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Abstract

Due to development of novel and more efficient energy storage systems we bear wit-
ness to the dawn of a new era of mobile systems. They have become sophisticated
in terms of hardware components and software applications which have made it pos-
sible to develop integrated solutions for a large number of imaginable applications
ranging from electric vehicles all the way to fully autonomous systems operating in a
wide variety of ecosystems, e.g., service, surveillance or bio-inspired robots. Gener-
ally it is expected that a mobile system exhibits a sufficient degree of autonomy in the
sense of energy availability such that it at least accomplishes the mission objectives
for which it is intended. Nevertheless, such autonomy, is influenced to a large extent
by the remaining energy that can be retrieved from its energy storage system and by
the environment conditions in which the system operates. Assessing the reliability of
a mission requires using systems internal and external situational awareness to deter-
mine if the available energy at least meets the energy needs demanded by the future
operation of the mobile system in order to determine its remaining useful life (RUL).
Having this information as soon as possible may allow the decision maker to apply a
contingency plan to intervene and reconfigure the mission execution strategy in order
to improve the probability of success, in those situations in which the system becomes
incapable of achieving the original mission objectives.

Numerous studies have been published for assessing mission reliability and esti-
mating the RUL of mobile systems. However, they deal with structured environment
conditions and thus with relatively deterministic loads. Moreover, these approaches
neglect the inherent uncertainty which stems from multiple sources such as the lack
of knowledge about the true energy available in the mobile system, the noise intro-
duced by sensors or the randomness of the operation environment, just to mention
a few. The approach presented in this work is built around the belief that the RUL
estimation is formulated as an uncertainty propagation problem. Accordingly, to es-
timate the RUL multiple sources of uncertainty involved in its estimation are first
characterized and then propagated with the aim of computing their combined effect,
expressed in terms of a probability density function. The approach developed here
achieves this estimation in a Monte-Carlo fashion in which several RUL realizations
are simulated in order to accurately estimate its entire probability distribution. The
aim of this work is therefore devoted to develop a solution capable of estimating the
RUL with application to energy-constrained mobile systems operating in stochastic
environments.
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Nomenclature

The following list explains all abbreviations and symbols used throughout this work.
In general scalar symbols are represented by normal font letters. Vectors are expressed
as bold lower case letters, matrices are indicated by bold upper case letters. Functions
are represented either by bold lower or by upper case letters followed by (-) or | - ].
For the sake of clarity, the nomenclature presented below is divided in Roman, Greek
and calligraphic symbols as well as functions, abbreviations and acronyms. Note, that
bold symbols appear at the end of the corresponding sections.

Roman Symbols
Aay
At

ay,ap, az, ayg, bl/ b2
as, ag, bz, by
by

br,, bu
er bu

quantization step size of A

sampling time

sojourn time

quantization step size of V

traveled distance at the i prediction time

number of subsets in the training data set

Boolean domain

expected value

real domain

frontal area of the electric vehicle

discrete system parameters of the kinetic battery model
parameters of the discrete-time transfer function
exponent of the number of iterations in the recursion of the
particle flow

lower and upper limits that define the Beta distribution
lower and upper bounds of an arbitrary uniform distribution
number of iterations in the recursion of the particle flow
stiffness factor of the magic formula

cell capacity ratio

aerodynamic drag coefficient

cell nominal capacity

capacitance of the long-time RC-network

capacitance of the short-time RC-network

shape factor off the magic formula

simplification parameter

virtual conductance of the cell
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Nomenclature

Ibatt
IG,in
IG,out

iv

divergence between classes/operating conditions
maximum transmittable longitudinal force

set of labelled samples

normal error distribution of an arbitrary class label
curvature factor of the magic formula

rotational component of the inertial resistance
translational component of the inertial resistance
front component of the rotational inertial resistance
rear component of the rotational inertial resistance
longitudinal aerodynamic drag force

climbing resistance

inertial resistance

rolling resistance

longitudinal component of the traction force
longitudinal component of the traction force of a tire
front component of the rolling resistance

rear component of the rolling resistance
longitudinal traction force on the front axle
longitudinal traction force on the rear axle

normal load on the front axle

normal load force on the rear axle

acceleration due to gravity

smoothing factor

height of the first and second well in the kinetic battery model
Null-hypothesis

height of vehicle center of gravity measured from the ground
gear ratio of the transaxle (driveline)

battery cell load

rotational inertia of input driveline components
rotational inertia of output driveline components
current

Jacobian of uncertain parameters transformed from original to
standard normal space

discrete time variable

discrete time to prediction

regenerative braking limiting factor

parameters of the Vpc-SoC model

normalization factor

static rolling resistance coefficient

tirst speed dependent rolling resistance coefficient
second speed dependent resistance coefficient
rolling resistance coefficient

arbitrary feature

distance from the center of gravity to the front axle
distance from the center of gravity to the rear axle
number of environment states, operating conditions or driving



Nomenclature

my ¢
ny

nx

scenarios

total mass of the electric vehicle

number of iterations in the recursion of the particle flow
number of samples describing the present state-parameter un-
certainty

dimension of the acceleration state space A

dimension of the speed state space V

number of realizations characterizing the future load uncer-
tainty

number of samples describing the present state uncertainty
dimension of the road slope state space Fyoaq

number of times a driving condition changes from state i to j
dimension of the reduced feature space

dimension of the full set of features

dimension of the parameter vector

length of a subset in the training data set

dimension of the high dimensional space

dimension of the measurement noise vector

dimension of the training set

dimension of the input vector

dimension of the process noise vector

dimension of the state vector

dimension of the output vector

dimension of the joint process-parameter noise space
dimension of the joint state-parameter space

number of observation of the open circuit voltage

number of positive classes

number of negative classes

number of prediction done up to the i" prediction time
dimension of the vector of uncertain parameters

probability

probability of failure

electrical power demanded by the electric drive/motor
mechanical power demanded by the electric drive/motor
power required by an arbitrary primary auxiliary component
power required by an arbitrary secondary auxiliary component
power required by auxiliary components

probability of results equal to observations when Hj is true
power required at time ¢

random transition between driving conditions

realization of the RDR

residual of the at" iteration in the leave one out cross validation
effective rolling-radius of the tire

brake-force distribution ratio at the front wheels

resistance of the long-time RC-network

ohmic resistance



Nomenclature

Vi

brake-force distribution ratio at the rear wheels
resistance of the short-time RC-network

arbitrary environment state

continuous time variable

time to end of life

time to prediction

depletion indicator

temperature

torque of the electric drive/motor

traction/brake torque around the rotational axis of a wheel
temperature

input of the discrete-time transfer function

transient voltage of the long-time RC-network
transient voltage of the short-time RC-network
wind speed in longitudinal direction

translational speed of the wheel

maximum activation speed for regenerative braking
minimum activation speed for regenerative braking
cell terminal voltage

cell open circuit voltage

instantaneous voltage rise

instantaneous voltage drop

exponential voltage rise

exponential voltage decay

voltage

capacity of the first well in the kinetic battery model
associated importance weight of at sample i at discrete time k
output of the discrete-time transfer function
discrete-time variable in the z-domain

arbitrary uncertain parameter

system matrix

vector of cumulative density functions

identity matrix

Gaussian kernel

parameter vector of the Voc-SoC model

transition probability matrix of driving conditions
transition probability matrix of road slope in an arbitrary driv-
ing condition s

transition probability matrix of the driving behaviour in an ar-
bitrary driving condition s

measurement noise vector at time ¢

measurement noise vector at discrete time k

set of observation of the open circuit voltage

vector of residuals

parameter noise covariance matrix at discrete-time k
parameter noise vector at discrete-time k



Nomenclature

Greek Symbols
Xs

o

xr

DCZ"]'

Xt
B

Bt

Bi,
AD‘road
AA

G
M

Yre
Kx

measurement noise covariance matrix at discrete-time k
process noise covariance matrix at discrete-time k

set of environment states, operating conditions or driving sce-
narios

input vector at time ¢

input vector at discrete time k

process noise vector at time ¢

process noise vector at discrete time k

normal vector to the hyperplane

stochastic process

state vector at time ¢

state vector at discrete time k

output vector at time ¢

output vector at discrete time k

set of observations up to discrete time k

vector of uncertain parameters (in original space)

model error at discrete time k

vector of predicted longitudinal acceleration

linearised output matrix around the joint state-parameter vector
realization of predicted driving conditions

sample covariance matrix of the prior distribution

output of the stochastic environment model

vector of predicted longitudinal speed

predicted longitudinal acceleration

enhanced divergence between classes/operating conditions
arbitrary predicted driving condition

predicted longitudinal speed

joint process-parameter noise vector at discrete-time k

joint state-parameter vector at discrete time k

best estimation of the augmented joint state-parameter vector

significance level

shape parameter of the Beta distribution

Lagrange multiplier

hyper-parameter (virtual count of the transition i — j)
importance factor of an arbitrary uncertain parameter
shape parameter of the Beta distribution

first order reliability index

number of times a transition i — j occurs
quantization step size of Fyoaq s

step size in the recursion of the particle flow
efficiency of the driveline

efficiency map of the electric drive/motor
regularization term

longitudinal tire slip
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Nomenclature

A progression parameter (pseudo-time)

As variance scale factor in the mean-variance estimator

A step length

Up expected value of the acceleration during the next time step
Hs mean of an arbitrary class

Ux longitudinal coefficient of friction

\V4 gradient

WM rotational speed of the electric drive/motor

ww rotational speed of the wheel

Tt j transition probability from state i to state j

ni?ax transition probability between al — a} given v and a}

PESS arbitrary parameter of the energy storage system model
PrC arbitrary parameter of the power consumption model

Qair density of air

o expected variance of the acceleration during the next time step
s variance of an arbitrary class

ORBF parameter of the radial basis kernel function

oG, variance of the linearised limit-state unction

v; binary class label of the ith instance

€1, €2, €3, €4, €5 parameters of the terminal voltage difference equation

@; a-priori probability of occurrence of an arbitrary class

Ci realization of an arbitrary uncertain in standard normal space
i realization of an arbitrary uncertain in original space

« vector of hyper-parameters

X vector of Lagrange multipliers

oy vector of importance factors

Q Gram matrix

TT; ith row vector of the transition probability matrix

Y full set of features

Y subset of extracted features

0 (t) parameter vector at time ¢

0x parameter vector at discrete time k

= standard normal space

G arbitrary realization of the vector of uncertain parameters in the
standard normal space

& realization of the vector of uncertain parameters at the most
probable point

4 arbitrary realization of the vector of uncertain parameters in the

original space

v vector of binary class labels

&road vector of predicted road slope

Rroad predicted road slope

(@) classification obtained by leaving out the at" subset of the train-

ing data set
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Nomenclature

Calligraphic Symbols

B
ga,min
Ea
)

Z/{PPC ’ uPEss

Functions
L(-)
O - ]

~—~
~—

o S, =

aQ

~—

OO0 S
= o~

~—

bias term

minimum allowable available energy

available energy

set of weighted samples

uniform distribution of an arbitrary parameter of the power
consumption and the energy storage system model.

joint state-parameter space

acceleration state space of an arbitrary driving condition s
two-dimensional state space of an arbitrary driving condition s
road slope state space of an arbitrary driving condition s
model of the energy storage system

model of the power required by the mobile system

sequence of transitions between driving conditions

speed state space of an arbitrary driving condition s

likelihood function

standard normal cumulative density function

joint state-parameter dynamics function

joint output function

criterion function

log-density function describing the prior

density function describing the prior

state dynamics function

Beta probability density function

cumulative density function of the it" feature
probability density function of an uncertain parameter
cumulative density function of an uncertain parameter
Remaining Useful Estimation function

operating conditions discrimination function

mean value of the acceleration during the next time step
output function

variance of the acceleration during the next time step
kernel function

log-density function describing the incremental likelihood
density function describing the incremental likelihood
threshold function

Dirac delta function

log-density function describing the posterior

density function describing the posterior

Gamma function

function that maps training data to high dimensional space
vector field representing the particle flow

function mapping x, 8 and y to &,.

linearisation of the limit-state function
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Nomenclature

Abbreviations and acronyms

AC
ACC
ANN
BAC
BMS
CDF
CoG
CRA
DAGSVM
DC
DSSM
EODT
EoL
ESS
EV
FWD
GPS
HL-RF
HVAC
iFORM
IMU
ind
KiBaM
KKT
LBC
LOO-CV
LPV
LS-SVM
MLE
MP
MPP
ODE
OFCL
OID
OvA
OvO
PDF
PF
PFPF
RA
RBF
RC
RDR
RRT
RTD

Alternate Current

Accuracy Measure

Artificial Neural Networks

Balance Accuracy Measure

Battery Management System
Cumulative Density Function
Center of Gravity

Cumulative Relative Accuracy
Directed Acyclic Graph Support Vector Machine
Direct Current

Dynamic State-Space Model
End-of-Discharge Time

End of Life

Energy Storage System

Electric Vehicle

Front-Wheel Drive

Global Positioning System
Hasofer-Lind and Rackwitz-Fiessler
Heating, Ventilation and Air Conditioning
inverse-First Order Reliability Method
Inertial Measuring Unit

index

Kinetic Battery Model
Karush-Kuhn-Tucker

Li-ion Battery Controller

Leave One Out Cross Validation
Linear Parameter-Varying
Least-Squares Support Vector Machine
Maximum Likelihood Estimation
Markov Property

Most Probable Point

Ordinary Differential Equation
Outer Feedback Correction Loop
Optimal Importance Density

Oner versus All

Oner versus One

Probability Density Function
Particle Filter

Particle Flow Particle Filter

Relative Accuracy

Radial Basis Function

Resistance Capacitance

Remaining Driving Range
Remaining-Runtime

Remaining Time to Discharge



Nomenclature

RtF
RUL
SoC,
SOCb
SCM
SMC
SoH
SVM
tn

UAV
uGv
UKF
uUT

Run to Failure

Remaining Useful Life
State of Charge (available)
State of Charge (bound)
Sample Covariance Matrix
Sequential Monte Carlo
State of Health

Support Vector Machine
true negative

true positive

Unmanned Aerial Vehicle
Unmanned Ground Vehicle
Unscented Kalman Filter
Unscented Transform

X1






Introduction

1.1. Context and motivation

With the growing development of novel and more cost-effective sensors, lightweight
actuators, powerful on-board computers and efficient electrical energy storage sys-
tems (ESS) with long lifetime, wide temperature range and high energy density,
e.g., lithium-ion batteries, the deployment of energy-constrained systems, e.g., mo-
bile systems, in various fields such as commercial, scientific or space applications,
have gained enormous importance. Their range of application varies from human op-
erated systems such as conventional plug-in electric vehicles (EVs) (see figure 1.1 (a))
to semi or fully autonomous systems such as unmanned ground (UGVs) and aerial
vehicles (UAVs) (see figures 1.1 (b) and 1.1 (c), respectively).

Despite the differences in complexity of hardware components and software ar-
chitectures among different applications, we can characterize the core structure of a
mobile system analogous to that of a mechatronic system (VDI 2206 2004) (refer to
tigure 1.1 (d)). The basic system comprises both the chassis and the powertrain of the
mobile system and is composed mainly of mechanical, electromechanical, hydraulic
or pneumatic elements, whose main task is to convert the electrical energy obtained
from the energy storage into translational or rotational kinetic energy (locomotion).
There also may be cases in which a flow of material exist, e.g., in the case of systems
driven by internal combustion engines, however, the scope of this research is limited
to those mobile systems driven solely by an electric powertrain, hence with lack of
material flow. From the point of view of this work, mobile systems are mechatronic
systems in which the energy needed to power the basic system, the actuators, the sen-
sors and the information processing unit is supplied by an energy storage system that
is integrated together with the rest of the hardware. This renders thereby remarkable
energy-constraints and therefore bounds the autonomy of the mobile system.

Regardless of the pursued application, it is generally expected that: 1) a mobile
mechatronic system exhibits a high degree of autonomy in the sense of energy avail-
ability, i.e., the system should have sufficient energy resources to at least operate until
the mission for which it is intended has been successfully accomplished; 2) a rela-
tively short period of time is required to accrue energy from an external source, such
that new missions can be conducted; and 3) the electrical energy storage system can
be used for a large number of operating cycles before it irreversibly depletes and
consequently needs to be replaced (Olivares et al. 2013). These three aspects are in-

1



1. Introduction

\ . \
| Electrical Energy > Auxiliary |
| Storage System Energy Storage | |
|
| P ] —_ _ | Aux Energy supply
| V- - - - - - _ _ _ _ _ _ _I1___ _ _ _ _______

r
! H A4 ‘ ‘ !
| | . Monitored variables |
‘ Energy 1, | I Remaining energy > Information < 1) > Operator
| Management | ] | 7! —| Processing | quememememenen, Reference | (Decision Maker)
| | ! { Control ‘Measurement | variables | A
: : : v inputs signals :

I

| . |
: Power | _‘_> Actuators Moblle System Sensors <—|—
| variables | : I Dynamic
‘ ' [ Manipulated Measured A Dzs'turb, l Environment
[ I ; . : variables|
| [ vurzubles> variables I

[ Epergy || Seeeeeecems . Energy =~ | - —-----
| | ‘ inﬂofuy L 3| Basic System outﬂfgi I ' Ener !
|| Energy Source &, ‘ »| (Locomotion) ; - 8y |

L > -  Consumer |
‘ :U | Material inflow Material outflow | # L - !
1 |

—» Energy flow = Material flow = ----==---] P Information flow | System
L _ _ _ boundaries

(d)

Figure 1.1.: Examples of mobile systems: electric vehicle (a), UGV (b) and UAV (c). Structure
of mobile (mechatronic) system (d).

fluenced to a large extent by the degree of depletion of the energy storage system,
on the one hand, and by the operating conditions of the mobile system, on the other
hand. These two factors added to the fact of on-board energy-constraints constitutes a
big challenge for mission planners. For example, mobile systems operating in highly
unstructured environments produce stochastic loads, which are difficult to take into
account in mission assessment activities.

In most practical applications completing a mission is hardly constrained by the
amount of energy that can be retrieved from the energy storage system and is strongly
influenced by the dynamic environment in which the system operates. Determining
the energy that the energy storage system is able to supply is non a trivial task. In
addition, characterizing the influence of the operating environment on the autonomy
of the system and on the reliability of a mission can be equally challenging. Because
of this it is of paramount importance to have reliable information about the remaining
availability of the system, e.g, expressed in terms of time (remaining time to failure) or
distance (remaining range). Having unreliable or no information regarding remain-
ing availability of the system may cause undesired consequences. One outstanding
example is the range anxiety experienced by most owners of electric vehicles. Range

2



1.1. Context and motivation

anxiety, i.e., the uncertainty of knowing if the range of the vehicle is insufficient to
reach the envisaged destination or at least a charging station, has been pointed out as
one of the most important reasons why most drivers are reluctant to acquire an elec-
tric vehicle (Rauh, Franke, and Krems 2014). Franke et al. (2012) shows that reliable
information about the attainable range may help to alleviate the range anxiety and
thereby to increase the acceptance of EVs.

Numerous researchers have developed methods that aim to determine the avail-
able energy stored in energy storage systems, e.g., Piller, Perrin, and Jossen (2001).
However, relatively little has been expended to date on how to characterize the future
energy needs of a mobile system operating in a dynamic environment and specially
on how properly incorporate this information into estimating its autonomy.

Prognostics offers solutions to engineering problems with comparable character-
istics to the issues exposed before. It aims to predict the time a which a system
or component fails to perform a predefined function by comprising current states as-
sessments, previous systems usage and future operating conditions in order to predict
failures expressed in terms of the so called remaining useful life (RUL). Interpreting
the RUL goes hand in hand with the specific indicator of use of the system under
consideration. For example, in prior work prognostics approaches have been devel-
oped to forecast remaining operating life in both a macroscopic time scale (cycles)
in applications such as batteries (Guo, Li, and Pecht 2015) or fuel cells (Kimotho,
Meyer, and Sextro 2014) and in a microscopic time scale (hours or seconds), e.g.,
bearings (Kimotho and Sextro 2015) or electrolytic capacitors (Celaya et al. 2011). In
the context of mobile systems, approaches for fault prognostics have also been devel-
oped. LeSage (2013) or Bole, Daigle, and Gorospe (2014) are some of the authors
that apply energy-conscious prognostics approaches for estimating the remaining
time to discharge (RTD) of energy storage systems powering mobile systems. Oliva,
Weihrauch, and Bertram (2013a), for example, extend the definition of the RUL for
problems formulated in the space domain and express it in terms of the remaining
driving range (RDR). Due to its intrinsic nature, the RUL is a random variable that
is influenced by many sources of uncertainty. The lack of knowledge about the sys-
tem states, the noise presented in measurements or the randomness of the operation
environment, are some of the factors that largely contribute to the uncertainty of the
RUL. Therefore, properly determining the RUL requires accounting for these sources
of uncertainty. The importance of having reliable prognostics approaches that charac-
terize the uncertainty in the RUL has been highlighted by Sankararaman and Goebel
(2015). Depending on the application, it might be necessary to employ prognostics
algorithms that are capable of adapting the RUL estimation to the most up to date
operating conditions. Having this information as soon as possible may allow the de-
cision maker to apply a contingency plan to intervene and reconfigure the mission
execution strategy in order to improve the probability of success, in those situations
in which the system becomes incapable of achieving the original mission objectives.

This work addresses the still open issue of characterizing and incorporating the
uncertainty related to the future operating and environment conditions into the RUL
estimation. More precisely, our aim is to develop a solution capable of estimating
the RUL of energy-constrained mobile systems operating in highly dynamic environ-
ments with application to the remaining driving range estimation of electric vehicles.

3



1. Introduction

1.2. Survey of related work

We first survey previous work describing prognostics approaches developed to esti-
mate the remaining useful life of energy storage systems. Then, we summarize re-
search pertaining the range assessment of energy-constrained mobile systems, paying
special attention to the remaining driving range estimation of electric vehicles. Due
to the breadth and abundance of literature on topics related to this work, references
to these and other topics also appear throughout the dissertation.

Prognostics for energy storage systems

As previously mentioned, the core of prognostics is to estimate the RUL of the system
under consideration. Although the literature regarding prognostics has exploded in
recent years, there exist no clear consensus among researchers on how to categorize
the diverse approaches. This work adopts a categorization scheme which differen-
tiates between approaches according to the sources of information needed for their
deployment. Accordingly, we distinct between data-driven and model-based prognostics
approaches. The survey presented here is necessarily incomplete since it covers only
those approaches that, to the best of our knowledge, are related to energy storage sys-
tems. Moreover, most approaches found in the literature are focused on prognostics
solutions under a macroscopic time scale, that is, the pursued RUL estimate reflects
the actual remaining lifetime of energy storage systems usually measured in cycles, as
it can be seen in the comprehensive survey published by Liao and Kottig (2014). Nev-
ertheless, from the perspective of this work this line of literature is inconvenient since
our aim is to assess the remaining operating time of a mobile system within one single
cycle given in minutes or maybe hours, i.e., under a microscopic time scale. Hence,
the following survey addresses a second line of prognostics approaches focused on
estimating the remaining time to discharge (RTD) also referred in the literature to as
end-of-discharge time (EoDT) or remaining run-time (RRT).

Data-driven prognostics, also referred to as black-box approach, aims to learn the
discharge behavior of the energy storage system on the basis of measurements gath-
ered on the field during operation by converting raw data into relevant pieces of
information, from which the energy availability of the system can be inferred. The
first line of literature pertaining the prediction of the RTD relies on the basis of the
Peukert’s law (Peukert 1897). In this sense there exist an empirical static map storing
data that explains the relationship between the capacity of the energy storage system
and the discharge rate. Pesco et al. (1989) and Matsushima, Ishizuka, and Hashi-
waki (1990) introduce relatively simple prediction approaches which take advantage
of the linearity presented in some regions of the discharging process. In this case, the
time-to-discharge is computed by dividing the available capacity by the load. These
approaches, although accurate, have the drawback that the operating conditions are
assumed to remain constant during the entire discharging event. To overcome these
issues, some researchers have augmented the static maps with the aim of considering
time-varying loads (Benini et al. 2003) as well as temperature (Ross and Budney 1995)
and aging effects (Pop et al. 2009). Doerffel and Sharkh (2006) demonstrate that, even
though the aforementioned approaches show good performance for certain condi-
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tions, predictions based on the Peukert’s law underperform when the energy storage
system is given by Lithium-ion cells and, more important, when the system is subject
to loads of stochastic nature, such as in the case of mobile systems.

To circumvent this problematic, purely data-driven methodologies have been pub-
lished. In this context the literature is divided into two lines of research. The former
forecasts the state of charge of the system and the later learns its discharge process. Lu
et al. (2010) investigate the applicability of regression analysis, moving average and
exponential smoothing to forecast the energy availability of real-time embedded sys-
tems and thereby to estimate their RTD. Although this study reports acceptable re-
sults, a physical model is still necessary for estimating the energy availability of the
system at the time of prediction.

Artificial intelligence approaches overcome this issue by ascertaining the unknown
relationship between measurements gathered from the energy storage system and the
RTD. Saxena et al. (2012) report from the use of an artificial neural network (ANN)
and a least-squared regression approach for estimating the RTD of Li-ion batteries
operating under constant operating conditions. These approaches are employed to
learn the relationship between different voltage regions of the discharge curve and
the RTD. Saxena et al. (2012) show that ANNSs are suitable for RTD estimation under
constant loads, but that they poorly perform under varying loading conditions. With
the aim of accounting for varying loads in the RTD estimation Wen, Wolski, and
Krintz (2003) introduce a statistical approach, that takes into consideration varying
work loads and battery charge rates. This approach uses a signature extracted from
a reference discharge curve. Then, during operation, a statistical model is used to
predict deviations from the reference signature and thereby to estimate the RTD.

Personalized or context-aware approaches have also acknowledge the importance
of adapting the RTD estimation to varying operating conditions. Kang, Seo, and Hong
(2011) propose an approach that assigns possible operating states of a mobile device
based on usage patterns from different participants and develop a method that esti-
mate its RTD based on the average load consumed at each state and on the time the
mobile device remains on it.

Model-based prognostics, also referred to as white-box approach, has gained in
importance during the last decade due to its versatility and ease of implementation
in practical engineering applications. In the case of energy storage systems, it in-
volves describing the discharge process by means of a mathematical model, which is
generally derived from first principle laws, e.g., chemical, electrical or thermal. The
model is employed to predict the evolution of the system capacity and to determine
the time at which the system runs out of energy. Approaches falling into this cate-
gory also benefit from experimental field data since this can be used to identify model
parameters and to infer the available capacity.

From the methodologies available in the literature, a model-based approach using
particle filters (PF), first developed by Orchard and Vachtsevanos (2009) and later
adopted and further developed in the context of energy storage systems by Saha
and Goebel (2009), Orchard et al. (2012), Olivares et al. (2013), Zhou et al. (2014)
and Tampier et al. (2015), among many other researchers, has emerged as a solid
solution. Particle-filtering based approaches for prognostics employ a physics-based
model in order to estimate the end-of-discharge time of the system. To this aim a
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set of discrete weighted samples, known as particles, is used to first estimate, either
directly or indirectly, the available capacity of the system and then to characterize a
probability distribution of the RTD by propagating the set of particles forward in time
through simulation until the minimum allowable capacity is reached. The computa-
tional complexity of this approach is a function of the number of particles used in the
capacity estimation and of the time each particle needs to simulate the RTD. It is clear
that enhancing the computational performance of this approach requires reducing the
number of particles used without sacrificing the accuracy of the RTD estimation.

Daigle, Saxena, and Goebel (2012) aim to solve this issue by adopting a model-
based approach (Daigle and Goebel 2010) working on the basis of the Unscented
Transform (UT) (Julier and Uhlmann 2004) in which the samples are chosen deter-
ministically instead of using a random sampling method, as in the case of the PE.
Although this method is more computationally efficient than the standard PF, the UT
may only be applied to nonlinear systems in which all sources of noise are Gaussian,
otherwise, this approach should not be used. Oliva and Bertram (2014b) introduce
an efficient alternative to the aforementioned model-based approaches and propose
the use of a variation of the particle filter based on particle flow and optimal trans-
port methods (Daum and Huang 2008). The idea behind this approach is to reduce
the number of particles needed by the PF by introducing a particle flow, in which
the particles are progressively transported without needing to randomly sample from
any distribution, hence, reducing the number of particles needed and thereby the
computational effort in both the capacity estimation and the RTD prediction.

Sankararaman et al. (2013) propose a third line of model-based approaches based
on reliability theory with the aim of further reducing the computational complexity.
The main contribution of this study is that the RTD is estimated in an analytical man-
ner, eliminating in this manner the randomness introduced by the sampling-based
approaches discussed so far. One benefit of this approach is that the significance of
each uncertain factor related to the RTD is directed assessed during its estimation,
allowing in this manner to perform, for example, uncertainty analysis with no extra
computational requirements (Oliva and Bertram 2015).

Range assessment of energy-constrained mobile systems

At first sight it might seem that the task of range assessment can be directly performed
with help of the RTD estimation approaches presented above, however, assessing the
remaining range of a mobile system requires modeling not only the discharge process
of its energy storage system but it also needs information on how the load is generated
through the interaction of the mobile system and its surroundings.

Saha et al. (2011) introduce a model-based approach for estimating the end-of-
discharge time of an electric UAV using the particle filter framework previously de-
veloped by Saha and Goebel (2009). Here, the particle filter employs a cell model to
estimate the state of charge (50C) of a Lithium-ion battery used to power the system.
The power requirements of the UAV are characterized from historical data and are
clustered based on the flying maneuver they represent, i.e., takeoff, landing, turns or
cruise flight. The RTD is estimated by propagating all particles of the filter forward
in time until they reach the cut-off voltage of the cell. Due to the flexibility and sig-
nificance of the experimental system deployed within this research, many new prog-
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nostics solutions have been developed on top of it. Quach et al. (2013), for example,
create an enhanced prognostics algorithm which is implemented with an improved
cell model and replace the particle filter with an unscented Kalman filter (UKF) for
state estimation. Furthermore, in contrast to Saha et al. (2011), they characterize the
power requirements by means of uniform distributions ranging around mean loads
inferred from historical maneuvers. In this manner the prediction becomes more ro-
bust against unexpected flying events since it accounts for the uncertainty introduced
by the future loading of the UAV. Note, that the accuracy of the approaches dis-
cussed so far strongly depends on the characterization of the future flying load. The
drawback with the previous characterization schemes is that an RTD estimation can
be performed only if the UAV follows a predefined flying plan. These approaches
might be not suitable for situations in which the UAV needs to explore unstructured
environments, in which the number of characterized maneuvers might be remark-
able increased. Instead of augmenting the pool of characterized power requirements
for every imaginable flying maneuver, Bole et al. (2013) introduce a detailed UAV
model which maps the relationship between the aircraft angle of climb, speed, and
acceleration and the power requirements of the powertrain. In this manner the RTD
estimation reduces to predicting the trajectory of the UAV instead of estimating its
future power requirements. Although this approach is more computational expen-
sive, it allows capturing the relationship between the mobile system and its operating
environment, which positively impacts the accuracy of the RTD estimation.

