policy shock series of Romer

and Romer (2004), updated through December 2007 by Johannes Wieland for the handbook

chapter of Ramey (2016). We argued earlier, that a correctly specified monetary policy shock

should be highly correlated with both of these series: the market data based monetary

policy surprise series, and the narrative-based monetary policy shock series.

In Table 4 we display the pair-wise empirical correlations between the identified monetary

policy shock series and the Kuttner or RR benchmark measure for each respective BM

structural model. We can conclude the following insights. First, the structural model that

yields the highest correlation with the benchmark shocks is the BM-FFR model. The rest

of the models notably underperform the BM-FFR model in terms of correlations. This

25 On how focusing on shocks per se can aid identification, see the recent contributions by Ludvigson, Ma, and

Ng (2017), Rubio-Ramı́rez and Antolı́n-Dı́az (2016), and Uhrin and Herwartz (2016).
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Table 4: Correlations between benchmark measures and identified monetary policy shocks:

BM specifications.

Structural model

Benchmark VAR specification BM-JI BM-BR BM-FFR BM-NBR BM-STR

Kuttner With futures 0.1411 0.1475 0.4529 -0.1127 0.0937

Without futures 0.1232 0.1396 0.4119 -0.1183 0.0247

RR With futures 0.1218 0.0482 0.2212 0.0247 0.0890

Without futures 0.1205 0.0377 0.2974 0.0190 0.0746

finding is in line with the findings of Bernanke and Mihov (1998), who conclude that the

relevant monetary policy instrument (structural model) is indeed the federal funds rate

(BM-FFR). Second, augmenting the VAR with the federal funds futures typically yields

monetary policy shocks that are better correlated with the benchmark measures. A notable,

and puzzling exception is the FFR model, where (a) the futures augmentation increases

the correlation with the Kuttner measure, but (b) the futures augmentation decreases the

correlation with the RR monetary policy shock measure.

Let us take a closer look at these two points. Finding (a) need not be surprising. As we

have seen earlier, the Kuttner measure {ε̂u
t } is calculated directly from the federal funds fu-

tures. If the correct structural model describing monetary policy is the BM-FFR model, then

augmenting a VAR with federal funds futures should, at least intuitively, imply monetary

policy shocks closer to the surprise benchmark measure. Finding (b) implies a more con-

vincing point. First, the best performing structural model seems to be the BM-FFR model.

Thus, even if in the other models the futures augmentation yields improvements, we can

argue that these models do not describe monetary policy adequately. Second, for the BM-

FFR model the futures augmentation decreases the correlation between the RR benchmark

measure and the identified monetary policy shock. The RR measure, in contrast to the

Kuttner measure, is not a direct derivative of the futures series. Thus, the result based on

the RR series seems normatively more compelling. Since we have established earlier that

the shocks obtained from the baseline model are fundamental, we conclude, based on the

points described above, that extending the VAR information set with a forward-looking

variable is not necessarily beneficial.

Table 5: Correlations between benchmark measures and identified monetary policy shocks:

BBE specifications.

Benchmark

FAVAR observed factor Kuttner RR

FFR 0.3822 0.2717

NBR, TR, FFR 0.3179 0.2243

IP, CPI, FFR -0.0394 0.0673
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Further support towards this conclusion can be found in Table 5. In this table we report

the pair-wise empirical correlations between the identified monetary policy shock series

and the Kuttner or RR measure for each specification of observable factors in Equation (26).

The FAVAR specification that yields the highest correlation with the benchmark shocks is

the one where the observable factor is solely the federal funds rate. However, the high-

est correlation among the FAVAR specifications, 0.3822 (or 0.2717), is notably lower than

the highest correlation from the BM models even without additional information: 0.4119 (or

0.2974). That is, the identified monetary policy shocks from BBE underperform the identi-

fied monetary policy shocks for the simpler VAR models of Bernanke and Mihov (1998) in

terms of correlations with benchmark measures. It is, on the other hand, particularly sur-

prising that the futures augmented BM-FFR model performs worse than the FAVAR-FFR

model compared to the RR benchmark.

Similar, or higher (> 0.39) correlations with the original Romer and Romer (2004) series,

running from 1969 to 1996, have been reported in Coibion (2012) and Uhrin and Herwartz

(2016) for monetary policy VAR specifications similar to the VAR in the present paper. We

note that in these papers the structural assumptions and sample periods are distinct from

ours. Nevertheless, there seems to be weak, but growing evidence for the observation that

with a simple monetary policy SVAR model one can indeed recover shocks that are well

correlated with existing benchmark measures.

There is one last insight that we can conclude from correlation analysis between distinct

monetary policy shocks. A FAVAR arguably contains more information than a smaller di-

mensional VAR. Further, the federal funds futures—being spot rates on a futures market—

arguably contains the market’s information on macroeconomic developments. Thus, a pri-

ori one might expect that augmenting the BM VAR models with the federal funds futures

would yield monetary policy shocks more similar to the monetary policy shocks from the

FAVAR model. However, the opposite can be true. Table 6 reports the 30 pair-wise corre-

lations between the monetary policy shock obtained from a FAVAR specification and the

monetary policy shock obtained from the BM VAR specification.26 As the table shows, in

our benchmark BM specification (BM-FFR) the federal funds futures augmentation yields

monetary policy shocks that are less correlated with the monetary policy shocks obtained

from any of the FAVAR models. The same is true for the BM-NBR model, whereas in the

other models the futures augmentation yield shocks that are correlated more strongly with

the FAVAR monetary policy shocks. All of the latter models, however, imply correlations

that are notably weaker than for the BM-FFR case.

3.4.3 Structural impulse response analysis

The innovations obtained from the baseline monetary policy SVAR model are fundamental,

and so are the shocks obtained from the same VAR augmented with federal funds futures.

Thus, by a structural analysis of the SVAR estimates we can safely draw conclusions about

the underlying monetary policy shocks. In the previous section we argued that the most

adequate structural model describing monetary policy is the BM-FFR model. Hence, in the

26 There are 30 pair-wise correlations, since we have 2 × 5 BM VAR models and 3 FAVAR specifications.
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Table 6: Correlations between identified monetary policy shocks from BM and FAVAR

specifications.

Structural model

FAVAR specification VAR specification BM-JI BM-BR BM-FFR BM-NBR BM-STR

FFR With futures 0.0959 0.1234 0.6500 -0.1518 0.0235

Without futures 0.0608 0.0581 0.7574 -0.1190 -0.0828

NBR, TR, FFR With futures 0.1659 0.0833 0.6446 -0.0351 0.0799

Without futures 0.1234 -0.0096 0.7547 0.0184 0.0119

IP, CPI, FFR With futures 0.0196 -0.0124 0.1026 0.0200 0.0021

Without futures -0.0196 -0.0573 0.1029 0.0392 -0.0226

case of the BM models, we report the structural impulse responses for the BM-FFR model

only.27

Figure 9 shows the VAR impulse responses to a 0.25 basis point increase in the federal

funds rate. The monetary policy shock does not have a contractionary effect on output for

the first several periods. In fact, the 95% confidence bands include zero for all considered

horizons. This result is in contrast with the original results of Bernanke and Mihov (1998),

who report a clear contractionary effect. Uhlig (2005), on the other hand, reports a non-

contractionary and non-significant effect of monetary policy shocks. Recent evidence on

post-1990 samples, however reports results similar to ours, cf., Ramey (2016, Figure 3.3).

The impulse responses show an emergence of a mild price puzzle: the response of prices to

a positive monetary policy shock is clearly positive for the first several periods. This trend,

however gets reversed quickly.

The futures augmented VAR (Figure 10) provides a clearer picture in two respects. First,

the price puzzle seems to be completely eliminated. Second, the output response starts out

mildly positively, and then turns negative. This shape is similar to the shapes found in

the most recent empirical monetary policy literature, see, in particular, Gertler and Karadi

(2015), Ramey (2016), and Uhrin and Herwartz (2016). The futures series rises clearly in

response to a monetary policy shock, and then comoves with the response of the federal

funds rate. Even though the price puzzle does not appear in the (consumer) prices, the

commodity prices markedly increase. This is in contrast with the baseline, non-augmented

VAR, where the commodity price response to a positive monetary policy shock does not

significantly deviate from zero.

Figure 11 displays the impulse responses obtained from the FAVAR-FFR specification. We

report the impulse responses of only those variables that are contained in the baseline BM

specification. With the exception of the federal funds rate, the variables are in logarithms

and first differences, and transforming back to logged levels (by a cumulative sum) achieves

smooth impulse responses. The behavior of the federal funds rate response is similar to the

BM specifications in the first several periods. Later, however, the impulse response steadily

declines towards zero. The responses of output and prices are essentially zero initially. The

27 Results on the other model variants are available upon request.
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Figure 9: Impulse responses and bootstrap confidence bands for the baseline VAR specifi-

cation: BM-FFR model. Monetary policy shock.
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Figure 10: Impulse responses and bootstrap confidence bands for the futures augmented

VAR specification: BM-FFR model. Monetary policy shock.
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Figure 11: Cumulative impulse responses and bootstrap confidence bands for the FAVAR-

FFR specification. Monetary policy shock.
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confidence bands of the prices response indicate the plausibility of the price puzzle in this

specification. However, on the long run, both output and prices become statistically not

significantly different from zero.

