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Kurzfassung

Im Bereich Stereo 3D (S3D) bezeichnet „Dynamic Horizontal Image Translation
(DHIT)“ das Prinzip, die S3D-Ansichten einer Szene horizontal in entgegenge-
setzte Richtungen zu verschieben, wodurch die dargestellte Szene in der Tiefe
verschoben wird. Dies wird vor allem im Kontext von „Active Depth Cuts“
eingesetzt. Hier werden die S3D-Ansichten vor und nach einem Szenenschnitt
so verschoben, dass es nicht zu starken, störenden Tiefensprüngen kommt.

Die menschliche Wahrnehmung der DHIT wurde experimentell untersucht.
Eine der wichtigsten Erkenntnisse war, dass es starke individuelle Unterschiede
in der Empfindlichkeit gegenüber der DHIT gibt. Daher wird empfohlen die
Verschiebungsgeschwindigkeit einer S3D-Ansicht nicht höher als 0,10 °/s bis
0,12 °/s zu wählen, sodass Zuschauerinnen und Zuschauer nicht von der DHIT
gestört werden.

Bei der DHIT kommt es zu einer Verzerrung der dargestellten Szenentiefe. Dies
wird bei dem vorgeschlagenen Ansatz „Distortion-Free Dynamic Horizontal
Image Translation (DHIT+)“ kompensiert, indem der Abstand zwischen den
S3D-Kameras durch Verfahren der Ansichtensynthese angepasst wird. Dieser
Ansatz zeigte sich signifikant weniger störend im Vergleich zur DHIT. Die
Ansichten konnten ohne Wahrnehmungsbeeinträchtigung etwa 50 % schneller
verschoben werden.

Ein weiteres vorgeschlagenes Verfahren ist „Gaze Adaptive Convergence in
Stereo 3D Applications (GACS3D)“. Unter Verwendung eines Eyetrackers wird
die Disparität des geschätzten Blickpunkts langsam über die DHIT reduziert.
Dies soll die Ermüdung des visuellen Systems mindern, da die Diskrepanz zwi-
schen Akkommodation und Konvergenz reduziert wird. In einem Experiment
mit emuliertem Eye-Tracking war GACS3D signifikant weniger störend als eine
normale DHIT. Im Vergleich zwischen dem kompletten GACS3D-Prototypen
und einer Bildsequenz ohne jegliche Verschiebungen konnte jedoch kein sig-
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Kurzfassung

nifikanter Effekt auf den subjektiven Betrachterkomfort registriert werden. Eine
Langzeituntersuchung der Ermüdung des visuellen Systems ist nötig, was über
den Rahmen dieser Dissertation hinausgeht. Da für GACS3D eine hochgenaue
Schätzung der Blickpunktdisparität benötigt wird, wurde die „Probabilistic
Visual Focus Disparity Estimation“ entwickelt. Bei diesem Ansatz wird die
3D-Szenenstruktur in Echtzeit geschätzt und dazu verwendet, die Schätzung
der Blickpunktdisparität deutlich zu verbessern.
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Abstract

Dynamic horizontal image translation (DHIT) denotes the act of dynamically
shifting the stereo 3D (S3D) views of a scene in opposite directions so that the
portrayed scene is moved along the depth axis. This technique is predominantly
used in the context of active depth cuts, where the shifting occurs just before
and after a shot cut in order to mitigate depth discontinuities that would
otherwise induce visual fatigue.

The perception of the DHIT was investigated in an experiment. An important
finding was that there are strong individual differences in the sensitivity towards
DHIT. It is therefore recommended to keep the shift speed applied to each
S3D view in the range of 0.10 °/s to 0.12 °/s so that nobody in the audience
gets annoyed by this approach.

When a DHIT is performed, the presented scene depth is distorted, i.e.,
compressed or stretched. A distortion-free dynamic horizontal image translation
(DHIT+) is proposed that mitigates these distortions by adjusting the distance
between the S3D cameras through depth-image-based rendering techniques.
This approach proved to be significantly less annoying. The views could be
shifted about 50 % faster without perceptual side effects.

Another proposed approach is called gaze adaptive convergence in stereo 3D
applications (GACS3D). An eye tracker is used to estimate the visual focus
whose disparity is then slowly reduced using the DHIT. This is supposed to
lessen visual fatigue since the infamous accommodation vergence discrepancy
is reduced. GACS3D with emulated eye tracking proved to be significantly less
annoying than a regular DHIT. In a comparison between the complete prototype
and a static horizontal image translation, no significant effect on subjective
visual discomfort could be observed, however. A long-term evaluation of visual
fatigue is necessary, which is beyond the scope of this work. In GACS3D, highly
accurate visual focus disparity is required. Therefore, the probabilistic visual

xi



Abstract

focus disparity estimation (PVFDE) was developed, which utilizes a real-time
estimation of the 3D scene structure to improve the accuracy by orders of
magnitude compared to commonly used approaches.
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1 Introduction

1.1 Motivation

In a 2010 study with almost 8000 subjects, 30 % of the subjects reported
eyestrain and 6 % reported headaches after watching a stereo 3D (S3D)
movie at a cinema [Ber10]. In a more recent study in 2015 with about 400
subjects, 10 % of the subjects reported headaches or eyestrain after being
exposed to the movie “Toy Story” (2009 3D re-release) on an S3D TV [Rea15].
There are many factors that could explain the differing numbers in these
reports, but they concur that a significant portion of the population suffers
from negative side effects when watching S3D content. The exhaustion of
the human visual system (HVS) is called visual fatigue, and its reduction is
mandatory for the success of S3D, especially in a work environment.

Two of the numerous sources for visual fatigue are the motivational foundation
for this work: the accommodation vergence discrepancy (AVD) [Lam09b,
Shi11, Hof08, War95] and excessive depth movement of objects inducing
exhausting vergence movements of the eyes [Kim14, Lam09b, Tod04]. The
discrepancy between accommodation and vergence distance is given when
the eyes of an observer converge on a stimulus behind or in front of an S3D
display, while the imagery, .i.e., the accommodation stimulus is located at
the display distance. Small discrepancies between these distances do not
induce visual fatigue so that S3D scenes are usually limited to a zone of
comfort [Lam09b, Shi11]. This can be achieved by two steps:

1. Adjust the distance between the S3D cameras, i.e., the camera baseline
such that the resulting disparity range is small enough to fit inside the
zone of comfort.

2. Place the recorded scene in the zone of comfort by applying a horizontal
image translation (HIT) of the S3D views in opposite directions [Bro11,

1



1 Introduction

Men11]. Thereby, the portrayed scene is shifted along the depth axis.

Regarding the latter source for visual fatigue, a reduction of excessive depth
movement of objects can be achieved simply by reducing object speed on-
set. However, excessive vergence movements can also be induced by depth
discontinuities at a cut between two shots. A widespread solution to this
problem is the active depth cut [Dve10, Men09] using a dynamic horizontal
image translation (DHIT): The S3D views are shifted in a temporally dynamic
manner just before and after the cut in such a way that the objects of interest
of both shots are located at approximately the same depth when the cut occurs,
thereby eliminating exhausting vergence movements. The shifting operation is
supposed to be done so slowly that it cannot be perceived.

At the beginning of this research project, there was the idea to use an eye
tracker in order to reduce the AVD at the visual focus, i.e., at the point of regard
by shifting the scene back or forth continuously using the DHIT. The idea led
to the approach called gaze adaptive convergence in stereo 3D applications
(GACS3D) [Eic13c], which represents one of the main contributions of this
work. Other groups have later proposed similar automated systems [Ber14,
Han14]. Instead of eye tracking, visual saliency calculations have also been
used to automatically design the DHIT [Cha10, Han14]. But how is the DHIT
supposed to be parametrized in such automated approaches? Usually, it is
designed heuristically by a stereographer, but manual inspection is impossible
for automated DHIT approaches. There are just a very limited number of
publications in this field, and only vague recommendations are given rather than
actual numbers. The goal of implementing and parameterizing the automated,
gaze adaptive DHIT approach and the lack of publications was the motivation
to conduct further research on the perception of DHIT. Specifically, how fast
can the DHIT be performed without annoying the observers or being noticed by
them, what factors influence the perception of DHIT, and how can the DHIT
be improved to further reduce visual fatigue? These are the main research
questions of this thesis.

One property of HIT, and therefore also of the DHIT, is that there is a certain
distortion of depth [Smi12]. If an S3D scene is displayed completely in front of
the display, it can only occupy the space between the observer and the display.
However, if the same scene is shifted completely behind the display, the scene

2



1.2 Outline and Contributions

can occupy a space from the display to infinity. This stretching or compressing
of scene depth is temporally dynamic in the case of DHIT, and its effect on the
human visual system is unknown. The distortion-free dynamic horizontal
image translation (DHIT+) is another major contribution of this work. The
approach is based on the idea that a constant scene depth can be ensured by
dynamically adjusting the camera baseline, i.e., the disparities of the scene
according to the chosen DHIT parameters. This is perceptually similar to a
camera movement along the depth axis.

1.2 Outline and Contributions

Following the introduction, this thesis starts with a description of the HVS
in chapter 2. Knowledge about the HVS is important for two reasons. On
the one hand, eye tracking is used in the proposed approach GACS3D, and
respective filter techniques had to be developed. Therefore, the physiology of
the human eye as well as its types of movements have to be known. On the
other hand, the reader needs to know how depth is estimated and perceived
by the HVS in order to be able to understand the concepts of S3D and visual
fatigue.

Chapter 3 starts with the basics on S3D, where a simple S3D processing chain
is explained, and the distortion of scene depth is mathematically derived so
that the reader can fathom the proposed DHIT+. Afterwards, visual fatigue
is described along with its origins and methods to measure it. Here, a more
detailed description of the statements and concepts in the motivation above
is given. The methods of measurement are important in the context of the
experiments conducted for this work.

In chapter 4, the first two contributions of this work are described. At first, a
brief introduction to eye tracking is given. However, the focus of this chapter
is on filtering techniques in 2D and 3D space, which are needed for GACS3D.
After a review of 2D filtering techniques, a Kalman filter tailored to gaze-
directed human-machine-interaction is derived. This type of filter is capable of
detecting outliers and extrapolating missing or rejected samples, which is very
useful considering the erroneous results of common eye trackers. This filter

3



1 Introduction

utilizes a new kind of eye movement event detection that is compatible with
missing samples. This event detection represents the first contribution of this
work. Afterwards, a review of 3D visual focus estimation techniques is given
since a highly accurate respective approach is needed in order for GACS3D to
work. However, the common approaches rely on gaze data exclusively and yield
insufficient accuracy due to eye tracker inherent system noise and oculomotor
noise, i.e., involuntary, unconscious eye movements. Therefore, the second
contribution of this work is proposed: The probabilistic visual focus disparity
estimation (PVFDE) utilizes a real-time estimation of 3D scene information
in order to improve accuracy.

Chapter 5 represents the main matter of this work. A detailed review of DHIT
related works is given at the beginning. Afterwards, two major contributions of
this work in the form of the aforementioned approaches DHIT+ and GACS3D
are described. The latter comes with an automated floating window algorithm,
which could be singled out as another major contribution because it is generally
applicable to all automated DHIT approaches. The perceptual properties of
the DHIT are investigated in a subjective experiment, and the performance of
the two mentioned approaches is evaluated in three further experiments.

This work is finally concluded in chapter 6, where an outlook on future research
is also given.

4



2 Human Visual System

In this chapter, some aspects of the human visual system (HVS), that are
relevant to this work, are described.

2.1 Physiology and Oculomotor Functions of the Human
Eye

A top view drawing of the right human eye is displayed in figure 2.1. The
light enters the eye through the pupil. The lens optically images the light
on the retina in a horizontally and vertically flipped manner. The retina
contains cones and rods, which are light sensitive cells used for color vision in
bright surroundings and gray scale vision in dark surroundings, respectively. In
addition to these different receptors, adaption to different lighting conditions is
carried out by the iris, which functions as an aperture with adjustable diameter.
The focal length of the optical imaging is defined by the cornea and the lens,
and it can be adjusted by stretching the latter using the ciliary muscle. This
oculomotor function is called accommodation. When a human looks at an
object, its image is projected on the fovea, which is the central point on the
retina with a very high density of cones. Here, the cones are about 1′ apart,
which defines the resolution of the human eye. The fovea only spans less than
2° of the visual field [Hol11], and the density of cones decreases drastically
with increasing eccentricity. The line connecting the fovea, the center of the
pupil, and the observed object is the visual axis of the eye, and the object or
point gazed upon is the visual focus. The place on the retina where the optic
nerve connects to the eye is the blind spot because there are neither cones
nor rods located there. Due to the axial symmetry of the two eyes, humans do
not actually perceive this blind spot in regular viewing conditions.

Muscles connected to the outside of the eyeballs enable yaw, pitch, and torsional

5



2 Human Visual System

PupilIris

Lens

Cornea

Ciliary muscle

Retina

Optic disc (blind spot)

Optic nerve Fovea

Figure 2.1: Physiology of the Human Eye (From Wikipedia Commons).

rotation, resulting in some specific kinds of eye movements, i.e., oculomotor
functions of the eyes. These can be categorized into unconscious involuntary eye
movements and conscious eye movements. Table 2.1 lists all eye movements
and their properties. Most of the time, a human observer will fixate on an object.
The duration of such a fixation can vary between orders of milliseconds and
seconds. The volatile movement to another object is called saccade. Saccades
are the fastest eye movements with speeds up to 900 °/s, and they last less
than 100 ms [Gol02]. This eye movement occurs mostly voluntarily, but can
also be triggered instinctively, for example when an object is approaching the
observer very fast. The saccadic reaction time is 240 ms on average [Joo03],
but it can also be faster. Gezeck et al. have distinguished three modes of
saccades, and the express mode exhibits reaction times as fast as 90 ms to
120 ms [Gez97]. Shortly before, after, and during a saccade, perception is
drastically suppressed, which is called saccadic suppression [Gol02]. If an
object of interest is moving, the observer will instinctively track the object with
the eyes. This smooth pursuit cannot occur in absence of a moving stimulus,
and the stimulus speed dictates the tracking speed, which can be as high as
100 °/s [Kor78]. If the stimulus is faster than that, additional saccades are used
in order to track the stimulus. The last conscious eye movement happens in
conjunction with saccades or smooth pursuit when the stimulus depth changes
between time instances. The eyes rotate in opposite directions in order to
place the target stimulus, located at the new depth, on the foveae of both
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2.2 Perception of Depth

Table 2.1: Typical eye movement parameters [Gol02, Hol11, Kor78].

Type Conscious Duration (ms) Amplitude (°) Speed (°/s)
Fixation � 50 - 1000 - -
Saccade � 30 - 80 4 - 20 30 - 900
Smooth pursuit � - - 10 - 100
Vergence � - - 1 - 20. . .
Drift - 200 - 1000 1/60 - 1 1/10 - 5/12
Glissade - 10 - 40 0.5 - 2 20 - 140
Microsaccade - 10 - 30 1/6 - 2/3 15 - 50
Tremor - - < 1/6 < 1/3

eyes. This is called vergence movement. The comparatively low speed of
this kind of eye movement is dependent on the desired change in vergence.
Speeds as low as 20 °/s have been reported [Kor78], but the speed is likely
higher for bigger changes in vergence.

Even during a fixation, the eyes never remain completely still but exhibit some
unconscious micro movements, which are listed in table 2.1 as well. There
is some jitter with very low amplitudes of 10′ at high frequencies of 70 Hz to
90 Hz [Kor78]. This is called tremor and it is likely caused by imperfect muscle
control [Gol02, Hol11, Kor78]. Furthermore, the eyes slowly drift away from
the visual focus. In order to maintain the fixation, a micro saccade is carried
out after some 100 ms to 200 ms [Kor78], to correct the drift. These two
processes are believed to ensure high contrast output from the retinal receptors
by continuously delivering fresh excitations to them [Gol02, Hol11, Kor78].
Finally, there is also an unconscious eye movement that occurs during saccades.
Saccades may be programmed imperfectly and end up at the wrong position.
In order to correct that, another form of micro saccades called glissades are
used.

2.2 Perception of Depth

The HVS derives the 3D structure of an observed scene from numerous depth
cues. These pictorial and oculomotor depth cues as well as their combination
by the HVS are described in the following sections.

7



2 Human Visual System
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Figure 2.2: Retinal Disparity of a point P 1 while fixating on F [How95].

2.2.1 Binocular Pictorial Depth Cue: Retinal Disparity

The perception of depth from binocular vision is called stereopsis. Due to the
spatial offset of the eyes, a given scene is observed from two vantage points.
This means that objects at different depths exhibit different spatial offsets
in those views. The HVS analyses these offsets and combines the two views
to a single 3D view of the scene through a process called fusion. This 3D
view is also known as cyclopean perception because it is located right in the
middle between the eyes [Men11, How95]. The process of fusion involves a
correspondence analysis in which the retinal disparity D◦

i of any given point
P i is estimated, which is linked to the depth of an object relative to the
fixation point F . The concept of retinal disparity is illustrated in figure 2.2.
The visual axes intersect under an angle φV, which represents the vergence
angle of the eyes. The point P 1 is located at a different depth so that its
images are located at a certain distance away from the left and right fovea.
This distance can be expressed independently of eyeball size by the angles
φL,1 and φR,1 between the visual lines of P 1 and the visual axes. Generally,
the angles φL,i and φR,i are positive if P i is located on the right side of
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2.2 Perception of Depth

P 2

Horopter
P 4

P 3

F

Figure 2.3: Points exhibiting crossed (P 2) and uncrossed retinal disparity (P 3), and a
point P 4 placed on the horopter, so that retinal disparity is zero [How95].

the respective visual axis, which means that φL,1 = −φR,1 in the symmetric
arrangement in figure 2.2. The retinal disparity D◦

i of a point P i is given by

D◦
i = φL,i − φR,i. (2.1)

Since retinal disparity is given in angles, it is also called angular disparity.
Another frequently used term is binocular disparity. It can also be calculated
from the vergence angle φV and the angle φP,i between both visual lines of
P i:

D◦
i = φP,i − φV. (2.2)

The retinal disparity is obviously zero for the fixated point, but it is also zero
for all other points that meet φL,i = φR,i. These points are located on the
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2 Human Visual System

Vieth-Müller circle, i.e., horizontal horopter [How95], like P 4 in figure 2.3.
The circle connects the nodal points of the eyes and the fixation point F ,
which means that F dictates the radius of the circle. The horopter also has a
vertical component [How95], which is not relevant to this work, however. The
retinal disparity of point P 2 is positive and it is called crossed retinal disparity,
because its visual lines intersect inside the horizontal horopter. Conversely,
point P 3 yields an uncrossed retinal disparity, which is negative.

Retinal disparity is a relative depth cue because the depth zi of P i and zF

may be scaled by any real factor and still yield the same retinal disparity, as
can be seen in figures 2.2 and 2.3. For a symmetric arrangement like the one
in figure 2.2, the retinal disparity is given by

D◦
i = φP,i − φV = 2 · arctan

(
be/2
zi

)
− 2 · arctan

(
be/2
zF

)
(2.3)

= 2 · arctan

(
be/2

zi
− be/2

zF

1 + (be/2)2

zi·zF

)
, (2.4)

where be is the distance between the eyes, i.e., the interpupillary distance. The
equation can be rearranged to retrieve the depth

zi = be · zF − be
2/2 · tan (D◦

i /2)
2 · zF · tan (D◦

i /2) + be
. (2.5)

in dependency on fixation distance zF.

Retinal disparity usually refers to the horizontal, depth dependent, retinal offset
of images described above. However, there is also vertical retinal disparity, as
illustrated in figure 2.4. Due to the vergence angle of the eyes, an object in the
periphery of the visual field appears bigger in one eye than in the other. The
vertical size ratio of the images of that object is dependent on its eccentricity
and point symmetric around 0° eccentricity[All04, Dve10]. If the rectangle in
figure 2.4 was moved closer to the eyes, they would converge further and the
vertical disparities would increase. Hence, the horizontal gradient of vertical
disparities can be used to estimate the vergence angle [Ban12, Wat05], which
in turn yields the fixation distance zF to scale the horizontal retinal disparities.
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2.2 Perception of Depth

(a) Eyes fixating on the center of
a rectangle.

Left view Right view

(b) Flat projection of resulting images ex-
hibiting vertical disparities.

Figure 2.4: Origin of vertical retinal disparity [Ban12, Wat05].

2.2.1.1 Limits of Fusion

If retinal disparity exceeds a certain value, fusion fails so that double vision,
i.e., diplopia occurs. The small range around the horopter where fusion
succeeds is called Panum’s fusional area [Pan58]. A very detailed overview
over the limits of fusion, i.e., the diplopia threshold is given by Howard and
Rogers [How95]. The fusional limit is defined as the radius of Panum’s fusional
area and can be very small. For foveal stimuli, the fusional limit was found to
be about D◦ = ±10′ (minutes of arc) on average [Pal61]. However, the limit
varies individually and is not always symmetrically distributed over crossed and
uncrossed retinal disparity. Furthermore, according to Howard and Rogers, it
is dependent on many factors, namely retinal eccentricity, spatial frequency,
and the presence of other stimuli [How95]. The latter can reduce the fusional
limits. For decreasing spatial frequencies, the fusional limits are increased and
move asymptotically towards a linear function of spatial frequency [Sch84].
Furthermore, for an eccentricity of 6°, an increase of the fusional limit to
about ±30′ was reported [Pal61] and after 10°, a linear increase of the fusional
limit by 6 % to 7 % of the eccentricity angle was observed by numerous
groups [Ogl64, Cro73, Ham83]. Since it is not easy to grasp how these fusional
limits relate to three-dimensional space, the diameter of Panum’s fusional area
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Figure 2.5: Diameter of Panum’s fusional area as a function of fixation distance, for
foveal stimuli and an interpupillary distance b = 6.5 cm.

for foveal stimuli as a function of fixation distance, which can be computed
via equation (2.5), is plotted in figure 2.5. For a fixation distance of 1 m
the diameter is as small as 9 cm. In other words, when fixating on a point
F in a distance of 1 m, another closely located point P i can only be fused
if it is less than ±4.5 cm in depth away from F , which can be easily verified
in a self-experiment. However, this remarkably small fusional range can be
accounted for by appropriate vergence movement.

2.2.2 Monocular Pictorial Depth Cues

In a survey by Richards [Ric70], about 4 % of a comparatively young test
group was stereoblind, which means that stereopsis fails and no central 3D
view is generated. For elderly people, the rate is increased to 14 % [Rub97].
Stereoblind individuals have to rely on monocular (and oculomotor) depth cues.
Some are described in the following list [Dve10, Rei10], ordered by degree of
relevance.

Occlusion
Whenever one object occludes a background object, the occluder is
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2.2 Perception of Depth

instantly perceived as in front of the background object. The HVS
performs depth ordering, but the distance between objects cannot be
estimated. This depth cue is also known as interposition [Dve10], and it
can also be temporally dynamic.

Motion parallax
When the observer moves, the images of static objects move at different
speeds across the retina. The speed depends on the depth offset between
object and fixation point F : the smaller the offset, the lower the speed.
Objects farther than F move in the same direction as the observer,
whereas the opposite is true for nearer objects.

Kinetic depth effect
This is the analogon to motion parallax but related to object motion
rather than observer motion.

Linear perspective
Parallel lines converge to a vanishing point at infinity.

Texture gradient
The frequency response of any non-flat texture is dependent on observa-
tion distance. Furthermore, the texture gradient is altered by changes in
surface orientation.

Depth of field
The depth of field (DOF) represents the distance between the nearest
and farthest object that is perceived sharply. It is dependent on the
accommodation state of the eyes, i.e., the fixation distance zF as well
as adaption state, specifically the pupil diameter. The DOF has been
measured by numerous groups [Cha77, Cam57, Mar99]. For a pupil
diameter of 3 mm, the DOF is about ±0.3 dpt (diopters, 1 dpt = 1/m),
which corresponds to

zi = 1
1/zF ± 0.3 dpt . (2.6)

The amount of blur of a given point outside the DOF is dependent on
the depth difference between that point and the visual focus.

Lighting and shading
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The way objects react to light obviously provides a lot of information
about their 3D structure, mainly surface orientation.

Relative size
The size difference of the images of two objects of the same kind makes
estimation of the distance between those objects possible.

Known size
Knowing the size of an object enables estimation of the absolute distance
to it.

Aerial perspective
Distant objects lose contrast and are colorized due to the atmosphere.

2.2.3 Oculomotor Depth Cues

The HVS can derive depth from the following three oculomotor functions.

Accommodation
The focal length of the eyes is obviously related to stimulus depth. So,
the degree of contraction of the ciliary muscle yields information about
the accommodative state of the eye.

Vergence angle
The relation between vergence angle and stimulus depth has already
been explained in section 2.2.1. The vergence angle can be estimated
from the respective muscle contractions and from the analysis of the
horizontal gradient of vertical retinal disparities [Ban12, Wat05].

Pupil size
The correlation of pupil size with depth is not as obvious as with the
other two cues. When fixating on very near objects, the pupil size will
decrease in order to increase the very shallow DOF [Rei10].

2.2.4 Depth Cue Combination and Vetoing

Most depth cues are ambiguous, when observed separately. Here are just a
few of many examples:
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2.2 Perception of Depth

• A specific amount of blur due to optical imaging can be generated in
front of or behind the visual focus.

• There is an infinite number of depth hypotheses that would exhibit an
observed distribution of light and shade [Tod04].

• Simultaneous observer and object motion yield an infinite number of
depth hypotheses.

It is obvious that ambiguous depth hypotheses have to be constrained by a
priori knowledge and other depth cues in a cue combination process by the
HVS somehow. However, research in the field of depth cue combination is not
easy because depth cues cannot be isolated completely. A detailed review of
previous works is given by Watt et al. [Wat05], which shall be summarized and
extended in this section.

It has been shown empirically that the final depth sensation is a linear com-
bination of the depth cues, weighted according to their estimated reliabili-
ties [Wat05, Wis10]. However, the weighting of depth cues differs individu-
ally [Ban12]. While the 3D structure of an object is perceived very accurately,
the absolute depth differences of a relief are usually underestimated by 38 % to
75 % [Tod04]. If no depth cue is reliable in a region, depth may be extrapolated
from more reliable neighbor regions through a priori knowledge [Tod04]. In
case of conflicts, some depth cues veto others [Wis10]. A famous example is
the Randot-stereogram, with which Julesz proved that retinal disparity is in
fact analyzed by the HVS [Jul60]: When viewed monocularly, the images just
looked like random noise, but viewing it binocularly yielded a 3D sensation due
to disparities contained in the pseudo-random images. While this minimalistic
test stimulus served its purpose, the results of this experiment also mean
that monocular and binocular depth cues were in conflict. Specifically, the
retinal disparity cue vetoed the texture gradient cue [Wat05] because the latter
suggests that the surface being looked at is flat rather than 3D. In general,
largely conflicting depth cues annoy the observer, the fusion time is increased
[Wat05], and in some cases bistability of the depth perception might even occur
[Ee03]. The resulting distortion of depth may furthermore appear unnatural in
certain conditions.

