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Abstract

This thesis is concerned with the development of new approaches
to redistancing and conservation of mass in finite element methods
for the level set transport equation.
The first proposed method is a PDE- and optimization-based re-
distancing scheme. In contrast to many other PDE-based redis-
tancing techniques, the variational formulation derived from the
minimization problem is elliptic and can be solved efficiently using
a simple fixed-point iteration method. Artificial displacements are
effectively prevented by introducing a penalty term. The objective
functional can easily be extended so as to satisfy further geometric
properties.
The second redistancing method is based on an optimal control
problem. The objective functional is defined in terms of a suit-
able potential function and aims at minimizing the residual of the
Eikonal equation under the constraint of an augmented level set
equation. As an inherent property of this approach, the interface
cannot be displaced on a continuous level and numerical instabil-
ities are prevented.
The third numerical method under investigation is an optimal con-
trol approach designed to enforce conservation of mass. A numer-
ical solution to the level set equation is corrected so as to satisfy
a conservation law for the corresponding Heaviside function. Two
different control approaches are investigated.
The potential of the proposed methods is illustrated by a wide
range of numerical examples and by numerical studies for the well-
known rising bubble benchmark.
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1 Introduction

Evolving interfaces occur in a large variety of scientific problems and practical applications,
such as image processing, medical simulations and multi-phase flows. The shape of these
interfaces might be complex and undergo topological changes. In two-phase flow problems
for example, two immiscible fluids with different densities and viscosities are separated by
an interface. Accurate knowledge of the interface location plays an important role in the
modeling of such flows, because density, viscosity and surface tension directly depend on it.
Unfortunately, both fluid behavior and interface motion are hard to predict and the use of
experiments and measurements is often limited. An appealing alternative is the numerical
modeling of free interface problems which gives a deeper insight into the physical phenomena
in many cases.

1.1. Objectives

Even though a multitude of numerical algorithms for free interface problems exist, neither of
them is perfect and problems such as an unintended loss of volume must be considered. One
popular representative of the class of so-called interface-capturing approaches is the level set
method. The key idea of this technique boils down to the implicit description of the interface
as the zero level set of a scalar function. The motion of the interface is governed by the
corresponding level set transport equation. This approach offers several major benefits: the
ease of implementation, the possibility to use higher order approximations and the potential to
allow for topological changes. Unfortunately, level set methods are generally non-conservative,
i.e. volume may be lost or gained. Furthermore, on a discrete level the advection of the level set
function and the evaluation of interface related quantities such as normal vector and curvature
often rely on the use of level set functions that are close to signed distance functions. Even
if the level set function is initialized as signed distance to the interface, this property is not
preserved as the interface evolves. In order to compensate for these drawbacks, extensions of
the level set method have been developed to improve mass conservation and to correct level set
functions so as to approximate signed distance functions. The latter methods are commonly
referred to as redistancing schemes.
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1. Introduction

The primary goal of the present work is to elaborate on the application of level set methods to
the simulation of free interface problems. In particular, we consider redistancing schemes and
conservative extensions of the level set approach.
In Chapter 5, two optimization-based redistancing techniques are presented and analyzed.
The first one is an unconstrained optimization problem, in which the residual of a suitable
potential function is minimized so as to approximate a signed distance function [BK13]. An
unintended artificial interface displacement is prevented by adding a suitable penalty term.
Different potential functions can be employed and offer the possibility to incorporate further
design criteria. The resulting numerical scheme is very robust and global, so that only very
few iterations are needed for this method to converge. The second approach is based on a
constrained optimal control problem [BKS16]. The formulation of the state equation is based
on the level set transport equation augmented by a source term, correcting the solution so as to
minimize the objective functional. The potentials from the previous approach can be employed
for the definition of the objective functional. Since transport equation and redistancing task
are solved simultaneously, this is a monolithic approach.
A conservative extension based on an optimal control approach [Kuz13, BK14] is presented in
Chapter 6. A numerical solution to the level set equation is corrected so as to satisfy a conser-
vation law for the corresponding Heaviside function. In contrast to many other conservative
approaches, the procedure corrects locally and is conservative to machine precision.

1.2. Related Work

Over the past decades, many redistancing techniques have been developed. They can generally
be classified into geometric and PDE-based redistancing approaches. Former ones rely on the
direct computation of the interface and usually require an explicit localization. PDE-based
methods on the other hand build on solving a redistancing equation and mostly avoid the
explicit and computationally expensive localization of the interface.
One of the most popular geometric redistancing approaches is the fast-marching method
[Tsi94, Set96b, Cho01], which constructs the level set function by using upwind values. This
approach is limited to structured meshes and the generalization to higher degree approxi-
mations is complicated. However, many redistancing approaches only construct the level set
function in immediate vicinity of the interface where accuracy is most crucial and make use
of this approach to efficiently extend values to the remaining computational domain. Another
interesting geometric redistancing approach was proposed by Ausas et al. in [ADB11]. In a
thin interface region, the level set function is computed explicitly to be the signed distance to
the interface. To avoid inaccuracies in mass caused by the redistancing procedure, the level set
function is corrected by an element-wise shift before the values are extended to the remaining
domain.
PDE-based approaches are mostly based on minimizing the residual of the Eikonal equation
to obtain a signed distance function. The so-called hyperbolic redistancing approach was
introduced by Sussman et al. in [SSO94]. Essentially, a signed distance function is obtained by
solving a hyperbolic transport equation to steady state. On a discrete level however, a suitable
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1.3. Outline

regularization of the sign function must be employed and the approach notably depends on this
choice [CT08]. The convected level set method proposed by Ville et al. [VSC11] tries to combine
the hyperbolic redistancing equation with the level set transport equation. Unfortunately, the
resulting numerical approach is very sensitive to the chosen parameters and accuracy might
not be satisfactory. Another extension of the hyperbolic redistancing approach was introduced
in the paper by Li et al. [LXGF10], in which an energy-minimizing gradient flow problem is
considered. However, the approach faces time step restrictions which may lead to significant
computational costs. Furthermore, the interface might be moved during redistancing.
Several conservative extensions of the level set method have already been developed. A simple
technique is based on shifting the level set function by a suitably chosen constant so as to
conserve volume [Smo01]. The constant can efficiently be determined using fixed-point iteration
techniques. The major drawback of this approach is that it acts globally and in an unphysical
manner, i.e. mass may be redistributed to wrong places. An appealing alternative is the
approach originally presented by Olsson and Kreiss [OK05, OKZ07]. Its key idea is to combine
the level set method with a volume of fluid technique. For the latter one, conservative advection
schemes exist. A similar technique is employed in the dual level set approach proposed by
Lesage and Dervieux [LD09], for which a transport equation for a characteristic function is
solved in a conservative manner. The coupling with the level set function is achieved by
solving the dual level set equation. Unfortunately, this approach faces convergence problems
and uniqueness might not be clear. Yet another very similar method was proposed by Kees
et al. [KAFB11], in which the transport equation for the corresponding Heaviside function is
solved conservatively. Using a variational approach, the level set function is coupled with the
Heaviside function. Further conservative level set extensions have been reported in [PSVW05,
SP00, DHO+14, DPLFP06].

1.3. Outline

This thesis is organized as follows:
Chapter 2 introduces the generic transport equation, from which many specific models such as
the level set equation are deduced. The following section focuses on free interface problems.
After a brief introduction, numerical solution strategies are presented and classified. The
chapter concludes with three free interface model problems from different scientific disciplines.
Chapter 3 is concerned with an introduction to Galerkin methods. After defining an abstract
problem setting, stating fundamental results and studying two model problems, the focus is
laid on finite elements as special class of Galerkin approximations. A brief introduction to
stability and numerical analysis is provided for the model problems, before investigating the
application to hyperbolic problems. To achieve numerical stability in finite element based
schemes for hyperbolic problems, the SUPG stabilization technique is presented. The chapter
closes with a brief introduction to time-discretization approaches.
Since level set methods are of primary interest in this thesis, an extensive introduction is
provided in Chapter 4. Special emphasis is laid on the signed distance function property and
the application to modeling the evolution of an interface. Next, the finite element discretization
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1. Introduction

of the level set approach is discussed and the discrete interface reconstruction is investigated.
The last part of the chapter is concerned with time discretizations of the level set equation.
In Chapter 5 the focus is laid on level set redistancing techniques. The chapter begins with an
overview of desirable properties of such methods. Redistancing methods can generally be clas-
sified as either geometric or PDE-based approaches. The first section provides an overview of
commonly used geometric redistancing schemes and discusses their advantages and drawbacks.
The following sections focus on PDE-based approaches. First, the well-known hyperbolic re-
distancing approach developed by Sussman et al. [SSO94] is presented. On this basis, the
monolithic convected level set method [VSC11] is introduced. Next, the parabolic redistancing
[LXGF10] technique is considered, before turning to the optimization based elliptic redistancing
approach [BK13]. This particular approach is investigated thoroughly and the use of different
potential functions is motivated, before the corresponding finite element discretization is given.
In the next section, an optimal control approach [BKS16] is proposed and analyzed. Discrete
optimality conditions are derived and numerical solution strategies are outlined. The chapter
concludes with detailed numerical examples to assess the proposed numerical methods.
Chapter 6 deals with conservative level set methods. After providing an a-priori estimate, the
level set shifting approach is introduced, in which conservation of mass is accomplished by
adding a suitable constant to the level set function [Smo01]. The following sections outline
more commonly used approaches, which are all essentially based on the combination of the
level set method with the conservative volume of fluid technique. Then, an optimal control
approach is proposed, in which a non-conservative level set function is corrected so as to satisfy
a conservation law for the corresponding Heaviside function. Properties and the discretization
of the optimal control problem are discussed and a detailed numerical evaluation is provided
in the final section.
Chapter 7 introduces a model two-phase flow problem. The first sections address the derivation
of the incompressible Navier-Stokes equations from conservation laws. Special emphasis is laid
on the coupling conditions and the application of the level set method in the context of two-
phase flow problems. The numerical level set approaches proposed and investigated in the
previous chapters are then validated for the rising bubble benchmark problem [HTK+07].

1.4. Original publications

Some of the results in this thesis have already been published in the articles listed below and
are joint work with the author’s advisor Dmitri Kuzmin. The optimal control approach for
redistancing was partly developed in collaboration with John N. Shadid.
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1.4. Original publications
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nite element level set methods, University of Erlangen-Nürnberg, Diplomarbeit,
2012

[BK13] Basting, Christopher ; Kuzmin, Dmitri: A minimization-based fi-
nite element formulation for interface-preserving level set reinitialization.
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2 Transport Equations and Free Interfaces

Moving interfaces occur in a variety of scientific problems and practical applications ranging
from image processing techniques to the simulation of crystal growth and numerical fluid dy-
namics with multiple phases. Accurate knowledge of the interface position is frequently crucial
for the underlying models, but explicit solutions to such problems rarely exist. Many impor-
tant physical effects such as surface tension take place on the interface. Hence, a multitude of
numerical approaches for the approximation of propagating interfaces has been developed in
the past decades.
The evolution of general quantities can be described by mathematical models based on differ-
ential equations. In fluid dynamics for example, models are derived from physical conservation
laws. The Navier-Stokes equations form a well-known model of the motion of fluids and are
directly obtained from conservation of mass, momentum and energy, cf. Chapter 7.
In this introductory chapter, we will present basic concepts of (numerical) approaches for
free interface problems. In the first section, we will introduce the generic transport equation,
from which specific transport problems can be derived. Based on these transport equations,
the propagation of an interface can be modeled mathematically. In the subsequent section,
we highlight common numerical techniques for the description of an evolving interface. Of
particular interest in this thesis is the level set method, which will be thoroughly discussed
in Chapter 4. The chapter concludes by showing three interface problems from scientific
disciplines, to which the presented techniques are commonly applied.

2.1. Transport Equations

Following [KH15, Kuz10], we introduce the generic transport equation. Therefore, let us con-
sider a bounded domain Ω ⊂ Rd and a time-dependent conserved quantity c : (0, T )×Ω→ R.
For an arbitrary control volume V ⊆ Ω with sufficiently smooth boundary, the temporal vari-
ation of c is given by

d
dt

∫
V
c(t,x) dx +

∫
∂V

f ◦ c(t,x) · n dσ =
∫
V
s(t,x) dx, (2.1)
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2. Transport Equations and Free Interfaces

where f denotes the flux function, describing the rate at which the mass enters or leaves V
and s a source term taking internal sources or sinks into account. Under sufficient regularity
assumptions on c(t,x) and f ◦ c(t,x), we can transform the surface integral in (2.1) into a
volume integral by application of the divergence theorem:∫

V

[
∂

∂t
c(t,x) +∇ ·

(
f ◦ c(t,x)

)
− s(t,x)

]
dx = 0. (2.2)

Since this holds for any control volume V , we obtain the partial differential equation

∂

∂t
c(t,x) +∇ ·

(
f ◦ c(t,x)

)
= s(t,x) in Ω. (2.3)

The flux function typically models the transport of c by convective and diffusive effects:(
f ◦ c(t,x)

)
:= v(t,x)c(t,x)− d(t,x)∇c(t,x). (2.4)

The first term describes the convective transport downstream by the velocity field v(t,x). The
second term takes diffusive effects into account (usually taking place on a molecular level),
which are commonly modeled in terms of a diffusion coefficient d(t,x) ≥ 0. Substituting (2.4)
into (2.3), we obtain the generic transport equation

∂

∂t
c+∇ · (vc)−∇ · (d∇c) = s in Ω. (2.5)

For the well-posedness, we must provide an initial condition

c(0,x) := c0(x) in Ω, (2.6)

and suitable boundary conditions on ∂Ω. From the generic transport equation (2.5), we can
deduce models of several types of partial differential equations:
◦ Elliptic transport problems: in the steady-state limit, the time derivative vanishes and

the equation reduces to

∇ · (vc− d∇c) = s in Ω. (2.7)

In absence of convective effects, i.e. for v ≡ 0, the equation further reduces to the
(generalized) Poisson equation

−∇ · (d∇c) = s in Ω. (2.8)

In particular, for a constant diffusion coefficient and a vanishing right hand side, the
Laplace equation is obtained.
◦ Parabolic transport problems: if the fluid is at rest, i.e. v ≡ 0, the generic transport

equation reduces to

∂

∂t
c−∇ · (d∇u) = s in Ω. (2.9)
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This equation is commonly used to model heat conduction and other diffusive transport
processes. At steady state, the Poisson equation is obtained.

◦ Hyperbolic transport problems: when no diffusive effects take place, we obtain

∂

∂t
c+∇ · (vc) = s in Ω. (2.10)

In the homogeneous case s ≡ 0, we obtain the continuity equation

∂

∂t
c+∇ · (vc) = 0 in Ω, (2.11)

which can be derived from conservation laws. In fluid dynamics, it models the evolution
of the fluid density.

2.2. Interface Description

We now turn to problems involving free interfaces. In the case of the two-phase flow problem for
example, the evolution of two immiscible fluids separated by an evolving interface is considered.
Each phase can be modeled using the Navier-Stokes equations, and the interaction between
the two phases is accounted for by suitable coupling conditions on the interface. Therefore,
accurate knowledge of the position of the interface is of great importance in this setting. This
problem is studied in Chapter 7 in more detail.
In this section we will present an overview of numerical methods for free interface problems.
Those are commonly classified as follows:

1. Interface tracking methods explicitly describe the interface by adding a specific structure
to the mesh. The actual movement of the interface is then achieved by moving the
associated nodes according to the given velocity field. It is therefore considered to be
a Lagrangian approach. Interface tracking methods can be very accurate, but might
require an update of the computational mesh as quality deteriorates when nodes are
moved with the interface, particularly when interfaces are complex and not smooth.

2. Interface capturing methods use an implicit description of the interface and are Eulerian
type techniques. They are more flexible than the interface tracking approaches since
they do not require re-meshing, but are also less accurate in certain situations. The level
set method to be introduced in this chapter is amongst the most popular representatives
of interface capturing approaches. Other common choices are the related phase field
approaches and volume of fluid methods.

A detailed discussion of different approaches can be found in [Smo01]. The structure of this
section is based on the introductory chapter in the thesis of Parolini [Par04].
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2. Transport Equations and Free Interfaces

2.2.1. Interface Tracking Methods

A usual approach in interface tracking methods is to represent the interface by a set of marker
points, ideally located on the interface. The interface between these points is usually interpo-
lated. Following [Hym84, HN81, Par04], the marker points can be represented as the height
function h(t,x) w.r.t. the mesh. The evolution of this function can then be expressed by the
kinematic condition

∂

∂t
h(t,x) + v · ∇h(t,x) = 0, (2.12)

for a given velocity field v. Unfortunately, this approach cannot handle complex interface
topologies.

2.2.2. Interface Capturing Methods

Two of the most commonly used representatives of interface capturing approaches are the level
set method and the volume of fluid method. Both methods are based on solving the continuity
equation (2.11). In case of the two-phase flow problem, the velocity field v is obtained from
solving the Navier-Stokes equations.

2.2.2.1. Volume of Fluid Method

The volume of fluid method introduced by Hirt and Nichols [HN81] is based on the advection
of an indicator function ψ(t,x). The value of ψ in each cell is the volume fraction of one
particular phase in this cell. Hence, in cells containing portions of both phases, the value of ψ
is between 0 and 1. In all other cells it is either 0 or 1. The evolution of the interface is then
governed by the advection of the indicator function ψ:

∂

∂t
ψ(t,x) + v(t,x) · ∇ψ(t,x) = 0 in Ω. (2.13)

General phase-dependent and piecewise constant quantities η(t,x) (for example density or
viscosity) can then be expressed by

η(t,x) = ψ(t,x)η1 + (1− ψ(t,x))η2. (2.14)

Note that by design of the method, the interface is not defined sharply but in the range of
a cell. From a numerical point of view, special care needs to be taken when solving (2.13)
due to the discontinuous function ψ(t,x). The accuracy of the interface location suffers from
numerical diffusion or oscillations. Extensive literature on the numerical implementation of
volume of fluid methods exist. The interested reader is referred to [Par04].
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2.2.2.2. Level Set Method

The level set method is based on an idea introduced by Dervieux and Thomasset [DT80], and
was first proposed by Osher and Sethian [OS88]. Similarly to the volume of fluid approach,
we introduce an auxiliary function ϕ : (0, T ) × Ω to describe the evolution of the interface.
The two phases are told apart by the sign of the level set function ϕ, and consequently, the
interface is given as the zero level set of ϕ. Again, the propagation of the interface is governed
by the continuity equation

∂

∂t
ϕ(t,x) + v(t,x) · ∇ϕ(t,x) = 0 in Ω. (2.15)

As we will see in the subsequent chapters, it is advantageous to initialize ϕ as the signed distance
function (cf. Definition A.3) to the interface. In contrast to the volume of fluid method, the
auxiliary function ϕ is smooth (sufficient regularity of the interface provided), and therefore
better suited for the numerical solution of (2.15). Furthermore, geometrical quantities such as
normal vector and curvature can easily be derived from ϕ as it offers a sharp representation of
the interface. In terms of mass conservation, which is an inherent property of volume of fluid
methods, special numerical precautions must be taken when applying the level set method. A
detailed introduction will be provided in Chapter 4.
More recently, a hybrid approach was proposed in [BW13] to combine the advantages of inter-
face tracking and interface capturing methods. It introduces an implicit level set representation
to which the computational mesh is aligned by minimization of a mesh quality functional.

2.3. Free Interface Problems

In this section we present examples of free interface problems from different scientific disciplines.
They all share the need for an accurate interface representation, and can be solved numerically
using one of the techniques described above. Since the remainder of this thesis focuses on level
set methods, we will restrict ourselves to this particular interface capturing technique.

2.3.1. Simulation of Tumor Growth

We illustrate the usage of level set functions for this free boundary problem based on the work
presented in [APB00, HMS06]. We consider a domain Ω ⊂ Rd, d ∈ {1, 2, 3}, in which the
time dependent tumor is contained. The set consisting of all tumor cells is denoted by Ω1(t).
The tumor growth depends on many variables of the biological system [HMS06]: density of
living tumor cells uT , density of dead tumor cells uD, density of new capillaries uC , nutrient
concentration uN , and tumor angiogenic factor concentration uA. Several model assumptions
are made. An increase in uT requires a sufficient nutrition concentration. Conversely, low
nutrition concentration causes a decrease of living tumor cells. Living tumor cells may move
to areas of higher nutrition concentration, dead cells cannot move. Living tumor cells increase
the concentration uA, which diffuses also into the domain surrounding the tumor. Nutrition is
provided at a linear rate. Putting all assumptions together, a mathematical model is derived,
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in which the evolution of the tumor domain Ω1 is described by a normal velocity field F on
the tumor boundary:

∂

∂t
ϕ+ F |∇ϕ| = 0. (2.16)

The velocity F is only defined on ∂Ω1, which is why it must be extended to Ω. The authors
in [HMS06] see several considerable advantages in using the level set approach for this free
boundary problem:
◦ The sign of the level set function tells the tumor domain Ω1 apart from its surrounding

domain Ω2.
◦ As a natural attribute of level set functions, geometric properties such as normal vector

and curvature on the boundary are readily available.
◦ The model can be formulated in all space dimensions d ∈ {1, 2, 3}.
◦ A wide range of efficient level set method based algorithms exists.

2.3.2. Mean Curvature Flow

In mean curvature flow problems, the interface moves in normal direction with a velocity
whose magnitude is directly proportional to the interface curvature. Such flows arise in many
physical models such as expansion of flames or growth processes (e.g. crystal growth, tumor
growth). Other fields of application can be found in image processing such as image restoration,
segmentation or surface reconstruction. In mean curvature flow problems, the velocity v of
the interface Γ(t) can be described by

v(t,x) = −bκ(t,x)n̂(t,x) x ∈ Γ(t), (2.17)

where n̂ is the interface normal vector and κ the interface curvature. The constant b is a scaling
factor and its sign determines the direction of movement (expansion or shrinking). As in (2.16),
the evolution of the interface can be described in terms of a level set function governed by the
transport equation

∂

∂t
ϕ+ V |∇ϕ| = 0, (2.18)

where V denotes the component of v normal to the interface. Numerical methods are used to
solve this partial differential equation.

2.3.3. Computational Physics

Another wide field of applications of the level set method is computational physics. Particular
examples are compressible and incompressible two-phase flows, solid-fluid couplings, liquid-gas
interactions and free surfaces. As for the previous problems, the level set method is used to
capture the moving interface at which important physical effects take place. In Chapter 4, we
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will consider the two-phase problem as a particular example for problems from this scientific
discipline.
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3 Approximation by Galerkin Methods

In this chapter we study (linear) problems as they usually arise in variational formulations
of partial differential equations. In particular, we consider Galerkin approximations, in which
the solution space of such problems is replaced by a suitable finite dimensional space. For
both, the continuous and the discrete problem, conditions guaranteeing well-posedness of the
problem in the sense of Hadamard (cf. Definition 3.1) and stability with respect to the given
data can be formulated. As a particular representative of a Galerkin approximation approach,
we introduce the finite element method and derive some stability and a priori error estimates
for model problems. The underlying theory is very general and can be applied to a wide range
of (sub-)problems.
In the first section, an abstract problem setting is formulated. In this setting, we state con-
ditions for stability and well-posedness, and verify these for two model problems. In the
following section, the general concept of Galerkin approximations is presented. Subsequently,
we introduce the finite element method and formulate conditions for stability, solvability and
uniqueness. Important concepts for the numerical analysis are briefly reviewed, and stability
as well as error estimates are derived for the two model problems under consideration. The
streamline upwind Petrov Galerkin stabilization technique is presented, applied to the hyper-
bolic model problem, and a general error bound is quoted. Finally, in the last section of
this chapter, we comment on time discretization approaches to obtain fully discrete numerical
schemes for time-dependent problems.
The chapter is largely based on the books by Ern and Guermond [EG04], Larsson and Thomée
[LT05], Knabner and Angermann [KA03] as well as Quarteroni and Valli [QV08]. The section
on stabilization of finite elements follows the book by Gross and Reusken [GR11].

3.1. Abstract Problem Setting

Given two Banach spaces U and V equipped with norms ‖·‖U , ‖·‖V , a continuous bilinear form
a : U ×V → R and a bounded linear form b ∈ V ∗, we consider the following abstract problem:

Find u ∈ U such that a(u, v) = b(v) for all v ∈ V. (3.1)
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3. Approximation by Galerkin Methods

The function space U is usually referred to as solution space, and V as test space.

Definition 3.1 (Well-posedness, Hadamard [EG04])
Problem (3.1) is called well-posed if it has a unique solution and the solution is stable with
respect to the data, i.e.

∃c > 0 : ∀b ∈ V ∗ : ‖u‖U ≤ c ‖b‖V ∗ . (3.2)

The following result provides conditions for the well-posedness of the abstract problem (3.1):

Theorem 3.2 (Banach-Nečas-Babuška [EG04, Theorem 2.6])
Let U and V be Banach spaces and V be reflexive. Further let a : U × V → R be a
continuous bilinear form and b ∈ V ∗ bounded. Then, problem (3.1) is well-posed if and
only if the inf-sup conditions

∃α > 0 : inf
u∈U

sup
v∈V

a(u, v)
‖u‖U ‖v‖V

≥ α, (3.3a)

∀v ∈ V :
(
∀u ∈ U, a(u, v) = 0

)
=⇒

(
v = 0

)
. (3.3b)

are satisfied. Moreover, if conditions (3.3a) and (3.3b) are fulfilled, the following a priori
estimate holds:

∀b ∈ V ∗ : ‖u‖U ≤
1
α
‖b‖V ∗ . (3.4)

A proof of this theorem can be found in [EG04]. The Banach-Nečas-Babuška Theorem is
sometimes also referred to as ”Generalized Lax-Milgram Theorem”.
For simplicity, we now assume U and V to be identical Hilbert spaces, even though (reflexive)
Banach spaces can be considered in a more general setting. Problem (3.1) then reduces to:

Find u ∈ V such that a(u, v) = b(v) for all v ∈ V. (3.5)

A bilinear form a(·, ·) is said to be V -coercive, if

∃CV > 0 : a(v, v) ≥ CV ‖v‖2V ∀v ∈ V. (3.6)

The restriction to Hilbert spaces makes V -coercivity of a(·, ·) a sufficient but not a necessary
condition for the well-posedness:

Theorem 3.3 (Lax-Milgram [EG04])
Let V be a Hilbert space (U := V ), a : V ×V → R be a continuous, coercive bilinear form
and b ∈ V ∗. Then, problem (3.5) is well-posed and

‖u‖V ≤
1
CV
‖b‖V ∗ , (3.7)
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where CV is the V -coercivity constant from (3.6).

A proof of this theorem can be found in [LT05]. The theorem is also a direct consequence of
Theorem 3.2. Note that if the bilinear form a(·, ·) is symmetric and coercive, problem (3.5) is
equivalent to the minimization problem

min
u∈V

(
1
2a(u, u)− b(u)

)
.

This characterization is sometimes referred to as Dirichlet’s principle; the interested reader is
referred to [LT05, Chapter 3].

3.1.1. Poisson’s Problem

Let Ω be an open domain and U = V = H1
0 (Ω). The homogeneous Dirichlet problem for the

Poisson equation is given by: find u ∈ C2(Ω) such that

−∆u = f in Ω, (3.8a)
u = 0 on ∂Ω, (3.8b)

with right hand side f ∈ L2(Ω). After multiplying (3.8a) by a test function v ∈ H1
0 (Ω),

integrating over Ω, applying the integration by parts formula and invoking the homogeneous
boundary condition (3.8b), we obtain the weak form of the problem:

Find u ∈ H1
0 (Ω) such that (3.9a)∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ H1

0 (Ω). (3.9b)

Introducing the bilinear form

a(u, v) :=
∫

Ω
∇u · ∇v dx, (3.10)

and the linear form

b(v) :=
∫

Ω
fv dx, (3.11)

equation (3.9a) can be rewritten as

a(u, v) = b(v) ∀v ∈ H1
0 (Ω). (3.12)

The forms a(·, ·) and b(·) are both continuous and by application of Poincaré’s inequality (A.9),

a(u, u) =
∫

Ω
∇u · ∇u dx ≥ cΩ ‖u‖2V , (3.13)
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a(·, ·) is also V -coercive. Theorem 3.3 therefore ensures that (3.9a) admits a unique solution
u, and the stability estimate

‖u‖H1(Ω) ≤ c ‖f‖V ∗ ≤ C ‖f‖L2(Ω) (3.14)

holds. The last inequality in (3.14) is obtained by application of the Cauchy-Schwarz and
Poincaré’s inequality (Eq. (A.12))

|b(v)| =
∣∣∣(f, v)L2(Ω)

∣∣∣ ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ C ‖f‖L2(Ω) ‖v‖H1(Ω) , (3.15)

which directly implies

‖b‖V ∗ ≤ C ‖f‖L2(Ω) . (3.16)

Let us now consider a different boundary condition. We replace the Dirichlet boundary con-
dition in (3.8b) by the homogeneous Neumann boundary condition to obtain the following
problem. Let f ∈ L2(Ω) and g ∈ L2(∂Ω).

Find u ∈ V = H1(Ω) such that: (3.17a)
−∆u = f in Ω, (3.17b)
∂nu = g on ∂Ω. (3.17c)

Application of the Gauß theorem∫
∂Ω
g dσ =

∫
∂Ω
∇u · n dσ =

∫
Ω

∆u dx = −
∫

Ω
f dx, (3.18)

reveals that the data f and g must satisfy the compability condition∫
Ω
f dx +

∫
∂Ω
g dσ = 0. (3.19)

Multiplication of (3.17b) by an arbitrary test function v ∈ H1(Ω) and integration over Ω gives
the variational form of the problem: find u ∈ H1(Ω) such that

a(u, v) = b(v), ∀v ∈ H1(Ω). (3.20)

with bilinear and linear form

a(u, v) :=
∫

Ω
∇u · ∇v dx, (3.21a)

b(v) :=
∫

Ω
fv dx+

∫
∂Ω
gv dσ. (3.21b)
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The solution of (3.20) is defined uniquely up to a constant. To ensure well-posedness, one
therefore commonly requires an additional condition such as the solution having zero mean
over Ω, i.e. by using the space

H1∫
=0(Ω) :=

{
v ∈ H1(Ω) :

∫
Ω
v dx = 0

}
. (3.22)

Since for constant test functions equation (3.20) is satisfied as a direct consequence of the
compatibility condition, test functions can be restricted to H1∫

=0(Ω).

Lemma 3.4
Let Ω be an open domain with piecewise smooth boundary ∂Ω and f ∈ L2(Ω), g ∈ L2(∂Ω)
such that (3.19) holds. Then the problem

find u ∈ H1∫
=0(Ω) such that (3.23a)

a(u, v) = b(v), ∀v ∈ H1∫
=0(Ω), (3.23b)

is well-posed and the solution u to (3.23) satisfies the stability estimate

‖u‖H1(Ω) ≤ c
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
. (3.24)

Proof. The continuity of a(·, ·) is clear. To show coercivity with respect to H1∫
=0(Ω), we apply

the generalized Poincaré-Friedrich inequality:

a(u, u) =
∫

Ω
∇u · ∇u dx ≥ cΩ ‖u‖H1(Ω) .

Using the Trace Theorem A.8 we employ the inequality

‖v‖L2(∂Ω) ≤ C ‖v‖H1(Ω) ∀v ∈ H1(Ω),

to prove the continuity of b(·):

|b(v)| ≤
∣∣∣∣∫

Ω
fv dx

∣∣∣∣+
∣∣∣∣∫
∂Ω
gv dσ

∣∣∣∣ ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) + ‖g‖L2(∂Ω) ‖v‖L2(∂Ω) ≤ c ‖v‖H1(Ω) .