The results of this section indicate, that including more (market-based) information in

the monetary VAR can lead to the mitigation of the price puzzle. This finding is perfectly

in line with Sims (1992), who argued that the price puzzle is a result of monetary VARs not

containing sufficient information.28 Bernanke, Boivin, and Eliasz (2005) use this insight as

a motivation for their proposal of factor-augmentation. However, they also point out that

the existence or non-existence of the price puzzle is not necessarily related to the inclusion

of more information—a point further strengthened recently by Ramey (2016).29 Rather, it

can be the case that the monetary policy shocks are incorrect estimates of the true mone-

tary policy shocks, and whether we discover a price puzzle empirically is only a statistical

question. Our results above indicate that the shocks obtained from the baseline VAR are

fundamental. Further, our preferred model in terms of precision of monetary policy shock

estimation is the baseline VAR, and, in particular the BM-FFR structural model. Hence,

we conjecture that the non-existence of the price puzzle in the augmented specifications

is not the result of more information, but a statistical artefact of the estimation of a less

parsimonious model.

3.4.4 Counterfactual simulations

Early empirical evidence based on SVAR studies showed that the effects of monetary policy

shocks on other (real) variables are relatively small. In contrast, Romer and Romer (2004),

Gertler and Karadi (2015) discovered much larger effects of monetary policy. Coibion (2012)

reconciles the results of Romer and Romer (2004) with the earlier results, suggesting that

the true effects are likely to lie in between those found by Romer and Romer (2004) and the

previous consensus in the literature.

How much different are the effects of monetary policy shocks that are obtained from

information augmented models? In the following we investigate this question through

counterfactual simulations where only the monetary policy shocks drive the fluctuations of

key variables. More precisely, we estimate a counterfactual ŷ∗t for each t in the sample using

the reduced form parameter estimates, and assuming that the counterfactual shock series

in the autoregressive equation is, e.g., ε̂∗t = (0, ε̂
mp
t )′. As in the previous section, we focus

on, and report our results only for the BM-FFR model and the FAVAR-FFR specification.

Figure 12 displays the actual (dotted blue line) and the counterfactual (solid black line)

yearly growth rates of industrial production, consumer price index, and commodity price

index, respectively from 1990:01 to 2007:11. In the left column the counterfactual series

are generated with only the monetary policy shocks from the baseline VAR having effect

on the economy. In the right column the counterfactual series are generated with only the

28 The monetary authority might endogenously react to an inflationary pressure, thereby mitigating the future

inflation. If we would be able to include in our empirical model all the information available to the monetary

authority, we could establish that, ceteris paribus, the monetary contraction does not increase the price level

(Sims, 1992, p. 988–989).
29 The argument of Bernanke, Boivin, and Eliasz can be found in the working paper version: Bernanke, Boivin,

and Eliasz (2004, pp. 18).
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monetary policy shocks from the futures-augmented VAR having effect on the economy. As

we can see, the monetary policy shocks do not contribute much to the developments in the

economy. The shocks from the futures-augmented specification, however, contribute even

less, except for the episodes around 2001 and 2007 in the commodity price series. A similar

insight can be gained from taking a look at counterfactual series where the monetary policy

shocks are not present—the situation depicted in Figure 13.30 As a benchmark, we can

also contrast the counterfactual evolution of the variables when no shocks are driving the

economy. Figure 14 displays this case. The pure autoregressive evolution of the two spec-

ifications is quite similar, verifying that the observed differences in the previous pictures

were indeed caused by the shocks and not the different atoregression parameter estimates.

In the case of the FAVAR specification, there are two sources of uncertainty for those

variables that are not contained in the state equation. First, the (identified) shocks from the

state equation, second, the idiosyncratic shocks of the observation equation. It is, therefore,

useful to investigate, first, how much the shocks to the observation equation contribute to

the evolution of the time series, and, second, how much does the monetary policy shock

contribute to the evolution of the series in the observation equation. The first row of Figure

15 displays the counterfactual scenario where the macroeconomic time series (in differenced

logarithms) have only been affected by shocks in the state equation. We can see, that the

disturbance terms in the observation equation have a sizable influence on the variables

over and above the shocks from the state equation. This fact is more pronounced for the

commodity price index, and the price series. However, the state equation does seem to

drive the evolution of the output reasonably well. In the second row of Figure 15 we have

set the monetary policy shocks to zero. If we contrast the second row with the first row, we

can conclude that the contribution of the monetary policy shocks is moderate. This finding

is further supported by the figures in the third row where only the monetary policy shock

is affecting the equation system. While the monetary policy shock has a moderate influence

on output, its influence on the prices and commodity prices is negligible.

We can conclude from the counterfactual analysis the following. The identified monetary

policy shocks have small influence on the evolution of output, prices and commodity prices,

and this is regardless of whether we augment the VAR specification with more information.

The only sizable difference between the baseline and futures-augmented specification can

be observed in the case of commodity prices, where the futures-augmented monetary pol-

icy shocks have a greater influence on the macroeconomic series in comparison with the

baseline shocks. In the case of the FAVAR, the shocks to the unobserved factors contribute

sizably to the evolution of output, but less so to that of prices and commodity prices. In

contrast, the monetary policy shock’s influence on these variables is only moderate.

30 Here ε̂∗t = (ε̂−t , 0), where ε̂−t is the estimated structural innovation excluding the monetary policy shock.
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Figure 12: The contribution of monetary policy shocks to the fluctuations of macroeconomic

variables.
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Figure 13: The evolution of macroeconomic variables without the monetary policy shocks.
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Figure 14: The evolution of macroeconomic variables without shocks.
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Figure 15: The contribution of the state equation shocks to the macroeconomic variables.
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3.5 conclusions

The inclusion of more forward looking information in structural VAR (SVAR) analyses is

generally considered to be a good practice. It can achieve at least two goals. First, it can mit-

igate foresight problems, and, ultimately, render non-fundamental shocks in an empirical

specification fundamental. We view fundamentalness of the structural shocks with respect

to the variables in the empirical specification as a minimum requirement. Second, theoreti-

cally, the inclusion of variables containing expectations in the empirical model renders, by

construction, the monetary policy shocks orthogonal to these expectations. Thus it seems a

priori more likely that the thus obtained monetary policy shocks are closer to being “pure”,

exogenous monetary policy shocks.

In the present paper we investigate the classical monetary policy SVAR of Bernanke

and Mihov (1998) for monthly US data running from 1989:01 to 2007:11. We augment the

baseline VAR with more information in two ways. First, we add the federal funds futures

series to the specification, second, we estimate a factor-augmented VAR (FAVAR) similar to

Bernanke, Boivin, and Eliasz (2005).

We first argue that the federal funds futures series is a reasonable variable to include

in monetary policy VARs. It arguably contains the market’s expectation about monetary

policy, Granger causes several of the key variables in the VAR, and the VAR as a whole.

We view this finding alone as a useful insight for empirical monetary policy analysis. Then

we test statistically whether the shocks from our estimated specification (with or without

futures) are fundamental. To this end, we establish that the reduced form innovations are

jointly non-Gaussian and serially independent. The null hypothesis of fundamentalness

cannot be rejected for either specifications for all reasonable significance levels. Thus, we

proceed to investigate whether information-augmentation yields monetary policy shock

and impulse response estimates that are “better” than the baseline estimates. To this

end, we compare the (identified) monetary policy shock estimates to the updated bench-

mark series of Romer and Romer (2004) and Kuttner (2001). According to our results, the

preferred classical monetary policy SVAR model without the futures augmentation yields

monetary policy shock estimates that are better correlated with both benchmark shocks

than the monetary policy shocks obtained from a FAVAR, and not necessarily less corre-

lated with the benchmark measures than the monetary policy shocks obtained from the

futures-augmented specification. The price puzzle of the baseline specification is mitigated

by factor and futures augmentation. We demonstrate that, aside from the ameliorated price

puzzle, the empirical conclusions based on the classical monetary policy VAR do not dif-

fer from the conclusions from the information-augmented specifications: monetary policy

shocks have negligible effects on the real economy. This finding is corroborates results in

the literature on monetary policy shocks estimated based on post-1990 data, cf., Ramey

(2016).

The reduced form VAR innovations are non-Gaussian, serially independent, and they

form a martingale difference sequence. Thus, the implied structural shocks are fundamen-

tal. Furthermore, our VAR specification is standard in the monetary policy literature. While

most of our messages are specific to the structural assumptions of the S(FA)VARs that we

investigate, these observations on the reduced form innovations is expected to hold more
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generally. The result that the reduced form innovations are non-Gaussian opens the stage

for extending the scope of investigation towards the recent SVAR literature on non-Gaussian

monetary policy SVARs, see Lanne, Meitz, and Saikkonen (2017) and Herwartz (2016).31

31 Note, that we have only verified that the joint distribution of the residuals is not Gaussian. What is necessary

for non-Gaussian SVARs is more: at most one marginal distribution needs to be Gaussian. This can be tested

by, e.g., using the R-package ICtest.
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Gábor B. Uhrin and Helmut Herwartz

Abstract. A central question for monetary policy is how asset prices respond to a mon-

etary policy shock. We provide evidence on this issue by augmenting a monetary

SVAR for US data with an asset price index, using set-identifying structural restric-

tions. The impulse responses show a positive asset price response to a contractionary

monetary policy shock. The resulting monetary policy shocks correlate weakly with the

Romer and Romer (2004) (RR) shocks, which matters greatly when analyzing impulse

responses. Considering only models with shocks highly correlated with the RR series

uncovers a negative, but near-zero response of asset prices.