Retinal disparity is one of the strongest depth cues in that it vetoes most of
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the others. The dominance over the texture gradient cue has already been
outlined above. However, as described in section 2.2.1, retinal disparity is a
relative depth cue that needs to be scaled with fixation distance zF in order
to calculate the absolute depth of objects. Because of that, retinal disparity
yields comparatively big estimation errors [Dve10], especially so at longer
distances [Lam07, Wat05]. On the other hand, the reliability of the texture
gradient cue is independent of fixation distance, so that this cue can outweigh
retinal disparity in certain situations. The reliability of the retinal disparity
cue is furthermore increased with high spatial frequencies and observation
time [Rei10]. The DOF cue and its reliability is also dependent on fixation
distance. The absolute fixation distance is predominantly estimated from
the vergence angle and, according to Watt et al., possibly also the state
of accommodation. The reliability of the accommodation cue is relatively
low [Wat05] and so is the weight of these oculomotor depth cues in the cue
combination process. In case of conflict, they are vetoed by retinal disparity.
For example, when the visual axes are parallel, the vergence distance is at
infinity where no retinal disparity is given in the real world. If retinal disparity
has been artificially generated at virtual infinity, an observer will estimate
depth much nearer than infinity [Sta97]. The only depth cue that always
vetoes retinal disparity is occlusion. An object occluding another object is
perceived nearer, regardless of possibly conflicting retinal disparity cues. The
resulting depth distortion is generally deemed very annoying [Dve10, Hak11].
The occlusion cue is especially strong in a temporal manner, as in the case of
motion parallax or the kinetic depth effect [Lam07].

2.3 Conclusion

The movements of the eye can be divided into conscious and unconscious types.
The prior are comprised of fixations, saccades, smooth pursuit, and vergence.
The distinction between conscious and unconscious eye movements as well as
the properties of the different conscious eye movements are important when
developing filters for human-machine-interaction using an eye tracker, as in
chapter 4.

However, this chapter mostly established the theoretical background for under-
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standing the concepts of S3D and visual fatigue by explaining the perception
of depth by the human visual system (HVS). The HVS analyzes binocular,
monocular, and oculomotor depth cues. Most of them are inherently am-
biguous and have to be combined by the HVS to construct the final depth
perception. The cues are weighted according to their estimated reliability, but
some depth cues veto others. The most prominent example is how occlusion
vetoes disparity in the context of window violations in stereo 3D (S3D), as
described in the next chapter.

The binocular depth cue retinal disparity is one of the strongest depth cues.
All points located on the horopter, a circle connecting the fixation point and
the nodal points of the eyes, exhibit zero retinal disparity. If the visual lines of
a non-fixated point cross in front of the horopter, its retinal disparity is positive
and called “crossed”, whereas otherwise, it is negative and called “uncrossed”.
This concept is adopted in the description of planar disparity in S3D. The limits
of fusing retinal disparities are remarkably small. In analogy to this fusion,
the stereoscopic fusion range is introduced in the next chapter as well, which
represents the limits of fusion supported by vergence movements, i.e., motoric
fusion, when watching S3D stimuli.
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3 Stereoscopy and Visual Fatigue

In the last chapter, the basics of the human visual system (HVS) have been
introduced. It has been pointed out that incongruent depth cues can alter
the perceived depth significantly and possibly even annoy the observer. These
factors have to be taken into consideration, when creating 3D content and
technology. In the following sections, the basics of stereoscopy and its effect
on the HVS are described.

3.1 Stereoscopy

Stereoscopy, also known as stereo 3D (S3D), denotes the act of presenting
two views of a scene to the observer in order to achieve a 3D sensation. The
views are recorded or rendered using an S3D camera setup, where the cameras
are horizontally offset by a certain amount, just like the human eyes. The
recorded 2D images are presented to each eye separately by means explained
in section 3.1.2. The HVS then fuses the views to a 3D sensation.

3.1.1 Basic Processing

Similarly to the concept of angular disparity described in section 2.2.1, the
images of objects recorded by an S3D camera setup exhibit a certain offset
that is dependent on depth. However, the scene is now projected onto planar
camera sensors rather than spherical retinas. The resulting (planar) disparity,
sometimes also referred to as parallax, can therefore best be expressed as
a measure of distance. For reasons that are explained in section 3.2.3.6, a
rectified camera setup is usually used1, which means that the disparity of P i

1The cameras are aligned parallel and lens distortions have been corrected.
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is purely horizontal and can be expressed in pixels by

Di = xL,i − xR,i, (3.1)

with the real pixel-coordinates xL,i and xR,i of the left and right view images
of P i. In analogy to the concept of the horopter in section 2.2.1, there is
a locus of points with zero disparity in stereoscopy. For the rectified parallel
camera setup, these points in 3D scene space are located in a plane at infinity
that is parallel to the sensor planes and known as the convergence plane. All
nearer points exhibit positive disparity so that the disparity range [Dmin, Dmax]
of the raw S3D views is contained in

0 ≤ Dmin < Dmax < ∞ . (3.2)

In 3D observer space, the convergence plane is equivalent to the display plane,
which means that the unprocessed recorded scene is perceived completely in
front of the display. In order to shift the scene partially behind the display,
a horizontal image translation (HIT) is applied to the S3D views [Bro11,
Men11]. If one object of interest is supposed to be placed in the display
plane, its disparity is nulled by the HIT. That disparity is called convergence
disparity Dconv, with

Dmin ≤ Dconv ≤ Dmax . (3.3)

The convergence disparity is also known as the zero parallax setting (ZPS).
The HIT is applied by shifting the left view to the left by Dconv/2 and the
right view to the right by the same amount [Bro11]. In this way, all disparities
D are transformed into the shifted domain

D̃ = D − Dconv . (3.4)

The absolute disparity budget

DB = Dmax − Dmin = D̃max − D̃min (3.5)

obviously remains unchanged by this process. Negative disparities are intro-
duced if Dconv > Dmin. Just like in section 2.2.1, disparities are called crossed
if the visual lines cross in front of the stereoscopic horopter-equivalent, i.e.,
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Figure 3.1: Illustration of crossed (D̃1) and uncrossed disparity (D̃2). In this example,
the observer fixates on a point in the convergence plane.

the display plane, or uncrossed otherwise, see figure 3.1. As can be deduced
from equation (3.1), crossed disparities are positive. Technically, Dconv does
not actually need to satisfy equation (3.3) because the scene could be shifted
far behind or in front of the display. This is usually unwanted, however. In 3D
scene space, the HIT moves the convergence plane from infinity closer to the
cameras. Since the convergence plane is moved, this process is sometimes also
referred to as reconvergence [Men11].

Considering figure 3.1, the depth zi of P i can be computed from its disparity
through a simple application of the intercept theorem, which yields

zi

be
= d − zi

ρ · D̃i

for zi ≥ 0 (3.6)

⇔ zi = d · be

be − ρ · D̃i

for D̃i ≥ −be/ρ , (3.7)
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where d is the display distance and ρ is the pixel pitch, i.e., the distance
between two pixels on the display screen. If the restriction in equation (3.7)
is not met, eye divergence occurs, which should be avoided when designing
the HIT because it is visually unpleasant [Bro11, Men11]. The depth budget
is defined as

Z = zfar − znear , (3.8)

where znear is the nearest observed depth, as computed from D̃max using
equation (3.7), and zfar is the farthest observed depth corresponding to D̃min.
Hence,

Z = d · be

be + ρ · D̃min
− d · be

be + ρ · D̃max
. (3.9)

As can be seen, Z is indirectly dependent on the convergence disparity Dconv

via D̃min and D̃max. This means that the depth budget is not constant for
different convergence disparities in contrast to the disparity budget. As an
example, consider figure 3.2a: An infinitely deep scene is displayed without
any HIT or sensor shift, so that the displayed disparity range is [0, DB]. In
figure 3.2b, this scene is shifted completely behind the display by applying
the HIT using Dconv = DB, which alters the displayed disparity range to
[−DB, 0]. The disparity budget is obviously the same in both cases, the
depth budget Z, however, changes strongly between these figures. A similar
description of this effect based on the “shape ratio” has been given by Smith
and Collar [Smi12]. The worst-case scenario is given for ρ · DB = be, which
simply means that the metric disparity is equal to the distance between the
eyes. Using equation (3.9), this yields depth budgets Z = ∞ and Z = d/2,
respectively.

Due to the translation and the limited recorded image width, black borders
may appear on opposite sides of the views. This can be avoided by image
acquisition with some extra width or rescaling of the S3D images [Bro11].
However, instead of applying an HIT in post-production, the sensors behind
the lenses may be shifted to achieve the same effect without having to acquire
extra width [Sch05]. The disadvantage of the sensor shift approach is that
lens distortions are stronger on the outer regions of the lens [All04]. Broberg
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(a) An unprocessed scene is perceived
completely in front of the display.
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(b) The same scene is shifted com-
pletely behind the display. The
depth budget is increased.

Figure 3.2: Illustration of the distortion of the depth budget due to HIT. The disparity
budget is the same in both cases.

offers some further guidance to the design of HIT [Bro11]. There is also a
temporally dynamic HIT that is explained in section 3.2.3.2.1.

3.1.2 Fundamentals of Stereo 3D Presentation

The first stereoscope was invented by Wheatstone in 1838. It consists of two
mirrors that direct the visual axes of the eyes to two separate 3D drawings2

exhibiting some disparity [Whe38]. Going directly to the present, a straight
adoption of Wheatstone’s concept is the usage of two separate displays placed
close to the eyes behind lenses in a head-mounted setup, i.e., head-mounted
displays. Both of these stereoscopes can only be used by a single individual at a
time. Obviously, multiuser concepts using only one display are preferred in many

2Photography had not been invented yet.
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applications. There are two basic single display S3D presentation protocols:
synchronous and time-sequential. While the synchronous presentation of S3D
views is natural, the time-sequential approach does exhibit an unwanted side
effect. When an observer is tracking an object, the eyes move continuously
and the object is expected to be at different positions in each frame. However,
since the S3D views have been recorded synchronously, but are presented
sequentially to each eye, the object does not actually move between those two
time instances. The spatial offset between the expected and the presented
position is perceived as a disparity due to the presentation to different eyes.
This means that the perceived depth of a tracked object is distorted. This
phenomenon is also known as the Mach-Dvorak effect [Hof11]. The distortion
increases with increasing object speed and decreasing capture rate.

Despite this side effect, the time-sequential approach is very wide spread
due to its cheap and easy implementation. In the case of projection screens,
the time-sequential presentation can be implemented by using a high frame
rate projector in conjunction with active shutter glasses that darken a single
eye synchronously to the projector presentation, e.g., XPAND Active Shutter
3D [XPAa]. Alternatively, passive polarization filter glasses can be used with
a synchronized polarization modulator in front of the projector, e.g., XPAND
Passive 3D Polarization Modulator Gen2 [XPAb] or RealD XL [Rea]. The
same glasses can also be used in a synchronous presentation approach, either
with two projectors or with a single projector top-and-bottom arrangement
of the S3D views, which are projected via two separate objectives, e.g., Sony
LKRL-A502 [Son]. A less commonly used approach is the wavelength multiplex,
where the views for each eye are presented with slightly offset color primaries.
Special color filter glasses are used to separate the views again, e.g., Dolby
3D [Dol]. For direct view displays, the synchronous approach is implemented by
using polarization filter glasses in combination with an alternating polarization
rotation of each line such that all uneven lines are only visible to the left eye
and all even lines to the right eye, e.g., LG Electronics [Isr11]. This effectively
halves the vertical resolution presented to each eye. The time sequential
approach is implemented using high frame rates and shutter glasses, e.g.,
Samsung [Sam15]. Due to the frame rate upconversion of modern displays,
the aforementioned distortion of depth is not as severe as in the case of
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projection screens. However, the frame rate upconversion may introduce new
artifacts.

3.1.3 Perception of 2D vs. Stereo 3D

The perception of S3D is more than just the added 3D sensation. In 2D
content, the monocular depth cues are in conflict with the absent disparity cue.
This is especially problematic when object motion and temporally dynamic
occlusion is involved: the occluded object exhibits the same disparity as the
occluder. In regular 3D viewing conditions, this can only ever happen at
infinity. Hence, the observer feels distanced from the scenery and becomes a
passive observer [San12b]. An S3D display, however, is perceived as a window,
i.e., stereoscopic window into another 3D world. The personal space of the
observer is penetrated by the scenery with the effect of heightened immersion.
The emotional effect of S3D can best be observed in movies featuring 3D shock
effects, where an object moves rapidly towards the observer who instinctively
reacts by ducking out of its way before even identifying it [San12a]. The
increased intensity of S3D has also been shown in a study by Ujike et al.,
where visually induced motion sickness in S3D and 2D viewing conditions was
measured physiologically and subjectively [Uji11]. So apparently, the generally
more intense perception of S3D also applies to problematic content, which
carries the potential to exhaust the HVS.

3.2 Visual Discomfort and Visual Fatigue in Stereo 3D

3.2.1 Definition

Visual discomfort and visual fatigue are frequently used as synonyms in the lit-
erature, but Lambooij et al. suggested a distinction of these two terms [Lam07],
which is adopted throughout this work.

Visual discomfort denotes the subjective sensation of discomfort during and
after exposure to problematic S3D content.

Visual fatigue refers to the objectively measurable exhaustion of the HVS
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during and after exposure to problematic S3D content.

3.2.2 Properties and Measurement

The symptoms of visual discomfort and visual fatigue include, but are not limited
to: headaches or pain in other areas like neck and shoulders, eyestrain, dry eyes,
blurred vision, uncomfortable vision, reduced oculomotor mobility and loss of
concentration [Lam07]. While visual discomfort may be induced immediately
by inappropriate S3D stimuli, most symptoms are accumulated over time so
that they are only really assessed after prolonged exposure [Iat14, Lam09a].
However, the occurrence and severity of symptoms varies individually [Shi11].
Subjects exhibiting visual degradations are generally more prone to visual
discomfort and visual fatigue than healthy subjects [Lam09a].

Lambooij et al. have given a detailed overview about subjective and objective
evaluation methods [Lam09b]. Visual discomfort is mostly evaluated through
subjective assessments. The most common test methods are outlined in
the respective ITU recommendations [ITU12a, ITU12b]. In these methods,
the visual discomfort induced by brief stimuli is rated individually or in a
pair comparison paradigm. For prolonged stimulus exposures, the severity of
the aforementioned symptoms can be evaluated using a questionnaire [Iat14,
She03].

The evaluation of visual fatigue is more elaborate. Its symptoms can be
quantified using optometric and brain activity measurement methods [Lam09b].
However, due to the individual symptomatic differences, all symptoms would
have to be measured. This is problematic because each measurement consumes
a certain amount of time and the HVS can partially recover quickly [Lam09a],
which introduces increasing systematic uncertainty to the later measurements.
Furthermore, since most symptoms do not occur early on, an evaluation of
visual fatigue is unsuitable for experiments with brief stimuli, especially in the
case of pair comparison approaches.

Some groups have tried to combine subjective and a small subset of objective
measurements in order to develop a quick and easy evaluation approach for
visual discomfort and visual fatigue. Lambooij et al. have used questionnaires
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and eight optometric tests before and after relatively short but stressful stim-
uli [Lam09a]. They have used an algorithm to classify the susceptibility of each
subject towards visual fatigue. A meaningful alteration of fusion range has
been discovered for the susceptible group of subjects only, whereas all other
optometric tests have yielded no significant alteration. This might have been
due to the comparatively short stimulus exposures. Iatsun et al. have evaluated
visual discomfort and visual fatigue in 2D and S3D viewing conditions using
questionnaires and eye tracking features like the number of blinks and saccades
per time interval [Iat14]. The total time of stimulus exposure has been 60 min,
but the test has been halted every 10 min to collect visual discomfort ratings
for each time slot. The visual discomfort ratings have steadily increased over
time. Interestingly, they have also increased in the 2D viewing condition, albeit
at a much lower pace. The eye tracker results have exhibited a decline in the
number of saccades after 50 minutes of exposure, but a strong dependency on
content has also been found.

In conclusion, the evaluation of visual fatigue remains largely unsolved. It
is therefore generally recommended to evaluate visual discomfort using the
methods outlined above.

3.2.3 Causes and Solutions

In this section, the sources of visual discomfort and visual fatigue are described,
as well as methods to prevent them.

3.2.3.1 Accommodation Vergence Discrepancy

There is an inherent problem with all S3D displays [Lam09b]: The dispar-
ity of a stereoscopic stimulus might suggest that it is located behind or in
front of the display, while the imagery is actually presented at the display
distance, as illustrated in figure 3.3. Hence, the accommodation and ver-
gence cues differ, which is unnatural and known as the accommodation
vergence discrepancy (AVD) [War95] or accommodation vergence con-
flict [Lam09b, Shi11, Hof08]. Now, there are two basic theories how the HVS
handles this issue.

27



3 Stereoscopy and Visual Fatigue
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d

Figure 3.3: Accommodation vergence discrepancy: Vergence or fixation distance zF
is not equal to the distance to the true imagery, i.e., display distance d.

Hoffmann et al. and other groups have argued that the eyes fixate on the
stereoscopic stimulus through vergence movements, while accommodation
actually remains fixed on the display distance [Hof08]. Hence, the AVD is
supposedly always present when watching S3D content, but tolerable to a
certain degree.

More recently, other groups have claimed that accommodation actually shifts
away from the display along with the vergence movement [Lam09b, Shi11]
because these mechanisms are neurally cross-connected [Shi11]. According to
these groups, the discrepancy between display distance and accommodation
distance has basically no effect on the HVS as long as the display plane is
contained in the depth of field (DOF) surrounding the fixation point F .
Otherwise, blur is perceived, which triggers the adjustment of accommodation
and vergence towards the display plane, while retinal disparity still triggers
vergence in the opposite direction. Thereby, an unstable system is created.

Regardless of which theory is correct, researchers concur that big AVDs are one
of the main sources for visual discomfort and visual fatigue [Hof08, Lam09b,
Shi11]. The basic approach to solve this issue is to limit disparities to a zone
of comfort. This can be achieved by

1. choosing appropriate capturing parameters so that the disparity budget
is small enough to fit inside the zone of comfort,
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2. applying the HIT or sensor shift, as described in section 3.1.1, to place
the scene in the zone of comfort and objects of interest near the display
plane.

3.2.3.1.1 Stereoscopic Fusion Range

If the AVDs become too big, blur is perceived or fusion fails completely,
so that diplopia occurs, which is uncomfortable. This leads to the concept
of the stereoscopic fusion range (SFR), also known as the zone of clear
single binocular vision. In contrast to Panum’s fusional area, the SFR does
not represent a range of disparities that can be fused simultaneously, but
rather those that can be fused on an S3D display after appropriate vergence
movements, which is also known as motoric fusion. Due to the vergence
movements, the SFR is a lot bigger than Panum’s fusional area. Furthermore,
it varies individually and can be increased by training [Lam07]. It is measured
subjectively by having the subjects report when either blur occurs or fusion
breaks, i.e., measuring blur or break points, respectively. In a 1990 experiment
with 8 subjects, the SFR was measured using break points, resulting in a
range of −1.57° to 4.93° in retinal disparity [Yeh90]. The SFR is displayed in
figure 3.4 as a function of viewing distance, along with some other graphs,
which are explained in the next section. Most other experiments of this kind
have been conducted using prisms [Emo05, She34]. However, using prism
glasses perceptually differs from S3D. With prism glasses, the AVD is constant
over the whole visual field and the HVS can adapt to that [Yan04]. In S3D,
the AVD varies spatially according to the presented scene structure.

3.2.3.1.2 Zone of Comfort

The AVD is linked to the DOF. It is still unclear whether the AVD exists inside
the DOF. However, experts concur that the problems outlined above occur for
stimuli located on the outside [Ban12, Lam09b]. The inherent consequence
is to limit the portrayed depth to the DOF. As mentioned in section 2.2.2,
the DOF spans about ±0.3 dpt and the respective depth values are plotted in
figure 3.4. Using equation (2.4) and equation (2.6), the DOF corresponds
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Figure 3.4: Plot of stereoscopic fusion range [Yeh90], depth of
field (±0.3 dpt) [Cha77] and zone of comfort [Lam09b] as a function of
viewing distance d for a pupil diameter of 3 mm and an interpupillary
distance be = 6.5 cm.
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Figure 3.5: Plot of stereoscopic fusion range [Yeh90] and zone of comfort [Lam09b]
in terms of disparity D̃ for a Full-HD display at design viewing distance
d = 3.1 · H and an interpupillary distance be = 6.5 cm.
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to a retinal disparity of D◦ = 1.11°. Since the DOF varies individually and
is dependent on lighting conditions, a more conservative recommendation is
to limit retinal disparities to |D◦| ≤ 1° [Lam09b]. The resulting range of
depths that can be viewed comfortably is called the zone of comfort (ZOC)
and is plotted in figure 3.4 as well. Other groups have recommended similar
values based on other assumed DOFs, e.g., |D◦| ≤ 0.8° due to a DOF of
±0.2 dpt [Yan04]. There have also been other recommendations like Percival’s
or Sheard’s ZOC [She34], which are based on prism glasses and therefore not
really appropriate for S3D, as mentioned in the last section.

The SFR and ZOC are also plotted in terms of disparity in pixels in fig-
ure 3.5. The values are computed for a Full-HD display at design viewing
distance [ITU12a], i.e., d = 3.1 · H, where H is the metric height of the
stimulus display. The design viewing distance is an important concept here
because it is the closest distance any observer should ever sit away from the
screen. The observed disparities decrease with increasing viewing distance
so that the design viewing distance serves as a worst case scenario as far
as the AVD is concerned. In this setup, the ZOC constitutes ±58.4 px in
disparity. Another, comparatively simple recommendation can be deduced
from figure 3.4. The points where the graphs turn towards infinity exhibit a
vergence angle of φV = 0°. So, a further increase of disparity would lead to
eye divergence, which should be avoided [Bro11, Men11]. In figure 3.5, this
constraint translates into the asymptotic increase of the uncrossed disparity
limit towards 0 px.

In conclusion, the disparity budget must be small enough to fit inside the ZOC.
This can be achieved by adjusting the camera baseline bc. A widespread rule of
thumb in stereography is to set bc to 1/30th of the depth of the closest object
in the scene [Men09]. This rule does not impose any restrictions on uncrossed
disparity. However, as can be seen in figure 3.4, the ZOC extends to infinity
for viewing distances d > 3.7 m, so that the lacking restriction does not pose
an issue in most viewing conditions. The rule also does not specify focal length,
though, which is problematic, because a wide-angle lens will yield much smaller
disparities than a regular lens. A better option is the “Percentage-Rule” [Shi11],
which directly states that crossed disparity should be smaller than 2 % to 3 %
of the display width W , while for uncrossed disparities lower percentages of
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1 % to 2 % are recommended. The 3 % recommendation is approximately the
same as the D◦ ≤ 1° ZOC [Lam09b] on a Full-HD display at design viewing
distance, since 0.03 · 1920 px = 57.6 px ≈ 58.4 px, see figure 3.5. There are
many stereoscopy calculators available online [Tau], which help in implementing
this recommendation by setting an appropriate camera baseline based on the
distance to the foremost object and the focal length.

3.2.3.2 Oculomotor Stress

It is not surprising that excessive usage of the oculomotor system leads to an
exhaustion of the visual system. It is predominantly gaze point motion along
the z-axis, i.e., vergence movement that causes visual fatigue [Kim14, Lam09b,
Tod04]. Vergence movements can be induced by S3D content in two ways.

Firstly, there is fast object motion along the z-axis. A fast motion towards
the observer, like the 3D shock effects described in section 3.1.3, is very
commonly used in S3D movies because of the strong and immediate emotional
reaction by the audience. Limiting the amount of these 3D shock effects is an
obvious method to reduce visual fatigue.

Secondly, vergence movement can also be induced by strong depth discontinu-
ities at shot cuts. Not only do these depth discontinuities cause visual fatigue,
but also loss of fusion for an extended time period due to the relatively slow
vergence movement capabilities of the HVS.

3.2.3.2.1 Dynamic Horizontal Image Translation

The depth discontinuities at shot cuts can be mitigated by the active depth
cut [Men09, Dve10]. An HIT is performed over a couple of seconds in a tem-
porally dynamic manner just before and after the shot cut. This is done in such
a way that the objects of interest of both shots are located at approximately
the same depth during the cut. This dynamic horizontal image translation
(DHIT) is done so slowly that it is supposedly not perceived. It is usually
performed linearly on a range of convergence disparities, e.g., from Dconv,min

32



3.2 Visual Discomfort and Visual Fatigue in Stereo 3D

to Dconv,max or vice versa, with

Dmin ≤ Dconv,min ≤ Dconv ≤ Dconv,max ≤ Dmax . (3.10)

The absolute difference between start and end convergence disparity is called
shift budget

SB = Dconv,max − Dconv,min (3.11)

throughout this work.

The distortion of the depth budget described in section 3.1.1 becomes tem-
porally dynamic in the context of the DHIT. The effect of that distortion on
the HVS is unknown. A distortion-free extension of the DHIT is proposed in
section 5.2.1. Since the DHIT is the main topic of this thesis, it is described
and analyzed in more detail in chapter 5.

3.2.3.3 Crosstalk

Crosstalk is a technology issue and denotes the phenomenon that the left
view on an S3D display is partially visible to the right eye and vice versa.
Measurement is usually done by displaying plain black on the intended S3D
view and white on the unintended view and measuring the resulting leakage
luminance LLeak. The amount of crosstalk is then given by

Crosstalk = LLeak − LBlack

LSignal − LBlack
· 100 % , (3.12)

where LBlack is the black level of the S3D display and LSignal is the luminance
of the white view [Woo12]. Woods has also described some other crosstalk
evaluation metrics [Woo12].

Crosstalk is reportedly perceivable for values of 0.3 % to 2 % and visual discom-
fort is generated at 5 % [Kap07]. For polarization based S3D displays, crosstalk
is very low in the range of 0.1 % to 0.3 % [Pas97]. In time-sequential S3D,
weak synchronization for example can lead to very big amounts of crosstalk.
In 1997, values of 20 % have been reported [Pas97], but more recently ap-
proximately 0.5 % crosstalk was measured [Bar11]. So, using a modern, high
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quality, preferably polarization based, S3D display ensures that crosstalk is
kept at acceptable values.