Existence and uniqueness of a solution in H1∫
=0(Ω) can now be concluded by a generalized

version of the Lax-Milgram Theorem 3.3 (see, for example, [QV08]) and the stability estimate

‖u‖V ≤
1
cΩ
‖b‖V ∗ ≤

1
cΩ

(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
(3.25)

holds.
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3.1.2. Unsteady Advection-Reaction

Parts of this section are based on the book by Di Pietro and Ern [DPE12, Chapter 3]. We
consider the unsteady first-order advection reaction equation in a domain Ω ⊂ Rd, d ∈ {2, 3}:

∂

∂t
u+ β · ∇u+ µu = f in (0, T )× Ω, (3.26a)

u = 0 on (0, T )× ∂Ωin, (3.26b)
u(0) = u0 in Ω. (3.26c)

For the data we make the following assumptions:
◦ f ∈ C0([0, T ];L2(Ω)),
◦ β and µ are (for simplicity) time-independent,

◦ β ∈
(
Lip(Ω)

)d,
◦ µ ∈ L∞(Ω).

We denote

Λ := µ− 1
2∇ · β (3.27)

and, by assumption, Λ ∈ L∞(Ω). Assuming the existence of a smooth solution to (3.26), the
following energy estimate can be shown.

Lemma 3.5 (Energy Estimate [DPE12, Lemma 3.2])
Let u ∈ C0([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) solve (3.26) and ς := (1/T + 2 ‖Λ‖L∞(Ω))−1.
Then the following energy estimate holds:

‖u(t)‖2L2(Ω) ≤ exp(t/ς)
(
‖u0‖2L2(Ω) + ςT ‖f‖2C0([0,T ];L2(Ω))

)
, (3.28)

for all t ∈ [0, T ].

The proof of this lemma can be found in [DPE12]. As a direct consequence of the energy
estimate, the solution to (3.26) is unique, provided it exists. Under stronger assumptions on
Λ, it is possible to prove a much sharper energy estimate without the exponential factor exp(t/ς).
For more details on the theory of unsteady advection-reaction equations, the interested reader
is referred to [DPE12, QV08, Eva98].
Let us now consider the simpler case in which µ ≡ f ≡ 0 in (3.26). For the weak formulation,
we introduced the so-called graph space

V (β) := {v ∈ L2(Ω) : β · ∇v ∈ L2(Ω)} (3.29)

equipped with the norm

‖v‖2V (β) := ‖v‖2L2(Ω) + ‖β · ∇v‖2L2(Ω) . (3.30)
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For simplicity we assume β ∈
(
H1

0 (Ω)
)d and div(β) = 0. The weak form in space is simply

obtained via multiplication by a test function ψ ∈ L2(Ω) and integration over Ω:

d
dt (u(t), ψ)L2(Ω) + (β · ∇u(t), ψ)L2(Ω) = 0 ∀ψ ∈ L2(Ω). (3.31)

For this simplified weak problem of (3.26), the existence of a unique solution can be shown:

Theorem 3.6 (Well-posedness of the weak level set equation, [GR11])
Let u0 ∈ V (β). Then for all t ∈ [0, T ] there exists a unique solution u ∈ C1([0, T ];L2(Ω))∩
C1([0, T ];V (β)) such that u(0, ·) = u0(·) and (3.31) holds.

This result is a consequence of the Hille-Yosida Theorem. The interested reader is referred
to [EG04, Theorem (6.52)]. Unfortunately, the Theorem cannot be applied to problems with
time-dependent velocity fields.

3.2. Galerkin Methods

By choosing finite dimensional spaces Uh, Vh and linear forms ah(·, ·), bh(·) to approximate
U, V and a(·, ·), b(·), respectively, the Galerkin approximation of problem (3.1) is derived:

Find uh ∈ Uh such that ah(uh, vh) = bh(vh) for all vh ∈ Vh. (3.32)

In the literature, the approximation with solution space Uh different from test space Vh, is
sometimes referred to as Petrov-Galerkin or non-standard Galerkin approximation. For iden-
tical solution and test spaces, i.e. Uh = Vh, the less general Ritz-Galerkin or Bubnov-Galerkin
approximation is obtained:

Find uh ∈ Vh such that ah(uh, vh) = bh(vh) for all vh ∈ Vh. (3.33)

The discrete spaces Uh and Vh must be equipped with suitable norms ‖·‖Uh
, ‖·‖Vh

. Furthermore,
for U + Uh := span{u+ v : u ∈ U, v ∈ V } the following assumption must be made [EG04]:

(i) The space U + Uh can be equipped with a norm ‖·‖U+Uh
.

(ii) For all uh ∈ Uh, the norm satisfies ‖uh‖U+Uh
= ‖uh‖Uh

.
(iii) U is continuously embedded in U + Uh, i.e. ‖u‖U+Uh

≤ c ‖u‖U .
The conditions of Theorem 3.2 can directly be transferred to the discrete case:

∃αh > 0 : inf
uh∈Uh

sup
vh∈Vh

a(uh, vh)
‖uh‖Uh

‖vh‖Vh

≥ αh, (3.34a)

∀vh ∈ Vh :
(
uh ∈ Uh, a(uh, vh) = 0

)
=⇒

(
vh = 0

)
. (3.34b)

The first condition is then accordingly referred to as discrete inf-sup condition.

21



3. Approximation by Galerkin Methods

Definition 3.7 (Conforming Approximation)
The approximation is said to be conforming if Uh ⊂ U and Vh ⊂ V . Otherwise, it is
referred to as non-conforming.

For many approximations, the analytical solution should also solve the discrete problem. We
therefore define:

Definition 3.8 (Consistent Approximation)
The approximation is said to be consistent, if ah can be extended to (U + Uh) × Vh and
the exact solution u to problem (3.1) satisfies the approximate problem (3.32), i.e. if

ah(u, vh) = bh(vh) ∀vh ∈ Vh. (3.35)

The definition of consistency directly implies:

Lemma 3.9 (Galerkin Orthogonality)
A consistent Galerkin approximation satisfies the Galerkin orthogonality

ah(u− uh, vh) = 0 ∀vh ∈ Vh. (3.36)

Based on the Galerkin orthogonality, the following important Lemma gives a bound for the
approximation quality.

Lemma 3.10 (Céa [EG04, Lemma 2.28])
Let the Galerkin approximation be consistent and conforming (i.e. Uh ⊂ U and Vh ⊂ V )
with dim(Uh) = dim(Vh), and ah be bounded on (U +Uh)× Vh. Assume that the discrete
inf-sup condition (3.34a) holds and that ah = a, bh = b. Let uh be a solution of the
approximate problem (3.32) and u a solution to (3.1). Then:

‖u− uh‖U ≤
(

1 + c

αh

)
inf

vh∈Uh

‖u− vh‖U . (3.37)

Céa’s Lemma implies that, in the context of error analysis, it is sufficient to estimate the best
approximation of u in Vh. In the non-conforming and/or non-consistent case, similar and more
general results can be shown (cf. [EG04, Strang’s Lemma]).

Proof. (cf. [EG04]) Let wh ∈ Uh be arbitrary. The Galerkin orthogonality implies

a(uh − wh, vh) = a(u− wh, vh)

for all vh ∈ Vh. By assumption (3.34a), the equivalence of norms in finite dimensions, the
Galerkin orthogonality and the continuity of a (with constant ca),

αh ‖uh − wh‖U ≤ sup
vh∈Vh

a(uh − wh, vh)
‖vh‖V

= sup
vh∈Vh

a(u− wh, vh)
‖vh‖V

≤ ca ‖u− wh‖U .
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3.3. Finite Elements

Application of the triangle inequality yields

‖u− uh‖U ≤ ‖u− wh‖U + ‖uh − wh‖U ≤
(

1 + ca
αh

)
‖u− wh‖U .

Rearranging and taking the infimum over wh ∈ Uh concludes the proof.

Under the stronger assumption of coercivity of a(·, ·) as required in Theorem 3.3, inequality
(3.37) holds true with constant c

αh
instead of 1 + c

αh
. It can be further sharpened if a is

symmetric, cf. [EG04].

3.3. Finite Elements

This section briefly follows [QV08] and provides an introduction to the finite element method.
In the following, let us consider an open domain Ω with Lipschitz-continuous boundary ∂Ω
and an associated family of triangulations Th (cf. Definition A.2). A finite dimensional space
Xh is defined as the span of piecewise polynomial functions of degree k ≥ 1,

Xk
h :=

{
vh ∈ C0(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
. (3.38)

A useful subspace of Xk
h is the subset of functions with zero boundary values,

Xk
h,0 :=

{
vh ∈ Xk

h : vh(x) = 0 ∀x ∈ ∂Ω
}
. (3.39)

Clearly, the spaces Xk
h and Xk

h,0 are conforming with respect to H1(Ω) and H1
0 (Ω) (cf. Defini-

tion 3.7).
For the case d = 2 we have the following setting. In the case of linear finite elements (X1

h),
each polynomial on K is uniquely determined by its values at the three vertices of K. For
quadratic finite elements (X2

h), the polynomial on K is uniquely determined by its values at
the three vertices and the middle points of each side. More generally, one can use barycentric
coordinates to determine shape functions and degrees of freedom, cf. [KA03].
Generally, the values at the nodes aj with which the basis functions are associated, are called
degrees of freedom. Since Xk

h ⊂ C0(Ω), the degrees of freedom in a cell K may be shared with
the neighboring cells. We can construct a Lagrange nodal basis {ψi}Ni=1 ⊂ Xk

h , i.e.

ψi(aj) =
{

1, i = j,
0, otherwise, (3.40)

where i, j = 1, . . . N . These functions are commonly called nodal basis functions. Hence, a
function uh ∈ Xk

h can be expressed in terms of a coefficient vector uh = [ui]Ni=1 and the shape
functions:

uh(x) =
N∑
i=1

uiψi(x). (3.41)
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3. Approximation by Galerkin Methods

By choosing Uh = Vh = Xk
h in (3.32), and using the (bi-)linearity of ah and bh, we obtain the

system of linear equations

N∑
i=1

ui · ah(ψi, ψj) = bh(ψj), j = 1, 2, . . . , N. (3.42)

If the bilinear form a is V -coercive, it is also coercive on Vh ⊂ V . Hence, the Lax-Milgram
Theorem 3.3 can be used to prove well-posedness and to obtain a similar stability estimate for
the discrete problem.

3.3.1. Error Analysis

In this paragraph we provide a priori estimates for the approximation error ‖u− uh‖ between
the analytical solution u and the numerical solution uh in terms of the mesh size h. As we have
already seen in Lemma 3.10, it is sufficient to estimate the error of uh to its best approximation
in Vh.

Definition 3.11 (Interpolation Operator)
Let v ∈ C0(Ω). The linear operator Ikh : C0(Ω)→ Xk

h defined by

Ikh(v)(x) :=
N∑
i=1

v(ai)ψi(x), (3.43)

is called interpolation operator of Xk
h , where ai are the Lagrange nodes of Th and {ψi}Ni=1

the associated nodal shape functions.

Based on local estimates of the interpolation error, it is possible to prove the following global
interpolation error estimate:

Theorem 3.12 (Interpolation Error [QV08, Theorem 3.4.2])
“Let Th be a family of regular triangulations and assume m ∈ {0, 1}, l = min{k, s−1} ≥ 1.
Then there exists a constant C independent of h, such that

|v − Ikh(v)|Hm(Ω) ≤ Chl+1−m |v|Hl+1(Ω) ∀v ∈ Hs(Ω).” (3.44)

The proof of this theorem is based on the well-known Bramble-Hilbert Lemma, and can, for
example, be found in [QV08].

3.3.1.1. Poisson’s Problem

Using Lemma 3.10 and Theorem 3.12 the following convergence rate estimates for the Poisson
problem can be inferred:
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Theorem 3.13 (Convergence Rate Estimates)
Under the assumptions of Theorem 3.12 and d/2 < k+1, let u ∈ Hk+1(Ω) be the solution of
(3.9a) and uh ∈ Xk+1

h the solution to the correspondtion Galerkin approximation problem
(3.33), respectively. Then, the following a priori estimates hold:

‖u− uh‖H1(Ω) ≤ Ch
k |u|Hk+1(Ω) , (3.45)

and in the case V = H1
0 (Ω)

‖u− uh‖L2(Ω) ≤ Ch |u− uh|H1(Ω) . (3.46)

The better error estimate in the L2(Ω) norm is obtained by employing a duality argument
(Aubin and Nitsche, cf. [KA03, EG04]).

3.3.1.2. Hyperbolic Problems

In this section we will investigate stability and convergence properties for the hyperbolic prob-
lem introduced in Section 3.1.2. Let us consider the semi-discrete approximation of (3.26) with
Vh := Xk

h :

For given u0,h ∈ Vh, and t ∈ [0, T ] find uh(t) ∈Vh such that (3.47a)
d
dt (uh(t), vh) + (β · ∇uh(t), vh) + (µuh(t), vh) = (f(t), vh) , ∀vh ∈ V in

h (3.47b)

uh(t) = uD(t) on ∂Ωin, (3.47c)
uh(0) = u0,h in Ω, (3.47d)

where

V in
h := {vh ∈ Vh : vh|∂Ωin = 0}. (3.48)

For better readability, we drop the dependence on the spatial coordinate x where no ambiguity
arises, and use the abbreviation (·, ·) := (·, ·)L2(Ω). In contrast to Section 3.1.2, we now also
allow for µ to be non-constant in time.

Lemma 3.14 (Stability [QV08])
A solution uh(t) ∈ Vh to problem (3.47) satisfies

‖uh(t)‖2L2(Ω) +
∫ t

0

∫
∂Ω\∂Ωin

β · n
(
uh(τ)

)2 dσ dτ

≤
(
‖u0,h‖2L2(Ω) +

∫ t

0
‖f(τ)‖2L2(Ω) dτ

)
· exp

(∫ t

0

(
1 + 2η?(τ)

)
dτ
) (3.49)
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3. Approximation by Galerkin Methods

for all t ∈ [0, T ] and where

η?(t) := max
x∈Ω

∣∣∣∣−1
2∇ · β(x) + µ(t,x)

∣∣∣∣ . (3.50)

Proof. For the proof, we follow the general guidelines in [QV08] and use an energy method.
For simplicity, let us assume uD ≡ 0. We use the abbreviation

η(t,x) := −1
2∇ · β + µ(t,x).

Plugging in the test function vh = uh(t), and under consideration of

(
∂

∂t
uh(t), uh(t)

)
= 1

2
d
dt ‖uh(t)‖2L2(Ω) ,

and ∫
Ω

(β · ∇uh(t))uh(t) dx = 1
2

∫
Ω

(
β · ∇

(
uh(t)

)2) dx

= −1
2

∫
Ω

(∇ · β)
(
(uh(t)

)2 dx + 1
2

∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ,

we obtain after multiplication by a factor of 2 and integration over time of (3.47b)

‖uh(t)‖2L2(Ω)−‖u0,h‖2L2(Ω) +
∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ

= 2
∫ t

0
(f(τ), uh(τ)) dτ − 2

∫ t

0

∫
Ω
η(τ)

(
uh(τ)

)2 dx dτ

≤ 2
∫ t

0
|(f(τ), uh(τ))| dτ + 2

∫ t

0
η?(τ) ‖uh(τ)‖2L2(Ω) dτ

≤
∫ t

0
‖f(τ)‖2L2(Ω) dτ +

∫ t

0

(
1 + 2η?(τ)

)
‖uh(τ)‖2L2(Ω) dτ.

The last inequality was obtained by application of Young’s inequality. Rearranging the terms,
we identify

‖uh(t)‖2L2(Ω) ≤

=:G(t)︷ ︸︸ ︷
‖u0,h‖2L2(Ω) +

∫ t

0
‖f(τ)‖2L2(Ω) dτ −

∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ

+
∫ t

0

(
1 + 2η?(τ)

)︸ ︷︷ ︸
=:F (t)

‖uh(τ)‖2L2(Ω) dτ.
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Hence, we can apply Gronwall’s Lemma A.6 to obtain

‖uh(t)‖2L2(Ω) ≤

=:g(t)︷ ︸︸ ︷
‖u0,h‖2L2(Ω) +

∫ t

0
‖f(τ)‖2L2(Ω) dτ −

∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ

+
∫ t

0
F (s)

[
‖u0,h‖2L2(Ω) +

∫ s

0
‖f(τ)‖2L2(Ω) dτ

−
∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ︸ ︷︷ ︸
≤0

]
exp

(∫ t

s
F (τ) dτ

)
ds,

and, since g(t) is non-decreasing we can further estimate

‖uh(t)‖2L2(Ω) +
∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ

≤ g(t) +
∫ T

0
F (s)g(s) exp

(∫ t

s
F (τ) dτ

)
ds

≤ g(t)
[
1 +

∫ T

0
F (s) exp

(∫ t

s
F (τ) dτ

)
ds
]
.

By the fundamental theorem of calculus,∫ t

0
F (s) exp

(∫ t

s
F (τ) dτ

)
ds =

∫ t

0

[
− d

ds exp
(∫ t

s
F (τ) dτ

)]
ds

= −
[
exp(0)− exp

(∫ t

0
F (τ) dτ

)]
= exp

(∫ t

0
F (τ) dτ

)
− 1

and therefore

‖uh(t)‖2L2(Ω) +
∫
∂Ω\∂Ωin

β · n
(
uh(t)

)2 dσ ≤ g(t) exp
(∫ t

0
F (τ) dτ

)
.

For the convergence analysis of problem (3.47), it is useful to consider the semi-norm

|v|β,∂Ω :=
(∫

∂Ω
|β · n|v2 dσ

)1/2

. (3.51)
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Theorem 3.15 (Convergence Estimate [QV08])
Let the exact solution satisfy u ∈ L2([0, T ];Hk+1(Ω)), ∂u

∂t ∈ L
2([0, T ];Hk(Ω)) and u0 ∈

Hk(Ω). Then, for uh ∈ Xk
h , the following convergence estimate for problem (3.47) holds:

max
t∈[0,T ]

‖u(t)− uh(t)‖L2(Ω) +
(∫ T

0
|u(t)− uh(t)|2β,∂Ω dt

)1/2

= O
(
‖u0 − u0,h‖L2(Ω) + hk

)
.

(3.52)

For a proof of this theorem, the interested reader is referred to [QV08].
Let us remark that the convergence estimate (3.52) does not provide any control on the first
order derivatives, even though a smooth continuous function u was assumed. Also note that
the convergence rate in (3.52) is not the highest possible rate of O(hk+1). In the next section,
we apply a stabilization technique to obtain a better convergence estimate.

3.3.2. Stabilization

It is well-known that finite element solutions of hyperbolic problems may exhibit numerical
artifacts. In particular, spurious oscillations may occur. To avoid these problems, stabilization
techniques can be applied. In this section we will give a brief introduction to the streamline-
upwind Petrov-Galerkin (SUPG) method. Following section 7.2.1 in [GR11], we consider the
hyperbolic model problem

βu′ + u = f in (0, 1), (3.53a)
u(0) = 0, (3.53b)

with constant velocity β > 0. The weak formulation in U = H1((0, 1)) and V = L2((0, 1)) is
given by

a(u, v) :=
∫ 1

0
βu′v + uv dx, (3.54a)

b(v) :=
∫ 1

0
fv dx. (3.54b)

By the positivity of β and Theorem 3.2, the well-posedness of the problem

find u ∈ U such that a(u, v) = b(v) for all v ∈ V, (3.55)

can be verified. We now consider the conforming linear finite element discretization of problem
(3.55) and introduce the discrete space

Vh := {v ∈ C([0, 1]) : v(0) = 0 and v|I ∈ P1(I) for all I ∈ Ih}, (3.56)
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where Ih = {[xi, xi+1]}i, xi = ih, 0 ≤ i ≤ n, and h = 1
n , n ∈ N. Note that Vh ⊂ U and

Vh ⊂ V . A discrete approximation problem is given by

Find u ∈ Vh such that a(u, v) = b(v) for all v ∈ Vh. (3.57)

To derive a priori error estimates, Céa’s Lemma can be employed and the discrete inf-sup
condition (3.34) verified. It can be shown that for the inf-sup constant αh the relation

αh ≤ ch (3.58)

holds. The inf-sup parameter therefore exhibits the asymptotic behavior αh → 0 as h → 0,
which indicates an unstable numerical approach. The main idea of the stabilization technique
to be presented in this section is the following: for any solution u ∈ U to (3.55) we have∫ 1

0
(βu′ + u)βv′ dx =

∫ 1

0
fβv′ dx ∀v ∈ V. (3.59)

Therefore, we can add multiples of this equation to (3.55) and obtain the modified forms

aδ(u, v) :=
∫ 1

0
(u+ βu′)(v + δβv′) dx, (3.60a)

bδ(v) :=
∫ 1

0
f(v + δβv′) dx. (3.60b)

The stabilization paramater δ ∈ [0, 1] controls how much artificial diffusion is added in this
consistent approach. In particular, the original problem is obtained for δ = 0. The added
streamline diffusion improves the U -coercivity. For aδ(·, ·), the following estimate holds [GR11]:

aδ(u, u) =
∫ 1

0
u2 dx+ δβ2

∫ 1

0
(u′)2 dx+ β(δ + 1)

∫ 1

0
u′udx

≥ δβ2 |u|H1(0,1) + ‖u‖2L2(0,1) ∀u ∈ U. (3.61)

This enables us to derive a better convergence estimate:

Theorem 3.16 (Streamline Diffusion 1D Convergence Estimate [GR11])
Let u ∈ H2(0, 1) and uh ∈ Vh be the solutions of (3.55) and (3.57) equipped with the
linear forms (3.61). For all δ ∈ [0, 1] the error bound

β
√
δ |u− uh|H1(0,1) +‖u− uh‖L2(0,1) ≤ Ch

[
h+β

√
δ+bmin{1, h/β√δ}

] ∥∥u′′∥∥
L2(0,1) (3.62)

holds with a constant C independent of h, δ, β and u.

In contrast to the estimate in Theorem 3.15, the error bound (3.62) also provides control of the
first derivative of u−uh w.r.t. H1(0, 1) (provided δ > 0). The optimal stabilization parameter
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in the above theorem is given by the choice δopt = h/β. In comparison to the error bound in
Theorem 3.15, we obtain for the choice δ = δopt the improved estimates

‖u− uh‖L2(0,1) ≤ ch
3/2
∥∥u′′∥∥

L2(0,1) and |u− uh|H1(0,1) ≤ ch
∥∥u′′∥∥

L2(0,1) . (3.63)

The generalization of this stabilization technique to higher space dimensions and finite element
spaces of higher polynomial degrees is straight forward. In the more general setting of (3.47),
the stabilized linear forms are given by

aδ(uh(t), vh) := (β · ∇uh(t), vh) + (µuh(t), vh)

+
∑
K∈Th

δK (β · ∇uh(t) + µ(t)uh(t),β · ∇vh)L2(K) , (3.64a)

bδ(vh) := (f(t), vh)L2(Ω) +
∑
K∈Th

δK (f(t),β · ∇vh)L2(K) . (3.64b)

We use the associated SUPG norm

‖uh(t)‖δ :=

∥∥∥uh(t)
√
µ(t)−∇ · β

∥∥∥2

L2(Ω)
+
∑
K∈Th

δK ‖β · ∇uh(t)‖2L2(K)

1/2

(3.65)

and

‖uh‖t,δ :=
(∫ t

0
‖uh(τ)‖2δ dτ

)1/2

. (3.66)

Here, the SUPG parameter δK is set individually for each cell K ∈ Th. We conclude this
section by quoting a general error bound for this stabilization technique:

Theorem 3.17 (Streamline Diffusion Convergence Estimate [JN11, Th. 5.2])
Let the analytical solution u to (3.26) have the following regularity: ut(t) ∈ Hk+1(Ω) for
all t ∈ [0, T ] and u, ∂

∂tu, ∂2

∂t2u ∈ L
2(0, T ;Hk+1(Ω)). Assume µ(t) ≥ 0 and η(t,x) ≥ η0 > 0

for all (t,x) ∈ [0, T ]× Ω. Then, for all t ∈ [0, T ], the following error estimate holds:

‖u(t)− uh(t)‖L2(Ω) + ‖u− uh‖t,δ
≤ C

[
‖eh(0)‖+

√
δ
(
‖∇eh(0)‖L2(Ω) + ‖(β · ∇eh)(0)‖L2(Ω) + ‖(√µeh)(0)‖L2(Ω)

)]
+Chk+1/2

[
‖u(t)‖Hk+1(Ω) +

√
δ ‖(∂tu)(0)‖Hk+1(Ω) + ‖u‖L2(0,t;Hk+1(Ω))

+ ‖∂tu‖L2(0,t;Hk+1(Ω)) +
√
δ ‖∂ttu‖L2(0,t;Hk+1(Ω))

] (3.67)

where eh(t) := uh − Ikhu.

The theorem shows that we gain, in contrast to Theorem 3.15, the power of
√
h if the analytical

solution is sufficiently smooth. Furthermore, one can derive error bounds on the first derivative
when using the SUPG stabilized approach. For more information on stability and convergence
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analysis, the interested reader is referred to the articles [BGS04, BH04, JN11, Zho97] and the
book [QV08].

3.4. Fully-Discrete Approximation

So far we have only applied the finite element method for spatial approximation. Even though
the use of space-time elements is an option, many algorithms usually separate temporal and
spatial discretization for various reasons. Let us now turn to temporal discretization. There-
fore, consider a semi-discrete problem of the form (cf. [QV08])

d
dt (uh(t), vh) + ah(uh(t), vh) = bh(t, vh) ∀vh ∈ Vh, t ∈ (0, T ), (3.68a)

uh(0) = u0. (3.68b)

For simplicity, we restrict ourselves to a finite difference approach for the temporal discretiza-
tion. Problem (3.68) is an ordinary differential equation in time. Therefore, Taylor expansion
can be applied to approximate the time derivative:

(uh(t+ ∆t)− uh(t), vh)
∆t + ah

(
θuh(t+ ∆t) + (1− θ)uh(t), vh

)
≈ θbh(t+ ∆t, vh) + (1− θ)bh(t, vh),

(3.69)

where θ ∈ [0, 1]. Let the time interval [0, T ] be partitioned into N equidistant subintervals
[ti, ti+1] of length ∆t = T/N. The solution to (3.68) at time level tn is then denoted by unh.
Applying the Taylor expansion from (3.69) to (3.68), we obtain the θ-scheme:

(un+1
h − unh, vh)

∆t + ah(θun+1
h + (1− θ)unh, vh) ≈ θbh(un+1

h , vh) + (1− θ)bh(unh, vh), (3.70)

for n = 0, ..., N − 1 and vh ∈ Vh. For θ = 0, the explicit forward Euler method is obtained. On
the other hand, for θ = 1, the scheme is fully implicit and defines the backward Euler method.
Both methods are first order accurate in time. For θ = 1/2, we obtain the unconditionally
stable and second order accurate Crank-Nicolson method.
Other approaches for discretization in time include fractional step and operator-splitting meth-
ods [QV08, Chapter 5.7], or (discontinuous) finite elements. In Section 4.4 the second order
accurate Lax-Wendroff method is presented, in which time derivatives are replaced by the space
derivatives arising in the level set equation [DH03].
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4 Level Set Methods

A vast range of literature on level set methods and their numerical implementation exists. This
chapter is partly based on the books by Gross and Reusken [GR11], Osher and Fedkiw [OF03]
and Donea and Huerta [DH03], as well as on the manuscripts [Bas12, Set96b]. It is organized
as follows. In the first section, the mathematical concept of level set methods is introduced
and basic properties as well as essential results are reviewed. The level set transport equation
is derived and analyzed. In the subsequent section, we look at the finite element discretization
of the level set equation, the quality of interface approximation and possible stabilization
techniques. In the last section, we comment on two possible time discretization approaches.

4.1. Level Set Functions

The level set method is an interface capturing approach. Its essential idea is to implicitly
describe an interface in terms of a scalar indicator function, the so-called level set function
which will be denoted further on by ϕ. Generally, an interface Γ associated with such a
function ϕ : (0, T )× Ω→ R is then defined as the zero level set of ϕ, i.e.

Γ(t) = {x ∈ Ω : ϕ(t,x) = 0}. (4.1)

In the remainder of this thesis, we restrict ourselves to the two-dimensional case. The general
setting defined below is illustrated in Fig. 4.1.

Definition 4.1 (General Setting)
Let Ω ⊂ R2 be a domain with piecewise smooth boundary ∂Ω. In the time interval [0, T ],
we consider an evolving interface Γ(t) ⊂ Ω with the following properties:
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Ω1(t)

Ω2(t)

Γ(t) n̂

u

Figure 4.1.: An illustration of a domain Ω containing an evolving interface Γ separating two
subdomains Ω1 and Ω2.

i) For all t ∈ [0, T ], Γ(t) separates two phases Ω1(t) and Ω2(t), where Ω1(t) and Ω2(t)
are finite unions of domains in Ω such that the following properties are fulfilled:

Ω1(t) ∩ Ω2(t) = ∅, (4.2a)
Γ(t) = Ω1(t) ∩ Ω2(t), (4.2b)
Ω1(t) ∪ Ω2(t) = Ω, (4.2c)
∃cU > 0 : U(t) := {x ∈ R : dist(x,Γ(t)) < cU} ⊂ Ω. (4.2d)

ii) Γ(t) is a finite union of continuous curves in Ω.
iii) In particular, meas2(Γ(t)) = 0 and meas1(Γ(t)) > 0.

In this setting we can now give a more precise definition of level set functions.

Definition 4.2 (Level set function)
In the setting of Definition 4.1, a continuous function ϕ : [0, T ]×R2 → R associated with
the interface Γ(t) that satisfies

ϕ(t,x)


> 0 for x ∈ Ω1(t),
= 0 for x ∈ Γ(t),
< 0 for x ∈ Ω2(t),

(4.3)

is called level set function of Γ(t).

This definition is very general and imposes only few requirements on ϕ. However, for the
purpose of interface capturing, several properties are desirable. The level set function should
at least be continuous, so that it can be evaluated pointwise and the interface can be numerically
reconstructed. In many applications the normal vector to the interface is required. This can
easily be accomplished when the level set function is (or approximates) the signed distance
function to the level set.
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4.1. Level Set Functions

Figure 4.2.: An illustration of a signed distance function and its zero level set curve.

Definition 4.3 (Signed distance function)
In the setting of Definition 4.1, the signed distance function (SDF) to Γ(t) is the function
ϕ : [0, T ]× Ω→ R defined by:

ϕ(t,x) =


dist(x,Γ(t)) for x ∈ Ω1(t),

0 for x ∈ Γ(t),
−dist(x,Γ(t)) for x ∈ Ω2(t),

(4.4)

where dist(·, ·) denotes the distance function as defined in Definition A.3.

Fig. 4.2 shows an illustration of the signed distance function with respect to a circle-shaped
interface. Clearly, the signed distance function is also a level set function that offers several
additional useful properties.

Theorem 4.4 (Properties of signed distance functions)
In the setting of Definition 4.1 at time t∗ ∈ [0, T ], the signed distance function ϕ : Ω→ R

of Γ = Γ(t∗)
i) is Lipschitz continuous with constant 1 and differentiable almost everywhere,

ii) satisfies the so-called Eikonal equation

|∇ϕ(x)| = 1, (4.5)

where ϕ is differentiable,
iii) is differentiable at any point x ∈ Γ, and

∇ϕ(x) = n̂(x), (4.6)

where n̂(x) is the unit normal vector to Γ.
(iv) yields a direct way to compute the curvature κ(x) of Γ:

κ(x) = ∇ · ∇ϕ(x), (4.7)

for x ∈ Γ and sufficiently smooth interface Γ.
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Proof. i) ϕ being 1-Lipschitz is a direct consequence of the triangle inequality of the distance
function. It is first shown, that the distance function dist(·,Γ) is Lipschitz continuous
with constant L = 1. Following [Vin10, proposition 4.8.1], for any y ∈ Ω and R 3
ε > 0 sufficiently small, there exists by definition a z ∈ Γ s.t. dist(y,Γ) ≥ |y − z| − ε.
Consequently, for any x ∈ Ω, x 6= y, we have

dist(x,Γ) ≤ |x− z| ≤ |x− y|+ |y− z| ≤ |x− y|+ dist(y,Γ) + ε,

and, since ε was chosen arbitrarily,
dist(x,Γ)− dist(y,Γ) ≤ |x− y|.