4.1 introduction

The financial crisis of 2008–2009 has stirred up the debate on the conduct of monetary policy

all around the world. One of the questions that came into the focus of the discussion is the

extent to which monetary policy should react to developments in asset markets. Should

central banks “lean against the wind” and try to mitigate turbulences in asset markets

through raising interest rates, or should they rather concentrate solely on stabilizing the

output gap and the inflation?1 Arguing for either of these positions raises the need to

quantify the (contemporaneous) effects of monetary policy actions on asset prices.

Starting with Sims (1980), such empirical questions have often been investigated by

means of (structural) vector autoregressive (VAR) models. The crucial problem of iden-

tifying exogenous, unanticipated monetary policy shocks has been addressed in several

studies that aimed to quantify the effects of monetary policy on, for instance, real output.

Most of the classical procedures developed in these studies have been applied in a mon-

etary policy – asset price context. As a particular exception, the agnostic sign-restriction

approach exemplified by Uhlig (2005) has not been employed yet to explore the linkage

between monetary policy shocks and asset prices.

Parallel to the SVAR literature, alternative approaches to identify monetary policy shocks

have also been proposed. A major contribution has been put forth by Romer and Romer

(2004), henceforth RR, who combined narrative evidence with statistical methods to con-

struct a monetary policy shock series free of endogeneity and anticipation effects.

In the present paper we make several, related, contributions. First, we augment the VAR

specification of Uhlig (2005) with the S&P 500 Composite Index, and estimate the model on

1 A concise summary of these debates can be found, e.g., in Assenmacher-Wesche and Gerlach (2010).

71
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monthly US data from 1959 January to 2007 December. We use two set identifying restric-

tions to identify monetary policy shocks and examine the effects of these shocks on asset

prices. The first restrictions are the sign restrictions of Uhlig (2005) (Scheme I), and the

second set of restrictions are the zero and sign restrictions on the structural matrix A0 put

forth recently by Arias, Caldara, and Rubio-Ramı́rez (2015) (Scheme II). According to our

results, the SVAR impulse responses point towards a mildly positive asset price response

to an increase in the monetary policy instrument. This result is puzzling in light of earlier

literature. Second, we argue that the resulting identified monetary policy shocks correlate

only weakly with the monetary policy shock series of RR. We show that this finding matters

greatly when analyzing (structural) impulse responses. In particular, we make the follow-

ing observations: i.) the majority of admissible models yield impulse responses that vary

widely in their shapes and impact magnitudes; ii.) this ambiguity affects those variables

most whose responses are left agnostic by the identification scheme; iii.) models that are

highly correlated with the RR shocks yield clearly shaped and less ambiguous impulse

responses. Thus, third, we propose to restrict attention to those specifications that yield

monetary policy shocks highly correlated with the RR series. We show that impulse re-

sponse analysis of these models leads to more robust and reliable conclusions. Ultimately,

we find evidence of: 1.) asset prices responding mildly negatively (in Scheme I), or am-

biguously (in Scheme II) to a positive monetary policy shock, 2.) a mildly positive output

response to what is understood to be a “contractionary” monetary policy shock. The former

findings are contrary to our first results, but in line with conclusions of earlier studies. The

latter finding is contrary to the baseline results obtained recently by Arias, Caldara, and

Rubio-Ramı́rez (2015). Thus, we also conclude that comparing structurally (set-) identified

shocks to a benchmark series can uncover by default hidden, but relevant and robust empir-

ical conclusions. As a result, our methodological contribution complements the concerns of

Kilian and Murphy (2012) regarding the interpretation of results from set-identified SVARs,

and can be a useful empirical strategy when the identified set is not sufficiently narrow for

sharp empirical conclusions. In fact, the benchmarking approach that we put forth can be

considered as a step towards a frequentist parallel of the most likely models of Inoue and

Kilian (2013).

The paper proceeds as follows: In Section 4.2 we provide an overview of existing results

in identifying monetary policy shocks and their effects on asset prices. In Section 4.3 we

detail the econometric model and the structural identifying assumptions. In Section 4.4

we present our baseline results,. In Section 4.5 we analyze the identified monetary policy

shock series and compare them with the Romer and Romer (2004) series. In Section 4.6

we re-investigate our baseline results concentrating only on a certain subset of admissible

models. Section 4.7 provides a discussion, some further results and robustness checks.

Finally, Section 4.8 concludes.

4.2 monetary policy shocks and asset prices

While the crucial empirical problem in characterizing effects of monetary policy shocks

is identifying exogenous, unanticipated changes in monetary policy, there seems to be no

consensus in the literature on the identifying assumptions to use. Ramey (2016) provides
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a critical review of several identifying assumptions and argues that previous results based

on distinct identifying assumptions cannot easily be reconciled, especially in longer, more

recent samples.

Since distinct identifying assumptions may generate distinct results, the lack of consensus

also applies to the empirical question: what are the effects of monetary policy shocks on

asset prices? Compared with the literature on quantifying the effects of monetary policy

on real variables, the empirical literature on monetary policy and asset prices is relatively

small-scale. While the literature generally concludes that asset prices react negatively to an

exogenous increase in the monetary policy instrument, the magnitude, the timing and the

persistence of this negative reaction varies greatly across studies.

Earlier papers that use a recursive identification scheme, including Patelis (1997), Thor-

becke (1997), Neri (2004), find that an increase in the monetary policy instrument leads to

a small decrease in the stock prices. Bjørnland and Leitemo (2009) criticize the use of recur-

sive identification schemes. Applying short and long run restrictions, they find large and

persistent negative effects. More recently, Lanne, Meitz, and Saikkonen (2017) assume a

non-Gaussian SVAR and confirm the findings of Bjørnland and Leitemo (2009) in rejecting

the recursive identification scheme, and finding a significant instantaneous negative effect

that, however, dies out quickly. In contrast, utilizing changes in the heteroskedasticity

structure of the error term, Rigobon and Sack (2004) and Lütkepohl and Netšunajev (2014)

find smaller, but relatively persistent negative effects. In a time-varying SVAR, Galı́ and

Gambetti (2015) find negative short run effects that quickly turn into positive after impact

especially in the 1980s and 1990s. Following an event-study approach around the monetary

policy decision changes, Bernanke and Kuttner (2005) uncover that a 25 basis point cut in

the federal funds rate leads, on average, to a 1% increase in asset prices.

As the above list of contributions indicate, a wide variety of approaches to SVAR analysis

have been applied in the monetary policy – asset prices context. Notable exceptions are the

usage of sign restrictions as proposed by, e.g., Uhlig (2005), and sign and zero restrictions

advocated by Arias, Caldara, and Rubio-Ramı́rez (2015). We aim to fill this gap in the

present paper, and we argue in the next section that using these restrictions as identifying

assumptions in the context of our empirical question has several advantages over other

identification schemes.

4.3 identifying monetary policy shocks with sign and zero restrictions

We consider the following K-dimensional structural VAR,

A0yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + εt, (34)

where yt ∈ R
K, εt ∼ WN(0, IK), A0, . . . , Ap ∈ R

K×K, and A0, what we call the structural

matrix, is assumed to be non-singular. In order to define a unique lag length we assume that

Ap 6= 0. In the above equation εt is the vector of structural innovations. The corresponding,

estimable reduced form is

yt = B1yt−1 + · · ·+ Bpyt−p + ut, (35)

with Bi = A−1
0 Ai, i = 1, . . . , p. For ut, the vector of reduced form innovations the following

holds: A−1
0 εt = ut ∼ WN(0, Σu). That is, the vector of structural innovations is a linear
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combination of the vector of reduced form innovations. Writing B(z) = IK − B1z − · · · −

Bpzp, we assume that the reduced form is causal, that is, det(B(z)) 6= 0 ∀ |z| ≤ 1. Then,

the moving average representation of yt exists and is given by (Brockwell and Davis, 1991,

Th. 11.3.1, p. 418):

yt =
∞

∑
j=0

Φjut−j =
∞

∑
j=0

Θjεt−j, Φ0 = IK, (36)

where element (i, k) of the coefficient Θj = Φj A
−1
0 is interpreted as the reaction of the i-th

variable on the k-th structural innovation at horizon j. We call A−1
0 the structural impact

matrix, since Θ0 = A−1
0 .

In this paper we aim to identify only one particular structural form innovation, the mon-

etary policy shock, ε
mp
t , that is an element of the vector εt. We use sign restrictions on the

impulse responses and zero restrictions on the structural matrix A0 as identifying assump-

tions. Zero and sign restrictions on the structural matrix A0 are straightforward: A
(i,k)
0 , the

(i, k)-th element of A0 is restricted to be zero, positive, or negative. Sign restrictions on

the impulse responses can be formulated as follows: Θ
(i,k)
j , the (i, k)-th element of Θj, is

restricted to be either negative or positive for some a priori selected combinations of (i, k, j),

i, k ∈ { 1, . . . , K }, j ∈ N0. Note, that an insufficient amount of zero restrictions on A0, or

sign restrictions in general cannot point identify the structural parameters A0, . . . , Ap.2

Using sign restrictions on impulse responses for several periods to identify monetary

policy shocks has been first proposed by Uhlig (2005).3 Somewhat surprisingly, we are not

aware of any attempt to utilize sign restrictions in a monetary policy – asset prices context.