Planetary rovers and mobile robots (LeSage 2013; Sadrpour, Jin, and Ulsoy 2013) are
also found in the literature as case study for the deployment of RTD estimation solu-
tions. A widespread experimental system is the mobile robot testbed for prognostics-
enabled autonomous decision making constructed by Lachat et al. (2006), to carry out
experiments in the Antarctic, and further developed by Balaban et al. (2011). Daigle
and Sankararaman (2013) present a simulation study in which two model-based prog-
nostics approaches (Daigle, Saxena, and Goebel 2012; Saha and Goebel 2009) are com-
pared for RTD estimation in both constant- and variable-amplitude loading scenarios.
The main contribution of this study lies on the uncertainty characterization of the
future power requirements of the rover. Such characterization is achieved by using
random surrogate variables to parametrize future rover trajectories. Analogous to the
work of Bole et al. (2013), the power requirements are computed through a hypothe-
sized future interaction between the rover and the terrain.

Daigle, Sankararaman, and Kulkarni (2015) and later Daigle and Sankararaman
(2016) apply the concepts developed within this research in an experimental study in
which they evaluate the suitability of model-based approaches working on the basis
of Monte Carlo sampling (Saha and Goebel 2009), the Unscented transform (Daigle,
Saxena, and Goebel 2012) and reliability theory (Sankararaman et al. 2013) for es-
timating the end-of-discharge time and the remaining driving range of a planetary
rover operating under real conditions with the aim of assisting operational decision-
making (Balaban et al. 2013). The evaluations take places under a structured driving
scenario, in which the rover navigates following a set of predefined waypoints, and
under an unstructured scenario, where the rover executes a sequence of random ma-
neuvers. Both works show the benefits of having reliable RTD and RDR information
and highlight their importance for increasing mission feasibility.



1. Introduction

Remaining driving range estimation of electric vehicles

Analogous to the prognostics approaches previously surveyed, the categorization of
the research regarding the RDR estimation of EVs is based on the sources of informa-
tion employed, that is, telematics, crowd-sourcing and on-board sensors.

With the growing development of web services and mobile applications, modern
electric vehicles are supplied with more precise information about their driving envi-
ronment. This has allowed researchers to take advantage of telematics to incorporate
environmental information such as topology, traffic or even the weather along the
road ahead into the RDR estimation. Conradi, Bouteiller, and Hanf3en (2011) intro-
duce a method that combines the use of a web server, a digital map and a mobile
application. A mobile device sends the position of the vehicle and the current state
of charge of the battery to a web server, which first computes the energy consump-
tion along all possible routes and then, based on the current SoC, it calculates the
maximum driving range. The achievable RDR is presented to the driver by means
of a polygon drawn around the current position of the EV. This idea doesn’t remain
unheeded by the scientific community and is further developed with minor variants
by many other researchers, either by using regression approaches (Ferreira, Mon-
teiro, and Afonso 2011) or by employing detailed models of the EV (Bedogni et al.
2014; Tannahill, Muttaqi, and Sutanto 2016; Zhang et al. 2012), applied to forecast
power consumption. Ondruska and Posner (2014a, 2014b) extend this idea and de-
velop a regression approach which generate attainability maps that show the driver
the achievable RDR for a given probability of success.

A second line of literature benefits from modern cloud technologies to extend the
approach from Conradi, Bouteiller, and Hanfien (2011). Grubwinkler, Brunner, and
Lienkamp (2014) use crowd-sourcing to gather 200 000 km of real world driving data
and develop a RDR estimation approach based on data mining used to extract statis-
tical features from speed profiles and to forecast power consumption. Ferreira, Mon-
teiro, and Afonso (2012, 2013) also mine data in order to estimate the RDR. This
solution extracts information not only related to the driving profile but also regarding
the climatic conditions, type of EV and driver behaviors. Other researchers take this
approach a step further by augmenting data repositories with information pertaining
routes and terrain, vehicle and battery parameters as well as charging history in order
to create Big Data frameworks in which the RDR is estimated by means of machine
learning (Lee and Wu 2015; Rahimi-Eichi et al. 2015; Rahimi-Eichi and Chow 2014).

Although RDR estimation solutions based on telematics and crowd-sourcing have
achieved acceptable results, their deployment is usually linked with high implementa-
tion costs. This problematic has served as a motivation for finding more cost effective
solutions, which are able to estimate the RDR based solely on sensors installed on-
board of the EV. Ceraolo and Pede (2001) introduce a RDR estimation approach which
works in two phases. In the first phase the state of charge of the battery is recursively
estimated with help of sensor data. Then, in a second phase, the behavior of the elec-
tric vehicle as response to a given driving cycle is forecast forward in time through
simulation. The RDR is computed by determining the distance traveled, along the
driving cycle, at which the minimum allowable SoC is reached. This work has served
as basis for many researchers which aim to estimate the RDR under predetermined
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standard driving cycles, either using physics-based (Denis et al. 2012; Grewal and
Darnell 2013; Liu et al. 2015; Vaz et al. 2015) or data-driven (Bolovinou et al. 2014;
Hong, Park, and Chang 2016) models, for computing future power requirements.
The drawback of the approaches discussed so far, with exception of Ondruska and
Posner (2014a, 2014b), is that the RDR is treated as a deterministic quantity and that
the various sources of uncertainty are not taken into account. Jung et al. (2015) con-
clude that displaying the uncertainty related to the RDR estimation improves the driv-
ing experience towards the EV and reduces the range anxiety. Oliva, Weihrauch, and
Bertram (2013a, 2013b) propose approaches based on the prognostics concepts devel-
oped by Daigle, Saxena, and Goebel (2012) and Saha and Goebel (2009), respectively,
with the aim of including uncertainty information into the RDR estimation. Similarly
to Ceraolo and Pede (2001), these approaches proceed in a state estimation and a RDR
prediction phase. In the first phase, the SoC of the battery is recursively estimated.
In the second phase the RDR is predicted in two steps. First, multiple realizations
of the future driving profile given by the speed, acceleration and by the slope of the
road are predicted by means of Markov chains. In the second step, the uncertainty
represented by the SoC estimate is propagated through the predicted driving profiles
until the minimum SoC is reached. The main contribution of this work is that the
uncertainty of the estimated RDR is computed at no extra computational cost.

1.3. Research objectives and thesis outline

The survey of related work suggests that prognostics is still a non mature domain that
continuously evolves to attain established concepts that can be applied for energy-
constrained mobile systems. Indeed, the development of prognostics solutions relies
on the type and quality of data and information regarding the past, present and future
of the system and its operating environment, the assumptions made about the system
and the validity of the models used to described the system behavior.

To select a proper prognostics solution for this work the characteristics of the differ-
ent approaches are juxtaposed with the requirements imposed by energy-constrained
mobile systems and accordingly assessed upon their data/information requirements
as well as their characteristics. For the sake of clearness, the approaches are evaluated
in the interval [1,5]. In figure 1.2 (a) high values mean high priority of having the
corresponding data or information, that is, the more area is covered by an approach,
the more difficult and costly is its implementation. On the contrary, in figure 1.2 (b)
high values mean better characteristics of a given approach. This means that the more
area is covered by an approach the more suitable is it for our purpose.

A model-based approach seems to be the most suitable solution for assessing the
range of energy-constrained mobile systems. Although it requires more information
than its data-driven counterpart, it offers more benefits that might result in a better
range assessment. For example, having a model that accurately describes the deple-
tion of the energy storage system is mandatory. Since the literature related to its
modeling is relatively mature, the drawback regarding this aspect losses its relevance
in the context of this work. Other requirements like the failure threshold or the system
intrinsic characteristics are easily obtainable by means of experiments or data sheets.
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Figure 1.2.: Evaluation of data-driven and model-based prognostics approaches according to
the information they require (a) and to their characteristics (b).

The current state is another piece of information whose availability strongly influences
the true assessment of the range. In this work the current state of the system refers to
the actual energy that can be used by the mobile system in order to traverse its envi-
ronment. Having wrong information about this clearly affects the range assessment
in a negative manner. A strong benefit of using a model-based approach is that a
higher accuracy in the range estimation can be achieved in contrast to the data-driven
counterpart, however, this is linked to an increment in the computational burden and
in the model complexity. Another advantage of using a model-based solution is that
most aspects of the prognostic procedure are interpretable. This allows to gain a bet-
ter understanding on how the range is actually estimated and, if needed, to carry out
changes more quickly. Finally, one of the most important benefits of using models is
that it permits not only estimating the range in a deterministic manner, but it allows
assessing the uncertainty related to it expressed in terms of confidence estimates. It
is clear that a model-based prognostics approach is a reasonable choice, however, as
it can be inferred from the survey presented above, state of the art approaches fail to
take into account the information related to the stochasticity of the environment and
of the operating conditions. This might impose severe limitations on the adaptability
and consequently on the robustness of the estimated range.

Given these limitations, this work sets as main research objective to: Conceive and
deploy a novel model-based prognostic solution for assessing the range of mobile systems which
operate subject to energy constraints and under randomly-varying environments. To achieve
this objective a comprehensive research plan has been elaborated. Figure 1.3 depicts
the pathway that structures both our research plan and this work.

The core of our approach is found in the center of the figure (chapter 2), which
describes the RUL estimation in the context of model-based prognostics and presents
the research methodology and the experimental system employed in this work. The
steps depicted in the upper left hand side of the figure, namely chapter 3 and chapter
4, comprise the development, parametrization and validation of physics-based models
for computing the power requirements of the mobile system as result of its interaction
with its operating surroundings and for accurately capturing the nonlinear capacity
behavior exhibited by the energy storage system used to power the mobile system.
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Figure 1.3.: Research plan and structure of the thesis.

With the purpose of reducing the number of uncertain variables, and therefore the
computational complexity of the RUL estimation, chapter 5 focuses on carrying out
an uncertainty analysis with the aim of prioritizing the parameters which mostly
contribute to the total uncertainty of the estimated RUL.

The bottom left hand side of the figure, i.e., chapter 6 aims to characterize the
uncertainty reflecting the lack of knowledge about the energy available in the en-
ergy storage system and introduces the implementation of a nonlinear observer for
monitoring it. The right hand side of the figure basically deals with the operating
environment. First, chapter 7 introduces an approach developed to extract, select and
compute features from measured variables of the environment, with the aim of clas-
sifying, as good as possible, different operating conditions, with the aim of adapting
the RUL estimation to changing operating conditions. On this basis, chapter 8 focuses
on modeling the environment from a Markovian point of view, more concretely, on
modeling both the evolution of the different operating conditions and the interac-
tion between the mobile system and its surroundings, which conforms the basis for
predicting the power requirements dictated by the future operation of the system.

The bottom side of the image (chapter 9) integrates the knowledge obtained in
previous chapters into an unified solution for estimating the RUL of mobile systems
subject to energy constraints with the aim of achieving the research objective by means
of a comprehensive series of experiments carried out under controlled and real con-
ditions. Finally, conclusions on the findings gained throughout this work are drawn
and an outlook on future work is presented in chapter 10 .
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Model-based Prognostics for
Energy-Constrained Mobile Systems

We start by formulating the RUL estimation for energy-constrained mobile systems
in the context of model-based prognostics. Section 2.2 introduces the methodology
employed for addressing the research objective stated in section 1.3 and describes,
with help of a case study, the phases incurred for its achievement. Finally, section 2.3
describes the steps for evaluating the proposed methodology.

2.1. Problem formulation

Let us assume that the energy storage of the mobile system incurs an environment-
dependent depletion. At any time t > 0, the system environment is found at one of
m states in the finite set S = {s1, 5, ..., Sm }, with 2 < m < oo.

Without loss of generality, let the mobile system operate, at any given time t > 0,
in an arbitrary environment-state s; € S and assume that it remains operating at s;
for a random period of time ATij, herein also referred to as sojourn time, before the
environment changes to another state s; € S. Also assume that the environment ran-
domly evolves over time as a discrete-state stochastic process following a multinomial
distribution with parameters 7r; = (7ti1, 7Tip, ..y 7Tij, ooy i), 1.€.:

S; ~ Multinomial (7'[1'1, TTi2y wees TUijs wees nim) , (2.1.1)

where 7;; = p (s; = sj) = p(sj) is the probability of the environment incurring a
transition from state s; to state Sj-

In addition, let us describe the energy storage system powering the mobile system
with the following continuous-time nonlinear time-variant state space representation:

(1) = £(x (1), u(t),0(t),v(E),1), (2.1.2)
y(t) =h(x(t),u(t),0(t),n(t),1), (2.1.3)

where t is the continuous time variable, x (t) € RN~ is the state vector, u (t) € RN«
represents the input vector, 0 (t) € R™ is the parameter vector, v (t) € R is the
process noise vector, n (t) € RN is the measurement noise vector and y (t) € RM is
the output vector. The function f : RMr x RN« x RNo x RNe x — RNx and the function
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Figure 2.1.: Exemplification of the temporal evolution of &, (t) in dependence on the operating
conditions.

h : RM x RN« x RNe x RN» — RN describe the input-to-state dynamics and the
state-to-output relations of the system, respectively. In addition, let:

Ea () =0 (x(1),0(t),y (1), 1) (2.14)

be the energy available in the system at any time t > 0 and define the function
#: RNy x RNe x RNy — R as the map between system states, parameters and outputs
and the energy available of the system. Furthermore, define:

T, (t) = t (& (1), 1) (2.1.5)

as an indicator of the degree of depletion of the energy storage system where the
threshold function t : RN x RNe x RN — R maps the energy available &, (t) to the

Boolean domain B 2 [0,1], such that:

1 if ga S ga,min

nm:{Oﬁ&>&mn’ (2.1.6)

where &; min is the minimum amount of energy that has to be available, such that the
mobile system remains operating according to its specifications.

As it can be seen in the figure 2.1 determining the energy available &, (t) anywhere
from the time t,, also referred to as time of prediction, until the time t,, at which
the system runs out of energy, depends not only on &, (t,) but also on the energy
consumed by the mobile system during this period of time.

The energy available at any time instant t > ¢y, with ¢y = 0, is expressed by:

t
Ea(t) =& (to) + t P (t)dt. (2.1.7)

0
where P (t) represents a continuous-time continuous-valued random process which
describes the power required to run the mobile system at any time ¢ > 0 as result of
its interaction with the operating environment. The RUL is defined at given t, > 0as:

RUL (tp) =t —tp =inf(t e R:t > t, AT, (t) = 1) — ), (2.1.8)

where t, represents the end-of-life (EOL) of the system.
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Figure 2.2.: Classification of the sources of uncertainty in present state (a), future load (b) and
model uncertainty (c).

The definition of the RUL given by equation 2.1.8 is basically built around two
premises. The former considers that both f (-) and h (-) exactly describe the temporal
behavior of states, parameters and outputs of the system and that at any given time
t > 0, & (t) can be computed by means of ¢ (-) without error. The latter assumes
that the load of the mobile system, herein represented by u () in equations (2.1.2)
and (2.1.3), in the interval t, < t < t, is known precisely. However, in practical
applications, due to the presence of uncertainty, none of these premises is totally true.

Identifying and quantifying the sources of uncertainty is the key for properly de-
termining the RUL. Researchers have classified the sources of uncertainty in aleatory
(physical variability), and epistemic (lack of knowledge) in order ease the tasks of un-
certainty quantification, propagation and management. This classification, however,
is not best suited in the context of this thesis. The reason for this is that the RUL is
aimed to be estimated for a particular mobile system, thus, the variability among iden-
tical mobile systems plays an irrelevant role. Sankararaman and Goebel (2015) proposes
a more proper uncertainty classification scheme, which considers the core elements
involved in estimating the RUL. The present state uncertainty reflects the lack of knowl-
edge about the energy available in the system at time t,. Generally, this quantity
is expressed indirectly in terms of system states and parameters, which however, in
most cases are not observable and consequently have to be estimated. Figure 2.2 (a)
shows how the uncertainty related to the initial available energy can affect the RUL
of the system. The term n, represents the number of possibles values of the available
energy at time t,. The future load uncertainty mirrors the unpredictability of the future
operating and environment conditions of the mobile system and therefore the future
power requirements. The lack of knowledge about the future usage of the mobile
system represents the largest source of uncertainty in the RUL estimation (see fig-
ure 2.2 (b)). The term n, represents the number of all possible future load profiles.
As it was previously discussed, the core of any model-based prognostic approach is
the use of models for describing the behavior of the system states and outputs in
time, given by the functions f(-) and h (-), as a response to the load of the system.
Furthermore, the function @ (-) models the temporal evolution of &, (t) and the func-
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tion t (-) maps it to the performance of the system. As shown in figure 2.2 (c), even
if &, (tp) and Uy, are assumed to be completely known at the time of prediction £,
the RUL given by equation (2.1.8) might differ from the true RUL of the system due
to the model uncertainty. This source of uncertainty comprises uncertainties related to
parameters, the structure of the system and the inherent process noise present in f (-),
h(:),d(-)and t(-).

In light of the above discussion, it seems fair to conclude that the RUL is an un-
certain variable whose randomness is governed by the uncertainties previously men-
tioned. It becomes clear that properly estimating the RUL requires quantifying the
sources of uncertainty involved in its computation first, and then propagating them in
order to compute their combined effect, expressed by a probability density function.
Thus, estimating the RUL becomes an uncertainty propagation problem, as stated
by Sankararaman and Goebel (2013).

For a better understanding of the RUL estimation problem described from an un-
certainty propagation point of view, let us redefine the RUL of the system as:

RUL (t,) = G (9 (tp) ,tp), (2.1.9)

where G (+) is a function that maps the joint probability density function (PDF) of
the uncertain variables contained in ¢, that is, the states estimate x (tp), the future
parameters 6 (f, : t.) and the future inputs u (, : ) to the RUL (t,), i.., the prob-
ability density function of the RUL of the system at given time t, > 0, as depicted
in figure 2.3 (a). The task is to identify the function G (-) that allows mapping the
uncertain variables to the PDF of the uncertain output variable, i.e., the RUL of the
system.

In the effort of finding a solution for the general uncertainty propagation problem,
researchers have proposed approaches, which can be classified in analytical and nu-
merical methods (Sankararaman and Goebel 2013), (see figure 2.3 (b)). Analytical
approaches, e.g., response variability methods (Isukapalli, Roy, and Georgopoulos
1998), structural reliability methods (Zhao and Ono 1999) and stochastic finite ele-
ment methods (Stefanou 2009) make some assumptions about the distribution of the
uncertain input variables and about the function G (-) evaluated during the uncer-
tainty propagation, in this case the computation of the RUL, such that the statistical
information of the output variable, here the RUL, can be conveniently computed in
an analytical manner. For those cases in which the function G (-) is linear and the
uncertain input variables are Gaussian, a closed form solution for the propagation of
uncertainty might be obtained. However, due to the nonlinearities presented in the ca-
pacity behavior of most energy storage systems, the computation of the RUL cannot be
achieved using a linear G (-). The paramount challenge in applying analytical meth-
ods in model-based prognostics is the integration of the future load uncertainty into
the RUL estimation. In most cases the future the power requirements are governed by
a non-Gaussian stochastic process, which cannot be characterized by stationary prob-
ability distributions. In addition to this, estimating the RUL, as presented in equation
(2.1.9), requires knowledge about u (tp : te). It becomes obvious that this information
is not available in advance, since ¢, is the actual outcome of the RUL estimation. The
implicitness of t, makes even more difficult applying the aforementioned uncertainty
propagation methods in estimating the RUL.
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Figure 2.3.: Representation of the RUL estimation as an uncertainty propagation problem (a)
and classification of uncertainty propagation approaches (b).

2.2. Research methodology

One solution to the aforementioned issues is to apply numerical methods such as
sampling-based approaches, which rely on random numbers and probability theory
in order to approximate the probability density function of the output variable in
those uncertainty propagation problems that lack of a closed form solution. Sampling-
based approaches simulate multiple realizations of G (-) by repeatedly changing the
values of the input variables based on a pseudo-random sampling, e.g., latin hyper-
cube (McKay, Beckman, and Conover 2000) or importance sampling (Tokdar and Kass
2010). From a sufficient large number of simulations (samples) the aimed solution is
approximated. Although these approaches are high accurate, their computational ef-
ficiency is strongly affected by the large number of samples needed to converge to the
actual probability distribution of the RUL.

Deploying a prognostics solution for a mobile system requires not just executing a
prediction algorithm. It also processing signals gathered by sensors and analysing ref-
erence variables dictated by the operator in order to properly incorporate information
about the system itself or from its surroundings into the actual the RUL estimation.
As it is shown in figure 1.1 (d), all these processes take place in one or in multiple
information processing units, e.g., digital computers. Modern mobile systems are
equipped with computers usually constrained in both storage and computational re-
sources, causing in this manner remarkable restrictions to their real-time capabilities.
As it is shown in equations (2.1.2) and (2.1.3), until know the energy storage system
powering the mobile system has been described by a continuous-time nonlinear time-
variant state space representation. Nevertheless, such representation is not best suited
for algorithms executed in digital computers since they expect time continuous inputs.
In order to solve this problem we discretize equations (2.1.2) and (2.1.3) by introduc-
ing a sampling time At, within which new sensor information must be processed and
the prediction algorithm must be completely executed. Such a discretization requires
a stepped input u (t) = wVt € [k(At), (k+ 1) (At)[.
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Figure 2.4.: Proposed research methodology for model-based prognostics of energy-
constrained mobile systems.

Thus, discretizing equations (2.1.2) and (2.1.3) yields:

Xe1 = £ (xg, u, O, vi, k), (2.2.1)
Vi = h (xg, ug, O, 0y, k) . (2.2.2)

Van Der Merwe (2004) suggests that describing (2.2.1) and (2.2.2) as a dynamic state-
space model (DSSM) eases their application in the context of probabilistic inference. In
this sense, the states x € RNx temporally evolve following a non fully observable first
order Markov process according to the conditional probability function p (x|xx_1),
which is fully specified by the function f () together with the process noise distribu-
tion p (v¢). The observations y;, € R are conditionally independent given x; and are
generated from the observation likelihood p (y¢|xx), which in turn is specified by the
output function h (-) and by the noise distribution p (ny). This description together
with the proper characterization of the sources of uncertainty outlined in section 2.1
sets the basis of the sampled-based methodology investigated throughout this work
and that is schematically depicted in figure 2.4. In section 2.1 we have mentioned that
the RUL estimation problem is concerned with first estimating the energy available
&, at any given time and then to predict the future operation conditions of the mobile
system in order to determine the distribution of the time at which T, = 1. In the se-
quel we briefly introduce the uncertainty characterization and propagation schemes
investigated throughout this work.
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Model uncertainty characterization

The first step in deploying a model-based prognostics solution is the development,
parametrization and validation of a system model that allows describing the temporal
behavior of the states and outputs, given by the functions f (-) and h (-), as a response
to the load of the system. As it can be seen in figure 2.4 the system model is composed
of Mggs and Mpc. On the one side, Mpgs represents a model that captures the
nonlinear capacity behavior exhibited by the energy storage system used to power the
system. This model manages to deal with constant or highly dynamic loads, negative
or positive loads as well as with changes in the operating temperature. The model
is used by the function ¢ (-) to describe the evolution of the available energy &,,
and also by t(-) to map &, to the availability of the mobile system. The purpose of
Mpc, on the other side, is to describe the interaction between the mobile system and
the environment, more precisely, to compute the power requirements dictated by the
operating conditions.

The characterization of the model uncertainty introduced by Mpgss and Mpc is
carried out during the stage of parameter identification by quantifying the model-
ing error, by determining the validity of the model (see chapters 3 and 4) and by a
systematic uncertainty analysis (see chapter 5) used to prioritize important variables
and to neglect the uncertainty related to those variables whose contribution to the
total uncertainty of the estimated RUL is meaningless.

Present state uncertainty characterization

This task is performed in the state and parameter estimation phase by a nonlinear ob-
server which monitors the remaining energy available in the energy storage system.
The intended outcome of this phase is to represent the most up-to-date knowledge
of the system states and parameters at any given time based on the current and on
all past observations. To this aim the observer recursively approximates the posterior
probability p(Xk|Yg) of the state variables and parameters by a set of nx weighted
samples S = {X},wi }'* . Here X} is the set of samples representing the joint state-
parameter space, w;c are the associated importance weights and Y; = yq is the set
of all observations generated up to time k. Each sample is drawn from an a priori
estimation of the joint state space and is propagated through the function £(-) in the
prediction step. Then, the value of each sample is updated from new observations
through the output function h(-) in the measurement update step.

In this step the weight of each sample is updated according to the likelihood of a
new measurement given the sample. Finally, the probability distribution of the joint
state variables at discrete time k is approximated by:

POXe|Y)) ~ —— nZX; wi o (xk _xi ) (2.2.3)
i k

where §(-) describes the Dirac delta function located at X}'(. The posterior state esti-
mate establishes the starting point for the second phase, in which the set of samples
approximating p(X|Yy) are employed for estimating the RUL at given time to pre-
diction kp. To this aim the posterior estimate p(X,|Yy,) is set as initial condition.
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2.2. Research methodology

Future load uncertainty characterization

Characterizing and integrating the uncertainty related to the future power consump-
tion is a paramount challenge during the RUL estimation. This is due to the fact
that the future energy needs are mostly governed by a stochastic process, and there-
fore can not be characterized by merely stationary probability distributions. The
prediction of the power consumption of the mobile system, and thereby the future
load uncertainty characterization, is achieved by means of a stochastic environment
model based on a first order Markov process, which captures the behavior dictated
by both the temporal evolution of the operating conditions and the actual interaction
between the mobile system and its surroundings. The outcome of the stochastic en-
vironment model is ﬁ,e(;‘:‘]’(p = [‘A’x,kp:k,ﬁhL By kytky+hy &road,kp:k,,Jth]T which represents
a realization of the underlying stochastic process describing the temporal behavior
of the longitudinal speed ¥y k1, = [ZA’x,kp/ e O sy z?x,kath] and the acceleration
8k tkythy = [ﬁx,k,,/- /Ny &Xlkth] of the mobile system as well as the slope pro-
file of the road &road k,k,+h;, = [&road,kpr- e Broadk, - - -/&road,kp+hL] for a given horizon
length i measured from the prediction time ky.

Adapting the stochastic environment model to changes in the environment condi-
tions allows accounting for the most up to date operating conditions, and therefore
improves the accuracy of the predicted power requirements. Such an adaptation,
however, requires updating the transition probabilities of the Markov model as new
information becomes available. The first step towards achieving such an update is to
discriminate each operating condition as it occurs, so that transitions between con-
ditions can be counted online. The operating condition discrimination is the function
q: Y CRM¥ — s € S, that allows mapping instances of extracted features ¢ € ¥ from
measurements of speed vy and acceleration 4y, to the corresponding class (operating
condition) s € S where S is the set of operating conditions. Built on these features, in
a second step the function q (-) is employed for discriminating operating conditions
with the aim of updating the parameters of the stochastic environment model. The
convergence speed of the updated parameters is specially important at this point. A
slow adaptation of the Markov model is inconvenient in this context since they would
cause the characterization of the most up to date operating conditions to fail. There-
fore, it is desired to have a recursion that progressively fades the influence of older
parameters during the updating process.

Uncertainty propagation (RUL estimation)

As it can be appreciated in figure 2.5, a sample-based approach in terms of a Monte
Carlo simulation is employed to estimate the RUL of the mobile system. To this
aim, the posterior estimate p(ka|Ykp), is approximated by the finite set of sam-
ples Skp = {X};p,w}'{p Z’Z‘l. Here, X' pr during the state and parameter estimation phase,
serves as the starting point at given time k,. In this sense, each sample is indepen-
dently propagated forward in time through a realization of ﬁi;‘:‘]’(p +n,» generated by the
stochastic environment model, until the &, min is reached. Once this happens, the RUL
of all samples is computed and used to approximate the posterior p(RULy,|Yj,). To
account for the fact, that during the sample propagation step the shape of p(Xj, Yy, )
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Figure 2.5.: RUL estimation based on a sample-based Monte-Carlo simulation. For the sake of
clarity the figure depicts the RUL estimation of just one sample/particle.

may change, due to noise and process nonlinearities, it is required to update the set
of weights at each future iteration. However, during this step no new observation,
which could serve for updating the weights, can be generated. This implies that an
update procedure for the sample weights, as it would happen in a typical filtering
problem, cannot be carried out. This issue is addressed by assuming the weights as
invariant from the time k, to k, + hr. This assumption is justified by considering the
uncertainty added by model inaccuracies or by the ignorance about future operation
conditions to be large in comparison to the uncertainty which comes from consider-
ing constant sample weights. In this way, the set of weighted samples S, is simply
propagated forward in time by simulating the behavior of the system as reaction to
a hypothesized future operation condition, until &, in is reached. Once all samples
have reached this point, i.e., when Té,kp =1, the RUL};F of each sample is determined

and combined with its weight w;(p to approximate p(RULy, |Yk,,) as follows:
X .
p <RULkp|Ykp> ~ Y w, RUL] . (2.2.4)
i=1

The RUL estimation, as formulated by equation (2.2.4), requires propagating the set
of samples through a single hypothesized predicted profile of the future operation
conditions of the system. However, such a propagation accounts just for the present
state uncertainty but it does not consider the future load uncertainty. Taking this
uncertainty into account requires propagating the set of samples through multiple
realizations of ﬁg‘:‘;{p +n,» and not just through a single one. Thus, the computational
complexity of such a propagation becomes a function of nx x n, (Daigle, Saxena, and
Goebel 2012), where n,, is the number of realizations needed to characterize the un-
certainty dictated by the future operation conditions. The set of weighted samples is

then propagated through multiple profiles until all of them, along all predicted pro-

20



2.3. Methodology evaluation

tiles, have reached the threshold, i.e., when Téjkp = 1. Here j represents each realiza-

tion of the operation profile. Accordingly, the probability distribution p(RULy,[Y,)
is approximated by means of kernel density estimation:

1 RUL;, —RUL]

K ,
nxnyh ]; C h

p (RULkp|Ykp> ~ (2.2.5)

where K¢ (+) is a Gaussian kernel function, / is a smoothing factor known as band-

width and RULZ,, is the mean RUL of the set {{RULZP}:-Z‘l 7i1 computed as:

1 My X

RUTY ~ ‘ if
RUL, ~ o Z Z wy, RUL . (2.2.6)
j=1i=1
It must be noted that the importance of each realization of 4" are equally

kpikp+h,
weighted by means of nlu

To measure the performance of the RUL estimation we employ the relative accuracy
(RA) and the alpha-lambda (¢ — A) metric (Saxena et al. 2009). In the context of the
RUL estimation the RA at an arbitrary time to prediction k, is given by:

RUL; — RULy,
RUL; /
P

RAj, =100 [ 1- (2.2.7)

where RUL;p is the ground truth RUL at time k, and RULy,, is the estimated RDR at
that time. The & — A metric serves to evaluate whether the estimated RUL lies within
specified bounds expressed as a percentage above and below of the actual RUL.