Now, by interchanging x and y, we obtain
|dist(x,Γ)− dist(y,Γ)| ≤ |x− y|,

and the Lipschitz-continuity with constant L = 1 of dist(x,Γ) follows. Without loss
of generality, for any x ∈ Ω1, y ∈ Ω2, there exists a λ ∈ [0, 1] and z ∈ Γ with z =
λx + (1− λ)(y− x), and since

|ϕ(x)− ϕ(y)| ≤ | dist(x,Γ)|+ |dist(y,Γ)| ≤ | dist(x, z)|+ |dist(y, z)| = |x− y|,
ϕ is also 1-Lipschitz continous. As a direct consequence of ϕ being 1-Lipschitz continuous,
it is also differentiable almost everywhere, cf. Rademacher’s Theorem A.7.

ii) For x ∈ Ω \ Γ, the proposition follows directly from the differentiability of the distance
function, see Theorem A.4.

iii) Let γ(s) = (xi(s))i=1,...,d be a parametrization of the at least C1-continuous curve Γ and
x0 = γ(s0) an arbitrary but fixed-point on Γ. By definition

ϕ(s) := ϕ(γ(s)) = 0 (for all s).
Differentiating this equation with respect to s by the chain rule yields

0 = dγ
ds (s0) =

d∑
i=1

∂ϕ

∂xi

∣∣∣∣
x0

∂xi
∂s

∣∣∣∣
s0

= ∇ϕ(x0) · γ′(s0).

Hence, the gradient is normal to the tangent of the curve and the normal vector can be
expressed as:

n̂(x0) = ∇ϕ(x0)
|∇ϕ(x0)| .

If additionally ϕ(x) is the signed distance of x to Γ, then
n̂(x0) = ∇ϕ(x0).

iv) See [AD99] or [GR11].

Hence, when having a signed distance function at hand, geometric variables such as normal
vector and curvature can be computed from ϕ without actually localizing the implicitly defined
interface. In the case of a general level set function that does not satisfy the signed distance
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function property, the curvature must be expressed in terms of the tangential derivative (cf.
(7.43)) as follows:

κ(x) = ∇ · ∇ϕ(x). (4.8)

As shown in Theorem 4.4, signed distance functions are solutions to the Eikonal equation (4.5).
The equation holds almost everywhere but at points that are closest to more than one point on
Γ. The set of these points is often called skeleton in literature and is of zero measure provided
Γ is smooth. However, as classical solutions to PDEs may fail to exist, it is useful to consider
the viscosity solution of the Eikonal equation instead, cf. [GR11, CIL92].

4.2. Evolution of an Interface

The evolution of an interface in time can be driven by different processes. We have already seen
the derivation of transport equations from conservation laws in Chapter 2. More generally,
we can subdivide the causes of interface propagation into externally and internally generated
motions [OF03]. For former ones, an externally provided velocity field describes the motion of
the interface, while for the latter ones, the interface movement is based on the interface itself,
for example mean curvature flow (cf. Section 2.3.2). Within the scope of this thesis, we will
only consider externally generated motion. Therefore, we assume a sufficiently smooth velocity
field v : Ω→ Rd, or, in the time dependent case, u : (0, T )×Ω→ Rd. We will now derive the
level set transport equation directly by application of the chain rule.
To determine the movement of an evolving interface, a virtual particle X with Eulerian coor-
dinates x(t) ∈ Γ(t) is observed (cf. Section 7.1). As time goes by, the particle moves along its
characteristics x(t,X) where the value of ϕ remains constant:

ϕ(t,x(t,X)) = ϕ(t0,X). (4.9)

Differentiation with respect to t yields the transport equation

∂ϕ(t,x)
∂t

+ v(t) · ∇ϕ(t,x) = 0 (4.10)

in Ω and for t ≥ 0, where

v(t) = ∂

∂t
x(t,X). (4.11)

Equation (4.10) is referred to as level set equation and forms the basis of many numerical
techniques for interface capturing. This partial differential equation is of hyperbolic type.
Hence, boundary conditions must only be prescribed on the inflow portion ∂Ωin of the outer
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boundary ∂Ω, that is for x ∈ ∂Ω with n(x) ·v(x) < 0. The full level set problem with Dirichlet
boundary condition reads:

∂

∂t
ϕ(t,x) + v · ∇ϕ(t,x) = 0 in (0, T )× Ω, (4.12a)

ϕ(0,x) = ϕ0(x) in Ω, (4.12b)
ϕ(t,x) = g(t,x) on(0, T )× ∂Ωin. (4.12c)

Since the level set function is not a physical quantity per se, the prescription of meaningful
or natural boundary conditions is unclear. In many applications however, no such boundary
conditions are required, or arbitrary boundary conditions can be set temporarily before apply-
ing a redistancing procedure (cf. Chapter 5). Note that given a divergence free velocity field,
equation (4.10) can be cast into conservative form:

∂ϕ

∂t
+∇ · (vϕ) = 0. (4.13)

The following theorem shows that the transport equation preserves an interface in the sense
that its d-measure remains zero:

Theorem 4.5
Let the velocity field v ∈

(
Lip(Ω)

)d and an initial condition ϕ0(x) be given such that

measd(Γ(t0)) = 0. (4.14)

Then the interface Γ(t) associated with the solution of (4.12) possesses the property

measd(Γ(t)) = 0, t ∈ (t0, T ). (4.15)

For details on this theorem and its proof, the interested reader is referred to [GR11, CIL92].

Phase field approach
For completeness, let us briefly comment on the related phase field approach. The level set
method captures a sharp interface. In the phase field approach, instead of the sharp interface,
a diffusive narrow band along the interface is considered. The densities of the two phases
are constant except in this region. For more information, the interested reader is referred to
[DMAW98, GR11].
In [OK05, OKZ07], a conservative level set algorithm is presented. It uses features from both,
the level set and the phase field approach. A brief summary of the method is provided in
Section 6.3.
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4.3. Space Discretization

As in Chapter 3, we consider the following weak formulation in space of the level set equation
(4.12):

For any t ∈ [0, T ] find ϕh(t) ∈ V (v) such that (4.16a)
d
dt (ϕ(t), v)L2(Ω) + (v · ∇ϕ, v)L2(Ω) = 0 ∀v ∈ V (v), (4.16b)

ϕ(t,x) = g(t,x) on ∂Ωin, (4.16c)
ϕ(0,x) = ϕ0(x) in Ω. (4.16d)

We have already seen that one can prove the existence of a unique solution to this problem,
cf. Theorem 3.6. This section is devoted to the numerical approximation of problem (4.16) in
space. At first, we consider the spatial finite element discretization. In particular, we assess
the quality of the interface approximation when using linear and quadratic finite elements for
d = 2.

4.3.1. Finite Element Approximation

For the semi-discretization in space, we employ the finite element approach introduced in
Section 3.3. We only consider the two-dimensional case Ω ⊂ R2 and the finite element spaces
Vh := Xk

h for k ∈ {1, 2} on a given triangulation Th of Ω, cf. (3.38). We consider the
Dirichlet boundary condition ϕ|∂Ωin = g, and incorporate it into the test space Vh,0 := {v ∈
Xk
h : v|∂Ωin = 0}. For a given initial datum ϕ0,h ∈ Vh and a velocity field v ∈

(
H1

0 (Ω)
)2, the

finite element semi-discretization of problem (4.16) is given by:

Find ϕh(t) ∈ Vh for all t ∈ [0, T ] such that (4.17a)
d
dt (ϕh(t), vh)L2(Ω) + (v · ∇ϕh(t), vh)L2(Ω) = 0 ∀vh ∈ Vh,0, (4.17b)

ϕ(t,x) = g(t,x) on (0, T )× ∂Ωin, (4.17c)
ϕ(0,x) = ϕ0(x) in Ω. (4.17d)

From the more general problem (3.47), we directly transfer the stability estimate (Lemma 3.14)

‖ϕh(t)‖2L2(Ω) +
∫ t

0

∫
∂Ω\∂Ωin

v ·n
(
ϕh(τ)

)2 dτ ≤ ‖ϕ0,h‖2L2(Ω) · exp
(∫ t

0
max
x∈Ω

1
2 |∇ · v|

)
, (4.18)

and the convergence estimate (Theorem 3.15)

max
t∈[0,T ]

‖ϕ(t)− ϕh(t)‖L2(Ω) +
(∫ T

0
|ϕ(t)− ϕh(t)|v,∂Ω dt

)1/2

= O
(
‖ϕ0 − ϕ0,h‖L2(Ω) + hk

)
,

(4.19)

assuming sufficient regularity of the exact solution ϕ.
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As explained in Section 3.3.2, the finite element discretization of the hyperbolic level set prob-
lem can be unstable. For stabilization, we add streamline diffusion acting only in the direction
of v:

∀K ∈ Th : vδh|K := vh + δKv · ∇vh vh ∈ Vh,0, (4.20)

where δK is a cell dependent stabilization parameter. The stabilized semi-discrete problem
reads

Find ϕh ∈ Vh such that for all t ∈ [0, T ] (4.21a)
d
dt(ϕh(t), vδh)L2(Ω) + (v · ∇ϕh(t), vδh)L2(Ω) = 0 ∀vh ∈ Vh,0, (4.21b)

ϕ(t) = g(t) on ∂Ωin, (4.21c)
ϕ(0) = ϕ0 in Ω. (4.21d)

Since vδh ∈ L2(Ω), the stabilized scheme is consistent. In what follows we will only consider this
stabilized discretization, since the unstabilized form is contained as special case with parameter
δ = 0 anyway. Based on numerical experiments, Gross and Reusken suggest in [GR11] the
element-wise choice

δK := c
hK

max{ε0, ‖v‖∞,K}
, (4.22)

where ε0 > 0 is a small positive constant, c = O(1) and hK the diameter of element K ∈ Th.

4.3.2. Interface Approximation

In some applications, explicit knowledge of the interface is required. This section presents
explicit results on the interface approximation quality of a finite element level set function. It
is largely based on results collected in [GR11] and introduces a simple method for extracting
the zero isocontour from the level set function.

Definition 4.6 (Approximation of Γ by Γh)
For a given interface Γ(ϕ) implicitly defined by a finite element level set function ϕh ∈ Vh,
and an interpolation operator I, the discrete interface approximation Γh is defined by

Γh := {x ∈ Ω : I(ϕh)(x) = 0}. (4.23)

For Vh = X1
h, we use the linear interpolation operator and the resulting approximation Γ1

h

is just a polygonal line. It is determined by the intersections of the interface with edges of
the triangulation. For Vh = X2

h, we also employ a linear interpolation operator but on the
triangulation Th′ obtained after one regular refinement of Th. In particular, the degrees of
freedom of X2

h on Th coincide with those of X1
h on the refined triangulation Th′ . The resulting

numerical approximation of the interface Γ2
h may, in contrast to Γ1

h, not coincide with the exact
interface Γ on edge intersections of Γ with Th′ . Fig. 4.3 illustrates the construction of Γ1

h and
Γ2
h.

40



4.3. Space Discretization

For a successful numerical interface construction, several assumptions must be made on the
triangulation Th :
◦ at most two edges of each cell K ∈ Th are intersected by Γ,
◦ every edge edge is either intersected at exactly one point or not intersected at all.

A detailed listing of assumptions and counter-examples for invalid triangulations is given in
[GR11, Sec. 7.3]. In essence, the assumptions ensure that the triangulation is fine enough to
resolve interfaces with large curvature. Special treatment is required if the interface touches
cells or coincides with triangle edges.
In this section we analyze the approximation quality of Γ1

h and Γ2
h. Let hΓ be the largest

diameter of triangles adjacent to the interface. From ϕh an approximation Γh on Γ is obtained
as described in Definition 4.6. Quantities of interest are the distance between Γ and its ap-
proximation Γh, as well as the quality of the numerical normal vector n̂h. For the remainder
of this section we drop the time dependence and write ϕ(x) = ϕ(t,x) to simplify notation.

Γ

Γ1
h

Γ

Γ2
h

Figure 4.3.: Illustration of numerical interface construction in X1
h (left) and X2

h (right).

The following Theorem is a collection of various approximation results collected from [RL11].

Theorem 4.7 (Level Set Approximation Errors [RL11])
In the setting of Definition 4.1 at fixed time t ∈ [0, T ], let ϕ : Ω → R be smooth and the
associated interface Γ be a connected C2-curve. For the discrete approximation ϕh ∈ Vh,
let

‖ϕ− ϕh‖L2(Ω) ≤ ch
k+1/2. (4.24)

For the associated interface Γh we assume:
i) Γh ⊂ U ,

ii) ∀x ∈ Γ : ∃! y ∈ Γh : ∃!α ∈ R : y = x + αn̂(x),
iii) n̂ · n̂h > 0 on Γh.

Furthermore, let |∇ϕ| be bounded below and above, i.e.

c0 ≤ |∇ϕ(x)| ≤ c1 for almost all x ∈ U. (4.25)
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Then the following estimate holds:

‖dist(x,Γ)− ϕh‖L2(Γh) ≤ ch
k. (4.26)

If furthermore there exists a constant c0,h such that

c0,h ≤ |∇ϕh(x)| , for all x ∈ U, (4.27)

the following error bound for the normal vectors holds:

‖n̂− n̂h‖L2(Γh) ≤ ch
k−1. (4.28)

The interested reader can find the proofs of this theorem in [RL11], Theorem 4.1 to Theorem
4.2. Note that assumptions (4.25) and (4.27) already indicate the need for using redistancing
schemes, which will ensure |∇ϕ| ≈ 1 at least in vicinity of the zero level set. From the
interpolation error bound in Theorem 3.12, assumption (4.24) can be verified for X1

h and X2
h.

When using the above interpolation procedure for functions in X2
h on a refined triangulaton

(see also Fig. 4.3), the following theorem holds:

Theorem 4.8 (Approximation error of Γh [GR11, Theorem 7.3.1])
Let ϕ ∈ H2

∞(Ω) and

c0 ≤ |∇ϕ| ≤ c1 (4.29)

for some constants c0, c1 > 0. Assume that Γ is contained in the sufficiently small neigh-
borhood U := {x ∈ Rd : dist(x,Γ) < cU} of Γ and that the approximation ϕh ∈ Vh = X2

h

of ϕ satisfies

‖ϕ− ϕh‖L∞(U) + hΓ ‖ϕ− ϕh‖H1
∞(U) ≤ ch

m
Γ ‖ϕ‖Hm

∞(U) , (4.30)

for m = 1, 2. Furthermore suppose that the linear interpolation operator on the refined
mesh (see above) is employed for Γh. Then the following estimates hold for all x ∈ Γh:

dist(x,Γ) ≤ ch2
Γ, (4.31a)

‖n̂(x)− n̂h(x)‖ ≤ chΓ. (4.31b)

4.4. Time Discretization

In this last section we will briefly comment on the time discretization. In the numerical
examples to be presented in the chapters below, we have mainly used the θ-scheme combined
with linear SUPG-stabilized finite elements.
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4.4.1. Finite Difference Scheme

To obtain a fully discrete problem for the level set equation, let us first consider the θ-scheme
introduced in Section 3.4. Given the usual partition of [0, T ] into N discrete time levels, we
obtain a fully discrete version of (4.21):

(ϕn+1
h − ϕnh, vδh)

∆t + θ
(
∇ϕn+1

h · v, vδh
)

+ (1− θ)
(
∇ϕnh · v, vδh

)
= 0, (4.32a)

ϕ0
h = ϕ0. (4.32b)

For this approach the following convergence estimate holds:

Theorem 4.9 (Convergence Estimate [Bur10, Theorem 13], [RL11])
Let ϕ be a sufficiently smooth solution to (4.12) and {ϕnh}Nn=0 the numerical solution to
(4.32) with θ = 1/2 (Crank-Nicolson) and Vh = Xk

h . Then the following estimate holds:

‖ϕNh − ϕ(T )‖L2(Ω) ≤ c
(
hk+1/2 + (∆t)2), (4.33)

where the constant c depends on the smoothness of the data but not on T , h or ∆t.

The proof of this theorem, precise regularity assumptions, and the concrete choice of the SUPG
parameter δK can be found in [Bur10].

4.4.2. Lax-Wendroff-Method

A different approach which is second-order accurate in time, is given by the Lax-Wendroff
method. It is based on the Taylor expansion

ϕ(tn+1) = ϕ(tn) + ∆t ∂
∂t
ϕ(tn) + (∆t)2

2
∂2

∂t2
ϕ(tn) +O((∆t)3). (4.34)

The higher order time derivatives are replaced by space derivatives using relation (4.10) (cf.
[DH03, Section 3.4]):

∂

∂t
ϕ(tn) = −v · ∇ϕ(tn), (4.35)

∂2

∂t2
ϕ(tn) = − ∂

∂t

(
v · ∇ϕ(tn)

)
= (v · ∇)2ϕ(tn). (4.36)

Substituting these relations into (4.12) we obtain:

ϕ(tn+1) ≈ ϕ(tn)−∆tv · ∇ϕ(tn) + (∆t)2

2 (v · ∇)2ϕ(tn). (4.37)

The second order term introduces numerical diffusion and therefore has a stabilizing effect. In
contrast to the streamline diffusion technique, no parameter needs to be adjusted.
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Many applications rely not only on an accurate interface location but also on a precise recon-
struction of geometrical properties such as normal vector and curvature. As we have seen in
Chapter 4, for the numerical reconstruction of these quantities from a level set function ϕ it is
advantageous if ϕ is a sufficiently good approximation of the signed distance function. Further-
more, in the context of the level set transport equation, numerical schemes also benefit if ϕh
is a good approximation to the signed distance function. In particular, this implies |∇ϕh| ≈ 1,
which is why steepening or flattening effects can be avoided.
Consequently, it is common practice in many numerical applications to initialize the level set
function as the signed distance to the initial interface. In the context of evolving interfaces,
numerical methods generally fail to preserve the signed distance function property. Therefore,
so-called reinitialization or redistancing techniques are applied to correct the distorted level
set function to become a good approximation of a signed distance function. Such approaches
should possess three essential properties (cf. [BKS16]):

1. The redistancing process should not displace the interface, since many important physical
phenomena may take place on or be influenced by the interface, making the accuracy of
its numerical approximation crucial.

2. The result should be a good approximation to the signed distance function of the inter-
face. As consequence of Theorem 4.4, the residual of the Eikonal equation |∇ϕh| = 1 can
indicate the approximation accuracy, and consequently, the minimization of this residual
forms the basis of many numerical redistancing schemes.

3. The computational costs of the redistancing technique should be reasonable in relation
to the expected benefits.

Over the past decades, many redistancing approaches have been developed. One can generally
distinguish between two types:

(i) Geometric redistancing approaches compute the distance to the interface directly. Thus,
they generally require the localization of the interface, which can be a complex task
(cf. Section 4.3.2), in particular for higher order polynomial approximations of the level
set function and higher space dimensions. On the other hand, it is possible to construct
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high accuracy schemes that have the same asymptotic approximation quality as the nodal
interpolation of the exact distance function [EG14].
Many geometric approaches consist of two steps. First, redistancing is performed in
the immediate vicinity of the interface with a high accuracy algorithm. In the second
step, the results are extended to the surrounding region, using an approach aiming for
efficiency.
The idea of redistancing was first proposed by Chopp in [Cho93] and led to the develope-
ment of the well-known geometric fast marching reinitialization technique by Tsitsiklis
and Sethian [Set96a, Set99a, Tsi94]. In the last years, more efficient and more accurate
techniques were developed.

(ii) PDE-based redistancing approaches build on solving a redistancing equation that min-
imizes the residual of the Eikonal equation. Many are based on a technique originally
presented by Sussman et al. [SSO94], in which the distance function to a given interface
can be computed by evolving a hyperbolic advection equation to steady state.
In contrast to geometric approaches, no actual knowledge of the interface position is
required. Hence, one can easily employ higher order polynomials for the approximation
of the level set function. As an inherent property of a finite element discretization in
PDE-based approaches, the application to unstructured meshes is possible while most
geometric approaches rely on Cartesian grids. However, in many algorithms it is neces-
sary to use sufficiently stable discretization techniques and to evaluate the discontinuous
sign function. Numerical implementations often induce artificial diffusion which may
negatively influence the accuracy of the interface approximation.

In this thesis we focus on PDE-based redistancing approaches, which is why we only provide
a brief presentation of two popular geometric redistancing techniques in the first section. In
the subsequent sections, we introduce PDE-based approaches before proposing an optimal
control approach. The chapter concludes with a detailed numerical evaluation of the presented
methods and schemes.

5.1. Geometric Redistancing

Geometric redistancing techniques are based on the direct computation of the distance to the
interface. The most intuitive approach is the so-called brute-force redistancing, in which for
each degree of freedom of the discrete level set function the actual distance to the interface
is computed. Even though the numerical costs can be reduced by a suitable subdivision of
the interface, one still has to face a complexity of O(M · N), where N is the number of grid
points and M the number of interface segments [Hys07]. Many approaches build on brute-force
redistancing but are commonly used only in the immediate interface vicinity.

5.1.1. Fast Marching Method

One of the most popular geometric redistancing approaches is the fast-marching method, pro-
posed in [Tsi94, Set96b, Cho01]. As explained in [Bas12], the key idea boils down to construct-
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ing the level set function ϕ by using upwind values, i.e. information is only propagated from
smaller to larger values of ϕ. Sethian presented the following algorithm in [Set99b]:

1. On a discrete grid, for grid points in immediate vicinity of the interface, the distance to
the interface is directly computed. Those points are then marked as “known”.

2. For grid points adjacent to a “known” grid point, the distance is determined approxi-
mately by computing the distance to the closest “known” point. Each of these points is
then marked as “trial”.

3. All other grid points are tagged as “far” and the value at those points is initialized by a
value bigger than the largest possible distance to the interface.

4. From the set of “trial” points, we pick the point p with minimal distance value, and tag
it as “known”.

5. For all “far” grid points adjacent to p, the distance is recomputed and the points are
tagged as “trial”.

6. While the set of “trial” points is not empty, go back to step 4.
For the actual computation of the distance of a “trial” point to the interface, an upwind finite
difference scheme is applied to discretize the Eikonal equation. This results in a quadratic
equation to be solved. For efficiency, an adequate algorithm for finding the point with minimal
distance in the “trial” set is required. For a detailed description and more information, the
interested reader is referred to [OF03, Set99b].
Even though the computational costs of O(N log(N)) are less than for brute-force redistancing,
the sorting of the trial set is expensive. Furthermore, the approach requires at least two
grid points in which the correct value of the signed distance function is known in advance.
However, in many techniques the Fast Marching approach is employed in the extension phase
after redistancing has been accomplished in a narrow interface band.

5.1.2. Geometric Mass-Preserving Scheme

An interesting approach was proposed by Ausas et al. in [ADB11] which is based on [MBD06].
It introduces a finite element based redistancing algorithm that also works on unstructured
meshes and conserves mass.
The method consists of the following steps:

1. Initialization
Given a level set function ϕ̃h to be reinitialized, reconstruct the interface Γh from ϕ̃h.

2. Local redistancing
Let K denote the set of cells intersected by the interface and P the set of nodes of these
cells. For all nodes in P, we compute the nodal values of the intermediate level set
function ϕ∗h to be the exact distance w.r.t. Γh, i.e.

ϕ∗h(x) = dist(x,Γh) ∀x ∈ P. (5.1)
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This brute force approach can be performed element-wise and therefore be efficiently
implemented in parallel.

3. Mass Correction
The mass of ϕ∗h

mK(ϕ∗h) :=
∫
K

H
(
ϕ∗h(x)

)
dx (5.2)

may suffer loss or gain, and therefore in general mK(ϕ̃∗h) 6= mK(ϕ̃h). This is why we seek
a correction function ψh such that

mK(ϕ∗h + ψh) = mK(ϕ̃). (5.3)

Therefore, one computes element-wise the piecewise constant function ηh such that

mK(ϕ∗h + ηh) = mK(ϕ̃h) ∀K ∈ K. (5.4)

This requires solving a non-linear problem in each cell K ∈ K, for which a simple secant
procedure is suggested. Based on ηh, one computes the continuous L2-projection ξh of
ηh. Finally, by solving a non-linear equation again, a constant C is determined such that

ψh = Cξh. (5.5)

corrects ϕ∗h such that (5.3) holds.
4. Extension Phase

In the last step, the values of the conservative level set function ϕ∗h + ψh are extended
to the remaining mesh nodes. This can be performed by applying other redistancing
approaches. In [ADB11], the authors suggest to use a geometric approach developed by
Mut et al. [MBD06].

Let us remark that in contrast to the level set shifting approach for mass conservation (in-
troduced below in Section 6.2) the intermediate level set function is corrected by adding a
constant which would correspond to the choice ξh ≡ 1 here, but may cause a nonphysical
distribution of mass (cf. [ADB11]). Furthermore, the scaling of ξh by a constant C might have
a similar yet less significant effect on the mass distribution and local mass conservation cannot
be guaranteed exactly.
In their recent publication [EG14], Esser and Grande extend this approach to piecewise
quadratic level set functions. This requires more effort for the computation of the discrete
interface Γh and the calculation of the exact distance is also more complex.
The presented schemes generally offer good interface approximation accuracy due to the exact
computation of the distance values with respect to the discrete representation of the interface.
However, they require the complex localization of Γh. The numerical implementation therefore
becomes more involved and the computational costs increase. Furthermore, the extension to
higher degree polynomial approximations of the level set function is difficult.
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5.2. Hyperbolic Redistancing

5.1.3. Further Approaches

We have only shown two general geometric techniques as the focus of this thesis is on PDE-
based approaches. However, we want to refer the interested reader to the following publications
for more information on geometric redistancing techniques:
◦ Ausas et al. [ADB11] provide a more general discussion and comparison of geometric

and PDE-based approaches (hyperbolic redistancing).
◦ Elias et al. [EMC07] present an algorithm which computes the distance function in an

element-wise manner on unstructured grids. The main idea is similar to the fast marching
method. Based on ”computable” elements, i.e. elements that have a sufficient number of
nodes for which the exact distance value is known to compute it in the remaining nodes,
the information is propagated to the adjacent cells. The actual numerical solution of the
local Eikonal equation is accomplished by using the discrete gradient operator, resulting
in a quadratic form. In addition to the discrete interface localization, this approach
requires a suitable mesh structure that provides adjacency information.
◦ In the recent publication [Reu13], Reusken suggests a variational gradient recovery based

approach to compute a continuous finite element approximation of ∇ϕh. Based on the
recovered gradient, one defines a quasi-normal field to determine the values in grid points
close to the interface. In a second step, the values are extended to the entire grid, for
example by employing the fast marching method. The author provides a detailed but
complex numerical analysis for his approach. In contrast to most other geometric redis-
tancing approaches, the generalization to higher order polynomial degrees is straightfor-
ward, but numerical implementation is more involved than for other techniques.

In summary we conclude that geometrical redistancing approaches offer good approximation
quality and efficient numerical algorithms exist. A common drawback is the mandatory and
possibly complex localization of the interface, in particular when using higher order polynomial
approximations to level set functions (cf. 4.3.2).

5.2. Hyperbolic Redistancing

An appealing alternative to geometrical methods is the PDE-based hyperbolic approach in-
troduced by Sussman, Smereka and Osher in [SSO94]. The underlying idea of minimizing the
residual of the Eikonal equation forms the basis for many other PDE-based approaches. Given
an interface in terms of a level set function ϕ̃, a signed distance function ϕ with identical zero
level set can be obtained by solving the equation

∂

∂τ
ϕ(τ,x) = sign(ϕ̃(x))

(
1− |∇ϕ(τ,x)|

)
(5.6)

to steady state in artificial time τ . By design,

∂

∂τ
ϕ(τ,x) = 0 ∀x ∈ Γ(ϕ̃). (5.7)
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5. Level Set Redistancing Methods

Hence, any solution to (5.6) cannot displace the interface at a continuous level. On the
other hand, |∇ϕ(τ,x)| → 1 as the solution ϕ to (5.6) approaches the steady state. Where
|∇ϕ(τ,x)| 6= 0, we can equivalently rewrite equation (5.6) as

∂

∂τ
ϕ(τ,x) + w(τ,x) · ∇ϕ(τ,x) = sign(ϕ̃(x)) (5.8)

using the unit vector

w(τ,x) := sign(ϕ̃(x)) ∇ϕ(τ,x)
|∇ϕ(τ,x)| . (5.9)

This form reveals the hyperbolic character of the PDE and is very similar to the level set
transport equation. Since w is pointing away from the interface, ∂Ω does not possess an inflow
boundary portion in the case of a convex and sufficiently smooth domain Ω. In numerical
applications one naturally uses a regularized sign function such as

Sε : R→ R+, Sε(f) := f√
f2 + ε2

(5.10)

instead of the discontinuous sign function. In [SSO94] a finite difference upwinding scheme is
suggested for the numerical approximation of the PDE. An improved approach is presented by
Russo and Smereka [RS00] in which the finite difference stencils are restricted to one side of
the interface. In contrast to the original formulation, in this method the interface displacement
does not depend on the number of pseudo time steps.
Hartmann et al. [HMS08, HMS10] present a further improved finite difference approach based
on [SSO94, RS00]. The key idea of their approach is to formulate a least squares problem
minimizing displacements of the zero level set in the redistancing process in cells containing the
interface. In essence, the original hyperbolic redistancing equation is augmented by a forcing
term which acts as a constraint preventing artificial interface displacements. Even though high
accuracy can be obtained with this approach, it suffers from general disadvantages of finite
difference approaches. In particular, the application to unstructured meshes as well as the
approximation of more involved geometries is very complex.
Alternatively, we can apply a stabilized finite element scheme as proposed in [Tor00, TE00].
A possible fully discrete finite element approximation is given by (cf. (4.21) and (4.32)):

(ϕn+1
h − ϕnh, vh)

∆t +(wn
h ·∇ϕnh, vh+δwn

h ·∇vh) = (Sε(ϕ̃h), vh+δwn
h ·∇vh) ∀vh ∈ Vh. (5.11)

Tornberg and Enquist [TE00] recommend further stabilization inside the region adjacent to
the interface in which wn

h might not be a unit vector due to the smearing effect caused by the
regularization Sε. They suggest adding a small diffusive term

α(∇ϕn+1
h ,∇vh) (5.12)

to the left hand side of equation (5.11), with parameter α = O(h). In contrast to the fi-
nite difference approaches for hyperbolic redistancing as presented in [SSO94, RS00, HMS08],
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5.2. Hyperbolic Redistancing

the finite element discretization allows for unstructured meshes and offers better boundary
approximation accuracy.
We remark that due to the numerically inevitable replacement of sign(·) by the continuous
approximation Sε(·), additional numerical diffusion is introduced which may cause interface
displacements. In particular, given a large parameter ε, the displacement can become signifi-
cant. Inordinately small values of the parameter ε tend to degrade the rate of convergence. In
general, the approach notably depends on the particular choice of this regularization parameter.
The interested reader is further referred to [CT08].