The use of zero restrictions on the structural matrix to restrict the systematic component

of monetary policy in the SVAR has been put forth recently by Arias, Caldara, and Rubio-

Ramı́rez (2015), and we are not aware of any research employing this identification to our

empirical question. While the employed sign and zero restrictions cannot, in general, point-

identify a structural VAR model, or a structural shock, using set identification has two

important advantages in our view.4

First, sign restrictions by construction avoid the problem of deciding upon the exact

recursive ordering of shocks. As Bjørnland and Leitemo (2009) pointed out, it is important

to allow for the possibility of the monetary policy shocks contemporaneously affecting

asset prices and vice versa—a view supported by theoretical models of, e.g., Castelnuovo

and Nisticò (2010). A simple recursive identification scheme necessarily excludes one of

these possibilities. Further, this critique of the recursive identification schemes was also

strengthened recently by Lanne, Meitz, and Saikkonen (2017), who assume non-Gaussian

error terms, and statistically test and reject the adequacy of the recursive scheme.

Second, sign restrictions, and a small number of zero restrictions, on the other hand, are

considered to be mild assumptions that are relatively easy to interpret, justify, and agree

upon. If we are striving for exact identification together with allowing for non-recursivity,

2 For necessary and sufficient conditions for exact (point) identification see, for example, Rubio-Ramı́rez, Wag-

goner, and Zha (2010).
3 Similar contributions are Faust (1998) and Canova and De Nicoló (2002).
4 We refer to a shock being set identified if there are at least two parameter points in the structural parameter

space that are observationally equivalent, i.e., lead to the same reduced form parameters. This terminology is

also used by Arias, Caldara, and Rubio-Ramı́rez (2015).
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or contemporaneous interdependence, then we have to argue for at least one additional

restriction to achieve it. If, however, one is willing to give up on exact identification, then

restrictions that were used to achieve exact identification may become harder to argue for.

Thus, in the following we use sign and zero restrictions to identify the monetary policy

shock and investigate the effect of this identified shock to a stock price index variable. To

this end, we augment a VAR specification similar to Uhlig (2005) with the S&P500 Com-

posite Index and use, as our first assumption, the same identifying assumption as Uhlig

(2005):

restriction sr1 A monetary policy shock’s effects on the impulse responses of com-

modity prices, GDP deflator and non-borrowed reserves is non-positive, and on the

impulse response of the federal funds rate is non-negative for the impact period and

four periods after impact.

We call this restriction Scheme I. Besides being intuitively reasonable, these sign restrictions

are also supported by New-Keynesian DSGE models under a wide set of parameter calibra-

tions (Carlstrom, Fuerst, and Paustian, 2009). Note, that the original formulation by Uhlig

(2005) requires the impulse responses of “prices” in general to be non-positive. While this

assumption may also include asset prices, we prefer to remain agnostic about the signs of

effects of monetary policy on asset prices, hence we do not constrain the response of asset

prices to monetary policy shocks.

Arias, Caldara, and Rubio-Ramı́rez (2015) argue, however, that the sign restrictions of

Uhlig (2005) imply parameter estimates that are incompatible with theoretical considera-

tions about and empirical evidence on the systematic component of the monetary policy,

the Taylor rule. Since monetary policy shocks are innovations to the Taylor rule, the iden-

tification of monetary policy shocks should be coupled with identifying the corresponding

systematic monetary policy equation in the SVAR. This can be achieved by means of zero

restrictions on the structural matrix. Following Arias, Caldara, and Rubio-Ramı́rez (2015),

we use the following zero and sign restrictions on A0 to identify monetary policy shocks:

restriction zr The federal funds rate only reacts contemporaneously to GDP, GDP de-

flator, commodity prices, and asset prices.

restriction sr2 The federal funds rate’s contemporaneous reaction to GDP, and to the

GDP deflator is positive.

We call these restrictions jointly Scheme II. These restrictions explicitly impose a Taylor-

type rule on the federal funds rate equation of the SVAR consistent with empirical and

theoretical evidence about the systematic component of monetary policy. In particular,

restriction ZR implies that the contemporaneous reaction of the federal funds rate to non-

borrowed reserves and total reserves is zero. The monetary policy shock is identified as

the innovation corresponding to this correctly specified equation in the SVAR. Since we are

interested in the response of the monetary policy instrument to asset prices, we allow the

federal funds rate to react contemporaneously to asset prices. This leaves our identification

agnostic in the asset price – monetary policy context. It is important to note that Restrictions
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ZR and SR2 restrict the structural matrix A0. Thus, in contrast to Restriction SR1, the impact

period impulse response coefficient A−1
0 is restricted only indirectly.5

4.4 monetary policy shocks and asset prices

First we investigate the effects of monetary policy on asset prices in a structural VAR sim-

ilar to Uhlig (2005). The VAR is estimated with monthly US data from 1959:01 to 2007:12.

The seven variables used in the specification are: Real GDP, GDP deflator, commodity price

index, stock price index, federal funds rate, non-borrowed reserves, total reserves. Monthly

series for real GDP and the GDP deflator were interpolated as in Mönch and Uhlig (2005).

Real GDP was interpolated using the industrial production index, while the GDP deflator

was interpolated by means of consumer and producer price indices. The commodity price

index is the Commodity Research Bureau’s BLS spot index obtained from Thomson Reuters’

Datastream and is determined as the monthly average of daily data. Monthly observations

of the S&P 500 Composite Index were obtained from the FRED MD project website main-

tained by Michael W. McCracken (McCracken and Ng, 2016). For the empirical analysis,

the values were deflated by the GDP deflator. The remaining variables were obtained from

the St. Louis FRED database under the following names: GDPC1 (real GDP), INDPRO (in-

dustrial production), GDPDEF (GDP deflator), CPIAUSL (consumer price index), PPIFGS

(producer price index), FEDFUNDS (federal funds rate), TOTRESNS (total reserves), and

BOGNONBR (non-borrowed reserves).6

To facilitate comparability, we employ the same VAR specification as Uhlig (2005): the

VAR contains p = 12 lags and does not include a constant or deterministic trend. The fed-

eral funds rate is considered in levels. All other variables are in logarithms and multiplied

by 100. We estimate the VAR by OLS. In order to simulate the set of sign and zero restricted

impulse responses, we use the algorithms proposed by Rubio-Ramı́rez, Waggoner, and Zha

(2010) and Arias, Rubio-Ramı́rez, and Waggoner (2014). A detailed description of these

algorithms can be found in Appendix 4.B. In short, we draw random orthogonal matrices,

Q, to rotate the lower-triangular Cholesky decomposition Âc
u of Σ̂u, the estimated reduced

form variance-covariance matrix. The rotation matrices Q are constructed in a systematic

way so that the structural form parameters estimated using Â−1
0 = Âc

uQ satisfy the sign and

zero restrictions (i.e., they are admissible). We repeat the random drawing procedure until

we have 65000 admissible impulse responses. Each of these 65000 impulse responses corre-

sponds to a distinct admissible model, Â−1
0,s = Âc

uQs, where s = 1, . . . , 65000 is the simulation

index.7 In the plots below we also report the median target (MT) impulse responses as

advocated by Fry and Pagan (2011). The MT impulse response is the impulse response that

is closest in terms of a standardized squared distance to the median of the set of admissible

impulse responses.

5 Note, that a zero restriction in A0 in general does not imply a zero restriction in A−1
0 .

6 Further details on the data and sources can be found in Appendix 4.A.
7 While the number 65000 is based on computational constraints, our results are robust to several dozen runs of

the same procedure.
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Figure 16: Sign restricted (left) and median target (right) impulse responses of the S&P

500 index for a one per cent increase in the federal funds rate. Identification

Scheme I.

Sign restrictions on impulse responses

We identify a monetary policy shock first solely via Scheme I (Restriction SR1), our baseline

restriction on the impulse responses. In Figure 16 we display the impulse response of the

asset price index to a one per cent increase in the federal funds rate. The sub-figure on the

left contains the pointwise median, as well as the pointwise 0.3 and 0.7 quantiles of the set

of admissible impulse responses. In the sub-figure on the right we report the median target

impulse response joint with a 90% bootstrap confidence band.8

Figure 17 visualizes the set of admissible impulse responses of the rest of the variables

to a one per cent positive monetary policy shock (increase in the federal funds rate). The

results are very similar to those presented in Uhlig (2005, Fig. 6., p. 397), thus we do not

discuss them in detail. The only difference is the slight rising trend of the GDP deflator

after the impact period. Figure 18 contains the MT impulse responses for the same variables

as in Figure 17.

8 Details of the bootstrap procedure can be found in Appendix 4.B.
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Figure 17: Sign restricted impulse responses for a one per cent increase in the federal funds

rate. Identification Scheme I.
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Figure 18: Median target impulse responses for a one per cent increase in the federal funds

rate. Identification Scheme I.

The conclusion of our baseline analysis is that, for a one per cent increase in the federal

funds rate, the set of admissible impulse responses of asset prices have more mass above

the zero line. A similar result holds also for the response of GDP. While one can argue that

these conclusions are ambiguous, as there are also admissible models that yield negative

asset price responses, the MT impulse responses further point towards positive responses

to a positive monetary policy shock.

Zero and sign restrictions on the structural matrix

The alternative identification scheme we employ is described by Scheme II (Restrictions ZR

and SR2). These are restrictions on the structural matrix, A0, and they are imposed jointly.

The structure and interpretation of the following figures is similar to those in the previous

subsection.

Figure 19 paints a more ambiguous picture than the baseline sign restriction specification:

the median of the admissible impulse responses for asset prices starts at zero. While it turns

positive in the short and medium run, and remains so later on, the admissible set does not

leave the neighborhood of zero markedly. In the right-hand-side subfigure, the median

target impulse response for asset prices, we can observe a similarly ambiguous pattern,

even though the impulse response is significantly poisitive after the 10th month.