3.2.3.4 Retinal Rivalry

Any differences between the images on the retinas of the two eyes, which are
not due to disparity, cause retinal rivalry. It is sometimes also referred to
as binocular rivalry and can cause the HVS to suppress one retinal image
locally, thereby compromising fusion [How95]. It can furthermore cause visual
discomfort and visual fatigue [Lam09b, Men11]. Retinal rivalries can occur in
natural viewing, induced by iridescence, sparkle and occlusion [Men11]. The
first two factors actually serve as depth cues, as described in section 2.2.2.
Their extent is usually very small, which is why they are not really disturbing
the HVS. Occlusion on the other hand can cause very big rivalries, depending
on the distance between occluder and background. In order to avoid these
visual discomfort inducing rivalries, the HVS tends to avoid fixating them, e.g.,
the background very close to an occluder.

In the context of S3D, retinal rivalries can be caused by numerous technological
issues as explained in the following list:

Synchronization issues during recording
If the views are not perfectly synchronized, there will be small rivalries
due to object or camera motion [Men11]. Vertical disparity is also
introduced through vertical object motion, which distorts the depth
perception [All04, Men11]. Therefore, precise camera synchronization is
important in S3D production.

Color or luminance rivalry
Imperfect inter-view synchronization of Camera settings and post-processing
as well as interocular lens asymmetries may alter color and luminance dis-
tribution locally or even globally, causing strong retinal rivalries [Men11].
Some of these errors can be corrected in post-production, but accurate
capturing parameter synchronization is again of utmost importance as
well as high quality matched lenses. A well-known example for color
rivalry are anaglyph S3D glasses.
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View misalignment during recording or playback
Small view misalignments can be compensated by the HVS through
appropriate eye movements. If that fails, strong retinal rivalries are
induced. A horizontal offset is harmless, since it is equivalent to the
commonly used HIT approach, described in section 3.1.1. A vertical
offset below 0.5° can be compensated by vertical vergence movements
without visual discomfort [All04]. A much more critical view misalignment
is the rotation around the display normal. The eyes compensate up to a
few degrees of rotational misalignment through rotation of the eyes along
the visual axis, which is called cyclovergence, but it causes strong visual
discomfort and visual fatigue [Ban12]. However, all view misalignments
can be fixed easily in post-production.

3.2.3.5 Window Violation

Window violations are a kind of artifact in S3D that is known under many
synonyms including “breaking the proscenium rule” [Dve10], “frame cancel-
lation” [Tod04], and “frame violation” [Hak11]. The artifact occurs when
an object is stereoscopically displayed in front of the display plane, while it
simultaneously reaches out of the display area at the left or right display border.
The display border exhibiting zero disparity is perceived as an occluder of
the foreground object. This indicates that the object is located behind the
display border. However, the non-zero crossed disparity of the object indicates
that it is actually located in front of the display border. Hence, there is a
conflict between the depth cues occlusion and disparity and the prior vetoes
the latter in the depth cue combination process described in section 2.2.4.
The stereoscopic window is violated by conflicting disparity cues, giving this
artifact its name. The conflict induces a distortion of depth and visual discom-
fort [Dve10, Hak11]. Therefore, it is to be avoided. Window violations do not
occur at the top or bottom border of the display, since these do not exhibit
any disparity cues. The stereoscopic window is simply perceived as if it were
curved, which is not harmful [Dve10].
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3.2.3.5.1 Floating Window

The method to avoid window violations is to move the stereoscopic win-
dow in front of the violating object by assigning a stereoscopic depth to it. The
stereoscopic window then floats in front of the display rather than occupying
the display plane, see figure 3.6a. This floating window can be generated
simply by rendering black borders on opposing sides of the stereoscopic views,
as illustrated in figure 3.6b. This effectively adds a specific amount of crossed
disparity to the borders [Gar11, Dve10]. The floating window disparity must
be at least as big as that of the violating object in order to resolve the cue
conflict. Since the HIT, explained in section 3.1.1, might change the violation
disparity, the floating window should be designed after applying the HIT. The
floating window borders do not necessarily have to be symmetric on each side.
In fact, the floating window can be tilted or even bent around all axes to
enhance the emotional effect and overall story telling [Gar11]. For example,
shifting the floating window away from the observer makes the scene objects
stick out further and potentially more threatening. One thing to consider are
the gray areas in figure 3.6a, which represent retinal rivalries because those
areas are only visible to one eye. These rivalries are due to occlusion and,
therefore, no stereoscopic deficits. However, as pointed out in section 3.2.3.4,
they are still uncomfortable to look at and should be minimized for that reason.
The floating window should be designed in such a way that window violations
are prevented and only a small number of objects occupy the areas of retinal
rivalry. There are also dynamic floating windows, which are simply animated.
The motion of the floating window is said to be not perceivable if it follows
the motion of the scene [Gar11].

In conclusion, floating windows are easy to create and can effectively remove
window violations. However, certain properties of the underlying display tech-
nology may hinder the performance of this approach. Firstly, crosstalk is
especially visible on the black floating window borders, which is very annoy-
ing [Gar11]. Secondly, in the case of a home viewing environment, the physical
display frame is usually visible. This is problematic because one eye sees the
display frame next to the imagery, whereas the other sees the black floating
window border next to it. This generates annoying retinal rivalry. Because of
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(a) Slanted floating window, as produced
by figure 3.6b, with areas of retinal
rivalry marked in gray. [Gar11]
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(b) Non-symmetric floating win-
dow borders in a Top-and-
Bottom S3D layout.

Figure 3.6: The principle of the floating window and retinal rivalry.

that, it is recommended to view S3D content in a dark room on a display with
a black physical frame.

3.2.3.6 Notes on Vertical Disparity

In S3D, vertical disparity can be introduced globally by a view misalignment,
as described in section 3.2.3.4. It can also be introduced locally varying,
either by synchronization errors, see section 3.2.3.4, or by a camera toe-in
analogously to figure 2.4. The latter induces vertical disparities at the outer
regions of the recorded views. Allison has discussed this topic in detail [All04].
Research regarding the perception and fusion of vertical disparity is lacking,
especially with respect to visual discomfort. It is known, however, that the
vertical SFR is smaller than the horizontal SFR, which suggests that the same
might be true for the vertical ZOC [All04]. But regardless of the examination
of visual discomfort and visual fatigue, there are facts to consider that call for
an elimination of all vertical disparity through the process of rectification.

Firstly, vertical retinal disparity in natural viewing exists only in peripheral
vision. In S3D, the observer does not necessarily look at the convergence
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point of the cameras, which means that there is unnatural foveal vertical
disparity. That disparity must not be bigger than 0.5°, or visual discomfort will
occur [All04]. This limit is especially problematic for synchronization induced
vertical disparity, which is dependent on the object speed and therefore not
bounded.

Secondly, the vertical disparity distribution is superimposed on the natural
vertical retinal disparity, which is an important depth cue. This means that
depth perception is distorted [All04, Dve10].

3.3 Conclusion

A horizontal image translation (HIT) can be applied to the stereo 3D (S3D)
views in opposite directions in order to shift the portrayed scene along the
depth axis, e.g., so that it extends partially behind the display. There is also
a temporally dynamic horizontal image translation (DHIT). This technique
is predominantly used in the context of active depth cuts, where strong depth
discontinuities of objects of interest at shot cuts are mitigated by adjusting
the depth of those objects before and after the cut. The discontinuities
would otherwise induce oculomotor stress, which is a source for visual fatigue.
There is a certain distortion of depth due to the HIT. This distortion becomes
temporally dynamic in the case of the DHIT. Therefore, a distortion-free DHIT
is proposed later, in section 5.2.1.

Visual fatigue represents the objectively measurable exhaustion of the human
visual system due to prolonged exposure to S3D content. There is also a
subjective counterpart called visual discomfort, which denotes the subjective
and sometimes immediate sensation of discomfort. The symptoms of visual
fatigue are manyfold and vary individually. Therefore, it is hard to measure
it reliably. An established recommendation is to measure visual discomfort
instead using questionnaires.

There are many sources for visual fatigue. Aside from the aforementioned
oculomotor stress, this thesis is also focused on reducing the accommoda-
tion vergence discrepancy: The eyes of an observer converge on a stimulus
behind or in front of an S3D display, while the imagery that the observer
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theoretically needs to accommodate to is located at the display distance. Small
discrepancies between these distances do not induce visual fatigue so that S3D
scenes are usually limited to a zone of comfort, e.g., the 1° limit on retinal
disparity [Lam09b].
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The GACS3D-prototype, described in section 5.2.2, involves eye tracking,
i.e., eye-gaze tracking in a stereo 3D (S3D) consumer or work environment.
The basics of eye tracking and problems that arise with it are outlined in the
first two sections of this chapter. Afterwards, 2D gaze filtering methods are
described in section 4.3 and a Kalman filter approach with a new kind of
event detection is proposed, that is used in GACS3D. GACS3D reduces the
accommodation vergence discrepancy (AVD) by zeroing the disparity at
the visual focus using dynamic horizontal image translation (DHIT). Hence,
a visual focus disparity estimation is necessary. Since disparity is linked to
depth via equation (3.7), a generalization of this procedure is the 3D visual
focus estimation. In section 4.4, respective approaches are reviewed and a
new approach for visual focus disparity estimation is proposed, that is used in
the full GACS3D prototype.

4.1 Types of Eye Trackers

The first eye trackers were invasive approaches in a way that electrodes had
to be attached to the face of the subject. A contact lens with a small wire
loop has been used in the 1950s in conjunction with measuring the current
induced by movement of the eye through magnetic fields [AN10, Ham08,
Hol11]. These electromagnetic coil systems deliver the highest accuracy, but
are known to alter saccades of a subject [Hol11]. Another approach is the
1970s electro-oculogram where electrodes pick up small changes of electrical
potential generated by eye movements [AN10, Ham08, Hol11]. This type of
eye tracker is very cheap, but comes with a degraded accuracy and suffers
from electromagnetic noise from surrounding muscles [Hol11]. Both of these
invasive approaches have the advantage that they are independent of lighting
conditions and the state of the eyes or eye lids. However, wearing a device like
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that is not comfortable, which makes them unsuitable for discomfort research
and consumer applications.

Nowadays, video-based eye trackers are mostly used. These devices utilize
a camera directed at the subject to estimate the gaze direction. These eye
trackers can be classified as static or head-mounted [Hol11]. The latter kind
estimate gaze direction relative to the orientation of the wearable device, i.e.,
the head orientation. The fixed position of the cameras, relative to the eyes, is
advantageous as far as accuracy is concerned. In order to convert the relative
gaze data to absolute gaze data in 3D space, these devices are sometimes
augmented with an additional head tracker to estimate the absolute position
and orientation of the head.

Static eye trackers are placed in front of the subject and can be further divided
into tower-mounted and remote devices [Hol11]. Tower-mounted devices
establish a fixed spatial offset between the eyes and the cameras by fixating
the subject’s head using a bite-bar or forehead and chin rest. Remote eye
trackers on the other hand discard the head fixation and allow for free subject
movement in a limited range called head box. The increase in mobility and
subject comfort is traded off with a decrease in accuracy and higher recovery
times. The recovery time represents the time it takes to resume tracking after,
e.g., prolonged blinks. These disadvantages can be mitigated by improved
head tracking for example through infrared reflectors, however [Hol11]. For
discomfort research and consumer applications, only remote eye trackers are
an option because they do not induce discomfort by head fixation or by having
to wear a device which is why the rest of this chapter focuses on remote eye
tracking.

4.2 Principles and Properties of Remote Eye Tracking

Most remote eye trackers utilize one or two cameras directed at the subject’s
eyes in conjunction with some LEDs. The LEDs and the camera parameters are
fully calibrated, so that the positions of the LED reflections on the cornea can
be used to estimate the 3D coordinates of the eye ball center. This estimation
is based on an eye ball model whose parameters have to be set individually by
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a calibration routine prior to operation. Furthermore, the pupil is detected in
the eye image. The 3D coordinates of its center and the eye ball center specify
the gaze direction. The constructed eye gaze vector is intersected with the
calibrated display plane to obtain the 2D gaze coordinates.

The accuracy and precision of gaze data are degraded by noise, imperfect
calibration and further issues [Hol11]. Accuracy denotes the mean absolute
error (MAE) between the true gaze position and the measured gaze samples.
A degradation is mostly caused by noise in the pupil or corneal reflections, or an
eye ball model mismatch. Some external factors like varying pupil sizes, pupil
color, heavy eye makeup and head movements are also problematic [Hol11].
Precision denotes the spread of the measured gaze samples, i.e., the ability
of a device to reliably reproduce measurements. Precision is predominantly
determined by the eye camera resolution and sensor noise level, and it can
be traded off against sampling frequency, since a higher frequency increases
noise. Precision is mostly evaluated via the standard deviation and measured
using an artificial eye [Hol11, Tob11]. In this way, only the eye tracker inherent
system noise is evaluated, while ensuring the exclusion of individually varying
oculomotor noise, i.e., involuntary, unconscious eye movements. In practice,
this leads to much worse precision values during actual operation compared to
what the manufacturer measured under ideal conditions. Also, precision can
vary depending on the artificial eye used [Hol11]. This means that precision
values of different manufactures cannot be compared easily.

4.3 2D Gaze Filtering and Event Detection

The gaze data delivered by an eye tracker is affected by noise. Hence, filtering
techniques are used to improve accuracy and precision. It should be noted
that, while precision can basically be improved immensely using these filters,
accuracy will eventually degrade. There are real-time and post-processing ap-
proaches. The prior are required for gaze-directed human-machine-interaction,
which is the context of this chapter. Amongst the most widespread ap-
proaches are the Butterworth filter [Duc11, Wan14] and the Kalman fil-
ter [AA02, Koh09a, Kom07, Koh09b]. Špakov has done a comparison study
with numerous approaches and has found out that all perform equally bad
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with respect to accuracy [Špa12], while noting that the specific Kalman fil-
ter [Kom07] they tested performed the worst. A comparatively small study
has also been conducted for this work by Wermers in his supervised master’s
thesis [Wer16]. His study has revealed that the Kalman filter derived in the
next section actually performed best. However, accuracy was only marginally
improved compared to the raw gaze data. The conclusion is that the choice
of an approach is predominantly determined by the required features and
properties rather than the (equally bad) filter accuracy.

Kalman filtering [Kal60] is frequently used in 2D gaze filtering because of some
very useful properties. A Kalman filter estimates the state of a process based
on a defined statistical model and minimizes the mean squared error (MSE)
between the estimation and the true state [Wel06]. During the estimation
process, the gaze movement is predicted and can be used as filter output
in case of a missing measurement or an outlier, which is a common issue in
gaze filtering, e.g., due to blinks. The Kalman filter is furthermore recursive
since it only depends on the previous state and the most recent measurement.
This makes it applicable for real-time applications. Depending on the used
statistical model, different kinds of eye movements can be passed through
or removed and eye movement events or outliers can be detected [Koh09b].
These properties make the Kalman filter a good choice for gaze-directed
human-machine-interaction.

4.3.1 Kalman Filter

In this section, the general concept of the Kalman filter is described. Afterwards,
an approach tailored to gaze-directed human-machine-interaction is derived,
that can be applied to each coordinate of the gaze samples separately.

4.3.1.1 General Filter approach

4.3.1.1.1 Model

A Kalman filter utilizes two statistical models [Wel06]: one for the process
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state1

sk = A · sk−1 + wk−1 (4.1)

and one for the measurement

mk = H · sk + nk . (4.2)

Here, A is the state transition matrix, which predicts the process state sk

at time instance k from the previous state sk−1. The vector wk−1 is the
additive white gaussian process noise with covariance matrix Q. The statistical
variable wk−1 is used to model how much the state may change between
two consecutive iterations in addition to the prediction induced change. The
observation model matrix H transforms the process state into a measurement
mk, which is again affected by an additive white gaussian noise vector nk.
This noise vector models the measurement noise and is statistically independent
of wk. It has a covariance matrix R.

4.3.1.1.2 Concept

The true process state can never be known, but it can be estimated a priori,
i.e., without knowledge of the current measurement, and a posteriori. In this
work, all estimated variables are notated with a hat symbol (ˆ) and a priori
variables with a superscript minus (−), whereas no superscript is used for a
posteriori variables. The a posteriori state estimate

ŝk = ŝ−
k + Kk · (mk − H · ŝ−

k︸ ︷︷ ︸
ik

) (4.3)

is a linear combination of the a priori state estimate ŝ−
k and the difference

between the measurement mk and the measurement prediction H· ŝ−
k [Wel06],

which is called innovation ik. Here, Kk is the Kalman gain. It minimizes the
a posteriori variance of error E

{
‖sk − ŝk‖2}, i.e., the MSE between the true

process state and the a posteriori process state estimate. This MSE is the

1The process state model actually also includes an optional control input vector [Wel06]. However,
this vector is not utilized in this work, which is why it is not described any further.

45



4 Eye Tracking

trace of the (unknown) a posteriori estimation error covariance matrix

Pk = E
{

(sk − ŝk) · (sk − ŝk)�} . (4.4)

The solution for the Kalman gain is given by [Wel06]

Kk = P−
k H� (HP−

k H� + R
)−1 , (4.5)

where

P−
k = E

{(
sk − ŝ−

k

)
·
(
sk − ŝ−

k

)�} (4.6)

is the (unknown) a priori estimation error covariance matrix. For the interpre-
tation of Kk, it is helpful to consider the limiting values of R and P−

k [Wel06].
For a comparatively small measurement noise covariance R, the measurements
are trusted more than the prediction, since

lim
R→0

Kk = P−
k H� (HP−

k H�)−1 = P−
k H� (H�)−1 (P−

k

)−1 H−1

= H−1 , (4.7)

which using equation (4.3) leads to

lim
R→0

ŝk = ŝ−
k + H−1 ·

(
mk − H · ŝ−

k

)
= H−1mk . (4.8)

Conversely, a small a priori estimation error covariance P−
k means, that the

prediction is trusted more, since

lim
P−

k
→0

Kk = 0 , (4.9)

and therefore

lim
P−

k
→0

ŝk = ŝ−
k . (4.10)

4.3.1.1.3 Algorithm

The recursive Kalman filter algorithm consists of two steps, forming a predictor-
corrector-loop. In the time update step, the previous a posteriori estimates
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are mapped forward in time (prediction) to obtain new a priori estimates.
In the measurement update step, these predictions are corrected by the new
measurement to obtain the new a posteriori estimates that yield the minimum
MSE. Not only the process state but also the a priori and a posteriori estima-
tion error covariance matrices P̂−

k and P̂k, respectively, need to be estimated
because they are unknown and needed for the computation of the Kalman
gain.

1) Time update:

ŝ−
k = A · ŝk−1 (4.11)

P̂−
k = AP̂k−1A� + Q (4.12)

2) Measurement update:

Kk = P̂−
k H�S−1

k (4.13)

ŝk = ŝ−
k + Kk ·

(
mk − H · ŝ−

k

)
(4.14)

P̂k = (I − KkH) P̂−
k (4.15)

Here, I is the identity matrix, and

Sk = HP̂−
k H� + R (4.16)

is the innovation covariance matrix.

4.3.1.1.4 Parametrization and Initialization

After choosing a statistical model, the performance of the Kalman filter
can only be altered through the process noise covariance matrix Q and the
measurement noise covariance matrix R. As already shown in equations (4.7)
and (4.8), a small R leads to measurements being trusted more. That is, unless
Q is even smaller, which, according to equations (4.12), (4.13) and (4.15),
leads to a small a priori estimation error covariance P̂−

k and, therefore, a
suppression of measurements, see equations (4.9) and (4.10). In other words,
if the process state is allowed to change a lot while the measurement noise
is comparatively low, the measurements are very trustworthy. On the other
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hand, if the measurement noise is high, relative to the allowed change of the
process state, the measurement noise is suppressed, giving the filter a low
pass character. The measurement noise can simply be measured prior to filter
operation. Determining the process noise covariance is not as easy, however,
since the process cannot be directly observed [Wel06]. Usually, Q is coarsely
approximated and then heuristically tuned until the results are as desired.

The filter finally needs to be initialized. While the process state could theoreti-
cally be initialized to anything, the filter will converge faster if it is initialized
using the first samples, e.g., ŝ0 = H−1m0. An initial P̂0 �= 0, e.g., P̂0 = I,
will also lead to faster convergence. However, if Q and R are constant, so
will P̂k and Kk be after a few iterations of convergence [Wel06]. Hence, the
converged matrices can be used as constants after estimating them by applying
the filter to training data.

4.3.1.2 Application Specific Filter Design

4.3.1.2.1 Model

The choice of a statistical model depends on the kind of application and
the statistical properties of the measurement noise. In eye movement research,
all kinds of eye movements have to be modeled so that only the system noise
of the eye tracker is removed by the filter. In human-machine-interaction only
fixations, smooth pursuit, saccades and, in the case of S3D, vergence move-
ments are usually of interest. Here, the other eye movements are considered
oculomotor noise that should be removed in conjunction with the system noise.
This can be achieved by the model described in this section.

The state of a moving particle in one dimensional space, e.g., a gaze coordinate,
can best be described by its position p and speed v, which may be altered
through acceleration a via these well-known differential equations

a = ∂v

∂t
= ∂2p

∂2t
. (4.17)

Applying this concept in a time-discrete manner to the process state model in
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equation (4.1) yields[
pk

vk

]
=

[
1 T

0 1

]
︸ ︷︷ ︸

A

·
[

pk−1

vk−1

]
+

[
1
2 T 2

T

]
· ak−1︸ ︷︷ ︸

wk−1

, (4.18)

where T denotes the sampling interval, and the acceleration ak−1 is the
statistical variable controlling the change of the process state over time. The
process noise covariance matrix is then given by

Q = E
{

wk · w�
k

}
=

[
1
2 T 2

T

]
·
[

1
2 T 2 T

]
· E
{

ak · a�
k

}

=

[
1
4 T 4 1

2 T 3

1
2 T 3 T 2

]
· σ2

a . (4.19)

This is the widespread constant-velocity model [BS04], commonly used in
gaze filtering and many other applications. Since the eye tracker samples
only consist of gaze positions and no speeds, the measurement equation, i.e.,
equation (4.2), for this state vector is one-dimensional and given by

mk =
[
1 0

]
︸ ︷︷ ︸

H

[
pk

vk

]
+ nk . (4.20)

This means that the measurement noise is one-dimensional, too, so that its
covariance matrix is given by

R = σ2
n . (4.21)

As mentioned before, the measurement noise here is a combination of the eye
tracker system noise and oculomotor noise, which means that the requirement
of a gaussian distribution does not necessarily hold. Furthermore, the whiteness
of the process noise ak is questionable. While optimal results are only ensured
if all constraints are met, the Kalman filter is known to produce acceptable
results for slight violations if enough uncertainty is injected into the process
model via Q [Wel06].
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4.3.1.2.2 Parametrization

The measurement noise variance σ2
n can be estimated by having a subject look

at a target on the screen and calculating the variance of the resulting gaze
samples around that known target position. In this way, eye tracker system
noise and most of the oculomotor noise are automatically combined. An eye
tracker might yield 1° sample spread radius during operation. Assuming normal
distribution, 95 % of the samples are contained within ±2σn, so that σn could
be approximated by 0.5°. At a viewing distance d = 3.1H, using a Full HD
display, this angle corresponds to σ2

n = 853.63 px2.

The process noise variance σ2
a should be chosen in accordance with the re-

spective eye movement properties in table 2.1. A big σ2
a would include the

fast saccades in the model. However, as mentioned before, a relatively big
Q ∼ σ2

a allows more noise to pass the filter. Kohlbecher and Schneider solve
this issue by using three Kalman filters in parallel: a constant-position model
for fixations and constant-velocity models with small and big process variance
for slow eye movements and saccades, respectively [Koh09b]. The final filter
output is taken from the model that fits the data best. This approach mainly
serves as an eye movement classification, though. Utilizing it as a filter yields
discontinuities due to the filter swapping operation, which might be unwanted
behavior. A common approach without such discontinuities is to model only
the slow vergence movements and smooth pursuit, and have the Kalman
filter reinitialize on saccades, where the discontinuities are wanted. To do so,
saccades have to be detected, which can be done as follows in the next section.
In the experiments presented in this work, the measurement noise variance
above and a comparatively low process noise variance of σ2

a = 3.43 · 105 px2/s4

produced good results.

4.3.1.2.3 Event Detection and Processing

Any violation of the above model is to be considered either an outlier or
a saccade with the difference that multiple connected outliers occur in case
of a saccade. A model violation is given if the total squared innovation i�

k ik

is significantly bigger than its expected value as of the innovation covariance
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matrix Sk. The respective normalized innovation squared

e2
k = i�

k S−1
k ik (4.22)

varies as a χ2-distribution with dim (mk) degrees of freedom [BS04]. Hence,
the model is valid as long as

e2
k ≤ e2

k,β , (4.23)

where e2
k,β is the critical value of the χ2-distribution at the chosen confidence

level β.

This concept can be also extended to check model validity for an analysis
window bigger than one measurement [BS04], which is needed in order to
distinguish saccades from regular outliers. However, eye trackers may occa-
sionally deliver samples marked as invalid, e.g., due to brief tracking loss, so
that no innovation can be computed. Because of that, a more pragmatic
approach has been developed in this work. Each valid measurement, that
does not satisfy equation (4.23), is classified as a violation, and the number
of connected violations nV is counted. As soon as a measurement is not
classified as violation, the counter is reset to zero. If the number of connected
violations is above a certain threshold nth, a saccade has been detected. Since
invalid samples cannot be classified, they are processed as “Don’t Cares” in
the following way. Instead of just one counter, an upper bound counter nV,UB

and a lower bound counter nV,LB is used. For any invalid sample interleaved
in a series of violations, the violation counters are not reset to zero. Instead,
nV,UB is increased by 1, whereas nV,LB is left “as is”. This means that the true
but unknown number of connected violations suffices nV ∈ [nV,LB, nV,UB].
Considering that the higher the number of invalid samples ninv in the current
series of connected violations, the less confident one can be about correctly
identifying a saccade, the final violation count is estimated to

n̂V =

{
nV,LB + (nV,UB − nV,LB) /ninv for ninv > 0

nV,LB else.
(4.24)

This value is compared with the aforementioned threshold nth.

The choice of nth is a trade-off between robustness and filter delay. A com-
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paratively big value will delay the saccade detection and, with that, the filter
output. On the other hand, a too low nth might reset the filter too early on a
glissade accompanying the saccade. Glissades are to be considered oculomotor
noise that is supposed to be removed completely. Hence, nth · T should be
bigger than the saccade duration as of table 2.1. After a saccade has been
detected, the filter may be reinitialized using multiple previous measurements
if they appear to be stable.