5.2.1. Convected Level Set Method

The hyperbolic redistancing scheme (5.6) as well as the geometric approaches from the previous
section are predictor-corrector algorithms. Based on a given initial function ϕ̃, they construct
an approximation of a signed distance function with respect to the interface provided by ϕ̃.
In many applications the interface evolves over time (as, for example, in two-phase flow prob-
lems). Even if the provided initial data is (close to) a signed distance function, numerical
schemes generally fail to preserve this property as time evolves. Gradients of the level set
function may become very flat or steep, which increases numerical inaccuracies. Therefore
one usually applies a redistancing scheme to a tentative solution of the level set equation at
each time step or when necessary. Alternatively, it is possible to use a monolithic scheme that
embeds the numerical solution process of the transport equation and a redistancing technique
into a single method.
The convected level set method proposed by Ville et al. [VSC11] is such a monolithic approach
which combines the hyperbolic redistancing scheme from the previous section with the solution
of the transport equation. The convected redistancing equation

∂

∂t
ϕ(t,x) + (v(t,x) + λw(t,x)) · ∇ϕ(t,x) = λ sign

(
ϕ(t,x)

)
(5.13)

is obtained as follows (cf. [VSC11]). At a fixed time t, we seek, based on the hyperbolic
redistancing approach, an approximation Φ(τ,x) in virtual time τ such that

∂

∂τ
Φ(τ,x) + sign

(
ϕ(t,x)

)
(|∇Φ(τ,x)| − 1) = 0, (5.14a)

Φ(0,x) = ϕ(t,x). (5.14b)

In a hyperbolic approach, we would replace the predictor ϕ(t,x) by the corrector, which is the
steady state limit of (5.14). Similarly as in (5.9), the unit vector

w(τ,x) := sign(ϕ(t,x)) ∇Φ(τ,x)
|∇Φ(τ,x)| , (5.15)
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is defined, and problem (5.14) is rewritten into the advection equation

∂

∂τ
Φ(τ,x) + w(τ,x) · ∇Φ(τ,x) = sign

(
ϕ(t,x)

)
, (5.16a)

Φ(0,x) = ϕ(t,x). (5.16b)

Ville et al. [VSC11] then introduce the parameter

λ = ∂τ

∂t
, (5.17)

to relate the virtual time τ with the physical time t:

∂

∂t
Φ(τ,x) = λ

∂

∂τ
Φ(τ,x). (5.18)

From (5.14) we obtain

∂

∂t
Φ(τ,x) + λ sign

(
ϕ(t,x)

)
(|∇Φ(τ,x)| − 1) = 0. (5.19)

The key idea presented in [VSC11] is to change the partial time derivative of Φ into the
total time derivative, since the domain is moving in a Eulerian context. This motivates the
hyperbolic redistancing task

d
dtΦ(τ,x) + λ sign

(
ϕ(t,x)

)
(|∇Φ(τ,x)| − 1) = 0, (5.20a)

Φ(0,x) = ϕ(t,x), (5.20b)

in a moving reference frame driven by the velocity field v. Ville et al. [VSC11] further propose
the heuristic approach to replace Φ by the main level set variable ϕ:

d
dtϕ(t,x) + λ sign

(
ϕ̃(t,x)

)
(|∇ϕ(t,x)| − 1) = 0, (5.21a)

ϕ(0,x) = ϕ̃(t,x), (5.21b)

where ϕ̃ is a provisional solution to the level set equation. Substituting the material derivative
(see (7.2))

d
dtϕ(t,x) = ∂

∂t
ϕ(t,x) + v · ∇ϕ(t,x), (5.22)

we obtain the convected level set equation (5.13). In a discrete setting with mesh size h,
physical time step size ∆t and virtual time increment ∆τ , Ville et al. suggest setting

λ = h

∆t . (5.23)
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The convected level set equation is of hyperbolic type. As before, the utilization of a suitable
stabilization technique is therefore strongly recommended. Ville et al. [VSC11] propose to use
streamline diffusion technique introduced above with a cell-dependent stabilization parameter

δ = h

D|v| , (5.24)

where D denotes the number of nodes per element (for d = 2 and linear finite elements
on a triangular mesh we have D = 3). Note that the problem at hand is non-linear. A
suitable linearization can be obtained by employing a simple fixed-point iteration or by applying
Newton’s method. Furthermore, the sign function should be replaced by a smooth version such
as Sε(·) in (5.10). This however may cause a smearing of the interface and a significant loss
in accuracy. As for the hyperbolic approach, numerical accuracy, stability and convergence
behavior may significantly depend on the choice of ε (cf. [CT08]). Let us remark that in our
numerical experiments we found the scheme to be quite sensitive w.r.t. the specific choice of λ.
Smaller values than suggested in (5.23) often result in a significant increase of the number of
required virtual time steps, while larger values lead to stronger numerical inaccuracies. Finally,
let us remark that the approach is a heuristic algorithm that is not obtained from a rigorous
mathematical derivation.

5.3. Parabolic Redistancing

Based on the hyperbolic redistancing approach (5.6), Li et al. [LXGF10] proposed a technique
in which the corrected level set equation is obtained by solving the energy-minimizing gradient
flow problem

∂

∂τ
ϕ+ ∂

∂ϕ
Rp(ϕ) = 0 (5.25)

to steady state. Here, ∂
∂ϕ denotes the variational derivative. The level set regularization term

Rp(ϕ) :=
∫

Ω
p(|∇ϕ|) dx, (5.26)

is defined in terms of a suitable potential function p : [0,∞) → R. For example, the least
squares solution to the Eikonal equation (4.5) can be obtained by setting p(s) := 1/2 (s − 1)2,
which gives rise to the following regularization term:

Rp(ϕ) = 1
2

∫
Ω

(
|∇ϕ| − 1

)2 dx = 1
2 ‖|∇ϕ| − 1‖2L2(Ω) . (5.27)
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Other choices for the potential function can be found in the original publication and in Sec-
tion 5.4. It can easily be seen [LXGF10, BK13] that in the particular case of the level set
regularization term from (5.27), equation (5.25) simplifies to the non-linear heat equation

∂

∂τ
ϕ−∇ ·

(
∇ϕ− ∇ϕ

|∇ϕ|

)
= 0. (5.28)

Li et al. [LXGF10] suggest a fully explicit finite difference scheme for discretization. Let us
remark that even though the method is easy in terms of implementation, computational costs
may be significant due to time step restrictions [BK13]. Furthermore, the internal boundary
condition

ϕ = 0 on Γ (5.29)

may be violated.

5.4. Elliptic Redistancing

In this section we consider an extension of the parabolic redistancing approach proposed by Li
et al. [LXGF10] to a finite element discretization. It is based on the work presented in [BK13].
The internal boundary condition (5.29) is enforced by adding a penalty term

PΓ(ϕ) = α

2

∫
Γ
ϕ2 dσ (5.30)

to (5.26). Furthermore, the minimization problem

min
ϕ∈V

(
Rp(ϕ) + PΓ(ϕ)

)
(5.31)

can be solved without resorting to pseudo-time stepping:

∂

∂ϕ

(
Rp(ϕ) + PΓ(ϕ)

)
= 0. (5.32)

The minimization problem is consistent in the sense that the (signed) distance function ϕ̄(x) :=
dist(x,Γ) (cf. Definition A.3) is a global minimum. In particular, PΓ(ϕ̄) = 0 by definition and
due to Theorem 4.4, the Eikonal equation is satisfied almost everywhere, i.e. R(ϕ̄) = 0. It is
also the unique solution to (5.31), provided the sign of ϕ̄ is fixed with respect to Ω1 and Ω2.
For a sufficiently large penalty parameter α > 0, the interface displacements are negligible.
Furthermore, this is a global approach and no time iteration is required.

5.4.1. Existence of a Solution in the Finite-Dimensional Setting

To show the existence of a solution to a discrete approximation of minimization problem (5.31),
we need the following auxiliary result:
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Lemma 5.1 (Poincaré-like Inequality)
Let ϕ̃ ∈ H1(Ω) be such that Γ = Γ(ϕ̃) := {x ∈ Ω | ϕ̃(x) = 0} has non-zero (d−1) measure.
Then there exist constants c > 0 and C(Γ, γ) > 0 such that for all γ > 0 and ϕ ∈ H1(Ω)
with PΓ(ϕ) < αγ

‖ϕ‖H1(Ω) ≤ c ‖∇ϕ‖L2(Ω) + C(Γ, γ). (5.33)

holds.

Proof. The proof is based on the Poincaré-Friedrichs inequality, see Theorem A.10. By defini-
tion of PΓ, cf. (5.30), and by assumption the inequality

∣∣∣∣∫
Γ
ϕdσ

∣∣∣∣ ≤√|Γ|(∫
Γ
ϕ2 dσ

)1/2

≤
√
|Γ|√γ

holds. Consider the linear form

f(v) := 1
|Γ|

∫
Γ
v dσ,

from Theorem A.10. Inequality (A.12) yields

‖ϕ− f(ϕ)‖H1(Ω) ≤ c ‖∇ϕ‖L2(Ω) ,

and an application of the triangle inequality concludes the proof:

‖ϕ‖H1(Ω) ≤ c ‖∇ϕ‖L2(Ω) + ‖f(ϕ)‖H1(Ω) ≤ c ‖∇ϕ‖L2(Ω) +
√
γ√
|Γ|
.

Lemma 5.2 (Existence of a Solution)
Let Vh ⊂ H1(Ω) be a closed subspace, ϕ̃h ∈ Vh satisfying the assumptions of Lemma 5.1
and defining Γ = Γ(ϕ̃). Let p(s) := 1

2(s−1)2 in the definition of the level set regularization
term Rp(·). Then the minimization problem (5.32) has a global solution in Vh.

Proof. We roughly follow the proof of Theorem 4.1 in [Vex12]. Since ϕ̃h ∈ Vh, the set is
obviously nonempty. Furthermore, the objective functional is non-negative by definition:

J(ϕ) = Rp(ϕ) + PΓ(ϕ) = ‖|∇ϕ| − 1‖2L2(Ω) + α

2

∫
Γ
ϕ2 dσ ≥ 0.

This implies the existence of

j := inf
ϕ∈Vh

J(ϕ),
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and of a sequence {ϕn} ⊂ Vh with

J(ϕn)→ j, as n→∞

such that

J(ϕn) < j + 1
n
.

In light of Lemma 5.1 (set γ := j+1/2
α ), we can conclude that the sequence {ϕn} is bounded in

H1(Ω):

‖ϕn‖H1(Ω) ≤ c ‖∇ϕn‖L2(Ω) + C(Γ, γ) = c ‖|∇ϕn| − 1 + 1‖L2(Ω) + C(Γ, γ)

≤ c ‖|∇ϕn| − 1‖L2(Ω) + c|Ω|1/2 + C(Γ, γ) ≤ c
√

2Rp(ϕn) + Ĉ

≤ c
√

2J(ϕn) + Ĉ ≤ c
√

2j + 1 + Ĉ.

Since Vh is finite-dimensional, the Theorem of Bolzano-Weierstraß ensures the existence of a
convergent subsequence {ϕnk

} ⊂ Vh,

ϕnk
→ ϕ̄h ∈ Vh,

with ϕ̄h ∈ Vh, since Vh is closed. The continuity of J(ϕ) can be shown very similarly to
Lemma 5.3, and finally yields

J(ϕnk
)→ J(ϕ̄h).

Unfortunately, the proof cannot be carried out for functions ϕ ∈ H1(Ω), since we could
only deduce the existence of a weakly convergent subsequence {ϕnk

}, ϕnk
⇀ ϕ̄ in the infi-

nite dimensional case. The continuity of the objective function is not sufficient to conclude
J(ϕnk

) → J(ϕ̄). We would need J(ϕ) to be weakly lower semi-continuous. This is true for
continuous and convex functionals, however J(ϕ) is not convex.
The usual approach to show uniqueness by employing the convexity of the objective functional
(5.32) is not applicable here. Uniqueness can not generally be expected in H1(Ω) without
adding a suitable regularization term as the one-dimensional example in Fig. 5.1 shows. Both
depicted functions satisfy the Eikonal equation almost everywhere in Ω, but only one is a
signed distance function. In practice however, good initial guesses for the fixed-point iteration
(5.35) prevent such deteriorated functions. In the context of transport equations, a temporary
solution or the solution from the previous time step can directly provide a suitable initial guess.
We remark that this behavior can mostly be avoided when adding an additional continuous
interior penalty (CIP) term, cf. (5.51).
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Figure 5.1.: Illustration of a counter example for the uniqueness of the solution.

5.4.2. Weak Formulation

For the regularization term defined in (5.27) and a sufficiently smooth test function v, we
obtain the variational form of (5.32):∫

Ω

(
1− 1
|∇ϕ|

)
∇ϕ · ∇v dx + α

∫
Γ
ϕv dσ = 0. (5.34)

The problem is non-linear in ϕ. Therefore, we employ the iterative solution strategy presented
in [BK13]: Based on an initial guess ϕ(0), successive approximations are computed using the
fixed-point iteration

a(ϕ(m), v) = b(ϕ(m−1), v) ∀v, (5.35)

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(ϕ, v) :=
∫

Ω
∇ϕ · ∇v dx + α

∫
Γ
ϕv dσ, (5.36a)

b(ϕ̃, v) :=
∫

Ω

∇ϕ̃
|∇ϕ̃|

· ∇v dx. (5.36b)

More generally, different level set regularization terms can be considered. In [LXGF10, BK13],
the generic term

Rp(ϕ) :=
∫

Ω
p(|∇ϕ|) dx (5.37)
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for a given potential function p : [0,∞) → R is defined. Enough regularity provided, the
variational derivative of Rp(ϕ) with respect to ϕ in direction v is given by

δRp(ϕ, v) =
∫

Ω
dp(|∇ϕ|)∇ϕ · ∇v dx, (5.38)

where

dp(s) = p′(s)
s

. (5.39)

denotes the diffusion rate associated with p. In the strong form we have

∂

∂ϕ
Rp(ϕ) = ∇ ·

(
dp(|∇ϕ|)∇ϕ

)
, (5.40)

which shows that the level set regularization term creates forward diffusion where dp(|∇ϕ|) > 0
and backward diffusion where dp(|∇ϕ|) < 0. For consistency, we define the potential used in
(5.27) as

p1(s) := 1
2(s− 1)2. (5.41)

The associated diffusion rate is

d1(s) = 1− 1
s
. (5.42)

5.4.3. Different Potential Functions

Unfortunately, for flat gradients of ϕ, the diffusion rate detoriates since d1(s)→ −∞ as s↘ 0
(cf. Fig. 5.2). As alternative potential to p1, Li et al. [LXGF10] therefore propose the double-
well potential

p2(s) :=
{ 1

4π2

(
1− cos(2πs)

)
if s ≤ 1,

1
2(s− 1)2 if s > 1. (5.43)

In contrast to p1, the double well potential has an additional minimum at s = 0 and the
diffusion rate

d2(s) =
{ 1

2πs sin(2πs) if s ≤ 1,
1− 1

s if s > 1, (5.44)

is bounded below. For flat gradients, i.e. where |∇ϕ(x)| < 1
2 , the diffusion rate is positive,

forcing ϕ to become constant. However, the non-linear stationary problem associated with Rp2
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Figure 5.2.: Illustration of potential functions and associated diffusion rates.

cannot be solved by a fixed-point iteration of the form (5.35) any more. For that reason, in
[BK13] an improved double-well potential is proposed:

p3(s) :=
{

s2

2 (s− 1)2 if s ≤ 1,
1
2(s− 1)2 if s > 1. (5.45)

The corresponding diffusion rate is given by

d3(s) :=
{

2s2 − 3s+ 1 if s ≤ 1,
1− 1

s if s < 1. (5.46)

All three potential functions and their associated diffusion rates are depicted in Fig. 5.2. Even
though the potentials p2 and p3 are quite similar, the latter one is better suited for the proposed
elliptic redistancing technique (5.32). Note that p2 and p3 share the same minimum points
and their diffusion rates have the same roots. Furthermore, d3 is continuously differentiable in
s = 1. In contrast to d2, it contains an additive constant of 1 also for s < 1. Therefore, the
same fixed-point iteration technique as in (5.35) can be applied to solve the elliptic redistancing
problem associated with Rp3 . While the bilinear form a(·, ·) remains the same, the linear form
b(·, ·) changes to

b(ϕ, v) :=
∫

Ω

(
d3(|∇ϕ|)− 1

)
∇ϕ · ∇v dx. (5.47)

Such double-well potentials are also very useful when using higher order finite element dis-
cretizations, in which oscillations may occur at the skeleton of the distance function (i.e. at
points that are closest to more than one point on the interface). The advantages of this
approach are discussed in [UKO16].
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5.4.4. Discretization

As introduced in Chapter 3, for a triangulation Th of Ω, the linear finite element approximation
of the problem is obtained by replacing the function space V with the finite-dimensional space
Vh := V 1

h with nodal basis {ψi}Ni=1. The system matrix of the algebraic system obtained from
this discretization applied to fixed-point iteration (5.35)

Ai,j =
∫

Ω
∇ψi · ∇ψj dx (5.48)

is a classical stiffness matrix and must only be assembled once. The right hand side vector
associated with (5.36b) or (5.47) requires an update at each iteration. In particular, the
gradient of the finite element function ϕh needs to be evaluated at quadrature points for the
computation of the right hand side. We remark that ∇ϕh is discontinuous, which can make
the use of a gradient recovery technique worthwhile. For example, the recovered gradient gh
of ∇ϕh can be determined using the simple L2-projection∫

Ω
ghψi dx =

∫
Ω
∇ϕhψi dx, i = 1, . . . , N1

h . (5.49)

The mass matrix that arises in the left hand side can be replaced by the diagonal lumped mass
matrix, since accuracy is not crucial in this setting. The solution of the linear system is therefore
trivial and the additional computational costs reduce to two matrix-vector multiplications and
the one-time assembly of mass and discrete gradient matrix.
In any case, the arising linear system can be solved using the efficient CG-method combined
with a suitable preconditioner such as Incomplete Cholesky Factorization (ICC).
For the numerical computation of the surface integral arising in (5.30), different techniques can
be used. Based on the level set function, the interface can be reconstructed (cf. Section 4.3.2),
and a numerical quadrature formula applied. An approach easier to implement is the use of
adaptive quadrature formulas. Elements containing the interface are suitably subdivided, and
a quadrature formula is applied to the transformed volume integral∫

Γh

ϕ2
h dσ ≈

∫
Ω
δ(Γh,x)ϕ2

h dx (5.50)

on the refined mesh. Here, δ(Γh,x) denotes the Delta distribution localizing the interface
[Hys07]. A third possibility is presented in Section 5.4.5.
The behavior of ϕ converging to a (local) minimum of the Eikonal equation in which the
signed distance function property is violated can be avoided in many scenarios when adding
the continuous interior penalty (CIP) term

PCIP(ϕh) = γ

2
∑
K∈Th

∫
∂K

Jn · ∇ϕhK Jn · ∇vhK dσ (5.51)

presented in [BH04]. In Fig. 5.3 the elliptic redistancing scheme is applied to the perturbed
signed distance function Φ10 introduced in (5.83). Without the CIP stabilization term the
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1.39
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Figure 5.3.: Elliptic redistancing without (left) and with CIP (right) for a perturbed distance
function.

solution fails to converge to the correct signed distance function. In terms of the increased
cost, an additional matrix needs to be assembled once. In our numerical experiments we found
that with the CIP term the rate of convergence could be slightly accelerated, even though this
term is only required when dealing with heavily distorted distance functions.
In [UKO16], Utz et al. use a discontinuous Galerkin finite element method for the spatial
discretization of the elliptic redistancing problem. This approach shows comparable numerical
results, but offers better properties in the context of a parallel implementation. It is closely
related to the finite element approach with CIP penalty term.

5.4.5. Interface Local Projection Approach

In [BKS16] an alternative approach to enforcing the internal boundary condition ϕ|Γ = 0
was presented. It is based on a local projection technique by Parolini [Par04], and easier to
implement as it does not require an exact localization of the interface.

Figure 5.4.: Illustration of interface region Ωint (shaded) in the local projection approach.
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The key idea is to define a desired state locally in the immediate vicinity of the interface Ωint

(cf. Fig. 5.4). This state can be computed from the auxiliary solution ϕ̃, which we assume to
implicitly define the interface Γ. Since the redistanced reconstruction of ϕ̃ can be discontinuous
across element boundaries, a local L2-projection is employed to compute the local target state
ϕint: ∫

Ωint
ϕintv dx =

∫
Ωint

ϕ̃

|∇ϕ̃|
v dx. (5.52)

The penalty term (5.30) is then replaced by

P̃(ϕ) = α

2

∫
Ωint

(ϕ− ϕint)2 dx, (5.53)

and the level set regularization term (5.26) is updated to

R̃(ϕ) =
∫

Ω\Ωint
p(|∇ϕ|) dx. (5.54)

Let us emphasize that even though this approach seems similar to the technique by [ADB11]
presented in Section 5.1.2, it does not require explicit knowledge of the interface. Therefore,
the numerical implementation is much simpler and the approach can easily be extended to
higher order polynomial finite element functions.
We remark that the required local L2-projection introduces an additional discretization error
that may negatively influence interface accuracy. In our numerical studies we could not observe
advantages over the interface penalty term (5.30) in terms of convergence behavior or interface
accuracy.

5.5. Optimal Control Approach for Redistancing

In this section we present a new monolithic advection scheme with built-in redistancing, which
was first presented in [BKS16]. In essence, a level set regularization term R(ϕ) such as (5.26)
is minimized under the constraint of an augmented level set transport equation. The general
optimization problem reads as follows:

min
ϕ∈V, q∈Q

J(ϕ, q) := 1
2

∫ T

0
Rp(ϕ(t,x)) dt+ β

2

∫ T

0
‖q(t,x)‖2Q dt, (5.55)

subject to

∂

∂t
ϕ+ v · ∇ϕ+ ϕq = 0 in (0, T )× Ω, (5.56a)

ϕ(t,x) = ϕD(t,x) on (0, T )× ∂Ωin, (5.56b)
ϕ(0, ·) = ϕ0(·) in Ω. (5.56c)
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The initial level set function defining the interface at time t = 0 is given in terms of the function
ϕ0 : Ω → R. The Dirichlet boundary condition on the inflow portion of the boundary, if any,
is specified by ϕD : (0, T ) × ∂Ωin → R. In the context of an optimal control problem, we
refer to ϕ as the state variable and to q as the control variable. The control q is sought in a
suitable function space Q and corrects the solution so as to minimize the objective functional
(5.55). In particular, on the zero level set of ϕ the source term vanishes regardless of the
values of q. As a direct consequence, the interface cannot be artificially displaced. The second
term in the cost functional J(·, ·) is a so-called Tikhonov-regularization term, ensuring that
the control q remains sufficiently smooth and bounded. In contrast to the hyperbolic schemes
which rely on a well-chosen regularization parameter for the approximation of the sign function,
no such parameter is needed here. Instead, the regularization parameter β controls how much
corrections of the level set function are tolerated.
Unfortunately, the objective functional J(ϕ, q) is highly non-linear in Rp(·) and non-convex.
Furthermore, considering a solution ϕ to the state equation (5.56a) for given q, one can only
expect ϕ ∈ {v ∈ L2(Ω) : v · ∇v ∈ L2(Ω)} (see, for example, [DPE12]), which is insufficient
with respect to the objective (5.55). For these reasons, the application of the usual analysis
framework is not possible in the continuous setting. Furthermore, depending on the choice of
p in the regularization term Rp(ϕ), the solution space V must be carefully chosen.
In the following we consider a simplified and time independent version of the general mini-
mization problem (5.55)-(5.56) with potential function p = s− 1:

min
ϕ∈V, q∈Q

J(ϕ, q) := 1
2 ‖|∇ϕ| − 1‖2L2(Ω) + β

2 ‖q‖
2
Q , (5.57)

subject to

∂

∂t
ϕ+ v · ∇ϕ+ ϕq = 0 in (0, T )× Ω, (5.58a)

ϕ(0,x) = ϕ0(x) in Ω. (5.58b)

For this particular choice of J(ϕ, q), we can show continuity in (ϕ, q).

Lemma 5.3
The functional

J(ϕ, q) = 1
2 ‖|∇ϕ| − 1‖2L2(Ω) + β

2 ‖q‖
2
H1(Ω) (5.59)

is continuous in (ϕ, q) ∈ H1(Ω)×H1(Ω).

This result is to be expected, as compositions of continuous mappings are continuous. We
provide the proof for completeness.

Proof. The continuity of ‖q‖2H1(Ω) is obvious. It remains to show the continuity of

f(ϕ) := ‖|∇ϕ| − 1‖2L2(Ω) .

63



5. Level Set Redistancing Methods

For ε > 0, δ > 0, ϕ ∈ H1(Ω) and ψ ∈ H1(Ω) such that ‖ϕ− ψ‖H1(Ω) ≤ δ we have

|f(ϕ)− f(ψ)| ≤
∫

Ω

∣∣(|∇ϕ| − 1)2 − (|∇ψ| − 1)2∣∣ dx

= ‖(|∇ϕ| − |∇ψ|) · (|∇ϕ|+ |∇ψ| − 2)‖L1(Ω)
Hölder
≤ ‖|∇ϕ| − |∇ψ|‖L2(Ω) · ‖|∇ϕ|+ |∇ψ| − 2‖L2(Ω) .

For the first term, the reverse triangle inequality yields

‖|∇ϕ| − |∇ψ|‖L2(Ω) ≤ ‖∇(ϕ− ψ)‖L2(Ω) < δ,

and the second term is bounded by

‖|∇ϕ|+ |∇ψ| − 2‖L2(Ω) ≤ ‖|∇ϕ|‖L2(Ω) + ‖|∇ψ|‖L2(Ω) + 2 ‖1‖L2(Ω)

= ‖∇ϕ‖L2(Ω) + ‖∇ψ‖L2(Ω) + 2|Ω|
≤ 2 ‖∇ϕ‖L2(Ω) + δ + 2|Ω|.

This proves the continuity of f in ϕ:

|f(ϕ)− f(ψ)| ≤ δ ·
(
‖∇ϕ‖L2(Ω) + δ + 2|Ω|

)
< ε,

for all δ < −γ+
√
γ2+4ε

2 , γ := ‖∇ϕ‖L2(Ω) +2|Ω|. Consequently, J(ϕ, q) is a continuous functional
in (ϕ, q).

5.5.1. Existence of a Solution in the Finite-Dimensional Setting

When we replace the non-linear source term ϕq in (5.57) with the linear source term ϕ̃q, the
resulting simplified minimization problem can be interpreted as predictor-corrector scheme.
We consider a discrete version obtained by using the finite-dimensional spaces Vh ⊂ H1(Ω)
and Qh ⊂ H1(Ω). In particular, the Dirichlet boundary condition shall be embedded into Vh,
so that Poincaré’s inequality (cf. Theorem A.10) can be applied in Vh. The simplified state
equation (5.58a) then can be written in terms of the discrete operators Ãh = Ãh(ϕ̃) and Bh,
and the right hand side fh:

Bhϕh + Ãhqh = fh. (5.60)

The generic discrete operators can be obtained, for example, by applying the θ time splitting
scheme and finite elements for spatial discretization. Note that the operator Bh and the right
hand side fh contain contributions from both spatial and temporal discretization. Let us
consider the following discrete minimization problem

min
ϕh∈Vh, qh∈Qh

J(ϕh, qh) := 1
2 ‖|∇ϕ| − 1‖2L2(Ω) + β

2 ‖qh‖
2
H1(Ω) (5.61)
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subject to

Bhϕh + Ãhqh = fh. (5.62)

In this setting, the existence of a solution can be shown:

Lemma 5.4 (Existence of a Solution)
For the two finite-dimensional spaces Vh and Qh specified above, each equipped with
‖·‖H1(Ω), let the predictor ϕ̃ ∈ Vh be such that Ã is invertible. Then the minimization
problem (5.61)-(5.62) has a global solution for all β > 0.

Proof. The proof uses a standard technique for finite-dimensional optimization problems. It is
roughly based on the proof of [Vex12, Theorem 4.1], but with interchanged roles of state and
control.
For any ϕh ∈ Vh exists one and only one

qh = qh(ϕh) = Ã−1
h

(
fh − Bhϕh),

because Ãh is invertible by assumption. Since ϕ̃h ∈ Vh, the set

Wh := {(ϕh, qh) ∈ Vh ×Qh : Bhϕh + Ãhqh = fh}

is not empty. The objective functional satisfies

J(ϕh, qh) ≥ 0, ∀(ϕh, qh) ∈Wh,

and therefore the infimum j exists:

j := inf
(ϕh,qh)∈Wh

J(ϕh, qh).

By definition, there is a sequence {(ϕn, qn)} ⊂Wh such that

j ≤ J(ϕn, qn) ≤ j + 1
n
,

and

J(ϕn, qn)→ j, as n→∞.

The sequence {qn} is bounded by definition:

‖qn‖2H1(Ω) ≤
2
β
J(ϕn, qn) ≤ 2

β

(
j + 1

n

)
.

For the boundedness of {ϕn}, we use Young’s inequality ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 with
a = |∇ϕn| − 1 and b = 1 to get:

2 ‖|∇ϕ| − 1‖2L2(Ω) + 2 ‖1‖2L2(Ω) ≥ ‖|∇ϕ|‖
2
L2(Ω) = ‖∇ϕ‖2L2(Ω) ≥

1
cΩ
‖ϕ‖2H1(Ω) .
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The last inequality is a direct consequence of Poincaré’s inequality, which is applicable by defini-
tion of Vh. Hence, {ϕn, qn} is a bounded sequence, and by application of the Bolzano–Weierstraß
Theorem, there exists a convergent subsequence {(ϕnk

, qnk
)} with

(ϕnk
, qnk

)→ (ϕ̄h, q̄h),

where (ϕ̄h, q̄h) ∈ Vh ×Qh.

0 = Bhϕnk
+ Ãhqnk

− f, ∀nk,

and, since Ãh and Bh are linear continuous operators,

0 = lim
nk→∞

Bhϕnk
+ Ãhqnk

− f = Bhϕ̄h + Ãhq̄h − f = 0, =⇒ (ϕ̄h, q̄h) ∈Wh.

Finally, as shown in Lemma 5.3, the objective functional J(·, ·) is continuous in Vh×Qh w.r.t.
‖·‖H1(Ω), and therefore

J(ϕnk
, qnk

)→ J(ϕ̄, q̄) =⇒ J(ϕ̄, q̄) = j.

The assumption that the discrete operator Ã is invertible is reasonable in the sense that the
interface associated with ϕ̃ must not be degenerate. In particular, there must not be elements
in which ϕ̃ has zero values in all degrees of freedom. The matrix can be considered as a mass
matrix scaled by ϕ̃.

5.5.2. Weak Formulation

Similarly to the level set equation, the weak form of state equation (5.58a) can be obtained,
thus: ∫

Ω

(
∂

∂t
ϕ+ v · ∇ϕ+ ϕq

)
v dx ∀v ∈ V. (5.63)

As trial space for ϕ we may use V := H1(Ω) to ensure sufficient regularity of the level set
regularization term Rp(·). For the control space Q, we pick Q = L2(Ω) based on numerical
experience but also Q = H1(Ω) is feasible. Let us consider the associated generic semi-discrete
problem:

min
ϕh∈Vh, qh∈Qh

J(ϕh, qh) := Rp(ϕh) + β

2 ‖qh‖Q (5.64)

subject to

a(ϕh, vh) + b(ϕh, qh, vh) = l(vh) ∀vh ∈ Vh, (5.65a)
ϕh(0,x) = ϕ0,h(x). (5.65b)
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Even though the convection-dominated state equation calls for the use of stabilized numerical
schemes, the standard Galerkin discretization may also be employed. The additonal source
term has a stabilizing effect on the solution. Furthermore, continuously applied redistancing
will prevent steep or flat gradients, which generally cause instabilities to arise. Nevertheless,
a stabilized discretization technique can easily be employed. Let us consider three different
discretization approaches (cf. [BKS16]):

1. θ-scheme and linear finite elements:

a1(ϕh, vh) =
∫

Ω
ϕhvh + ∆tθvh · ∇ϕhvh dx, (5.66a)

b1(ϕh, qh, vh) =
∫

Ω
∆tϕhqhvh dx, (5.66b)

l1(vh) =
∫

Ω
ϕnhvh −∆t(1− θ)vh · ∇ϕnh dx; (5.66c)

2. θ-scheme and streamline diffusion stabilized linear finite elements:

a2(ϕh, vh) =
∫

Ω

(
ϕh + ∆tθvh · ∇ϕh

)
(vh + δvh · ∇vh) dx, (5.67a)

b2(ϕh, qh, vh) =
∫

Ω
∆tϕhqh(vh + δvh · ∇vh) dx, (5.67b)

l2(vh) =
∫

Ω

(
ϕnh −∆t(1− θ)vh · ∇ϕnh

)
(vh + δvh · ∇vh) dx; (5.67c)

3. semi-implicit Lax-Wendroff scheme and linear finite elements:

a3(ϕh, vh) =
∫

Ω

(
ϕhvh + (∆t)2

2 (vh · ∇ϕh)(vh · ∇vh)
)

dx, (5.68a)

b3(ϕh, qh, vh) =
∫

Ω
∆tϕhuqhvh dx, (5.68b)

l3(vh) =
∫

Ω
−∆tvh · ∇ϕnhvh dx. (5.68c)

For the θ-scheme, the source term ϕhqhvh is treated fully implicitly regardless of θ. This can
be justified by the fact that the evolution of the control in time does not have to be smooth.
In many optimal control settings, in particular when the admissible set of controls is bounded
above and below, the control exhibits a bang-bang structure, jumping between the upper and
lower bound.
For the streamline diffusion approach, the stabilization parameter δ is commonly chosen to be
element-wise constant, cf. (4.22). Also note that the semi-implicit Lax-Wendroff scheme as
introduced in Section 4.4 can be considered as a parameter-free stabilization technique.
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5.5.3. Discrete Optimality Conditions

To derive first order optimality conditions for the generic discrete minimization problem (5.64)-
(5.65), we introduce the associated discrete Lagrange functional

Lh(ϕh, qh, λh) := J(ϕh, qh) + a(ϕh, λh) + b(ϕh, qh, λh)− l(λh). (5.69)

Differentiating Lh with respect to the state variable ϕh, the control variable qh and the Lagrange
multiplier λh yields the system of first order optimality conditions

δR(ϕh, ψ) + a(ψ, λh) + b(ψ, qh, λh) = 0 ∀ψ ∈ Vh, (5.70a)
b(ϕh, η, λh) + β (qh, η)Q = 0 ∀η ∈ Qh, (5.70b)
a(ϕh, vh) + b(ϕh, qh, vh) = l(vh) ∀vh ∈ Vh. (5.70c)

The derivative of Rp can be computed as shown in (5.38).