Figure 20 mostly corroborates the results of Arias, Caldara, and Rubio-Ramı́rez (2015,

Figure 1., p. 12). Under the zero and sign restriction on the structural matrix the identified

monetary policy shock has mostly a contractionary effect on the output. This is in contrast

to our baseline results, and results by Uhlig (2005). Since the responses of the GDP deflator

are mostly negative, the often discovered price puzzle does not seem to appear in this setup.

This picture is further strengthened by the median target impulse responses in Figure 21.
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Figure 19: Sign restricted (left) and median target (right) impulse responses of the S&P

500 index for a one per cent increase in the federal funds rate. Identification

Scheme II.
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Figure 20: Sign restricted impulse responses for a one per cent increase in the federal funds

rate. Identification Scheme II.
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Figure 21: Median target impulse responses for a one per cent increase in the federal funds

rate. Identification Scheme II.

4.5 examining the monetary policy shock

As we noted in the previous subsection each of the s = 1, 2, . . . , 65000 impulse responses

corresponds to a different admissible model Â−1
0,s . Similarly, to each Â−1

0,s corresponds an

identified monetary policy shock series {ε̂
mp
ts }t=1,...,T that is obtained from the reduced form

residuals by the relation ε̂t = Â0ût. In this section we investigate the identified monetary

policy shocks by comparing the obtained series {ε̂
mp
ts }t=1,...,T for each s with the Romer and

Romer (2004) series. In order to keep the argumentation compact, in the present section we

report results using only the baseline identification restrictions, Scheme I. The following ar-

guments, however, hold similarly for monetary policy shocks identified with the restrictions

of Scheme II.9

Romer and Romer (2004) develop a monthly measure of monetary policy shocks for the

period 1969–1996 that is based on the following methodology: the authors 1.) identify

intended federal funds rate changes around meetings of the Federal Open Market Commit-

tee (FOMC) by combining narrative accounts of the FOMC meetings and the report of the

manager of open market operations; 2.) regress the intended changes on the Fed’s internal

(so called “Greenbook”) forecasts of inflation, real output growth and unemployment in

9 Further results on the latter case can be found in Appendix 4.C.
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Figure 22: Romer and Romer (2004) shock series.

order to control for information about future developments in the economy. Specifically,

the regression that they estimate is the following (Romer and Romer, 2004, Eq. 1, p. 1061):

∆ f fm = α + β f f bm +
2

∑
i=−1

γi∆̃ymi+

+
2

∑
i=−1

λi(∆̃ymi − ∆̃ym−1,i) +
2

∑
i=−1

φiπ̃mi +
2

∑
i=−1

θi(π̃mi − π̃m−1,i) + ρũm0 + νm, (37)

where ∆ f fm is the change in the intended federal funds rate at the FOMC meeting m, f f bm

is the intended federal funds rate before any changes decided on meeting m, and ∆̃ymi,

π̃mi, ũm0 are the forecasts of real output growth, inflation and unemployment, respectively,

for quarter i at the time of meeting m. The estimated residuals ν̂m represent unanticipated

monetary policy shocks, and they are averaged over months to obtain the monthly series

ε̂rr
t , the RR monetary policy shock series that runs from January 1969 to December 1996.10

Figure 22 shows the RR series.

Romer and Romer (2004) carefully argue about the validity of the interpretation of their

measure as monetary policy shocks. To our knowledge, only Coibion (2012) provides a

critical examination of the implications of the RR shocks. The main objective of Coibion

(2012) is to try to reconcile the surprisingly large influence of monetary policy shocks on,

for example, output, with earlier similar studies. While he argues that the implications

of Romer and Romer (2004) are not robust to, for example, excluding certain episodes in

US central banking history, we do not read Coibion (2012) as an argument against the va-

lidity of interpreting the RR series as a “pure” monetary policy shock series. We, in fact,

go further and argue that any identified structural monetary policy shock series obtained

from, e.g., a SVAR analysis should resemble the RR series, ε̂rr
t . Further, Coibion (2012)’s

analysis is based partly on alternative monetary policy shock series proposed in Coibion

and Gorodnichenko (2011). These alternative shock series allow for i.) heteroskedasticity

in the error term νm, ii.) time-varying coefficients in Equation (37). These modifications

seem a priori sensible, however, using the monetary policy shock series from Coibion and

10 Note, that in any particular month there can be several FOMC meetings m or no meetings at all.
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Figure 23: Histogram of correlations between ε̂
mp
t and ε̂rr

t . Scheme I.

Gorodnichenko (2011) does not lead to conclusions different from what we describe be-

low.11 Thus, in the following we view the RR series, as a benchmark monetary policy shock

series.

How strongly do the identified monetary policy shocks from our baseline analysis re-

semble the benchmark monetary policy shocks? In order to answer this question, for each

admissible monetary policy shock series ε̂
mp
ts , with s = 1, . . . , 65000, we calculate the corre-

lation ρs = Ĉorr(ε̂
mp
ts , ε̂rr

t ) on the subsample running from January 1969 to December 1996.12

For simplicity of notation, and without loss of generality, assume that for s < s′ it holds that

ρs ≤ ρs′ , that is, we index admissible models by their corresponding correlation coefficients.

Figure 23 contains the histogram of the 65000 obtained correlation coefficients ρs. As

visual inspection immediately suggests, the correlations are mostly quite weak. Indeed, the

average correlation is 0.1863, and the median is 0.1899. In the previous section we reported

the median target impulse responses, and used these as further evidence for our results.

However, the correlation corresponding to the median target model is 0.1621, i.e., lower

than both the average and the median. This implies that at least half of the models have

larger ρs values than the median target model.

What does it imply for the impulse response analysis if the identified monetary policy

shocks are weakly correlated with the Romer and Romer shock series? In Figure 24 we

report the impulse responses for each variable of the models s = 1, . . . , 100, i.e., those

100 models where ρs is the weakest. Figure 25 contains the impulse responses of models

s = 37450, . . . , 37550, i.e., the 100 median models, and Figure 26 contains the impulse

11 Estimation results are available upon request.

12 Note, that, while for ε̂
mp
ts the t index runs from January 1960 to December 2007, the RR series, ε̂rr

t , is available

only between January 1969 and December 1996.
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Figure 24: Impulse responses from models s = 1, . . . , 100. Identification Scheme I.

responses from models s = 64900, . . . , 65000—the 100 models with the highest correlations

ρs.

The figures suggest that by concentrating on impulse responses from models with low

correlations ρs, we might be led to notably different qualitative and quantitative conclusions

in comparison with the impulse responses of models with high correlations ρs. In particular,

Figure 24 supports the conclusion that asset prices react positively to a positive monetary

policy shock, and they persistently remain so for several periods after impact. Similarly,

GDP reacts rather ambiguously on impact, but there is a clear hump-shape suggesting a

sluggish response to a monetary policy shock. In contrast, Figure 26 suggests that GDP

reacts positively to an increase in the monetary policy instrument followed by a steady

gradual decrease. Asset prices, on the other hand, respond mildly negatively on impact.

More surprisingly, according to Figure 25, models that yield shocks featuring an aver-

age correlation with the RR series hardly support any unambiguous empirical conclusion.

Anything can happen as regards the shapes and magnitudes of impulse responses for all

variables, and, especially, for those responses that are left unrestricted by the identification

scheme. This finding is worth emphasizing for two reasons. First, the large majority of

models are close to an average (or median) correlation level, cf., Figure 23. Second, note,

that a central idea of sign restrictions, emphasized by Uhlig (2005), is to leave those vari-

ables’ responses agnostic whose behavior is of key interest to the analysis at hand. Hence,

if one randomly selects two admissible models, then they might, with high probability, lead

to distinct conclusions especially with respect to key variables. Further, since the median

target impulse response is inevitably tied to some “average” model, analyzing the median

target alone offers inconclusive, or even misleading results.
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Figure 25: Impulse responses from models s = 37450, . . . , 37550. Identification Scheme I.
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Figure 26: Impulse responses from models s = 64900, . . . , 65000. Identification Scheme I.
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In sum, we have argued in the previous paragraphs that the qualitative and quantitative

features of the impulse response functions of models s = 1, . . . , 65000 are closely linked to

their implied correlation with the RR shocks, ρs. Models with similar high (or low) ρs values

imply similar impulse responses. Models with notably different ρs values imply notably

different impulse responses.

Thus, if one accepts that the identified monetary policy shocks should ideally be closely

correlated with the RR shocks, one should put particular emphasis on analyzing the im-

pulse responses displayed in Figure 26. Indeed, such highly correlated models grasp best

what is implied by a “true” monetary policy shock. Thus, in the next section we reconsider

our baseline results concentrating on those 100 models that yield monetary policy shocks

that are closest to the RR series. In addition, we give special attention to model number

65000 showing the highest correlation with ε̂rr
t .

4.6 analyzing models with the highest correlation

We have argued that most of the monetary policy shocks identified in our baseline model

correlate only weakly with the Romer and Romer (2004) monetary policy shock series that

we view as a benchmark series. In this section we reconsider the impulse responses concen-

trating only on Shigh = { s : s ∈ [64900, 65000]∩N }, those 100 models that have the highest

ρs, and s∗ = 65000, the model with the highest ρs.