2.3. Methodology evaluation

The estimation of the remaining driving range (RDR) of an electric vehicle (Oliva,
Weihrauch, and Bertram 2013a) has been chosen as the case study to evaluate and to
validate the research methodology introduced in section 2.2. In this context, the RDR
estimation is concerned with predicting the power demand of the electric vehicle and
with identifying the distance that it can drive with the energy stored in its battery
before recharging is required. We consider the state of charge of the battery pack to
be the indicator that determines the threshold condition defined in section 2.1 (recall
equation 2.1.6), i.e., T,(SoC) = 1 if SOCypip, is reached and T,(SoC) = 0, otherwise. The
SoCmin is imposed by the battery management system (BMS) of the electric vehicle
to protect the battery cells from a possible total charge depletion. In the following
an overview of the system and setup used to carried out the series of experiments
performed in this work is presented. Nevertheless, the details of each experiment are
presented in the corresponding chapters of this work.
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Figure 2.6.: Schematic representation of the energy storage system of the Nissan Leaf.

Experimental system

The electric vehicle used as experimental platform for gathering data and for testing
the proposed approach is a Nissan Leaf (2011), which has been provided by the Insti-
tute of Control Theory and Systems Engineering of the TU Dortmund. This vehicle is
propelled by a 80 kW and 280 Nm synchronous electric motor mounted in the front
axle. The vehicle is powered by a 24 KWh Li-ion battery pack with a total capacity
of 66.2Ah, according to the disclosure of Nissan. The battery pack is made of 48
modules distributed along two front and one rear stack under the floor of the vehicle,
as shown in figure 2.6. Four sheet shaped LiMn;Oy cells are integrated into a single
module with a 2-series, 2-parallel formation (252P). Each cell has a 32.5Ah capacity
(at 0.3C rate) with a nominal voltage of 3.75V. The large flat surface of the cells en-
dows them with great cooling characteristics what improves their useful life. In order
to keep the cells in a healthy state, it is recommended to maintain their operating
voltage between 2.75 and 4.2 V. The pack is equipped with a Li-ion battery controller
(LBC) installed next to the rear module stack. It is in charge of measuring the voltage
and current of the battery pack, the temperature of each stack and the voltage of each
cell, in order to monitor their state of charge (SoC) or state of health (SoH).

Experimental setup

For the experimental evaluation and validation of the sampled-based methodology
shown in figure 2.4 three different experimental scenarios have been setup.

Scenario 1: Real (environment, mobile system and ESS): the first scenario, as
illustrated in figure 2.7 (a), consists of the electric vehicle equipped with a data acqui-
sition system, an inertial measuring unit (IMU) integrated with a differential global
positioning system and a real-time system, as shown in figure 2.7 (b).

The task of data acquisition system (the DEWE-510 by Dewetron) is to record and
synchronize the measurements gathered from both the IMU and the real-time system.
The DEWE-510 system is operated with a DC voltage between 18 and 24 V. For ex-
periments carried out on-road, the DEWE-510 is powered by three additional Li-ion
batteries, which allow an operation between 3-4 h. The entire architecture of measur-
ing system has been designed so that the energy supply of all devices is independent
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Figure 2.7.: Schematic representation (a) and real setup (b) of experimental scenario 1 com-
posed of 1-MicroAutoBox II, 2-ADMA-G, 3-DEWE-510, 4-Nissan Leaf, 5-OEM6 and 6-OBD-IL

of the vehicle electrical system. In this manner no distortion of the measurements
regarding power consumption is ensured.

The IMU is the Genesis ADMA-G. It allows measuring the position, speed and
acceleration of the vehicle in x-, y- and z-direction. The system is a combination of
a GPS receiver, the OEM6 of NovAtel, an acceleration sensor and a gyroscope. Its
operating voltage is 12V and is supplied by the DEWE-510. This systems uses a CAN
protocol with 1000kBaud to communicate with the DEWE-510 system.

The real-time system, namely the dSPACE MicroAutoBox 1I, is powered by a DC
source of 12V and communicates with the DEWE-510 system via CAN. It basically
serves to decode CAN messages, acquired through the OBD-II interface of the electric
vehicle with a 500kBaud. There exist a total of 3 CAN busses that can be accessed
via OBD-II, however, not all CAN messages carry relevant information. The messages
that are of interest for this work are the vehicle speed in longitudinal direction, the
SOC, terminal voltage and load current of the battery pack as well as the voltage of
each cell, the temperature at four different locations of the pack, the ambient temper-
ature and the rotational speed of the electric motor.

This setup is used to evaluate most theoretical concepts developed in this work.
Firstly, as discussed in chapter 3 and 4, it allows gathering the data necessary to
parametrize and validate the models Mpc and Mggs, respectively, as well as to
analyze their uncertainty in chapter 5. Secondly, the availability of measurements, not
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Figure 2.8.: Schematic representation (a) and real setup (b) of experimental scenario 2.

just of the battery pack but of each cell, is exploited in chapter 6 to evaluate the SOC
estimation under real operating conditions. Thirdly and lastly, both the operating
condition classifier from chapters 7, the stochastic environment model described in
chapter 8 and the RDR estimation presented in chapter 9 also benefit from this setup,
since they are primarily built around speed, acceleration and slope measurements.

Scenario 2: Real (environment and ESS) - Simulation (mobile system): the setup
of the second scenario (see figure 2.8 (a)), allows carrying out tests directly on the
modules of the battery pack. To this aim a series of experiments has been performed
in cooperation with the battery competence center Miinster Electrochemical Energy Tech-
nology (meet). In this scenario, the environment is simulated by the test bench shown
in figure 2.8 (b), which consists of a Digatron battery test system BTS-600, a thermo-
static chamber 60T by Sunrise and a host computer. The BTS-600 is responsible of
charging or discharging the battery cells according to predefined profiles of power
demand, which are generated off-line through simulation with help of real speed, ac-
celeration and slope data and the model M pc. The BTS-600 has four channels, which
are able to apply a maximum charge/discharge current of 200 A with a recorded ac-
curacy of £10mA. The measured voltage ranges between 0-5V with an accuracy of
+10mV. As it will be further detailed in chapter 4 the capacity behavior and the
transient response of the battery cell is highly dependent on the operating tempera-
ture. For this reason the ability to carry out tests on the cells at different temperatures
has gained in importance during this research, otherwise, temperature dependencies
could not be taken into account. To this aim the thermostatic chamber 60T, which is
coupled with the BTS-600, has been employed to keep constant temperatures, ranging
from 0°C to 40 °C, with an accuracy of £0.25°C.

During a charge/discharge routine the BTS-600 records the incoming and outgo-
ing capacity of the cell by means of Coloumb Counting together with the terminal
voltage, the load current and the temperature of the chamber. These measurements
are used in various phases and for different purposes throughout this work, e.g., to
parametrize and validate models of the energy storage system in chapter 4, to evalu-
ate the accuracy of the state estimation in chapter 6 or to perform RDR estimations in
chapter 9.
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Figure 2.9.: Schematic representation (a) and real setup (b) of experimental scenario 3.

Scenario 3: Real (mobile system and ESS) - Simulation (environment): the sce-
nario described above allows investigating the behavior of the energy storage system
and to draw conclusions about the RDR under controlled conditions. However, to
obtain more meaningful insights about the autonomy of the EV it is needed to con-
sider uncertainties related to entire battery pack as well as the ones related to the
power consumption of the vehicle. To achieve this, various experiments using the
setup shown in figure 2.9 (a) have been carried out in cooperation with the competence
center for interoperable electromobility, infrastructure and networks of the TU Dortmund.
The test bench shown in figure 2.9 (b) consists of a MAHA MSR-500/2 4WD double
roller chassis dynamometer equipped with one Eddy current brake and one electric
motor per axle, the Nissan Leaf with the measurement equipment described above,
a 42-inch monitor and a communication desk. The environment is simulated by the
chassis dynamometer. At each experiment, the MSR-500 adjusts the braking torque at
the rollers, such that the driving resistances can be accordingly simulated. The driver
accelerates or brakes the vehicle, which is fixed with the wheels sitting on the rollers,
with the aim of reaching and keeping the speed shown in the monitor placed in front
of the vehicle. The required vehicle-specific coefficients needed to match the roll- to
the street driving resistances has been determined using coast down tests.

The driving cycles are represented here by the speed in the form of time series,
which as in the previous case of the scenario 2, have been gathered through real
test drives on the road using the setup 1. During each experiment the DEWE-510 is
used to acquire and synchronize measurements regarding the terminal voltage, both
from the entire pack as well as each cell, the load current and the speed of the vehicle,
which, instead of being measured with the IMU, is read from the OBD interface of the
electric vehicle. The measurements obtained here also serve multiple purposes of this
research, e.g., to validate the SoC estimation of the battery pack in chapter 6. Within
this scenario it is possible to investigate the RDR estimation, (see chapter 9) under
some controlled conditions, but taking into account the uncertainties introduced by
the EV itself.
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Power Consumption Modeling

In this chapter a detailed model of the interaction between the mobile system and
its surroundings is developed and validated based on the physical properties of the
electric vehicle. First, the approach employed to model the EV as well as its dynamics
model are discussed in sections 3.1 and 3.2, respectively. Later, sections 3.3 and 3.4
deal with models for computing the power requirements. Finally, both the identifica-
tion of parameters and the validity of the model are discussed in section 3.5.

3.1. Physics-based modeling of electric vehicles

From a physical point of view, the power demanded by an electric vehicle can be
either modeled by a forward-facing or by a backward-facing approach (Guzzella and
Sciarretta 2005). Figure 3.1 shows the direction of action of both approaches. In the
forward-facing approach the electric vehicle is controlled by a driver model, which
serves as a speed controller, to follow a desired speed. The driver model determines
whether the vehicle accelerates or brakes in order to reduce the difference between
the reference speed and the actual speed of the vehicle. This approach considers the
physical properties of each component of the powertrain and the dynamic interaction
between them. The drawback with this modeling approach is the high computational
burden required to solve the set of differential equations presented in the model.
Reversing the direction of action of the simulation offers the opportunity to evade
the complex solution of differential equations. For this purpose, it is assumed that
the electric vehicle follows exactly the reference speed. The direction of action of the
backward-facing approach is highlighted in black in figure 3.1. This approach is com-
putationally efficient since it computes the forces acting on the wheels and processes
them backwards through the powertrain. The computation of the power demand de-
pends only on algebraic equations, decreasing in this manner the computational effort
of the model. This approach has the disadvantage that the accuracy of the simula-
tion is low in contrast to the forward-facing counterpart. Despite this, the accuracy
achieved by the backward-facing approach while determining the power consump-
tion of the experimental vehicle is sufficient. In the forthcoming explanation we omit
expressing all variables of the model as time dependent, since the model presented is
described by a set of algebraic equations and thus can be evaluated at any arbitrary
time instant.
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Figure 3.1.: Direction of action of the forward-facing (gray) and the backward-facing (black)
modeling approaches.

3.2. Vehicle dynamics model

Both longitudinal, lateral and vertical dynamics are directly coupled. However, if
it is assumed that the vehicle drives under the influence of small steering angles,
these three components can be accordingly decoupled (El Majdoub et al. 2012). This
assumption allows us to allocate all forces acting on the vehicle along its longitudinal
axis. The dynamics model derived in this work accounts only for the longitudinal and
vertical components. Cornering effects as well as stability issues are not considered
as relevant for computing the power consumption and therefore the lateral dynamics
of the electric vehicle is ignored in the following.

Longitudinal dynamics

To derive the model let us apply Newton’s Second Law along the longitudinal axis of
the vehicle, as shown in figure 3.2,:

ZFX:FX_FA_FR_FG_FI,ROt:mv,tax (3-2-1)

where my; is the total mass of the electric vehicle (including both curb and cargo
weights), a, and F are the longitudinal component of the acceleration and of the trac-
tion force, respectively. The longitudinal aerodynamic drag force Fa results from the
relative motion of the airflow of around the vehicle while it travels and is expressed
as:

1
Fp = ipaierAUgo/ (3.2.2)

where v, is the wind speed, p,ir is the density of air, ¢y, is an experimentally deter-
mined aerodynamic drag coefficient and A is the frontal area of the vehicle.
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Figure 3.2.: Forces acting on the electric vehicle during its longitudinal motion on a sloped
road.

For a vehicle driving in a straight line and on a dry pavement 90%-95% of the
rolling resistance Fg is the result from internal hysteresis losses on the tire materials,
2%-10% is due to the friction between the tires and the road and 1%-3.5% is caused
by air resistances (Wong 2001, p. 9). Under the assumption that the vehicle drives on
a road with small gradient the total rolling resistance can be computed as:

FR = mvlthR, (323)

where g is the acceleration due to gravity and Kg is the rolling resistance coeffi-
cient. Heifsing and Ersoy (2011, p. 39) shows a dependence of KR on vy and suggests
that it can be approximated by:

4
_ . _x
Kr = Kg, +Kg, (100km/h> T K, (100km/h> ' (324)

While driving on a sloped road, the sine component of the weight of the vehicle
acts on its center of gravity (CoG) along the longitudinal axis (see figure 3.2), either
braking it or accelerating it, depending on if the vehicle drives uphill or downhill.
The climbing resistance Fg is expressed as:

FG = mvyg sin (‘Xroad) ’ (325)

where a,,4 is the angle of inclination of the road. In addition to the steady-state re-
sistances, which occur at ay = 0, the vehicle experiences a dynamic driving resistance
which is attributed to its inertia. The inertial resistance F arises during transient
motion when the vehicle accelerates or decelerates and is expressed as:

F = A Tra + FRot, (3.2.6)

where 1o = my ax is the translational component, which arises from the transient
motion of the mass my; and Fret is the rotational component which result from
the acceleration or deceleration of the rotating parts of the powertrain, e.g., wheels,
transmission and shafts.
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3.2. Vehicle dynamics model

Force distribution by acceleration and braking maneuvers

As it was introduced in section 3.1, the power consumption model presented in this
work is based on the backward-facing approach. Consequently, the output of the
dynamic model is the traction force required to propel the vehicle forward according
to the predefined longitudinal speed. Solving (3.2.1) for Fx gives:

K = my ix + Fa + Fg + FI,Rot- (3.2.7)

In our model F, is composed of F,, and F,, which represent the traction force on
the front and rear wheels, respectively. To better account for the mechanical power
demanded to move the vehicle , it becomes necessary to analyse the distribution of F
between F; and F, under both acceleration and braking maneuvers.

As it was already mentioned in section 2.3, the vehicle studied in this work is
configured with a front-wheel drive (FWD). This configuration causes the rear wheels
to be carried along during acceleration maneuvers and when the vehicle travels at
constant speed. The force distribution can be accordingly expressed as:

F, = —Fr, — FiRot,s (3.2.8)
Fy = myax + Fa + Fg — F, (3.2.9)

where Fr. and F rot, account for the rolling resistance and the rotational inertial resis-
tance caused by the rear wheels.

During braking maneuvers we assume that the brake-force is optimally distributed.
According to Mutoh et al. (2007) a proper force distribution can be obtained if we
consider the normal load on the front and rear axles, i.e., F,, and F,.. By solving the
set of equations obtained from the moment balance around the front and rear tire
contact point (see figure 3.2), the brake-force distribution ratios of the front R¢ and
rear R; wheels are computed by:

R b+ 5 Ho 3.2.10
B 2
R, =1—R, (3.2.11)

where [ and I, represent the distance from the CoG to the front and rear axles and Hg
is the height of vehicle CoG measured from the ground. The ratio %X is an estimate
of the load movement, i.e., the amount of load that is shifted from the rear axle to the
front axle while the vehicle brakes.

Analogous to equations (3.2.8) and (3.2.9), the braking forces for the rear and front
wheels are expressed as:

F, = Re(myax + Fa + Fg), (3.2.12)
E, = Rf(mV/tllx + Fa + Fg). (3.2.13)

It is noteworthy that the influence of the rolling resistance Fr, and the rotational iner-
tial resistance Fjrot, is not taken into account in the computation of Fy; with equation
(3.2.9). Analogously, equations (3.2.12) and (3.2.13) also neglect these resistances while
computing F,, and F,,. This is due to the fact that in these three cases the wheels are
actively actuated, either for driving or for braking. We therefore consider these driv-
ing resistances as part of the tire model presented in an upcoming section.
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3. Power Consumption Modeling

Vertical dynamics

The vertical forces acting on the rear and the front axle consist of a static, a dynamic,
an aerodynamic and a gradient component. The static components are determined by
the configuration of the vehicle’s body and depend solely on It and [;. Acceleration
and deceleration maneuvers cause a dynamic load shift which influences the vertical
forces. The aerodynamic component also modifies the static components since it
causes a force, which can either tend to lift up the vehicle from the ground or to
push it down against it. Analogous to the previous discussion on driving resistances,
the gradient of a sloped road also modifies the static component of the vertical force
given by the weight of the electric vehicle.

In this work the vertical forces are determined by means of two moment balances
around the tire contact point of both rear and front tires, respectively. Accordingly:

_ —FaHg — myaxHg — my gHg sin apaq + My 18lr COS &rpad

F,. = et (3.2.14)
r
FAH H Hc si /
sz _ fATG + my yaxHg + mV,’c%f _EZSIH Xroad T MV t8lF COS Aroad . (3.2.15)
r

Since the model presented in this work concentrates all forces acting on the vehicle
along the longitudinal axis, equations (3.2.14) and (3.2.14) are valid under the assump-
tion that the vehicle’s roll moment is neglected.

3.3. Powertrain modeling

Tire model

When a pneumatic tire is subject to a driving torque, either positive or negative,
the traction force F,, arises at the contact point between the tire and the road. If the
driving torque is increased such that the maximum transmission force is exceeded, the
tire loses traction and begins to slip. The longitudinal traction force F,, transmitted
by the tire is described with help of the longitudinal tire slip xy, which is defined as:

rwwWw —Ux 1vi
sz{ e, driving (3.3.1)

Ox —TWwWw .
=——,  braking

where vy and wyw are the translational and rotational rotational speed of the wheel,
respectively, and rw represents the effective rolling-radius of the tire. The traction
force of a tire Fy,, depends on the vertical load applied to the tire. This relationship is

usually expressed as:
F
px (Kx) = PXW/ (3.3.2)

Zw

where iy (x) is the longitudinal coefficient of friction. In the spirit of explaining the
nonlinear behavior of iy (k) this work employs the well known semi-empirical model
tirst introduced by Bakker, Nyborg, and Pacejka (1987). The so called Magic Formula
allows describing the steady-state behaviour of the traction force of a tire subject to
pure longitudinal slip by means of:

Fy,y = Dxsin [Cxarctan {Bxxyx — Ex (Bxkx — arctan Byky) }] . (3.3.3)
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Figure 3.3.: Tire longitudinal force as function of the slip (a), by variation of E. (b). Schematic
representation of the torque balance around the rotational axis of the wheel (c).

Figure 3.3 (a) exemplifies the behaviour of Fy,, as a function of xy. The coefficient By
determines the slope of the curve at the origin (stiffness factor), Cy is a shape factor,
Dy represents the maximum transmittable longitudinal force and Ey is a curvature
factor (Pacejka 2005). The tire model under the backward-facing approach pursues
to determine the rotational speed of the wheels ww and the torque Ty as the result
of the longitudinal force computed by equations (3.2.8), (3.2.9), (3.2.12) and (3.2.13).
Employing equation (3.3.3) to this aim, however, might be prohibitive since it would
require to numerically solve it for xx and would therefore diminish the computational
benefits presented by the backward-facing approach. One workaround is to neglect
the curvature factor, i.e., to assume E, = 0. This assumption is justified by analyzing
the behavior of F,, at different values of E, (see figure 3.3 (b)). As it can be seen,
the effect of Ex on the linear zone (—0.05 < xx < 0.05) is relatively small. For the aim
of this work this assumption is acceptable, since the driving maneuvers studied here
don’t incur into the physical limits of the tires, that is, into the nonlinear zone. Thus,
solving equation (3.3.3) w.r.t. xy yields:

Fx
arcsin < D—W> >
tan <C—X
. (3.3.4)

By

Kx =

After having computed «y, wyw is easily determined by solving equation 3.3.1. As
shown in figure 3.3 (c)), Ty is computed by performing a torque balance around the
rotational axis of the wheel:

Tw = Iwww + FRWrW + warw, (3.3.5)

where iy represents the rotational inertia of the wheel.
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Figure 3.4.: Overview of the transaxle (a) and block diagram of the driveline model (b).

Driveline model

The experimental vehicle is equipped with a transaxle, i.e., a driveline which combines
the gear box and the differential into an integrated assembly and that is direct coupled
to the rotor shaft of the electric drive, on the one side, and to the final drive shaft of
the front wheels, on the other side (see figure 3.4 (a)). The driveline model transforms
the rotational speed and the torque demanded by the wheels, that is, ww and Ty,
into the rotational speed wy; and torque Ty demanded by the electric drive. wy is
computed by:

wMm = wWiG, (336)

where ig represents the overall gear ratio of the transaxle.

As it is shown in figure 3.4 (b), computing Ty requires knowledge about the effi-
ciency of the transaxle and about the inertia of its rotating components. The efficiency
of the driveline 57 with respect to the transmission of power is assumed in this work
as constant and is conveniently expressed as:

such that it is positive if the vehicle is accelerating and negative if a braking maneuver
is taking place. The total rotational inertia of the driveline is composed by the inertia
of all rotating components on the output side of the transaxle (Ig oyt) and by the inertia
of the rotating components on the input side (Igi,) including the rotor shaft of the
electric drive. Accordingly, Ty is computed by:

Tw . .
Ty = —Y 4 (Ioow) ow + (Iei) Ou. 338
M = e (Tw) (I out) ww + (IGin) WM (3.3.8)

Electric drive model

Figure 3.5 (a) depicts a block diagram of the model employed to describe the electric
drive. Under the backward-facing philosophy both the torque required from the mo-
tor Ty; and the rotational speed of the rotor wy; are used to compute the electrical
power Py e Of electric drive. It can take both positive or negative values, depend-
ing on whether the electric drive is operated in motor or in generator mode. The
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Figure 3.5.: Block diagram of the electric drive model (a) and efficiency map used to compute
power losses (b).

mechanical power Py mec, computed at the rotor of the electric drive, is given by:
PM,meC = TMwM- (339)

As suggested by Guzzella and Sciarretta (2005), the relationship between the mechan-
ical and the electrical power demand of an electric motor can be computed, with a
certain degree of accuracy, by employing a stationary map #y of the electric motor’s
efficiency as a function of the rotor’s rotational speed and the torque demand:

PM mec
P, =—— P 0. 3.3.10
M, ele N ( oM, TM) M,mec > ( )

Determining 1y (wwm, Tv) requires computing the power losses of the electric motor
for every operating point on an engine dynamometer. The efficiency map comprises
the power losses due to the electric motor, the inverter and the AC cables connecting
the system.

The efficiency map of the electric vehicle investigated in this work is well defined
only for the region operating in motor mode (upper quadrant of figure 3.5 (b)). In
order to extend the map for the operation in generator mode, Guzzella and Sciarretta
(2005) suggest mirroring the power losses as follows:

1

m. (3.3.11)

M (UJM, —TM) =2
Even though the computed efficiency map obtained by applying equation (3.3.11)
slightly differs from the data that might be obtained by measuring the efficiency of
the electric motor working as generator, it offers a practical and accurate solution for
modeling the electric motor also in generator mode.

One important feature of the experimental vehicle is that certain amount of the
kinetic and the potential energy is recovered by means of the regenerative braking
system. During braking maneuvers the electric motor is operated as a generator, pro-
viding in this manner an extra braking torque to the wheels. The recovered energy
can then be used to supply power either to the powertrain or to the auxiliary ac-
cessories. The amount of braking torque depends on the operation strategy of the
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braking system. The operation strategy optimizes the distribution of braking torque
between the mechanical and the regenerative brakes in such a way, that the maximum
electrical power is generated. The electrical power generated is computed by:

PM,ele - PM,mecﬂM (wM/ _TM) kvX/ PM,mec <0. (3'3-12)

Since the generated power depends on wy, it would be a difficult task to supply
power to the power bus at low speeds. Because of this, the parameter k;, is used to
limit the usage of the electric motor in generator mode according to equation (3.3.13),
so that the mechanical brakes are applied at very low speeds and at high speeds the
vehicle is braked mostly by the electric motor. Accordingly, k, is given by:

re

0 ox < U, r%ﬁn m/s

reg /
Ux—0 : re. re
kUX — ﬁ UX l'gnln < UX < vx,gax 1’1’1/S (3-3.13)

Ux,max — X, min 4
reg

1 Ux > Uxmax M/S

where vffr%ﬂn and v)r(iim parametrize the regenerative braking strategy.

3.4. Auxiliary components

Contrary to conventional vehicles, the power needed to run all auxiliary components
in an electric vehicle is supplied by the main energy storage system, e.g., the battery
pack. Depending on their functionality, auxiliary consumers are grouped in primary
and secondary components. To the primary group belong those auxiliaries, which
are necessary for the proper operation of the vehicle, e.g., low voltage consumers
such as sensors or control devices and high voltage consumers such as the electric
power steering or the power-assisted brakes. In contrast to most electric vehicles,
the experimental vehicle relies on an air-cooled system for cooling the energy storage
system and the power electronics. Thus, no extra power is required to this aim.

The secondary group includes those auxiliary components responsible of lighting,
safety and comfort functions. Windshield wipers, headlamps or the telematics system
are some of the auxiliaries belonging to this group. Special attention is paid in this
work to the heating, ventilation and air conditioning system (HVAC), since it enor-
mously influences the total energy consumed by the vehicle and therefore imposes
large constraints to its autonomy.

Even though detailed models for computing the energy consumption of HVAC
systems have been published (Valentina et al. 2014), they requires knowledge about
the thermodynamic properties of the elements composing the HVAC system, e.g., the
heater, the compressor or the evaporator, which in the case of the experimental vehicle,
are not available. The identification of such parameters would be out the scope of this
work. We instead determine the energy consumed by the HVAC system by means
of observations made during experiments carried out under controlled temperature
conditions. The total power required by the auxiliary components is given by:

Paux = Y Py + ) Pory, (3.4.1)

where }_ Piyy and ) Payy stand for the sum of the power required to run both primary
and secondary auxiliary components, respectively.
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3.5. Model parametrization and evaluation

This section discusses the procedure for setting the nominal values of Mpc and the
validation results. For the sake of brevity, we limit the forthcoming discussion to
those parameters that have been identified by experimental means, i.e., cw, Kr,, Kg,,
KRr,, w, Igouts IG,ins vf(ignin, vffrgnax and Paux. A discussion on all (known) parameters is
found in section A.1. The reader is referred to table A.1, which shows the nominal
values of all parameters of M pc used in this work.

The nominal value of the air drag coefficient (cy ) is publicly disclosed. However, the
Nissan Leaf has been equipped with a GPS antenna installed on the roof, which causes
cw to increase compared to the nominal value. The nominal tire effective rolling radius
(rw) of the tires is likewise available from public data. Nevertheless, factors such as
the inflation pressure or the speed might cause the value of ry to be found around
92% to 94% of its nominal value. For this reason, we decide to identify it instead of
using the standard nominal value. As shown in section 3.2, the coefficient of rolling
resistance Kg depends on vy and is approximated by a 4'-order polynomial (recall
equation (3.2.4)) parametrized by Kg,, KR,, Kg,. Since these values are dictated by the
tire-road interaction, which depend among others on the road conditions, they need
to be identified. Similarly, the inertia of all rotational components, i.e, Ig oyt and Ig in,
is unknown and therefore, has to be identified. Also, as shown if equation (3.3.13),
the Nissan Leaf is assumed to apply a regenerative braking strategy. Therefore, to
validate this assumption we need to identify values for both parameters vf:;‘cfﬁn and
vffrgnax. Finally, it has been observed that the Nissan Leaf consumes certain power
when all auxiliaries are turned-off. Thus, this residual power consumption (Pauyx) is also
considered as part of the identified parameters.

The identification of parameters have been performed by means of a cross-validation
based on experimental measurements collected from trips done with the Nissan Leaf
through different driving scenarios and under various operating conditions. From
these measurements, a total of 13 datasets have been utilized in the context of this
chapter. Each dataset consists of measurements of speed (vy), road slope (#;0,q4) and
power requirements (P.) gathered with a sampling rate of 1 Hz. The time series of
the vy and a;y,4 can be appreciated in figures B.1, B.2 and B.3. Table B.1 summarizes
useful information about the datasets such as the traveled distance, height difference
between the start point and the end point of the trip or the number of passengers that
occupied the vehicle during each trip. The cross-validation starts by identifying 13
sets of unknown parameters, one for each dataset independently, by minimizing the
error (in the square sense) between the real power requirements and the power com-
puted by Mpc. Afterwards, each set is cross-validated against all others datasets,
thus avoiding a possible over-fitting of the model. The selection criteria of the best
parameter set is based on the mean of the root mean square error (RMSE) computed
by applying each set of parameters among all datasets. We favor this procedure, in-
stead of applying each parameter set against a joined dataset, because, as can be seen
in table B.1, not all measurements are gathered under the same road conditions and
with the same number of passengers. Figures 3.6 (a) and (b) qualitatively and quan-
titatively show that the power required by the Nissan Leaf is properly modeled by
applying the 13t parameter set to its corresponding dataset.
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Table 3.1.: Mean RMSE from the evaluation of each set of parameters among all data sets.