Invalid measurements also affect the filter procedure in other ways than just
the saccade detection. Since the innovation ik cannot be computed for invalid
measurements, the process state is just projected ahead in time, whereas the
measurement update in equations (4.13) to (4.15) must be skipped. All
outliers are furthermore processed in the same way because they affect filter
performance, and therefore also saccade detection, negatively.

In the experiments presented in this work, e2
k,β = 5 px2 and nth = 13 produced

good results.

4.4 3D Visual Focus Estimation

A very basic approach for 3D visual focus estimation is the geometric method,
i.e., triangulation [Ess06, Pfe08, Wan14, Wib14]. The visual axes of the eyes
are estimated based on the gaze data delivered by the eye tracker. The point
where the visual axes intersect represents the 3D visual focus. However, the
estimated visual axes possibly do not intersect due to noise so that the point
nearest to both visual axes is used, or the vertical coordinates are equalized. In
the latter case, the visual axes do intersect so that this approach is equivalent to
estimating disparity directly from gaze data, and transforming it to depth using
equation (3.7) [Duc14]. The disparity is estimated simply by the difference
between the horizontal gaze coordinates of the two eyes using equation (3.1).
As an example, the results of this approach, denoted as “Raw”, are displayed
in figure 4.1. A subject looking at a test image was asked to track a target
pointer that was placed on a series of locations exhibiting different stereoscopic
disparities2. As can be seen, the raw disparity differs strongly from the target

2The Full HD passive S3D display was located at a distance of d = 3.1 · H ≈ 180 cm away
from the subject.
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Figure 4.1: Disparity directly computed from gaze data of a subject. All MSE values
in px2.

disparity. This can be attributed to the fact that the system noise, and possibly
also the oculomotor noise, is uncorrelated between both eyes. However, in the
latter case, there are contradictory publications [Rol09]. Applying the Kalman
filter described in section 4.3.1 to the input, prior to the disparity calculation
does not significantly improve the results, see figure 4.1. This shows again
that the filter does not improve gaze data accuracy very much.

Because of these inaccuracies, a 3D calibration is usually performed, which
is essentially a mapping operation typically involving first or second order
polynomials for each spatial dimension [Duc14, Wan14, Wib14]. The mapping
coefficients are calculated by minimizing the absolute differences between
subject gaze data and some reference 3D calibration points using the Moore-
Penrose-inverse. For a first order polynomial, the depth calibration equation
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for N data points is given by

z =

⎡
⎢⎢⎢⎢⎣

z1

z2

...
zN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 ẑ1

1 ẑ2

...
...

1 ẑN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

·
[

c0

c1

]
, (4.25)

where zi and ẑi are the reference and estimated depth3, respectively, of data

point number i, and
[
c0 c1

]�
are the polynomial coefficients with the solution

[
c0

c1

]
=
(
M�M

)−1 M�z . (4.26)

While tracking, every estimated depth value is corrected using these polynomial
coefficients. This 3D calibration has been applied retroactively in figure 4.1,
denoted as “Raw, fitted”, where a first order polynomial has been fitted to
the “Raw” disparity sequence rather than to an actual calibration sequence.
Hence, the graph represents the theoretical best-case calibration, which cannot
be achieved in practice, especially not without a head rest because a recorded
3D calibration becomes inaccurate when a subject’s head moves [Hol11]. The
MSE of the calibrated disparity sequence improves a lot and a slight correlation
to the target disparity can be observed, but the results are still very inaccurate.
Instead of applying the mapping operation to each dimension of the estimated
3D visual focus, the 2D gaze data can also be mapped directly into the 3D
space, e.g., using the parametrized self-organizing maps approach [Ess06] or a
support vector regression model [Toy14]. According to the authors, this does
mildly improve accuracy. However, head movement still poses an issue in the
same way as before.

While the previous approaches process the gaze coordinates delivered by the
eye tracker in order to estimate depth, it can also be estimated directly in the
eye tracker from different cues. When fixating on a stimulus, the vergence
angle of the eyes is adjusted and it can be estimated via the distance between

3Depth is estimated based on the gaze data.
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Figure 4.2: Basic utilization of a disparity map. All MSE values in px2.

the pupil centers [Ki07, Alt14]. However, since that distance varies individually,
a calibration procedure recording pupil distances at different reference depths
is mandatory. As mentioned in section 2.2.3, the pupil size is also dependent
on depth and can therefore be analyzed [Alt14, Lee12]. Again, a calibration
is needed for this approach. Finally, there are multiple reflections of the eye
tracker LEDs observable in the eye. They are called Purkinje images. The
positions of the first and fourth Purkinje images vary with the accommodation
state of the eyes and are therefore linked to fixation depth. Lee et al. combine
the analysis of Purkinje images and pupil size to obtain a depth estimate [Lee12].
However, accommodation might be an unreliable cue in the context of S3D
displays, see section 3.2.3.1.

The accuracy of all the approaches mentioned so far is approximately of the
same order of magnitude, which is not sufficient for the application in this
work. If gaze depth or disparity is supposed to be estimated in the context
of S3D, an important source of information neglected by these approaches
is the actual 3D structure of the presented scene. It can be represented by
a disparity or depth map. A simple disparity lookup at the gaze coordinates
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already yields an improvement of the MSE by almost an order of magnitude,
see figure 4.2 compared to figure 4.1. As can be seen, there is a certain
delay between the target pointer disparity and the straight lookup graph. It is
due to the limited saccadic reaction time of about 240 ms [Joo03] as well as
the saccade and vergence movement duration, which means that the target
pointer disparity cannot be used as ground truth eye disparity in the MSE
computation straight away. The ground truth is formed by delaying the target
pointer disparity by 18 samples, i.e., 300 ms, and ignoring 6 samples after each
saccade to account for the variability in human reaction delay4. A straight
lookup at Kalman filtered gaze coordinates is displayed in figure 4.2 as well. As
already mentioned in section 4.3.1, there is an additional delay because of the
saccade detection, which decreases the MSE a lot. In certain applications an
additional delay is not harmful and only the stable end result is of importance.
Because of that, another MSE, where the target pointer disparity is delayed by
31 samples5 rather than just 18, has been computed. This value shall be called
delay-adjusted MSE henceforth and it is displayed in brackets after the original
MSE wherever applicable. However, there is still only little improvement over
the original unfiltered result, which contains big errors at about 10 s. This
shows again that the Kalman filter does not necessarily improve accuracy.
Hanhart and Ebrahimi apply a 15 by 15 maximum filter to each disparity map
at the respective filtered gaze coordinates. This filtering approach is based on
the assumption that foreground objects are more likely to be looked at [Han14].
Afterwards, a fourth order moving median filter is applied to the sequence of
disparities. The results of this technique are displayed in figure 4.2 as well and
in this example the delay-adjusted MSE shows a slight improvement6. However,
a problem with this approach is that the analysis window is a lot smaller than
the spread of samples due to system noise and oculomotor noise. This means
that the true gaze coordinates may not be contained in that window and
therefore neither the correct disparity. Furthermore, the approach relies on
precomputed disparity maps and does not handle erroneous maps well. In
this work, a new, high accuracy approach is proposed, which leverages these

4This has been done in figure 4.1 as well.
5The delay is increased by 13 samples compared to the original MSE computation. This is

exactly the minimum delay introduced by the saccade detection of the Kalman filter, see
section 4.3.1.2.

6Please note that Hanhart and Ebrahimi applied a moving median filter to the 2D gaze data,
while a Kalman filter has been used here for its believed superior performance.
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problems. It is described in the next section.

4.4.1 Probabilistic Visual Focus Disparity Estimation

The developed approach follows the same basic idea as the one by Hanhart
and Ebrahimi [Han14] in a way that a disparity map is utilized to find the
disparity of the visual focus. In contrast to the referenced approach, the
disparity map is estimated locally for a region of interest (ROI) in real-time
using parallel computing on a graphics processing unit (GPU) in CUDA
C++. The estimation is carried out from left to right view and from right
to left view, denoted as D̂L and D̂R, respectively. Furthermore, a weight
is assigned to each candidate pixel in this ROI. The weight represents the
confidence of identifying the correct disparity. Because of that, the approach
is called probabilistic visual focus disparity estimation (PVFDE). In order
to calculate the weights, certain restrictions and assumptions are defined for
the candidates. The appropriate candidate disparity is finally chosen using a
weighted histogram filter. The processing steps are illustrated in figure 4.3 and
are described in more detail in the following sections, after a brief description
of the utilized gaze data model.

4.4.1.1 Gaze Data Model

The eye tracker delivers 2D gaze data pG,L and pG,R for the left and right
eye, respectively. The gaze data is affected by additive noise, which can be
modeled for the left and right eye by

pG,L|R = pT,L|R + pN,L|R , (4.27)

where pT,L|R is the true gaze position in the display plane and pN,L|R is
the additive noise term. In this application, only fixations, saccades, smooth
pursuit and vergence movements are of interest. Hence, the noise term is a
combination of system noise and oculomotor noise. The distribution of noise
is approximated to be normal.
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Figure 4.3: Processing steps of the PVFDE.

The aim is to find an estimate D̂T of the true disparity DT

DT = DL (pT,L) = DR (pT,R) (4.28)

at the visual focus, where DL and DR are error free disparity maps.

4.4.1.2 Region of Interest Disparity Map Estimation

In this first step, block matching is used to estimate the left and right disparity
maps in real-time for square ROIs. These ROIs are centered on the left and
right gaze coordinates, respectively. Generally, the block matching algorithm
estimates correspondency vectors between temporally or spatially neighboring
views of a scene. This is done by matching a reference block, typically of size
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9 px by 9 px, against a spatially offset block in the neighboring view using some
similarity criterion. Multiple offsets are tried in an iterative manner following
a certain search strategy. The offset that maximizes block similarity is the
estimated correspondency vector.

Numerous search strategies exist for different applications. In this case, since
the S3D views are assumed to be rectified, disparity is purely horizontal. Hence,
the search direction is horizontal only. All integer offsets, i.e., disparities in a
configurable range are tested using the sum of absolute differences (SAD)
similarity criterion. This non-conditional search strategy has the advantage
that it can be parallelized well, which is mandatory for real-time performance.
While there are other more sophisticated and robust similarity criteria, the SAD
is used because of its computational simplicity. The decrease in robustness
is mitigated by the confidence calculations in the subsequent steps of this
algorithm, which are described in the next sections. Using equation (3.1), for
the estimation from the left view image IL to the right view image IR, the
purely horizontal SAD of a block B (pi), which is centered on the 2D image
space coordinate pi, is given by

SADL→R (pi, D) =
∑

p∈B(pi)

|IL (p) − IR (p − D · ex)| , (4.29)

where ex is the unity vector in x-direction. Conversely, the SAD for the
estimation from right to left is

SADR→L (pi, D) =
∑

p∈B(pi)

|IR (p) − IL (p + D · ex)| . (4.30)

Finally, the argument D that minimizes the SAD is the estimated disparity

D̂L|R (pi) = argmin
D

(
SADL→R|R→L (pi, D)

)
. (4.31)

This calculation is carried out for every point pi inside the left or right square
ROI. The size of the square ROI is 2r by 2r, where r is the radius of the
circular ROI defined in the next section. In the case of a top-and-bottom S3D
format, which is commonly used in conjunction with passive 3D TVs, the S3D
views are vertically subsampled. Hence, the vertical extend of the square ROI
can be halved, making it rectangular.
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Figure 4.4: Left and right region of interest with true gaze positions pT,L|R and
candidate rejection criteria: vertical rejection area in gray, valid disparity
range [DLB, DUB], a rejected candidate due to disparity mapping criterion
in gray.

4.4.1.3 Candidate Collection and Rejection

As mentioned in section 4.4.1.1, the tracking noise is assumed to be normal.
However, since extreme outliers will not contribute favorably to the disparity
estimation and will be rejected anyway, a maximum spread radius r is introduced.
It defines a circular area around the true gaze position pT,L|R in which all
gaze samples, excluding outliers, can be located. Inverting this connection,
any true gaze position must be located inside the maximum spread radius r

around a valid (non-outlier) gaze position pG,L|R. This is the ROI displayed
in figure 4.4. Any left or right view candidate pC,L|R has to satisfy the ROI
equation:

rC,L|R = ‖pC,L|R − pG,L|R‖ ≤ r . (4.32)

The maximum spread radius is dependent on eye tracker performance and the
individual properties of the eyes.

Invalid candidates in the ROI can be quickly identified by four restrictions.
Assuming rectified S3D views, the true gaze positions for the left and right
eye must exhibit the same vertical position yT,L = yT,R. Areas where the
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ROIs do not overlap vertically do not fulfill this restriction and the contained
candidates are therefore invalid. These areas are marked gray in figure 4.4.
Mathematically, a candidate pC,L|R is rejected, if its vertical position yC,L|R
does not satisfy

Restriction 1:

yC,L|R ∈ [max (yG,L, yG,R) − r , min (yG,L, yG,R) + r] , (4.33)

where yG,L and yG,R are the left and right vertical gaze coordinates in pixels.

The second restriction is related to disparity. Any combination of candidates
pC,L and pC,R in the left and right ROI yields a certain disparity via equa-
tion (3.1). Since the positions of the candidates are restricted, so is their
respective disparity. Candidates at the outermost positions of equally high
ROIs yield an upper bound to the valid disparity

DUB = (xG,L + r) − (xG,R − r) = xG,L − xG,R + 2 · r , (4.34)

where xG,L and xG,R are the left and right horizontal noisy gaze coordinates in
pixels as delivered by the eye tracker. Conversely, candidates at the innermost
positions yield a lower bound

DLB = xG,L − xG,R − 2 · r . (4.35)

Any candidate pC,L|R that does not satisfy

Restriction 2:

D̂L|R
(
pC,L|R

)
∈ [DLB, DUB] , (4.36)

i.e., whose associated disparity is not contained in this disparity range, is
rejected.

For the third and fourth restriction, every remaining candidate is mapped into
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the other S3D view using equation (3.1):

p†
C,L = pC,L − D̂L (pC,L) · ex (4.37)

p†
C,R = pC,R + D̂R (pC,R) · ex . (4.38)

Consider the case that a given p†
C,L is not contained in the right ROI, as

illustrated in figure 4.4. This means that either D̂L (pC,L) is erroneous due
to the estimation process or that the depth of that candidate is not in the
same range as the true gaze depth, e.g., when a foreground object is fixated
and the candidate is located on the background far behind it. Because of that,
the respective pC,L is rejected in restriction 3. Conversely, pC,R is rejected if
p†

C,R is not contained in the left ROI. Mathematically,

Restriction 3:

r†
C,L = ‖p†

C,L − pG,R‖ ≤ r (4.39)

r†
C,R = ‖p†

C,R − pG,L‖ ≤ r . (4.40)

This restriction actually also implements restrictions 1 and 2, albeit more
elaborate so that the first two restrictions are still used to efficiently reject
invalid candidates.

Finally, the disparity of the mapped candidate is compared to that of the
original candidate. In an ideal case, the difference is

ΔDC,L =
∣∣D̂L (pC,L) − D̂R

(
p†

C,L

)∣∣ = 0 (4.41)

ΔDC,R =
∣∣D̂R (pC,R) − D̂L

(
p†

C,R

)∣∣ = 0 . (4.42)

However, these equations may not hold due to occlusion or erroneous disparity
estimation. Candidates with erroneous disparities should obviously be rejected.
Since observers tend to not look at occlusion areas due to the induced reti-
nal rivalries, as mentioned in section 3.2.3.4, occlusion candidates are not
likely to be the true gaze position. Furthermore, they exhibit low disparity
estimation accuracy. Hence, candidates not satisfying equation (4.41) or
equation (4.42), respectively, are rejected. In some applications, a certain
amount of error in disparity might be tolerable, so that those equations are
altered to
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Restriction 4:

ΔDC,L|R ≤ ΔDmax . (4.43)

Due to restrictions 3 and 4, most candidates in the left and right view are
identical with respect to stereoscopic correspondence. This is because mapped
as well as original coordinates must be located inside the respective ROI and
the mapping procedure solely depends on the estimated candidate disparity,
which must not differ significantly between corresponding stereoscopic points.
Therefore, it suffices to analyze the candidates in one view, the left view in
the remainder of this work.

To illustrate the processing steps of the PVFDE up to this point, a stereoscopic
image pair is displayed in figure 4.5. A subject fixated on the ear of the
displayed actor and the gaze coordinates are highlighted in each view. The
results of the ROI disparity map estimation are displayed in figure 4.6. The
disparity maps are centered on the gaze coordinates. Please note that there is
some vertical offset between the ROIs because of that. This vertical offset must
be accounted for when evaluating restriction 4 based on these ROI disparity
maps. As can be seen, they contain some errors due to the relatively basic
estimation algorithm. The valid candidates of the left ROI are finally displayed
in figure 4.7. Erroneous estimations are correctly rejected, as are occlusion
areas, e.g., behind the ear. The valid candidates approximately assume the
form of an eye, which is due to the shape of the ROI and restriction 3, which
states that each mapped candidate must be contained in the opposite ROI.

4.4.1.4 Candidate Weights

In this step, weights are computed, that quantify the confidence of identifying
the correct disparity. A weight of zero is assigned to the previously identified
invalid candidates, whereas the remaining ones are processed as follows.

Under the hypothesis, that pC,L = pT,L, the distance rC,L is equivalent to
the magnitude of the noise term in equation (4.27), i.e., rC,L =

∣∣pN,L|R
∣∣.

According to the previous approximation, this means that this distance follows
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(a) Left view. (b) Right view.

Figure 4.5: A stereoscopic image pair with highlighted gaze coordinates.
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(a) Left view.
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(b) Right view.

Figure 4.6: Estimated square ROI disparity maps with disparity values in pixels.

Figure 4.7: Valid candidates (white) for left view disparity map.
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a one-sided normal distribution. Hence, a weight can be computed by

ωr,C = exp
(

− rC,L
2

2 · σ2
r

)
, (4.44)

where the normalization of the gaussian distribution is omitted and σ2
r is

the variance of that distribution. The same reasoning holds for the mapped
distance r†

C,L so that a second weight is given by

ωr†,C = exp

(
− r†

C,L
2

2 · σ2
r

)
. (4.45)

Finally, equation (4.43) allowed for some error in ΔDC,L. Candidates exhibit-
ing lower errors should be assigned a higher weight. So again, a non-normalized
one-sided gaussian distribution is used to compute a third weight:

ωΔD,C = exp
(

−ΔDC,L
2

2 · σ2
ΔD

)
. (4.46)

These three weights are combined to one final weight for each candidate

ωC = ωr,C · ωr†,C · ωΔD,C . (4.47)

Revisiting the previous example in figures 4.5 to 4.7, the resulting weights
based on the left ROI are displayed in figure 4.8. The distance weights ωr,C

and ωr†,C dominate the image, but the effect of the disparity difference weight
ωΔD,C can also be seen in the form of small cracks, that are darker than their
surroundings.

4.4.1.5 Weighted Histogram Filter

In order to finally retrieve the estimate D̂T, the calculated weights need to be
processed. The whole approach is based on the following two assumptions.

Firstly, any object is looked at in such a way that the fovea of the user contains
only the image of that object, i.e., no background or other object images.
This assumption concurs with the previous statement that occlusions, which
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Figure 4.8: Weights for left view disparity map.

only occur at object borders, are not likely to be looked at. The avoidance of
occlusions is already enforced by restriction 4. This means that the majority
of valid candidates should belong to the object being looked at.

Secondly, the object does not exhibit strong depth variations inside the ROI.
Considering the typical depth distribution of S3D images, this assumption is
fairly reasonable.

Combining both assumptions, most candidates in the ROI are expected to
belong to the targeted object and exhibit very similar disparities. Hence, the
candidate confidence weights are used to form a weighted histogram, which is
used to find the biggest (and most reliable) disparity cluster. This works as
follows: the weights of each disparity value are accumulated and the disparity
corresponding to the maximum accumulated weight is the resulting estimate
D̂T.

Slight violations of the first assumption can be accounted for by a modification
of this step. Consider again the example in figures 4.5 to 4.7, where big
portions of the ROIs are occupied by background disparities. The corresponding
weights in figure 4.8 yield the weighted histogram depicted in figure 4.9. As
can be seen, the background disparities induce a big peak at −33 px, which
would be wrongfully chosen as D̂T. Since humans are more likely to look
at foreground objects rather than background [HT11b], the foremost, i.e.,
rightmost histogram peak above a certain threshold is used instead as D̂T

instead. For this example, the threshold has been heuristically set to 66 % of
the maximum accumulated weight. Finally, D̂T = −19 px is correctly chosen.
The disadvantage of this modification is that the unlikely case of true gaze
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Figure 4.9: Weighted histogram of left view disparities with the 66 %-peak-threshold
(dashed, gray) and the chosen disparity (circle).

positions being located on background objects in the vicinity of foreground
objects cannot be processed reliably.

4.4.1.6 Parametrization

The size of the ROI is specified by the system noise and oculomotor noise.
An underestimation of this size is harmful because the true gaze coordinates
would not be included in the ROI. Hence, a generous ROI radius r = 2° of
visual angle has been chosen. Using a Full HD display with square pixels at a
viewing distance d = 3.1H, this value corresponds to r = 117 px.

The outer candidates in this ROI do not affect the end result much because of
the weight ωr,C in equation (4.44). This weight is a function of σr, which
has heuristically been set to σr = 1° = 58.5 px.

The choice of the maximum disparity divergence ΔDmax from restriction 4 is
dependent on the application. For this work, almost pixel-precise disparity is
required, so that this parameter was set to ΔDmax = 3 px. The weight of the
disparity divergence as of equation (4.46) has been heuristically parametrized
using σΔD = 1 px.
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Figure 4.10: Exemplary results of the PVFDE approach proposed in this work and
the maximum filter approach [Han14] for comparison. All MSE values
in px2.

4.4.1.7 Pre- and Post-Processing

Returning to the disparity graphs from the beginning of this section, the
results of the PVFDE, with the parameters described above, are displayed in
figure 4.10. The approach yields the best MSE so far, but the graph still
exhibits some problems. Firstly, the disparity shortly after saccades is highly
erroneous. Secondly, there are some discretization issues, where the algorithm
yields disparities repeatedly switching between two neighboring integers, e.g.,
between 8 s and 10 s.

As a first step, the gaze data input is analyzed in a pre-processing step using the
Kalman filter developed in section 4.3.1. In this way, outliers can be rejected
so that some erroneous disparity estimations using the PVFDE are prevented.
Furthermore, the filter analyzes the input for saccades. The output of the
Kalman filter is not used any further because it alters the noise distribution of
the gaze data. It would be non-normal, while a normal distribution is required
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in the candidate weight computation, see section 4.4.1.4.

Since the disparity of a fixated object might change continuously over time, the
Kalman filter with a constant-velocity model is also a good fit for stabilizing
the disparity output of the PVFDE. Furthermore, the rejection of input outliers
leads to missing disparity samples, which the Kalman filter can naturally
extrapolate. In this work, the filter has been heuristically parametrized with a
process noise variance of σ2

a = 0.01 px2/s4 and a measurement noise variance
of σ2

n = 10 px2. Based on the assumption that the end points of saccades
are located at different depths when watching S3D content, the disparity
Kalman filter is always reinitialized whenever a saccade has been detected by
the input analyzer. The saccade detection can also be used in the disparity
filter in order to detect when the filter does not perform appropriately and
reset it in that case. However, a comparatively short analysis window is used
here, in order to reduce the duration of erroneous filter output. In this work,
the violation identification threshold is e2

k,β = 2.1 px2 and the threshold for
the number of connected violations is nth = 3. The results of the PVFDE
with pre- and post-processing are displayed in figure 4.10 as well. Due to
the saccade detections, a certain delay is introduced, just like in the filtered
examples in figures 4.1 and 4.2. This delay increases the MSE again, but the
delay-adjusted MSE is reduced a lot.

4.4.1.8 Results

The PVFDE with real-time ROI disparity map estimation as well as pre- and
post-processing has been extensively evaluated by Wermers in a supervised
student master’s thesis [Wer16]. The general experimental setup was the same
as described in section 5.3.1.2. There were 13 S3D test sequences featuring
natural content with varying disparity budgets and a stereoscopic pointer that
the subjects were asked to track with their eyes. The pointer locations of the
sequences were designed in a way that fixations, saccades, smooth pursuit and
vergence movements were induced. A professional, research-grade eye tracker
was used [Tob14] to record gaze data. The gaze datasets for each sequence
and each subject were inspected manually for errors and (partially) rejected if
necessary, resulting in 18 to 26 gaze and ground truth datasets per sequence.
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Table 4.1: Depth estimation error of PVFDE compared to the raw disparity computa-
tion approach and the optimal calibration thereof. Raw disparity values
that represent eye divergence have been excluded from the evaluation.

Approach MSE (cm2) MAE (cm)
PVFDE, pre-/post-proc. 37.41 1.49
Raw, filtered input 691638.01 206.59
Raw, filtered input, calibrated 1785.62 25.47

The ground truth datasets were constructed with consideration of the detected
tracking errors and possible delays at saccades. The resulting MSE values
of depth over all sequences and subjects are summarized in table 4.1. The
MSE of the PVFDE was improved by a factor of almost 50 compared to the
optimally calibrated conventional approach. Again, this calibration represents
a theoretical best-case scenario, which could only be achieved using a head
rest [Hol11], if at all. Furthermore, about 5 % of the raw disparity values
represented eye divergence so that no depth value could be computed using
equation (3.7). These values were excluded from the evaluation, whereas,
normally, they would be mapped to infinity, yielding an infinite MSE.

The MAE is also included in the table for comparison to other publications
that only report this metric instead of the usual MSE. Please note that the
viewing distance d ≈ 180 cm in this experiment was very high compared to
experiments conducted by most other groups and that the eye tracking error
in the display plane scales with viewing distance. This should be taken into
consideration when comparing the values in table 4.1 to other publications.

The algorithm was also tested with the cheap $100 “The Eye Tribe Tracker”.
While no elaborative subjective evaluation was carried out with this eye tracker,
quick tests showed no significant performance degradation compared to the
professional eye tracker.