Sign restrictions on impulse responses

Figure 27 displays the minimal envelope, the maximal envelope and the median of impulse

responses of models in Shigh identified through Scheme I (Restriction SR1). In response to

a positive monetary policy shock we find evidence for a positive, rising, but then quickly

falling and in the end negative GDP response. This finding strengthens the result from the

baseline analysis. Contrary to the baseline analysis, however, we also see evidence for a zero

or mildly negative asset price response, which seems to reconcile results from the baseline

analysis with existing previous studies. Note, that the hump shapes around months 7 and

10, respectively, are typical in the considered set Shigh, and this shape is also in line with

impulse responses obtained earlier in the literature (e.g., Galı́ and Gambetti (2015)). The

remaining variables behave similarly to the baseline analysis, but we get a notably sharper

picture on how the GDP deflator, non-borrowed reserves and the federal funds rate behave

in reaction to a positive monetary policy shock.

We also show in Figure 28 the impulse responses corresponding to model s∗, i.e., the

model that yields identified monetary policy shock series that has the highest correlation

with the RR series. Model s∗ strengthens the results in the previous paragraph: in particular,

asset prices react sizably negatively and they return only slowly to their starting value.

Figure 29 displays the (standardized) monetary policy shock series corresponding to

model s∗, together with the (standardized) RR series.



4.6 analyzing models with the highest correlation 87

0 10 20 30 40 50 60

Months

-0.4

-0.2

0

0.2

0.4

Real GDP

Min envelope Median Max envelope

0 10 20 30 40 50 60

Months

-2

-1

0

1

Total Reserves

0 10 20 30 40 50 60

Months

-0.6

-0.4

-0.2

0

0.2

GDP Deflator

0 10 20 30 40 50 60

Months

-3

-2

-1

0

1

2

 Nonb. Reserves

0 10 20 30 40 50 60

Months

-2

-1.5

-1

-0.5

0

0.5

Comm. Price Index

0 10 20 30 40 50 60

Months

-0.2

0

0.2

0.4

0.6

Fed Funds Rate

0 10 20 30 40 50 60

Months

-3

-2

-1

0

1

2

S&P500

Figure 27: Range and median of models from Shigh. Identification Scheme I.
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Figure 28: Impulse responses from model s∗. Identification Scheme I.
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Figure 29: The series ε̂
mp
ts∗ and ε̂rr

t , divided by their respective standard deviations. Scheme I.

As visual inspection of Figure 29 suggests, ε̂
mp
ts∗ matches quite well with ε̂rr

t , especially in

those times when ε̂rr
t shows sizable swings, strengthening the argument to restrict attention

to models highly correlated with the RR shocks.13

Zero and sign restrictions on the structural matrix

Figure 30 shows the impulse response of models in Shigh determined from Scheme II (Re-

strictions ZR and SR2). A remarkable feature of the GDP response to a positive monetary

policy shock is a qualitative similarity to the GDP response of Figure 27. This finding is

worth noting especially in light of our Figure 20, and the arguments of Arias, Caldara, and

Rubio-Ramı́rez (2015), where the main tendency of the GDP response is markedly negative.

Further, while in the baseline analysis of Scheme II we didn’t find strong evidence for the

price puzzle, based on Figure 30 we cannot claim that the existence of the price puzzle is not

plausible. The asset price response is centered around zero. Thus, contrary to the results in

the previous paragraph, we find no evidence of exogenous monetary policy shocks affecting

asset prices. The rest of the responses exhibit high similarity to the baseline analysis, but

concentrating only on hundred models leads to sharper conclusions.

In comparison to the figures describing Shigh the impulse responses of model s∗ in

Scheme II are quite sensitive to the particular draw of the rotation matrix, therefore, we

do not attempt to analyze the impulse responses this particular scheme. The (standardized)

monetary policy shock series implied by Scheme II is shown in Figure 31, jointly with the

(standardized) RR series. Similarly to the conclusions of the previous subsection, we can

observe that the monetary policy shock series matches the RR series quite well especially

in the high volatility phases.

13 Note, that an important caveat in interpreting results from model s∗, however, is that the model and the precise

form of the impulse responses depend on the particular draw of the orthogonal matrix.
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Figure 30: Range and median of models from Shigh. Identification Scheme II.

Figure 31: The series ε̂
mp
ts∗ and ε̂rr

t , divided by their respective standard deviations. Scheme II.
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4.7 discussion and robustness

Our proposal of combining structural identifying assumptions with some benchmark series

is similar in spirit to two different approaches proposed earlier in the literature. First, Faust,

Swanson, and Wright (2004) identify monetary policy shocks by requiring the federal funds

rate response to the policy shock to be equal to a certain benchmark response directly

measured from federal funds futures data. Second, Mertens and Ravn (2013, 2014) utilize

a narrative series as a proxy for the identified policy shock series and thereby provide

additional identifying moment conditions. While both approaches solve the identification

problem in a data-oriented way, their explicit aim is exact identification. In contrast, we

believe that there can be several economic (structural) models compatible with the data.

Sign restrictions, or non-exact identification in general, are adequate assumptions in line

with this view as long as one carefully interprets the results.

From a methodological point of view, in the previous sections we argued that one should

evaluate the effects of structural monetary policy shocks only within a subset of the set of ad-

missible models. That is, in our analysis we started out by constraining the set of admissible

models with set-identifying restrictions. An other possibility would be to simply generate

several Â−1
0 matrices that do not satisfy any a priori structural assumptions and select the

one that generates an estimated shock that has the highest correlation with the Romer and

Romer (2004) series. However, there are several theoretical and empirical caveats for this

approach. First, in the comparison exercise we might simply discover a high but spurious

correlation between the benchmark and the estimated series. In particular, if the estimated

series does not have a structural interpretation, then we cannot claim that the selected es-

timated series is, in fact, not a completely different shock. Second, the selected estimated

series will highly depend on the particular random draw of Â−1
0 . In our analysis it turns

out that by not restricting the response of GDP deflator to be negative in the first several

periods we immediately encounter the so-called price puzzle in a particularly severe form:

the GDP deflator reacts positively to a monetary policy shock and its response remains pos-

itive in the long run. Further, by considering unrestricted models we could not significantly

improve the “fit” to the RR shocks: the maximal correlation is around 0.42 compared with

the approximately 0.39 of the set-identified specifications.

Our approach in this paper is explicitly frequentist. Thus, we cannot discriminate sta-

tistically between competing admissible models, and claiming that a particular admissible

model is “most likely” (Inoue and Kilian, 2013) is not feasible. Nevertheless, our bench-

marking approach extends the possibilities of empirical SVAR analysis in two directions.

First, it restricts the set of models beyond what is achievable by the structural assumptions

alone. This gives the possibility to sharply focus the evaluation of empirical and economic

implications of the identified structural models. The empirical analysis then avoids the

point made by Kilian and Murphy (2012) about the potential perils of analyzing summary

statistics of the identified set when this set is too large. Second, while speaking of most

likely models is not possible in a frequentist setting, if one accepts the postulated structural

assumptions and the validity of the benchmark series, the models in Shigh can be argued to

be frequentist counterparts to the most likely models of Inoue and Kilian (2013).
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We argued earlier that using the series proposed by Coibion and Gorodnichenko (2011)

as the benchmark series instead of the RR series does not change any of our conclusions.

This is despite the fact that Coibion (2012) arrives at distinct conclusions regarding the con-

tribution of monetary policy shocks to fluctuations of real variables using these alternative

narrative-based series. This might imply that our results are not driven by the “identifying

power” of the benchmark shocks. However, if we use a completely uninformative simu-

lated white noise series as benchmark series in place of the RR series, then the ordering

of the models according to their ρs coefficients yield completely uninformative results: the

impulse responses for models in Shigh are similarly unstructured as the impulse responses

for models in any other subsets of the ordering. This finding strengthens our results: inves-

tigating models relative to a benchmark indeed provides additional information.

Up until now we were silent about how more conventionally identified monetary policy

shocks compare with the RR shock. As an example, using our baseline variable ordering14

with a straight-forward recursive identification we obtained a correlation of ρ = 0.3838,

which is very close to our best set-identified models. Values of similar magnitude for ex-

act identification were reported also by Coibion (2012). These correlations are higher than

the majority of correlations that we uncover in our analysis. On the one hand, this result

might indicate that the applied sign restrictions need not be very successful assumptions

to identify monetary policy shocks. However, the fact that models with the highest ρs have

correlation around 0.40 implies that by a careful analysis of admissible models we can im-

prove on other, especially exact identification procedures while at the same time settling on

less restrictive identifying assumptions. We leave a comprehensive comparative evaluation

of other exact identification schemes and empirical specifications for future research.15

4.8 conclusions

How do asset prices respond to exogenous monetary policy shocks? We provide empirical

results on this question. To this end, we augment the VAR specification of Uhlig (2005)

with the S&P 500 Composite Index, and estimate the model on monthly US data from 1959

January to 2007 December. We use two identification schemes that result in set identifica-

tion of the monetary policy shock. First, we use the sign restrictions put forth in Uhlig

(2005) (Scheme I). Second, we utilize zero and sign restrictions on the structural matrix A0

proposed by Arias, Caldara, and Rubio-Ramı́rez (2015) (Scheme II).

The SVAR impulse responses identified via Scheme I and Scheme II both point towards

a mild positive asset price response to an increase in the monetary policy instrument. We

argue that the resulting identified monetary policy shocks correlate only weakly with the

monetary policy shock series of Romer and Romer (2004) that we view as a benchmark se-

ries for monetary policy shocks. We show that this finding matters greatly when analyzing

(structural) impulse responses. In particular, the majority of admissible models yield im-

pulse responses that vary widely in their shapes and impact magnitudes. Thus, we propose

to restrict attention to those specifications that yield monetary policy shocks highly corre-

14 Real GDP, GDP deflator, commodity price index, stock price index, federal funds rate, non-borrowed reserves,

total reserves.
15 Estimation results regarding the experiments in the above section are available upon request.
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lated with the RR series, and we show that the impulse response analysis of these models

leads to more robust and reliable conclusions.