Dataset ‘ 1 2

3

4 5 6 7 8 9

100 11 12 13

RMSE [kW] | 0.84 0.58
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Figure 3.6.: Qualitative (a) and quantitative (error) (b) validation result obtained by apply-
ing the best set of identified parameters. Probability density function (PDF) (c) and auto-
covariance function (ACF) (d) of the measured and simulated power demand.

Furthermore, figure 3.6 (c) depicts the probability distribution of the power re-
quirements. As it can be seen, Mpc accurately models the power demand, specially
important being the region with negative values, i.e., the distribution of power re-
covered through the regenerative braking system. The auto-covariance function (see
tigure 3.6 (d)) confirms that the power requirements of the EV can be modeled using
a Mpc by using the set of identified parameters and the measured vy and a,,,q as
the input of the model. For the sake of completeness, figures C.1, C.2 and C.3 show
validation results by applying the chosen set of parameters on all other datasets.
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As it was detailed in chapter 3, time-varying operating conditions may cause abrupt
changes in the power required by the electric vehicle both in magnitude and in direc-
tion. For this reason it is desired to have a model that accounts not only for constant
or shock-like loads but also for highly dynamic loads. This requirement becomes
even more important since the electrical energy storage system introduced in sec-
tion 2.3 is recharged thanks to the regenerative braking system of the electric vehicle
(see section 3.3). The operating temperature is also an essential factor that is taken
into account. As it is demonstrated in the forthcoming sections, the capacity and the
transient response of the electrical energy storage system is drastically affected at low
temperatures. This chapter introduces the derivation, parametrization and validation
of a physics-based model that accurately captures the non-linear capacity behavior
exhibited by a single cell of the electrical energy storage system used to power the
electric vehicle.

4.1. Single-cell modeling

The first part of this chapter deals with the single cell model (see figure 4.1) introduced
by Weihrauch, Oliva, and Bertram (2013) which combines the so called Kinetic Battery
Model (KiBaM), first introduced by Manwell and McGowan (1994), with a second
order equivalent circuit-based model.

The KiBaM describes the reaction of the state of charge (SoC) of a cell to an applied
load Iya. It is an improvement of the conventional coulomb counting procedure,
since it takes into account well known non-linear capacity effects (see section 4.2).
Even though the KiBaM was initially developed for lead acid batteries, it has been
shown to be suitable for modeling the capacity behavior of Li-ion cells (Jongerden
and Haverkort 2009).

The transient response of the Li-ion cell is described by the ohmic resistance Ropm
which captures the instantaneous voltage drop due to a step load current event and
by a two-RC network, i.e., RsCs and R;Cj, which capture the voltage drops due to the
activation and the concentration polarization, respectively (Linden and Reddy 2002,
p.- 2.1). As it is demonstrated in section 4.4, the parameters of the equivalent circuit-
based model exhibit dependencies on the cell temperature (Tp4) and on the SoC. For
the sake of clarity, these dependencies are expressed in figure 4.1 by the term (-).
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Figure 4.1.: Combined model of single Lithium-ion cell.

Despite the apparent simplicity of the model, it has many advantages in contrast to
its electrochemical-based counterpart. Electrochemical cell models stands out in the
literature due to their high accuracy, which comes from the detailed description of
the chemical processes occurring inside the battery cell. The most important criteria
from the point of view of this work in regard of using electrochemical models is
that they are characterized by large sets of coupled partial differential equations and
therefore require large periods of time, e.g., in the range of hours or even days, in
order to simulate the behavior of the cell as response to a charge-discharge cycle (Rao,
Vrudhula, and Rakhmatov 2003).

The combined model shown in figure 4.1 has the advantage that it is described
through few parameters which can be conveniently identified from simple experi-
ments. Hence, the model possesses a simple structure, exhibits high accuracy and
demands low computational effort, which makes it suitable for real-time applications.
In this context, the main advantage of the model is given by the flexibility of the
second order equivalent circuit. Due to its expandability properties, it can be succes-
sively extended in order to increase its accuracy either by using empirical equations to
describe the parameters or by adding more electrical components to it such that more
effects can be accounted for. Both models are coupled by means of Voc which repre-
sents the open circuit voltage of the cell. The reader is referred to the work of Seaman,
Dao, and McPhee (2014) for a comprehensive survey on equivalent circuit-based and
electrochemical cell models.

4.2. Cell capacity

As it was previously formulated in section 2.1, properly estimating the RUL of the
mobile system, i.e., the RDR of the electric vehicle, requires precise knowledge of the
energy available in the energy storage system, in this case the Lithium-ion cell. As
it was presented in the previous section, the Kinetic Battery Model is used in this
work with the aim of describing the load-dependent non-linear behavior of the cell
capacity. Under ideal conditions, a discharge event would cause the cell capacity to
remain constant independently of the discharge rate. However, in reality the actual
capacity of a battery cell decreases proportionally to the rate at which it is discharged.
This phenomenon is referred in the literature to as rate capacity effect. In addition, after
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liberating the battery from a demanding discharge event, certain chemical reactions
take place, which lead to an increment of the cell voltage. This process is termed as
recovery effect (Jongerden and Haverkort 2008).

The Kinetic Battery Model abstracts the chemical processes of the cell discharge
to its kinetic properties. The model assumes that the total charge of the cell is dis-
tributed with a capacity ratio 0 < ¢ < 1 between two charge wells (see the left side
of figure 4.1). The first well contains the available charge, and delivers it directly to
the load Iy, whereas the second well supplies charge only to the first well. The rate
of charge that flows from the second to the first well depends on both the parameter
d, also referred to as conductance, and on the height difference hy — hy, with h; = %
and hy = 2. If the first well is empty, then the cell is considered to be fully dis-
charged. By applying load to the cell, the charge in the first well is reduced, which
leads to an increment in the height difference between both wells. After removing the
load, certain amount of charge flows from the second well to the first well until the
height of both wells is the same. In this way the recovery effect is taken into account
by the model. The rate capacity effect is also considered. For high discharge currents,
the charge in the first well is delivered faster to the load in comparison to the charge
that flows from the second well. In this scenario the effective cell capacity is less
than the nominal capacity since there is an amount of charge that remains unused
(bounded). The consideration of this effect is especially important for applications in
electric vehicles, since the unused charge might eventually increase the driving range.

The discrete-time KiBaM yields two difference equations which describe the change
of capacity in both wells in dependence of the load I, the conductance d and the
capacity ratio c:

W1 k41 = MWk + A2Wa k + D1 lparek, (4.2.1)

Wy k1 = A3W1 f + A4Wy k + bolpare ks (4.2.2)

with discrete system parameters:

( d _d )
c 1—c At
d d
(”1 “2):e ¢ TT1ze

as dy4 ; ;
b A ( P )T 1
1 = _—
= e c 1—c dr ,
( b2 ) Tlo < 0 )

where At is the sampling time used in the discretization (see section 2.2).

Both states wy and w; do not directly represent the available charge SoC, and the
bound charge SoC,,. Thus, two additional algebraic equalities are introduced with the
aim of computing the outputs of the KiBaM as shown in figure 4.1, namely:

o 1

S0Ca = zo5o = OuOC o (4.2.3)
1 w2 W

SoCp, = (1—c) ( i ) (4.2.4)

where C, is the nominal capacity of the cell. From now on, unless otherwise specified,
the variable SoC is employed instead of SoC,.
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Figure 4.2.: Cell delivered capacity in dependence of the C-rate (a). Real discharge curve (solid
gray) compared to Coulomb counting (dotted black) and the KiBa model (solid black) (b).

Parameter identification: to identify the parameters ¢ and d of the KiBaM multiple
experiments consisting in the discharging a battery cell under different C-rates have
been performed with help of the second setup of section 2.3. To determine c it is first
necessary to identify both wj o and wy, i.e., the available and the bound charge when
the cell is fully charged. Therefore we assume that the overall charge wy is entirely
drawn from both wells by applying an infinitesimal small current. Consequently
we completely discharge the cell at a rate of 21—5C, giving a total delivered capacity of
59.5Ah (see the first measurement in figure 4.2 (a) ). This procedure has been repeated
at 11—0C, }ICr 1C,1C,1.5C, 2C, 2.5 and 3C at a temperature of 25 °C.

Figure 4.2 (a) shows the delivered capacity by discharging the cell at various C-
rates. It can be seen, that the values under a discharge rate of 2C converge to a
delivered capacity of 57 Ah, which corresponds to the maximum available capacity
that can be delivered at large discharge rates, i.e., w;o = 57Ah. Thus, the capacity
ratio can be computed by ¢ = % = 559@& = 0.9580. Note that all capacity val-
ues measured above 2C are not taken into account in determining c. The reason is
that the reduced capacities at these C-rates are not due to the diffusion process but
instead they is caused by transitions between steep and flat regions of the Vpc-SoC
curve, as it is further explained in section 4.3. Previous work on the parametrization
of the KiBaM, e.g., (Taesic and Wei 2011), has experimented mainly with embedded
systems, such as, cell phones or personal computers. Due to the low currents drawn
by such devices, even at high C-rates, the low capacity values are attributed to dif-
fusion processes and therefore are taken into account in the computation of c. The
parameter d is the last one to be identified from the entire model shown in figure 4.1.
Once all parts of the model introduced in the next sections have been parametrized,
the conductance 4 is identified by means of curve fitting. In this sense, d is set as the
only optimization parameter and the terminal voltage of the model is fitted against
measurements taken by discharging the cell at the aforementioned C-rates. This has
lead to different d values for each identification. For this reason, from now on, the
mean of all identifications, i.e., d = 0.8 x 10~° is used and assumed to be constant.

The benefits of the KiBaM with aims of estimating the RDR are shown in figure 4.2
(b). As it can be seen Coulomb counting incorrectly quantifies the true capacity that is
drawn from the cell and consequently overestimates its remaining time to discharge,
which in turn directly relates to the RDR of the electric vehicle.

40



4.3. Open circuit voltage

4.3. Open circuit voltage

The open circuit voltage (Voc) represents the difference of electrical potential between
the anode and the cathode of the cell, under idle loading conditions, i.e., at L, = 0.
This difference depends on the concentration of lithium in the electrodes and on the
state of charge of the cell, this means: the higher the concentration of lithium in the
electrodes, the higher both Voc and the SoC are (Linden and Reddy 2002, p. 2.1).
Therefore, having precise knowledge about Voc would allow us to draw conclusions
about the SoC of the cell. In an ideal case, finding the relationship between Vo
and SoC would require measuring the terminal voltage of the cell (V;,5) while totally
depleting it under a infinitesimally small load, i.e., with I, — 0. Since in practice this
procedure is not feasible, many researchers have developed methods for describing
the Voc-SoC relationship. With the purpose of characterizing this relationship, we
employ in this work a current-voltage based approach (Pattipati et al. 2014), due to its
practicability and rapid deployment.

To this aim we first gather the set O = {Vp¢, SoCi}f\i’l containing N, observations
of the pair {Vpc,SoC} spanned over the range 0 < SoC < 1. Contrary to conven-
tional methods, which gather O by measuring the terminal voltage of the cell under
steady-state conditions, that is, after large resting periods for different SoC values, we
collected this data by averaging the charge and discharge curves of battery cell at low
C-rates, namely %, 11—0 and }L at 25°C, (see figure 4.3 (a)). According to Plett (2005),
averaging low C-rate charge/discharge curves allows mitigating hysteresis and po-
larisation effects of the terminal voltage. It has been shown that the variation of the
Voc—S5oC curve with respect to temperature is negligible (Lam, Bauer, and Kelder
2011), thus, we assume that the estimated curve accurately resembles the Vpoc under
steady-state conditions.

Having collected O, the next step requires identifying the function Voc (SoC) that
best fits the observations. As it can be appreciated in the figure 4.3 (b), the shape of
the Voc-SoC curve obtained exhibits characteristics, which are typical of lithium-ion
cells. Firstly, towards SoC = 0 and SoC =1 the voltage abruptly changes due to a
minimum or maximum concentration of lithium present in those regions. Secondly,
in the range 0.1 < SoC < (0.9 a relative flat region can be observed. This phenomenon,
also referred to as plateaus, arises since no significant change of concentration of
lithium of the electrode takes place. Thirdly and lastly, multiple regions characterized
by a wavy form might appear due to sudden changes in the concentration of lithium.

To accurately describe these characteristics we combine the empirical models intro-
duced by Plett (2004) and by Lam, Bauer, and Kelder (2011) and augmented them by
the addition of a sinusoidal and two exponential terms, which allows us to model the
low-frequency waves shown in the regions 0.18 < SoC < 0.38 and 0.75 < SoC < (.85.
The function Voc (SoC) thus results in:

Voc (SOC) = Kp— SI(<)_1C — K7S0C + K3 1In (SOC) + K4 In (1 — SOC) +

+K550C? + KcSOC* + 1<7e<*1fSoC> + Kgsin (K1gSoC),  (4.3.1)
where the parameter vector Koc = [ Ko K; ... Kjg ]! is identified by means of the

Levenberg-Marquardt algorithm.
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Figure 4.3.: Charge and discharge curves at different C-rates and the averaged Voc-SoC (a),
characteristics of the lithium-ion cell (b) and fit between the measurement and the model of
the Voc-SoC curve (c) with the corresponding root square error (RSE) (d).

Figure 4.3 (c) shows that the model relatively good fits the experimental data with
root mean squared error (RMSE) of 14.56 mV. Nevertheless, as it can be appreciated
in 4.3 (d), the model accuracy decreases for SoC < 0.1, where a maximum error of 80
mV can be observed. This error is attributed to the non-smooth shape exhibited by
the Voc-SoC curve in this region. In order to properly capture this effect it would be
needed to augment equation (4.3.1) with additional terms. To overcome this issue we
quantize the Vpc-SoC with 100 values within this region and store them in a look-up
table so that the Vo can be interpolated between points.

4.4. Transient response

When a load is applied to a cell, the terminal voltage V. experiences a drop or rise,
also known as overpotential, which is attributed to both ohmic and polarization ef-
fects. To better understand the overpotential let us analyze the non-linear behavior
of Vit as response to stepwise discharge and charge events, as it is shown in 4.4.
In the interval t < tp no load is applied to the cell, thus, Vj, is entirely driven by
Voc (S0Cp) and SoC remains constant. By applying a negative load in the interval
to <t < t1, Vpant first experiences an instantaneous voltage drop V, p, followed by an
exponential decay, which is dictated by the Voc-SoC curve. After releasing the load,
in the time interval t; < t < t3, Vo suddenly rises and then experiences an exponen-
tial rise V;e p until it reaches Voc (SoCy). In the interval fy < t < t, the charge drawn
from the cell is given by ASoCy_,» = SoCp — SoC;. Similarly, the response of Vj,, to a
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Figure 4.4.: Transient behavior of the cell terminal voltage as response to stepwise discharge
and charge events.

charging event, in the time interval t, < t < t3, starts with a steep rise V, ¢ followed
by an exponential rise controlled by Voc—SoC. Once the load is released, Vjot instan-
taneously decreases, by V,, ¢, and continues decaying exponentially, by V. c, until it
reaches Voc (50C;). Analogously to the discharge case, the charge supplied to the
cell in the interval t, <t < t; is given by ASoC;_,4 = SoCy — SoC;.

The instantaneous voltages drop and rise, i.e., V,p and V,, ¢, are result of the inter-
nal resistance of the cell, which is represented in the equivalent circuit-based model
by Ronm- The exponential components of the overpotential, namely Ve p or Vi c, Oc-
cur due to the relaxation phenomena of the battery cell. The term relaxation comprises
the effect of both the activation and the concentration polarization on V. (see Saha
and Goebel (2009) for a detailed explanation on this phenomena). The voltage drop
due to activation polarization is mainly caused by the kinetic of the electrochemical
reaction during a charge-transfer phase. Its dynamics is usually found in the range of
seconds and is reproduced in our model by means of the RsCs network. The voltage
drop is caused by the diffusion of ions between electrodes during a charge or dis-
charge event exhibits a slow relaxation response in the range of minutes. This effect
is represented herein by the R|C; network. The equivalent circuit model yields two
difference equations which describe the transient response of the cell:

_ At _ At

Uskt1 = € RsGugy+ (—Rse RsCs —+ RS> Loatt ks (4.4.1)
_ At _ At

U1 =€ Mo+ (_Rle MG+ Rl) Ipatt k- (4.4.2)

The transient response, as formulated by equations (4.4.1) and (4.4.2), is just valid
for a snapshot of the entire operating range of the cell. In reality, the parameters
Ronm, Rs, Cs, Ry and Cj exhibit a strong dependence on the cell operating conditions,
which are assumed in this work to be given by the SoC, the temperature and the
current direction, i.e., whether the cell incurs a charge or a discharge event. To bear
out this assumption, let us analyze the relaxation of the cell under different operating
conditions. Firstly, the need of accounting for the parameter dependence on the SoC
can be clarified by analyzing figure 4.5 (a), which shows the relaxation of the cell after
a 1C discharge event at different SoC values by a room temperature of 25°C. As it
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Figure 4.5.: Transient response of the terminal voltage in dependence of the state of charge (a),
the temperature (b) and the current direction (c).

can be appreciated, there exist a maximum difference in the end value (after 300s) of
29.6mV. This difference suggest that the parameters should be scheduled according
to the SoC. Secondly, figure 4.5 (b) depicts the cell’s relaxation behavior for a SoC of
50% under different room temperatures, namely, 10 °C, 20 °C,25 °C, 30 °C and 40 °C. In
general, high temperatures cause the internal resistance to be reduced, which in turn
influences the relaxation of the cell. Thus, it becomes also necessary to schedule the
parameters on the temperature. Thirdly, figure 4.5 (c) shows the relaxation phase after
both, a discharge and a charge (flipped upside down) event, for a SoC of 50% and by
a room temperature of 25°C. It is clear that the direction of the current has a strong
influence on the relaxation and therefore on the transient response of the cell. In
contrast to the parameter scheduling envisaged on the SoC and the temperature, the
aim of scheduling on the current direction has to be done following a binary schema.
To this aim, as suggested by Hu et al. (2009), we treat the parameter dependencies
on SoC and temperature separately according to the current direction. That is, we
basically define two sets of parameters, i.e., one that is used for all I, > 0 (charge
event or idle condition) and one for L, < 0 (discharge event).

Parameter identification: in the light of the discussion above, it becomes obvious
that to ensure the validity of the single cell model for a wide operating range, the
dependence of the parameters of the second order equivalent circuit-based model
on the aforementioned operating conditions has to be taken into account. Thus, even
though the system given by equations (4.4.1) and (4.4.2) is linear, identifying the model
parameters requires treating the system as a linear parameter-varying (LPV) system.

To this aim we discharge and charge the cell in intervals of 0.05 SoC in the range
0 <SoC <1275V < Vpar < 4.2V) with pulse currents of 1C and repeat this se-
quence using the second experimental setup of section 2.3 (see figure 2.8 (a)) under
different room temperatures, namely, 10 °C, 20°C, 25°C, 30 °C and 40 °C. Then, the
identification of the model parameters for each SoC and for each temperature is per-
formed by means of curve fitting for both discharge and charge events, respectively.
For the sake of clearness, we rely on figure 4.4 to explain the identification procedure.

Let typ < t < t; be the time interval in which the cell is discharged by a total of 5%
SoC with a pulse current of 1C and also let t; < t < t; be a sufficiently large resting
period, in this case 300s, which allows the cell to recover the unavailable charge.

In this work we perform the parameter identification by fitting the curve in the
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interval t; < t < t; with the real response of the cell. Identifying the parameters
in this manner, however, requires an excitation signal, in this case Ij,, which is not
present during the resting period, i.e., I,;+ = 0. To overcome this issue we introduce
a virtual I of 1C and identify the parameters by means of the following system
identification procedure. First, let us first define

Yz _ Z°Rohm +2 (b3 + bs — (a5 + a6) Rohm) — (b386 + baas — Ropmasas)

, 443
Uz 22 — z (a5 + ag) + asag ( )

as the discrete-time transfer function of the transient response of the terminal voltage
at certain SoC, i.e., ¥; = Vhar - — Voc (SoC;) due to a load u, = Ipay .. Both b3, by, as
and a¢ represent:

by = R, (1-e"R&)) by = R, (1—e<‘§él>) as = e("85) g = e(7HE). (4.4

By applying the inverse Z-transform to equation (4.4.3) the following second order
difference equation describing the terminal voltage of the cell is obtained:

Ve = Yk—1 (a5 +as) — Yk—2 (a5a6) + uxRonm + tk—1 (b3 + bs — (a5 + a6) Rohm) +
+Up_o (—b3a6 — byas + Rohma5a6) . (4.4.5)

For the sake of clearness we rewrite equation (4.4.5) as:

Yk = €1Yk—1 — €2Yk—2 + €3Ug + €41 + €51k (4.4.6)
where
€1 = as + dg €2 = dsdg €3 = Rohm
€4 = b3 +by — (a5 +ag) Rohm €5 = —b3ag — bsas + Ropmasae. (44.7)

The desired parameters Rg, Cs, R}, C; and Rgpy are computed by first identifying the
parameters €1 to €5 and then by solving the system of equations (4.4.7). We use the
recursive least square (RLS) approach (Isermann and Miinchhof 2011) to identify the
parameters by iteratively minimizing the least square error between equation (4.4.6)
and the real measurements generated during the experiments in the cycler. The iden-
tified parameters plotted against the SoC are shown in figures 4.6 (a) to 4.6 (j). As it
can be appreciated, the parameters exhibit a relatively steady behavior with exception
of some outliers, which arise when the cell approaches the region of total depletion.
In the range SoC < 0.1 the properties of the cell rapidly changes causing, for exam-
ple, a rapid increment in Rs, R} and Rypy together with a decrement of Cs, Cj. As
it is mentioned in section 4.3 the accuracy of the Vpc-SoC model has its maximum
error also in the range SoC < 0.1, due to the strong non-linearities present in the
region towards total depletion. Since the modeled Voc-SoC curve is used during the
parameter identification process, as detailed above, an error in the open circuit volt-
age distorts the identified parameters. Consequently, it is not clearly distinguishable
which portion of the parameter changes is attributed to the cell properties and which
to the error in the Vpc-SoC model. Thus, it is not surprising that the modeling error
increases at low SoC values (see section 4.6 for a further analysis on this phenomena).
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Figure 4.6.: Dependence of the parameter Rony, (a)-(b), Rs (c)-(d), Cs (e)-(f), Ry (g)-(h) and G
(i)-(j) on the temperature, the SoC and the current direction.

It can be clearly seen in figures 4.6 (a), (b), (c), (d), (g) and (h) that the value of all re-
sistances increases at low temperatures. This effect becomes more visible in figure 4.7
(a), by plotting Ry, against the temperature for different SoC values. A further ef-
fect of low temperatures is shown in figure 4.7 (b). Here, the modeling error (RMSE)
obtained at 10 °C is larger in comparison to that obtained at 40 °C. This statement is
based on the validation experiments discussed in section 4.6. Thus, it can be accord-

46



4.5. Terminal voltage

T 20
>
A
2 10
=
~

0

10 20 30 40

T [°C] —
(b)

Figure 4.7.: Qualitative representation of the temperature dependence exhibit by both model
parameters (a) and modeling error (b).

ingly concluded that the model accuracy decreases with the temperature. This is due
to the SoC, which is used to schedule Rg, Cs, R;, C; and Ry, refers to the nominal
capacity C, for its computation (recall equation (4.2.3)). C,, however, has been as-
sumed to be constant throughout all identification experiments. This assumption is
not always valid since C, also decreases at low temperatures. This issue is overcome
by an observer that accounts, among others, for the uncertainty introduced by C, into
the SoC estimation, as it is further detailed in chapter 6.

4.5. Terminal voltage

The output of the system (V},y) is computed at given discrete-time k > 0 by:

Y = Voc (S0Ck, Tpattk) + Rohm (S0Ck, Toattk) Ibattk +
+0sk (SOCk, Tpatt k) + 01k (SOCk, Thattk) - (4.5.1)

As presented in figure 3.1, the backward-facing model computes the total electrical
power demand Pg. Nevertheless, the battery cell model requires the load current
Lyatt k as the input variable. Therefore, it is necessary to express I,k in terms of Peje.
To this aim we first express:

Pele
Ibatt,
then substitute equation (4.5.2) into equation (4.5.1) and finally solve it with respect
to Ipay, which yields:

Vbatt — (452)

I C- \/CZ - 4Pele(uZnV)R0hm
batt,k — — ZROhm ’

(4.5.3)

with
C = Voc (SoCx, Toattk) + Us i + Uik

Peje(uf™) expresses the dependence of the total electrical power requirements on
the input vector uf™ = [vy ayx ‘Xroad,k]T- The solution with the positive part in the
square root term of equation (4.5.3) is neglected, since its consideration would cause
some load to be supplied by the battery when P, = 0, which in practice is not
possible.
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4.6. Cell model evaluation

The evaluation of the cell model has been performed with aid of the second experi-
mental scenario described in section 2.3. To assess the validity of the model discussed
in the previous sections, the load profile shown in figure 4.8 (a) is applied to a second
(validation) cell. This profile has been designed with the purpose of exiting both the
dynamic behavior of the cell capacity as well as of the terminal voltage. The load
profile proceed as follows. The cell is first discharged 2 % of its capacity with a C-rate
of 1C (approximately 58.5 Ah) and then it idles for a period of 5 min, in which the cell
incurs into a relaxation phase. After the idling period, the cell is charged 1 % with
a C-rate of 0.25C followed again by an idling period of 2 min, after which, the cell
experiences a discharge-charge event, of 1 % at 1C each, which serves to validate the
response of the cell to changes in the load direction. This sequence is repeated until
the battery is completely discharged. This experiment has been repeated in the cycler
at temperatures of 10 °C, 20°C, 25°C, 30 °C and 40 °C, such that more meaningfully
conclusions about the validity of the model can be drawn.

Figure 4.8 (b) shows the experimental results by a temperature of 25 °C. The RMSE
is used as the performance metric to asses the accuracy of the model. Noteworthy is
that RMSE is computed only on the region 0.1 < SoC < 1, since, as it can be appre-
ciated in the figure, in the range SoC < 0.1 the modeling error remarkably increases
(see figure 4.8 (d)). The reason for this lies on the fact that towards the total deple-
tion of the cell the Voc-SoC curve exhibits an abrupt voltage drop (recall section 4.3).
Moreover, there exist some uncertainty about the true value of C,, which depends
on both the C-rate and the temperature, as it has been previously discussed in sec-
tion 4.4. From multiple experiments it has been noted, that if the nominal value set to
Cy, slightly differs from its true value, V5 computed by the model at low SoC values
drops faster than the real cell. It is observed that the transient behavior is properly
captured by the model during both discharge and charge events. This confirms the
decision of scheduling the parameters on the SoC and on the load direction. The
modeling RMSE of the result shown in figure 4.8 (b), in the range 0.1 < SoC < 1, is
4.13 mV with a maximum error of 30 mV (refer to the zoomed region of figure 4.8 (c)).
The fact that the modeled SoC does not monotonically decreases through the entire
operating range, as it is shown in the zoomed area of figure 4.8 (d), confirms the suit-
ability of the model in the field of electric vehicles and thereby in the context of this
work. This is due to the fact that the model is able to manage charging events caused,
for example, by the regenerative braking system. Managing regenerative charging
events is specially important, otherwise, their neglect would cause an eventual under-
estimation of the RDR. For the sake of completeness, figures 4.8 (e) and (f) as well as
table 4.1 show the modeling error achieved at different temperatures.

The validation discussed so far is based on the evaluation of a single cell model.
However, as described in section 2.6, the energy storage system of the Nissan Leaf
is made up 196 cells. Thus, it might desirable to have a model that describes the
behavior of the entire battery pack. Unfortunately, the first experimental setup of
section 2.3 allows measuring the load of the entire battery pack and not of each cell.
We therefore opt for addressing this issue during the SoC estimation, which is the
discussion topic of chapter 6.
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Table 4.1.: RMSE of the single cell model at different operating temperatures.
Temperature | 10°C 20°C 25°C 30°C 40°C
RMSE [mV] \ 19.78 6.61 413 2.12 4.09
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Figure 4.8.: Excitation load profile used for evaluating the single cell model (a), qualitative
results of modeling the response of the terminal voltage (b). Evolution of the modeling error
on time (c) and on dependence of the SoC (d) at 25°C, 10 °C (e) and at 40 °C (f).
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Model Uncertainty Analysis

The estimation of the RDR is affected by many sources of uncertainty. Thus, analyz-
ing the combined effect of those sources is an essential factor in properly determining
it. By using of the sample-based methodology introduced in section 2.2 the computa-
tional burden of the RDR estimation increases with the number of uncertain variables.
Uncertainty analysis offers an efficient way for determining how the uncertainty re-
lated to model parameters affects RDR estimation and thereby allows identifying and
prioritizing the most relevant uncertain parameters (Campolongo, Saltelli, and Cari-
boni 2011), such that the uncertainties of those ones with meaningless contribution
can be neglected. The methodology presented in this chapter for uncertainty analysis
finds its roots in the reliability theory. Reliability-based methods have lately gained
importance in prognostics because they are computationally cheaper than, for exam-
ple, brute-force Monte-Carlo based approaches (Oliva and Bertram 2015). The uncer-
tainties arising from parameters of Mpc and Mggg are characterized in section 5.1
and propagated through G (+), i.e., the actual RDR estimation (refer to section 2.1),
with the method introduced in section 5.2. Finally, the relative importance quantifica-
tion and the aimed parameter prioritization is carried out via the uncertainty analysis
of section 5.3.

5.1. Characterization of uncertain parameters

The discussion presented in section 3.5 as well as throughout chapter 4 made it clear,
that parameterizing Mpc and Mggs requires having sufficient large data-sets that
allows identifying model parameters such that they are valid for the wide variety
of conditions, in which the electric vehicle might operate. Moreover, even if enough
data is available, the parameter values are largely influenced by the method used for
their identification. Parameter uncertainty basically reflects the lack of knowledge
about the true distribution of parameter values and arises from measurement errors,
limited data-set size and from the decision criteria used to compare model outcomes
with experimental data. Identifying Mpc and Mpgss with different data-sets, for
example, would result in different parameter values which, in effect, yield different
RDR estimations. In the same manner, if Mpc and Mgs are identified with just
one data-set but with many identification procedures, diverse parameter-sets would
be also obtained turning out in a variety of RDR estimates. Prior the uncertainty anal-
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5.1. Characterization of uncertain parameters

ysis is required to characterize a distribution that properly represents the uncertainty
of each parameter. In the following, the uncertainty characterization is performed
based on real measurements and on proper literature references, depending on the
parameter under consideration.