Wermers also extended the PVFDE in his master’s thesis to utilize motion vector
fields of the scenes as well [Wer16]. However, the gain of this extension was
comparatively small, especially when weighing it against the big computational
load of the motion estimation. Because of that, it has not been integrated
into the final prototype described in section 5.2.2.
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4.5 Conclusion

The output of eye trackers is degraded by technological system noise and
oculomotor noise. The latter comprises the unconscious eye movements. While
2D gaze filters can improve precision, i.e., reduce the spread of gaze samples,
an improvement of accuracy is not necessarily achievable. As a consequence,
the choice of a gaze filter is mostly determined by its features. A Kalman filter
is useful for eye tracking because of its ability to naturally extrapolate missing
samples or rejected outliers. Outliers can be detected reliably by checking the
validity of the underlying eye motion model. For the Kalman filter derived in
this work, only the slow eye movements were modeled. Saccades are handled
by reinitializing the filter upon detecting the saccade. A new saccade detection
algorithm was proposed. Since saccades are not incorporated in the model,
any saccade will induce a series of model violations. Hence, the number of
connected violations is counted and compared with a decision threshold. The
approach treats missing or invalid samples as “Don’t Cares”, which is again
very useful in eye tracking.

The noise sources described above are, for the most part, uncorrelated between
the eyes. This is problematic in the case of 3D visual focus estimation since
the induced errors are accumulated, rendering the common approaches very
inaccurate. The proposed probabilistic visual focus disparity estimation
(PVFDE) estimates the 3D scene structure, i.e., disparity of a region of
interest in real-time and uses that information in conjunction with computed
per-pixel confidence weights to improve the 3D visual focus estimation. This
new contribution yields an improvement of the mean squared error of the depth
coordinate by a factor of almost 50 compared to the results of a relatively
unrealistic, ideal, linear 3D calibration. Without such a calibration, there is a
more than 10 000-fold improvement.
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This chapter represents the main matter of this work. The mathematical
fundamentals of horizontal image translation (HIT) and dynamic horizontal
image translation (DHIT) have already been described in section 3.1.1
and section 3.2.3.2.1, respectively. This chapter starts with a review of
DHIT-related literature in section 5.1. Two major contributions of this work
are enhancements of the DHIT called distortion-free dynamic horizontal
image translation (DHIT+) and gaze adaptive convergence in stereo 3D
applications (GACS3D), which are described in section 5.2. Finally, the
results of four experiments conducted for this work are presented in section 5.3.
The aim of these experiments was to analyze the basic perceptual properties
of the DHIT and the proposed enhancements of it.

This chapter and, predominantly, the description of all experiments are based
on previous publications by the author [Eic13c, Eic15, Eic16].

5.1 Review and Motivation

The common approach to design the DHIT is a heuristic one: The stereographer
simply checks if it looks right. However, this is problematic because there are
individual differences in the perception of the DHIT, see results of experiments
(I) and (II) in sections 5.3.2.5 and 5.3.3.3. It might just happen that a
stereographer is comparatively insensitive towards the DHIT and tunes it
wrongly for the general audience. Chamaret et al. have done some quick
tests to find out how much of a DHIT shift may be applied between two
successive frames without being noticed by an observer [Cha10]. Aside from
this, variations of disparity have only been investigated in the context of
camera baseline variation, for example by Ware [War95], with the result that
small disparity variations are not perceivable. The lacking research was the
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motivation for the first experiment of this work with the aim to find shift speed
thresholds for annoyance and perception. It is described in section 5.3.2.

The results of that experiment are especially important in the context of
automated DHIT approaches. There are many applications where automation
is useful or even mandatory. To start with the HIT, it can be automated
simply by estimating the disparity range of a given scene and shift it behind
the display [Xu12] or, even better, into the zone of comfort (ZOC). Instead
of controlling the disparity range, Kim et al. have proposed to apply the HIT in
such a way that the fusion time is minimized, which yielded a reduction of visual
discomfort in their subjective experiments [Kim13]. Returning to disparity
range control, an automated concept related to DHIT has been described by
Zhang et al. [Zha13]: After shot cut detection, the disparity ranges of the
frames right before and after the cut are estimated and a DHIT is deployed to
mitigate any depth discontinuities. Thereby, an automatic active depth cut is
implemented. Another approach is to analyze the visual saliency of a given
scene and have the DHIT be set in such a way that salient areas are near or
in the convergence plane [Cha10, Han14]. The topic of 3d visual attention
has been investigated for example by Huynh-Thu et al. [HT11b, HT11a], and
the computations usually require a per-pixel disparity map. Since temporal
correlations are very important in visual saliency, the elaborate computation
typically also involves evaluation of multiple frames. This renders saliency
based approaches rather inappropriate for real-time applications. Instead of
the visual saliency estimation, the actual visual focus can be used to control
DHIT by utilizing an eye tracker. A system like that called GACS3D was
proposed by the author of this thesis in 2013 [Eic13c]: The zero parallax
setting (ZPS) is slowly established at the visual focus, thereby reducing the
accommodation vergence discrepancy (AVD). Hanhart et al. have compared
a similar approach to a visual saliency based DHIT design and the unprocessed
stereo 3D (S3D) views in a subjective experiment [Han14]. Their gaze
adaptive approach yielded the best results in picture quality, depth quality and
visual discomfort. A similar experiment has been conducted by the author of
this thesis, which is described in section 5.3.5. Bernhard et al. have evaluated
visual fatigue by linking it to the measured stereoscopic fusion times with and
without gaze adaptive DHIT [Ber14]. The validity of this link has not been
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discussed, however. Long fusion time and small fusional limits have previously
only been used to identify subjects who are prone to visual fatigue [Kim11],
but not to measure visual fatigue objectively. It is also known that fusion time
is dependent on disparity [Kim11], which is obviously reduced in the case of
gaze adaptive DHIT. However, Bernhard et al. also carried out a subjective
evaluation that yielded a slight improvement of gaze adaptive DHIT over the
unprocessed stereo views in depth quality and visual discomfort [Ber14]. The
differences between GACS3D and these two similar gaze adaptive approaches
are described in section 5.2.2.6.

Independent of the way the DHIT is controlled, there is still the problem that
black borders can appear in the S3D views, which has already been described in
the context of HIT in section 3.1.1. The black borders are created by shifting
content out of the display area so that no image information is available on the
other side of the respective S3D view. Since the black borders are generated
on opposing sides of the S3D views, they have a certain disparity so that
this effect is actually perceived as the commonly used stereoscopic floating
window, see section 3.2.3.5.1. In the case of the DHIT, the floating window
disparity changes over time, making it a dynamic floating window. Broberg
argues that the black borders of the HIT create false depth cues and can
distract viewers [Bro11]. However, for the DHIT, the author of this thesis
argues that this effect can actually be seen as a feature rather than an artifact
because it helps to avoid new window violations under certain conditions. This
is explained in more detail in section 5.2.2.4, where an automated floating
window approach is proposed, which is generally applicable to DHIT, but has
been developed for GACS3D.

5.2 Enhancements of DHIT

Two enhancements of DHIT have been developed in this work, which are
described in this section.
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5.2.1 Distortion-Free DHIT

The temporally dynamic distortion of the depth budget due to DHIT has
already been described in section 3.1.1 and section 3.2.3.2.1. In this section,
a new approach for distortion-free dynamic horizontal image translation
(DHIT+) is proposed. In section 5.3.3, it is experimentally compared to the
regular DHIT.

Suppose a DHIT is to be performed over a couple of frames on a given
convergence disparity range [Dconv,min, Dconv,max]. The alteration of the
depth budget due to the DHIT can be mitigated by scaling the camera baseline
bc. It can be easily shown that this scaling operation by a factor α ∈ �+

implicitly also applies to disparity. Recalling that shifted disparities denote
disparities after an HIT with a certain convergence disparity Dconv has been
applied, the shifted disparity range of the scaled camera baseline views is given
by [

D̃∗
min, D̃∗

max
]

= α ·
[
D̃min, D̃max

]
= α · [Dmin − Dconv, Dmax − Dconv] , (5.1)

which yields a depth budget of

Z = d · be

be + α · ρ · D̃min
− d · be

be + α · ρ · D̃max

!= Ztarg . (5.2)

This depth budget is supposed to be constant, i.e., equal to a chosen target
depth budget Ztarg for all defined convergence disparities Dconv. Rearranging
equation (5.2) yields the quadratic equation

α2 + α · be
D̃max + D̃min − DB · d/Ztarg

D̃max · D̃min︸ ︷︷ ︸
g

+ be
2

D̃max · D̃min︸ ︷︷ ︸
h

= 0 , (5.3)

with two singularities, i.e., D̃max �= 0 and D̃min �= 0. It can be rearranged to
find

α = −g

2 − sign
(
D̃max

)
· sign

(
D̃min

)
·
√

g2

4 − h , (5.4)
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with the sign-function

sign (x) = x

|x| for {x ∈ �|x �= 0} . (5.5)

The two singularities in equation (5.3) can be resolved by going back to
equation (5.2), substituting either D̃max or D̃min with zero, and isolating α.
In the case of D̃max = 0, this yields

Ztarg = d · be

be + α · ρ · D̃min
− d (5.6)

⇔ α = − be

D̃min · (1 + d/Ztarg)
. (5.7)

The minimum shifted disparity is handled in the same way so that the final
solution for the scaling factor is

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− be
D̃min(1+d/Ztarg) if D̃max = 0

− be
D̃max(1−d/Ztarg) if D̃min = 0

− g
2 − sign

(
D̃max

)
· sign

(
D̃min

)
·
√

g2
4 − h otherwise.

(5.8)

Now, the basic DHIT+ algorithm constitutes the following steps:

1. Choose a target depth budget Ztarg.

2. Given a sequence of per-frame convergence disparities Dconv, the scal-
ing factor α for each frame is computed using equation (5.8). It is
recommended to use the average human eye baseline here, which is
be = 6.3 cm [Dod04, War95].

3. The S3D views are generated with the adjusted camera baseline

b∗
c = α · bc. (5.9)

4. The HIT is finally applied individually to each frame. Since the scaling
factor also applies to disparity, the convergence disparity needs to be
scaled as well to

D∗
conv = α · Dconv. (5.10)

77



5 Dynamic Horizontal Image Translation

5.2.1.1 Active Depth Cuts using DHIT+

With the DHIT, an active depth cut is implemented simply by slowly shifting
the S3D views before and after a shot cut such that objects of interest are
located at approximately the same depth, e.g., the convergence plane, when
the cut occurs. In this way, visual fatigue inducing depth discontinuities are
reduced.

The design of an active depth cut with the DHIT+ is different because shifting
a scene closer to the observer should be avoided. This shift direction leads
to a camera baseline increase. Considering that the disparity range is often
at the limits of the ZOC, a baseline increase is likely going to induce too big
disparities protruding the ZOC. Furthermore, if depth-image-based rendering
is used to extrapolate the S3D views, big occlusion holes may occur, that have
to be filled appropriately1. Hence, the DHIT+ should only be performed before
or after the shot cut, but not both, as the following best practice example
illustrates.

A cut from shot A to B is to be performed. These shots occupy depth budgets
ZA and ZB, respectively. A point of interest (POI) in shot A exhibits a
certain disparity DPOI,A, which is supposed to smoothly transition to DPOI,B,
the disparity of a POI in shot B. In the simple case that DPOI,A > DPOI,B,
shot A is shifted away from the observer: The convergence disparity of shot A
is increased, and the respective scaling factor α is computed with Ztarg = ZA,
until the scaled, shifted disparity satisfies

(DPOI,A − Dconv) · α = DPOI,B . (5.11)

This is illustrated in figure 5.1a. As can be seen, DPOI,A is slowly shifted
towards DPOI,B until equation (5.11) is fulfilled at the end of the graph.
Then, the POIs in both shots are located at the same depth and the cut can
be performed. In figure 5.1b, the same operation is displayed in the depth
domain, clearly illustrating the constant depth budget.

In the case that DPOI,A < DPOI,B, shot A is not shifted closer to the observer
for the reasons mentioned above. Instead, the cut to shot B is performed

1In case of a camera baseline decrease, i.e., S3D view interpolation, the induced occlusion holes
are very small and can usually be filled easily.
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Figure 5.1: Example for an active depth cut from front (A) to back (B) using DHIT+.
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Figure 5.2: Example for an active depth cut from back (A) to front (B) using DHIT+.
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without any prior shifting of shot A, while shot B is preconverged so that

DPOI,A = (DPOI,B − Dconv) · α , (5.12)

with Ztarg = ZB. This means that, at the beginning, shot B is actually shown
with a decreased baseline that is increased back to its original state again in
the course of the DHIT+, as illustrated in figure 5.2a. Thereby, S3D view
extrapolation is avoided, i.e., big occlusion holes are prevented.

5.2.1.2 Controlling Speed in DHIT+

The convergence disparity Dconv is usually adjusted at a fixed speed in the
case of the DHIT. However, this fixed speed is not maintained in the DHIT+
because the convergence disparities are multiplied by varying scaling factors α

in equation (5.10). Therefore, the speed of the scaled convergence disparity
D∗

conv should be controlled rather than Dconv. Since the rate of change of
D∗

conv = α · Dconv is supposed to be constant, and the computation of α is
dependent on Dconv, a different sequence of convergence disparities has to
be found through numeric optimization approaches, i.e., by trying different
convergence disparity values until the desired speed for D∗

conv is achieved.

A speed controlled scaled convergence disparity is the basis of figures 5.1a
and 5.2a. However, in contrast to the DHIT, different disparities change at
different speeds here. For example, the lower bound of the disparity range in
figure 5.2a exhibits a certain curvature, whereas the upper bound is almost
linear. This is due to the dynamic adjustment of the disparity budget. Instead
of controlling speed in the disparity domain, it is also possible to control
the speed along the depth axis so that a linear movement is created. This
is more natural than what is depicted in figures 5.1b and 5.2b. Again,
numeric optimization techniques have to be used to find a different sequence
of convergence disparities corresponding to the desired depth movement.

5.2.1.3 Further Properties of DHIT+

The solution for α is independent of viewing distance d, which can be seen in
equations (5.3) and (5.7): The only occurrence of d is resolved through the
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Figure 5.3: Extreme example of depth budget distortion due to DHIT and an eye
baseline mismatch in the DHIT+. The DHIT+ has been computed for
be = 6.3 cm and Ztarg = Zmin.

division by Ztarg, which is linearly dependent on d, see equation (3.9). This
means that a constant depth budget is ensured with DHIT+ independently of
observer distance, which is important for living room and cinema environments.

The eye baseline be, on the contrary, does affect α. If the eye baseline of
an observer differs from the one used in the computation of α, there will
be a certain distortion of the depth budget remaining. However, it is very
small compared to the distortion of the regular DHIT. As an extreme example,
consider the case that an S3D sequence exhibiting a disparity budget of
DB = 58 px is shifted all the way from the front to the back of the display such
that the whole ZOC of ±58 px, see section 3.2.3.1.2, is occupied at some
point in time. This means that the shift budget is SB = 58 px, which induces
a big depth budget distortion. The minimum depth budget is supposed to be
maintained throughout the shift operation. It is given when the scene is at the
foremost shift position, i.e., when Dconv = Dconv,min. This depth budget can
be computed using equation (3.9):

Zmin = Z|Dconv=Dconv,min = Ztarg . (5.13)

Let the depth budget distortion be defined as the ratio of maximum to minimum
depth budget. In figure 5.3, the depth budget distortion in this example is
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displayed for varying eye baselines. As expected, the distortion is a lot lower,
even for the most extreme outliers. Assuming a normal distribution for the
human eye baseline, and using parameters of a large scale anthropometric
survey [Gor89], the average depth budget distortion for this extreme example
is 1.033 for the DHIT+. In other words, it is neglectable. For the regular
DHIT, it is 2.907.

The baseline adjustment in the DHIT+ can be carried out easily for computer
generated imagery (CGI) by moving the virtual cameras. For natural content
on the other hand, this is not as straight-forward because adjusting the baseline
dynamically on set is not feasible. In both cases, precise knowledge about
the specific active depth cut parameters is necessary to perform the baseline
adjustment. As an alternative, a DHIT+ active depth cut can be emulated
by appropriate camera movement: Having a constant depth budget move
back or forth in the DHIT+ is similar to a camera movement in depth. It is
not the same, however. The camera movement differs in a way that image
content enters or leaves the vertical field of view depending on the movement
direction, whereas this is not the case with the DHIT+. Since this approach
is implemented a lot easier than the DHIT+, the camera movement is the
recommended procedure whenever the active depth cut parameters are already
known while shooting.

However, when that is not the case, applying the DHIT+ in post-production is
the only option. Here, depth-image-based rendering techniques, like the ones
described by Müller et al. [Mül11], are needed to adjust the camera baseline.
A respective approach, which is capable of processing Full HD S3D content in
real-time, has been implemented in CUDA C++ for this work. However, due
to common view interpolation problems and inaccurate depth maps, its results
contain many artifacts, although multiple artifact reduction algorithms have
been implemented [Bru15]. In an effort to minimize occlusion artifacts, it is
useful to choose Ztarg = Zmin so that the camera baseline is decreased and
not increased, as already explained in section 5.2.1.1. However, in order to
ensure high quality, sophisticated, elaborative, semi-automatic methods from
professional 2D to 3D conversion should be used here.
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5.2.2 Gaze Adaptive DHIT

The new approach called gaze adaptive convergence in stereo 3D appli-
cations (GACS3D) is one of the main contributions of this work and has
been described in previous publications by the author [Eic13c, Eic16]. Now,
recall the distinction between shifted and unshifted disparities, as explained
in section 3.1.1. The general concept of GACS3D is to estimate the visual
focus, retrieve the unshifted disparity at that point and use that as the new
target convergence disparity in the DHIT process. Thereby, the ZPS is slowly
established at the visual focus, reducing the AVD, which is supposed to reduce
visual discomfort and visual fatigue. The approach is basically compatible to
the DHIT+. However, as mentioned at the end of section 5.2.1, the common
real-time depth-image-based rendering approaches contain too many artifacts.

GACS3D comprises five steps, as depicted in figure 5.4. The steps are described
in more detail in the following sections. Some benchmark results are given
afterwards and it is compared to similar approaches. GACS3D is later evaluated
in two experiments in sections 5.3.4 and 5.3.5.

5.2.2.1 Visual Focus Estimation

A professional, research-grade, remote eye tracker is used [Tob14]. This eye
tracker combines both bright and dark pupil tracking and allows for free
head movement inside its comparatively big head box, ensuring comfortable
viewing conditions. The eye tracker delivers 60 binocular visual focus samples(
p̃G,L|R

)
k

per second in real screen-space pixel coordinates, where k is the
index of the time instance. These coordinates are affected by noise due to
technological limitations: According to the eye tracker specifications, the
accuracy is 0.4° and precision is 0.34°. Accuracy and precision are also
degraded by involuntary, unconscious eye movements. Only the conscious eye
movements are of interest in human-machine-interaction, as already described
in section 4.3.1.2. Because of that, the raw gaze data needs to be processed
accordingly in the next step.
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Figure 5.4: Processing steps of GACS3D.

5.2.2.2 Disparity Estimation

In this step, the disparity currently looked at needs to be retrieved, which
yields the new unshifted target convergence disparity Dtarg,k. This is done
using the probabilistic visual focus disparity estimation (PVFDE) described
in section 4.4.1. The PVFDE has been developed specifically for GACS3D
and is capable of retrieving accurate visual focus disparities based on noisy
gaze data. It involves a real-time region of interest (ROI) disparity map
estimation. Due to the DHIT, the displayed views in iteration k − 1 have been
shifted by ∓Dconv,k−1/2. This means that the gaze coordinates are given in
the shifted domain, and applying the PVFDE on these past views would yield
shifted domain disparities. However, unshifted disparities are needed for setting
the convergence disparity. This could be done by correcting the retrieved
shifted target disparity by Dconv,k−1 using equation (3.4). Instead of that, it
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is also possible to transform the gaze coordinates to the unshifted domain and
apply the PVFDE to the unshifted views of the current iteration k. This is
advantageous for two reasons: Firstly, removing a dependency on previous video
frames avoids initialization issues, and secondly, the disparity map estimation
might be better because there is no reduction of image information due to
interpolation in the shift operation. However, there is a certain timing offset
since the gaze data is dependent on the presented S3D views from iteration
k − 1, but the disparity is estimated based on the S3D views of iteration k,
which are displayed in the future. Compared to the overall system delay, this
offset is neglectable, however. The transformation of the gaze data to the
unshifted domain can be achieved by inverting the previous HIT:

(pG,L)k =
(
p̃G,L

)
k

+ 1
2Dconv,k−1 · ex (5.14)

(pG,R)k =
(
p̃G,R

)
k

− 1
2Dconv,k−1 · ex . (5.15)

5.2.2.3 Disparity Smoothing and Shift Speed Limiting

In the previous step, the new target convergence disparity Dtarg,k has been
retrieved. The results of experiment (I), which are described in section 5.3.2,
suggest that the shift speed vs,k needs to be limited to a certain value vs,max.
Furthermore, the effect of sudden changes in shift speed was not investigated
in that experiment. So, in order to avoid such speed changes, a simple one-tap
recursive filter is used to smooth the disparity

Dtarg,k = γ · Dtarg,k + (1 − γ) · Dconv,k−1 , (5.16)

where the smoothing factor was heuristically chosen to γ = 0.125 (for 60
iterations per second). Afterwards, the shift speed is limited. The current
unlimited speed is given by

vs,k =
∣∣Dtarg,k − Dconv,k−1

∣∣ , (5.17)

and the shift direction is

μk = sign
(
Dtarg,k − Dconv,k−1

)
. (5.18)
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The new speed-limited convergence disparity can be computed by

Dconv,k =

{
Dconv,k−1 + μk · vs,k = Dtarg,k if vs,k < vs,max

Dconv,k−1 + μk · vs,max otherwise.
(5.19)

5.2.2.4 Horizontal Image Translation and Floating Window Rendering

The S3D views have to be shifted by ∓Dconv,k/2 to the right. Since the
convergence disparity is non-integer, a horizontal cubic interpolation is used
to render the shifted views, which can be done very efficiently in parallel
computing using CUDA C++.

Afterwards, in order to avoid window violations, the floating window is applied
by rendering black borders on the sides of the S3D views, as described in
section 3.2.3.5.1. There are different, application-dependent strategies for
designing the floating window. In this case, an automated approach is needed.
Under the reasonable assumption that a floating window is already given in
the source material2, consider now the case that a DHIT is supposed to be
added with a certain shift speed vs and over a shift budget SB. Since the
S3D views are shifted in opposite directions, disparity changes with a speed
of 2 · vs. The disparity of the border, however, only changes with vs since
only the border in one view is moving, whereas the other border is fixed at
the display boundary. This means that no new window violations are induced
when the stereoscopic content is shifted further away from the viewer because
the content moves back twice as fast as the floating window, which ensures
that the floating window remains in front of the stereoscopic content in the
border regions. Conversely, if the content is shifted nearer to the viewer, the
content moves twice as fast to the front compared to the floating window.
Hence, new window violations can only be created in this case. A simple but
effective solution to this problem can be achieved by the following steps:

1. Estimate the disparity of the floating window already contained in the
source material simply by counting the number of black pixels.

2Most S3D content already has a floating window. If not, the disparities at the borders of
the S3D views have to be estimated to find the necessary floating window disparity. This is
problematic, however, because the border region disparities are error-prone due to lacking
pixels for the correspondency estimation.
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2. Count the columns of image content that have been shifted out of the
display area during a DHIT towards the observer.

3. Increase the width of the black border by that amount simply by rendering
black over the respective image content.

These steps ensure that the original floating window disparity is maintained.
The floating window moves just as fast towards the viewer as the S3D content.
Let SBfront be defined as the portion of the shift budget where the content
is moved closer to the viewer than the source material, i.e., the amount of
DHIT where window violations can actually occur. Under the condition that
no pixel in the respective border region of width |SBfront| exhibits a disparity
bigger than the floating window disparity, no new window violations are created.
This condition is fairly reasonable considering the usual small shift budgets.
Furthermore, a violation of this condition will likely only induce mild window
violations. As a downside of this approach, the width of the stereoscopic
window shrinks much more than without any compensation. In principle, this
approach can also be used when the content is shifted away from the viewer to
ensure that the depth of the floating window and the content does not differ
too much. However, this advantage is traded off with more shrinkage of the
stereoscopic window again. As mentioned above, the convergence disparity
is non-integer, so that the black border and the image content should be
interpolated, e.g., using a simple linear interpolation. A non-integer floating
window disparity estimation could also be implemented, which would prove
advantageous in the case of dynamic floating windows.

Finally, the shifted views are multiplexed into an S3D frame format and passed
to an OpenGL displaying routine.

5.2.2.5 Prototype Benchmark Results

The prototype has been implemented in a combination of MATLAB and
CUDA C++ in order to utilize the parallel processing power of a graphics card.
The prototype achieves 120 frames/s at Full HD resolution, including video
decoding, the OpenGL displaying routine and two disparity map estimations
per frame for 201 px by 101 px big regions of interest with a 9 px by 9 px sum
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of absolute differences (SAD) window size. Without the displaying routine,
the prototype achieves 135 frames/s. The test system consists of a 3.4 GHz
quad-core with hyper-threading, 16 GB DDR3-1600 and a CUDA compute
capability 3.5 graphics card that achieves 5.0 TFLOPS in single precision.

5.2.2.6 Distinction from Similar Approaches

The approach by Bernard et al. does not support natural S3D content [Ber14].
For their experiment, they have solved the problem of inaccurate eye tracking
by presenting very simple computer generated stimuli to the subjects with very
big targets. This also avoids any issues in the disparity estimation and lookup
because this information is readily available in the computer. The approach
by Hanhart et al., on the contrary, does support natural S3D content [Han14].
However, it relies on precomputed disparity maps, whereas GACS3D estimates
disparity in real-time, making it applicable to all kinds of S3D content without
any further pre-processing. Furthermore, Hanhart’s group has not considered
the huge extent of the system and oculomotor noise, which has already been
pointed out at the end of section 4.4. For performance reasons, they use a
nearest neighbor interpolation to implement the DHIT. This makes the shift
speed discretely transition between 0 px/frame and 1 px/frame to achieve the
desired 0.5 px/frame on average. This shift speed is comparatively high, as
discussed in section 5.3.5.6. In fact, in our experiments, many subjects would
have been annoyed by such a fast DHIT. The nearest neighbor approach may
furthermore lead to asymmetric shifting, with unknown side effects.

5.3 Evaluation

In this section, the results of four experiments are presented. In experiment (I)
described in section 5.3.2, the basic properties of DHIT were analyzed. The
main aim of the experiment was to find out what parametrization leads to
a perceivable or annoying DHIT. The proposed DHIT-enhancement DHIT+
was evaluated in a similar manner in experiment (II), which is described in
section 5.3.3. The results of these experiments were used to parametrize the
proposed enhancement GACS3D, which was evaluated in experiments (III) and
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(IV), described in sections 5.3.4 and 5.3.5.

5.3.1 Commonalities

All four experiments share a common ground, which is described in this section.