Ultimately, we find evidence of asset prices responding mildly negatively (Scheme I) or

with ambiguous sign (Scheme II) to a positive monetary policy shock. Besides the asset

price response, we also uncover a mildly positive output response under both identification

schemes when concentrating on models with the highest correlation with the Romer and

Romer (2004) series. The expansionary effect of a “contractionary” monetary policy shock

on output may seem surprising, Ramey (2016), however, points out that the consensus

on “contractionary” monetary policy shocks indeed having contractionary effects easily

disappears once one lifts the recursiveness identification assumption.

While the theme of comparing identified monetary policy shocks with the Romer and

Romer (2004) series is quite specific to monetary policy applications on US data, our pro-

posed approach of evaluating (set-) identified shocks against some benchmark series is

more general and can be applied to a wide variety of empirical questions. As Kilian and

Murphy (2012, p. 1186) point out: “If the set of admissible models remains large, the most

useful exercise will be to search for the admissible model most favorable to each of the

competing economic interpretations (...)”. We believe that our approach complements and

extends this advice, and is, thus, beneficial for empirical research. We have shown that

comparing structurally (set-) identified shocks to a benchmark series can uncover by de-

fault hidden, but relevant and robust empirical conclusions.
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4.a data

All data, except for the Romer and Romer (2004) series, is fully available to us from 1959

January to 2007 December. The data was gathered on 16.12.2015.

• Romer and Romer monetary policy shocks: The monthly series from 1/1/1969

to 12/1/1996 was obtained from Christina Romer’s website: http://eml.berkeley.

edu/~cromer/#data.

• Real GDP: The monthly GDP was approximated with state-space methods using the

quarterly GDP series GDPC1 and the monthly industrial production series INDPRO

obtained from the FRED database. The interpolation method is described in Mönch

and Uhlig (2005).

• GDP deflator: The monthly GDP deflator was approximated with state-space meth-

ods using the quarterly GDP deflator series (GDPDEF) and the monthly series CPI-

AUCSL (consumer price index for all urban consumers) and PPIFGS (producer price

index for finished goods). All series were downloaded from the FRED database, and

the interpolation method is described in Mönch and Uhlig (2005).

• Commodity price index: Daily data from the Commodity Research Bureau BLS spot

index was obtained from Thomson Reuters’ Datastream. Monthly observations were

calculated as the averages of daily observations for each month.

• Stock price index: Monthly observations of the S&P 500 composite index was ob-

tained from the FRED MD project website (https://research.stlouisfed.org/econ/

mccracken/fred-databases/) maintained by Michael W. McCracken. For the empiri-

cal analysis, the values were deflated by means of the GDP deflator.

• Measures of monetary policy: Monthly series of the federal funds rate (FEDFUNDS),

total reserves (TOTRESNS), and non-borrowed reserves (BOGNONBR) were obtained

from the FRED database.

4.b econometric details

VAR model and impulse responses

Recall from the main text that we consider the following K-dimensional structural VAR,

A0yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + εt, (38)

where yt ∈ R
K, εt ∼ WN(0, IK), A0, . . . , Ap ∈ R

K×K, and A0, what we call the structural

matrix, is assumed to be non-singular. In order to define a unique lag length we assume

that Ap 6= 0. In the empirical application K = 7, and p = 12. In the above equation εt is the

vector of structural innovations. The corresponding, estimable reduced form is

yt = B1yt−1 + · · ·+ Bpyt−p + ut, (39)
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with Bi = A−1
0 Ai, i = 1, . . . , p. For ut, the vector of reduced form innovations the following

holds: A−1
0 εt = ut ∼ WN(0, Σu). Writing B(z) = IK − B1z − · · · − Bpzp we assume, that

the reduced form is causal, that is, det(B(z)) 6= 0 ∀ |z| ≤ 1. Then the moving average

representation of yt exists and is given by (Brockwell and Davis, 1991, Th. 11.3.1, p. 418)

yt =
∞

∑
j=0

Φjut−j =
∞

∑
j=0

Θjεt−j, Φ0 = IK, (40)

where element (i, k) of the coefficient Θj = Φj A
−1
0 is interpreted as the reaction of the i-th

variable on the k-th structural innovation at horizon j.

We estimate the parameters with ordinary least squares, obtaining B̂1, . . . , B̂p and Σ̂u. The

corresponding estimate for the reduced form impulse response sequence (Φ̂j)j≥0 follows

immediately. The starting point for estimating sign restricted impulse responses is the lower

triangular Cholesky decomposition of Σ̂u = Âc
u Âc′

u . Since Σ̂u is symmetric and positive

definite, its Cholesky decomposition is unique (Meyer, 2000, p. 154). Note, that for any

K × K orthogonal matrix Q with Q′Q = QQ′ = IK it holds that

Σ̂u = Âc
uQQ′ Âc′

u . (41)

We are interested in finding those Âc
uQ = Â−1

0 (Q) matrices that imply structural form im-

pulse response sequences (Θ̂j)j≥0 = (Φ̂j Â
−1
0 (Q))j≥0 that satisfy the sign restrictions main-

tained in the main text. To this end we use the method proposed by Rubio-Ramı́rez, Wag-

goner, and Zha (2010). Let H be the length of the impulse response horizon that we wish to

estimate, and let J ≤ H be the length of the horizon on which sign restrictions are imposed.

Then the procedure can be described as follows:

1. Draw a matrix M with i.i.d. standard normal entries and perform the QR-decomposition

of the matrix M = QR. The resulting matrix Q is orthogonal and has the uniform (or

Haar) distribution on the group of orthogonal matrices.

2. Calculate the corresponding structural impulse response function {Θ̂
Q
j }j=0,...,H =

{Φ̂j Â
−1
0 (Q)}j=0,...,H and verify whether the formulated sign restrictions are fulfilled

for j = 1, . . . , J. If so, keep
{

Θ̂
Q
j

}
j=0,...,H

, otherwise discard it.

3. Repeat steps 1–2 until the set of retained structural impulse responses contains S =

65000 elements.

In the empirical application, we set H = 60, and J = 4 according to Restriction SR in the

main text.

In order to simulate the set of impulse responses resulting from the sign and zero restric-

tions on A0 we use the method proposed by Arias, Rubio-Ramı́rez, and Waggoner (2014).

Let Â be (Âu)−1, that is, the inverse of the Cholesky decomposition of Σ̂u. Then, for our

particular application, the algorithm can be described by the following steps:

1. Find a matrix N1 ∈ R
K×(K−2) with N′

1N1 = IK−2 such that Â[(K−1 : K),•]N1 = 0, with

Â[(K−1 : K),•] denoting the 2 × K matrix formed by the (K − 1)-th and K-th rows of Â.
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2. Generate a vector z ∈ R
K with i.i.d. standard normally distributed entries and form

the vector:

q =
1

||[N1 0K×2]z||
[N1 0K×2]z, (42)

i.e., project the vector z on the space spanned by N1 and normalize it to unit length.

3. Find a matrix N2 ∈ R
K×(K−2) with N′

2N2 = IK−2 such that q′N2 = 0.

4. Draw a matrix M ∈ R
(K−2)×(K−2) with i.i.d. standard normal entries and calculate the

QR decomposition of N2M, i.e.,

N2M = [Q̃1 Q̃2]

[
R1

0

]
, (43)

with Q̃1 ∈ R
K×(K−2).

5. Form the matrix Q+ = [q Q̃1], calculate the corresponding structural matrix ÂQ+

0 =

Q+′ Â, and verify whether the formulated sign restrictions are fulfilled. If so, keep

ÂQ+

0 , and the implied structural parameters, otherwise discard it. Note that by con-

struction, the zero restrictions on the structural matrix hold for all draws.

6. Repeat these steps until the set of retained structural parameters contains S = 65000

elements.

Inference on the median target impulse response

The median target (MT) impulse response is the impulse response that is (element-wise)

closest in terms of standardized squared distance to the pointwise median of the set of sign

restricted impulse responses (termed here the median curve). Our implementation of the MT

impulse response follows Fry and Pagan (2011). In particular, let Θ̂s = {Θ̂s
j}j=0,...,H be the

set of structural impulse responses for s = 1, . . . , S with S = 65000, estimated on horizons

0, . . . , H. Denote the (element-wise) median curve as Θ̂med = {Θ̂j,med}j=0,...,H. The median

target impulse response is defined as:

Θ̂MT = argmins=1,...,S ∑
r∈R

∑
k∈K

∑
j∈J


 Θ̂

(r,k)
j,s − Θ̂

(r,k)
j,med

ŜDr,k,j




2

, (44)

with R,K ⊆ {1, . . . , K} and J ⊆ {0, . . . , H}. Starting with Θ̂
(r,k)
j,s = 1

S ∑
S
s=1 Θ̂

(r,k)
j,s , we can

write ŜDr,k,j =

√(
1
S ∑

S
s=1 Θ̂

(r,k)
j,s − Θ̂

(r,k)
j,s

)2

. That is, ŜDr,k,j is, for each impulse response

horizon j, each shock k, and each variable r the (pointwise) empirical standard deviation

of the set of admissible impulse responses. In the empirical analysis we consider in Equa-

tion (44) only responses to the monetary policy shock, i.e., K = {5}, and all the impulse

responses, R = {1, . . . , 7}. The length of the estimated impulse response horizon is H = 60,

and J = {0, . . . , 12}, i.e., impact period plus one year.