M pc parameters

For the sake of clarity, the characterization of an arbitrary parameter ppc of the model
Mpc is expressed by an uniform distribution parametrized with an upper bound
bup,. and a lower bound by .., namely, by Upp. (bu,ppe, brppc ). For convenience of
the reader, the following discussion is structured according the description of model
parameters of Mpc as presented in chapter 3. Those parameters that are not dis-
cussed are considered to be deterministic and their values are set as discussed in
section 3.5.

Vehicle dynamics

The total mass (my ) of the EV comprises the mass of the curb, the passengers (in-
clusive the driver) as well as the measurement equipment, e.g., DEWE-510, ADMA-G,
etc. The mass of both the curb and the measurement equipment are obtained from
technical specifications disclosed by the corresponding manufacturers and they are
assumed to remain constant during their operating lifetime. The mass of the passen-
gers, however, introduces some uncertainty into this parameter since the vehicle can
be occupied by a minimum of one passenger (the driver) and a maximum of four.
The Nissan Leaf weights 1520 kg, the mass of the measurement equipment amounts
to 50 kg and it is assumed that the average passenger weights 75 kg. Accordingly, the
probability distribution describing my is given by Uy, (1645,1870)[kg].

The air density (pa,ir) plays an important role (recall equation (3.2.2)), since it allows
determining the longitudinal air drag. In chapter 3 the value of the air density was
set to 1.226 kg/m>. However, this parameter depends on the ambient temperature,
pressure and humidity, which are indirectly dictated by the altitude above the see
level. To account for the uncertainty of p,i, we set the ranges to 1.055 kg/m? and
1.296 kg/m3, which correspond to ambient conditions between 100 m and 700 m
above the sea level and temperatures between —5°C and —30 °C (Asamer et al. 2016).
Thus, the uncertainty is characterized from now on by U, (1.055,1.296) kg /m?].

Just as p,ir, the parameter ¢, is also used to compute the air drag of the vehicle.
The air drag coefficient is usually identified by the vehicle manufacturer by means of
wind tunnel experiments. The cy, of our experimental vehicle is 0.29, as disclosed by
Nissan. However, since we have installed the GPS antenna on top of it we assume that
cw could increase by a factor of 1.05. For this reason we define U, (0.29,0.3045)[—]
for describing this uncertainty.

According to Hirt et al. (2013) the gravitational acceleration (g) varies from 9.76
m/s? (measured near the equator), to 9.83 m/s? in the arctic ocean. Accordingly, we
characterize the uncertainty of g by ,(9.76,9.83)[m/s?].

While at high speeds most energy losses are due to air drag, at low speeds rolling
resistance is of high importance. As discussed in chapter 3, this parameter depends
on many external factors such as tire materials, hysteresis effects or the texture of the
asphalt, which is the reason why no standard method for its identification has been
established. Ton, Calwell, and Reeder (2003) investigate the influence of the rolling
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5. Model Uncertainty Analysis

resistance coefficient (KR) on the fuel consumption of conventional vehicles and as-
sumed Kg-values in the range between 0.0062 and 0.0152 for a total of 17 different
tire models. This range is later confirmed by the Thomas and Mezies (2006) which
conclude that a range between 0.007 and 0.015 is valid for most conventional vehicles.
Although Kg, as formulated in equation ( 3.2.4), is speed dependent, we assume it as
constant during the uncertainty analysis and therefore we define U, (0.006,0.015)[—].
Powertrain

The tires constitute a fundamental part of the powertrain since they contribute to
the stability, handling and to the comfort besides that represent the coupling between
the electric vehicle and the operating environment. The tire effective rolling radius
(rw) is a parameter that strongly varies depending on the tire properties and on the
operating conditions. The Nissan Leaf is equipped with 205/55R16 tires with a static
radius of 0.3162 m. Due to many factors such as the inflation pressure, speed, load or
the wear of the tear, just to mention a few, ry can be about 92% to 94% of the static
value (Genta and Morello 2009). For this reason we set ranges for ry between 0.29 m
to 0.32 m. Accordingly, the uncertainty is characterized by U, (0.29,0.32)[m].

As it was already mentioned, the electric vehicle is propelled by a 80 kW and 280
Nm synchronous electric motor whose power losses are modeled by means of a sta-
tionary map. As it can be observed in figure 3.5 (b) the electrical to mechanical effi-
ciency (77m), in both motor and generator mode, varies from 0.82 to 0.95 depending on
the operating point. Here we assume that 7y also comprises the losses due to power
electronics. The driveline efficiency (7g) according to Nissan is above 0.97 for all ro-
tational speeds. Nevertheless, for the sake of reducing the parameter dimensionality
during the uncertainty analysis, we integrate #g into 7). Thus the uncertainty related
to nu is characterized as Uy,,(0.795,0.922)[—].

Auxiliary components

Finally, as it was highlighted in section 3.4, the auxiliary power requirements (P,yx)
strongly vary depending on operating conditions. On the basis of multiple experi-
ments it was observed that the Nissan Leaf consumes 457 W when all auxiliaries are
turned-off and shows a peak of up to 4200 W by switching on the HVAC system
together with lightening. For this reason we define Up,  (0.457,4.5)[kW].

Mss parameters

Analogously to the previous section, the uncertainty is given by Up. (bu,ppsss PLopss)
for a given parameter pgsg of MEss.
Cell capacity

The KiBaM discussed in section 4.2 is parametrized by the conductance (d) and the
capacity ratio (c), however, we consider only the uncertainty of the latter since it deter-
mines the fraction of the total charge in the cell that is available for use and therefore
imposes a direct constraint to the RDR of the vehicle. Here we assume that c takes
values between 0.8 and 1. Thus, we define U:(0.8,1.0)[—]. Recalling equation (4.2.3),
it can be seen that the nominal capacity (C,) of the cell also contributes in determin-
ing the SoC. To characterize the uncertainty in C, discharging events with different
C-rates have been performed. It has been found that the withdrawn capacities vary
between 57 Ah and 59.5 Ah, see figure 4.2 (a). Thus the uniform distribution for Cj, is
set as Uc, (57,59.5) [Ah].
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5.2. Analytical uncertainty quantification

Although SoC is not a parameter but instead a variable, carrying out a RDR estima-
tion requires knowledge about the SoC at given prediction time k, (recall section 2.2).
Under normal operation the initial state of charge (S0Cy) of each cell is found every-
where between 5% to 95%. These bound are set by the battery management system
with the aim of protecting the cells from deep discharging and overcharging events.
We therefore set Usoc,(0.05,0.95)[—]| to represent the uncertainty of the SOCj.
Transient response

The second order equivalent circuit-based model used to describe the transient re-
sponse of the Li-ion cell comprises the ohmic resistance (Ryn,) and by two two-RC
network, i.e., RsCs and R;Cj, which describe the fast and the slow relaxation response.
As it was previously exposed, these parameters depend on the operating tempera-
ture and on the SoC. For this reason, and with the aim of capturing the uncertainty
related to the operating temperature, the parameters Ronm, Rs, Cs, R; and C; are
considered to follow an uniform distribution whose upper and lower bounds are ob-
tained from the parameter identification carried out in section 4.4 and that is shown
in figures 4.6 (a-j). Consequently, we define Ug__(7.43 x 107*%,0.0027)[QY], Ug_(1.42 x
1075,1.30 x 1074)[QY], Uc,(5.91 x 103,1.13 x 10°) [F], Ug,(3.43 x 10%,0.0017)[Q2] and
Uc, (4.40 x 10%,9.86 x 10%)[F].

5.2. Analytical uncertainty quantification

The inverse first-order reliability method (iIFORM) has been applied in the literature to
compute the RUL of various engineering systems, e.g., Xiang and Liu (2010) introduce
a method for probabilistic fatigue prognosis based on the inverse-FORM. Similarly,
Oliva and Bertram (2015) implement an inverse-FORM based solution for estimating
the time to discharge (TTD) of Li-ion battery cells. In the following, we extend the
use of the inverse-FORM for uncertainty analysis in prognostics.

To this aim let us first define Z = [Z1,...,Z;,... Zyz] as the N%-dimensional vec-
tor containing all uncertain parameters Z; characterized in section 5.1. In addition,
let us recall equation (2.1.9) and redefine G (-) as a scalar limit-state function that
maps a given realization { = [{1,...,{;,...(yz] of Z to the Boolean domain such
that G({1,...,8i,..-Onz) > 1 if SOC > SoCpin (safe) and G({1,...,C;,...0nz) < 1 if
SoC < SoCpin (failure), wherein r is a given realization the RDR and all points ly-
ing on the N4-dimensional hyperplane { : G({) = r} conform the curve termed as
limit-state surface. The aim of the inverse-FORM is to evaluate a tail of the probability
density function of the RDR (see the upper right part of figure 2.3 (b)), such that the
point along the limit-state surface with the highest probability of occurrence, i.e., the
most probable point (MPP), can be found and thereby the RDR of the system that
corresponds to a prescribed probability of failure (p¢) can be determined.

The first step towards finding this point is to transform all uncertain parameters
into the equivalent standard normal space (E) as illustrated figure 5.1. Since in this
work we assume that all uncertain parameters contained in Z are statistically inde-
pendent with strictly increasing continuous cumulative density functions, we employ
the diagonal isoprobabilistic transformation:

&= [Fz (2i)], (5.2.1)
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Figure 5.1.: Exemplification of the parameter space transformation from the original (physical)
to the standard normal space and the interpretation of the most probable point (MPP).

where ¢; is an arbitrary uncertain parameter described in the standard normal space,
Fz ({;) is the evaluation of the cumulative density function (CDF) of the uncertain pa-
rameter {; expressed in the original (physical) space and ®~![ - ] corresponds to the
inverse of the standard normal CDE. The term diagonal arises from the fact that each
uncertain parameter Z; incurs a transformation independently of all other parame-
ters. Since all uncertain parameters are represented in the standard normal space,
the RDR also becomes a normal variable that is be expressed as a linear combination
of all uncertain variables and the MPP becomes the point on the limit-state surface
that is closest to the origin, as shown in the right hand side of figure 5.1. As it can
be seen in figure 5.2 (a), in the resulting standard normal space and with help of the
MPP concept, multiple realizations r; of the RDR are evaluated as result of different
probabilities p; defined in the interval [0,1]. The term ps = p; represents the proba-
bility that G ({;) < r;, or rather that SOC < SoCp,in with a given set of parameters ;
(expressed in the physical space) or ¢; (transformed into the normal space).

In the context of the inverse-FORM the bridge between p; and the underlying r; is
given by the first-order reliability index f; ;, which represents the MPP in the standard
normal space and is computed by:

pi=o1(B). (5.2.2)

Hence, computing the CDF of the RDR reduces to find all MPP’s along the limit-states
surfaces corresponding to each p;. In this sense, the inverse-FORM is formulated as
the following optimization problem:

¢" = argmin {[|Z[[[G (§) = G (¢) =1}, (5.2.3)

where the vector ¢* contains the set of values of the uncertain parameters, expressed
in the normal space, that correspond to the point along the limit-state surface with
the shortest distance to the origin. The aim of the inverse-FORM is to compute &,
so that By = ||¢||. In this work we solve the optimization problem (5.2.3) by means
of the inverse HL-RF algorithm (Rackwitz and Flessler 1978). In this approach the
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Figure 5.2.: Multiple MPP values corresponding to different probabilities of failure (a) and
discrete cumulative density function of the RDR computed with the iFORM method (b).

optimization problem is iteratively solved by:

Fhil = _,Bt‘ ( > . (5.2.4)

Herein represents V:G (g’f? > a gradient vector computed by means of:

9G (Gi)
At — 1 2
where A; is the step-length of each iteration and Jz is the Jacobian of all uncertain
parameters transformed from the physical into the standard normal space. Under the

assumption that no correlation between the uncertain parameters exist, the Jacobian

is computed as follows:
() )
= dia , 5.2.6
s = s (7 020
where f7, ({;) represents the evaluation of the probability density function of Z; at {;.
After having determined ¢* in the standard normal space a back-transformation into
" is carried out, so that the RDR can be evaluated with G ({*) in the physical space.

Sensitivity measures

The aim of this chapter is to quantify the sensitivity of the RDR estimation as response
to variations of the uncertain parameters on the entire parameter space. Through the
uncertainty analysis it is possible to determine the contribution of each uncertain
parameter on the overall variance of the RDR estimate. This analysis sets the basis
for properly comparing the significance of each parameter, which is the goal of sec-
tion 5.3. One of the computational advantages of the inverse-FORM is that a set of
importance factors and sensitivity measures of the uncertain parameters is provided
as by-product while solving equation (5.2.4).
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5. Model Uncertainty Analysis

To obtain the sensitivity measures let us first consider G (¢") as the linearization
of the limit-state function G (-) evaluated at ¢*. Kiureghian (2004) suggests that the
variance of G (¢*) can be approximated by:

NZ
NIV w12
UéL(é’*) - Hv?GL(g )H ;“%i = HV@GL(Q‘ )5, (5.2.7)
where ocf’i belongs to the unit length vector a; = [oc%/l,...,ua%,i,. : .,afNZ]. Thus, it

becomes obvious that the contribution of the i" uncertain parameter is proportional
to the factor oc%l » which is computed as by-product in the last iteration of equation
(5.2.4) through:

_ VeG (&)
IVeG (&)
This factor indicates the relative importance of ¢; to the overall variance of G (+), i.e.,
of the RDR estimate. Due to the assumed statistic independence of the elements of
¢ there exist a one to one correspondence between ¢ and ¢. Hence, the vector of

importance factors «; is also valid in the physical space.

= (5.2.8)

5.3. Remaining driving range uncertainty analysis

The aim of the uncertainty analysis presented in this section is to determine the im-
portance of the uncertain parameters characterized in section 5.1 in regards to their
contribution to the total uncertainty of the RDR estimation. The assessment of the im-
portance factors given by equation (5.2.8) is carried out via simulation. To this aim we
tirst generate 3 sufficiently large driving cycles describing urban, rural and highway
driving conditions (see section 7.1 for a detailed information on the driving condi-
tions employed throughout this work). In this manner it is possible to investigate
how the importance of each uncertain parameter varies according to the operating
environment of the electric vehicle.

The basis for the synthetic cycles are the ARTEMIS standard drive cycles (Andre
1996, 2004), which are shown in figures B.5 (a), (b) and (c). Moreover, we also generate
a synthetic slope profile (see figure B.5 (d)) with the aim of better accounting for
the uncertainty introduced by the climbing resistance (recall equation (3.2.5)). As it
has been stated before, the uncertainty regarding the operating temperature is not
taken into account since it is implied in the parameter ranges characterized in the
parameters Ropm, Rs, Cs, Ry and C;.

All importance factors are summarized in table 5.1. The following analysis is based
on the first three columns of the table. In this case, the uncertainty of the SoCy is
characterized as presented in section 5.1. Noteworthy is that the uncertainty related
to the mass of the vehicle (my ;) only slightly contributes to the total variance of the
RDR estimation. Similarly, the uncertainty of the environment parameters such as
Pair and ¢ as well as parameters related to the vehicle design, e.g., rw, cw or m\ also
exhibit a meaningless contribution. Note, that the static rolling resistance coefficient
(KR) is certainly important, specially under rural driving conditions. Nevertheless,
its maximum contribution ot the total variance of the RDR is around 2.5 %. Thus, it
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5.3. Remaining driving range uncertainty analysis

Table 5.1.: Importance factors of all uncertain parameters for a probability of failure p; = 0.5,
under various driving conditions and with various characterizations of the SoCy uncertainty.

} with SoCy without SoCy
Uncertain )
Unit pi = 0.5 pi =05
parameter Urban Rural  Highway  Urban Rural ~ Highway
M pc parameters
my ¢ [kg] 0.001 0.002 0.001 0.027 0.012 0.007
Qair [kg/m3] 0.000 0.001 0.004 0.000 0.010 0.019
Cw [—] 0.000 0.000 0.000 0.000 0.001 0.001
g [m/s?]  0.000 0.000 0.000 0.000 0.000 0.000
Kgr [—] 0.002 0.025 0.007 0.031 0.188 0.171
rw [m] 0.000 0.000 0.000 0.000 0.000 0.000
M [—] 0.001 0.008 0.008 0.028 0.010 0.056
Paux [W] 0.053 0.099 0.006 0.769 0.735 0.463
MEss parameters

R Q] 0.000 0.000 0.000 0.000 0.000 0.000
Cs [F] 0.000 0.000 0.000 0.000 0.000 0.000
R, Q] 0.000 0.000 0.000 0.000 0.000 0.011
G [F] 0.000 0.000 0.000 0.000 0.000 0.000
Rohm Q] 0.000 0.000 0.003 0.000 0.004 0.118
c [—] 0.018 0.019 0.022 0.130 0.036 0.140
SoCy [—] 0.923 0.844 0.947 0.000 0.000 0.000
Cy [Ah] 0.002 0.002 0.002 0.015 0.004 0.014

can also be neglected. On the contrary, the uncertainty of the power consumed by
auxiliaries (P,ux) has the highest importance of almost 10 %, which suggests that the
determination of this parameter might be relevant while estimating the RDR.

The fact that the uncertainty of the parameters Ropm, Rs, Cs, Ry and C; is meaning-
less, with a total contribution of zero, is not surprising. This is due to these parameters
are in charge of describing the transient response of the battery and not the capacity
and thereby the RDR of the vehicle.

The uncertainty analysis discussed above might not be totally unbiased since the
uncertainty of the SoCy contributes in average to 90.47 % of the total variance of the
estimated RDR. This is clear since, as explained in section 2.2, the SoC sets the basis
for the load forecasting and thereby for the RDR estimation. In order to draw more
meaningfully conclusions about the importance of all uncertain parameters, we char-
acterize the uncertainty of SoCy as Nsoc,(0.8,1 x 1073)[—]. A Gaussian distribution
for characterizing the uncertainty of SoCy is a reasonable choice, since, as it will be
further discussed in chapter 6, the SoC is recursively estimated using a Bayes-based
approach. The results of the second uncertainty analysis are found in the last three
columns of table 5.1. After removing the high uncertainty of the SoCy employed in
the previous analysis, it can be seen that the uncertainty of P,ux remarkably gains in
importance. This confirms the suggestion previously stated. It can also be appreciated
that Kr and ¢ become more relevant. Thus, we can argue that only the uncertainties
related to SoCy, Paux, Kr and c highly contribute to the variance of the RDR estimation
and therefore these parameters have to be carefully determined.
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System State and Parameter Estimation

This chapter deals with the procedure employed in estimating the state of charge
of the energy storage system based on the model presented in chapter 4. To this
aim we first formulate the state and parameter estimation in the context of stochastic
tiltering based on sequential Monte Carlo methods. On this basis, we explain in detail
the theoretical foundations of a computationally efficient alternative to state of the art
tiltering methods, i.e., the particle flow particle filter (PFPF) and afterwards we present
the steps needed for its implementation within the prognostics approach presented
in section 2.2 for estimating the SoC. Finally, this chapter discusses the experimental
results obtained during tests carried out under controlled operating conditions in a
cycler, on the one hand, and under real driving conditions with the experimental
vehicle, on the other hand.

6.1. Probabilistic state of charge estimation

As it was stated in section 2.1, the states of the energy storage system have to be esti-
mated in order to gain information about the energy available for the mobile system.

Throughout this work it has become clear that the quality of the identified param-
eters is crucial for accurately modeling the nonlinear behavior of the battery capacity
and the terminal voltage. Nevertheless, lithium-ion cells are subject to aging effects
which slowly change their electrical behavior over time. Thus, the parameters identi-
tied in chapter 4 reflect the true behavior of the cell at that point in time but say few
about the negative effects introduced by the aging itself. Furthermore, manufacturing
variability between cells causes the quality of an identified model to be not necessarily
transferable to other cells. Hence, it is reasonable to think, that properly estimating
the state of charge of the energy storage system through its complete lifetime requires
accounting for the changes that the parameters may incur due to the aforementioned
causes. It is therefore desirable to employ an approach that estimates the model pa-
rameters online and thus continuously adapts them to the most up to date behavior
of the system, so that both aging and cell-to-cell variability effects can be accounted
for and the estimation of the state of charge can be performed more robustly.

. . . T
To this aim let us first define the augmented state X; = [ x| 0f | spanned over

the joint state-parameter space X € RN+*Noe. Consequently, the task is the joint esti-
mation p (Xg|Yg), i.e., to represent the most up-to-date knowledge about states and
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6.1. Probabilistic state of charge estimation

parameters of the model representing the energy storage system at any given time in-
dex k based on the current and on all past measurements. While estimating p (Xx|Yx)
it is important to notice, that the behavior of the energy storage system can be ana-
lyzed under two time-scales. The former refers to the states of the system, such as the
SoC, which vary relatively fast, in the range between minutes and hours. The latter
corresponds to the system parameters, e.g., the internal resistance Ry, which tend
to vary slow in the range of months or years, due to, for example, aging effects. It
is therefore important to extend the discrete time system equations (2.2.1) and (2.2.2)
such that the slow dynamics of the system parameters can be properly taken into
account. A commonly accepted approach is to allow the state parameters to evolve
obeying a random walk, that is:

Okr1 =0k + 10k, (6.1.1)

where rg; € RN is the parameter noise vector. In this manner, the parameters of the
energy storage system model become time variant, even though they do not directly
depend on time, as discussed in section 6.3. With the aim of formulating the SoC
estimation procedure carried out in section 6.2, let us redefine the system equations
as:

Xis1 = F (X, up, Wi k), (6.1.2)

vk = h (X, ug, ng, k), (6.1.3)

where Wy = [ v} 15, 1T, vic ~ N(0,Ryp), Tox ~ N(0,Rgy) and my ~ N(0,Ry; ).
The convergence rate and the accuracy of the estimation depend on the choice of the
covariance matrices R, Rpr and R, ;. Therefore, they must be properly tuned to
ensure the convergence of the SoC estimate. Both, the state function f : RMx x RN x
RNw — RNx and the output function h : RN x RN« x RNt x — RNy combine the fast
and the slow dynamics of the system states and parameters, respectively.

Recursive approaches for joint estimation, e.g., sequential Bayesian filtering, have
gained in importance in the last decade. Due to their versatility and ease of implemen-
tation in practical applications, they conform the basis of the approach implemented
in this work.

Let Xox = {Xo,X1,...,X;} be a sequence of augmented states generated by f (-)
evolving in time as a first order Markov process and also let Yy = {vo,y1,..., vk}
be a sequence of observations generated up to time index k, as previously stated in
section 2.2. The goal of the sequential estimation is to compute the optimal estimate of
Xk given Y. Computing the optimal solution for the estimation in the mean-squared
error sense yields:

Xk = E X4 Y] = /ka (X[ Yg) dX, (6.1.4)
¥

where X is the best estimate of X and E [X;|Y,] is the conditional mean. As it can be
seen, evaluating this expectation means first computing the a-posteriori state estimate
p (Xk|Yx). A recursive procedure for computing this a-posteriori density function can
be carried out by applying the Bayes” Theorem under the assumption yy is conditional
independent of Y;_; given X (Plett 2006).
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In a generic Bayesian framework, the posterior p (Xy|Y) is obtained in the predic-
tion step by a single computation of the Bayes’ rule given by:

posterior pl;i\or likelihood
b X Y) = (Xl Ye1) p (y61Xk) 615
p (YklYk-1)
S————

normalization factor

In principle, evaluating equation (6.1.5) requires solving multi-dimensional integrals.
For those systems that exhibit a linear behavior and all noises are assumed to be
Gaussian, the solution of equation (6.1.5) is given by the well known filter first intro-
duced by Kalman (1960). Although the model of the energy storage system studied
here is linear (see equations (4.2.1), (4.2.2), (4.4.1) and (4.4.2)), the dependence of the
parameters on the SoC and on the temperature renders a highly non-linear system.
Unfortunately, the integrals involved in equation (6.1.5) for non-linear systems mostly
lack of an analytical solution and therefore, have to be approximated, e.g., by applying
Monte Carlo integration methods.

Thanks to its robustness and performance in non-linear non-Gaussian applications,
sequential Monte Carlo (SMC) filtering have become the state of the art method for
joint state-parameter estimation. From all SCM-based methods for filtering available
in the literature, the particle filter first introduced by Gordon, Salmond, and Smith
(1993) is the most wide spread approach for addressing the joint estimation in the
context of model-based prognostics (Orchard and Vachtsevanos 2009), since it is not
subject to constraints regarding linearity or Gaussianity of the system.

Recalling equation 2.2.3, the particle filter approximates the posterior probability
distribution p (X¢|Y) through a set of nyx >> 1 weighted particles {Xi,w}}™ in a
Monte Carlo fashion, satisfying (Doucet, De Freitas, and Gordon 2001):

nx . ) o
) wid (xk - Xi) e p (Xi|Y), (6.1.6)
i=1

where Xfc is the set of particles representing the state space, w}( > 0 are their asso-
ciated importance weights and J(-) describes the Dirac delta function located at Xj.
Each particle is sampled from an importance density and is propagated through the
function f (-) in the so called prediction step. Then, the value of each particle is updated
from measurements through the output function h (-) in the measurement update step.
In this step the weight of each particle is updated according to the likelihood of a new
measurement given the particle. In this manner, given new observations the pursued
optimal estimate X can be accordingly computed as:

Xp =Y wiXi. 6.1.7)
As it can be inferred from the discussion above, the performance of the particle filter
relies on the selection of the importance density. For non-linear systems, such as the
one treated in this work, a proper choice of this density is not an easy task. The most

common approach is to sample from the prior state estimate p (Xg|Y;_1). Sampling
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6.2. Particle flow for joint state-parameter estimation

from the prior, however, usually leads to a high variance of the particle weights, which
causes the so called particle degeneracy (Daum and Huang 2011), that is, the Monte
Carlo approximation given by equation (6.1.7) is mainly dictated by few particles with
very high weights. This problem becomes more significant in a joint state/parameter
estimation since the dimensionality of the state space can increase considerably. Thus,
it becomes obvious that using standard particle filters based on improper importance
densities might negatively affect the computational performance of the RUL/RDR
estimation approach introduced in section 2.2. Firstly, during the prediction step
computational resources are wasted during the propagation of particles with negligi-
ble weights through f (-). Secondly, since these have to be propagated forward in time
until they reach the predefined threshold (SOCp,n) additional resources are wasted
during the prediction step of the prognostics approach.

Doucet, Godsill, and Andrieu (2000) show that the optimal importance density (OID)
helps to alleviate the degeneracy of particles is the conditional posterior distribution
of the states, which however, in most cases has no analytical form. One idea to miti-
gate the particle degeneracy that has gained in importance over the last years is based
on particle flow (Daum and Huang 2008) and optimal transport (Reich 2011) methods.
The main idea behind this approach is to introduce a particle flow, which progres-
sively transforms the prior p (X|Yx_1) into the posterior state-parameter estimate
p (Xk|Yx) by gradually moving the particles in an optimal manner as new measure-
ments become available without needing to randomly sample from any distribution.

Oliva and Bertram (2014b) investigate the suitability of particle flow in the context
of model-based prognostics and show that a reduction in computational complexity is
achieved in contrast to standard bootstrap particle filter since less particles are needed
in the state estimation and thereby less number of simulations are performed in order
to determine the distribution of the RUL. The results obtained, however, are based on
state estimation with identified model parameters. We therefore extend this approach
and apply it to the joint state-parameter estimation in order to assess the SoC and
the parameters of the single cell model developed in chapter 4. In the sequel, we
introduce the basic idea behind the particle flow particle filter. A detailed derivation
of this approach is found in the work of Oliva and Bertram (2014b).