5.3.1.1 Rendering

The DHIT, or enhancements of it, is used in all four experiments. In order
to avoid discretization issues or blurring, as would be the case with nearest-
neighbor or linear interpolation, respectively, the DHIT is rendered in real-time
using a horizontal cubic interpolation.

5.3.1.2 Experimental Setup

The following experimental setup as depicted in figure 5.5 was designed in
accordance with the respective ITU recommendations [ITU12b, ITU12a] and
has been used in all experiments, except for a few changes that are pointed
out in the respective sections. The stimulus display was a 47 inch Full-HD
3D-LCD with passive polarizer glasses that was placed on a long table. All
signal processing of the display was disabled in the display settings, and it
was driven in Full-HD at a frame rate of 60 frames/s so that any effects of
low frame rate can be neglected. The crosstalk of the stimulus display had
been measured at nine points equally distributed over the screen plane, which
yielded an average crosstalk of 0.88 % according to the definition by Liou, as
described by Woods [Woo10]. This level of crosstalk does not induce visual
discomfort, as described in section 3.2.3.3. The subject sat in an office chair
in a distance of d = 3.1H ≈ 180 cm away from the screen, with H representing
the height of the display. From the subject’s point of view, the table was only
visible in the extreme periphery. Nevertheless, the table was covered with cloth
in all experiments in order to avoid reflections.
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Figure 5.5: The general experimental setup with a keyboard and a questionnaire
exemplarily laid out on the table.

5.3.1.3 Subject Screening and Rejection Criteria

As recommended in [ITU12a], subjects were examined regarding their visual
performance prior to participation in any experiment in the following way:
Snellen charts, the Ishihara color test, the randot butterfly stereogram and the
circle test were used to assess binocular visual acuity, color perception, gross
stereopsis and fine stereopsis, i.e. stereo acuity, respectively. A good overview
of examination methods for subjective S3D evaluations along with rejection
criteria is given by Lambooij et al. [Lam09a]. For the utilized examination
methods, the authors recommend to reject subjects meeting the following
criteria:

• Subjects exhibiting visual acuity worse than 80 %.

• Subjects failing the test for gross stereopsis.

• Subjects exhibiting stereo acuity worse than 60′′.

These rejection criteria were adopted in this work except for the one on stereo
acuity. In the experiments, subjects exhibiting up to 140′′ in stereo acuity were
accepted to take the test. The results of these subjects did not significantly
differ from the others’ results, i.e., they were not classified as outliers by the
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recommended methods [ITU12b], which legitimizes their inclusion.

5.3.1.4 Statistical Analysis

The experimental results have to be analyzed statistically. In addition to the
usual procedure to report mean values along with 95 % confidence intervals,
some more sophisticated methods are used throughout this work. While a
detailed description of these methods is beyond the scope of this work, their
basic concepts shall be described in this section. Further details can be found
in the widely available literature, e.g., by Gałecki and Burzykowski [Gał13].

The within-subjects design is a commonly used approach for subjective experi-
ments: Each stimulus is shown to each subject. The advantage of this approach
is that a lot of data can be gathered with a minimum number of subjects, in
contrast to the between-group design, where, e.g., stimulus A is presented
to subject group A and stimulus B to subject group B. The within-subjects
design implies that the regular multiple linear regression approach is unsuitable.
Instead, the linear mixed-effect model (LMEM) can be used [Gał13], which
combines fixed and random effects. While the fixed effects are predictors in
the model that are constant across subjects, the random effects vary individu-
ally [Gel05]. This approach ensures that a portion of the variability in the data
is attributed to individual subject properties rather than relating it all to the
fixed effects, which would be the case with regular multiple linear regression.
The predictors can be continuous or nominal variables. In the latter case, the
predictor is actually split up into multiple dummy-predictors, e.g., one for each
stimulus in a set of test stimuli. Sometimes, interactions between predictors
may also have an effect on the data, which can also be added to the model.

After fitting the LMEM to the data, a multiple correlation coefficient R2 ∈
� can be computed, which is interpreted in the same way as the Pearson
correlation coefficient r2: These metrics range from 0 % to 100 % and evaluate
how much of the variability in the data can be explained by the predictor(s), i.e.,
the underlying model. The estimated predictor coefficients allow the researcher
to analyze the contribution of each predictor to the data-variability. However,
a correlation between the data and a predictor might just be due to random
chance (null-hypothesis) instead of an actual statistical dependency (alternative
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hypothesis). There are numerous statistics for calculating or estimating the
probability p that a certain outcome is based on random chance, i.e., under the
assumption that the null-hypothesis is true. If that probability is lower than
a predefined level of significance, e.g., 5 %, 1 % or 0.1 %, the null-hypothesis
is rejected in favor of the alternative hypothesis, which states that there is a
statistical dependency. In the context of linear models, the null-hypothesis
is usually that a specific predictor is null, whereas the alternative hypothesis
states that the true coefficient is not null. For LMEMs, the F -statistic is used
to approximate the p-values of each predictor. In order to do so, the degrees
of freedom of the F -statistic have to be estimated. A conservative estimation
method is the one by Satterthwaite [Gał13], which is used throughout this
work. Furthermore, confidence intervals for a defined confidence level, i.e.,
probability can be computed for each estimated predictor coefficient. The
true predictor coefficients are located inside these intervals with the defined
probability.

5.3.2 Experiment (I): Determination of Perception and
Annoyance Thresholds

This section is based on previous publications by the author [Eic15, Eic16].
An explorative experiment has been conducted to find the circumstances
under which the DHIT is perceivable or annoying. There are two parameters
controlling the DHIT: the shift budget SB, see equation (3.11), and the shift
speed vs. As noted in section 5.1, vs is usually chosen heuristically by the
stereographer and the shift budget is dictated by the content. An application-
oriented DHIT design like this prevents proper orthogonalization of the DHIT
parameters, so an interactive test under artificial conditions was constructed.
In addition to the two DHIT parameters, it was also hypothesized that the
disparity budget of the underlying scene affects DHIT perception.

5.3.2.1 Experimental Setup

The experimental setup described in section 5.3.1.2 was extended by a black
keyboard with labeled keys for the subject interaction.
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Table 5.1: Parameters of all test images of experiment (I) after applying a static HIT.

Shifted disparity (px)
Sequence Frame # Budget Max. Min.
EBU “Lupo Hands” 945 46 26 -20
RMIT3DV 46 277 62 39 -23
RMIT3DV 29 956 73 28 -45
Industrial Pump - 92 42 -50
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Figure 5.6: Example for the cyclic convergence disparity sequence in experiment
(I). Here, the shift speed is vs = 0.154 °/s and the shift budget is
SB = 30 px ∧= 0.513° (±15 px).

5.3.2.2 Stimuli

For every test stimulus, the S3D views were shifted cyclically back and forth
over one of three defined shift budgets SB and at a subject adjustable
shift speed vs, which effectively orthogonalizes these two DHIT parame-
ters. The shift budgets were SB = {20 px,30 px,40 px}, which corresponds to
SB = {0.342°,0.513°,0.684°} in this experimental setup, see section 5.3.1.2.
The base material was preconverged by setting a convergence disparity Dconv,pre

and the cyclic convergence disparity sequence Dconv,cycl was added. This se-
quence was essentially a triangle wave with a defined speed and some hold
time at peaks and minima, as illustrated in figure 5.6. The edges of the cyclic
convergence disparity sequences were smoothed a little to avoid abrupt changes
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in shift speed. The overall convergence disparity was therefore

Dconv = Dconv,pre + Dconv,cycl . (5.20)

The third orthogonalization-parameter was the disparity budget, which is
generally determined by the underlying scene and camera setup, specifically
the camera baseline. For a true orthogonalization between disparity budget
and the other parameters, high resolution multi-baseline material is required,
which is rather rare. However, the main reason why such material was not used
is that showing only a single test sequence in different conditions risks to bore
and tire the subjects. This in turn would reduce the accuracy and reliability
of the results. Instead, four different video sequences were used: EBU 3DTV
Test sequence “Lupo_Hands” [EBU], RMIT3DV no. 29 and 46 [Che12], and a
custom synthetic test image showing an industrial pump. Considering the three
shift budget settings, this makes a total of 12 test stimuli. Still images of these
videos were shown because they are considered the worst case scenario for DHIT
detection since there is nothing distracting the subjects. Some parameters of
the used test images are summarized in table 5.1. Please note that, while
all the preconverged test sequences are contained in the zone of comfort of
±58 px, see section 3.2.3.1.2, the addition of the cyclic convergence disparity
sequences may lead to protrusion of this limit and therefore possibly create
visual discomfort or visual fatigue.

5.3.2.3 Procedure

For each stimulus, the shift speed was initialized to a very annoying setting,
which was vs = 0.5 px/frame. This value corresponds to vs = 0.513 °/s
in this experimental setup. The subject was asked to lower vs in steps of
0.025 px/frame ∧= 0.0257 °/s, using the labeled keyboard, until the DHIT was
just not deemed annoying anymore. By pressing the respective button, the
subject would then confirm that setting, which represents the annoyance
threshold. Afterwards, the subject would lower the speed even further until
the DHIT was just not perceivable anymore (perception threshold), and move
on to the next sequence. The subject was also allowed to increase speed again
or correct any vote, if deemed necessary. The 12 stimuli were presented in
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random order. In the introduction to the test procedure, the subject was asked
to explore the screen freely during the test, except for the border regions on
the left and right side of the display. These were excluded because the visible
frame of the display serves as a reference that makes the DHIT almost always
perceivable.

5.3.2.4 Subjects

There were 24 subjects excluding two rejections due to bad examination results
in visual acuity or fine stereopsis. Among the accepted subjects, seven had
prior experience in the field of subjective experiments, and four were expert
viewers. The test group mainly consisted of students and research assistants.
The subjects were aged 21 to 31, with an average of 25.04 years. More subject
details as well as examination results can be found in tables A.1 and A.2.

5.3.2.5 Results

The results are shown in figure 5.7. The plots show the perception and
annoyance thresholds on shift speed vs for each shift budget SB as a function
of disparity budget DB. In other words, the abscissas represent the different
sequences. The annoyance and perception thresholds were clearly correlated,
which is underlined by the high correlation coefficient r2 = 68.52 %. The
reason for this highly significant correlation is rather simple: One cannot be
annoyed by a visual artifact one cannot see.

For further analysis, an LMEM was fitted to the data. Since there was
obviously no linear connection between disparity budget DB and shift speed
vs, see figure 5.7, DB was not used as a continuous predictor for fixed effects.
Instead, the sequence name was used as a categorical predictor variable. As
for the other fixed effects, the shift budget SB was a continuous predictor, and
result type, i.e., annoyance or perception, was another categorical predictor.
Furthermore, a random effect of the subjects on the intercept coefficient was
added to the model to account for individual differences in this within-subjects
experimental design. The fitting operation yielded a very high R2 = 79.00 %.
The coefficients and their p-values are summarized in table 5.2. The annoyance
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(a) Shift budget SB = 0.34°.

46 62 73 920.05

0.10

0.15

0.20

0.25

0.30

Disparity budget (px)

Sh
ift

sp
ee

d
(°/

s)

(b) Shift budget SB = 0.51°.
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(c) Shift budget SB = 0.68°.

Figure 5.7: Perception (diamond) and annoyance (square) thresholds of DHIT in
experiment (I).
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Table 5.2: Estimated linear mixed-effect model parameters with 95 % confidence
intervals and p-values in experiment (I) (R2 = 79.00 %). The predictors
are related to the perception samples of the DHIT for the sequence
“Engineering”, unless specified differently in the name of the predictor.

Predictor Coefficient p-Value

Intercept (+0.1232 ± 0.0301) °/s 2.9 · 10−10

Seq. (Lupo Hands) (−0.0071 ± 0.0096) °/s 0.1472
Seq. (RMIT3DV 29) (+0.0039 ± 0.0096) °/s 0.4250
Seq. (RMIT3DV 46) (−0.0176 ± 0.0096) °/s 3.6 · 10−4

Shift budget (+0.0379 ± 0.0244) s−1 0.0024
Result type (Annoyance) (+0.0947 ± 0.0068) °/s 2.2 · 10−104

and perception thresholds significantly differed with p < 10−103. Furthermore,
the results for sequence “RMIT3DV 46” significantly differed from the other
sequences with p < 0.001. This content dependency is observable in figure 5.7
where each graph exhibits roughly the same value progression. There was also
a significant effect of shift budget on the results with p < 0.01. Considering
the range of shift budgets in this experiment, the effect of this predictor is
comparatively low, however. In fact, removing the predictor from the model
still yields an R2 = 78.64 % with almost the same coefficients as in table 5.2.
The mean values of all the data and the 95 % confidence intervals were also
calculated. On average, a shift speed of vs = (0.137 ± 0.008) °/s was not
perceivable and vs = (0.232 ± 0.010) °/s was not annoying anymore. However,
the average annoyance threshold is not really of interest, since in practice it
is important to ensure that the DHIT is never deemed annoying by anyone.
This makes the lower boundaries of the confidence intervals in figure 5.7 a
lot more interesting, which is as low as vs = 0.171 °/s for the second sequence
“RMIT3DV 46”.

A more detailed analysis of the data of each subject revealed a problem,
however. The perception and annoyance thresholds were averaged over all
sequences for each subject separately and the results are shown in figure 5.83.
There were obviously strong individual differences in the perception of the
DHIT. One subject was annoyed by shift speeds as slow as vs = 0.08 °/s, but
one other extreme example only started to be annoyed by shift speeds as fast as

3The graph also shows again the strong correlation between perception and annoyance.
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Figure 5.8: Per-subject average annoyance threshold over per-subject average per-
ception threshold in experiment (I) with 95 % confidence intervals in
both directions and a linear fit based on raw data to illustrate the strong
correlation between annoyance and perception.

vs = 0.38 °/s. Overall, 76.75 % and 71.76 % of the variability of the perception
and annoyance samples, respectively, was due to these individual differences.
The identified significant effects on the contrary only explained less than 2 %
of the data variability.

5.3.2.6 Discussion

When designing the DHIT, it is important to ensure that nobody in the audience
gets annoyed by it. Considering the observed strong individual differences
in DHIT sensitivity, this is not as much an easy task as one might assume.
Rejecting the extreme outliers in figure 5.8, the author of this work recommends
to keep the shift speed in the range 0.1 °/s to 0.12 °/s. This recommendation
can be applied generally, although a significant effect of shift budget and
content was found. However, the impact of these effects on the results was
very low compared to the individual differences.

In interviews conducted directly after the test, some subjects said that it
was easier to detect DHIT in image regions with big depth discontinuities.
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Consequently, the local distribution of depth discontinuities would be a good
candidate for further testing. The reason for the heightened sensitivity towards
DHIT in these regions could be the unnatural distortion of the depth budget
described in section 3.1.1. This distortion becomes more distinct the bigger
the disparity gradient is. The distortion-free approach DHIT+ is investigated
in the next section.

5.3.3 Experiment (II): Comparison of DHIT and DHIT+

In this experiment, the DHIT is compared to the DHIT+, which eliminates
the distortion of the depth budget. The experimental setup and procedure is
exactly the same as in experiment (I). Annoyance and perception thresholds
are measured for both methods rather than just the regular DHIT. CGI is used
here because it is such an elaborative undertaking to implement high quality
baseline adjustment of natural content, as mentioned in section 5.2.1.3. The
use of CGI furthermore enables a true orthogonalization of shift budget and
disparity budget, in contrast to experiment (I).

5.3.3.1 Stimuli

Once again, the S3D views were shifted cyclically back and forth at a speed
that was configurable by the subject. However, this time not only the DHIT
but also the DHIT+ was tested. Each test scene should be tested with
two shift budgets SB = {15, 30} px ∧= {0.257, 0.513} ° and two disparity
budgets DB = {60, 86} px. With the two different approaches, this means
that subjects would be exposed eight times to each test scene. This risks
boring and fatiguing the subjects by showing the same test scenes too often
and having the experiment last too long. Instead, only the scene “Computer”
was generated with all conditions, while the other test scenes were added for
more variety with either one of the disparity budgets and only one shift budget,
see table 5.3. Hence, all other sequences were only shown twice, once with
each approach.

In an effort not to spend too much time on designing visually pleasing 3D test
scenes, the S3D capable open source video game “Doom 3” was programmati-
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Table 5.3: Parameters of all test sequences in experiment (II).

Sequence name Disparity budgets (px) Shift budget (°)
Computer 60, 86 0.257, 0.513
Dungeon 86 0.513
Flying floor 60 0.513
Lava 60 0.513
Workers 86 0.513

cally modified so that still S3D scenes with varying camera baseline could be
exported as a video.

5.3.3.1.1 DHIT Stimuli

The DHIT stimuli were designed in the same way as the ones in experi-
ment (I) described in section 5.3.2.2. The S3D image pairs were taken from
the first frame of the left and right view DHIT+ stimulus video sequences
described in the next section. The material was preconverged by setting a
convergence disparity Dconv,pre in such a way that the disparity budget was
split equally between crossed and uncrossed disparities. This means that any
scene with a disparity budget DB = 86 px exhibited shifted disparities of
D̃ = ±43 px in the preconverged state. Again, a cyclic convergence disparity
sequence was added. The example in figure 5.6 shows a cyclic convergence
disparity sequence with the maximum shift budget of 30 px (±15 px). For the
maximum disparity budget of DB = 86 px, this would yield shifted disparities of
D̃ = ±(43 + 15)px = ±58 px. In this experimental setup, this disparity range
corresponds to the zone of comfort as defined by Lambooij et al. [Lam09b],
compare section 3.2.3.1.2. This was supposed to prevent visual fatigue among
the subjects throughout the experiment.

As a final step, each stimulus sequence was inspected for window violations,
and appropriate floating windows were manually added to avoid this kind of
artifact, compare section 3.2.3.5.1. The same floating windows were also
used for the DHIT+ stimuli.
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5.3.3.1.2 DHIT+ Stimuli

As explained in section 5.2.1.2, speed is controlled differently in the DHIT+
in a way that a certain disparity has to be chosen for speed control. Since
the aim of both DHIT and DHIT+ is to dynamically adjust convergence in
the context of this experiment, it was decided to control the speed of the
convergence disparity adjustment. This can be done as follows.

The scaling factors α for the convergence disparity sequence of the DHIT
stimuli can be computed using equation (5.8). For the cyclic convergence
disparity sequence depicted in figure 5.6, this yields something similar to
figure 5.9. Applying the calculated factors to the convergence disparity from
the DHIT stimuli, i.e., equation (5.20), yields

D∗
conv = α · Dconv,pre︸ ︷︷ ︸

D∗
conv,pre

+ α · Dconv,cycl︸ ︷︷ ︸
D∗

conv,cycl

. (5.21)

There is now an additive combination of two temporally dynamic shift sequences.
The scaled convergence disparity D∗

conv,pre on its own ensures that objects
in the display plane remain in the display plane when adjusting the baseline.
In other words, the convergence plane does not move. The addition of
D∗

conv,cycl implements the cyclic convergence disparity sequence. For an
unbiased comparison between DHIT and DHIT+, the cyclic convergence
disparity sequences should be equal. However, this is obviously not the case
here, since D∗

conv,cycl = α · Dconv,cycl �= Dconv,cycl. The solution to this
problem is to compute new scaling factors for an alternative cyclic convergence
disparity sequence Dconv,alt. This sequence can be found through numeric
optimization methods such that it satisfies α · Dconv,alt = Dconv,cycl, i.e., the
resulting scaled, cyclic convergence disparity sequence is equal to the original
unscaled sequence. Figure 5.9 depicts the final sequence of scaling factors.
This yields the corrected scaled convergence disparity sequence

D∗
conv,corr = α · Dconv,pre + α · Dconv,alt︸ ︷︷ ︸

Dconv,cycl

. (5.22)

Every shift speed setting vs yields a different sequence of scaling factors
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Figure 5.9: Example for a final sequence of linear scaling factors for the DHIT+ in
experiment (II).

and corrected scaled convergence disparities D∗
conv,corr. Hence, for each vs,

the scaling factors were applied to the camera baseline of a test scene and
exported as a video sequence along with the respective convergence disparities
D∗

conv,corr. The scaling factors were computed using Ztarg = Zmin and the
average human eye baseline of be = 6.3 cm [Dod04, War95]. The eye baseline
varies individually, which affects the perceived depth. However, as already
mentioned in section 5.2.1.3, the depth distortion due to an eye baseline
mismatch is neglectable compared to that of the regular DHIT.

During a trial, the videos had to be played repeatedly until the subject was
done with the task. The hold time at the end of each cycle, see figures 5.6
and 5.9, was used to slowly blend the last video frame into the first. Thereby,
sudden (dis-)appearance of some very subtle coding artifacts was avoided.
Aside from these coding artifacts, the material generated by “Doom 3” also
exhibited some subtle aliasing at vertical and horizontal object borders, a
common problem of CGI. This aliasing was temporally dynamic due to the
baseline adjustment, and its visibility varied from scene to scene. There were
also some software-internal issues that lead to some objects appearing to jitter
slightly in depth during the baseline adjustment.
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(a) Disparity budget DB = 60 px.
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(b) Disparity budget DB = 86 px.

Figure 5.10: Annoyance (square) and perception thresholds (diamond) for DHIT
(black) and DHIT+ (gray) with 95 % confidence intervals for orthogo-
nalized sequence “Computer” in experiment (II).

5.3.3.2 Subjects

Of the 31 subjects, 28 were accepted to take the test. The accepted subjects
were aged 22 to 31 with an average of 24.89 years. Six of them were expert
viewers, and 13 had prior experience in subjective evaluations. The test group
mainly consisted of students and some research assistants. More subject details
as well as examination results can be found in tables A.1 and A.2.

5.3.3.3 Results

The results for the sequence “Computer” are displayed in figure 5.10. This
test scene was the only one which was presented in two different disparity
budgets and two different shift budgets, i.e., where a true orthogonalization
between these two parameters was given. This was not possible in the previous
experiment. Once again, an LMEM was fitted to the data. Since disparity
budget DB and shift budget SB were both continuous variables this time,
they were used as continuous predictors for fixed effects. The method, i.e.,
DHIT or DHIT+, and the result type, i.e., annoyance or perception, were
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Table 5.4: Estimated linear mixed-effect model parameters with 95 % confidence
intervals and p-values for sequence “Computer” in experiment (II) (R2 =
76.34 %). All predictors are related to the perception samples for DHIT,
unless specified differently in the name of the predictor.

Predictor Coefficient p-Value

Intercept (+0.1883 ± 0.0383) °/s 5.6 · 10−15

Shift budget (−0.0001 ± 0.0010) s−1 0.8335
Method (DHIT+) (+0.0949 ± 0.0335) °/s 4.7 · 10−8

Result type (Annoyance) (+0.1120 ± 0.0106) °/s 2.2 · 10−66

Shift budget × Method (DHIT+) (−0.0018 ± 0.0014) s−1 0.0133

categorical predictors for fixed effects. The results for DHIT+ seem to be
correlated with SB, which can be modeled as a two-way interaction between
SB and the method predictor. As a first explorative step, all other possible
two-way interactions were also added to the model. Additionally, a random
effect of the subjects on the intercept coefficient was modeled to account for
individual differences. This yields a high R2 = 76.60 % and no significant
contribution of DB or SB. The annoyance and perception thresholds obviously
differed significantly, as did the DHIT from the DHIT+. The only significant
interaction was the one between SB and DHIT+. So, a reduced model
containing only the significant predictors4 was fitted to the data, yielding
again a high R2 = 76.34 %. The coefficients and p-values are summarized in
table 5.4. The DHIT+ significantly reduced annoyance and perception with
p < 10−7. The results for the DHIT were not significantly affected by SB.
For the DHIT+ on the other hand, there was a significant effect of SB with
p < 0.05. Despite this significant effect, the mean values and their associated
95 % confidence intervals over all conditions of the sequence “Computer” were
calculated, which are summarized in table 5.5. This table clearly shows how
DHIT+ reduces perception and annoyance.

Figure 5.11 depicts the results of all stimuli with a shift budget of 0.513° for
both disparity budgets. While the DHIT still exhibited little variation in the
perception and annoyance thresholds for all sequences and disparity budgets,

4The predictors are: method, result type and the interaction between SB and method. The
insignificant predictor SB also had to be added to the model because it is used in the
interaction.
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Table 5.5: Mean perception and annoyance thresholds with 95 % confidence intervals
for sequence “Computer” in experiment (II).

Method Perception (°/s) Annoyance (°/s)
DHIT 0.187 ± 0.017 0.296 ± 0.019
DHIT+ 0.239 ± 0.020 0.354 ± 0.018

Table 5.6: Estimated linear mixed-effect model parameters with 95 % confidence
intervals and p-values for all sequences exhibiting a shift budget of 0.513°
in experiment (II) (R2 = 77.47 %). The intercept predictor represents
the perception samples of the sequence “Computer” at disparity budget
DB = 60 px for the DHIT. All other predictors represent the difference to
the intercept under different conditions.

Predictor Coefficient (°/s) p-Value

Intercept +0.1806 ± 0.0339 7.4 · 10−14

Seq. (Lava) +0.0092 ± 0.0210 0.3926
Seq. (Flying floor) +0.0142 ± 0.0210 0.1853
Seq. (Computer D86) +0.0018 ± 0.0210 0.8642
Seq. (Dungeon) +0.0128 ± 0.0210 0.2315
Seq. (Workers) +0.0124 ± 0.0210 0.2486
Method (DHIT+) +0.0509 ± 0.0210 2.5 · 10−6

Result type (Annoyance) +0.1192 ± 0.0086 2.7 · 10−109

Seq. (Lava) × Method (DHIT+) +0.0348 ± 0.0298 0.0218
Seq. (Flying floor) × Method (DHIT+) −0.0128 ± 0.0298 0.3974
Seq. (Computer D86) × Method (DHIT+) −0.0193 ± 0.0298 0.2044
Seq. (Dungeon) × Method (DHIT+) −0.0055 ± 0.0298 0.7168
Seq. (Workers) × Method (DHIT+) +0.0257 ± 0.0298 0.0908

Table 5.7: Mean perception and annoyance thresholds with 95 % confidence intervals
over all sequences in experiment (II). Additionally, the results of experiment
(I) are included.

Method Perception (°/s) Annoyance (°/s)
DHIT 0.191 ± 0.014 0.304 ± 0.013
DHIT+ 0.245 ± 0.015 0.365 ± 0.012
DHIT (Exp. I) 0.137 ± 0.008 0.232 ± 0.010
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(b) Disparity budget DB = 86 px.