5.5.4. Linearization

As we have seen, neither Rp nor its variational derivative are linear functions in ϕ. For the
numerical solution of system (5.70), we must employ a suitable linearization technique. A
straight-forward approach is based on the fixed-point iteration introduced in (5.35), in which

δRp1(ϕh, vh) ≈
∫

Ω
∇ϕ(m+1)

h · ∇vh dx−
∫

Ω

∇ϕ(m)
h · ∇vh
|∇ϕ(m)

h |
dx, (5.71)

and, for the trilinear form

b(ϕh, qh, λh) ≈ b(ϕ(m)
h , q

(m+1)
h , λ

(m+1)
h ). (5.72)

In each iteration, the vector(
r(ϕh)

)
i

=
∫

Ω

∇ϕh · ∇ψi
|∇ϕh|

dx (5.73)

and the weighted mass matrix(
M(ϕh)

)
i,j

=
∫

Ω
ϕh ψi ψj dx (5.74)

must be assembled.
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An alternative linerization approach is obtained by application of Newton’s method. The
second derivative of Rp can be computed to be

δ2Rp(ϕ, v, w) =
∫

Ω
p′′(|∇ϕ|)∇ϕ · ∇w

|∇ϕ|
∇ϕ · ∇v
|∇ϕ|

dx

+
∫

Ω
p′(|∇ϕ|)

(
∇w · ∇v
|∇ϕ|

− ∇ϕ · ∇v
|∇ϕ|2

∇w · ∇ϕ
|∇ϕ|

)
dx

=
∫

Ω

p′′(|∇ϕ|)
|∇ϕ|2

(∇ϕ · ∇w)(∇ϕ · ∇v) dx

+
∫

Ω

p′(|∇ϕ|)
|∇ϕ|

(
∇w · ∇v − (∇ϕ · ∇v)(∇ϕ · ∇w)

|∇ϕ|2

)
dx. (5.75)

Let zh := (ϕh, qh, λh) and F (zh) denote the residual of the optimality system (5.70). The
Jacobian matrix JF (z) of F is given by

(JF (z))i,j :=
(
∂Fi
∂zh,j

)
(z). (5.76)

The partial derivatives of F are:

∂F1
∂ϕh

= δ2Rp(ϕh, δϕh, ψ), (5.77a)

∂F1
∂qh

= b(ψ, δqh, λh), (5.77b)

∂F1
∂λh

= a(ψ, δλh) + b(ψ, qh, δλh), (5.77c)

∂F2
∂ϕh

= b(δϕh, η, λh), (5.77d)

∂F2
∂qh

= (δqh, η)U , (5.77e)

∂F2
∂λh

= b(ϕh, η, δλh), (5.77f)

∂F3
∂ϕh

= a(δϕh, vh) + b(δϕh, qh, vh), (5.77g)

∂F3
∂qh

= b(ϕh, δqh, vh), (5.77h)

∂F3
∂λh

= 0. (5.77i)

The Newton update can be formulated as follows: for given z(0), compute

z(m+1)
h := z(m)

h −
(
JF (z(m)

h )
)−1

F (z(m)
h ), m = 0, 1, . . . . (5.78)

In our numerical experience we could not observe a significant difference between the two lin-
earization approaches. For good approximations to signed distance functions we observed fast
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convergence. When stronger deformations occur, the required number of fixed-point iterations
increases. In addition to the presented algorithm we also considered an extension by using
a CIP penalty term as in the elliptic-redistancing approach. Furthermore, we replaced the
gradient of ϕ by a smooth counterpart obtained from variational gradient recovery based on
the idea presented in [Reu13]. However, we could not observe any significant improvement for
these extensions.
Let us conclude this section with a remark on the inf-sup condition associated with the prob-
lem. The optimization problem does not impose any restrictions on the choice of the finite
element spaces per se, but an inf-sup condition could be introduced when solving the first-order
optimality conditions. Due to the non-linearity of the problem, we were not able to show that
such an inf-sup condition is satisfied automatically. However, based on our numerical expe-
rience, we assume that the inherent inf-sup conditions holds for the employed finite element
spaces.

5.6. Numerical Results

In the numerical study below, we will use the following abbreviations to keep notation simple:

[NO-RD] no redistancing scheme is applied,
[HYP-RD] hyperbolic redistancing with stabilized linear finite elements, cf. (5.11),
[CLS-RD] convected level set with stabilized linear finite elements, cf. Section 5.2.1,
[ELP-RD] elliptic redistancing with linear finite elements, cf. (5.35),
[OPC-RD] optimal control approach for redistancing as presented in Section 5.5.

The chapter is partly based on results presented in the author’s previous publications [Bas12,
BK13, BKS16].
We will use the following global and local error measures (cf. [BKS16, Reu13, EG14]):

e∞ := max
K∈Th

(
max
x∈K
|ϕh(T,x)− dex(x)|

)
, (5.79a)

e∞,Γ := max
K∈T Γ

h

(
max
x∈K
|ϕh(T,x)− dex(x)|

)
, (5.79b)

e∇∞ := max
K∈Th

√
1
K

∣∣∣∣∫
T

(
|∇ϕh(T,x)| − 1

)
dx
∣∣∣∣, (5.79c)

e∇∞,Γ := max
K∈T Γ

h

√
1
K

∣∣∣∣∫
T

(
|∇ϕh(T,x)| − 1

)
dx
∣∣∣∣, (5.79d)

where Th is the computational triangulation of Ω, and T Γ
h ⊂ Th the subset of elements con-

taining the interface Γ. By dex(x) we denote the exact distance to the interface Γ at final time
T . Note that many numerical experiments are designed such that the solution at final time
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coincides with the initial data, so that the exact solution dex(·) can easily be provided. More
error measures are given in the L2(Ω)- and H1(Ω)-norms of ϕh(T, ·)− dex(·), i.e.

eL2(Ω) := ‖ϕh(T,x)− dex(x)‖L2(Ω) , (5.80a)
eH1(Ω) := ‖ϕh(T,x)− dex(x)‖H1(Ω) . (5.80b)

For all numerical experiments below, we used linear finite elements on uniform, triangular
meshes and the second-order accurate Crank-Nicolson time discretization technique.

5.6.1. Pure Redistancing

At first, let us consider pure redistancing problems. For a given perturbed signed distance
function ϕ̃(x), we seek a good correction to approximate the distance function without moving
the interface. Naturally, post-processing algorithms can easily be applied. However, for the
monolithic approaches [CLS-RD] and [OPC-RD] which are designed to simultaneously solve the
transport equation and perform the redistancing, advection of the interface must be disabled
by setting the velocity field to zero. Hence, in this setting monolithic approaches cannot benefit
from their more natural embedding of the redistancing procedure.

5.6.1.1. Truncated Distance Functions

This first example is designed to illustrate the capability of using double-well potentials for
the level set regularization function Rp3(·) in the [ELP-RD] approach. Let ϕ̃ be given by

ϕ̃(x) :=
√

sin(πx1) · sin(πx2)− 1
2 . (5.81)

In Fig. 5.5 the truncation effect is illustrated. Close to the center (0.5, 0.5) of the domain, the
gradients of ϕ̃ are flat and the diffusion rate d3 becomes positive. This forces the corrected
solution ϕ to become constant in these regions. In all other regions, the diffusion rate adapts
itself such that the solution satisfies |∇ϕ| ≈ 1. The computations are carried out on a numerical
mesh with 101× 101 nodes and the penalty parameter is set to α = 105. The depicted result
itself was obtained after just one fixed-point iteration. This emphasizes the global character
of the [ELP-RD] approach and makes it particularly well suited for problems requiring large
corrections as well as for applications requiring good signed distance function approximation
accuracy also in regions away from the interface.
Based on this example, let us briefly address the numerical solution of the linear system arising
in each fixed-point iteration of [ELP-RD]. Fig. 5.6 illustrates the dependence of linear solver
iterations (CG-method with ICC preconditioning, cf. Section 5.4.4) on the concrete choice of
the penalty parameter α for the internal boundary condition. Even though for increasing α
more iterations are required, the influence can be regarded as rather insignificant. In practice,
we obtained good results for the considered range of α, independently of the mesh size h.
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(a) (b)
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Figure 5.5.: (a) Initial data, (b) solution of [ELP-RD] with double-well potential p = p3.
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Figure 5.6.: Illustration of dependence of CG/ICC iterations on penalty parameter α. The
average number of iterations (45.5) is shown in red (cf. [BK13]).
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5.6.1.2. Perturbed Distance Function

The second test case is based on a numerical experiment presented in [Reu13], in which the
interface capturing capability and the accuracy of the redistancing method are assessed. Con-
sider the distance function

Φ(x) :=
∣∣|x| −R∣∣− r (5.82)

for radii R := 0.4 and r := 0.2 in the domain Ω = (−1, 1)× (−1, 1), and the perturbed version

Φι(x) := Φ(x) · ζι(x) (5.83)

with the perturbation function

ζι(x) := 9.0 + 4.0 · cos
(
ιx1x2
|x|

)
. (5.84)

−2.6

0

3.3

6.6

9.8

Figure 5.7.: Illustration of Φι for ι = 10. The white isocontours are equidistant, and the zero
isocontours are bold.

Note that since ζι(x) > 0 for all ι > 0, the zero interfaces of Φ and Φι are identical. The
perturbed function Φι challenges redistancing schemes, since it has both, regions with large
and flat gradients. As ι increases, Φι becomes less smooth. In Fig. 5.7, equidistant isocontours
of Φι are depicted at mesh refinement level ` = 6 and for perturbation parameter ι = 10.
To begin with, we compare the number of iterations of the methods under investigation for
the relatively simple test case ι = 1 on a 100× 100 mesh. Fig. 5.8 plots the relevant errors vs.
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(b) [ELP-RD] with interface penalty parameter α = 104

−5 0 5 10 15 20 25 30 35 40 45 50 55
10−4

10−3

10−2

10−1

100

101

102

number of iterations

er
ro

rs

eL2(Ω) e∞ e∇∞
eH1(Ω) e∞,Γ e∇∞,Γ

Figure 5.8.: Results for the static redistancing test case with initial data Φ1.
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(c) Rescaling by factor 1/4 + [CLS-RD]
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(d) [OPC-RD] with Tikhonov regularization parameter β = 10−4
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Figure 5.8.: Results for the static redistancing test case with initial data Φ1.
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the number of iterations. For the projection of Φ1 into the finite element space X1
h, we have

the following initial errors:

‖Φ1 − I1
h(Φ1)‖L2(Ω) ≈ 9.18 · 10−4, e∇∞ ≈ 3.62 · 10−2,

‖Φ1 − I1
h(Φ1)‖H1(Ω) ≈ 1.87 · 10−1, e∇∞,Γ ≈ 5.80 · 10−4.

For the hyperbolic approach [HYP-RD] (with SUPG stabilization) to converge, we had to add
artificial diffusion of order O(h2) as suggested in (5.12). Even though this led to convergence,
numerical diffusion caused the method to converge to a solution which only approximates
a signed distance function with reasonable accuracy. Let us remark that the perturbation
parameter ι controls the oscillations of the perturbation, not the general scaling by a factor
between 5 and 13. Even though in this example ι = 1 is chosen rather small, the initial data
has steep and flat gradients and requires large corrections. Unfortunately, the diffusive effects
prevented the [HYP-RD] approach to converge to a satisfactory steady state solution. Generally
we observed convergence problems and high sensitivity w.r.t. the regularization parameter ε.
This behavior has also been observed in the context of discontinuous Galerkin approximations
[UKO16] and finite difference approximations [HMS08, HMS10]. The use of different smoothed
versions of the sign function may improve convergence results, see for example [PMO+99].
After only one iteration of the global [ELP-RD] approach, all measured errors are reduced
significantly. The interface penalty term in (5.30) was set to α = 104. From the four investi-
gated approaches, [ELP-RD] offers the smallest error in terms of displacements of the interface
(e∞,Γ), and together with [OPC-RD] very good local signed distance function approximation
(e∇∞,Γ). Since the method using the local projection approach (5.53) exhibits similar or less
accurate performance, we only provide results for [ELP-RD] here and below.
The convected redistancing approach [CLS-RD] builds on the local hyperbolic approach, and
therefore more iterations are to be expected to reach a steady-state solution. Unfortunately,
the method is unable to cope with the large gradients of Φ1, which is why we scale the initial
data by the factor of 1/4 in the first iteration. The general performance of this method for this
test case is not satisfactory, however we emphasize that the method is designed as monolithic
approach that solves both, the level set equation and the redistancing problem at once. Since
deformations per time step are rather small, such strong perturbations hardly occur in the
context of advection problems.
Just like [CLS-RD], the optimal control approach [OPC-RD] is a monolithic scheme. However
it performs quite well for this problem if we choose a sufficiently small Tikhonov regularization
parameter β = 10−4 (which allows for larger corrections). Compared to [ELP-RD], the interface
approximation is less accurate. The signed distance function approximation is good. Again, we
emphasize that the method is, by design, not suited for pure redistancing tasks. Nevertheless,
the results show that [OPC-RD] can also be applied to strongly perturbed level set functions
and indicate that the approach allows for larger time steps compared to [CLS-RD].
Let us now consider the convergence behavior of the methods applied to Φι for the more
challenging case ι = 5, for which the perturbed level set function can still be resolved sufficiently
well on the coarsest mesh (` = 3). We use a uniform family of triangulations of Ω with
mesh sizes h` := 2−`. For the monolithic scheme [OPC-RD], the velocity field is set to zero
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and several pseudo time steps are performed in addition to the fixed-point iterations. This
allows for larger corrections without artificially increasing the conditioning of the system (as
for choosing small values of β). The results and convergence rates for the different error
quantities are summarized in Table 5.1. Unfortunately, both [HYP-RD] and [CLS-RD] failed
to converge for this strongly perturbed initial data without further modifications. For the
elliptic redistancing approach [ELP-RD], the results with additional CIP-stabilization are less
accurate. This can be explained by the fact that [ELP-RD] converges to the distance function
since deformations are still manageable for ι = 5. However, the accuracy suffers from the
additional diffusion introduced by CIP. The results for [OPC-RD] are slightly better but incur
higher computational costs. The presented test case shows the overall robustness of [ELP-RD]
and [OPC-RD] in contrast to other PDE-based approaches such as [HYP-RD] and [CLS-RD].

5.6.2. Vortex Deformation

Let us consider a non-stationary test case in the domain Ω = (0, 1)2, in which the velocity field

v(t,x) := 1
2 cos

(
tπ

4

)[
sin2(πx1) sin(2πx2)
− sin2(πx2) sin(2πx1)

]
(5.85)

causes strong deformations. As initial data we use the signed distance function of a circle
centered at (0.5, 0.75) with radius 0.1. At t = 2 the maximum deformation is reached and the
direction of motion is reversed. At final time T = 4 the exact solution to the level set problem
with (5.85) coincides with the initial data. Hence, approximation errors can easily be assessed.
Note that v(t,x) = 0 on ∂Ω so that no boundary conditions are required.
In the following numerical study, we used linear finite elements on a triangulation Th with
mesh size h = 0.1 · 2−` and Crank-Nicolson time stepping with increment ∆t = 0.025 · 2−` for
refinement level ` ∈ N0. Fig. 5.9 shows equidistant level sets of the different methods at time
instances t = i/4 · T , i = 1, 2, 3, 4.
Naturally, the best results at final time were obtained when no redistancing technique is applied.
This is due to the fact that linear finite elements with Crank-Nicolson time stepping yield a
reversible scheme. The small deviations from the initial state are caused by the artificial
diffusion induced by SUPG. However, at intermediate time steps the level set function has
steep gradients (contour lines come closer together) which may cause problems when it comes
to recovering interface related quantities.
We emphasize that the deformations caused by the vortex flow are rather strong. The [CLS-RD]
approach shows real difficulties in approximating a signed distance function and hardly per-
forms better than the approach without redistancing. The inherent diffusion of the method
causes significant displacements of the interface. Note that one may obtain better results
when tuning this approach to the specific problem setting and we provide this result only for
completeness.
The best results in terms of signed distance function approximation are certainly obtained by
using the global approach [ELP-RD]. At any time level, the isocontours remain equidistant
and quite smooth. This approach can easily handle strong deformations and yields good
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` eL2(Ω) order e∞,Γ order e∇∞,Γ order

[C
LS

-R
D] 1 2.94e-01 1.38e-01 3.09e-01

2 1.68e-01 0.81 6.27e-02 1.14 1.56e-01 0.99
3 8.53e-02 0.97 2.81e-02 1.16 6.14e-03 4.66
4 4.42e-02 0.95 1.55e-02 0.86 2.39e-03 1.36

[E
LP

-R
D] 1 5.23e-02 8.98e-02 3.49e-03

2 2.56e-02 1.03 3.93e-02 1.19 2.20e-03 0.67
3 1.12e-02 1.20 2.46e-02 0.67 5.56e-04 1.98
4 1.31e-03 3.09 3.09e-03 2.99 3.52e-05 3.98

[O
PC

-R
D] 1 7.59e-02 8.26e-02 6.58e-03

2 3.88e-02 0.97 3.91e-02 1.08 3.23e-03 1.03
3 3.29e-02 0.23 1.53e-02 1.36 1.30e-03 1.31
4 2.41e-02 0.45 4.86e-03 1.65 7.37e-04 0.82

Table 5.2.: Asymptotic results for the vortex flow problem.

approximation accuracy. In this example, we used an interface penalty parameter of α = 5 ·104

and no CIP stabilization.
The results of [OPC-RD] are quite satisfactory, even though the signed distance function ap-
proximation is less accurate than in the case of the [ELP-RD] approach. By the monolithic
design of [OPC-RD], the interface seems to be better conserved and lies very close to the solution
without redistancing.
Let us remark that in all test cases slightly better results could be obtained when using smaller
time step sizes. For the sake of comparison, we used a rather large increment ∆t.
Finally, let us comment on the asymptotic behavior. Of particular interest are the errors e∞,Γ
and e∇∞,Γ which directly reveal the interface approximation quality of the different approaches.
The results are summarized in Table 5.2. The best results are obtained for the [ELP-RD]
approach. However, note that if [ELP-RD] was applied at every time step (as were [CLS-RD]
and [OPC-RD]) the results were significantly less accurate. This can be explained by the fact
that the relative error of redistancing can become dominant when the interface region is very
thin. In particular, even for the finest mesh ` = 4, the thickness of Ω1 is of order h in
some regions and the penalty term [ELP-RD] will fail to conserve the interface there. Similar
problems are encountered for the monolithic approaches [CLS-RD] and [OPC-RD], thus yielding
suboptimal convergence rates.

5.6.3. Dependence on Regularization Parameters

In this section we address the dependence of [ELP-RD] and [OPC-RD] on the choices of the
penalty parameter α and the Tikhonov regularization parameter β. Therefore, let us consider
the vortex deformation example from Section 5.6.2 with velocity field v(t,x) scaled by a factor
of 1/2.
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Figure 5.9.: Plots of level set functions subject to vortex flow and different redistancing schemes
(columns) at different time instances (rows) and for refinement level ` = 3. Equidis-
tant level set lines are shown in white, the zero level set in bold white.

80



5.6. Numerical Results

The error graphs in Fig. 5.10a indicate that the specific choice of the penalty parameter in the
[ELP-RD] approach has no significant impact on the results. Similarly, Fig. 5.10b shows the
influence of the choice of the Tikhonov regularization parameter β in the [OPC-RD] approach.
The oscillating behavior of e∞ is due to numerical artifacts mostly away from the interface.
For increasing values of β, the accuracy of the interface approximation (measured by e∞,Γ) is
improved. This is to be expected, as small values of β impose stronger bounds on the control.
On the other hand, larger values of β limit the corrections and therefore an increase in eL2(Ω),
eH1(Ω) and e∇∞ can be observed. However, the increase in e∇∞,Γ is moderate also for large values
of β, and therefore local interface approximation can be considered as relatively robust w.r.t.
β.

5.6.4. Stabilization Effect of the Optimal Control Approach

For the discretization of the optimal control approach in Section 5.5 we have already seen
that stabilization techniques can be easily embedded into the state equation. However, they
may introduce artificial numerical diffusion. As an interesting fact, while enforcing the signed
distance function property, the optimal control approach exhibits inherent stabilization prop-
erties. This makes the application of an additional stabilization technique unnecessary in many
cases.
To demonstrate the stabilization effect, we consider the rotation of the level set function of a
circle inside

Ω◦ := {x ∈ R2 : |x| < 1/2}. (5.86)

The velocity is given by

v(t,x) := π

[
x2
−x1

]
. (5.87)

and ϕ0,h is set to be the L2(Ω)-projection of the signed distance function of the circle with
radius 0.1 centered at (0, 0.25). Since v(t,x) · n(x) = 0 for all t and x ∈ ∂Ω, there is no inflow
boundary and thus no boundary conditions must be set. The time interval is set to [0, 2], so
that the level set function performs one full revolution.
Fig. 5.11 gives an impression of the finite element solution and the [OPC-RD] solution, both
without stabilization.
We remark that this result is presented only to illustrate the stabilizing effect of [OPC-RD].
In contrast to these results, the [CLS-RD] approach does not converge or converges at a very
poor rate. For post-processing approaches such as [HYP-RD] or [ELP-RD] one observes stronger
displacements of the interface caused by oscillations in the predictors. In applications where
strong instabilities occur, it might still be necessary to apply a suitable stabilization technique
or to choose a sufficiently small Tikhonov regularization parameter.
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(a) Errors w.r.t. to the penalty paramter α for [ELP-RD].
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(b) Errors w.r.t. to the regularization paramter β for [OPC-RD].

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

Tikhonov regularization parameter β

er
ro

rs

eL2(Ω) e∞ e∇∞ eH1(Ω) e∞,Γ e∇∞,Γ

Figure 5.10.: Parameter study for [ELP-RD] and [OPC-RD].
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Figure 5.11.: Finite element solution without stabilization and [OPC-RD] solution with inherent
stabilization.

5.6.5. Other Test Cases

In [BKS16, Section 5.2], results for the rotation of Zalesak’s slotted disk are provided. The test
case is not challenging in terms of redistancing as the level set function is hardly perturbed
and hence the signed distance function property is preserved quite well. Yet it is useful to
consider this test case to verify the numerical consistency of the methods under investigation.
Finally, note that the application of the investigated redistancing schemes to the two-phase
flow problem is provided in Section 7.6 as further numerical example.
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6 Conservative Level Set Methods

One of the major drawbacks of level set methods compared to volume of fluid methods is
their inability to conserve mass on a discrete level. Over time, mass is lost or gained, which
may negatively influence the overall accuracy and cause nonphysical behavior. This can be
explained by several reasons:

1. “The discrete velocity field is not divergence free,
2. The advection of ϕ in general does not satisfy the conservation of H(ϕ),
3. Advection of details of the interface that are too small for the mesh will result in numerical

clipping these details and will not satisfy conservation,
4. Redistancing does not in general satisfy conservation.” [LD09]

Even though it is possible to show in some scenarios that the mass error decreases asymptoti-
cally with the mesh size, it can accumulate over time. Unfortunately, theoretical estimates are
not always valid in practical applications due to restrictive regularity assumptions.
Although not conservative, level set methods are based on a continuous formulation and con-
sequently, higher order approximations can easily be employed. To achieve better mass con-
servation properties, several extensions have been developed in the past years.
In this chapter, we review some commonly used conservative extensions of the level set method,
before proposing an optimal control based technique. The first section provides a theoretical
estimate, showing that under certain assumptions the mass error converges with order k (where
k is the degree of the polynomial finite element approximation). In the second section, a simple
yet effective global approach is introduced. The following sections briefly outline other com-
monly used mass conservative extensions of the level set method. In Section 6.6 we introduce
an optimal control approach yielding a perfectly conservative scheme. The chapter concludes
with a detailed numerical evaluation of the proposed method.
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6.1. Theoretical Estimate

Throughout this chapter, we assume that the general setting specified in Definition 4.1 holds.
The mass contained in each of the two phases Ω1 and Ω2 is given by

mi := |Ωi| =
∫

Ωi

1 dx, i = 1, 2. (6.1)

In particular, we can express mi by using the associated level set function

m(ϕ) :=
∫

Ω
H(ϕ(x)) dx, (6.2)

which gives m1 = m(ϕ) and m2 = |Ω| −m(ϕ). We cite the following general estimate on mass
errors for continuous finite element level set approximations:

Theorem 6.1 (Mass Error Estimate [RL11])
Under the assumptions of Definition 4.1, the following estimate holds (see [RL11] for
details):∣∣m(ϕNh )−m(ϕ(·, T ))

∣∣ ≤ chk. (6.3)

The proof of this theorem and more details can be found in [RL11, Bur10]. We emphasize that
this proof requires sufficiently smooth functions and interfaces. However, the signed distance
function is generally only in C(Ω), since at its skeleton it is not continuously differentiable (cf.
Section 4.1). In numerical experiments one may thus observe suboptimal convergence rates
(cf. Section 6.7), in particular when the skeleton is close to the interface.
Although the error in mass conservation decreases asymptotically, in some applications even
small inaccuracies may cause unphysical behavior. Furthermore, these errors can accumulate
over time, in particular in long time dependent simulations where T � t0.

6.2. Level Set Shifting Approach

A simple computational technique presented by Smolianski in [Smo01] is as follows. At first,
the mass w.r.t. the initial data is computed

m0,h = m(ϕ0,h). (6.4)

Note that on a discrete level, the computation of m(ϕh) depends on the employed localization
technique for the interface. For example, in the case of ϕh ∈ X1

h the interface can easily be
reconstructed in an explicit fashion and m0,h can be computed exactly with respect to X1

h.
However, for higher polynomial degrees, interface reconstruction can become more involved.
In Section 4.3.2 we have introduced a technique to use linear basis functions on a refined
mesh for the reconstruction of an interface of a function in X2

h. Alternatively, one can employ
an adaptive quadrature formula to evaluate (6.2) directly. In any case, the discrete mass
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Γ(ϕ̃h)

Γ(ϕch)

Figure 6.1.: Illustration of level set shifting.

m0,h significantly depends on the numerical technique employed. Generally, for higher order
polynomial degrees we recommend the use of adaptive quadrature techniques (cf. [Vog06]).
Given a provisional solution ϕ̃h to the level set equation, the key idea is to correct ϕ̃h by
shifting the level set function up- or downwards, i.e.

ϕch(x) := ϕ̃h(x) + c. (6.5)

The approach is illustrated in Fig. 6.1. To determine the shifting constant c, the problem

find c ∈ R such that m(ϕch) = m(ϕ0,h) (6.6)

needs to be solved. Smolianski [Smo01] uses a first variation formula for volume integrals to
derive

c =
m0,h −m(ϕ̃h)
|Γ(ϕ̃)| . (6.7)

The process is repeated iteratively until a sufficiently accurate constant ĉ is obtained. The
corrected level set function is set to ϕĉh and the temporary solution ϕ̃h is discarded. More
generally, problem (6.6) can be solved numerically by applying a suitable root-finding tech-
nique. For example, Gross and Reusken [GR11] suggest using the Anderson-Björck bracketing
method [AB73].
Besides the simplicity in terms of implementation, this approach does not change the gradients
of the level set function. In particular, if a redistancing step is applied in advance, the signed
distance function approximation is perfectly maintained.
One of the major drawbacks of this approach is that it acts globally. An accurate mass
correction scheme should localize the correction to those regions where mass is lost or gained.
In this approach however, the redistribution of mass only depends on the nonphysical level set
function. In regions where the level set function is rather flat, more mass is redistributed than
in regions with steep gradients. This underlines the need of maintaining a good signed distance
function approximation. As a consequence of the global correction, mass may be redistributed
at wrong locations causing severe nonphysical effects (see for example Section 6.7.3).
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Figure 6.2.: Illustration of Hε for different values of ε.

In summary, this approach provides an efficient technique to enforce global mass conservation.
Local mass conservation however is not guaranteed and the redistribution of mass might heavily
depend on the level set function.

6.3. Phase Field - Level Set Hybrid Approach

In this section we present a hybrid approach, that combines the level set approach with a volume
of fluid technique. It was originally presented by Olsson and Kreiss in [OK05, OKZ07]. The
section is based on these publications. First, the smeared Heaviside function Hε : R→ [0, 1],

Hε(s) :=


0 if s < −ε,
1
2
(
1 + s

ε + 1
π sin

(
πs
ε

))
if − ε ≤ s ≤ ε,

1 if s > ε,

(6.8)

is defined (cf. Fig. 6.2). The regularization parameter ε corresponds to the thickness of the
interface region. Instead of the signed distance function ϕ̃, one chooses the smeared indicator
function

ϕ̂(x) := Hε(ϕ̃(x)) (6.9)

as level set function, that varies smoothly in the interface region and is constant elsewhere.
The advection is performed using a conservative scheme which preserves the smoothness of ϕ̂.
In particular, this implies that m(ϕ̂) will be conserved during advection, and therefore one can
expect a good approximation of

Aϕ̂+1/2 := m(ϕ̂+ 1/2). (6.10)

Note that if the sharp Heaviside function was used instead of (6.8), Aϕ̂ would be conserved
perfectly. To keep the interface shape and width constant, an intermediate step must be
applied.
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For the conservative advection of the phase field function, Olsson and Kreiss [OK05] suggest
to use numerical methods that

1. are conservative,
2. do not introduce spurious oscillations and
3. preserve the profile of ϕ̂.

A suitable method that meets these requirements is given by a non-linear TVD (total variation
diminishing) method that does not smear discontinuities to preserve the profile of ϕ̂. For the
temporal discretization a second order Runge-Kutta scheme is suggested.
To maintain an interface thickness of width ε (which is crucial for the accuracy), an intermedi-
ate artificial compression procedure must be applied, cf. [OK05, Har77]. This step essentially
involves the solution of a conservation law of the form

∂

∂τ
ϕ̂+∇ · f(ϕ̂) = 0, (6.11)

where f(ϕ̂) := ϕ̂(1−ϕ̂)n is the compressive flux and τ the artificial time variable. The numerical
solution of (6.11) requires suitably stabilized numerical schemes.
The numerical evaluation indicates good (but not perfect) approximation of mass, but slow
convergence for refined meshes. In [OKZ07] an improved approach is presented. To obtain a
better convergence behavior, the diffusion in the compression step is suggested to be restricted
in normal direction with respect to the interface. The good conservation properties however
have to be set against a rather complex implementation and significant computational costs.

6.4. Dual Level Set Approach

This section is based on the method presented by Lesage, Dervieux and Guégan in [LD09].
Similarly to the level set equation in conservative form (4.13), we consider the conservation
law

∂

∂t
χ+∇ · (vχ) = 0, (6.12)

where χ is the characteristic function defined by

χ(t,x) :=
{

1 if x ∈ Ω1(t),
0 elsewhere.