6.2. Particle flow for joint state-parameter estimation

The desired flow of particles from p (Xi|Yx_1) to p (Xi|Yk) is obtained by solving an
ordinary differential equation (ODE). By denoting a new set of density functions given
by ¥ (Xia|Ye) = p (Xi|Yk) and d (X 2| Yk—1) = p (Xk|Yk_1) it is possible to compute
v (Xk1|Yk) in a By-fold recursive manner by progressively introducing the likelihood
density, here denoted as 1 (yx|Xj), such that the prior d (Xj »|Yx_1) gradually deforms
into d (Xy 1 |Yk—1)1(yx|Xk). Such transformation is achieved by using a homotopy that
resembles the Bayes” update step given by equation (6.1.5) and that takes the form:

prior likelihood
posterior /ih\/_/ﬁ
o d (X Y1) TyelXin
kA
~~

normalization factor
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6. System State and Parameter Estimation

The term A € [0,1] is the progression parameter, also referred to as pseudo-time,
and 1 (yx Xk A)A is understood as an incremental likelihood. Thus, equation (6.2.1)
represents the prior when A = 0 and the posterior when A = 1. The number of
iterations in the recursion, namely B, depends on the step size AA, which determines
the rate at which A(_,;. For the sake of clarity, from now on we express the augmented
state variables as X, instead of as Xj ,. This is due to the fact that the evolution of
the probability distribution as A(_,; always occurs at the discrete time step k. To avoid
numerical issues the log-density of equation (6.2.1) is applied yielding to:

T (X)) =D (X,)+AL(X,) —logK,, (6.2.2)

where the posterior is given by I (X,) = log-y (X,|Yx), the prior is represented by
D (X,) = logd (X,|Yx_1) and the likelihood is L (X, ) = log1(yx|X,). The evolution
of the probability distribution given by equation (6.2.2) in the pseudo-time is known
as log-homotopy (Daum and Huang 2008). As it can be seen in figure 6.1 (a), the task of
this homotopy is to move the particles through a sequence of densities from the prior
to the posterior as A continuously increases from zero to one. As it can be observed
in figure 6.1 (b), it becomes necessary to find a flow % that dictates the motion of
particles. According to Daum and Huang (2013) this flow can be computed as:

0T (XA)] - {GL (Xa) } T, (6.2.3)

X,) = —

where ¢ (X,) = ‘% represents a vector field that induces the motion of particles from

the prior to the posterior. To solve equation (6.2.3) we first obtain the Hessian %
A
in closed form by differentiating twice equation (6.2.2) w.r.t. X:
T (X D (X 9°L (X

X2 X2 X2

Measurement .
. prior
i /\_¢/\ } (=0

TEEX T}

Particle flow —»*
i Intermediate
PDF

WERIT ) e

posterior
(A=1)

Figure 6.1.: Evolution of the probability distribution from the prior at A = 0 to the posterior
at A =1 (a) and particle flow at different values of A (b).
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6.2. Particle flow for joint state-parameter estimation

In this work we use a hybrid approach for computing equation (6.2.4) in which the

’D(X,)

. o
Hessian ox2

is approximated by:

’D(Xp) . a1
ax2 ~ , (6.2.5)
where S, is the sample covariance matrix (SCM) of the prior distribution computed
from the set of ny particles. The SCM offers an unbiased estimate of the true covari-
ance matrix. However, it has to be noted that if the number of particles employed
is smaller than the number of states to be estimated the SCM may suffer from high
variance. To overcome this issue the Kronecker product expansion can be used to esti-
mate the covariance matrix in high dimensional spaces (Tsiligkaridis and Hero 2013).
If it is assumed that the prior d (-) is represented by a Gaussian distribution, then
the approximation given by equation (6.2.5) is exact. For practical purposes the likeli-
hood function 1 (-) can be assumed to follow an univariate or a multivariate Gaussian
distribution. Accordingly, L (X, ) is expressed as:
LX) = — X log (277) — ~log |Ry| — 22T R, 'z (6.2.6)
2 2 I -
where zj ) = (yx — h(X 1)) and R, is the covariance matrix of the measurement noise.
Computing the gradient of equation (6.2.6) w.r.t. X, gives:

~ T
oL (X)) [ah D) | R, =12, = AR (ye — B (X)) 62.7)

X, X,

where A (X,) is the linearised output matrix around X,. Computing the Hessian
2L(X,) . . . . . . .
Tﬁf might be computationally expensive. We instead approximate it by computing

the expected Hessian by means of the Monte Carlo approximation method as follows:

.
2 2 nx

8L(>2<A)ME 8L(>2<A) %_LZ 9zg) (Xa) Rnflazm—(.xA), (6.2.8)
X2 X2 nx = | axi X,

where [E | - | is the expected value with respect to the likelihood function. After having
LX) and PLX)) both equations (6.2.3) and (6.2.4) can be evaluated in

computed =+ and —7

A
order to obtain the particle flow. As it can be seen, evaluating equation (6.2.4) requires
computing the inverse of S, , which can lead to numerical problems if S, is close to
be singular. To overcome this issue we apply the matrix inversion lemma known as
Woodbury’s formula in order to invert equation (6.2.4) as follows:

[azr (X))

e (LX) ~ . 9PL(X))
X3 T a3

-1
I-S, A ) S,.. (6.2.9)
X ax%\ X

Note that the rate at which A(_,; is determined by the step size AA. Numerical exper-
iments presented by Daum and Huang (2013) show that employing a fixed step size,
such as in the case of the Euler method, works properly just if the number of particles
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6. System State and Parameter Estimation

is high. Therefore, to reduce the number of particles employed a variable AA has to
be used. A proper strategy is to use a very small value of AA at the beginning and
to gradually increase it as A — 1, which makes sense since the uncertainty a the be-
ginning of the measurement update step is higher. We therefore use an exponentially
increasing step size (George and Powell 2006) given by:

A =1—— (6.2.10)
where n, is the number of iteration and b, € <%, 1} .

6.3. Experimental results

To evaluate the performance of the PFPF we first perform a purely SoC estimation,
that is, no joint-state space is considered and therefore, the cell parameters previously
identified are used. From the discussion presented in chapter 4 the state vector, at
discrete time k, is given by:

T
X, = [ Wik Wak Vsk Uik | - (6.3.1)

Before further detailing the results achieved in this section, the choice of the covari-
ance matrices R, ; and R, ; has to be properly discussed, since they strongly influence
the convergence rate and the accuracy of the SoC estimation. The measurement noise
n; is given by an scalar, since Vjpay is the only output of the system (recall equa-
tion (4.5.1)). The variance of the measurement noise is given by the measurement
accuracy of the cycler, which in this case is £10mV. To determine R, we assume
that it is given by a diagonal matrix. Thus, it is only needed to determine four vari-
ance parameters, one belonging to the corresponding state in vector in (6.3.1). To
this aim we set near to zero all variances belonging to wy x, vk, 01k, so that the total
a-priori knowledge about the transient behavior of the cell can be used while estimat-
ing the SoC. Consequently, the variance related to w; , remains as the only parameter
that influences the convergence behavior of the estimated SoC, as in the case of equa-
tion (4.2.3). A relative high value about this variance means that the value computed
by the KiBaM is not entirely trusted, which gives more importance to the behavior of
the terminal voltage. This is beneficial since it allows in this manner to converge to
the true SoC even if a wrong initialization has been done.

The reference signal used to asses the accuracy of the estimation is the SoC com-
puted by the cycler through Coulomb counting. Figure 6.2 (a) presents the load profile
employed during the experiments. The load profile stems from real measurements
gathered with the electric vehicle and has been properly down scaled to the range
corresponding to a single cell. The experimental results discussed are based on tests
performed using the second experimental setup described in section 2.3. The accu-
racy of the SoC estimation is assessed by means of the RMSE between the reference
and the estimated SoC. As it can be appreciated in figure 6.2 (b), by an operating
temperature of 25°C the approach introduced throughout this chapter achieves an
RMSE of 0.9 %. Figure 6.2 (c) details the evolution of the estimation error on time.
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6.3. Experimental results

Table 6.1.: Results of the SoC estimation of a single-cell under different temperatures.

Temperature ‘ 6°C 12°C 15°C 23°C 25°C 33°C 38°C
RMSE [%] ‘ 2.35 0.91 0.52 0.90 0.90 2.02 2.20
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Figure 6.2.: Loading profile used for validating the SoC estimation (a). Behavior of the SoC
estimation as function of time (b), error of the estimation at 25 °C (c), 6 °C (d) and 38 °C (e).

As it can be observed in the zoomed region, the estimation converges to the true
SoC within 90 iterations, which is a reasonable convergence rate if we consider that
typical applications of electric vehicles lie between 30 min and 3 h. During all experi-
ments presented here the present state uncertainty is captured with 50 particles, that
is ny = 50. This number of particles represents a fair trade-off between estimation
accuracy and computational complexity. Moreover, it is desired to employ a reduced
number of particles during the SoC estimation, because these represent the starting
point of the prediction step of the RDR estimation, as explained in section 2.2. For the
sake of completeness, table 6.1 summarizes the RMSE achieved while estimating the
SoC under 6°C, 12°C, 15°C, 23°C, 25°C, 33 °C and 38 °C. Note, that the lowest accu-
racy is obtained at 6 °C (see figures 6.2 (d)), which is reasonable since the accuracy of
the model underlying the SoC estimator decreases at low temperatures and therefore,
negatively affects the performance of the PFPF.
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Figure 6.3.: Loading profile measured from the Nissan Leaf (a). Behavior of the SoC estimation
(b) and its error (c) as function of time. Temporal evolution of the estimated parameters Rg

(d), Cs (e), Ronm (f), Ry (g), Gy (h) and C;; (i)

The experiments discussed so far are based on a purely state estimation, that is,
the parameters are not estimated. These parameters, however, correspond to the cells
identified in the cycler and, even though the cells are of the same type as the ones
installed in the battery pack of the Nissan Leaf, they might not be directly applicable
to other cells. To this aim we augment the state vector, as described in section 6.1, by
0 = [ Rohmk Rsk Cox Rix Cix Cux T Analogous to R,x, we assume Ry to be
a diagonal matrix whose diagonal elements are also set near to zero, with exception of
the variance related to C,;. The results of the SoC estimation is shown in figures 6.3 (b)
and (c). In this case a RMSE of 2.23 % is achieved over the entire operating range of
the battery pack. In this case the reference signals is the SoC estimated by the Nissan
Leaf. Figures 6.3 (d)-(i) show the temporal behavior of the estimated parameters,
which resembles the behavior of the identification results shown in figure 4.6. Note,
how C,, adapts on time such that the SoC remains properly estimated.
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Operating Conditions Discrimination

Adapting the RDR estimation to changes in the operating conditions, from now on
referred to as driving conditions, requires discriminating them as they occur. The
discrimination is a function q : ¥ C RN¥ — s € S, that allows mapping instances of
features P € ¥, extracted from measurements of speed vy and acceleration ay, to the
corresponding driving condition s € S, where S is the set of driving conditions. The
tirst part of this chapter deals with the extraction and selection of the feature vector
¥, which later serves as the basis for the classifier q () developed for discriminating
driving conditions. Finally, this chapter discusses the obtained experimental results.

7.1. Driving conditions classification

A driving condition is made up of environmental factors such as the traffic den-
sity and the road type. Properly classifying driving conditions is the first step to-
wards modeling the environment. The choice of proper driving conditions, herein
also interchangeably referred to as class, is an important aspect of this chapter, since
they constitute the basis for predicting the power requirements of the electric vehi-
cle. Therefore, they must be determined so that differ from each other, as much as
possible, in regards to their influence on the power requirements. Andre (1996, 2004)
provide a comprehensive work on classifying driving conditions, from the point of
view of emissions and fuel requirements of conventional vehicles, based on realis-
tic driving data gathered in Germany, Austria, Switzerland and Italy. Huang, Tan,
and He (2011) demonstrate that similar studies can be carried out for electric vehicles,
since such classification primarily depends on the speed, the acceleration and the stop
times of the vehicle, and therefore, is independent of the powertrain topology of the
vehicle. Similarly to the works previously mentioned, in this work the classification
of the driving conditions is proposed as stop and go, urban, rural and highway. The
first class describes a driving situation influenced by a high traffic density and conse-
quently with frequent stops, as it occurs for example during rush hours on the city or
on the highway. The remaining classes basically describe the road category under the
assumption that the vehicle travels under a fluent traffic flow.

Figures 7.1 (a) to (h) present the probability density functions of the speed vy and
the probability density function of the power requirements P, for each of the pro-
posed driving conditions, together with their mean and standard deviation, i.e., [E;,

67



7. Operating Conditions Discrimination

1

—

—
2
=}

oy

~—

o

Stop&go Urban Rural Highway
. =17.30 E, =27.03 E, = 44.65 E, = 7951
Std,, =8.65 Std,, =19.72 Std,, = 22.71 Std, = 28.16
0 50 100 0 50 100 0 50 100 0 50 100
vx [km/h] — vx [km/h] — vx [km/h] — vy [km/h] —
(a) (b) (c) (d)
Ep, =115 Ep,, =3.78 Ep,, = 6.65 Ep, = 1254
Stdp,, = 2.92 Stdp,, = 8.79 Stdp,, = 11.09 Stdp,, = 16.63
-20 0 20 40 60 -20 O 20 40 60 -20 0 20 40 60 -20 0O 20 40 60
Py kW] — Pye kW] — Py kW] — Pye kW] —
(e) (f) (2) (h)

Figure 7.1.: PDFs of the speed (a)-(d) and road slope (e)-(h) of the different driving conditions.

Stdy, and Ep, Stdp, , respectively. As it can be appreciated, the first two statistical
moments as well as the shape of all probability densities clearly differ from each other.
In addition to this, the flatness of the distributions continuously increases from the
class stop and go to the highway driving condition. Noteworthy is the power gained
by means of regenerative braking observed among all distributions. As it was men-
tioned in section 3.3, regenerative braking drops off at low speeds, which becomes
clear for stop and go driving conditions (see figure 7.1 (b)). For the sake of example,
tigures 7.2 (a) and (b) show a segment of measured speed and power profiles, which
are superimposed on the corresponding class.
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Figure 7.2.: Speed (a) and power (b) profiles juxtaposed to the underlying driving conditions.
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7.2. Feature extraction and selection

In general terms, the proposed classification allows distinguishing between speed
profile and the power requirements. Moreover, these classes are directly interpretable
and can be easily understood. For these reasons, the set:

S = {s1,...,Sm} = {Stop and go, Urban, Rural, Highway}, (7.1.1)

with m = 4, is used from now on to define finite state space of driving conditions.

7.2. Feature extraction and selection

Feature extraction deals with the selection and computation of those characteristics
of the original data, e.g., speed and acceleration measurements, with the aim of dif-
ferentiating, as good as possible, between classes or clusters. Many researchers have
developed feature extraction approaches which differ from each other, depending on
whether they are performed manually or automatically or if they are formulated on
the time or frequency domain (Theodoridis and Koutroumbas 2009, Chapters 6 and
7). This work favors the use of a manual approach, since it allows having a better
interpretation and understanding about the selected features. For example, it is in-
tuitively clear that the ratio between the number of stops per kilometer or that the
idle time on the highway under normal traffic conditions is significantly lower than
in urban traffic. In the literature, there exist a large variety of possible features, which
can be extracted in the context of driving conditions. The reader is referred to the
studies of Montazeri-Gh, Fotouhi, and Naderpour (2011), Lee, Adornato, and Filipi
(2011), Huang, Tan, and He (2011) or Barlow et al. (2009), to obtain an idea of such
features.

An overview of the set of features ¥ considered in this work is given in table C.1.
It is noteworthy that many of these features are redundant and, thus, do not really
help to improve the classification results. For this reason, a feature reduction step is
carried out in the next section with the aim of systematically choosing the subset ¢
including the most relevant features. As it can be seen, all features have a physical
interpretation and can be roughly divided into four groups, namely, based on speed,
acceleration, driving characteristics and cumulative parameters, e.g., traveled time or
distance. For the sake of example and verification, let us compute all features of
table C.1 for the urban, the rural road and the motorway driving cycles developed
during the European ARTEMIS project (Andre 2004). Figure 7.3 (a) shows as exam-
ple the scatter diagram of a pair of features plotted against each other. As it can be
appreciated, the driving conditions labeled as urban, rural and highway, are properly
classified (black centroids) by means of an unsupervised clustering approach, in this
case k-means. In this case the experimental data is quantized using measurements
(micro-cycles) with a window length Wy = 600s. However, if Wy is reduced, for ex-
ample, to Wy = 200s, the arrangement of features changes, which might negatively
influence the classification results (see figure 7.3 (b)). The use of unsupervised clus-
tering might cause the selected classes to be chosen, such that they do not correspond
to any of the driving conditions defined in section 7.1 and eventually with lack of any
possible interpretation. Therefore, this work focuses on a supervised classification
approach.
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Figure 7.3.: K-means clusters based on two features with Wy = 600 s (a) and Wy = 200 s (b)
for the classes urban (squares), rural (downward triangles) and highway (upward triangles).

Dimensionality reduction

Properly reducing the dimension of the feature vector ¥ eases the tasks of data visu-
alization and analysis, reduces training times and improves the classification perfor-
mance (Guyon and Elisseeff 2003). In the literature dealing with supervised learning
for feature selection both filter and wrapper based methods stand out. Whereas filter
based approaches rely on rankings obtained with correlation coefficients, e.g., Pear-
son, to select the most influential features, their wrapper based counterpart evaluates
subsets of features, allowing in this manner to asses for possible correlations. Due
to its simplicity, easiness of implementation and the quality of the classification re-
sults discussed in section 7.4, the scalar feature selection (Theodoridis and Koutroumbas
2009, p. 181) is employed in this work. This method introduces the criterion function
Ci(+),I =1,..., Ny, which individually evaluates the classification capacity of each of
the features included in ¥. Basically, any criteria for measuring separability can be
used to this aim, e.g., divergence or scatter matrices. In this work the one-dimensional
divergence is used. The divergence between two classes i and j is given by:

2 2
1 Us,j Usi 1 2 1 1
e ——§<ﬁ 2l (o ) 02D

s,i S,j s,i s,j

where ji5; is the mean (72 is the variance of the j class. The divergence separability

measure computed w1th equation (7.2.1) is just valid under the assumption that all
features per class are normal distributed. In the case of non-Gaussian feature distribu-

tions, a small error in (yS,i — ;45,]-)2 would cause significant errors in ds ;;. Theodoridis
and Koutroumbas (2009, p. 177) conclude, however, that such error has no remarkable
influence in the classification performance and suggest that with the transformation

> dg .. . .
dsij =2 (1 exp < % ]>> a more robust separability measure is obtained. Thus, the
selection criterion is given by:

C,=minds;;, I=1,...,Ny. (7.2.2)
L]

The result of the feature selection is the vector ¥ = [(ing,,- -, Pind,| Where the set
ind = {indy,...,indny}, L < Ny describes the indexes of the Ny features. The
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7.2. Feature extraction and selection

Table 7.1.: Results of the feature selection with both time- and distance-based measurements.

# Time-based Distance-based
Feature Nr. Feature Nr.

1 Maximum speed 14  Maximum speed 14
2 Mean speed (without stops) 10  Total duration 2

3 Stops per kilometer 12 Mean acceleration 15
4 Mean speed (including stops) 9 Mean speed (without stops) 10
5 Acceleration per kilometer 11  Mean speed (including stops) 9
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Figure 7.4.: CDF of the feature selection with time- (a) and distance-based (b) measurements.

tigures 7.4 (a) and (b) show the results obtained with several thousands of evaluations
of the selection approach with random mixtures of features and for different lengths
W; of both time and distance-based measurements. The ordinate corresponds to the
indexes of all possible features of table C.1, with exception of the total duration of the
of the micro-cycle. This feature ranges between 100s and 500s and, since it remains
constant at each evaluation, it leads to singular matrices. Because of this reason, it
is removed from ¥. In the case of distance-based selection, this is also valid for
the feature related to the total traveled distance. The abscissa represents the index
ranking k of the most relevant features. The further left a high cumulative probability
(dark gray tone) is achieved, the more important is the associated feature. To better
rank the features let us analyze the discrete cumulative density function F;(indy) for
all features. In this context, the F;(ind ) is defined as

il’ldL
Fi(ind;) = Y (indy), i=1,...,Ny. (7.2.3)

il’ldeI

In this work the features with the L highest values are employed. Table 7.1 shows
the five best features used in with the classifier introduced in section 7.3. As it can
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be seen, the selected features allow high separability, which is why they seem to be
a plausible choice. Although a reduction down to five features improves the com-
putational performance, the minimum number of features needed to achieve optimal
classification results is investigated and properly defined in section 7.4.

7.3. Online driving condition classification

To allow the RDR estimation to account for changing driving conditions, it is neces-
sary to classify them as they occur. Gathering training data for the classifier repre-
sents a challenge, since it is required to operate the mobile system for long periods of
time under different operating conditions. This is not feasible in our case due to the
constraints in energy availability and the long charging times imposed by the elec-
tric vehicle. Because of this, a classifier with low expected generalization error and
capable of responding fast to time-varying influences is investigated in this section.

Kotsiantis (2007) juxtaposes different supervised learning classification methods
and concludes that Support Vector Machines (SVMs) offer good results for classifi-
cation problems dealing with multiple dimensions and with continuous features, as
in our case. Training the classical SVM, first introduced by Cortes and Vapnik (1995),
is relatively slow since it requires solving a convex optimization problem, making
it more difficult to implement in an adaptive manner and therefore less suitable for
online applications (Kuh 2004). There exist, however, some approaches that avoid us-
ing quadratic programming methods (Suykens 2002; Theodoridis and Koutroumbas
2009). Suykens and Vandewalle (1999) formulates a modified least squares SVM, also
referred to as LS-SVM, whose training is achieved by solving a set of linear equations
and that serves as basis for the classification scheme introduced in the sequel.

LS-SVM based driving condition classification

Let Dy, = {9, v,-}lNle be a set of Nt labeled samples, i.e., training set, where 3, € R"*
is the vector of features in the ny-dimensional feature space and v; € {—1,1} is the
corresponding binary class label of the i" instance. Furthermore, let us define a
discriminant function of the form:

q(p) =w'¢(y) + B, (7.3.1)

where ¢: RNT — RNi, ¢p — ¢(¢p) with N, < Ny is a nonlinear function that maps the
training dataset to a high dimensional feature space RMr, in which linear separability
between samples may exist, w € RNt is the normal vector to the hyperplane and B is
a bias term, also known as threshold value.

The LS-SVM classification problem is formulated as:

Nr

1 1
i B,e) == ||w|]*>+ = 2
min J(w,B,e) 5 |wl|“+ Z%e;el (7:32)
s.t. viq(¢p;) =1—e¢;, i1=1...Ng,

where ¢; € R is a normal distributed error of the class label v; and e € R is the regu-
larization term that controls the trade-off between fitness error and model complexity,
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7.3. Online driving condition classification

i.e., the bias-variance dilemma. According to Suykens (2002), solving the optimization
problem becomes more tractable by transforming it into its dual space. To this aim
the Lagrangian functional of (7.3.2) is obtained and the Karush-Kuhn-Tucker (KKT)
optimality conditions are applied, which yields the following linear system of equa-

tions:
B 0
[M}:M, (7.33)

where v = [vl,...,vNT]T, 1=11,.. .,1]T and &y = [agy,.. .,ocLNT}T represents the
Lagrange multipliers (support vectors). The Gram matrix (), contains the elements
Qi = Uiv]'fp(l[)i)T(P (1pj> = v;jv;K (1[)1., lIJj>, where K (1[)1., 1[)]-) is the kernel function.
In this work we investigate two kernel functions (see section 7.4), namely:

[0 vt
1
v Q—{_EI

linear kernel : K (v;,9;) = ¢ ; (7.3.4)

i — will
RBF kernel : K (;, 4]]') = exp (—M) . (7.3.5)
20RpF

The solution of 7.3.3 results in two vectors containing the Lagrange multipliers « ; and
the bias term B, respectively, and has a computational complexity of O(N3) (Ojeda,
Suykens, and De Moor 2008), which makes it suitable for online applications. Finally,
for a new set of observed features 1, according to the Mercer’s theorem, the LS-SVM
classifier takes the form:

N

v(¢) =q(y)=sign [ZT: ar,iviK (¢, 9;) + B .

i=1

(7.3.6)

Multiple classes with unbalanced class distribution

The LS-SVM, as expressed by equation (7.3.6), is a binary-classifier which allows de-
ciding, for example, whether the electric vehicle operates under an urban or a highway
driving condition. However, in order to properly classify driving conditions for all
s € S it becomes necessary to extend equation (7.3.6) to a multi-class classifier. Basi-
cally, there exist two philosophies for multi-class classifiers based on SMVs. The for-
mer suggests combining multiple binary-classifiers, for example, one vs. one (OvO) or
one vs. all (OvA) (Bishop 2006, p. 339). The latter is based on the idea of a single SVM
to discriminate all classes, e.g., the Directed Acyclic Graph SVM (DAGSVM) (Platt,
Shawe-Taylor, and Cristianini 1999). Hsu and Lin (2002) and Rifkin and Klautau
(2004) evaluate these philosophies and conclude that simple approaches like OvO or
OvA are preferable over schemes based on single SVMs, since it is more computa-
tionally efficient to solve multiple optimization problems instead of solving a single
optimization routine. Due to the good classification results obtained (see section 7.4),
in addition to the small computational effort required during the multi-class classifi-
cation, the OvO is favored in this work.

One vs one: as it was presented in section 7.1, the number of driving conditions
considered here is m = 4. Under the OvO strategy a total of m(m — 1)/2 binary
LS-SVM classifiers are trained in order to distinguish the samples of one driving
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7. Operating Conditions Discrimination

condition from the samples of all other driving conditions. The class is then decided
based on the highest number of votes, where each LS-SVM classifier votes for only one
driving condition. The main drawback with this approach is that the computational
burden grows proportional with the number classes, which makes it computationally
inefficient for m > 0. On the other hand, the OvO approach is relatively fast for small
training datasets. The reason for this is that smaller systems of equations have to be
solved, since only the samples of two driving conditions have to be considered.

A known problem of the LS-SVM, as formulated in equation (7.3.6), is that if the
training data is skewed towards a particular class, then the performance of the clas-
sifier might reduced. This issue is important in this work, since the training data set
employed (see section B.1) exhibits certain unbalanced class distribution in that urban
driving conditions appear more frequently among all driving cycles. For example,
during trips on rural areas or on the highway urban scenarios are present at the be-
ginning and at the end of the trip. From the many methods reported in the literature
for alleviating the issue of unbalanced data sets (see Garcia et al. (2007) for a detailed
survey), the approach implemented in this work is based on the study of Luts et al.
(2010). Under this scheme the optimization problem formulated in equation (7.3.2) is
weighted as:

, 1 1 &
svn}gr}z J(w,B,e) = E||w||2 + 5 e i_zlco,-e? , (7.3.7)

where @; is an a-priori probability of occurrence computed by

N
D4 = ZNTT+’ for v; = +1,

@; =
— Nr -
w_ = N7 for v; = —1,

(7.3.8)
with Nr+ and Np- being the number of positive and negative classes, respectively.
According to Luts et al. (2010), properly weighting is comparable to resampling the
training data set such that Ny+ = Np-. Figures 7.5 (a) and (b) exemplify the problem
of unbalanced class distribution and the solution achieved through a-priori weighting.
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Figure 7.5.: Classification results without (a) and with (b) a-priori weighting based on a syn-
thetic data of 300 elements separated in 3 classes.
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7.3. Online driving condition classification

Model selection

As it can be deduced by analyzing equations (7.3.3) and (7.3.6), the model complexity
of the LS-SVM depends on at least one parameter, namely, the regularization term
Yre- This is only valid, in the case of using a linear kernel. If, however, a RFB kernel is
employed, the parameter orgr (see equation (7.3.5)) also needs to be properly defined.
Choosing the value of orpr has to be done carefully, since it has an enormous influence
on the classification results. On the one hand, large orpp-values prevent an adequate
separation between classes, i.e., they cause under-fitting (see figure 7.6 (a)). Very small
orpr-values, on the other hand, cause an over-fitting to the training data (see figure 7.6
(b)). There are basically two strategies for choosing the aforementioned parameters,
i.e., for model selection, namely, based on heuristics or on optimization. Heuristics-
based approaches are straightforward to implement. Nevertheless, they are unreliable
and highly sensitive to noisy data sets. Even though cross-validation (optimization)
based methods are computationally prohibitive, they remain as one of the most wide-
spread model selection techniques among machine learning practitioners.

The leave-one-out cross validation (LOO-CV) (Stone 1974) is a technique, which sets
the basis of many model selection strategies applied in the context of SVMs. In the
case of LS-SVM, the naive implementation of the LOO-CV has a computational com-
plexity of O(N7). To overcome this limitation, Cawley (2006) derive an approximation
of the LOO-CV of LS-SVMs which reduces the computational effort to O(N3). An,
Liu, and Venkatesh (2007), further improves this approach, namely to O(N2), and
proof that there exist an exact solution for the LOO-CV, which is used herein for
selecting the model of the LS-SVM classifier described in this chapter.

For the sake of completeness, a formal description of the LOO-CV used in this work
is briefly presented in the following.

Under a LOO-CV the training dataset Dy, is split out into ¢ subsets {1/1]@, v](a)}
of length N;, witha = 1,2, ...,/ and Zﬁ:l N; = Nr. Analogously, the Lagrange multi-

! ‘ : . : T O8 Rt
pliers of equation (7.3.3) are subdivided into ¢ subsets &y = [« L e B e, ]

N
j=1

7

1 1 1
T
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Figure 7.6.: Exemplification of classification results achieved with a RBF Kernel based SVM
with an under-fitted (v = 1 and oggr = 2) (a), an over-fitted (7 = 1 and oggg = 0.01) (b)
and an optimized model (Y = 1 and orpr = 2) (¢).
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7. Operating Conditions Discrimination

where a(g’) = [zx(g’)l,..., ocg,...,oc(g/)]\,ﬂ]T. Furthermore, let 0@ = p(@) (¢) be the clas-

sifier obtained with equation (7.3.6) by leaving out the at' subset of Dy, and de-

fine r](a) = v](.a) — 0@ as the residual obtained during the a' iteration. The task of

the LOO-CV is to compute the vector of residuals r(0) = [rga), ey r](a), ey rgf,la) ]T so that
(@) — [05’1), . ﬁ]@ S 65\(2]T for each of the ¢ subsets can be accordingly obtained.
To this aim let us denote A, as the system matrix of equation (7.3.3). Then, with

help of the Woodbury inversion lemma the inverse A;ri can be computed as follows:

(¢l wai=| A st
Ay, = 1 = A, = 151 1, TAa1aT-1 |- (739
1 Q + %I _EQ'Yrel Q'Yre + %Q'Yrell Q'Yre

which is valid since (), = Q + %I is positive definite and dy, = —lTQ;ril # 0. This
inversion allows to directly compute «; from equation (7.3.3). Accordingly:

IR -
ap = [0%1 + d—Ln%inTQ%i] v. (7.3.10)

Having computed «;, the vector containing all residuals r = [r(l)T, ...,r(l)T, ...,r(E)T]T
is determined by solving the system of equations given by diag(A, lt) = ay.

Finally, 5@ = [0\, ..., 6\"

[ ﬁ%a)]T for all subsets is computed as follows:

8@ = sign [v(”) . r(”)] ) (7.3.11)

witha =1,2,..,¢.

7.4. Classifier evaluation

With the help of 9, the expected misclassification can be determined or a performance
metric, based on r, can be minimized. In this work, due to the small number of kernel
parameters, namely 7. and orpr, we employ the grid search method, that is, we first
set a proper parameter range and then, by means of an exhaustive search through all
parameter combinations, the best parameter setting is defined.

We avoid just quantifying the number of miss classifications, as with the standard
accuracy measure (ACC), since unbalanced classes are rejected in favor of an even-
tual dominant class. For this reason, the balanced accuracy (BAC), which evaluates
the misclassification rate per class and averages it across all classes (see for exam-
ple Sokolova and Lapalme (2009)), is instead employed. The BAC is given by:

1 & (tp + tn;)
BAC = —) —L "~ (7.4.1)
m,; Nr,

where m is the number of driving situations, Nt is the size of the training set, tp; is
the sum of all classifications of the i class, that are correctly assigned to that class
and tn; is the sum of all classifications that are correctly classified outside the it class.
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7.4. Classifier evaluation
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Figure 7.7.: Driving condition classification by using all features: with a RBF kernel and by not
removing outliers with time (a) and distance-based measurements (b), with a RBF kernel and
by removing outliers with time (c) and distance-based measurements (d), with linear kernel
and by removing outliers with time (e) and distance-based measurements (f).