96 monetary policy shocks , set-identifying restrictions , and asset prices

We denote by QMT the rotation that yields Â−1
0 (QMT) corresponding to the median target

model. While the median curve does not correspond to any particular structural model, it

is possible to provide inference on the MT impulse response: an impulse response that

corresponds to a well-defined, unique structural model.

Our bootstrap procedure for inference on the MT response follows Linnemann, Uhrin,

and Wagner (2016). The algorithm can be described by the following steps:

1. Generate a bootstrap sample, y∗1 , . . . , y∗T using the Kilian (1998) bootstrap.

2. Estimate the parameters of the VAR model using y∗t , resulting in parameter estimates

B̂∗
1 , . . . , B̂∗

p. Calculate the structural impulse response function using these parameter

estimates and the original Â−1
0 (QMT).

3. Verify whether the impulse response function from the previous item, {Θ̂
QMT∗
j }j=0,...,J ,

satisfies the formulated sign restrictions. If it does, keep it, otherwise discard it.

4. Repeat the above steps until 1000 impulse responses are retained and calculate point-

wise bootstrap confidence bands as usual from these 1000 impulse responses.

4.c further results

In this Appendix we report results on comparison between the monetary policy shock

series, and the Romer and Romer (2004) (RR) series , ε̂rr
t , where the monetary policy shocks

are identified with Scheme II (Restrictions ZR and SR2). With a slight abuse of notation we

denote the identified monetary policy shock series as ε̂
mp
ts , similarly to the series obtained

with identification Scheme I. In the context of the present Appendix no confusion should

arise from this shorthand. The arguments of Section 4.5 remain valid, and are further

strengthened by the evidence below.

Figure 32 displays the histogram of the 65000 obtained correlation coefficients ρs =

Ĉorr(ε̂
mp
ts , ε̂rr

t ). As visual inspection suggests, the large majority of models are only midly

correlated with the RR series. The average level of correlation is 0.1692, and the median is

0.1654. These values suggest, that the achievable correlation level using Scheme II are on

average lower than those attained using Scheme I. However, the maximal correlation level

(0.4) is very similar to the one obtained using Scheme I and the simple recusrive identifi-

cation scheme, cf., Section 4.7). These three experiments suggest that there may be a cap

on the achievable correlation level that is most likely influenced by the data and the model

specification, but not the identification scheme.

Figures 33 – 35 display models with low ρs, medium ρs, and high ρs coefficients, respec-

tively. As discussed in the main text, these figures show models that imply quite distinct

impulse reponses both qualitatively and quantitatively. The lack of information content of

Figure 34, displaying models with medium ρs coefficients, is even more pronounced than

that of the corresponding figure in the main text, Figure 25.
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t . Scheme II.
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Figure 33: Impulse responses from models s = 1, . . . , 100. Identification Scheme II.
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Figure 34: Impulse responses from models s = 37450, . . . , 37550. Identification Scheme II.
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Figure 35: Impulse responses from models s = 64900, . . . , 65000. Identification Scheme II.



5
C O N C L U S I O N S A N D O U T L O O K

The contributing articles of the present thesis include self-contained conclusions and short

abstracts. I have summarized the new scientific results in Section 1.3 of the Introduction

chapter. In the present chapter I aim to highlight directions of future research based on the

results of this thesis.

The focus of scrutinizing the identified monetary policy shock originated ultimately in

the work resulting in Chapter 3, in cooperation with Martin Wagner. In this chapter we

evaluated on a normative basis how “good” monetary policy shock estimates of a classical

monetary policy SVAR are. Furthermore, we extended this evaluation to the classical SVAR

augmented with a forward-looking variable, and a factor augmented VAR. According to

the results, information-augmentation is neither methodologically necessary, nor explicitly

beneficial. The simple, benchmark monetary policy model specification seems adequate.

This result may be surprising in light of the recent surge of contributions discussing the

problem of foresight in empirical studies, and the problem of non-fundamentalness. There

are two explanations in my view. First, non-fundamentalness may indeed be not as preva-

lent in empirical monetary policy reserarch as it is in empirical fiscal policy research. In

order to evaluate this conjecture, there needs to be more empirical evidence. Second, it can

be that the tools for detecting non-fundamentalness are not sufficiently developed, and the

test results are not reliable. As the recent paper, of, e.g., Chen, Choi, and Escanciano (2017)

shows, under non-Gaussianity the null hypothesis of fundamentalness is equivalent to the

requirement that the reduced form innovations form a martingale difference sequence. This

is ultimately the same as the null hypothesis of the specification testing literature that reads

as follows. A regression model y = f (x, β) + u for some fixed f is correctly specified if

E(u | x) = 0 almost surely for some β0 in the set of admissible coefficients β. See Bierens

(2016) for further details. Thus, in my view, drawing on the ideas of the consistent spec-

ification testing literature seems to be a natural next step in developing tools to detect

fundamentalness.1

Since the first discussions on the issue, I became increasingly convinced that the identified

shocks themselves indeed deserve explicit attention that is often lacking in SVAR studies.

These considerations, and intensive reflections on the nature of monetary policy shocks led

to the idea of Chapter 4. The core benchmarking idea of this chapter turned out to be useful

in the particular context of set identified monetary policy SVAR analysis. Through inves-

tigating only those structural models that imply monetary policy shocks highly correlated

with benchmark measures we can discover by default hidden empirical conclusions. The

method is easily adaptable to other empirical questions, and future research will investigate

1 Sahneh (2016) takes a first step in this direction. However, the proposed test ultimately falls short of being an

extension of Bierens (1990) and Bierens and Ploberger (1997) to testing non-fundamentalness. This is despite

the fact that the motivation explicitly stems from these papers.
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if comparison with a benchmark shock is successful in shrinking the identified set also in

other empirical specifications.

I have taken a first step in this direction, and the details are as follows. We have seen in

Chapter 2 that the set of admissible impulse responses to the government spending shock

is quite large, and the empirical conclusions based on them may not be unambiguous.

In light of the results of Chapter 4, it seems natural to ask whether the benchmarking

approach is successful in shrinking the identified set in this particular empirical model.

In the context of fiscal policy, several candidate benchmark shocks exist in the literature.

First, the military news series of Ramey (2011) can be viewed as a government spending

shock series. Second, Romer and Romer (2010) construct narrative-based tax shock series

using methodology similar to that of Romer and Romer (2004). I have used both of these

benchmarks on the fiscal VAR studied in Chapter 2 explicitly identifying a tax shock via

additional sign restrictions. However, I could not discover results different from what is

described in the paper. My conjecture is, that this is because both candidate benchmark

series are relatively low frequency in the sense that most of the elements of the series

are zeros. Thus, benchmarking via investigating pair-wise correlations is not necessarily

beneficial.

There are two potential next steps for the analyses carried out in this thesis. First, draw-

ing on the ideas in Ludvigson, Ma, and Ng (2017) one can possibly further restrict the

identified sets in Chapters 2 and 4. The key insight is to restrict certain episodes in the

policy shock series. This amounts to postulating that the (fiscal or monetary) policy shock

should or should not exceed a certain threshold for designated periods in the series. These

restrictions could stem from stylized facts established from the benchmark policy shock

series mentioned above. Second, it would be of independent interest to estimate a time

varying fiscal SVAR with the sign restrictions designed for Chapter 2. The motivation for

this step comes from the observation, that the impulse responses of Chapter 2 are on both

sides of the zero line, but the shape of the bottom and top envelopes is quite similar. This

suggests that there might be two shock propagation structures corresponding to, e.g., dif-

ferent episodes in the data. A time varying parameter estimation could explicitly verify

whether this conjecture is correct.

The particularly negative result in Chapter 4 about the sign restricted median curve and

the median target, in conjunction with the critiques in Kilian and Murphy (2012), points

out that it is still an open issue how to adequately report and analyze set identified impulse

responses. At a general level, the challenge of choosing between competing structural

models in a frequentist setting remains still open for future research.
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Castelnuovo, E., and S. Nisticò (2010): “Stock Market Conditions and Monetary Policy in

a DSGE Model for the U. S.,” Journal of Economic Dynamics and Control, 34(9), 1700–1731.

Chen, B., J. Choi, and J. C. Escanciano (2017): “Testing for Fundamental Vector Moving

Average Representations,” Quantitative Economics, 8(1), 149–180.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999): “Monetary Policy Shocks: What

Have We Learned and to What End?,” in Handbook of Macroeconomics, ed. by J. B. Taylor,

and M. Woodford, vol. 1, chap. 2, pp. 65–148. Elsevier.

Coibion, O. (2012): “Are the Effects of Monetary Policy Shocks Big or Small?,” American

Economic Journal: Macroeconomics, 4(2), 1–32.

Coibion, O., and Y. Gorodnichenko (2011): “Monetary Policy, Trend Inflation, and the

Great Moderation: An Alternative Interpretation,” American Economic Review, 101(1), 341–

70.

Faust, J. (1998): “The Robustness of Identified VAR Conclusions About Money,” Carnegie-

Rochester Conference Series on Public Policy, 49, 207 – 244.

Faust, J., E. T. Swanson, and J. H. Wright (2004): “Identifying VARs Based on High

Frequency Futures Data,” Journal of Monetary Economics, 51(6), 1107–1131.

Fernald, J. G. (2014): “A Quarterly, Utilization-Adjusted Series on Total Factor Productiv-

ity,” Working Paper Series nr. 2012-19, Federal Reserve Bank of San Francisco.



Bibliography 103
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