(6.13)

Unfortunately, this implication does not hold on a discrete level. They key idea of the dual
level set approach is to recover (6.12) from the level set equation. In particular, this approach
tries to combine the higher accuracy of the level set advection with the local mass conservation
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property of the advected characteristic function. This is accomplished as follows. For Vh := X1
h,

the dual level set equation∫
Ωint

(
∂

∂t
H(ϕh)

)
vh dx =

∫
∂Ωint

H(ϕh)vhv·n dσ−
∫

Ωint

H(ϕh)v·∇vh dx ∀vh ∈ Vh (6.14)

is obtained from the variational form of (6.12) restricted to the subdomain Ωint ⊂ Ω (i.e. in
immediate vicinity of the interface Ωint) and integration by parts. Application of the first-order
accurate explicit forward-Euler time-discretization at equidistant time levels tn := n ·∆t (cf.
Section 3.4) yields for all test functions vh ∈ Vh:∫

Ωint

H(ϕn+1
h )vh dx =

∫
Ωint

H(ϕnh)vh dx + ∆t
∫
∂Ωint

H(ϕnh)vhv · n dσ

−∆t
∫

Ωint

H(ϕnh)v · ∇vh dx.
(6.15)

Plugging in the admissible test function vh ≡ 1 proves the (local) mass conservation:∫
Ωint

H(ϕn+1
h ) dx =

∫
Ωint

H(ϕnh) dx. (6.16)

Lesage et al. [LD09] suggest the use of a multi-step Runge-Kutta 3 scheme of second order
accuracy to compute ϕn+1

h . The system resulting from the discretized dual level set equation is
highly non-linear, uniqueness is unclear and special numerical treatment is required. Further-
more, the algorithm only computes the advection in interface vicinity. Therefore, it requires
the application of a redistancing scheme (or an alternative extension procedure) after mass
correction to extend ϕh to Ω \ Ωint, which may significantly increase the computational costs.
Furthermore, the restriction to Ωint is computationally cumbersome, in particular because af-
fected elements change as time evolves. We remark that the linear system arising from the
dual level set equation may not be well posed. Furthermore, the employed Newton method
faces convergence problems. The complete algorithm can be found in [LD09].

6.5. Further Approaches

Kees et al. [KAFB11] proposed a method that essentially combines the level set method with
the volume of fluid method. We consider the conservation law for the fluid mass

∂

∂t

(
ρ1 H(ϕ)

)
+∇ ·

(
ρ1 H(ϕ)v

)
= 0. (6.17)

Its variational formulation is numerically solved in a conservative manner to obtain a mass-
conserving approximate solution Ĥn+1 to (6.17). On the other hand, let ϕn+1 denote the
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generally non-conservative solution to the level set equation. The key idea of the approach is
to combine ϕn+1 and Ĥn+1 in terms of the variational problem

find ϕ′ ∈ V such that∫
Ω

(
H(ϕn+1 − ϕ′)− Ĥn+1)

v dx + κ

∫
Ω
∇ϕ′ · ∇v dx = 0 ∀v ∈ V. (6.18)

If the test space V admits constant functions, global conservation of mass is guaranteed. In
practice, the Heaviside function is replaced by a suitable regularized version such as (6.8)
from which a second parameter ε arises. Since the numerical problem to be solved is non-
linear, Newton’s method is employed for linearization. Unfortunately, the convergence behavior
depends on the choices of the free parameters ε and κ. Furthermore, the approach does not
guarantee perfect conservation of mass and is not completely local.
The interested reader is referred to [PSVW05] and [SP00] for similar approaches based on
combination of the level set and the volume of fluid approximation. A comparative numerical
study can be found in [DHO+14], where the induced numerical diffusion is stated as a major
drawback.
In [DPLFP06] Di Pietro et al. propose and compare two mass-preserving techniques that are
not based on combined strategies as the methods above. The first one builds on a discontinuous
Galerkin discretization, while the second one (originally presented in [Par04]) is a continuous
Galerkin approximation where gradient jumps on inter-element boundaries are penalized. Both
schemes yield better mass-preserving properties than common stabilization technqiues, yet
mass is not conserved perfectly. In particular on coarse meshes, the loss or gain in mass can
still be significant. However, in particular for coarser meshes, conservative approaches are of
particular interest.

6.6. Optimal Control Approach

Let us now consider an optimal control approach to obtain a mass conservative numerical level
set scheme. It was first proposed in [Kuz13] and then extended in [BK14]. Similarly to the
dual level set method, it is based on the continuity equation for the Heaviside function of ϕ:

∂

∂t
H(ϕ) +∇ ·

(
H(ϕ)v

)
= 0 in Ω. (6.19)

The key idea is to augment this equation by a corrective flux q ∈ Q

∂

∂t
H(ϕ) +∇ ·

(
H(ϕ̃)v− q

)
= 0 in Ω, (6.20)

where Q is a suitable function space. In this equation, ϕ̃ denotes a temporary numerical
solution to the level set equation which serves as predictor. We emphasize that this approach
is consistent for any flux that satisfies

n · q = 0 on ∂Ω. (6.21)
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This can be verified by considering the variational form of (6.20)∫
Ω

(
∂

∂t
H(ϕ)

)
v dx +

∫
Ω

(
q −H(ϕ̃)v

)
· ∇v dx = 0 ∀v ∈ H1(Ω). (6.22)

By our general assumptions (cf. Definition 4.1), the domain Ω1(t) does not touch (or come
close to) ∂Ω, which implies ϕ̃ < 0 on ∂Ω and therefore∫

∂Ω
H(ϕ̃)vn̂ · v dσ = 0, (6.23)

i.e. the surface integral that arises from integration by parts in (6.22) vanishes. For the
admissible test function v ≡ 1 we obtain from (6.22) and (6.23) the (local) conservation of
mass:

d
dt

∫
Ω
H(ϕ) dx = 0. (6.24)

Unfortunately, just like for the dual level set approach, we cannot solve equation (6.20) numer-
ically because the corresponding linear system would be heavily underdetermined. Therefore,
we embed the equation as a constraint into the following optimal control approach:

For a given predictor ϕ̃ ∈ V to the level set equation

min
ϕ∈V, q∈Q

J(ϕ,q) := 1
2 ‖ϕ− ϕ̃‖

2
L2(Ω) + 1

2 ‖βq‖2Q (6.25a)

subject to∫
Ω

(
∂

∂t
H(Φ)

)
v dx +

∫
Ω

(
q −H(ϕ̃)v

)
· ∇v dx = 0 ∀v ∈ H1(Ω). (6.25b)

The Tikhonov regularization parameter β may be non-constant and depend on ϕ̃ but not on
ϕ or q. We refer to this approach as vector control approach as the control variable q is vector
valued (cf. [BK14]). In the original publication [Kuz13], the convective flux ∇q of a scalar
valued function was used which we refer to as scalar control approach. For the latter case we
have the augmented continuity equation

∂

∂t
H(ϕ) +∇ · (H(ϕ̃)v−∇q) = 0 in Ω (6.26)

from which we obtain for controls satisfying the homogeneous Neumann boundary condition

∇q · n = 0 on ∂Ω (6.27)

the weak form∫
Ω

(
∂

∂t
H(ϕ)

)
v dx +

∫
Ω

(
∇q −H(ϕ̃)v

)
· ∇v dx = 0 ∀v ∈ H1(Ω) (6.28)
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and the control problem

min
ϕ∈V, q∈Q

J(ϕ, q) := 1
2 ‖ϕ− ϕ̃‖

2
L2(Ω) + 1

2 ‖βq‖
2
Q (6.29a)

subject to∫
Ω

(
∂

∂t
H(Φ)

)
v dx +

∫
Ω

(
∇q −H(ϕ̃)v

)
· ∇v dx = 0 ∀v ∈ H1(Ω). (6.29b)

Different control function spaces must be chosen for problems (6.25) and (6.29). In particular,
the scalar approach requires sufficient smoothness for the gradient of q to be well defined.
Possible choices are Q = H1(Ω) and Q = (L2(Ω))d, which we will assume in what follows. For
the level set function space we set V := L2(Ω). Both approaches are closely related in terms
of the Helmholtz decomposition: a sufficiently smooth vector field q in Rd, d = 2, 3, can be
decomposed into the sum

q = ∇q +∇×A (6.30)

of a gradient and a curl, where q is a scalar and A a vector potential (cf. [Gal11]). Note that
∇×A denotes the curl of A.
For simplicity, let us consider the time-discrete versions of problems (6.25) and (6.29):

min
ϕn+1∈V, q∈Q

J(ϕ,q) := 1
2‖ϕ

n+1 − ϕ̃‖2L2(Ω) + 1
2 ‖βq‖2Q (6.31a)

subject to∫
Ω

H(ϕn+1)−H(ϕn)
∆t v dx +

∫
Ω

(
q − θH(ϕ̃)v− (1− θ) H(ϕn)v

)
· ∇v dx = 0 (6.31b)

∀v ∈ H1(Ω),

and

min
ϕn+1∈V, q∈Q

J(ϕ, q) := 1
2‖ϕ

n+1 − ϕ̃‖2L2(Ω) + 1
2 ‖βq‖

2
Q (6.32a)

subject to∫
Ω

H(ϕn+1)−H(ϕn)
∆t v dx +

∫
Ω

(
∇q − θH(ϕ̃)v− (1− θ) H(ϕn)v

)
· ∇v dx = 0 (6.32b)

∀v ∈ H1(Ω).

6.6.1. Existence of a Solution

To analyze the existence of a solution to the optimal control problem, let us consider the
regularized Heaviside function from (6.8). We can associate the Nemytskii operator Hε(ϕ) =
Hε(ϕ(·)) with Hε(·) (cf. Definition A.13) and show its Lipschitz-continuity.
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Lemma 6.2 (Lipschitz-Continuity of Regularized Heaviside Function)
Let Hε be the Nemytskii operator associated with Hε defined in (6.8). Then, Hε is a
Lipschitz continuous operator with constant Lε = π+1

ε .

‖Hε(ϕ)−Hε(ψ)‖Lr(Ω) ≤ Lε ‖ϕ− ψ‖Lr(Ω) ∀ϕ,ψ ∈ L∞(Ω) (6.33)

for all r ∈ [1,∞].

Proof. The statement is an immediate consequence of Lemma 4.11 in [Trö10], which gives the
Lipschitz-continuity of Hε w.r.t. ϕ, provided that the underlying function Hε is uniformly
bounded and locally Lipschitz continuous. By definition of Hε we have

|Hε(ϕ(x))| ≤ 1 ∀ϕ ∈ L∞(Ω) and x ∈ Ω

so that Hε is uniformly bounded. Fundamental addition theorems yield

|sin(x)− sin(y)| =
∣∣∣∣2 cos

(
x+ y

2

)
sin
(
x− y

2

)∣∣∣∣ ≤ 2
∣∣∣∣sin(x− y2

)∣∣∣∣ ≤ |x− y|
and therefore z : R → R, z(x) := 1

2
(
1 + x

ε + 1
π sin

(
πx
ε

))
can be shown to be Lipschitz-

continuous with constant Lε = π+1
ε :

|z(x)− z(y)| ≤
∣∣∣x
ε
− y

ε

∣∣∣+
∣∣∣sin(π

ε
x
)
− sin

(π
ε
y
)∣∣∣ ≤ 1

ε
|x− y|+ π

ε
|x− y| = Lε |x− y| .

Theorem 6.3 (Existence of a Solution)
Let ϕ̃ ∈ V be such that ϕ̃ < 0 on ∂Ω. If the Heaviside function H(·) is replaced by a
Lipschitz-continuous approximation Hε(·) with Lipschitz constant Lε, problem (6.32) with
V = H1(Ω) and Q = H1∫

=0(Ω) has a solution.

Proof. We use a non-reduced approach for this proof. The admissable set Wad is given by

Wad := {(ϕ, q) ∈ V ×Q : (ϕ, q) solve (6.32b)}.

For ϕn+1 := ϕn ⊂ V , the compatibility condition (3.19) is satisfied and therefore∫
Ω

Hε(ϕn)−Hε(ϕn)
∆t dx +

∫
Ω
∇ ·
(

Hε(ϕ̃)v
)

dx =
∫
∂Ω

Hε(ϕ̃)v · n dσ = 0,

because Hε(ϕ̃) = 0 on ∂Ω by assumption. Hence, we can apply Lemma 3.4 and there exists
a unique q = q(ϕn) ∈ H1∫

=0(Ω) that solves (6.32b). Consequently, Wad is non-empty. Since
J(ϕ, q) ≥ 0, the infimum

j := inf
(ϕ,q)∈Wad

J(ϕ, q)
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exists and, by definition, there is a sequence {(ϕk, qk)} ⊂Wad such that

lim
k→∞

J(ϕk, qk)→ j.

As before (see proof of Lemma 5.4), it is easy to verify that by definition of the objective
functional J(·, ·), the sequence {ϕk, qk} must be bounded in Wad. This implies the existence
of a weakly convergent subsequence {ϕk`

, qk`
} ⊂Wad,

(ϕk`
, qk`

) ⇀ (ϕ̄, q̄) in H1(Ω)×H1(Ω).

We need to check if (ϕ̄, q̄) ∈ Wad. The space V = H1(Ω) is closed. Clearly, H1∫
=0(Ω) is

convex and therefore we can apply Mazur’s Theorem (see, for example, [Wer09]) to deduce
that H1∫

=0(Ω) is weakly closed in H1(Ω), which is why we have q̄ ∈ H1∫
=0(Ω).

From the boundedness in H1(Ω) and the weak convergence in L2(Ω) we can infer the strong
convergence of ϕk`

→ ϕ̄ in L2(Ω) as well as qk`
→ q̄ in L2(Ω) (Rellich–Kondrachov Theorem,

see [Alt12, Dob10]). Since H1∫
=0(Ω) is a closed subspace of H1(Ω), it is a Hilbert space and we

can identify its dual space H−1∫
=0(Ω) by H1∫

=0(Ω) (cf. Riesz Representation Theorem A.5), i.e.
for each f ∈ H−1∫

=0(Ω) there exists a uniquely determined v ∈ H1∫
=0(Ω) such that

f(q) = (q, v)H1(Ω) =
∫

Ω
q · v dx +

∫
Ω
∇q · ∇v dx ∀q ∈ H1∫

=0(Ω).

Hence, by

qk`
⇀ q̄ in H1∫

=0(Ω)
⇐⇒ f(qk`

)→ f(q̄) ∀f ∈ H−1∫
=0(Ω)

⇐⇒ (qk`
, v)H1(Ω) → (q̄, v)H1(Ω) ∀v ∈ H1∫

=0(Ω)

⇐⇒ lim
`→∞

(∇(qk`
− q̄),∇v)L2(Ω) = − lim

`→∞
(qk`
− q̄, v)L2(Ω) ∀v ∈ H1∫

=0(Ω)

we infer by application of the Cauchy-Schwarz inequality and because of the strong convergence
of qk`

in L2(Ω):

=⇒ lim
`→∞

∣∣∣(∇(qk`
− q̄),∇v)L2(Ω)

∣∣∣ = lim
`→∞

∣∣∣(qk`
− q̄, v)L2(Ω)

∣∣∣
≤ lim

`→∞
‖v‖L2(Ω) · ‖qk`

− q̄‖L2(Ω) = 0 ∀v ∈ H1∫
=0(Ω).

Thus we have

(∇qk`
,∇v)L2(Ω) → (∇q̄,∇v)L2(Ω) ∀v ∈ H1∫

=0(Ω).

From the Lipschitz continuity of Hε we can deduce

‖Hε(ϕk`
)−Hε(ϕ̄)‖L2(Ω) ≤ Lε ‖ϕk`

− ϕ̄‖L2(Ω) .
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Together with the strong convergence of ϕk`
in L2(Ω) we obtain

Hε(ϕk`
)→ Hε(ϕ̄) in L2(Ω),

and therefore, by employing the Cauchy-Schwarz inequality as above

(Hε(ϕk`
), v)L2(Ω) = (Hε(ϕ̄), v)L2(Ω) ∀v ∈ H1∫

=0(Ω).

Since (ϕk`
, qk`

) ∈Wad we have

∫
Ω

Hε(ϕk`
)−Hε(ϕn)
∆t v dx +

∫
Ω

(
∇qk`

−Hε(ϕ̃)v
)
· ∇v dx = 0 ∀v ∈ H1∫

=0(Ω) ∀` ∈ N

from which taking the limit and making use of the previous results we can infer

∫
Ω

Hε(ϕ̄)−Hε(ϕn)
∆t v dx +

∫
Ω

(
∇q̄ −Hε(ϕ̃)v

)
· ∇v dx = 0 ∀v ∈ H1∫

=0(Ω).

Therefore we have (ϕ̄, q̄) ∈ Wad. The objective functional J(·, ·) is composed of the two
functionals

J1(ϕ) := 1
2 ‖ϕ− ϕ̃‖

2
L2(Ω) ,

J2(q) := β

2 ‖q‖
2
Q ,

which both are continuous and convex. Therefore, J(ϕ, q) := J1(ϕ) + J2(q) is lower semicon-
tinuous and Theorem A.11 yields

J(ϕ̄, q̄) ≤ lim inf
`→∞

J(ϕk`
, qk`

) = j.

Since (ϕ̄, q̄) ∈Wad, this implies J(ϕ̄, q̄) = j and concludes the proof.

Even though the cost functional is convex, we cannot conclude uniqueness since the state
equation is highly non-linear. We remark that on a continuous level, a (temporary) solution
ϕ̃ to the level set equation is conservative. Nevertheless, above theorem shows that a possibly
non-conserving variable ϕ̃ can be corrected in its mass while minimizing deviations.
We remark that in the proof we require V = H1(Ω), whereas numerically we usually employed
V = L2(Ω). In particular, a solution to the level set equation can only be expected to be in the
graph space {v ∈ L2(Ω) : v · ∇v exists and v · ∇v ∈ L2(Ω)}. By application of a redistancing
technique however, the required smoothness can easily be gained so that the assumptions in
the theorem are reasonable.
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6.6.2. Discretization

This section is based on work partly published in [BK14]. We pursue a discretize-then-optimize
approach to solve the optimal control problem numerically. First, the problem is discretized
in space by the Galerkin approximation. For temporal discretization, we employ the θ scheme
introduced in Section 3.4. We recast the discrete constrained optimization problem into an
unconstrained optimization problem by introducing the Lagrange functional. Differentiation
of this functional then yields a system of necessary optimality conditions which is linearized
and numerically solved.
Let us emphasize that in terms of a finite element discretization the evaluation of the Heaviside
function requires special care. One can either reconstruct the interface from the level set
function and then subdivide Ω into Ω1 and Ω2 for exact integration, or one can apply an
adaptive quadrature technique. As we have already seen, the latter one is more favorable
when using higher polynomial degrees since interface reconstruction gets more involved.
In what follows, we use linear finite elements and exact quadrature with respect to the discrete
reconstructed interface (cf. Section 4.3.2). However, the approach is not limited to this inter-
face localization technique and also works for suitable regularizations of the Heaviside function.
To keep notation simple, we denote the possibly regularized Heaviside function by H(·).
As before, let tn := n ·∆t denote equidistant time levels from the θ time discretization scheme
and {ψi}Ni=1 the set of linear nodal basis functions on the triangulation Th, i.e. Vh := X1

h. For
better readability we omit the time dependence where no ambiguity arises. The discrete level
set function can then be written in terms of its nodal values ϕi:

ϕh(x) =
N∑
i=1

ϕiψi(x). (6.34)

For the control space, we also employ linear finite elements, i.e. Qh := X1
h and Qh := X1

h×X1
h,

respectively. Hence, we can write the discrete control function in terms of its nodal values qi
and qi, respectively:

qh(x) =
N∑
i=1

qiψi(x) and qh(x) =
N∑
i=1

qiψi(x). (6.35)

6.6.2.1. Scalar Control Approach

For the scalar control equation, we obtain the discrete state equation

g(ϕ̃n+1
h ) + ∆tSq = g(ϕnh) + ∆tθf(ϕ̃h) + ∆t(1− θ)f(ϕnh), (6.36)
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where the components of f(·), g(·) are given by

fi(ϕh) :=
∫

Ω
H(ϕh)v · ∇ψi dx =

∫
Ω1

v · ∇ψi dx, (6.37)

gi(ϕh) :=
∫

Ω
H(ϕh)ψi dx =

∫
Ω1

ψi dx, (6.38)

and S denotes the discrete Laplacian operator defined by

Si,j :=
∫

Ω
∇ψi · ∇ψj dx. (6.39)

Using the partition of unity property of the basis functions

N∑
i=1

ψi(x) = 1, (6.40)

it is easy to verify that the discrete approach also yields a conservative scheme (cf. [BK14,
Kuz13]):

m(ϕn+1
h )−m(ϕnh) =

∫
Ω

(
H(ϕn+1

h )−H(ϕnh)
)

dx =
n∑
i=1

(
gi(ϕn+1

h )− gi(ϕnh)
)

= ∆tθ
N∑
i=1

fi(ϕ̃h) + ∆t(1− θ)
N∑
i=1

fi(ϕnh)−
N∑
i=1

(Sq)i = 0.
(6.41)

For the numerical solution of the constrained optimization problem, we introduce the associated
discrete Lagrangian functional

Lh(ϕh, qh, λh) := 1
2 ‖ϕh − ϕ̃h‖

2
L2(Ω) + β

2 ‖qh‖
2
H1(Ω) + λ>h r(ϕh, qh, ϕ̃h), (6.42)

where r(ϕh, qh, ϕ̃h) denotes the residual of (6.36). Based on numerical experience, we assume
λh ∈ X1

h. As for the optimal control problem in Section 5.5, an inf-sup condition could be
introduced when solving the first-order optimality conditions. Due to the non-linearity of the
problem, we were not able to show that such an inf-sup condition is satisfied automatically.
Differentiation w.r.t. ϕh, qh and λh yields the system of necessary first order optimality
conditions:

Mϕn+1 + K(ϕn+1
h )λ = Mϕ̃, (6.43a)

β(M + S)q + S>λ = 0, (6.43b)
K(ϕn+1

h ) + Sq = 0, (6.43c)
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where ϕn+1, q and λ denote the nodal vectors of ϕn+1
h , qh and λh, respectively. The mass

matrix M and the weighted surface mass matrix K(·) are defined as

Mi,j =
∫

Ω
ψiψj dx, (6.44)

K(ϕh)i,j =
∫

Ω
ψiψj H′(ϕh) dx. (6.45)

The computation of the weighted mass matrix K(·) involves evaluating the derivative of the
Heaviside function H′(ϕh), which is known to be the Dirac delta distribution picking out the
interface Γ(ϕ̃). Therefore, the volume integral in (6.45) can be transformed into a surface
integral by means of the following identity:∫

Ω
ψiψjδ(ϕh)|∇ϕh| dx =

∫
Γ(ϕh)

ψiψj dσ. (6.46)

A proof of this identity can be found for example in [JCT07]. When assuming that ϕ̃ is close to
a signed distance function and therefore |∇ϕh| ≈ 1, we can neglect the additional term |∇ϕh|
and K(·) simplifies to the mass matrix over Γ(ϕh), i.e.

K(ϕh)i,j ≈
∫

Γ(ϕh)
ψiψj dσ. (6.47)

The use of this simplification is preferable when the interface is localized exactly on a discrete
level and our numerical experience did not indicate any related problems.
Using the approximation

g(ϕh) ≈ K(ϕh)ϕh, (6.48)

we can write (6.43) in terms of the system block matrix

A(ϕh) :=

 M 0 K(ϕh)
0 β(M + S) S

K(ϕh) S 0

 . (6.49)

We employ the following fixed-point iteration approach for linearization:
1. Initialize: (ϕ(0), q(0), λ(0)) := (ϕ̃, 0, 0) and m := 0.
2. Increase m by 1 and compute the residual:r

(m−1)
ϕ

r
(m−1)
q

r
(m−1)
λ

 :=

Mϕ̃
0
0

− A(ϕ(m−1))

ϕ(m−1)

q(m−1)

λ(m−1)

 . (6.50)

3. Check if the desired tolerance is reached and stop if so.
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4. Update using the preconditioner A(ϕ(m−1)):ϕ(m)

q(m)

λ(m)

 :=

ϕ(m−1)

q(m−1)

λ(m−1)

+ A(ϕ(m−1))−1

r
(m−1)
ϕ

r
(m−1)
q

r
(m−1)
λ

 (6.51)

5. Go to step 2.
We remark that instead of computing the actual inverse of A(ϕ(m−1)) one clearly solves the
associated linear system.
The following result gives a sufficient condition on the solvability of the arising linear system:

Lemma 6.4 (Invertibility of System Matrix [BK14])
Assuming β > 0, the matrix of the linear system to be solved within each iteration of the
fixed-point linearization technique described above is invertible if K(·) has strictly positive
entries and is non-negative.

Proof. The following proof is taken from [BK14]. Let K have non-zero entries. Consider the
blocks

D :=
[
M 0
0 β(M + S)

]
and E :=

[
K
S

]
of A. Since β > 0, D is clearly positive definite and consequently invertible. The stiffness
matrix is symmetric positive semi-definite and (in accordance with the fact that a solution to
the Laplace problem with homogeneous Neumann boundary condition is uniquely defined up
to a constant) the kernel has dimension 1, i.e.

Ker(S) = span(1, 1, . . . , 1)>.

To conclude the non-singularity of

A =
[
D E
E> 0

]
,

we apply Theorem 3.2 from [BGL05], which states that for symmetric positive semi-definite
D and matrices E of full rank, a necessary and sufficient condition for the existence of A−1

is given by the condition Ker(D) ∩Ker(E) = {0}. By assumption, K has at least one strictly
positive entry, thus

Ker(E) = Ker(K) ∩Ker(S) = {0}.

Furthermore, E is of full rank which can be seen by application of the dimension formula (see,
for example, [KB13])

dim
(
Ker(E)

)
+ dim

(
Im(E)

)
= N.
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Hence, all conditions of Theorem 3.2 in [BGL05] are fulfilled and we can conclude that A is
invertible.

The required condition on K(·) to have at least one strictly positive entry means that the
interface Γ(ϕ(m−1)

h ) does not vanish, i.e. that the problem does not degenerate. In practice we
have never observed any problems related to this condition.

6.6.2.2. Vector Control Approach

Similarly to the scalar control approach, we obtain the discrete vector control state equation

g(ϕ̃n+1
h ) + ∆tCq = g(ϕnh) + ∆tθf(ϕ̃h) + ∆t(1− θ)f(ϕnh), (6.52)

where the skew-symmetirc matrix C is defined by

Cq :=
[
C1 0
0 C2

]
q = C1q1 + C2q2, (6.53)

and

(Ci)j,k :=
∫

Ω

(
∂

∂xi
ψj

)
ψk dx. (6.54)

As in the scalar control case, one can easily verify that the discrete approach yields a conser-
vative scheme.
For the numerical solution of the constrained optimization problem, we introduce the associated
discrete Lagrangian functional

Lh(ϕh,qh, λh) := 1
2 ‖ϕh − ϕ̃h‖

2
L2(Ω) + β

2 ‖qh‖
2
(L2(Ω))2 + λ>h r(ϕh,qh, ϕ̃h), (6.55)

where r(ϕh,qh, ϕ̃h) denotes the residual of (6.52). As before, differentiation w.r.t. ϕh, qh and
λh yields the system of necessary first order optimality conditions:

Mϕn+1 + K(ϕn+1
h )λ = Mϕ̃, (6.56a)

βMq1 − C>1 λ = 0, (6.56b)
βMq2 − C>2 λ = 0, (6.56c)

K(ϕn+1
h ) + C1q1 + C2q2 = 0, (6.56d)

where ϕn+1, q and λ denote the nodal vectors of ϕn+1
h , qh and λh, respectively. The mass

matrix M and the weighted mass matrix K(·) are defined as in (6.44) and (6.45).
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6. Conservative Level Set Methods

Using the same linearization as for the scalar control case, we obtain the system matrix

A(ϕh) :=


M 0 0 K(ϕh)
0 βM 0 −C>1
0 0 βM −C>2

K(ϕh) C1 C2 0

 (6.57)

and the following fixed-point iteration procedure:
1. Initialize: (ϕ(0),q(0), λ(0)) := (ϕ̃, 0, 0) and m := 0.
2. Increase m by 1 and compute the residual:

r
(m−1)
ϕ

r
(m−1)
q1

r
(m−1)
q2

r
(m−1)
λ

 :=


Mϕ̃
0
0
0

− A(ϕ(m−1))


ϕ(m−1)

q
(m−1)
1
q

(m−1)
2
λ(m−1)

 . (6.58)

3. Check if the desired tolerance is reached and stop if so.
4. Update using the preconditioner A(ϕ(m−1)):

ϕ(m)

q
(m)
1
q

(m)
2
λ(m)

 :=


ϕ(m−1)

q
(m−1)
1
q

(m−1)
2
λ(m−1)

+ A(ϕ(m−1))−1


r

(m−1)
ϕ

r
(m−1)
q1

r
(m−1)
q2

r
(m−1)
λ

 (6.59)

5. Go to step 2.

6.7. Numerical Results

In this section we assess the quality of the simple level set shifting approach and the optimal
control approach in terms of mass conservation. We consider the following error measures:

eL2(Ω) := ‖ϕh − ϕex‖L2(Ω) , (6.60a)
eH1(Ω) := ‖ϕh − ϕex‖H1(Ω) , (6.60b)

e∞,Γ := max
K∈T Γ

h

(
max
x∈K
|ϕh(T,x)− ϕex(x)|

)
, (6.60c)

em := |m(ϕh)−mex| , (6.60d)
em,h := |m(ϕ0,h)−m(ϕh)| , (6.60e)

where ϕex denotes the exact solution, mex := m(ϕex) the exact mass and T Γ
h the subsets of

elements containing the interface Γh(t) (cf. Section 5.6). Conservative approaches should
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6.7. Numerical Results

exhibit a very low error in em,h, while em depends on the projection of the initial data into the
discrete finite element space.
For the numerical computation of interface related quantities we employ the approximation
technique presented in Section 4.3.2, i.e. the interface is explicitly localized. We emphasize
that the optimal control approach does not require an explicit localization. Alternatively, one
can use a sufficiently accurate quadrature technique such as the adaptive approach presented
in [Vog06].

eL2(Ω) for k = 1 eH1(Ω) for k = 1 em for k = 1
eL2(Ω) for k = 2 eH1(Ω) for k = 2 em for k = 2
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Figure 6.3.: Finite element approximation quality for k = 1, 2.

First, let us consider the initial approximation errors that arise when the initial data ϕ0 is
projected into the finite element space. The errors for a C∞(Ω) function (Gauss kernel) and
the signed distance function of a circle (which is in C(Ω) but not in C1(Ω)) are depicted in
Fig. 6.3.
For the signed distance function we obtain suboptimal convergence rates for quadratic basis
functions. This is due to the kink at the center of the circle and the missing regularity of the
signed distance function at this point. We recall that a signed distance function is smooth only
almost everywhere. In particular, it is not differentiable at its skeleton, leading to suboptimal
convergence results when measuring the error in the entire domain Ω. If we restrict ourselves
to a narrow band along the interface, optimal convergence rates become visible.
One can easily verify that the mass error results for k = 2 correspond to those for k = 1 on
a one step coarser mesh. This is to be expected because the localization of the interface from
a P2 level set function is performed by considering the P1 projection on a refined mesh (cf.
Fig. 6.3). Even though this interface approximation technique does not provide better mass
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6. Conservative Level Set Methods

conservation, it improves the approximation of interface related quantities (such as surface
tension, cf. Chapter 7). The interested reader is referred to [GR11, RL11] for further details.
As in the previous chapter, we use abbreviations for the different numerical schemes to keep
notation simple:

[NO-MC] no mass correction is applied,
[SH-MC] shifting approach, cf. Section 6.2,
[OSC-MC] optimal control approach with scalar control, cf. Section 6.6,
[OVC-MC] optimal control approach with vector control, cf. Section 6.6.

In the following test cases we assess the accuracy in mass preservation of the proposed numerical
scheme [OSC-MC] and compare it to [NO-MC] and [SH-MC]. Note that the results obtained by
[OSC-MC] and [OVC-MC] are qualitatively very similar, which is why we only present results
for [OSC-MC] in the first sections. A comparison between the two optimal control approaches
is presented later on in Section 6.7.4.