Figure 5.11: Annoyance (square) and perception thresholds (diamond) for DHIT
(black) and DHIT+ (gray) with 95 % confidence intervals for all se-
quences exhibiting a shift budget of 0.513° in experiment (II).

there was some variation in the results for the DHIT+. An LMEM with the
categorical predictors sequence, method and result type as well as all possible
two-way interactions was fitted to the data. The model also included a random
effect of the subjects on the intercept coefficient to account for individual
differences and yielded R2 = 77.57 %. The interactions between sequence and
result type as well as method and result type were insignificant, which lead
to a reduced model with only one interaction between sequence and method,
yielding R2 = 77.47 %. The coefficients and p-values are summarized in
table 5.6. Again, the DHIT+ significantly reduced perception and annoyance
with p < 10−5. As expected from figure 5.11, the effect of the sequences
on the DHIT results is insignificant. For the DHIT+, however, the sequence
“Lava” differed significantly with p < 0.05. Despite this significant effect, the
perception and annoyance thresholds were also averaged over all available data,
see table 5.7. This shows again the improvement of the DHIT+ over the
regular DHIT.

Most of the variability in the data originates once again from individual
differences, as can be seen in figure 5.12. In this figure, the average annoyance
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(a) DHIT results.
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(b) DHIT+ results.

Figure 5.12: Per-subject average annoyance threshold over per-subject average per-
ception threshold in experiment (II) with 95 % confidence intervals in
both directions and a linear fit based on raw data to illustrate the strong
correlation between annoyance and perception.
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thresholds for each subject are plotted over their average perception thresholds
along with 95 % confidence intervals for both parameters. The sensitivity
varied strongly between individuals. Within individuals however, there was
a strong correlation between DHIT and DHIT+ with r2 = 89.23 % and
r2 = 86.81 % for perception and annoyance data, respectively. Furthermore, a
significant correlation between perception and annoyance was again observed.
The correlation coefficients were r2 = 53.34 % and r2 = 49.43 % for DHIT
and DHIT+, respectively.

5.3.3.4 Discussion

For comparison, table 5.7 also includes the results of experiment (I). The
previously measured perception and annoyance thresholds for the DHIT were
considerably lower than those of the current experiment. This might be due to
the observed strongly varying individual differences in the perception of DHIT
or DHIT+: the subjects having participated in the last experiment might just
be more sensitive to DHIT-like processing. It is also possible that some content
characteristic is responsible for this difference because natural video content
was used in the last experiment, whereas CGI from a video game was used here.
Since the true origin of this mismatch in the results is unknown, a conservative
recommendation is to keep the shift speed for the DHIT in the range 0.10 °/s
to 0.12 °/s, as of experiment (I). With the DHIT+, the convergence disparity
can be set about 50 % faster, i.e., the shift speed can be increased by 0.05 °/s
due to its significantly reduced annoyance-potential.

In this experiment, disparity budget and shift budget could be truly orthogo-
nalized and no significant effect of disparity budget was found. Surprisingly,
there was no significant effect of shift budget (or content) for the DHIT either,
in contrast to experiment (I). The magnitude of these effects in experiment (I)
was comparatively low, which might be the reason for their vanishing. For the
DHIT+, however, both shift budget and content contributed significantly to
the results. Since the effect of disparity budget was found to be insignificant,
the content dependency was likely due to some other content characteristic.
The aliasing and depth-jitter issues described in section 5.3.3.1, whose visi-
bility varies from sequence to sequence, might be the originators here. The
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existence of these artifacts in the test material unfortunately prevents any
conclusions about the distortion of depth affecting DHIT perception. However,
the important conclusion is that the new approach DHIT+ allows for faster
convergence disparity adjustment, i.e., it significantly reduces annoyance and
perception even though it was tested with such erroneous test material. The
artifacts could also be the explanation for the dependency on shift budget since
a longer shift allows more artifacts to show up.

5.3.4 Experiment (III): Effect of Gaze Adaptivity

The scope of this experiment was twofold. Firstly, the effect of GACS3D on
the perception of DHIT should be investigated. Secondly, while the DHIT
was designed completely independent of the underlying scene structure in
the first two experiments, it was designed in a more application-oriented way
here: Different interesting objects were slowly brought into the ZPS. Thereby,
practical limits for the shift speed should be found. This section is based on
previous publications by the author [Eic15, Eic16].

5.3.4.1 Experimental Setup

The experimental setup was the same as described in section 5.3.1.2. Addi-
tionally, a questionnaire was placed on the table for the subject to fill out.

5.3.4.2 Stimuli

The aim of this experiment was to evaluate how different shift speeds vs are
perceived in a gaze adaptive DHIT design compared to the regular design. In
order to truly isolate the effect of gaze adaptivity, the presented DHIT sequence
must be the same in both conditions. Furthermore, the DHIT sequence must
be predetermined for each stimulus, so that results are comparable between
subjects. These restrictions prevented the actual usage of GACS3D and called
for an emulation of gaze adaptivity. Again, still images were used as the base
material for the same reason as in the first experiments: It is considered the
worst case scenario for DHIT detection. Every test image was presented under

109



5 Dynamic Horizontal Image Translation

three different conditions:

1. “GACS3D”

A stereoscopic pointer was shown at a deterministic series of different
interesting locations for 0.5 s to 1.5 s each and wherever the pointer was,
the ZPS was slowly established through DHIT at a defined maximum
speed vs,max. The subject was asked to always fixate on that pointer,
which effectively emulates GACS3D by replacing the eye tracker with
deterministic pointer locations. The pointer strongly attracts attention,
because it is the only moving object on those still images. In order to
truly synchronize eye movements and DHIT, the human saccadic reaction
time has to be compensated for. As mentioned in section 2.1, it is
240 ms on average [Joo03] but can be a lot faster [Gez97]. Because of
that, the DHIT was delayed by 150 ms, which was judged most natural
by a small test group.

The DHIT sequence generated by this test condition was used in all
other test conditions as well. The only difference is the presentation of
the pointer.

2. “Movie”

Here the pointer was simply hidden and the subject was allowed to
explore the screen freely, just like when watching a movie. The results
of this condition serve as a reference because the condition is similar to
experiments (I) and (II).

3. “Control”

The effect of gaze adaptivity can be analyzed by comparing the results
of the first two conditions. However, the visible pointer might pose a
distraction that alters the results. So, in order to check the validity
of that comparison, a “Control” condition was introduced: A pointer
was shown at a different deterministic series of locations that did not
actually converge. Hence, the DHIT was not gaze adaptive just like
in the “Movie” condition, while a pointer was shown. If the “Control”
condition yields approximately the same results as the “Movie” condition,
it is safe to say that the effect of the visible pointer is neglectable and
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any differences in the results of the “Movie” and “GACS3D” conditions
can be attributed to gaze adaptivity.

There were 26 still images accompanied by estimated disparity maps exhibiting
disparity budgets ranging from 14 px to 92 px. The images were taken from
the EBU [EBU] and RMIT3DV [Che12] S3D test sequence libraries in addition
to the industrial pump test image, which has already been used in experiment
(I). Each test image was assigned one of seven maximum DHIT speed values
equally distributed on the interval 0.125 px/frame to 0.5 px/frame, which is
equivalent to 0.128 °/s to 0.513 °/s in this experimental setup. The mean shift
speed is dependent on the disparity budget of a scene, the pointer locations and
the maximum shift speed setting vs,max. The series of pointer locations and
vs,max were chosen in such a way that maximum and mean shift speed were
approximately of the same order of magnitude. This constraint and the limited
available test material resulted in unequal numbers of stimuli per maximum
shift speed setting and, furthermore, a slight correlation between shift speed an
disparity budget. The details about the stimuli are summarized in table A.3.

5.3.4.3 Procedure

The test images were rated under the three conditions independently in random
order in a non-interactive single stimulus impairment scale test [ITU12a], where
the subject was instructed to rate their perception of the DHIT. A discrete scale
was used with labels translated to German: “5: imperceptible”, “4: perceptible,
but not annoying”, “3: slightly annoying”, “2: annoying”, “1: very annoying”.
Again, the subject was instructed not to rate a sequence while watching at the
border of the display, because the DHIT is always perceivable there. The first
five ratings were neglected as recommended in [ITU12b]. In order to familiarize
the subject with the procedure and the DHIT, some anchor sequences were
shown before the test.

5.3.4.4 Subjects

There were 17 subjects allowed to participate in this experiment. They were
aged 23 to 30 years, 24.65 years on average. All of the subjects were students,
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Figure 5.13: Mean opinion scores for each sequence over maximum shift speed in all
three conditions in experiment (III) along with the LMEM-fit.

but two of them are to be considered expert viewers, who also had prior
experience in subjective experiments. There were two rejections due to bad
examination results in visual acuity or fine stereopsis. Further details can be
found in tables A.1 and A.2.

5.3.4.5 Results

As mentioned before, one of seven maximum shift speed settings was assigned
to each test sequence so that there are multiple sequences per maximum shift
speed. This speed and the GACS3D pointer location determined the mean
shift speed of the sequence. Although the mean opinion scores (MOSs) of
the sequences correlated a little bit better with mean shift speed, the MOSs
are plotted over maximum shift speed in figure 5.13 because the mean shift
speed is of limited interpretability and applicability to a stereographer5. For a
more detailed analysis, an LMEM was fitted to the data. The model consisted
of the continuous predictor vs,max and the categorical predictor condition,
i.e., “GACS3D”, “Movie” or “Control”. The interaction of these predictors

5This leads to the discrete and multivalent distribution of samples in figure 5.13.
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Table 5.8: Estimated linear mixed-effect model parameters with 95 % confidence
intervals and p-values in experiment (III) (R2 = 44.31 %). All predictors
are related to the “Control” condition, unless specified differently in the
name of the predictor.

Predictor Coefficient p-Value

Intercept +5.086 ± 0.305 1.5 · 10−20

Condition (GACS3D) −0.195 ± 0.303 0.2054
Condition (Movie) +0.034 ± 0.318 0.8308
Max. speed (−4.402 ± 1.140) s/° 1.3 · 10−7

Condition (GACS3D) × Max. speed (+1.579 ± 1.047) s/° 0.0036
Condition (Movie) × Max. speed (−0.248 ± 1.216) s/° 0.6794

Table 5.9: Annoyance and perception thresholds in experiment (III).

Condition Perception (°/s) Annoyance (°/s)
GACS3D 0.138 0.493
Movie 0.133 0.348
Control 0.133 0.360

was also added to the model in order to find out whether the perception of
“GACS3D” relates differently to vs,max compared to the other two conditions.
The results of the first two experiments revealed strong individual differences
in the relation between shift speed and perception. Because of that, a random
effect of subjects on the whole fixed effect portion of the model was added,
which finally yielded R2 = 44.31 %. The model parameters and p-values are
summarized in table 5.8.

As expected, there was a significant effect of vs,max with p < 10−6. The linear
functions of this model are plotted in figure 5.13 for each condition. The lines
for “Movie” and “Control” are almost the same. This also shows in table 5.8
where any prediction with “Condition (Movie)” was highly insignificant with
p > 0.65. Hence, these two conditions were declared as approximately equal,
which rendered the comparison of the conditions “GACS3D” and “Movie”
legitimate. The line of “GACS3D” is a lot more flat-angled. This can also
be seen in table 5.8 in the form of a significant interaction with vs,max with
p < 0.01.
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Figure 5.14: Standard deviation of scores for each sequence over maximum shift
speed in all three conditions in experiment (III) along with linear fits for
each condition.

It is possible to derive annoyance and perception thresholds from the LMEM.
The transition from “imperceptible” to “perceptible, but not annoying” at score
4.5 represents the perception threshold and the next transition to “slightly
annoying” at score 3.5 represents the annoyance threshold. Rearranging the
linear equations of the LMEM to find the critical speeds for these scores
yielded the average thresholds summarized in table 5.9. While the perception
thresholds are almost the same, the annoyance threshold of “GACS3D” is
increased a lot compared to the other conditions.

The standard deviation of scores per sequence is plotted in figure 5.14. It
was slightly correlated to vs,max with r2 = 12.53 % and r2 = 17.99 % for
“GACS3D” and “Movie”, respectively.

5.3.4.6 Discussion

The main finding of this experiment was that GACS3D significantly positively
interacted with maximum shift speed vs,max. It is concluded that GACS3D
reduces annoyance, compare table 5.9.
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As mentioned before, the “Movie” condition was supposed to serve as a
reference for comparison to the previous experiments. The perception threshold
in table 5.9 strongly agreed with the results from experiment (I), but the
annoyance threshold was increased, compare table 5.7. In fact, it was almost
as high as the annoyance threshold of DHIT+. This increase might be due to
the different experiment design and the type of DHIT. The DHIT occurred
only sporadically and over comparatively short time periods in this experiment.

The multiple correlation coefficient R2 = 44.31 % of the LMEM was rather
low compared to the first two experiments. It is believed that this was due to
two reasons. One the one hand, the design of the DHIT had previously been
very strict and homogeneous, whereas it was rather sporadic in this experiment.
Hence, vs,max might just not be a very good predictor. On the other hand,
rating impairments is inherently more difficult than simply adjusting shift speed.
Hence, in this experiment, more error variance was given.

The slight correlation between the standard deviation of the per-sequence scores
and vs,max could be due to individual differences in DHIT sensitivity, which
was already observed in experiments (I) and (II), see figures 5.8 and 5.12.
For very slow vs,max values, the stimuli are likely rated imperceptible by all
subjects, whereas for faster stimuli, the perception of the DHIT individually
differs.

5.3.5 Experiment (IV): Evaluation of the Full GACS3D
Prototype

The proposed approach GACS3D is supposed to reduce visual fatigue. Evalu-
ating visual fatigue directly would require prolonged viewing sessions, which
would be a very elaborate and ambitious undertaking. Instead, visual dis-
comfort was evaluated as an indicator for visual fatigue in a pair comparison
test, similarly to what Hanhart et al. did [Han14]. This section is based on a
previous publication by the author [Eic16].
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Figure 5.15: Experimental setup in experiment (IV).

5.3.5.1 Experimental Setup

The basic experimental setup was the same as in section 5.3.1.2. However,
some modifications were necessary because of the utilized eye tracker. The
eye tracker was placed on the table on a custom-made stand that enables a
precise eye tracker calibration at this comparatively high operating distance of
d = 3.1H ≈ 180 cm. Due to the passive polarized S3D glasses, the eye tracker
performance was degraded. Because of that, the subject was illuminated by two
spotlights positioned left and right of the table, as can be seen in figure 5.15. In
order not to blind the subject with those spotlights, the background illumination
was increased by enabling the ceiling lighting of the laboratory. Because of
that, the light density of the background was approximately 45 cd/m2 and its
color was CIE (x, y) = (0.39, 0.40). Hence, this experimental setup was not
compliant with the respective ITU recommendations [ITU12a, ITU12b]. Prior
to the test, subjects were asked whether the spotlights blinded them and none
affirmed. Furthermore, black blinders were added on both sides of the glasses
to prevent visible reflections on the back-facing side of the filter glasses.

5.3.5.2 Stimuli

Since the final prototype should be evaluated in this experiment, moving
sequences from the EBU [EBU], NAMA3DS1 [Urv12] and RMIT3DV [Che12]
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Table 5.10: Parameters of all test video sequences of experiment (IV).

Disparity (px)
Sequence ID Frames Max. Min. ZPS FW
EBU “Lupo Hands”a 1 301a-600a 46 -36 -24 20
NAMA3DS1 “Umbrella” 2 76-325 19 -39 -23 20
RMIT3DV 02 3 1-300 31 0 15 22
RMIT3DV 29 4 951-1250 45 -28 19 23
RMIT3DV 43 5 1-300 0 -69 -30 35
RMIT3DV 46 6 251-550 -9 -72 -40 30

a This sequence is actually available in 50 frames/s, but was downsampled to 25 frames/s so
that it has the same frame rate as the other sequences.

stereo 3d test sequence libraries were used, rather than still images. The six
videos were presented under three different conditions:

1. “Raw”

No HIT was applied to the stereo views. The scene was presented “as
is”. Please note that all the material was already pre-converged in some
way.

2. “ZPS”

A static HIT was applied to establish a certain ZPS. The convergence
disparity was manually chosen by an expert with the aim to minimize
visual discomfort while simultaneously generating a visually pleasing
depth sensation.

3. “GACS3D”

The full prototype as described in section 5.2.2 was used to realize
the gaze adaptive DHIT. The views were shifted at a maximum speed
of vs,max = 0.12 °/s, which was the recommended shift speed as of
experiment (I). The DHIT was updated at a rate of 60 Hz, in accordance
with the previous experiments.

The video sequences are available in 25 frames/s. In order to avoid any motion
judder, the sequences were played at an increased speed of 30 frames/s, so that
every frame was played twice on the 60 Hz display. The resulting test sequences
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still looked natural at this increased speed and were 10 s long. Details on the
video sequences are summarized in table 5.106.

To avoid window violations, floating windows were added to each stimulus.
Instead of the automated floating window approach of GACS3D described
in section 5.2.2.4, a static floating window was applied in order to avoid
distraction of the subjects by temporal changes in floating window disparity.
This was achieved by cropping the views on both sides in such a way that no
content is shifted out of the display area and manually setting the floating
window to a fixed disparity for each sequence. This decreases the width of
the stereoscopic window, but completely removes window violations in a static
fashion. Furthermore, retinal rivalries due to the visible display frame, as
described in section 3.2.3.5.1, are avoided in this way. The floating window
disparities can be found in table 5.10, alongside the disparities for the ZPS of
the second condition. The listed floating window disparities can be a lot bigger
than the respective maximum disparities, because the floating window must
be able to eliminate window violations even for the most extreme convergence
disparities, i.e., when the background is looked at with GACS3D so that the
whole scene is shifted in front of the display.

5.3.5.3 Procedure

The visual discomfort of the conditions was evaluated using the pair comparison
method [ITU12a] in a simple preference judgment (“A is better”, “equal”, “B
is better”). A graded scale was not necessary because the differences between
the conditions were hardly perceivable. In an effort to help the subject to see
the subtle differences, each condition was repeated once per trial (A-B-A-B). In
the case of “GACS3D”, this means that the DHIT applied to the sequence was
not the same in both playthroughs due to the gaze adaptivity. However, this
ensures that it is actually GACS3D that is being rated and not some random
DHIT sequence. After stimulus exposure, the subject would simply speak out
the rating of the current comparison. All condition combination pairs were
tested (“Raw” vs. “ZPS”, “Raw” vs. “GACS3D”, “ZPS” vs. “GACS3D”), but

6Please note that some values may differ from those in table 5.1 because an HIT was applied
there and only a single frame was shown, which might exhibit a different disparity budget
than the whole scene.
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not in both possible orders to keep the required time acceptable. Instead, the
order of each combination was randomized per subject.

Prior to the test, the eye tracker was calibrated individually and some anchor
sequences were shown to familiarize the subject with the concept of visual
discomfort related to excessive AVD. The Subject was instructed to sit still
during a trial, so that proper eye tracker performance was ensured. Between
trials, a window showing the position of the eyes was presented to the subject
to ensure that the optimal tracking position was maintained throughout the
whole test. In order to reduce subject movement to a minimum, the ratings
were furthermore collected by an operator, who also triggered the start of the
next trial.

5.3.5.4 Subjects

There were 30 accepted subjects in this experiment. Five subjects wearing
optical aids had to be rejected due to bad eye tracking performance. Because of
that, there was a certain preference for people without optical aids. Additionally,
one subject was rejected due to low visual acuity. The accepted subjects were
aged 22 to 36, 26.27 years on average. The subjects were mostly students and
research assistants. There were two expert viewers and one subject had prior
experience in subjective evaluations. Further details on the subjects and some
examination results can be found in tables A.1 and A.2.

5.3.5.5 Results

The eye tracker data of all sequences involving eye tracking was inspected
manually because the eye tracker still occasionally yielded bad results for some
subjects. In that case, individual scores of problematic sequences were rejected,
which lead to a reduced number of 15 to 25 samples per stimulus comparison
where “GACS3D” is presented, as can be seen in figure 5.16.

The results of the experiment are displayed in figure 5.17 in the form of
histograms for each comparison. Here, the relative frequencies of specific
ratings are plotted for all sequences separately and globally. As can be seen,
“equally good” is picked most often for almost all stimulus comparisons. Globally,
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Figure 5.16: Number of samples in each comparison in experiment (IV).

“GACS3D” was rated slightly better than “Raw”, but worse than “ZPS”.
However, the differences are neglectable compared to the relative frequency of
“equally good”. The standard deviations of the comparison scores are displayed
in figure 5.18. These values are very high, considering that the comparison
ratings correspond to scores of {-1,0,1}. There were also no subjects exhibiting
a clear systematic preference for any condition.

5.3.5.6 Discussion

None of the tested conditions yielded significantly differing results in this
experiment. This outcome had already been expected because of the subject
interviews conducted directly after the test. Most subjects said that it would
look all the same or that they tried to concentrate on details because they
could not tell the difference between the stimuli. However, all of them affirmed
a strong visual discomfort when an anchor sequence with big AVDs was shown
prior to the test. The results of the “Raw” vs. “ZPS” comparison should be
most reliable, since no individual scores had to be rejected, but this comparison
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(a) Raw vs. ZPS.
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(b) Raw vs. GACS3D.

1 2 3 4 5 6 Global
0.0

0.2

0.4

0.6

0.8

1.0

Sequence ID

Re
la

tiv
e

fre
qu

en
cy

ZPS better equal GACS3D better

(c) ZPS vs. GACS3D.

Figure 5.17: Relative frequencies of ratings in each comparison for all sequences
separately and globally in experiment (IV).
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Figure 5.18: Standard deviation of comparison ratings in experiment (IV).

exhibits standard deviations just as high as the other conditions. Considering all
the evidence in this section, it is concluded that the perceived visual discomfort
was the same in all conditions. In other word, GACS3D does not affect visual
discomfort, as long as the resulting disparities don’t significantly protrude the
zone of comfort, and the shift speed is kept below the annoyance threshold.

The results of this experiment are in contrast to the results by Hanhart and
Ebrahimi [Han14], which suggest that gaze adaptive DHIT reduces visual
discomfort, although the DHIT was designed in a much more critical way
in their experiment. Their maximum shift speed was vs,max = 0.5 px/frame,
which corresponds to 0.21 °/s at the frame rate of 25 frames/s. This is almost
as high as the average annoyance threshold from the first experiment and a
lot higher than some of the individual annoyance thresholds. Furthermore,
as already pointed out in section 5.2.2.6, the group uses a nearest neighbor
interpolation for the DHIT, which might lead to unknown side effects. A
possible reason for the differing results could be the usage of more critical test
material: Hanhart and Ebrahimi have used sequences with bigger disparity
budgets, and some of which have actually protruded the ZOC.
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(a) EBU Lupo Hands (b) NAMA3DS1 Umbrella

(c) RMIT3DV 02 (d) RMIT3DV 29

(e) RMIT3DV 43 (f) RMIT3DV 46

Figure 5.19: Exemplary frames of the test sequences with heat map overlays that
show the relative observation frequencies of certain image regions in in
experiment (IV).
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Figure 5.20: Relative frequencies of watched disparities (greenscale) in experiment
(IV) for each sequence. The plot also includes the “Raw”-Setting (black
line), the “ZPS” (red dot), the average watched disparity (blue dot) and
the average convergence disparity (black circle). This plot is displayed
in the unshifted disparity domain. In the “ZPS” condition, the whole
disparity range is shifted so that the red dot is placed at zero disparity.

More conclusive data could possibly be gathered by adjusting the experimental
design. On the one hand, the overall data quality could be improved by using an
autostereoscopic display. This would eliminate the need for S3D-glasses, which
would improve eye tracker performance and therefore also reduce rejections.
On the other hand, more discriminating material could be used, as in the
experiment of Hanhart and Ebrahimi [Han14]. The material should significantly
protrude the zone of comfort so that actual discomfort is induced. Nevertheless,
rating immediate visual discomfort is a relatively difficult task for a subject.
Rating symptoms of visual fatigue is a lot less error-prone, but would involve
an elaborate experiment with two or three prolonged viewing sessions of at
least one hour to achieve a certain severity of the symptoms. Obviously, proper
eye tracker performance would have to be ensured during the whole session,
which poses another problem.

Since an eye tracker was used in the experiment, it was also possible to analyze
visual attention. In figure 5.19, snapshots of the six video sequences are shown
along with heat map overlays visualizing the actual areas of visual attention of
all subjects. Scene elements like faces or occlusions were highly salient and
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reduced the exploration of the scene. Conversely, when these attractors were
absent, as in RMIT3DV 02, 43 and 46, the scene was explored a lot more
freely. This also shows in the normalized histograms of watched disparities
in figure 5.20, where concentrations can be observed on the disparities of
visual attractors. This strongly influenced the behavior of GACS3D because
it almost degenerated to a static HIT in presence of visual attractors. These
observations fortify the common procedure to place objects of interest near the
display plane. However, this is not necessarily easy to do because, as can be
seen in figure 5.20, the chosen ZPS and the average watched disparity may
differ quite a bit due to wrongfully identified visual attractors. In absence of
such visual attractors, the whole disparity budget should simply be fitted into
the zone of comfort, ideally while considering the scene depth statistics.

A very small group of subjects also hinted that they disliked the DHIT, i.e.,
GACS3D, while the rest of the subjects did not detect it at all. This shows
again that there are individual differences in the DHIT sensitivity, as already
mentioned in sections 5.3.2.5 and 5.3.3.3.

5.4 Conclusion

There has been little research on the perception of the dynamic horizontal
image translation (DHIT). However, knowledge in this field is much-needed,
especially for parameterizing automated DHIT approaches. The first experiment
revealed that the shift speed is the main determinant of DHIT perception and
that the sensitivity towards DHIT varies strongly between subjects. This latter
finding is of great importance and led to a rather conservative recommendation
to keep the shift speed in the range of 0.10 °/s to 0.12 °/s in order to ensure
that nobody in the audience gets annoyed by the DHIT.

In this chapter, two new enhancements of the DHIT were proposed. The
distortion-free dynamic horizontal image translation (DHIT+) mitigates
the distortions of the depth budget due to horizontal image translation by
adjusting the disparity budget through depth-image-based rendering techniques.
This is perceptually similar to a camera movement along the depth axis. The
DHIT+ proved to be significantly less perceivable and annoying compared
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to the DHIT. The convergence disparity could be altered about 50 % faster
without any perceptual side effects.