Figure 7.7 shows the classification results achieved using all features (see table C.1)
with both the linear and the RBF kernel. The performance metric used to evaluate the
classifier is the BAC. For comparison purposes a Bayesian classifier based on a kernel
density estimator (Pérez, Larrafiaga, and Inza 2009) has been also implemented and
evaluated. The evaluation procedure consists of computing the classification error
with a 5-fold cross validation in which the window length W (both in time and in
space domain), used to compute the features in section 7.2, is varied to optimize the
classification at each iteration. The training data has been randomly mixed and the
entire process has been repeated 20 times, with the aim of computing the first two
statistical moments.

As it can be observed in figures 7.7 (a) to 7.7 (f), all classifiers benefit from a higher
window size. The maximum classification rate lies by 99% in the case of the RBF
kernel and by using time-based measurements. The classification based on distance-
based measurements, on the contrary, generally perform 5%-10% worst that their
time-based counterpart. For this reason in this work, specially in chapter 8, the use
of time-based measurements is favored for training and validating the stochastic en-
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Figure 7.8.: Classification results by using: 5 features with a RBF kernel and by removing
outliers with time (a) distance-based measurements (b), 5 features with a linear kernel and
by removing outliers with time (c) distance-based measurements (d), with 3 features with a
linear kernel and by removing outliers with time (e) distance-based measurements (f).

vironment model. Note, that eliminating outliers in the training data does not really
improves the quality of the classification. Nevertheless, in this work this step is car-
ried out to comply with good data treating practices. It is worth mentioning that the
naive Bayes classifier, although its requirements of normally distributed features is
not satisfied, also presents acceptable results, however, the LS-SVM outperforms it in
most cases.

The effect of the feature reduction, introduced in section 7.2, on the classification
results is shown in figures 7.8 (a) to 7.8 (f). Here, the maximum classification rate
lies by 95% in the case of a linear kernel by using just the best three features of
table 7.1. The classifier based on a RBF kernel also exhibit superior results, however,
the computation effort needed during the classification is higher as in the linear case.

Base on these results it has been decided to employ a classifier with a linear kernel
and that uses only three features. Although it has been shown throughout this section
that the larger the window size, the better classification results, the choice of this
parameter depends on other factors that belong to the stochastic environment model.
Accordingly, W; is investigated and properly determined in chapter 8.

78



Stochastic Environment Modeling

With the aim of predicting the power consumption of the mobile system it is nec-
essary to capture the stochastic behavior dictated by the temporal evolution of the
operating environment. The focus of this chapter lies on modeling the environment
from a Markovian point of view for both the evolution of the operating conditions
and for actual interaction between the system and its surroundings. For the sake of
clarity, in the following the operating conditions are given by the driving conditions,
as it was already introduced in chapter 7, and the system-surroundings interaction is
described by the driving behavior, characterized by the speed and acceleration along
the longitudinal axis of the vehicle, and by the slope profile of the road.

8.1. Driving conditions modeling

Stochastic processes with discrete states, both in continuous or discrete time, can be
successfully described with of Markov chains (Waldmann and Stocker 2013). Markov
chains have been extensively used for generating synthetic drive cycles. For exam-
ple, Lee, Adornato, and Filipi (2011) employ discrete-time discrete-state Markov chain
to model the time evolution of the speed and acceleration of driving cycles. The model
developed herein is built around this concept due to the characteristics observed in
chapter 7 in regards to the transitions between driving conditions. A stochastic pro-
cess X = {Xy, k > 0} is a sequence of random variables which can be successfully
modeled as a first order Markov chain, under the assumption that it satisfies the so
called Markov property (MP). This property states that, the future state X1 depends
only on the current state X, and not on all previous states Xy, Xp, ..., Xx_1. In other
words, for all {X;, k > 0}:

P(Xk+1 =j|X0 = io,...,Xk_l = ik—l/Xk = l) (8.1.1)
=p(Xky1 = jIXx = 1), (8.1.2)
where p(Xiy1 = j| Xk = i), with iy, ...,i,j € S = {s1, 52,583,514}, is the conditional transi-

tion probability. All transition probabilities are grouped in the transition probability
matrix MS:

State T -0 myyq
Tk may o M
MS = ’ " (8.1.3)
My Tl = Tlmm
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Figure 8.1.: Representation of the evolution of driving conditions in time (a) and of the mod-
eled Markov states with their respective transition probabilities (b).

Accordingly, equation (8.1.1) can be expressed as:
Mij =M (X = jIXe =), (8.1.4)

where 77; ; is the i i element of M. Since the elements j of M® represent the transition
probabilities to all other states from i, each row 7; satisfies the unit simplex require-
ment } ;" 71;; = 1and 0 < 77;; < 1. The equation (8.1.4) is said to be time homogeneous
since 71;; is independent of k. The homogeneous Markov chain is completely deter-
mined by defining an initial probability 77;(0) := p(Xo = i) with i € S.

Figure 8.1 (a) exemplifies the temporal evolution of driving conditions during a
test drive over a period of about 100 min. The Markov states as well as the transi-
tion probabilities generated therefrom are illustrated in figure 8.1 (b). In order to
parametrize the Markov model it is necessary to estimate the stationary distributions
of MS. In this work we use the maximum likelihood estimation (MLE) scheme sug-
gested by Lee, Judge, and Zellner (1970) for estimating the time-invariant transition
probabilities of M°. A transition probability 7;,; is estimated by:

7’11']'

ﬁfl',j = l,] = 1, 2,..., m, (815)

11’
where m is the number of Markov states, n;; is the number of times a driving condition
changes from state i to j and Z]m:l n;j is the total number of times it changes from
state i. This approach is very practical since the estimation can by achieved by simply
counting the number of times a change in the driving condition occurs. Estimating
transition probabilities with MLE properly works as long as the number of observed
transitions is large compared to the size of the Markov state space (Teodorescu 2009).
In this work m = 4 and thus there exist only 16 possible combinations.

Having parametrized M, the prediction of future driving conditions for an arbi-
trary horizon length hy, i.e., a realization § = [3),...5,...,3;, | is achieved by gen-
erating a Markov chain from a given initial condition 3y, e.g., the current driving
condition. The chain is then generated as:

8k1 =rand(ms, ), k=0,...,h —1, (8.1.6)

where 75, is the row vector of M® indexed by the value of s at time step k. The
function rand(-) randomly draws a sample of the discrete probability distribution
given by 75, .
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Figure 8.2.: Driving conditions classification results based on time- (a) and distance-based (b)
measurements. Markov chain generated with Wy =1 s (c).

As it was previously pointed out, a still pending task is the choice of the type
of measurements to be used (time or distance based) as well as its length, i.e., the
sampling rate for updating M°. With help of the classification scheme developed in
chapter 7 it is possible to parametrize an arbitrary sequence of driving conditions s =
[s1,...,sm] " both as time (with a maximum resolution of 1s) or as spatial series. Since
the transition probabilities are updated using the LS-SVM classifier (see section 8.2),
the type and length of the measurements chosen for parameterizing both the classifier
and the Markov model must be identical. In section 7.4 it has been shown that time-
based measurements slightly offer more accurate results than their distance-based
counterpart. However, since both of them offer acceptable results for classification,
the decision about their choice has to be taken based on the Markov model. Figure 8.2
shows the results of a driving condition classification achieved by using (a) time and
(b) distance based measurements. As it can appreciated, the higher the speed within
the classified driving condition, e.g. on the highway, the more samples are needed.
This leads to an increment of the values of the transition probabilities for both the
rural and the highway situations, which causes an unrealistic transition probability
matrix. Based on this criteria, time based measurements are favored in this work. The
choice of the sampling rate at which the Markov chain is generated has a lower bound.
The reason lies in the fact that the transition between driving conditions exhibits
certain dynamics and consequently cannot change arbitrarily fast. If a realization
of the Markov chain is generated with a small sampling rate, e.g., 1s, it is possible
that transitions between states occur faster as under real conditions (see figure 8.2
(c)). Another implication of employing small sampling rates arises from the fact,
that the computational effort required during the classification increases with small
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Figure 8.3.: Cumulative distribution of sojourn times (a), transition between driving conditions
exhibited by the original data (b) and by a synthetic profile (c).

sampling values of Wj. Furthermore, as it was shown in section 7.4, the accuracy of
the classification also decreases with the size of Wy. Choosing Wj imposes a trade-
off between computational effort and classification accuracy. Figure 8.3 (a) shows
the cumulative probability distribution of the sojourn times of all driving situations
manually labeled (classified) on the training data. As it can be seen the shortest and
the mean sojourn time lies by 145s and 695s, respectively. It becomes clear that 50%
of all sojourn times lie below 500s and that 20% under 250s. A further analysis
shows that only 3 sojourn times lie below the quantile 10%, given by 209 s which is
considered here as the lower bound. As it was shown in section 7.4, the classification
accuracy by Wy = 200s is (88.50 + 1.49) % with a linear kernel and (89.98 + 2.13) %
for the RBF kernel. Accordingly, we set to Wy = 200s.
Having defined Wy, M® is estimated with equation (8.1.5) resulting in:

0.50 0.278 0.111 0.111
0.062 0.778 0.086 0.074
0.115 0.231 0.615 0.038
0.026 0.184 0.026 0.763

M5 = (8.1.7)

A qualitative analysis of an arbitrary realization of the Markov chain generated with
Wy, M5 (see tigure 8.3 (c)) suggests that a synthetic chain generated with Wy = 200's
exhibits characteristics comparable to the original data (figure 8.3 (b)) in the sense of
the lack of improbable events such as absorbing states or very small sojourn times.
However, to make a meaningful statement about the validity of the Markov model it
is required to validate the Markov property in order to proof whether the underlying
stochastic process X, describing the temporal evolution of driving conditions, can
be adequately described by a first-order Markov chain or if higher orders might be
necessary. To this aim we test the null-hypothesis:

Ho :p(XkJrl = ]|X0 = i(),. . .,Xk,1 = llkfl,Xk = Z)
=p(Xxr1 =j|Xx = 1),

to proof that X is memoryless. The null-hypothesis is formulated to test that X, is

(8.1.8)
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conditional independent of Xj and of Xj_;. To this aim we split the original data in
3 equidistant sets and build contingency tables containing counts of first-order and
second-order transitions for each set and test the conditional independence of the
data by means of the P, computed with the exact fisher test. The results obtained
show an average of P! = 0.00049 and P&:lﬂe = 0.5927 among all three sets for both
contingency tables. This means that Hp can be rejected just for the first-order model,
since P&;{ue < ag, where ag = 0.05 is the significance level (Nuzzo 2014). It is therefore
validated that X in our case can be properly described by a first-order Markov model.

8.2. Adaptation of transition probabilities

Parameterizing M® relying solely on historical data provides a good estimation of
how an electric vehicle travels on the long term, that is, it best describes the driving
behavior and conditions on a macroscopic time scale, e.g., weeks or months. However,
the way a driver behaves might change depending on the time of the day, the mood or
the road condition. This causes the time homogeneity assumption of the Markov chain
to lose its validity. Therefore, a more proper characterization scheme would require to
update the transition probabilities of M® as new information about the driving condi-
tions becomes available. This allows to capture the non-homogeneity of the underlying
Markov process, which might be introduced by changes in the traffic situation or the
driving scenario. To this aim we employ in this work a Bayesian posterior probability
approach to update the established transition probabilities between Markov states.

Analogous to the discussion of section 6.1, more precisely equation (6.1.5) , applying
the Bayes’ theorem for updating a transition probability 7t; ; of MS requires a likelihood
function for the new observed driving conditions and an assumption about the prior
distribution of 7;; on each row of MS. The forthcoming explanation deals with the
theoretical foundations for updating any transition probability 7;; belonging to the
mixture 7t; = |71, i, .- Tij, - - -, Tim], 1-€., to the i row of M® in equation (8.1.3).

Likelihood function: let the random variable g, representing a transition between
two Markov states i and j, i.e., two driving conditions, to follow a multinomial distri-
bution (recall equation (2.1.1)). The probability distribution of g can be parametrized
by a vector 7t;, where 71;; = p (i — j) = p (qi,) is the probability of a transition from
state i to state j, as it was already stated in equation (8.1.4). Then, the likelihood of a
sequence of new transitions Q@ = {q1, 92, ...,qn } is given by

£ (i Q) ]’[nﬁ” 82.1)

where B;; is the number of times a transition g;; occurs in Q. Here we express
Bij = Y. 0i, where ¢;; = 1if i — j occurs and 4;; = 0, otherwise.

Prior distribution: in the context of Markov chains, the task of the prior is to specify
an assumption about the probability distribution of the i row 7r; of MS. Accordingly,
it is necessary to find as many prior distributions as the number of Markov states.
Updating the transition probabilities under a Bayesian approach works with any kind
of prior. However, since we consider the arbitrary set of new transitions Q to be
multinomial distributed, it is mathematically convenient to use a conjugate prior. The
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8. Stochastic Environment Modeling

use conjugate priors offers the advantage that the posterior distribution has the same
functional form of the prior. The conjugate prior of the multinomial distribution is
the Dirichlet distribution (Strelioff, Crutchfield, and Hiibler 2007). Thus, assuming
the transition probabilities of a row from M® to be Dirichlet distributed leads to:

Tg (1) [ (82.2)
o 2.

o1 Tg (aig) i

where the hyper-parameter «;; can be understood as a virtual count of occurrences
of i — j before considering new observations. Large values of a;; reflect strong prior
knowledge about the distributions of the transition probabilities and small values of
correspond to ignorance. The parameter m stands for the number of hyper-parameters
that parametrize equation (8.2.2), in this case given by the number of driving condi-
tions. The choice of the Dirichlet distribution as the prior is a fairly intuitive way to
explain the meaning of the transition probabilities in M®. A transition probability usy
as defined by equation (8.1.4), can be understood as the first moment of the Dirichlet
distribution evaluated for 7; ;. That is:

p (milai1, &in, s Xiy) =

(8.2.3)

where ay = ) «; is the total number of times a transition starting from state i occurs.
i

The Dirichlet distribution satisfies the unit simplex requirement ) IE [7‘[1',]-} = 1and

0 < E [ﬂi,]-} < 1 complying in this way with the properties of a row 7m; in MS.

Furthermore, the uncertainty of a transition probability can be computed by:

"‘11 ("‘0 ;)

Var [7;,;] = Tt 1)

(8.2.4)
The parameters of the Dirichlet prior distribution are obtained through MLE of sec-
tion 8.1. In the absence of prior knowledge about the hyper-parameters of equa-
tion (8.2.2), a common approach is to assume all probabilities to be equal, that is,
we set all a; ; = 1, which results in an uniform prior distribution with an expectation

value given by E [71;;] = /m, where m likewise represents the size of the state space.
Posterior distribution: having a multinomial likelihood and a Dirichlet prior, the
posterior distribution of 7r; after observing a new sequence of transitions Q can be
found in a closed form by exploiting the conjugate property of the Dirichlet distribu-
tion and the multinomial distribution. Accordingly, the posterior is computed by:

p (i Q) o £ (7| Q) p (reile) = T [l P, (8.2.5)
j=1

The posterior is computed on occurrence of new transitions between driving condi-
tions. Considering the fact that in our system just one transition can occur per time
step, we can set B;; = ¢;;. Accordingly, the set of hyper-parameter a; can be recur-
sively updated by setting «; 11 = a;r +1if i — i or a; ;41 = a;, otherwise. By em-
ploying this Bayesian scheme the updated mean E [77;;], ., and variance Var [7; ], |
of each element in 7r; can be computed with the help of equations (8.2.3) and (8.2.4).

84



8.2. Adaptation of transition probabilities

The posterior computed by equation (8.2.5) keeps the information regarding all
transitions occurred up to time step k. Thus, depending on the values of the hyper-
parameters, many new observations might be needed in order to converge with the
new Markov process. This is inconvenient, since a slow adaptation of transition prob-
abilities would cause the characterization of the most up to date driving condition
to fail. Because of this, it would be desirable to find a recursion for both [E [m,]}k
and Var [77; ;] , Without needing to deal with any prior knowledge about the hyper-
parameters and that can be carried such that the influence of older transitions in the
computation of the posterior is progressively faded while keeping the underlying
idea of an a Bayesian update. This recursion is achieved by means of the discounted
mean-variance estimator (Bertuccelli and How 2008):

Var [m;], (8, — E [,
Aok [m;], (1 B [m],)
Var [71;,] B 7534, (1 —E [7;)] k+1>

AokE [71;j], (1 - B[], ) + Var [m],

where Agx < 1 is a factor used to scale the variance at each iteration, which allows
making the estimation to be more responsive to new observations. Bertuccelli and
How 2008 show that convergence to the true moments is achieved if limy_,o, Agj = 1.
We thus consider in this work a decaying factor Ag; = 1 — %, where 0 < A < 1 and
k denotes the discrete time step. If the initial prior distribution is computed based
on historical driving data, then a slow adaptation rate might suffice, as illustrated in
tigure 8.4 (a), however, if a prior with no previous information regarding the driving
situation is used, the convergence speed has to be increased, otherwise the parame-
ters describing the most up to date driving situation can not be determined, as seen
in figure 8.4 (b). Based on the historical driving data sets it can be argued, that the
adaptation rate should be found withing one battery discharging cycle, that is, for
trips between 120 km and 160 km with durations ranging from 90 min to 120 min ap-
proximately. Therefore, changes in the driving situation, such moving from the city to
the highway, can be accounted for and meaningless changes, e.g., small trafficjams,
can be neglected. To validate the functionality of the mean-variance estimator, it is
investigated, whether the same posterior distribution is obtained for different values
of As as in the case when As = 1. Figure 8.4 (c) illustrates the comparison of 1 out
of the 16 probabilities in M® of equation (8.1.7). As it can be seen, this probability
converges to the values computed off-line within 150 iterations.

Figure 8.4 (d) shows the behavior of mean-variance estimator for a total of 2000 iter-
ations. In this case the initial prior distribution is obtained from the results depicted in
tigure 8.4 (c). Later, after 500 iterations the value of the probability abruptly changes
to a new value and remains there until the last iteration. As it can be observed, for
As = 0.95, the estimator (black line) slowly adapts to the change. Nevertheless, it con-
verges towards the true probability value (gray line). It turns out that the choice of the
initial prior distribution of is of high relevance in case As # 1. Hence, it is advisable
to compute the prior distribution off-line with help of historical driving data, so that
abrupt changes in the covariance estimation can be avoided.

E [7]

e = B[], + , (8.2.6)

Var [7'(1'/]'}

= ) (8.2.7)
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8. Stochastic Environment Modeling
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Figure 8.4.: True probability (solid gray) estimation convergence speed with (a) and without
(b) previous information by A = 0.9, A; = 0.99, A; = 0.999, As =1 (c), and Ay = 0.95 (d).

8.3. Driving behavior modeling

As it was already mentioned in the introduction of this chapter, the interaction system-
surroundings is partially described by the driving behaviour, characterized by the lon-
gitudinal speed vy and acceleration ay of the electric vehicle. This section introduces
a model for predicting both vy and ay in dependence of the condition situation.

For a better understanding of the model let us first define:

Fs={vx € Rax e R: V,, As} (8.3.1)

as the two-dimensional state space of vy and ay of an arbitrary driving condition s € S,
Le, Vs = {vx,min/ Ux,min T A0, .-+, Z}x,max} and As = {ax,minr Ax,min + Adx, . .., ax,max}-
Whereas vy min, Ux,max, Oxmin and aymax are obtained directly from the training data,
the step sizes used for discretizing Vs and .As, namely, Avy and Aay, for each driv-
ing condition, are chosen by means of optimization with the aim of minimizing the
difference between the mean, the standard deviation and the mean absolute distance
between the empirical cumulative distribution (Kolmogorov-Smirnov test) of the mea-
sured and the simulated speed. Analogous to the Markov model presented in sec-
tion 8.1, a conditional transition probability in this model is defined as:

0
v%ax

ni,j

=P (aX,k+1 = j|ax,k =1, Ox k = 0) s (832)

where nzjx-ax is the probability of accelerating at rate a{( over the next time step given

that the vehicle accelerates with a’ at given speed v{ in the current time step. Mod-
eling this stochastic process in a discrete state space would require to define a tran-
sition probability matrix M%% for each v € Vs (see tigure 8.5 (a)). The drawback
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8.3. Driving behavior modeling
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Figure 8.5.: Exemplification of multiple transition probability matrices in dependence of vy (a)
and fitted Beta function over the distribution of a, ;1 by different tuple (vy, ax) (b).

with this approach is that the size of the state space increases proportionally to the
size of As, which leads to large sparse transition probability matrices, and therefore,
more data is needed in order to identify the parameters. Oliva and Bertram (2014a)
sort out this issue by finding a suitable probability distribution function of the form
fp (ayf+1 = jlaxk = 1, vxx = 0) that can be employed to compute HZ;X.’]X. The shape of
such a function can be better understood by analysing the distribution of a, ;.1 at
different tuple (vx,ax). Billio and Casarin (2011) as well as Ferrari and Cribari-Neto
(2004) suggest that a strong candidate for choosing f;, is the Beta distribution. The
tigure 8.5 (b) shows the Beta function fitted over different distributions of ay 1. The
Beta density function is a versatile function which is usually employed for modeling
different shapes of probability distributions. The probability density function of the
generalized Beta distribution applied to a, ;1 is given by:

a—1 B—-1
f, <ax,k+1\06, B, br,, buﬁ> = (aX/kH _ bLﬁ) <buﬁ _ aX/kH) , (8.3.3)

(buﬁ__bLﬁ>a+ﬁ—1

where « and B are the shape parameters of the Beta distribution and [bL g buﬁ} define

the interval for which equation (8.3.3) is defined. The fact that the Beta distribution
is defined just over a given interval is exploited in this work in that no accelerations
beyond the admissible values, dictated by the performance of the electric vehicle, can
be reached. Furthermore, b, g and buﬁ can be conveniently chosen to force any a, 1,
drawn from a Beta distribution given by (8.3.3), to lie within the bounds of the state
space of F;, i.e., ay 41 € As. The first two moments of a, ;1 are given by

3
E gkl B, bry buy| = br, + (bu, — by T (8.3.4)
2
(buﬁ — bLﬁ) 06[3
Var {akﬂ &, B, b, buﬁ} SRR P (8.3.5)

The function f; can be reformulated such that the parameters of the Beta distribution
depend on the Markov states and that the probability density function is defined only

over A, i.e., £y, (ayrr1]a (Ox i Ax k) » B (Uxkr Ax k) 7 Ax,min, Ax,max)-
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Figure 8.6.: Point-wise definition of g, (v, ax) (a) and hy, (v, ax) (c) over F;. Smoothed defini-
tion of g, (v, ax) (b) and hy, (v, ax) (d) over F.

The estimation of both « (-) and B (-) over the entire state space F; is carried out
by gathering all samples of a, ;.1 for each tuple (vy, ayx) observed in the training
data. The purpose of the aforementioned step is to sort out the data such that both
E [ay k+1] and Var [ay ;1] can be calculated from the available samples of a, j 1.

As it can be seen in figures 8.6 (a) and (c) the sparsity of the training data causes
both E [ay x+1] and Var [ay ;+1] to be defined point-wise over F;. Thus, to parametrize
Fs we define two new functions, namely, g, (vx, ax) and a function hy, (vx, ax) which
describe how [ [ay ;1] and Var [ay ;1] continuously vary through F.

Johannesson (2005) propose the use of bivariate tensor product B-splines with a pre-
defined sequence, which are accordingly set denser where more information is avail-
able in order to better capture the behavior of the most important regions of F;. The
splines describing this variation, namely, g, (vx, ax) and hy, (v, ax) over F; for the ur-
ban driving situation are shown in figures 8.6 (b) and (d). Having identified [E [a ;1]
and Var [ay y;1] for the entire state space, moment matching (AbouRizk, Halpin, and
Wilson 1994) is used for estimating both parameters « (vy,ax) and B (vyk, ayx) by
evaluating g, (vx, ax) and hy, (vy, ax) for each state on F; and by equating the result to
the theoretical moments given by equations (8.3.4) and (8.3.5). Solving the obtained
system of equations for « (vy, ax) and B (vyx, ay ) leads to:

_ (bLﬂ_"b> (bLﬁ_“b>2 (b”ﬁ_”b)
o (vx, 0x) = b, by, E (bL,; - bu,j> , (8.3.6)
B (vxk, k) = <:Luﬁ - yb) + <bLﬁ _ yb) <buﬁ ~ Vb)z, (8.3.7)

s~ bu o} (bLﬁ - bu,;)
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8.4. Road slope modeling
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Figure 8.7.: Schematic representation of the procedure for generating ¥, ., and ., -

where yj, = E [a,11], 0f = Var [ayx41], br, = axmin and by, = dxmax. The transition
probability matrix is expressed analogous to equation 8.1.3, with the difference that
both rows and columns correspond to the same time step k and that each cell contains
the parameters B;; = {a;;, B;j} of the Beta distribution that corresponds to the next
time step k 4 1 (see figure 8.7). Thus:

State Ox,min " Ux,max
fx, min Bipx -+ Bip

M7= e P (838)
ax, max BnA,l By yny

Simulating a realization of the underlying stochastic process describing the driving
behavior, within a given driving condition s € S and for a given horizon length iz, i.e.,
V0, = [Ox0s- -+ Oxr- -, Oxpy ) @and &y o, = [Ax0, - - -, Axks - - -, Ay, |, are performed by
randomly drawing a sample a, ; from M”:for the next predicted state d, ;1

Ay 1 = rand (fy (a1l (Oxk axk) B (Uxks Axk) - Axmins Axmax)), k=1,... hp — 1.
(8.3.9)
Contrary to other methods for generating synthetic driving profiles (Lee, Adornato,
and Filipi 2011), our approach compute the value of the speed in the next speed
instead of randomly sample it. Here 9,4 is given by:

vAx,k+1 = 6x,k + dx,kAt/ (8.3.10)

where At denotes the time step size used in the generation of ¥, o, and &, o.j,, -

8.4. Road slope modeling

As it is shown in section 3.2, the climbing resistance Fg is proportional to the slope
of the road a,,,q (recall equation (3.2.5)), and therefore directly influences both the
power that the electric vehicle requires to move forward and the power that can be
gained by means of regenerative braking. The slope model serves as basis to simulate
multiple time series with identical stochastic characteristics as the training data, i.e.,
as the slope measurements.
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8. Stochastic Environment Modeling

To model the slope a one-dimensional state space has to be first properly defined.
Analogous to F;, the state space is quantized with a step size Aay,,q in the range
between &;pad, min aNd &yoad, max for each driving condition defined in section 7.1, i.e.,
Froads = {®road mins Xroad,min + D&roads - - - » Xroad,max } Where s € S refers to an arbitrary
driving condition. As in the model of the driving behavior, a transition probability
matrix M7 rads is defined as:

State Xroad k+1
M]:road,s _ “roac.l, min 0‘1/.ﬁ1 (8.4.1)
Xroad, max Kttroad” ﬁ Mroad
A realization of the slope &0ad,0:1;, = [road,0s - - - &road k, - - - » Aroad ;) i generated by

randomly drawing from M7 roads a sample a,,,4 ; for the next predicted state &;paq k+1:

&road,kJrl - rand(fb(“(‘xroad,k)/ .B(‘Xroad,k)/ Xroad, mins &road, max)r k = 1,..., hL -1,
(8.4.2)
where h is the length of the realization and f,(-) represents a beta function which
is parametrized by the tuple (yoad is Broad,) indexed in MFroad;s by the current state

Xroad k-

8.5. Evaluation of power requirements prediction

The approach for predicting the power requirements is evaluated through a series of
experiments. In order to analyze the performance of the prediction the Kolmogorov-
Smirnov test, i.e., the distance between the empirical cumulative distributions of the
measured and the simulated speed, slope and power, is employed. In this manner,
the complete statistical characteristics of the prediction are taken into account.

The first part of experiments deals with assessing how accurate the driving behavior
and the road slope can be predicted for each driving condition. To this aim both M”*
and M7 rads are parametrized with the datasets labeled as training in table B.1 for each
driving condition. To this aim we generate multiple realizations of @y}, , for each
driving condition, and for different horizon lengths (k). Figures 8.8 (a)-(c) and (d)-(f)
show the empirical probability distributions as well as the quantiles 5% and 95 %, of
the road slope and the vehicle speed, of both the validation and the simulation data.
In general, we can argue that the driving behavior and the road slope are properly
simulated within each driving condition. For a deeper analysis, figure 8.9 shows the
error between the empirical distributions as a function of ;. It can be seen that the
quality of the prediction increases with /. This is clear since the longer /i the better
is described the underlying stochastic process of the driving behavior and the road
slope. To evaluate the prediction of the power consumption we employ a reference
drive cycle shown in figure 8.10 (a) (black line) and assume that the driving conditions
(gray line) are known beforehand. In this case the reference cycle is generated from
the datasets labeled as validation in table B.1. Similarly to the previous case, both M7s
and M7 wads are parametrized with the datasets labeled as training in table B.1 for each
driving condition.
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Figure 8.8.: Cumulative density function of speed and road slope from the validation (gray
line) and the simulated (black line) data for the urban (a) and (d), rural (b) and (e) and
highway (c) and (f) driving scenario.

Figure 8.10 (b) shows a simulated driving cycle of the same duration. As already
mentioned, the driving conditions are assumed to be known and we set Wy = 200 s
(recall section 8.1). It can be appreciated, that the driving behavior is properly mod-
eled within each driving condition. Noteworthy is that the simulated speed exhibits
larger values in contrast to the validation data. This phenomena is caused because a
value of vy min = 130 km/h has been used while training the M7 corresponding to
the highway driving conditions and because the drive cycles of the validation datasets
exhibit lower maximum speed on the highway driving condition.
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Figure 8.9.: Error between the empirical CDF of the road slope (a) and speed (b) as function of

the prediction horizon length for the urban (black lines) as well as for the rural (black dashed

lines) and highway (black dotted lines) driving situations .
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Figure 8.10.: Experimental results of the power prediction for a predefined sequence of driving
situations. Speed profile (black line) and driving conditions (gray line) of the validation (a)
and the simulated (b) data. Empirical probability density function (PDF) (c¢) and cumulative
density function (CDF) (d) of the validation (gray line) and the simulated (gray line) with the
corresponding quantiles 5% and 95% (black dotted lines).