6.7.1. Rotation of a Slotted Disk

In a given circular-shaped domain

Ω◦ := {x ∈ R2 : |x| < 1/2}, (6.61)

we define the slotted disk (often also referred to as Zalesak’s disk, cf. [Zal79]) centered at
(0, 0.25) in terms of radius r and slot width s by

ΓZ := {x ∈ R2 : |x| = r ∧ ¬(|x1| < s/2 ∧ x2 < 0)}
∪ {x ∈ R2 : |x1| = s/2 ∧ −

√
r2 − s2/4 ≤ x2 ≤ 2r

3 }
∪ {x ∈ R2 : |x1| ≤ s/2 ∧ x2 = 2r

3 }.
(6.62)

s

2r

Figure 6.4.: Zalesak’s disk.
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As initial data one uses the signed distance function ΦZ with respect to ΓZ. The slotted disk
is depicted in Fig. 6.4. The velocity field is given by

v(t,x) := π

[
x2
−x1

]
. (6.63)

and forces the slotted disk to rotate counter-clockwise about the origin. At the end of the
time interval [0, 10], the slotted disk has performed 5 rotations about (0, 0). As before, we can
compare results with the initial data for the numerical evaluation. Note that there is no inflow
boundary because v · n = 0 on ∂Ω◦, i.e. ∂Ωin = ∅.
This is a commonly chosen and challenging test case to assess mass conservation properties,
see for example [BK14, KAFB11, LD09, PSVW05]. Numerical methods tend to smear the slot
and the sharp reentrant corners, which causes inaccuracies in mass. For all evaluated methods
we used SUPG stabilization.
Fig. 6.5a illustrates the evolution of mass for the methods under investigation. Even though
initially the mass error for the standard Galerkin approach [NO-MC] seems negligible, it signifi-
cantly accumulates over time to a relative mass error of ≈ 12.87% at t = T . Both, [SH-MC] and
[OSC-MC] yield numerical schemes that keep the absolute mass error almost in the machine
precision region and the relative mass error remains below 10−10. The Tikhonov regularization
parameter was set to the constant 102 for [OSC-MC].
The zero level sets at final time are depicted in Fig. 6.5b. For the non-corrected standard
Galerkin approach the slot is smeared out more strongly resulting in a significant gain in
mass. Best approximation results of the slot are obtained when using the [OSC-MC] approach.
The accuracy of the simpler [SH-MC] technique suffers from stronger diffusion which can be
explained by the global correction approach (rather than the local flux based correction) that
redistributes mass evenly.
The average number of iterations for the mass correction techniques at refinement level ` = 2
are 22.59 for [SH-MC] and 13.37 for [OSC-MC]. Naturally, one [OSC-MC] iteration is more
expensive because a higher dimensional KKT system needs to be solved. For either method, in
each iteration the interface must be relocalized (or a sufficiently accurate quadrature formula
must be applied to evaluate the Heaviside function integrals). In both cases, the number of
required iterations decreases on finer meshes. This can be explained by the higher accuracy
on finer meshes calling for less correction.
The quantitative results of the particular methods are listed in Table 6.1. Both conservative
approaches preserve the asymptotic properties of the standard and non-conservative Galerkin
approach [NO-MC]. We emphasize that this is an academic test problem free of interface related
couplings. Even though the benefit of mass corrected schemes may not seem significant, the
results in Section 7.6 will show the severe losses in numerical accuracy when mass is not
conserved.
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Figure 6.5.: Results for Zalesak’s disk test case at refinement level ` = 2.
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` em,h eL2(Ω) order e∞,Γ order eH1(Ω) order
[N

O-
MC

] 1 1.28e-05 6.31e-03 5.53e-02 2.53e-01
2 7.48e-03 3.48e-03 0.86 3.53e-02 0.65 1.94e-01 0.38
3 8.38e-04 1.37e-03 1.34 1.72e-02 1.04 1.40e-01 0.46
4 4.80e-04 6.49e-04 1.08 9.22e-03 0.90 1.25e-01 0.18

[S
H-

MC
] 1 6.71e-13 6.36e-03 5.67e-02 2.54e-01

2 1.08e-11 5.16e-03 0.30 3.47e-02 0.71 1.96e-01 0.37
3 1.80e-14 1.58e-03 1.71 1.69e-02 1.04 1.42e-01 0.46
4 4.59e-15 7.15e-04 1.14 9.62e-03 0.81 1.25e-01 0.19

[O
SC

-M
C] 1 1.51e-12 7.29e-03 5.21e-02 2.63e-01

2 9.09e-13 3.55e-03 1.04 3.36e-02 0.63 1.94e-01 0.44
3 7.12e-15 1.36e-03 1.38 1.71e-02 0.97 1.41e-01 0.46
4 8.33e-15 6.47e-04 1.07 9.57e-03 0.84 1.25e-01 0.18

Table 6.1.: Asymptotic results for Zalesak’s disk test case.

6.7.2. Vortex Flow

In this section we consider the vortex flow test case that has already been presented in Sec-
tion 5.6.2 and in which strong interface deformations occur. The results of this test case at
refinement level ` = 2 are plotted in Fig. 6.6. While the non-conservative approach [NO-MC]
exhibits a significant loss of mass, [SH-MC] and [OSC-MC] (with Tikhonov regularization pa-
rameter β = 102) preserve mass very well. Even though the absolute error in mass conservation
is slightly better for [SH-MC], the [OSC-MC] approach shows better asymptotic results, cf. Ta-
ble 6.2. Furthermore, when considering the final isocontours, [OSC-MC] seems to be closer to
the inital data than [SH-MC] and [NO-MC].

` em,h eL2(Ω) order e∞,Γ order eH1(Ω) order

[N
O-

MC
] 1 3.01e-02 1.93e-02 8.83e-02 3.08e-01

2 9.23e-03 8.07e-03 1.26 3.34e-02 1.4 1.63e-01 0.92
3 8.78e-04 3.40e-03 1.25 1.57e-02 1.09 9.26e-02 0.82
4 1.09e-03 1.38e-03 1.3 9.28e-03 0.76 5.27e-02 0.81

[S
H-

MC
] 1 3.54e-02 6.70e-02 8.69e-02 3.39e-01

2 5.86e-13 1.41e-02 2.25 2.88e-02 1.59 1.74e-01 0.97
3 3.74e-14 3.84e-03 1.88 1.51e-02 0.93 9.92e-02 0.81
4 1.55e-15 2.44e-03 0.65 8.13e-03 0.9 5.63e-02 0.82

[O
SC

-M
C] 1 7.62e-10 1.78e-02 5.46e-02 3.21e-01

2 1.38e-11 7.56e-03 1.23 2.53e-02 1.11 1.68e-01 0.93
3 2.15e-11 3.49e-03 1.12 1.41e-02 0.84 9.27e-02 0.86
4 2.69e-11 1.33e-03 1.39 7.17e-03 0.98 5.06e-02 0.87

Table 6.2.: Asymptotic results for the vortex flow test case.
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Figure 6.6.: Results for vortex flow test case at refinement level ` = 2.
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6.7.3. Multiple Bubbles

For the vortex flow problem, [SH-MC] and [OSC-MC] have shown no significant difference in
performance. In this test case, we assess the local conservation properties of the two methods by
considering a non-connected domain Ω1. This is a situation that frequently occurs in practical
applications, for example when more than one bubble is considered.
Based on the vortex flow example from the previous section, we modify the initial data to be
the signed distance function w.r.t. three disjoint circles as depicted in Fig. 6.7b.
By design, [SH-MC] requires a good signed distance function approximation, which is why
elliptic redistancing was periodically applied. For visualization, numerical computations were
carried out on a rather coarse mesh (` = 1), and the vortex flow velocity field is scaled by 0.15
to ensure that details can be resolved sufficiently well on the mesh.
The relative mass conservation errors of the medium sized bubble results are plotted in
Fig. 6.7a. We used the following non-constant Tikhonov regularization function

β̃(x) := β ·
(
ϕ̃(x)
h

)2
. (6.64)

This choice leads to a strong penalization of corrective fluxes far from the interface. The local
conservation accuracy depends on the magnitude of β. Smaller values of β lead to insufficiently
accurate results, while for β ≈ 10−7 the accuracy comes close to machine precision. The
increase in number of iterations can be explained by the following fact. The desired tolerance for
the fixed-point iteration is kept constant. However, for larger values of β, the residual increases
(as does mass accuracy). Consequently, to still meet the prescribed tolerance, more iterations
are required. In the provided academic examples we used a rather challenging tolerance of
10−12. When instead using mass accuracy as a threshold, only a very mild increase in the
average iteration number was observed.
For the globally conservative [SH-MC] approach, the local relative mass error dramatically
increases as time evolves. As a consequence, one bubble unphysically expands while the other
two bubbles shrink. In contrast, for [OSC-MC] with β ≈ 105 the final isocontour almost
coincides with the initial data.
The isocontours at final time t = 4 show the strong influence of local mass conservation on the
interface approximation quality.

6.7.4. Scalar versus Vector Control

Finally let us briefly comment on numerical results for the two different optimal control ap-
proaches. In the vector control case, the linear system to be solved can be written in block
notation as[

A −B>
B 0

] [
q
p

]
=
[
f
g

]
, (6.65)
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Figure 6.7.: Results for multiple bubbles subject to vortex flow.
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where A = diag(M,βM, βM) is essentially a scaled block-diagonal mass matrix and B =[
K,Cx, Cy

]
. Using the Schur complement

S := BA−1B> = KM−1K> + 1
β
CxM

−1Cx + 1
β
CyM

−1Cy, (6.66)

in each fixed-point iteration we need to solve

∆p(m−1) := S−1(g − BA−1f)− p(m−1), (6.67a)
p(m) := p(m−1) + ∆p(m−1), (6.67b)
q(m) := A−1(f − B>p(m)). (6.67c)

Obviously inverse matrices are not explicitly computed but linear systems solved instead. The
linear system for the update of p can be solved using the preconditioned CG-method with the
preconditioner

P−1 = Bdiag(A)−1B. (6.68)
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Figure 6.8.: Runtime comparison for scalar and vector control approaches.

In Fig. 6.8, the computational runtimes for the two approaches are illustrated. On coarser
meshes, the scalar control approach is faster. This can easily be explained by the fact that in
the vector control approach the number of degrees of freedom double compared to the scalar
control approach. On fine meshes, the direct UMFPACK solver fails due to insufficient memory.
Furthermore, at refinement level ` = 9, the preconditioned Schur-complement approach pays
off compared to a direct solver and is also capable of handling finer meshes.
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7 Two-Phase Flows

The first part of this chapter introduces the underlying mathematical model of two-phase
flow problems. It is based on conservation principles of physical quantities such as mass
and momentum. The resulting partial differential equations are often very complex, and the
existence and uniqueness of an analytical solution is mostly unclear. However, many of these
problems have successfully been solved numerically and are of great interest in many practical
applications.
A common way to solve two-phase flow problems computationally is to employ a finite element
discretization. To account for the evolving interface separating the two fluids, several ap-
proaches can be applied. One popular choice is the level set method, that is easy to implement
on the one hand, and easy to extend to higher order polynomial degrees on the other hand.
This chapter focuses on the application of the level set method extensions presented above
to two-phase flow problems. The numerical evaluation is based on a well-known benchmark
[HTK+07] and shows the potential of the proposed schemes in a practical application.
The chapter is organized as follows. The first section addresses kinematics, based on which
general conservation laws are derived in the following sections. Next, the incompressible Navier-
Stokes equations are derived and a finite element discretization is introduced. In the last
section we consider a two-phase flow benchmark problem to assess the quality of the numerical
solutions. The chapter is mainly based on the books by Gross and Reusken [GR11], Eck,
Garcke and Knabner [EGK11], but also on the text by Kuzmin [Kuz10] and the thesis of
Hysing [Hys07], as well as the publication [HTK+07] by Hysing et al., in which the bubble
dynamics benchmark is specified.

7.1. Kinematics

We consider a connected, open and bounded reference domain Ω̂ ⊂ Rd (i.e. a connected, open
and bounded set, cf. Definition A.1), d ∈ {1, 2, 3} and a time interval [t0, T ). A material point
at time t0 is given by its position in X ∈ Ω̂ and the mapping

t 7→ χ(t,X) (7.1)
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describes its trajectory. If we observe different particles pass through a fixed-point x ∈ Ω̂,
we speak of Eulerian coordinates. If instead we follow the trajectory χ(t,X), we refer to
Lagrangian coordinates. For a prototypical scalar quantity c : (t0, T ) × Ω̂ → R, the material
derivative is obtained by application of the chain rule:

Dtc(t,X) := d
dtc(t,X) = ∂

∂t
c(t,χ(t,X)) + u(t,X) · ∇c(t,χ(t,X)), (7.2)

where u(t,X) := ∂
∂tχ(t,X) is the velocity field in Eulerian coordinates. Of particular interest

in the remainder of this thesis are free boundary problems, where we consider the evolution of
an open domain Ω(t) in Ω̂, defined in terms of the initial domain Ω0 ⊂ Ω̂ at t = t0, i.e.

Ω(t) = {χ(t,X) | X ∈ Ω0}. (7.3)

In what follows, let us assume (cf. [EGK11]):
1. (t,X) 7→ χ(t,X) is continuously differentiable,
2. Ω 3 X 7→ χ(t,X) is invertible for all t ≥ t0,

3. det
(
∂xi
∂Xj

(t,X)
)d
i,j=1

> 0 for all t ≥ t0,

The determinant J(t,X) := det
(
∂xi
∂Xj

(t,X)
)d
i,j=1

describes the change of volume

|Ω(t)| =
∫

Ω(t)
1 dx =

∫
Ω0

J(t,X) dX. (7.4)

The following Theorem provides a fundamental result on how to move a time derivative into
an integral over a moving domain Ω(t):

Theorem 7.1 (Reynolds’ Transport Theorem [EGK11])
Let χ(t,X) satisfy the assumptions stated above and let the quantity c : [t0, T )× Ω̂→ R

be sufficiently smooth. Then the following identity holds:

d
dt

∫
Ω(t)

c(t,x) dx =
∫

Ω(t)

[
∂

∂t
c(t,x) +∇ ·

(
c(t,x) u(t,x)

)]
dx. (7.5)

7.2. Conservation Laws

Based on Reynolds’ Transport Theorem 7.1, so-called conservation laws can be derived for
evolving domains. Instead of the prototypical quantity c(·, ·), let us now consider the density
function ρ(·, ·). As before, we assume Ω(t) ⊂ Ω̂ to be an open domain. The quantity

m(t) =
∫

Ω(t)
ρ(t,x) dx (7.6)
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then describes the mass at time t. If mass is conserved in Ω(t), i.e. d
dtm(t) = 0, application of

Reynolds’ Transport Theorem yields

0 = d
dtm(t) = d

dt

∫
Ω(t)

ρ(t,x) dx =
∫

Ω(t)

∂

∂t
ρ(t,x) +∇ ·

(
ρ(t,x)u(t,x)

)
dx. (7.7)

Since (7.7) holds for any Ω(t) (in particular also for every subdomain of Ω(t)), the pointwise
differential equation

∂

∂t
ρ(t,x) +∇ ·

(
ρ(t,x)u(t,x)

)
= 0, (7.8)

can be derived if ρ and u are sufficiently smooth (cf. [EGK11]). This equation is also commonly
referred to as continuity equation. In the particular case of a constant density function ρ(t,x) =
const, the continuity equation simplifies to

∇ · u(t,x) = 0. (7.9)

The momentum is given by

M(t) =
∫

Ω(t)
ρ(t,x)u(t,x). (7.10)

Any change in M(t) is equal to the sum of all forces F(t) acting on Ω(t). Generally, one must
distinguish between volume forces such as gravity∫

Ω(t)
ρ(t,x)g dx, (7.11)

and boundary forces acting on the boundary of Ω(t). Let us assume that the boundary Γ(t) of
Ω(t) is continuously differentiable in time and space. Ω(t) may exert forces onto the surrounding
fluid across ∂Ω(t) and vice versa. In Cauchy’s Theorem, these internal forces are modeled to
be linear, i.e. the resulting boundary force can be written in terms of the Cauchy stress tensor
σ(t,x) ∈ Rd×d as follows:∫

∂Ω(t)
σ(t,x) · n(t,x) dσ =

∫
Ω(t)

div
(
σ(t,x)

)
dx. (7.12)

By application of the Gauss theorem, the surface integral has been transformed into a volume
integral in (7.12). For simplicity, we only consider gravitation as a volume force. Adding up
the forces exerted in Ω(t) and on ∂Ω(t), conservation of momentum can be expressed as

d
dtM(t) = d

dt

∫
Ω(t)

ρ(t,x)u(t,x) dx =
∫

Ω(t)
ρ(t,x)g + div

(
σ(t,x)

)
dx. (7.13)
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Finally, by application of Reynolds’ Transport Theorem 7.1 and by employing Eq. (7.8) we
obtain

d
dtM(t) =

∫
Ω(t)

ρ(t,x) ∂
∂t

u(t,x) + ρ(u(t,x) · ∇)u(t,x) dx, (7.14)

where we use the differential operator

(u · ∇)(·) =
d∑
i=1

ui∂xi(·). (7.15)

As before, because Ω(t) can be chosen arbitrarily the partial differential equation

ρ
∂

∂t
u + ρ(u · ∇)u = ρg + div(σ) (7.16)

holds (we omit the dependence on time and space variable when no ambiguity arises). It is
often referred to as momentum equation.

7.3. Navier-Stokes Equations

Based on the conservation laws derived in the previous sections, the incompressible Navier-
Stokes equations can be obtained. We therefore consider a fluid in Ω̂ with the following
properties:

1. The fluid is Newtonian, i.e. shear stresses are linearly dependent on the velocity gradients.
For non-Newtonian fluids, applied stress causes changes in the viscosity. The stress tensor
thus can be modeled by

σ = −pI + 2µD(u), (7.17)

where p denotes the pressure, I the identity tensor, D the deformation tensor

D(u) := 1
2

(
∇u + (∇u)>

)
, (7.18)

and µ the dynamic viscosity of the fluid. We made use of the operator

∇u :=
[
∇u1 · · · ∇ud

]
. (7.19)

Many common fluids including water and air can be modeled as Newtonian. In contrast,
blood is a non-Newtonian fluid.

2. The fluid is incompressible. As a direct consequence, ρ = const in Ω̂ and the continuity
equation (7.8) simplifies to (7.9).

3. The fluid is isotropic.
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7.3. Navier-Stokes Equations

Under the given assumptions, the Navier-Stokes equations for incompressible fluid flow are
obtained by combining the coninuity equation (7.9) and the momentum equation (7.16). Using
the constitutive relation (7.17) for the stress tensor [EGK11, GR11], we obtain:

ρ
∂

∂t
u + ρ(u · ∇)u = −∇p+ div(2µD(u)) + ρg, (7.20a)

div(u) = 0. (7.20b)

Note that the non-linear term in (7.20a) makes the solution of the problem particularly chal-
lenging. Even though existence and uniqueness of a solution to (7.20) is still unclear, numerical
methods have been developed and successfully applied to a wide range of applications.
In the framework of this thesis, we are interested in incompressible two-phase flows where two
immiscible fluids are considered. The modeling begins with formulating the incompressible
Navier-Stokes equations for each phase as before. The two phases are then related to each
other by an additional coupling condition imposed on the interface.
The Navier-Stokes equations (7.20) can also be transferred into a dimensionless form, which
can be helpful in terms of determining the characteristic flow regime. Let V denote the
characteristic velocity, and ` the typical length scale, and define the dimensionless variables

t̃ = V

`
t, x̃ = x

`
, ũ = u

V
, p̃ = p

ρV 2 and g̃ = `

V 2 g. (7.21)

Introducing the dimensionless Reynolds number

Re = ρ`V

µ
, (7.22)

the dimensionless Navier-Stokes equations for incompressible two phase flow are written as:

∂

∂t̃
ũ + (ũ · ∇)ũ = −∇p̃+ 2

Re div (D(ũ)) + g̃, (7.23a)

div(ũ) = 0. (7.23b)

For low Reynolds numbers, viscous forces are dominant (laminar flow) while for high Reynolds
numbers convective terms dominate (turbulent flow).

7.3.1. Two Phase Flow Modeling

Let us now consider two incompressible Newtonian fluids in a domain Ω. In addition to the
previous assumptions, we require the fluids to be immiscible, i.e. no phase transitions occur.
The two phases are contained in the disjoint open subdomains Ω1(t) ⊂ Ω and Ω2(t) ⊂ Ω,
respectively, such that Ω1(t) ∪ Ω2(t) = Ω for all t ∈ [t0, T ). Each fluid has different material
properties specified by the densities ρi and the dynamic viscosities µi, i = 1, 2. The interface
separating the two phases Ω1(t) and Ω2(t) is therefore given by

Γ(t) := Ω1(t) ∩ Ω2(t). (7.24)
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Ω1(t)

Ω2(t)

Γ(t) n̂

Figure 7.1.: Illustration of two-phase flow setting.

The setting is depicted in Fig. 7.1. By n̂(t,x) we denote the unit normal vector at the interface
pointing into Ω2(t). Note that this vector is only defined on the interface Γ and not in Ω1(t)
or Ω2(t).
For the implicit interface description of Γ(t) we employ the level set method. Therefore, let ϕ
be the corresponding level set function such that ϕ > 0 in Ω1(t) and ϕ < 0 in Ω2(t).
The conservation laws derived in the previous section can be applied to each subdomain sep-
arately, and therefore the Navier-Stokes equations can be formulated for each subdomain Ωi,
i = 1, 2, as follows:

ρi
∂

∂t
u + ρi(u · ∇)u = −∇p+ div(µiD(u)) + ρig, in Ωi, (7.25a)

div(u) = 0, in Ωi. (7.25b)

7.3.2. Coupling Conditions

For the modeling of the complete problem in Ω, we must also take internal forces between the
two phases into account. On a molecular level, due the different material properties of the two
fluids, cohesive forces are exerted across the interface. These forces pull the surface so as to
contract it to minimal circumference (d = 2) or area (d = 3), and are therefore summarized as
the so-called surface tension force. A common way of modeling this force is

fst(t) := −τ
∫

Γ(t)
κn̂ dσ, (7.26)

where κ(t,x) is the mean curvature of Γ(t) and τ is the surface tension coefficient. Even though
τ can be variable in general, we restrict ourselves to constant surface tension coefficients that
only depend on the material properties of the two adjacent fluids. From (7.26) one can derive
(see [GR11] for details) the coupling condition

JσK n̂ = −τκn̂ on Γ. (7.27)
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In the absence of phase transitions due to the assumed immiscibility of the fluids, the velocity
jump across the interface must be zero:

JuK = 0 on Γ. (7.28)

From (7.25) and under consideration of the coupling conditions (7.27) and (7.28), the following
two-phase flow problem is obtained:

ρi
∂

∂t
u + ρi(u · ∇)u = −∇p+ div(µiD(u)) + ρig in Ωi, (7.29a)

div(u) = 0 in Ωi, (7.29b)
JuK = 0 on Γ, (7.29c)

Jσn̂K = −τκn̂ on Γ, (7.29d)
(û− u) · n̂ = 0 on Γ. (7.29e)

Note that the additional last condition (7.29e) is a natural constraint ensuring that the normal
velocity of the interface û · n̂ equals the velocity u · n̂. If the interface Γ(t) touches the
boundary of Ω, the model must be extended to take the resulting contact forces into account.
More information on contact forces can be found, for example, in [SOW05, GR11].

7.4. Discretization of the Incompressible Navier-Stokes Equations

To obtain the finite element discretization in two space dimensions, we first derive the weak
formulation of problem (7.20). Therefore, let us consider the Sobolev spaces

U := H1
0 (Ω)×H1

0 (Ω), (7.30a)
P := L2

0(Ω). (7.30b)

Let ∂ΩD denote the boundary portion of ∂Ω on which Dirichlet boundary conditions for u are
prescribed by uD. For simplicity, we assume uD ≡ 0. Following [GR11, QV08], we define the
bi- and trilinear forms

m : U×U→ R, m(u,v) :=
∫

Ω
ρu · v dx, (7.31a)

a : U×U→ R, a(u,v) :=
∫

Ω
µ

d∑
i,j=1

(
D(u)

)
i,j

(
D(v)

)
i,j

dx, (7.31b)

b : U× P → R, b(v, q) := −
∫

Ω
q div(v) dx, (7.31c)

c : U×U×U→ R, c(u; v,w) :=
∫

Ω
ρ(u · ∇v) ·w dx. (7.31d)
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The weak formulation of the incompressible Navier-Stokes equations is given by

Find u ∈ U, p ∈ P, such that for almost all t ∈ [t0, T ] :

m
(
∂

∂t
u,v

)
+ c(u; u,v) + a(u,v) + b(v, p) = (ρg,v)L2(Ω) , ∀v ∈ U, (7.32a)

b(u, q) = 0, ∀q ∈ P, (7.32b)
u(0, ·) = u0(·), a.e. in Ω. (7.32c)

Under stronger smoothness assumptions, it is possible to prove existence and uniqueness of a
solution for d = 2. For more information, the interested reader is referred to [QV08, Section
13.2].

7.4.1. Finite Element Approximation

For the Galerkin approximation of problem (7.32) we consider the finite-dimensional subspaces
Uh := X2

h(Ω) ×X2
h(Ω) ⊂ U and Ph := X1

h(Ω) ⊂ P for t ∈ [0, T ]. This choice for (Uh, Ph) is
commonly referred to as Taylor-Hood and is inf-sup stable [GR11], i.e. it satisfies the discrete
inf-sup condition (also often called LLB stability condition)

sup
uh∈Uh

b(uh, ph)
‖uh‖H1(Ω)

≥ β̂ ‖ph‖L2(Ω) ∀ph ∈ Ph. (7.33)

Therefore, for given initial data u0 ∈ Uh, the problem

Find uh ∈ Uh, ph ∈ Ph, such that for t ∈ [0, T ] :

m
(
∂uh
∂t

,vh
)

+ c(uh; uh,vh) + a(uh,vh) + b(vh, ph) = (ρg,vh)L2(Ω) ∀vh ∈ Uh, (7.34a)

b(uh, qh) = 0 ∀qh ∈ Ph, (7.34b)
uh(0, ·) = u0(·) in Ω, (7.34c)

can be shown to be well-posed (cf. [QV08]). As in (3.3), the algebraic form of (7.34) is given
by

Find uh ∈ Uh, ph ∈ Ph, such that for t ∈ [0, T ] :

M d
dtuh(t) + C(uh(t))uh(t) + Auh(t) + B>ph(t) = fh(t), (7.35a)

Buh(t) = 0, (7.35b)
uh(0) = u0, (7.35c)
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where {ψi}
N2

h
i=1 denotes the basis of Uh, {ωi}

N1
h

i=1 denotes the basis of Ph, and uh(t), ph(t) are
the associated coefficient vectors. The matrices in (7.35) are given by

(M)i,j = (ψi,ψj)L2(Ω), (7.36a)
(A)i,j = a

(
ψi,ψj

)
, (7.36b)

(B)i,j = b (ψi, ωj) , (7.36c)
(C(wh))i,j = c(wh;ψi,ψj), (7.36d)

fh(t) = (ρg, vh)L2(Ω) . (7.36e)

In order to obtain a linear system of equations, the convective term must be suitably linearized.
For discretization in time we apply the finite difference θ-scheme introduced in Section 3.4 to
the algebraic system (7.35).

7.4.2. Numerical Solution

The fully discrete algebraic system to be solved at each time step can be written in block
matrix form as follows:[

A B>
B 0

] [
u
p

]
=
[

f
0

]
, (7.37)

The blocks A, B and the right hand side f can easily be determined from (7.35). One gener-
ally distinguishes between two solution strategies. The obvious approach is to simultaneously
solve system (7.37) for velocity and pressure. Unfortunately, this requires solving large, poorly
conditioned algebraic systems. The second strategy is based on the decoupling of the equa-
tions, i.e. velocity and pressure are computed separately. This can significantly reduce the
computational costs, as the linear systems are smaller. However, the application of a splitting
technique may have impacts on accuracy, stability and robustness. For a thorough discussion,
the interested reader is referred for example to the books [KH15, Tur99] and the thesis [Smo01],
which provides a good overview on splitting techniques.
In the numerical experiments carried out below, we employed an integrated solution approach
(i.e. solving for velocity and pressure simultaneously). Even though computations could have
been carried out much more efficiently, the objective was to assess the performance of the
underlying level set methods and avoid inaccuracies and stability problems arising from the
discretization of the Navier-Stokes equations.

7.5. Application of the Level Set Method

We have already seen that a coupling condition on the interface is required to combine the two
phases in the two-phase flow setting. The level set method is a suitable approach to provide
the interface location and describe interface evolution.
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Let ϕ(t,x) be the level set function associated with the evolving interface Γ(t), cf. Chapter 4.
Consider a piecewise constant density function ρ : (0, T ) × Ω → R and a piecewise constant
viscosity function µ : (0, T )× Ω→ R defined w.r.t. the level set function ϕ by

ρ(ϕ)(t,x) :=
{
ρ1(t,x) if ϕ(t,x) > 0,
ρ2(t,x) if ϕ(t,x) < 0, (7.38a)

µ(ϕ)(t,x) :=
{
µ1(t,x) if ϕ(t,x) > 0,
µ2(t,x) if ϕ(t,x) < 0. (7.38b)

For a meaningful definition of ρ and µ in the Lebesgue sence, we again assume measd(Γ(t)) = 0
for a.e. t ∈ (0, T ).
Using the level set approach, the two-phase flow problem (7.29) can be formulated as follows:

ρ(ϕ) ∂
∂t

u + ρ(ϕ)(u · ∇)u = −∇p+ div(2µ(ϕ)D(u)) + ρ(ϕ)g in Ω1 ∪ Ω2, (7.39a)

div(u) = 0 in Ω1 ∪ Ω2, (7.39b)
JuK = 0 on Γ = Γ(ϕ), (7.39c)

JσnK = −τκn̂ on Γ = Γ(ϕ), (7.39d)
∂

∂t
ϕ+ u · ∇ϕ = 0 in Ω, (7.39e)

ϕ = g on ∂Ωin. (7.39f)

For the evolution of the interface Γ(t), the level set equation replaces the former propagation
condition (7.29e).
Note that if Ω has an inflow boundary portion ∂Ωin, a suitable boundary condition for the level
set equation is required. When prescribing a Dirichlet boundary condition as, the particular
choice of the boundary data g is in our setting circumstantial because only a narrow band
around the interface is of interest. Imprecise or unphysical choices of g can readily be corrected
by the occasional application of a redistancing procedure.

7.5.1. Surface Tension

The surface tension term (7.39d) can be transformed into the following force term:

fΓ : U→ R, fΓ(v) := −τ
∫

Γ
κn̂ · v dσ. (7.40)

Note that fΓ ∈ U∗ if the curvature κ is bounded (cf. [GR11]). As usual, we incorporate any
Dirichlet boundary conditions on ∂ΩD into the spaces U0 := {v ∈ U : v = 0 on ∂ΩD} and
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UD := {v ∈ U : v = uD on ∂ΩD}. Similarly to (7.32), the weak formulation of the two-phase
flow problem is obtained (cf. [GR11]):

Find u ∈ UD, p ∈ P,ϕ ∈ V (u)
D such that for almost all t ∈ [0, T ] : (7.41a)

m
(
∂u
∂t
,v
)

+ c(u; u,v) + a(u,v) + b(v, p) = (ρg,v)L2(Ω) + fΓ(v) ∀v ∈ U0, (7.41b)

b(u, q) = 0 ∀q ∈ P, (7.41c)
u(0,x) = u0(x) a.e. in Ω, (7.41d)(

∂

∂t
ϕ, ψ

)
L2(Ω)

+ (u · ∇ϕ,ψ)L2(Ω) = 0 ∀ψ ∈ L2(Ω).