The proposed approach gaze adaptive convergence in stereo 3D applica-
tions (GACS3D) utilizes an eye tracker in order to slowly establish the zero
parallax setting at the visual focus using the DHIT. Since precise knowledge
about the disparity of the visual focus is needed, the highly accurate PVFDE,
proposed in section 4.4.1, is used to estimate it. In an experiment with
emulated eye tracking, GACS3D significantly reduced annoyance compared
to a regular DHIT. In the experimental evaluation of the complete prototype,
however, no significant effect on visual discomfort was found compared to
a static horizontal image translation. In contrast to these results, Hanhart
and Ebrahimi were able to show an improvement with an approach similar to
GACS3D [Han14]. The reason for this improvement could be the usage of
more critical test material with bigger disparity budgets.
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6.1 Summary

One factor in the lacking popularity of stereo 3D (S3D) nowadays is the visual
fatigue many people still experience after prolonged exposure to respective
content. There are numerous methods to reduce visual fatigue. The dynamic
horizontal image translation (DHIT) is one of them, and its analysis is the
main topic of this thesis.

In order to understand how visual fatigue is generated by S3D content, know-
ledge about the human visual system (HVS) is mandatory. So, in chapter 2,
the HVS has been described with a special focus on the perception of depth.
It has been pointed out that the HVS analyzes and combines multiple depth
cues according to their estimated reliability, and that certain cue conflicts
are problematic because they induce discomfort and may lead to an unstable
perception.

In chapter 3, the fundamentals of S3D have been briefly described, in order to
finally explain how visual fatigue is created, measured, and prevented. One of
the most important sources of visual fatigue is the accommodation vergence
discrepancy (AVD): While the true imagery is located at the display distance to
which the eyes theoretically have to adjust the focal length to (accommodation),
the eyes may actually converge on a stimulus far behind or in front of the S3D
display. This means that accommodation and vergence distance differ, which
is unnatural. However, the AVD only becomes problematic once the depth
of field (DOF) is protruded. Hence, the S3D content is placed in a zone of
comfort (ZOC) inside that DOF. This is achieved, on the one hand, by setting
the distance between the two S3D cameras such that the depth budget, i.e., the
difference between maximum and minimum scene depth is small enough to fit
inside the ZOC. On the other hand, the scene is placed in that ZOC by shifting
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it along the depth axis. This can be done by a horizontal image translation
(HIT) of the S3D views in opposite directions in a static or temporally dynamic
manner. The latter case is the aforementioned DHIT. Furthermore, it has been
mathematically shown that there is a certain distortion of depth when any
form of HIT is performed.

The DHIT has been analyzed and enhanced extensively in the later chapters
of this work. One of the enhancements utilizes a remote eye tracker, which is
why the principles of eye tracking have been described in chapter 4. Advanced
filtering techniques had to be developed for the prototype, which have been
described after a short review of the state of the art. For filtering the 2D
gaze data, a Kalman filter has been derived that is tailored to gaze-directed
human-machine-interaction. It has been extended with a new outlier and
saccade1 detection algorithm that is capable of handling missing samples,
which is a common issue in eye tracking. Another significant contribution of
this work is the highly accurate 3D visual focus estimation called probabilistic
visual focus disparity estimation (PVFDE). This newly proposed method
yields an improvement of the mean squared error (MSE) by multiple orders
of magnitude compared to the state of the art and even performs well with an
inexpensive consumer-grade eye tracker. This improvement stems from the
utilization of the estimated 3D structure of the presented scene, which was
implemented in CUDA C++ in order to utilize the parallel processing power
of a graphics processing unit (GPU).

The DHIT has finally been analyzed in chapter 5, starting with a review of
related publications. Research on the perception of DHIT is lacking, which was
the motivation to conduct experiment (I). The scope of that experiment was to
find out what shift speeds render the DHIT perceivable or even annoying. On
average, a shift speed of 0.137 °/s per view was not perceivable, and 0.232 °/s
was the threshold for annoyance. However, one of the main findings was
that there are strong individual differences in the perception of DHIT. This
is problematic because the usual heuristic DHIT design approach might yield
undesirable results for some members of the audience. In order to ensure
that no observer gets annoyed by the DHIT, it is therefore recommended to
keep the shift speed in the range 0.10 °/s to 0.12 °/s. A small, but statistically

1Volatile eye movement from one visual focus to another.
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significant effect of content on the results was also discovered. This effect
might be due to the distortion of depth as induced by the HIT.

This problem can be solved by the newly proposed DHIT enhancement called
distortion-free dynamic horizontal image translation (DHIT+), one of the
main contributions of this work. This approach mitigates the distortion of
the depth budget by adjusting the distance between the S3D cameras. The
results are similar to a camera movement along the depth axis. DHIT+
functions independently of viewing distance, but a slight dependency on eye
baseline is given. The depth distortion due to eye baseline2 mismatch is a
lot smaller than that of the regular DHIT, however. The results of another
conducted experiment have been presented, in which the DHIT+ was compared
to the regular DHIT. The main finding was that DHIT+ significantly reduces
perception and annoyance so that the convergence disparity can be set about
50 % faster. This makes this new technique a useful addition to the tool set
of the modern stereographer. Furthermore, a significant effect of shift budget3

and content on the results was detected for the DHIT+ but surprisingly not
for the DHIT. The computer generated imagery (CGI) material used for the
DHIT+ experiment exhibited some artifacts whose visibility varied between
sequences, which might be the origin of those significant effects. Unfortunately,
the existence of these artifacts prevented any conclusions regarding the depth
distortion hypothesis from experiment (I), as mentioned above.

Finally, another major contribution of this work called gaze adaptive con-
vergence in stereo 3D applications (GACS3D) has been described. This
approach aims to lessen visual fatigue by reducing the AVD at the visual focus
via slowly shifting it into the display plane using the DHIT. The visual focus is
estimated using an eye tracker. In this approach, precise knowledge about the
fixated depth is necessary, which was the motivation to develop the PVFDE de-
scribed above. GACS3D is theoretically compatible to DHIT+, which requires
a real-time adjustment of the distance between the S3D cameras. A respective
depth-image-based rendering approach has been implemented in CUDA C++.
However, these fully automated approaches generally exhibit some artifacts,
which rendered this combination inappropriate for further testing. One problem

2The distance between the eyes.
3The total amount of shift applied over a couple of seconds.
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with such an automated DHIT design as in GACS3D is that window violations4

can be created. An easy to implement, yet powerful automated floating win-
dow5 algorithm has been proposed to prevent that. While it has been described
in the context of GACS3D, it is generally applicable to all automated DHIT
design approaches.

The effect of a gaze adaptive DHIT design was investigated in two experiments,
i.e., experiments (III) and (IV). In experiment (III), gaze adaptivity was only
emulated using a pointer that subjects were asked to track. This was done
so that all subjects were exposed to the exact same stimuli. The results
showed a significant decrease of annoyance in the case of gaze adaptivity
compared to the regular DHIT. In experiment (IV), the complete prototype was
used and compared with stationary HIT test sequences. However, the results
were rather inconclusive because no clear tendency could be observed. It was
concluded that the perceived visual discomfort was the same in all conditions.
A similar approach by Hanhart and Ebrahimi has yielded an improvement of
visual discomfort in the experiments of that group [Han14], despite having
used a more aggressive implementation and parametrization of the DHIT. The
reason for this difference could be their use of more critical test material with
bigger disparity budgets, partially protruding the ZOC. A later analysis of
visual attention showed that GACS3D almost degenerates to a static HIT in
presence of strong visual attractors. Still, GACS3D is a useful automated tool
for real-time visualization of unprocessed S3D content.

6.2 Outlook

The conducted experiments raised new interesting questions for future research.
The results of experiment (I) exhibited a very small, but statistically significant
content dependency, which could possibly be attributed to the depth budget
distortion of HIT. Experiment (II) showed how the DHIT+ significantly reduces
annoyance compared to DHIT, even though the DHIT+ test stimuli contained
some artifacts. Furthermore, a content dependency was found for DHIT+, but

4A visually unpleasant conflict between occlusion and disparity, that occurs when an object in
front of the screen is cut off by the left or right screen border.

5The 3D content is seen through a stereoscopic window, which can actually be moved in 3D
space, e.g., in front of a window violation in order to eliminate it.
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not for DHIT, which is in contrast to the first experiment. While experiment (II)
was a success and the test stimuli served their purpose, the presence of these
artifacts prevented any additional conclusions about the content dependencies
of either approach. The artifacts were only present in the DHIT+ stimuli,
resulting in a comparatively strong content dependency that would dominate
the results over the content dependency of the regular DHIT, which would in
turn simply disappear. Hence, a redesign of the test stimuli using professional
studio software for CGI and repeating the exact same procedure might yield
an answer.

Furthermore, the DHIT yielded slightly better results in experiment (II) than
in experiment (I). Considering the discovered strong individual differences,
the group of subjects in experiment (II) might just have been less sensitive
towards the DHIT. Another explanation could be the different nature of the
test material, i.e., CGI vs. natural content. These hypotheses could be tested
by repeating the first experiment with both sets of stimuli. If the stimuli still
yield different results, the reason for that would definitely be some content
characteristic because the same group of subjects evaluated the stimuli.

Finally, GACS3D is supposed to reduce visual fatigue, whereas only immediate
visual discomfort was rated in experiment (IV), and no significant effect was
found for any tested approach. Since almost all test stimuli were contained in
the ZOC, no strong discomfort was induced. Hence, using more critical material
might be an option to identify significant effects. However, the theoretically
most reliable solution would be a direct evaluation of visual fatigue, which is a
very elaborative undertaking exceeding the scope of this work. Visual fatigue
is accumulated over prolonged viewing sessions and some of its symptoms take
some time to recede. So, in order to evaluate visual fatigue, an experiment
would involve exposing each subject to GACS3D-processed content and regular
content (in random order) for at least one hour each, separated by a break
of about 24 hours. Respective evaluation questionnaires would have to be
answered before and after each exposure so that different daily conditions
of each subject can be accounted for. Proper eye tracker performance is
mandatory during the whole experiment. Hence, data quality needs to be
improved. This could be achieved by using an autostereoscopic display to
eliminate the polarization glasses.
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List of Abbreviations

AVD Accommodation vergence discrepancy.

CGI Computer generated imagery.

DHIT+ Distortion-free dynamic horizontal image translation.

DHIT Dynamic horizontal image translation.

DOF Depth of field.

GACS3D Gaze adaptive convergence in stereo 3D applications.

GPU Graphics processing unit.

HIT Horizontal image translation.

HVS Human visual system.

LMEM Linear mixed-effect model.

MAE Mean absolute error.

MOS Mean opinion score.

MSE Mean squared error.

POI Point of interest.

PVFDE Probabilistic visual focus disparity estimation.

ROI Region of interest.

S3D Stereo 3D.

SAD Sum of absolute differences.

SFR Stereoscopic fusion range.

ZOC Zone of comfort.

ZPS Zero parallax setting.
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List of Symbols

A State transition matrix of a Kalman filter.

ak One-dimensional acceleration of a particle in a Kalman
filter at time instance k.

α In the DHIT+, the disparity budget is altered by this
factor to maintain a certain depth budget.

b∗
c Adjusted camera baseline in the DHIT+.

bc Camera baseline, i.e., the distance the stereo cameras.

be Eye baseline, i.e., the distance between the eyes.

β Confidence level for the model violation identification of
a Kalman filter.

B (pi) A block of pixels in 2D image space centered on pi.

cj Polynomial 3D eye tracker calibration coefficients.

d Distance from the observer’s eyes to the display.

DB Disparity budget of a given scene, i.e., the difference
between Dmax and Dmin.

Dconv Convergence disparity.

D∗
conv Scaled convergence disparity in the DHIT+.

Dconv,alt Alternative cyclic convergence disparity in the DHIT+
experiment.

D∗
conv,corr Corrected scaled convergence disparity in the DHIT+

experiment.

Dconv,cycl Cyclic convergence disparity in the DHIT and DHIT+
experiment.

D∗
conv,cycl Scaled cyclic convergence disparity in the DHIT+

experiment.
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List of Symbols

Dconv,k Convergence disparity at time instance k in GACS3D.

Dconv,max Maximum convergence disparity in a DHIT sequence.

Dconv,min Minimum convergence disparity in a DHIT sequence.

Dconv,pre Pre-convergence disparity in the DHIT and DHIT+
experiment.

D∗
conv,pre Scaled pre-convergence disparity in the DHIT+

experiment.

ΔDC,L|R Difference between disparity and mapped disparity.

ΔDmax Maximum allowed disparity difference.

ΔZ The depth distortion due to any form of horizontal image
translation is defined as the ratio of maximum to minimum
depth budget.

D◦
i Retinal disparity of point P i.

D̃∗
i Shifted and scaled disparity after applying the DHIT+.

D̃i Shifted disparity after applying the HIT.

Di Planar disparity that is generated by a 3D point P i.

DLB Lower bound of the valid disparity range in the PVFDE.

DL|R (.) Left or right view true disparity map.

D̂L|R (.) Left or right view estimated disparity map.

D̃∗
max Maximum shifted and scaled disparity after applying the

DHIT+.

Dmax Maximum disparity in a given recorded scene.

D̃max Maximum shifted disparity after applying the HIT.

D̃∗
min Minimum shifted and scaled disparity after applying the

DHIT+.

Dmin Minimum disparity in a given recorded scene.

D̃min Minimum shifted disparity after applying the HIT.

DPOI Disparity of a point of interest.

D̂T Estimate of the true watched disparity.

DT True watched disparity.
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List of Symbols

Dtarg,k Target disparity at time instance k in GACS3D.

Dtarg,k Target disparity at time instance k in GACS3D.

DUB Upper bound of the valid disparity range in the PVFDE.

E {.} Expectancy value operator.

e2
k Normalized error of a Kalman filter in iteration k.

e2
k,β Normalized error threshold for a confidence level β of a

Kalman filter in iteration k.

ex The unity vector in x-direction.

F Fixation point in 3D space.

g Help variable in the solution for α.

γ Disparity smoothing coefficient in GACS3D.

H Height of a display.

h Help variable in the solution for α.

H Observation model of a Kalman filter.

I Unity matrix.

ik Innovation of a Kalman filter in iteration k.

IL|R (.) Left or right view image.

k Time instance, e.g., iteration number.

Kk Kalman gain minimizing a posteriori MSE in iteration k.

L Luminance.

M Data matrix for 3D eye tracker calibration.

mk Measurement vector in the Kalman filter model.

μk Shift direction at time instance k in GACS3D.

N Number of data points during 3D eye tracker calibration.

ninv Number of invalid samples in a connected series of model
violations in the saccade detection process.

nk Measurement noise of a Kalman filter in iteration k.

nth Connected violation threshold in the saccade detection
process.
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List of Symbols

n̂V Estimated number of connected violations in the saccade
detection process.

nV Number of connected violations in the saccade detection
process.

nV,LB Lower bound of the number of connected violations in
the saccade detection process.

nV,UB Upper bound of the number of connected violations in
the saccade detection process.

ωC Total weight of a candidate.

ωΔD,C Weight of disparity difference in the disparity estimation
process.

ωr†,C Weight of mapped distance in the disparity estimation
process.

ωr,C Weight of distance in the disparity estimation process.

P i A point, number i, in 3D space.

p Probability of a certain result based on the assumption
that the null-hypothesis is true.

pC,L|R Candidates in the left or right region of interest in the
disparity estimation process.

p†
C,L|R Candidates in the left or right region of interest mapped

to the right or left view in the disparity estimation process.

p̃G,L|R Shifted domain version of gaze vector pG,L|R.

pG,L|R Two dimensional gaze data in real screen-space pixel
coordinates for the left or right eye, as returned from the
eye tracker. pG,L|R =

(
xG,L|R, yG,L|R

)�.

φL|R,i Angular distance between an image of point P i and the
fovea on the left or right retina.

φP,i Angle between the left and right visual lines through a
non-fixated point P i.

φV Angle between the left and right visual axes, i.e., the
vergence angle.
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List of Symbols

pi A 2D point, number i, in 2D image space.

pk One-dimensional position of a particle in a Kalman filter
at time instance k.

P̂k Estimated a posteriori error covariance matrix of a Kalman
filter in iteration k.

Pk A posteriori error covariance matrix of a Kalman filter in
iteration k.

P̂−
k Estimated a priori error covariance matrix of a Kalman

filter in iteration k.

P−
k A priori error covariance matrix of a Kalman filter in

iteration k.

pN,L|R A 2D additive noise term for gaze data of the left or right
eye in real screen-space pixel coordinates.

pT,L|R The true 2D gaze position of the left or right eye in real
screen-space pixel coordinates.

Q Process noise covariance matrix in the Kalman filter
model.

r Maximum spread radius of gaze samples around the true
gaze position pT,L.

R Measurement noise covariance matrix in the Kalman filter
model.

R2 Correlation coefficient for multiple linear regression.

r2 Pearson correlation coefficient.

rC,L|R Distance between candidate pC,L|R and gaze data pG,L|R.

r†
C,L|R Distance between candidate p†

C,L|R and gaze data pG,L|R
of the opposite eye.

ρ Pixel pitch, i.e., the distance between two pixels on the
display screen in meters.

SAD (.) The sum of absolute differences of a Block.

SB Shift budget in the DHIT.
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List of Symbols

SBfront Portion of the shift budget in the DHIT that places the
S3D content closer to the observer than the raw source
material.

σ2
a Process noise variance of acceleration in the constant-

velocity Kalman filter model.

σ2
ΔD Weighting parameter for ΔDC,L|R.

σ2
n Measurement noise variance of position in the constant-

velocity Kalman filter model.

σ2
r Variance of the normally distributed distance between

true gaze and noisy gaze data.

sign (.) The sign function returns +1 for positive arguments and
zero, and -1 for negative arguments.

Sk Innovation covariance matrix of a Kalman filter in iteration
k.

ŝk A posteriori process state estimate of a Kalman filter in
iteration k.

ŝ−
k A priori process state estimate of a Kalman filter in itera-

tion k.

sk Process state of a Kalman filter in iteration k.

T The time between two measurement instances in a
Kalman filter context.

t Time in seconds.

vk One-dimensional speed of a particle in a Kalman filter at
time instance k.

vs Shift speed as applied to each S3D view separately during
the DHIT or DHIT+.

vs,max Maximum shift speed as applied to each S3D view sepa-
rately during the DHIT or DHIT+.

W Width of a display.

wk Process noise of a Kalman filter in iteration k.
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List of Symbols

xG,L|R Horizontal, real screen-space pixel coordinate for the gaze
of the left or right eye as delivered from the eye tracker,
i.e., the horizontal component of pG,L|R.

xL,i Real, horizontal screen-space coordinates of a 3D point
P i in the left view of a stereoscopic image pair.

xR,i Real, horizontal screen-space coordinates of a 3D point
P i in the right view of a stereoscopic image pair.

yC,L|R Vertical, real screen-space pixel coordinate of a candidate
for the left or right eye in the disparity estimation process,
i.e., the vertical component of pC,L|R.

yG,L|R Vertical, real screen-space pixel coordinate for the gaze
of the left or right eye as delivered from the eye tracker,
i.e., the vertical component of pG,L|R.

yT,L|R Vertical, real screen-space pixel coordinate for the true
gaze of the left or right eye, i.e., the vertical component
of pT,L|R.

Z Depth budget of a given scene, i.e., the difference between
the maximum and minimum depth.

z Depth coordinate.

z Vector of reference depths for each recorded data point
during 3D eye tracker calibration.

zF Fixation or vergence distance.

zfar Maximum depth of a given scene.

ẑi Visual focus depth estimated from 2D gaze data point
number i.

zi Depth of a point P i.

Zmin Minimum depth budget of a given scene when applying
any form of HIT.

znear Minimum depth of a given scene.

Ztarg The target depth budget that is supposed to be main-
tained in the DHIT+.
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Glossary

Accommodation Adjustment of the focal length of
the eyes.

Accommodation vergence
conflict

See accommodation vergence dis-
crepancy.

Accommodation vergence
discrepancy

Accommodation and vergence dis-
tance unnaturally differ when watch-
ing a stimulus outside the stereo-
scopic display plane.

Accuracy The mean absolute error between
the true and the measured gaze
coordinates.

Active depth cut A dynamic horizontal image trans-
lation is used in order to mitigate
depth discontinuities at scene cuts.

Adaption The human visual system adapts to
varying lighting conditions by differ-
ent receptors and iris diameter.

Angular disparity See retinal disparity.

Binocular disparity See retinal disparity.

Binocular rivalry See retinal rivalry.

Blind spot The spot on the retina where the
optic nerve connects to the eye does
not inhabit any light receptors.

Cone A light sensitive cell type on the
retina enabling color vision in bright
environments.
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Glossary

Convergence disparity The disparity in the unshifted do-
main that is zeroed by the horizontal
image translation.

Convergence plane The sensor-parallel plane of points
in the 3D scene space yielding zero
disparity. In 3D observer space,
the convergence plane is the display
plane.

Crosstalk The left view is partially visible in
the right view or vice versa.

CUDA C++ A programming language for parallel
computing on graphics cards.

Cyclopean perception The single 3D view perceived by an
observer, which is located right in
the middle between the eyes.

Depth budget The difference between maximum
and minimum scene depth.

Depth of field The range of depths that can be
viewed sharply.

Diplopia The double vision when fusion fails.

Disparity The onscreen parallax in pixels in a
stereo 3D context.

Disparity budget The difference between maximum
and minimum disparity.

Drift The eye drifts away from a fixation
in this unconscious eye movement.

Dynamic horizontal image
translation

A temporally dynamic form of the
horizontal image translation

Eye tracker A device that tracks the position and
the gaze direction of the eyes.

Fixation The eyes foveate an object of
interest.
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Glossary

Floating window Moving the sterescopic window in
front of the display plane, in order
to avoid window violations.

Fovea The central part of the retina, which
exhibits the highest density of light
sensitive cells.

Fusion The process of the human visual sys-
tem that fuses two views to a single
3D view.

Glissade Small correction saccades during or
after a saccade.

Horizontal image translation The process of translating stereo-
scopic views horizontally in opposite
directions such that the content is
shifted further behind or in front of
the display.

Horopter The locus of points exhibiting zero
retinal disparity.

Innovation The difference between a priori
prediction and measurement of a
Kalman filter.

Iris The iris functions as an aperture,
that controls how much light enters
the eye.

Kinetic depth effect The analogon to motion parallax,
but related to object motion.

Micro saccade After a drift occured, the position
of the eye is corrected again to the
center of the fixation.
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Glossary

Motion parallax The images of static objects at differ-
ent depths move at different speeds
across the retina when the observer
moves.

Motoric fusion The fusion process supported by ver-
gence movements.

Occlusion Occlusion is a strong depth cue, that
enables the HVS to perform depth
ordering.

Oculomotor An adjective relating objects or func-
tions to the system of muscles of the
eyeball.

Oculomotor noise The unconscious eye movements are
deemed to be noise in the context of
eye tracking in many applications.

Panum’s fusional area The small area around the horopter
that can be fused so that no diplopia
occurs.

Parallax See disparity.

Precision The spread of gaze samples, mostly
given as standard deviation.

Reconvergence See horizontal image translation.

Retina The light sensitive area of the eye.

Retinal disparity The horizontal angular parallax on
the retinas of an observer’s eyes in-
duced by a 3D stimulus. There is
also vertical retinal disparity.

Retinal rivalry Differences in the images on the
retinas, that may be unnatural and
cause visual discomfort.
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Glossary

Rod Light sensitive cell type on the retina
enabling gray scale vision in dark
environments.

Saccade An eye movement that switches
rapidloy from one stimulus to
another.

Shift budget The absolute difference between
maximum and minimum conver-
gence disparity in the DHIT.

Smooth pursuit A moving target stimulus is instinc-
tively tracked by the eyes.

Stereopsis See fusion.

Stereoscopic fusion range The range of disparities that can be
fused on a stereoscopic display with
appropriate vergence movement.

Stereoscopic window The stereoscopic display and its
borders can be seen as a window
through which a 3D world can be
observed.

Stereoscopy Presentation of horizontally offset
views of a scene to the eyes of
an observer so that a 3D scene is
perceived.

System noise The eye tracker inherent noise.

Texture gradient A monocular pictorial depth cue,
which especially enables estimation
of the slant of a surface.

Tremor An unconscious eye movement in
the form of small amplitude jitter.

Vergence See vergence movement.

Vergence angle The angle between the visual axes
of the eyes.
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Glossary

Vergence movement The adjustment of the vergence an-
gle of the eyes.

Vertical retinal disparity The vertical angular parallax of im-
ages on the retina due to the ver-
gence angle of the eyes.

Vieth-Müller circle See horopter.

Visual axis The Line connecting fovea, pupil
and target stimulus.

Visual discomfort The feeling of discomfort induced by
stereo 3D content.

Visual fatigue The objectively measurable exhaus-
tion of the human visual system in-
duced by stereo 3D content.

Visual focus The point gazed upon.

Visual line The line connecting the nodal point
of an eye and a non-fixated point.

Window violation The conflict between occlusion and
disparity induced by an object in
front of the display plane that is
occluded by the display border.

Zero parallax setting See convergence plane.

Zone of clear single
binocular vision

See stereoscopic fusion range.

Zone of comfort The depth or disparity range that
can be viewed comfortably on a
stereoscopic display.
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Additional Tables for the Experiments

Table A.1: Number, classification, and age of subjects in all experiments conducted
for this work.

Exp. (I) Exp. (II) Exp. (III) Exp. (IV)
General statistic (Sec. 5.3.2) (Sec. 5.3.3) (Sec. 5.3.4) (Sec. 5.3.5)
Total 26 31 19 36
Rejected 2 3 2 6
Accepted 24 28 17 30
Statistic of
accepted subjects
Females 3 5 3 4
Test-experienceda 7 13 2 1
Experts 4 6 2 2
Research Assistants 7 3 0 9
Students 16 25 17 17
Other occupation 1 0 0 4
Minimum Age 21 22 23 22
Maximum Age 31 31 30 36
Average Age 25.04 24.89 24.65 26.27
Standard Deviation 2.84 1.75 1.80 3.18

a Subjects with prior experience in subjective image quality evaluation.
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Additional Tables for the Experiments

Table A.2: Visual performance of accepted subjects in all experiments and reasons
for rejections in gray. All values represent numbers of subjects.

Exp. (I) Exp. (II) Exp. (III) Exp. (IV)
Visual acuity (Sec. 5.3.2) (Sec. 5.3.3) (Sec. 5.3.4) (Sec. 5.3.5)
100% 10 13 6 19
100%, correcteda 10 13 10 6
80% 3 1 1 3
80%, correcteda 1 1 0 2
< 80% (reject) 1 3 1 1

Stereo acuityb

40” 20 27 9 21
50” 1 0 1 4
60” 1 1 2 1
80” 0 0 2 3
140” 2 0 3 1
> 140” (reject) 1 0 1 0
Color perception
Unimpaired 21 27 17 28
Mild Deuteranopia 3 1 0 2
Other rejections
Bad eye tracking - - - 5

a Subjects wearing either glasses or contact lenses.
b Values are seconds in angle of stereopsis.
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