(7.41e)

Note that the (homogeneous) Dirichlet boundary condition (7.29e) is absorbed into V
(u)
D :=

{ψ ∈ V (u) : ϕ = g on ∂Ωin} (to be understood in the trace sense) and that the interface Γ
directly depends on the level set function ϕ.
In many applications for the numerical treatment of the source fΓ representing surface tension
the surface integral is transformed into a volume integral by means of a (regularized) Dirac
delta function for the localization of Γh [Hys07]. Closely following [GR11], we will use a
different approach based on the work of Dziuk and Bänsch [Dzi90, Bän01] that computes the
source term on the localized interface. The key idea is to use an alternative, equivalent way to
express the curvature term, known as Laplace-Beltrami operator ∆:

−∆x = κ(x)n̂(x), x ∈ Γ. (7.42)

The operator is defined in terms of the tangential gradient

∇f(x) :=
(

Id− n̂(x)n̂(x)>
)︸ ︷︷ ︸

=:P(x)

∇f(x). (7.43)

Note that

Id(x) := x (7.44)

denotes the identity operator. Analogously, the tangential divergence is defined by div(f) :=
∇· f , as is the Laplace Beltrami operator ∆f := div(∇f). The advantage of formulation (7.42)
is the possibility of applying the integration by parts formula:

−τ
∫

Γ
κn̂ · v dσ = −τ

∫
Γ
∇Îd · ∇v dσ. (7.45)

On a discrete level, we find that

fΓh
(vh) = −τ

∫
Γh

∇hx · ∇hvh dσ = −τ
∫

Γh

Ph∇x ·Ph∇vh dσ. (7.46)
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It can be shown that using the improved projection

P̃h := Id−
(
∇ϕh(x)
|∇ϕh(x)|

)(
∇ϕh(x)
|∇ϕh(x)|

)>
, (7.47)

with the associated source term

f̃Γh
= −τ

∫
Γh

P̃h∇x · P̃h∇vh dσ (7.48)

provides better accuracy properties (with Vh = X2
h ×X2

h we have O(
√
h) for Ph and O(h) for

P̃h, cf. [GR11, Section 7.7]). In the context of the discrete system, better stability is to be
expected when using the semi-discrete formulation

fΓh
(vh) = −τ

∫
Γh

∇hxn · ∇hvh dσ − τ∆t
∫

Γh

∇un+1 · ∇vh dσ, (7.49)

motivated by xn+1 ≈ xn + ∆tun+1, cf. [Bän01]. Using an explicit representation of fΓh
may

cause severe instabilities.

7.5.2. Spurious Velocities

Insufficiently accurate treatment of the surface tension may lead to numerical oscillations at
the interface, commonly referred to as spurious velocities or spurious currents. Ganesan et al.
[GMT07] investigated this phenomenon numerically and observed that spurious velocities do
not vanish with the expected order of convergence. Two main reasons are identified: inaccurate
approximation of the curvature and the free boundary. This is why an accurate treatment of
the level set function is of great importance in this setting. In particular, redistancing helps
obtaining good curvature and interface approximations.

7.6. Rising Bubble Benchmark

The focus of this thesis lies on level set methods. Therefore, in the numerical examples below,
we solved the coupled system arising from the discretized Navier-Stokes equations using a
direct solver. Even though this approach is computationally expensive, we can circumvent
operator splitting related problems and focus on the evaluation of the extensions of the level
set methods for interface handling.
Let us finally complete the numerical study of the methods presented in Chapter 5 and Chap-
ter 6 by applying them to a well-known two-phase flow benchmark. The configuration was
proposed in [HTK+07] and computational reference data from different research groups is
available at

http://www.featflow.de/en/benchmarks.html.
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Figure 7.2.: General setting of the rising bubble benchmark, cf. [HTK+07]. No-slip boundary
condition at the top and bottom (red) and free slip boundary condition at both
sides (blue).

The general setting of this benchmark is depicted in Fig. 7.2. In a domain Ω = (0, 1)× (0, 2)
we consider two immiscible fluids Ω1 = B0.25(0.5) and Ω2 = Ω \ Ω1. The density ρ1 in Ω1 is
set smaller than the density ρ2 in the surrounding fluid Ω2 which causes the bubble to rise. At
the top and bottom boundary parts of Ω, denoted by ∂ΩNS, the no-slip boundary condition

u = 0 on ∂ΩNS (7.50)

is imposed, whereas on the left and right wall ∂ΩFS the free slip boundary condition

u · n = 0 and τ ·
(
∇u + (∇u)>

)
· n = 0 on ∂ΩFS (7.51)

is set, where τ denotes the tangential vector. The acting forces can be related to each other
through the dimensionless Reynolds and Eötvös numbers

Re =
ρ1
√
g(2r0)3/2

µ1
, (7.52a)

Eo = 4ρ1gr
2
0

σ
, (7.52b)

where µ1 and µ2 are the viscosities in Ω1 and Ω2, g the gravitational constant, σ the surface
tension coefficient and r0 = 1/4 the radius of the initial bubble. The benchmark specifies two
test cases which are listed in Table 7.1.
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7. Two-Phase Flows

test case ρ1 ρ2 µ1 µ2 g σ Re Eo σ2/σ1 µ2/µ1

1 100 1000 1 10 0.98 24.5 35 10 10 10
2 1 1000 0.1 10 0.98 1.96 35 125 1000 100

Table 7.1.: Benchmark test case configuration, cf. [HTK+07].

For numerical evaluation, the benchmark defines the following reference quantities:
Center of Mass The center of mass of the bubble, given by

xc = 1
|Ω1|

∫
Ω1

dx. (7.53)

Circularity The circularity is defined as

�c = 2πra
P

, (7.54)

where P denotes the perimeter of the bubble, and ra the radius of a circle having the
same area as the bubble.

Rise Velocity We consider the mean velocity of the bubble’s motion, i.e.

uc = 1
|Ω1|

∫
Ω1

u dx. (7.55)

We compare our numerical results to those obtained with the TP2D code [REF] at the high-
est refinement level ` = 7. It is based “on finite element discretizations in space with non-
conforming Q̃1Q0 basis functions for the flow variables and a conforming Q1 bilinear approxi-
mation for the level set function” [HTK+07]. For time discretization, the second-order accurate
Crank-Nicolson scheme is used in TP2D.
In this section, we consider the finite element level set approach as presented above with the
following extensions:

[NO-EXT] no extension,
[HYP-RD] hyperbolic redistancing, cf. Section 5.2,
[ELP-RD] elliptic redistancing, cf. Section 5.4,
[OPC-RD] optimal control based redistancing, cf. Section 5.5,
[SH-MC] level set shifting approach, cf. Section 6.2,

[OSC-MC] scalar optimal control approach for mass preservation, cf. Section 6.6.

It is also possible to combine redistancing and mass correction techniques. First, an auxiliary
solution to the level set equation is computed. Occasionally this solution is improved by a
redistancing technique. Alternatively, one may use a monolithic approach such as [OPC-RD].
Based on this intermediate solution, a mass correction scheme is applied.
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7.6.1. Test Case 1

The first test case can be considered rather mild as the bubble deforms smoothly and slowly.
Yet one might encounter numerical instabilities when using [NO-EXT]. We have already seen
that there are two major sources for this problem: decreasing smoothness of the level set
function and the inability to conserve mass. In fact, without the application of a redistancing
scheme, strong spurious currents occured and the numerical simulation failed in many cases.
The numerical results of the various approaches for this benchmark problem are depicted in
Figures 7.3 and 7.4. The benchmark quantities specified above as well as the mass of the rising
bubble are plotted against the fine-scale TP2D reference solution [REF] in Figures 7.5, 7.6 and
7.7.

` [HYP-RD] [ELP-RD] [OPC-RD]
1 35.32 % 12.71 % 55.39 %
2 22.36 % 6.06 % 34.70 %
3 15.07 % 2.96 % 22.37 %

Table 7.2.: Share of redistancing in computational costs per time step.

First, let us comment on [NO-EXT]. At the upper boundary of the bubble, the level set function
becomes very steep in interface vicinity when no redistancing is applied. At the same time, it
becomes very flat on the lower boundary of the interface. As a dramatic consequence, strong
spurious velocities occur and cause artificial displacements of the interface. In contrast, when
a redistancing scheme was applied, the level set function and the interface remained smooth
and only mild spurious currents could be observed. These remaining spurious velocities can
be explained by the continuous finite element approximation for the discontinuous pressure.
Better results can be obtained when using an interface adapted mesh and a discretization that
allows for the pressure jump across the interface, see for example [Bas16].
Hyperbolic redistancing [HYP-RD] shows a significant loss of mass which can be explained
by the numerical diffusion induced by the regularization of the sign function. As explained
in Chapter 5, the particular choice of the regularization parameter ε has a direct influence
on the numerical accuracy and the additional computational costs. For the approximation
Eq. (5.10), small values of ε � h2 caused a significant increase in the number of iterations
or the method failed to converge at all. On the other hand, for choices ε � h we observed
strong numerical diffusion and poor interface accuracy. In this example, we found ε ∼ h3/2 to
provide most accurate results. Even though the scheme effectively reduces spurious currents,
the interface inaccuracy leads to errors in the rise velocity and the position of the center of
mass. Good agreement with the reference data is achieved for the circularity, which indicates
that the bubble shape is preserved quite well.
Similarly, we could observe a (less significant) loss of mass for the elliptic redistancing approach
[ELP-RD]. It is caused by the non-conservative solution of the level set equation. The error from
the redistancing procedure can be neglected for sufficiently large interface penalty parameters
α. In the numerical computations shown in this chapter, we used α = 106. Spurious velocities
were well damped. Compared to [HYP-RD], the overall accuracy is better and [ELP-RD] is
more efficient, cf. Table 7.2.
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(a) [NO-RD] (b) [HYP-RD] (c) [ELP-RD] (d) [OPC-RD]

−1.5 −1.25 −1 −0.75 −0.5 −0.25 0 0.25

(e) [NO-RD] (f) [HYP-RD] (g) [ELP-RD] (h) [OPC-RD]

0 0.24 0.47 0.71 0.94 1.18

Figure 7.3.: Plots of level set functions (a)-(d) and velocity magnitudes (e)-(h) at final time
t = 3 and on refinement level ` = 2. The discrete interface is shown in white.
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Figure 7.4.: Bubble shapes of [NO-RD], [HYP-RD], [ELP-RD] and [OPC-RD] at t = 3 and re-
finement level ` = 2 plotted against the fine scale reference solution [REF].
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Figure 7.5.: Results of [HYP-RD] compared to the TP2D reference solution [REF].
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Figure 7.6.: Results of [ELP-RD] compared to the TP2D reference solution [REF].
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Figure 7.7.: Results of [OPC-RD] compared to the TP2D reference solution [REF].
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Even though computationally more expensive, the optimal control approach for redistancing
[OPC-RD] shows significant less loss of mass and best agreement with the benchmark reference
solution [REF], which indicates that the monolithic problem formulation is advantageous. In
particular the shape of the bubble almost matches the reference shape at refinement level
` = 2, while clear deviations are visible for the two other approaches. The better accuracy
may compensate for the higher computational efforts.
Let us now combine the efficient elliptic redistancing approach [ELP-RD] with the mass correc-
tion schemes [SH-MC] and [OSC-MC] presented in the previous chapter. The numerical results
are depicted in Figures 7.8 and 7.9. Note that these results were obtained on the coarsest
refinement level ` = 1. Compared to the non-conservative schemes, the increase in accuracy is
quite significant. [OSC-MC] seems to be slightly more accurate in terms of circularity and rise
velocity, but is also computationally more expensive. However, the main advantage of local
conservation did not really come into play in this test case.
In summary, the application of the elliptic redistancing scheme combined with the level set
shifting approach yields a very efficient numerical scheme that significantly improves the overall
accuracy. In simulations where local mass conservation plays a crucial role, the use of the more
involved [OSC-MC] technique is worth the effort.

7.6.2. Test Case 2

This chapter concludes with numerical results for the challenging benchmark test case. It
features large density and viscosity ratios and the surface tension is significantly decreased.
The bubble shape becomes non-convex and thin filaments are developed which eventually break
off [HTK+07]. The results of the three different groups participating in the benchmark did not
show agreement in the filament regions, so that there is no clear reference solution to compare
results to. This is why we only present the results of the [OSC-MC] approach combined with
[ELP-RD] compared to the benchmark solutions in Fig. 7.10.
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Figure 7.8.: Bubble shapes of [ELP-RD] + [SH-MC] and [ELP-RD] + [OSC-MC] at refinement
level ` = 1 compared to reference solution [REF].
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Figure 7.10.: Bubble shapes of benchmark codes and [OSC-MC] + [ELP-RD].
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8 Summary and Outlook

This thesis was concerned with the development of numerical approaches to redistancing and
conservation of mass in finite element methods for the level set transport equation.

8.1. Summary

The key components of the proposed numerical algorithms are as follows:

1. We have introduced a minimization-based PDE redistancing approach in the context of
variational level set algorithms. The objective functional of the optimization problem is
defined in terms of a potential function. The choice of the potential function determines
the geometrical properties of the solution. Interface displacements are effectively pre-
vented by a suitable penalization term.
In the context of a finite element discretization, the problem can be solved without re-
sorting to pseudo-time stepping so that no time step restrictions have to be considered.
For suitable potential functions, the non-linear minimization problem reduces to the re-
peated solution of a steady diffusion-reaction equation.
The proposed method is very robust, preserves the interface, offers the possibility to
incorporate further design criteria into the objective functional and can easily be ap-
plied in the setting of a standard finite element discretization for elliptic PDEs, thus also
allowing for unstructured meshes. The approach has already been extended to discontin-
uous Galerkin approximations in [UKO16]. Furthermore, in contrast to many hyperbolic
redistancing schemes, it exhibits fast convergence and the choice of the regularization
parameter has only little influence on accuracy and convergence behavior.

2. Next, we have presented a monolithic redistancing approach based on an optimal control
problem. The level set transport equation is enriched by a source term and solved while
simultaneously maintaining the signed distance function property as far as possible. By
design of the source term, the interface cannot be artificially displaced on an analytical
level.
Using the discretize-then-optimize approach, the discrete system of first order optimality
conditions is obtained and numerically solved using a suitable fixed-point iteration.
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Even though this approach is more expensive in terms of computational costs, it offers
several significant advantages. First, our numerical experiments indicate that the mono-
lithic problem formulation leads to better interface accuracy compared to post-processing
techniques. This is due to the fact that the optimal control problem does not require
a stabilization technique, so that less artificial diffusion is induced. As for the elliptic
redistancing approach, the objective functional can easily be extended to satisfy further
design criteria.

3. Last but not least, we have presented an optimal control approach to enforce conser-
vation of mass in the context of finite element level set methods. While most of the
other conservative techniques are based on a combination of the level set approach with
volume-of-fluid techniques, this approach employs a suitable corrective flux in a conser-
vation law for the corresponding Heaviside function.
We have considered two different control fluxes: the gradient of a scalar control function
and a vector-valued control function. Even though the algebraic system for the latter
case is of higher dimension than in the scalar control case, it can be solved more efficiently
using iterative solution techniques.
As for the previous optimal control problem, the numerical solution is based on the
discretize-then-optimize technique. The obtained system of first order optimality condi-
tions is linearized and a simple preconditioning scheme is applied. In contrast to many
other approaches to mass correction, the optimal control scheme is conservative to ma-
chine precision. Furthermore, mass is corrected locally so that unphysical redistribution
of mass is ruled out and high interface approximation accuracy is obtained.

8.2. Outlook

Future work will focus on improving the efficiency of the presented numerical schemes. For
the considered optimal control problems, we solved the arising system of first order optimality
conditions as a coupled system by application of direct solvers in the current implementation. A
reduction in the overall computational efforts can be achieved using more sophisticated solution
strategies. The development of reduced space problems for the non-linear optimal control
problems, of improved preconditioning techniques and of problem-tailored descent methods
(instead of solving the KKT system directly) appear to be promising directions for further
research.
Another aspect that merits further research is the analysis of optimal penalty parameters in
the considered optimization problems. We have already seen in numerical examples that non-
constant choices may improve both accuracy and the conditioning of the linear systems to
be solved. Furthermore, the potentials used to define the level set regularization term in the
context of the redistancing approaches, are still not optimal. While single-well potentials may
cause numerical oscillations in the vicinity of singularities (thus causing numerical instabilities),
the double-well potential is robust. However, in regions with flat gradients the double-well
potential may lead to constant solutions rather than to the desired signed distance function
approximation. Hence, the development of an improved potential function could be pursued
in future work.
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8.2. Outlook

The proposed methods are currently implemented only for the two-dimensional case. An
extension to the three-dimensional case is possible without significant algorithmic modifications
and appears to be a promising aspect of future work.
Last but not least, we envisage the application to more scientific and industrial problems. For
example, the proposed redistancing schemes could be applied in image processing techniques
such as mean curvature flow. The robustness and global nature of the elliptic redistancing
approach are highly advantageous in this particular context. Furthermore, problems involving
several non-connected domains, for example bubble flows, could significantly benefit from the
good local conservation properties of the proposed optimal control approach.
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A Appendix

This chapter will provide various fundamental results from calculus, linear algebra and func-
tional analysis. Most of the definitions and theorems are taken from the referenced textbooks.

A.1. Finite Element Approximation

In this section we will provide essential definitions and results for the construction of suitable
finite element spaces. From [EG04] and [QV08], we use the following definitions:

Definition A.1 (Domain, [EG04])
“In dimension 1, a domain is an open, bounded interval. In dimension d ≥ 2, a domain is
an open, bounded, connected set in Rd such that its boundary ∂Ω satisfies the following
property: There are α > 0, β > 0, a finite number R of local coordinate systems xr′ =
(xr ′, xrd), 1 ≤ r ≤ R, where xr ′ ∈ Rd−1 and xrd ∈ R, and R local maps ϕr that are Lipschitz
on their definition domain {xr ′ ∈ Rd−1; |xr ′| < α} and such that

∂Ω =
R⋃
r=1
{(xr ′, xrd); xrd = ϕr(xr ′); |xr ′| < α},

{(xr ′, xrd); ϕr(xr
′) < xrd < ϕr(xr ′) + β; |xr ′| < α} ⊂ Ω, ∀r,

{(xr ′, xrd); ϕr(xr
′)− β < xrd < ϕr(xr ′); |xr ′| < α} ⊂ Rd \ Ω, ∀r,

where |xr ′| ≤ α means that |xri ′| ≤ α for 1 ≤ i ≤ d− 1. For m ≥ 1, Ω is said to be of class
Cm (resp., piecewise of class Cm) if all the local maps ϕr are of class Cm (resp., piecewise
of class Cm).” (direct quote from [EG04, Definition 1.46]).
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Definition A.2 (Triangulation [QV08])
Let Ω ⊂ Rd, d ∈ {2, 3} be an open, bounded and connected subset such that Ω is the
union of a finite number of polyhedra. A finite decomposition

Ω =
⋃
K∈Th

K, (A.1)

is called triangulation of Ω, if:

each K is a nonempty polyhedron, (A.2a)
for all K1,K2 ∈ Th such that K1 6= K2: intrK1 ∩ intrK2 = ∅, (A.2b)
F = K1 ∩K2 6= ∅ for K1,K2 ∈ Th, K1 6= K2, is a common face of K1 and K2,

(A.2c)
for all K ∈ Th: hK := diam(K) ≤ h. (A.2d)

A family of triangulations Th, h > 0, is called regular , if there is a constant σ ≥ 1 such
that

max
K∈Th

hK
ρK
≤ σ, ∀h > 0, (A.3)

where ρK := sup{diam(S) : S is a ball contained in K}.

A.2. Level Set Function Properties

In this section we will summarize some essential properties and results for level set functions
as defined in Chapter 4.

Definition A.3 (Distance function [AD99])
Let M ⊂ Rd be a set. The distance function of M is defined as

dist(x,M) := inf
y∈M
|x− y|. (A.4)

Theorem A.4 (Differentiability of distance [AD99, Theorem 1 in Part 1])
“Let M ⊂ Rd be nonempty and closed and let x ∈ Rd \M . Then, dist(x,M) is differen-
tiable at x if and only if there exists a unique y ∈ M such that dist(x,M) = |x − y|. In
this case

∇ dist(x,M) = x− y
|x− y| = x− y

dist(x,M) . (A.5)

In particular, |∇ dist(x,M)| = 1 at any differentiability point x ∈ Rd \M .” (quote from
[AD99, Theorem 1 in Part 1])
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A.3. Functional Analysis

The following fundamental result shows a way to characterize the dual space of a Hilbert space
{H, (·, ·)H}. In particular, we can identify H∗ by H.

Theorem A.5 (Riesz Representation Theorem, [Trö10, Section 2.4])
“Let {H, (·, ·)H} be a real Hilbert space. Then for any continuous linear functional F ∈ H∗
there exists a uniquely determined f ∈ H such that ‖F‖H∗ = ‖f‖H and

F (v) = (f, v)H ∀v ∈ H.” (A.6)

(direct quote from [Trö10, Section 2.4]).

The following lemma is commonly used in the stability and convergence analysis of initial-
boundary value problems.

Lemma A.6 (Gronwall Lemma [QV08, Lemma 1.4.1])
“Let F ∈ L1(0, T ) be a non-negative function, G and U be continuous functions on [0, T ].
If U satisfies

u(t) ≤ G(t) +
∫ t

0
F (τ)U(τ) dτ, (A.7)

for all t ∈ [0, T ], then

U(t) ≤ G(t) +
∫ T

0
F (s)G(s) exp

(∫ t

s
F (τ) dτ

)
, (A.8)

for all t ∈ [0, T ].” (quote from [QV08, Lemma 1.4.1])

Theorem A.7 (Rademacher’s Theorem [Eva98, Theorem 6 in Chapter 5.8])
Let U ⊂ Rd be open and u : U → R a locally Lipschitz continuous function. Then u is
differentiable almost everywhere in U .

Theorem A.8 (Trace Theorem [LT05, Theorem A.4])
Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with piecewise smooth boundary Γ. Then the
trace operator γ : C1(Ω) → C(Γ) may be extended to γ : H1(Ω) → L2(Γ) defining the
trace γv ∈ L2(Γ) for all v ∈ H1(Ω). Moreover, there is a constant CΩ such that

‖γv‖L2(Ω)(Γ) ≤ CΩ ‖v‖H1(Ω) , ∀v ∈ H1(Ω). (A.9)
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Theorem A.9 (Poincaré [EG04])
Let Ω be a bounded open set and 1 ≤ p <∞. Then, there exists a constant cp,Ω such that

‖v‖Lp(Ω) ≤ cp,Ω ‖∇v‖Lp(Ω) , ∀v ∈W 1,p
0 (Ω). (A.10)

The following theorem generalizes the proposition of Poincaré in Theorem A.9:

Theorem A.10 (Poincaré-Friedrichs [EG04, Ex. B.64, Cor. B.65, Lem. B.66])
Let Ω be a bounded connected open set and v ∈ W 1,p(Ω) for 1 ≤ p < ∞. Let E be a
subset of Ω with non-zero d or (d− 1) measure and f be a linear form on W 1,p(Ω) defined
by

f(v) := 1
meas(E)

∫
E
v de. (A.11)

Then

‖v − f(v)‖W 1,p(Ω) ≤ c ‖∇v‖Lp(Ω) , ∀v ∈W 1,p(Ω), (A.12)

or for W = {v ∈W 1,p(Ω) : f(v) = 0}

‖v‖W 1,p(Ω) ≤ c ‖∇v‖Lp(Ω) , ∀v ∈W. (A.13)

Note that in the case of E having zero d measure but non-zero (d− 1) measure, the continuity
of f is a consequence of the trace theorem [EG04, Thoerem B.52].

Theorem A.11 ([Trö10])
“Every continuous and convex functional f : U → R on a Banach space U is weakly lower
semicontinuous; that is, for any sequence {un}∞n=1 ⊂ U such that un ⇀ u as n → ∞ we
have

lim inf
n→∞

f(un) ≥ f(u).” (A.14)

(direct quote from [Trö10, Section 2.4])

In particular, the functional f(u) = ‖u‖ on any Banach space and for any norm ‖·‖ is continuous
and, by the triangle inequality convex. Therefore, by Theorem A.11 the norm functional is
also weakly lower semicontinuous.

Definition A.12 (Differentiability in Banach Spaces [Trö10, Section 2.6])
Let {U, ‖·‖U}, {V, ‖·‖}V be a Banach spaces and U ⊂ U nonempty and open. Let F : U →
V be a mapping.

(i) Let u ∈ U and h ∈ U be given. The limit

δF (u, h) := lim
t↘0

1
t

(
F (u+ th)− F (u)

)
, (A.15)
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is called directional derivative of F at u in direction h (if it exists). The mapping

h 7→ δF (u, h), (A.16)

is called first variation of F if the limit exists for all directions h.
(ii) Assume that the first variation of F exists at u ∈ U . If there exists a linear operator

A ∈ L (U, V ) such that

δF (u, h) = Ah, ∀h ∈ U, (A.17)

then F is Gâteaux differentiable at u and A := F ′(u) is the Gâteaux derivative of F
at u.

(iii) If there exists a linear operator A ∈ L (U, V ) at u ∈ U and a mapping r(u, ·) : U → V
such that for all u+ h ∈ U

F (u+ h) = F (u) +Ah+ r(u, h), (A.18)

and for ‖h‖U → 0

‖r(u, h)‖V
‖h‖U

→ 0, (A.19)

then F is called Fréchet differentiable at u and A := F ′(u) is called its Fréchet
derivative.

Definition A.13 (Nemytskii Operators [Trö10, Section 4.3])
“Let E ⊂ Rm, m ∈ N, be a bounded and measurable set, and let ψ = ψ(x, ϕ) : E×R→ R

be a function. The mapping Φ given by

Φ(ϕ) = ψ
(
·, ϕ(·)

)
, (A.20)

which assigns to a function ϕ : E → R the function z : E → R, z(x) = ψ
(
x, ϕ(x)

)
is

called Nemytskii operator or superposition operator .” (quote from [Trö10, Section 4.3] with
adapted notation)
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This chapter introduces the general notation used throughout this thesis. Commonly used vari-
ables are listed in Table B.1, operators in Table B.3 and sets and function spaces in Table B.4.
The notation is based on the nomenclature used in the books [GP08] and [GR11].

Variable Definition
d space dimension
x space coordinates, x ∈ Rd, x = (x1, x2, . . . , xd)
Ω space domain, Ω ⊂ Rd, cf. Definition A.1
∂Ω the boundary of Ω
n the (outward pointing) normal vector to the boundary
t time
(0, T ) time domain
ϕ level set function
q, q control variable (scalar or vector valued)
λ Lagrange multiplier
v time independent velocity field
u time dependent velocity field
p pressure
Ω1, Ω2 two subdomains of Ω such that Ω1 ∪ Ω2 = Ω
Γ the interface separating Ω1 and Ω2, i.e. Γ = Ω1 ∩ Ω2

n̂ the (outward pointing) normal vector to the interface Γ

Table B.1.: General variables of interest.

Scalar quantities are printed in italic (z), whereas bold symbols are used for vector valued
quantities (z). The discrete counterpart of a variable z is usually denoted by an index h, e.g.
zh. Parameters associated with the discretization are listed in Table B.2.
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Parameter Meaning
h mesh size parameter
∆t time step size
δ, δK SUPG stabilization parameter (on cell K)

Table B.2.: Discretization parameters.

Symbol Definition
|·| absolute value of a scalar quantity; Euclidean norm of a vector valued

quantity; measure of a set; length of a multi-index
meas`(E) Lebesgue measure of E ⊂ Rd, ` ≤ d
d
dtu, dtu total time derivative of u
∂
∂tu, ∂tu, first order partial derivative of u w.r.t. time
∂2

∂t2u, ∂ttu second order partial derivative of u w.r.t. time
∂i, ∂xi first order partial derivative of u w.r.t. xi
∂ij , ∂xi,xj second order partial derivative of u w.r.t. xi and xj

∂αu derivative w.r.t. multi-index α ∈ Nd, ∂αu := ∂α1

(
∂α2(· · · ∂αd

u)
)

∂`yu `-th derivative of u w.r.t. y
∇u gradient of u, ∇u := (∂1u, ∂2u, . . . , ∂du)>

∇u tangential derivative of u, cf. (7.43)
div(u),∇ · u divergence of u, ∇ · u := ∂1u+ ∂2u+ · · ·+ ∂du

div(u) tangential divergence of u, div(u) = ∇ · u
∆u,∇ · ∇u Laplace operator applied to u, ∆u := ∂11u+ ∂22u+ · · ·+ ∂ddu

∆u Laplace-Beltrami operator applied to u, cf. (7.42)
JfKΓ jump across Γ: JfKΓ (x) := lim

h↘0

(
f(x− hn̂(x))− f(x+ hn̂(x)

)
I(f) interpolation operator (cf. Definition 3.11)

u · v Euclidean scalar product of u and v, i.e. u · v =
d∑
i=1

uivi

det(A) determinant of A
tr(A) trace of A
Ker(A) kernel of A
Im(A) image of A

H(x) Heaviside function of x, i.e. H(x) =
{

1, if x ≥ 0
0 if x < 0

Table B.3.: Operators and other symbols.
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Rd vector space of real vectors of dimension d

Rm,n vector space of real matrices of dimension m× n
L (U, V ) vector space of bounded linear operators from U to V
V ∗ dual space to topological space V
C(Ω) space of continuous functions on Ω
Ck(Ω) space of k times continuously differentiable functions on Ω
Lip(Ω) space of Lipschitz-continuous functions in Ω
Lp(Ω) vector space of functions on Ω whose p-th power is Lebesgue integrable
W k,p(Ω) Sobolev space, i.e. vector space of functions whose weak derivatives of

order ≤ k are in Lp(Ω)
Hk(Ω) Sobolev space for the special case p = 2, i.e. Hk(Ω) := W k,p(Ω)
Ck(0, T ;V ) V -valued functions in Ck w.r.t. to time t ∈ [0, T ]
Lp(0, T ;V ) V -valued functions in Lp w.r.t. to time t ∈ (0, T )
Pk(K) vector space of polynomials of degree ≤ k on K

Xk
h Lagrange finite element space of degree k (cf. 3.38)
{ψi}Ni=1 set of basis functions of Xk

h

Vdiv subspace of divergence-free functions of V , Vdiv := {v ∈ V : div(v) = 0}

Table B.4.: Sets and function spaces.

Symbol Definition
‖·‖U norm of normed space U
‖·‖Ck(Ω) norm in Ck(Ω), ‖u‖Ck(Ω) := max

0≤|α|≤k
sup
x∈Ω
|∂αu(x)|

‖·‖Lp(Ω) norm in Lp(Ω), ‖u‖Lp(Ω) :=
(∫

Ω |u|
p dx

)1/p

|·|Hk(Ω) semi-norm in Hk(Ω), |u|Hk(Ω) :=
∑
|α|=k

‖∂αu‖L2(Ω)

‖·‖Hk(Ω) norm in Hk(Ω), ‖u‖Hk(Ω) := ‖u‖L2(Ω) +
k∑̀
=1
|u|H`(Ω)

‖·‖L (U,V ) operator norm: ‖A‖L (U,V ) := sup
u∈U

‖Au‖V
‖u‖U

= sup
‖u‖U =1

‖Au‖V

‖u‖Ck(0,T ;V ) norm in Ck(0, T ;V ), ‖u‖Ck(0,T ;V ) := max
t∈[0,T ]

‖u(t)‖V

‖u‖Lp(0,T ;V ) norm in Lp(0, T ;V ), ‖u‖Lp(0,T ;V ) :=
(∫ T

0 ‖u(t)‖pV dt
)1/p

(u, v)L2(Ω) scalar product in Hilbert space L2(Ω), (u, v)L2(Ω) :=
∫

Ω uv dx
(u, v)H1(Ω) scalar prodcut in H1(Ω), (u, v)H1(Ω) :=

∫
Ω(uv +∇u · ∇v) dx

Table B.5.: Inner products, norms, semi-norms and duality pairings.
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org/10.1007/978-0-8176-8086-2. DOI 10.1007/978–0–8176–8086–2

[Vog06] Vogt, W.: Adaptive Verfahren zur numerischen Quadratur und Kubatur .
Preprint No. M 1/06, IfMath TU Ilmenau. https://www.tu-ilmenau.de/math/
forschung/preprints/. Version: 2006

[VSC11] Ville, Laurence ; Silva, Luisa ; Coupez, Thierry: Convected level set method for
the numerical simulation of fluid buckling. In: International Journal for Numerical
Methods in Fluids 66 (2011), Nr. 3, 324–344. http://dx.doi.org/10.1002/fld.
2259. – DOI 10.1002/fld.2259. – ISSN 1097–0363

[Wer09] Werner, Dirk: Einführung in die höhere Analysis. Springer Berlin Heidelberg,
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