The difference between the empirical probability distributions of the real and the
simulated power consumption is computed by means evaluations of M p¢ as response
to multiple realizations of &j7}%,, , with h; set as the duration of the reference drive
cycle. The empirical probability distribution and empirical cumulative probability
distribution together with the corresponding quantiles 5 % and 95 % are shown in fig-
ures 8.10 (c) and (d). Note that the simulated probability distribution is relatively flat
on the right around 10 kW in contrast to the training data. This effect becomes clearer
by analyzing the cumulative distribution. It can be appreciated that both distributions
diverge towards F(Pee) = 1. In this case, the error between cumulative distributions
is 0.0242 + 0.0025 and the error of the mean power consumption is (300.2 &+ 18) W.
The low values of the standard deviation suggest that the power consumption can be
properly predicted with the approach developed throughout this chapter.
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Remaining Driving Range Estimation

This chapter aims to integrate the knowledge gained throughout this work into an
unified solution that allows estimating the RDR of the Nissan leaf under different
operating conditions. The structure of the discussion presented below allows gradu-
ally assessing the impact of model, present state and future load uncertainty, on the
RDR estimation. For the sake of comprehension, the reader is referred to sections 2.2
and 2.3 for a detailed explanation about the methodology followed as well the setup
used to carry out the experiments of this section.

9.1. Assessing model uncertainty

All results presented in this chapter are based on the driving cycle illustrated in
figures 9.1 (a) and (b), which is the result of joining the datasets shown in fig-
ures B.3 and B.4. The benefit of using this cycle, is that the electric vehicle operates
under all driving conditions, defined in chapter 7 and modeled in chapter 8, thus,
allowing us to draw more meaningfully conclusions about the RDR estimation.
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0 2000 4000 6000 8000 10000 12000
(a)
< o
g _5 1 1 1 1 1 1
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Figure 9.1.: Segment of the time series of speed (a) and road slope (b) belonging to the driving
cycle generated for evaluating the RDR estimation under different operating conditions.
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9. Remaining Driving Range Estimation

Table 9.1.: Mean and cumulative relative accuracy of the RDR estimation under different tem-
peratures accounting only for model uncertainty.

Toatt 0°C 06°C 12°C 15°C 23°C 25°C 33°C 38°C
RA[%] 9027  91.18 88.93 878 89.88 90.76 88.96 88.91
CRA[%] 84.60 85.33 84.43 83.91 84.22 85.48 85.03 85.02
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Figure 9.2.: RDR estimation results by accounting only for model uncertainty by a temperature
of 25°C (a) and 38°C (b).

To assess the impact of model uncertainty we estimate the RDR of the EV by simu-
lating Mpc and Mggs through the driving cycle shown in figure 9.1, under different
temperatures, and with a known initial state of charge (SoCy = 1). This way, the
error between the simulated and the real RDR is attributed to the uncertainty related
to model parameters. Figures 9.2 (a) and (b) exemplify the RDR estimation results of
experiments carried out under 25°C and 38°C. It can be appreciated, the estimated
RDR (circles) mostly lies within the predefined « — A bounds. In this case we set
a = 0.15, that is, the bounds (dashed lines) are defined by a 15% above and below
of the actual RDR (black line). Table 9.1 presents the mean relative accuracy (RA)
computed from predictions performed at different time steps k, (see table C.2 and
figure C.4 for further results on the model uncertainty assessment). Although the RA
metric gives information at given time k;, to better evaluate the performance of the
RDR estimation methodology, it might be desirable to heavily weight the RA of RDR
estimations that occur nearer the region of total depletion of the battery pack. To this
aim we introduce the cumulative relative accuracy (CRA), which is given by:

1 Nga. 1
RA, =—) .  7"RA; (11— d.1
= ! NRa. Zl:l ! ( AdiSti> © )

1

where Adist; is the traveled distance and Ng,, is the number of prediction done up to
the i RDR estimation. The RDR estimation achieves a highest RA of 91.8% at 06°C
and a CRA of 85.48% at 25°C, which confirms the suitability of our approach.

9.2. Assessing present state uncertainty

Having assessed how model uncertainty affects the RDR estimation, the next step
foresees introducing the present state uncertainty.
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9.3. Assessing future load uncertainty

Table 9.2.: Mean and cumulative relative accuracy of the RDR estimation under different tem-
peratures accounting for model and present state uncertainties.

Toatt 0°C 06°C 12°C 15°C 23°C 25°C 33°C 38°C
RA[%] 8717  86.10 86.95 89.32 90.51 85.99 91.04 91.49
CRA[%)] 81.11 80.38 82.59 84.00 86.41 85.51 86.19 86.44

100 .
Measurement 1 150~ _ %ng '
T Model o 100 )\medlan
X 50 i
) ae
2 @ 50
0 0
0 5000 10000 0 50 100
t[s] — Traveled distance [km] —
(a) (b)

Figure 9.3.: SoC (a) and RDR (b) estimation results by accounting for model and present state
uncertainties at a temperature of 25°C.

As it has been stated multiple times throughout this work, the present state uncer-
tainty represents the lack of knowledge about the state of charge of the energy storage
system. Thus, to assess its impact on the RDR estimation the experiments carried out
in section 9.1 are repeated with the difference that value of SoCj is not set determinis-
tically. We instead, uniformly distribute the set of samples of the particle flow particle
filter between the range 0.05 < SoCy < 1. As it can be seen in figure 9.3 (a), the SoC
is successfully tracked for the entire operating range of the cell. The effect of present
state uncertainty is reflected during the RDR estimation at k, = 1. As it can be ap-
preciated in 9.3 (b), the first RDR estimate fails with a RA of 84.25% (see table C.3
and figure C.5 for a more complete insight into the experimental results). This is due
to the fact that the first SoC estimate also fails (recall the experiments presented in
section 6.3), since at this point no measurements are available for updating the SoC
information. Similarly to the results presented in the previous section, almost each
RDR estimation lies withing the « — A bounds, leading to a highest RA of 91.49% and
a CRA of 86.44% at 38°C.

9.3. Assessing future load uncertainty

From the discussion above, we can clearly state that the RDR can be successfully
estimated with the methodology introduced in section 2.2. However, the fact that
the experimental results achieved above are high accurate is not surprising. This is
mainly due to two reasons. On the one hand, in chapters 3 and 4 extensively set of
experiments have been carried out to identify and to validate Mpc and Mggg, such
that the power consumed by the Nissan leaf as well as the behavior of its battery
pack can be accordingly simulated for most conventional operating conditions. On
the other hand, it has been shown in chapter 6 that the particle flow particle filter
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9. Remaining Driving Range Estimation

Table 9.3.: Mean and cumulative relative accuracy of the RDR estimation under different tem-
peratures accounting for model, present state and future load uncertainties.

Toae  0°C 06°C  12°C 15°C 23°C  25°C  33°C  38°C
RA[%]  87.00 86.35 87.95 89.94 91.99 88.95 91.64 92.09
CRA[%] 82.11 81.41 82.50 84.90 86.75 83.95 87.22 87.40
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Figure 9.4.: RDR estimation results by accounting for model, present state and future load
uncertainties at 25°C with n,, = 2 (a), n,, = 1000 (b), n,, = 50 (¢) and with n,, = 50 at 38°C (d).

is robust against process, parameter and measurement noises and that it succeeds in
tracking the true SoC within 100 iterations in the case of the single cell and within
500 iterations in the case of the real battery pack. Thus, it is expected that the RDR
estimation, by only considering model and present state uncertainties, to be accurate.

A robust RDR estimation, however, also requires accounting for the uncertainty in-
troduced by the future operating conditions. Thus, it is first necessary to determine
how many realizations of the future load are needed in order to properly asses this
type of uncertainty. Therefore, the experiments presented in section 9.2 are repeated
here with the difference that, instead of following the driving cycle shown in fig-
ure 9.1, the models Mpc and Mg are evaluated by following a set of n,, driving cy-
cles ﬁiﬁp +n, 8enerated with the help of the stochastic environment model introduced
in chapter 8. In all experiments both M%s and M%rads are parametrized with the train-
ing datasets of table B.1 for each driving situation. On the other hand, the transition
probabilities of M® are initialized with 1/m, so that no previous information about the
driving scenario is available. This allows to investigate the adaptation sywintroduced
in section 8.2 in regards to the RDR estimation. Figures 9.4 (a) and (b) exemplify the
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9.3. Assessing future load uncertainty

results obtained by estimating the RDR with n, = 2 and n, = 1000. As it can be ap-
preciated, even though estimations performed with n,, = 2 exhibit acceptable results,
the variance of the RDR estimate (gray region) is not well captured. In addition, the
RDR estimation drastically jumps from prediction to prediction, which is results of
using very low 7, values. On the other hand, as shown in figure 9.4 (b), the accuracy
of the RDR estimation increases with n, = 1000. Nevertheless, such a high number

of ﬁf;‘j(p +n, realizations negatively affects the computational performance of the RDR

estimation. Thus, the choice of n, sets a trade-off between estimation accuracy and
computational burden. It has been found, by repeatedly executing the estimation rou-
tine under different 1, values, that the RA and the CRA corresponding to a value of
n, = 50 exhibit good results for different temperatures, as shown in table 9.3 and fig-
ures 9.4 (c) and (d). Table C.4 and figure C.6 present further results by setting n,, = 50
under different temperatures. It can be appreciated that, even though no prior in-
formation about the driving cycle is assumed, the RDR is accurately estimated with
n, = 50, achieving a RA of 92.09% and a CRA of 87.40% at 38°C. In section 5.3 it
has been concluded that the uncertainty regarding auxiliaries P,ux drastically influ-
ences the total uncertainty of the RDR. All experiments discussed so far have been
performed under the assumption that P,ux = Pauxmin, Where Paux = Pauxmin iS resid-
ual power consumed by all secondary auxiliaries (recall section 3.5 and table A.2).
Under real operating conditions, however, this assumption is not completely valid in
the case of electric vehicles. The reason for this is that during a trip the driver might
constantly turn on and off different auxiliaries, e.g., the HVAC system. This fact adds
uncertainty to the future load and therefore it needs to be accounted for. For example,
neglecting the component of the future load leads to over-estimations of the RDR (see
tigure C.7 (c)). In this example, a virtual load of 4000 W is turned on after 2000 s,
resembling in this manner the sudden use of heating or air conditioning. To over-
come this issue and thereby to account for this uncertainty in the RDR estimation, we
allow M pc to compute online P, as response to vy and a;,,4 and measure the actual
power consumed. Based on the difference APy = Pejereal — Pelesim and by setting
a threshold, we are able to differentiate between two new operating states, that is,
sp,,, = 1 if important auxiliaries are turned on sp, = 0, otherwise.

Figure C.7 (a) shows the results of the simple classification scheme described above.
It can be seen, that this approach successfully recognizes when an external load is
turned on with an accuracy of 87.58 % for this example. The results of the RDR
estimation are presented in figure C.7 (c). In this case a RA improvement of 21.20 %
is achieved by including the recognized external load into the RDR estimation.

All experiments presented so far have been carried out with the second scenario
described in section 2.3. This means, that even though the time series of vy, &yoaq
and P, correspond to real measurements taken with the Nissan leaf, the inherent
uncertainty, imposed by the variability of the single cells conforming the battery pack,
is not taken into account. Furthermore, to make more meaningfully statements about
the performance of the RDR estimation approach developed throughout this work, it
is necessary to test it on the real vehicle and under real operating conditions. This
might seem to be a trivial task, however, in practice carrying out such tests is not
feasible since it would require to drive the electric vehicle to empty, that is, until the
battery pack is totally discharged.
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9. Remaining Driving Range Estimation
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Figure 9.5.: Speed (black line) and driving condition classification (gray line) (a). Results of
the SoC (b) and RDR (c) estimation of experiments performed on the Nissan Leaf. Variability
in terminal voltage (d) and temperature (e) of the cells conforming the battery pack.

To overcome this issue a third experimental scenario (recall section 2.3) has been
developed. During the experiment the EV follows the predefined drive cycle of fig-
ure 9.1. Note, that the speed of the vehicle slightly differs from the predefined one.
This is due to the disability of the driver to exactly follow the driving cycle shown on
the screen. Figure 9.5 (a) shows the actual speed of the vehicle (black line), measured
from the tachometer, and the result of the driving condition classification (gray line)
applied to this drive cycle. It is observed in figure 9.5 (b) that the approach presented
in chapter 6 succeeds on tracking the value of the SoC for the entire operating range,
with an RMSE 2.45 %. The RDR estimation shown in figure 9.5 (c) achieves a RA of
90.87 % and a CRA of 84.15 %. It is observed in figure 9.5 (d) that V},,y varies from cell
to cell. This variability causes the battery management system to turn off the vehi-
cle when an arbitrary cell reaches the predefined SoCynin. Moreover, the temperature
among all cells vary depending on their location on the battery pack (see figure 9.5
(e) and recall figure 2.6). These two factors cause the uncertainty of the battery pack
mentioned above, which are successfully accounted in the RDR estimation.
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10

Conclusions and Outlook

Mobile systems have become very important in terms of supporting the human being
in a broad spectrum of applications both in hostile environments, where the presence
of the humans might be prohibitive, or just for increasing the comfort. Nevertheless,
the autonomy of mobile systems is strongly affected by multiple internal and external
factors and its accurate determination is remarkably distorted by many sources of
uncertainty. This work is first and foremost driven by the idea that assessing the
autonomy of a mobile system can be formulated under an uncertainty propagation
context, in which these uncertainties are characterized and propagated with the aim
of computing their combined effect as a probability density function.

The complexity of such estimation increases with the number of uncertain vari-
ables taken into consideration. With the purpose of reducing the number of un-
certain variables, and therefore the computational complexity of the estimation, this
work introduces a novel approach to quantify and analyze uncertainties and therefore
prioritize important variables and to neglect the uncertainty of those variables with
meaningless contribution. To analyze these uncertainties and to prioritize the set of
important uncertain variables, detailed models describing the nonlinear capacity be-
havior exhibited by the energy storage system used to power the mobile system as
well as the power requirements imposed by its intrinsic interaction with the operat-
ing environment have been developed based on physical principles. These models
have been accordingly parametrized and validated through comprehensive series of
experiments carried out in various experimental setups specially designed to address
different theoretical concepts and based on the type of data available.

The present state uncertainty reflects the lack of knowledge about the energy avail-
able in the system at any given time. This quantity is expressed indirectly in terms of
system states and parameters, which however, are not observable and consequently
have to be estimated. A novel sample-based nonlinear observer for tracking faulty
states of the system, and specially, for estimating the remaining energy available in
the energy storage system has been implemented. This observer combines the ben-
efits of two state of the art filters, namely, the UKF and the PF, in that it makes no
assumption about the distribution of the states and parameters and that it progres-
sively transports the samples to the correct locations from the prior to the posterior
following an homotopy dictated by the Bayes’ rule without needing to randomly sam-
ple from any distribution, reducing in this manner the number of samples needed and
thereby the computational effort of the estimation.
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10. Conclusions and Outlook

The paramount challenge encountered in this work is given by the uncertainty char-
acterization and integration of the future energy consumption of the system. Due
to the unstructured operating environment of the mobile system, the future energy
needs are governed by a stochastic process, and therefore can not be characterized
by stationary probability distributions. In addition to this, estimating the autonomy
requires knowledge about the future system usage from the time at which the esti-
mation is done to the time at which the systems runs out of energy. Unfortunately,
this time interval is not available in advance, since it represents the actual outcome of
the estimation approach. With the aim of capturing the stochastic behavior dictated
by changing operating conditions, a stochastic environment model from a Markovian
point of view has been developed in this work. In order to allow the RUL estimation
to adapt to changing operating conditions, it is necessary to update the parameters
of the Markov model as new information becomes available. The use of a recur-
sive Bayesian posterior probability approach has been proposed to this aim. After
having developed the stochastic model, an approach to extract, select and compute
features from measured variables of the environment has been developed, with the
aim of distinguishing, as good as possible, between the different operating conditions.
Gathering training data for the classifier represents a challenge, since it is required to
operate the system for long periods of time under different operating conditions. This
is not feasible in our case due to the constraints in energy availability imposed by the
type of systems considered within this work. Because of this, a classifier with low
expected generalization error and capable of responding to time-varying influences is
investigated in this work.

On the basis of all experimental results achieved throughout this work, we can
argue that the model-based prognostics methodology proposed in section 2.2 can be
successfully implemented for assessing the autonomy of mobile systems operating in
highly dynamic environments, more precisely, to estimate the RDR of electric vehicles.

As it became clear, the RUL estimation problem exhibits acausal properties, that
is, it requires information about the future operating conditions in order accurately
forecast the temporal behavior of the states and parameters of system. Furthermore,
it is needed to have precise knowledge about the true RUL of the system in order
to obtain some feedback that allows evaluating the performance and accuracy of the
RUL estimation algorithm. Most evaluation methods available in the literature fol-
low a run-to-failure (RtF) philosophy, in which controlled experiments are carried out
in order to gather failure data, and therefore, to experimentally build a probability
density function of the RUL. This family of approaches is best suited for evaluating
prognostics performance once all data has been gathered and its applicability is lim-
ited to offline analysis. Nevertheless, an online evaluation the performance of the
RUL estimation is one of the most important factors for prognostics-enabled decision
making. Online validation of RUL estimates, however, requires incorporating a more
precise characterization of the future operating conditions. For this reason, future
work foresees to investigate the use of outer feedback correction loops (OFCLs) to
predict, under different prediction horizons, the temporal evolution of states and pa-
rameters of the system and to derive metrics that allow mapping the accuracy of short
term predictions to the performance of the RUL estimation.
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Model Parameters

A.1. Discussion on all known power consumption model
parameters

The total mass (my ;) is composed of the mass of the Nissan Leaf, the passengers and
the measurement equipment. The mass of both the curb and the measurement equip-
ment are obtained from technical specifications publicly disclosed. In this case, the
vehicle can be occupied by a minimum of one passenger (the driver) and a maximum
of four.

The ambient related parameters, i.e., air density (0,ir) and gravitational acceleration
g, correspond to average spring/summer conditions of Dortmund city ant its sur-
roundings. Similarly to my, the nominal values of the chassis parameters, that is, A,
I, I and Hg are drawn from technical sheets published by Nissan.

While the magic formula (see equation (3.3.3)) succeeds in describing the steady-
state behavior of the traction force of a tire, experimentally determining its parameters
requires relatively complex procedures, which are out of the scope of this work. Since
the Nissan Leaf is equipped with standard tires, namely 205/55R16, we opt for com-
puting By, Cx and Dy based on information published by Pacejka (2005). As discussed
in section 3.3, the curvature factor (Ey) is set to zero such that equation (3.3.3) can be
conveniently solved w.r.t. xy.

The Nissan Leaf is propelled by a 80 kW and 280 Nm synchronous electric motor
whose efficiency modeled by means of a stationary map (77y1). The data employed to
describe the power losses for the region operating in motor mode and for computing
the losses in generator mode has been published by Sato et al. (2011). In the same
manner, nominal values of the gear ratio ig and the transmission efficiency 7 of the
transaxle are drawn from technical sheets.

For the sake of completeness, table A.1 summarizes the nominal values of all pa-
rameters belonging to the power consumption model.
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A. Model Parameters

A.2. Power consumption model parameters

This section presents the parameters of the model describing the power requirements
of the electric vehicle grouped according to whether they belong to sub-models of the
to the vehicle dynamics, tires, driveline or electric components.

Table A.1.: Nominal values of the M pc parameters

parameter symbol unit value
total mass of the electric vehicle my ¢ kg 1645
density of air Qair kg/m? 1.226
aerodynamic drag coefficient Cw 0.2931
frontal area of the electric vehicle A m? 227
acceleration due to gravity g m/s? 9.81
§ static rolling resistance coefficient Kg, 0.014
§ first speed dependent rolling resis- KR, 9.22 x 10*
§, tance coefficient
3 second speed dependent rolling resis- KR, 297 x 107°
E tance coefficient
IS distance from the center of gravity to g m 1.188
the front axle
distance from the center of gravity to Iy m 1.512
the rear axle
height of vehicle center of gravity Hg m 0.5
measured from the ground
effective rolling-radius of the tire rw m 0.3053
stiffness factor of the magic formula By 17.09
& shape factor off the magic formula Cx 1.65
= maximum transmittable longitudinal Dy 297 x 1073
force
curvature factor of the magic formula Ex 0
gear ratio of the transaxle (driveline) iG 7.9377
o efficiency of the driveline nG 0.97
b rotational inertia of output driveline I out kgm? 0.533
E components
A rotational inertia of input driveline IGin kgm? 0.9
components
efficiency map of the electric M [0.795,0.922]
o ..2 drive/motor
‘5 g minimum activation speed for regen- viiiin km/h 55
& 8, erative braking
= g maximum activation speed for regen- vfrgnax km/h 110
©  erative braking
power required by auxiliary compo- Paux W 457

nents
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A.3. Energy storage system model parameters

A.3. Energy storage system model parameters

This section presents the parameters of the model describing the energy storage sys-
tem grouped according to whether they belong to sub-models of the transient re-

sponse, cell capacity or the open circuit voltage.

Table A.2.: Nominal values of the Mpggs parameters.

parameter symbol unit value
ohmic resistance Rohm Q [7.43 x 1074,0.0027]
"g ;m' resistance of the short-time RC-network Rs Q | [142 x1072,1.3 x 1074]
g 8, capacitance of the short-time RC-network Cs F [5.91 x 103,1.3 x 10°]
[g ?? resistance of the long-time RC-network R (@) [3.43 x 1074,0.0017]
capacitance of the long-time RC-network q F [4.4 x 10%,9.86 x 10%]
cell capacity ratio c 0.958
virtual conductance of the cell d 0.8 x107°
2 discrete system parameter of the KiBaM ai 1
'2 discrete system parameter of the KiBaM ap 0.0002
g discrete system parameter of the KiBaM as 0
= discrete system parameter of the KiBaM ay 0.9998
v discrete system parameter of the KiBaM by 0.5
discrete system parameter of the KiBaM by 0
cell nominal capacity Cu Ah 59.5
parameter of the Voc-SoC model Ky \Y 2.095
parameter of the Voc-SoC model Ky \Y 0.0041
gp parameter of the Voc-SoC model K> \Y -20.39
v"—; parameter of the Vpoc-SoC model K; \Y -0.2531
3 parameter of the Voc-SoC model Ky \Y -0.004
5 parameter of the Voc-SoC model Ks \Y -17.1769
- parameter of the Voc-SoC model Kg \Y 2.2476
5] parameter of the Vpoc-SoC model K7 A% -3.4802
8" parameter of the Voc-SoC model Kg 0.2962
parameter of the Voc-SoC model Kq \Y -2.4952
parameter of the Vpoc-SoC model K70 -2.7897
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Databases

B.1. On-road measurements

The following figures present the times series of the speed and the road slope of the
datasets employed throughout this work either for training or for validation.
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Figure B.1.: Speed (a)-(c)-(e) and road slope (b)-(d)-(f) time series corresponding to 3 out of 8
training datasets.
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B.1.

Omn-road measurements
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Figure B.2.: Speed (a)-(c)-(e)-(g)-(i) and road slope (b)-(d)-(f)-(h)-(j) time series corresponding

to 5 out of 8 training datasets.
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B. Databases
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Figure B.3.: Speed (a)-(c)-(e)-(g)-(i) and road slope (b)-(d)-(f)-(h)-(j) time series corresponding
to 5 out of 7 validation datasets.
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B.1. On-road measurements
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Table B.1 summarizes all relevant information pertaining both training and valida-
tion datasets. For the sake of clarity, a dataset with a road condition labeled as dry
is assumed to have a rolling resistance coefficient in the range 0.012-0.016. On the
contrary, road conditions labeled as wet are assumed to have a coefficient ranging
between 0.006 and 0.009.

Table B.1.: Summary of driving characteristics of measurements (drive cycles) taken on-road.

Traveled Mean Height Nr. of Road

Drive cycle distance speed difference drivers conditions

[km]  [km/h] [m] [ ] [ ]

Figure B.1 (a) and (b) 16.47 55.20 10.18 1 dry
Figure B.1 (c) and (d) 27.27 37.26 -5.41 2 wet
sn Figure B.1 (e) and (f) 17.03 30.45 63.33 1 dry
E Figure B.2 (a) and (b) 38.81 89.10 318.51 2 dry
'5 Figure B.2 (c) and (d) 38.23 93.11 -322.75 2 dry
F Figure B.2 (e) and (f) 9.34 31.32 -15.75 2 dry
Figure B.2 (g) and (h) 9.17 25.08 21.15 2 dry
Figure B.2 (i) and (j) 47.56 29.05 13.44 2 wet
Figure B.3 (a) and (b) 35.93 29.57 51.00 2 wet
Figure B.3 (c) and (d) 38.11 29.48 -26.25 2 wet
g Figure B.3 (e) and (f) 90.42 42.66 33.31 2 wet
'*g Figure B3 (g) and (h) 3941  56.93 -10.42 1 dry
=  Figure B.3 (i) and (j) 18.53 32.64 -5.67 1 dry
> Figure B.4 (a) and (b) 791 40.70 -6.34 1 dry
Figure B.4 (c) and (d) 25.87 41.65 19.84 1 dry
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B. Databases

Standard driving cycles

This section presents the standard driving cycles (figure B.5 (a)-(c)) employed in chap-
ter 5 for performing the uncertainty analysis of the RDR estimation. The cycles have
been first introduced by Andre (1996, 2004). The road slope profile (figure B.5 (d)) has
been synthetically generated with aid of the training datasets presented in section B.1.
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Figure B.5.: Standard driving cycles (a)-(c)) and synthetic road slope profile (d) used in the
uncertainty analysis presented in chapter 5.
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Further Results

C.1. Power consumption model evaluation results

This section presents evaluation results by applying the set of parameters, with the
lowest mean RMSE, on the remaining datasets.
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Figure C.1.: Illustration of 3 out of 12 evaluation results of the power consumption model.
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C. Further Results
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C.2. Features
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Figure C.3.: lllustration of 4 out of 12 validation results of the power consumption model.

C.2. Features

The features presented in this section are grouped in four categories depending on
which information is needed for their computation. Accordingly, we distinct between
speed, acceleration, driving characteristic and cumulative values. This features are
the result of the feature extraction scheme introduced in section 7.2.
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C. Further Results

Table C.1.: All features extracted form experimental datasets with aim of driving situation
classification.

Cat. Nr. Name Unit
9 Mean speed km/h
= 10  Mean speed (without stops) km/h
g 13 Speed standard deviation km/h
® 14 Maximum speed km/h
15  Mean acceleration m/s?
§ 16 Mean positive acceleration m/s?
§ 17 Mean negative acceleration m/s?
% 18  Acceleration standard deviation m/s?
< 19  Maximum acceleration m/s?

Relative stop time

Relative driving time

3 [-]
4 (-]
5 Relative acceleration [—]
6 Relative deceleration -]
7 (-]
8 (-]

Driving characteristics

Relative braking —
Relative cruise time —
11 Acceleration per kilometer 1/km
12 Stops per kilometer 1/km
g Total distance m
5 2 Total time s

C.3. Complete set of results of the remaining driving range
estimation

The discussion presented throughout chapter 9 repeatedly refers to RA and CRA
values, which have been computed with more information than the shown in the cor-
responding sections. For the sake of summarizing, each discussion is based on 2 or
4 figures that schematically depict the experimental results. With the aim of offering
deeper insights into the set of experiments performed in chapter 9 we present in the
sequel the complete set of RDR estimation results obtained under various temperature
conditions and by assessing, analogous to chapter 9, both model, present state and
future load uncertainties. The results shown towards the end of this section, more pre-
cisely, the experiments shown in figure C.7 are referred in section 9.3 where a discus-
sion, about considering residual power consumption values, takes place. The purpose
of the results depicted in figures C.8, C.9 and C.10 is to illustrated the performance
of our RDR estimation approach for driving cycles other than the one introduced in
tigure 9.1 and discussed throughout chapter 9.
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C.3. Complete set of results of the remaining driving range estimation

Table C.2.: Further results of model uncertainty assessment in the RDR estimation.

RA [%]
kp 0°C 06°C 12°C 15°C 23°C 25°C 33°C 38°C
1 95.09 97.20 93.83 93.91 93.87 97.04 94.38 94.40
4 93.06 96.82 94.38 94.55 94 .57 96.45 93.74 93.76
7 94.06 99.09 95.64 96.15 96.53 98.76 97.39 97.42
10 99.60 94.49 94.42 94.14 93.80 94.95 93.01 92.87
13 93.63 88.84 88.89 88.69 88.45 91.03 87.99 87.58
16 92.02 82.48 79.54 79.37 79.60 84.59 77.48 77.47
19 87.11 94.61 90.78 90.76 92.49 99.64 95.87 95.93
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Figure C.4.: Further results of assessing model uncertainty in the RDR estimation under tem-
peratures of 0°C (a), 06°C (b), 12°C (c), 15°C (d), 23°C (e), 25°C (f), 33°C (g) and 38°C (h).

113



C. Further Results

Table C.3.: Further results of present state uncertainty assessment in the RDR estimation.

RA [%]
k, 0°C 06°C 12°C 15°C 23°C 25°C 33°C 38°C
1 89.99 8707 8658 8655 8676 8425 8563 8565
4 89.86 9422 9139 9107  90.06 9846 9026  90.24
7 9359  97.03 9454 9448 9300  99.88 9447 9428
10 89.48 9049 9461 9634 9792 9495 9659  97.34
13 8178 8056 8845  89.88 9295  89.51 9337 9421
16 7660 7780 7857 7951 8140 8348 8274  84.28
19 8845 8190 8955  90.66 9996 9538 9667 9681

—— RDR* ° RDRmedian - = —a—-A
7 T
100 E 100f
~ ~
= =

0 50 100 0 50 100
Traveled distance [km] — Traveled distance [km] —

(8) (h)

Figure C.5.: Further results of assessing present state uncertainty in the RDR estimation under
temperatures of 0°C (a), 06°C (b), 12°C (c), 15°C (d), 23°C (e), 25°C (f), 33°C (g) and 38°C (h).
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Table C.4.: Further results of future load uncertainty assessment in the RDR estimation.

RA [%]
ky 0°C 06°C 12°C 15°C 23°C 25°C 33°C 38°C
1 85.47 82.35 89.46 82.24 90.36 93.88 95.12 92.56
6 88.26 90.20 89.39 96.36 92.34 87.65 91.62 86.91
11 95.69 99.97 92.28 96.25 95.78 94.98 97.97 98.23
16 96.22 9491 93.30 91.71 96.22 91.13 97.82 95.14
21 84.97 87.85 86.86 97.29 98.91 99.48 99.04 96.61
26 82.44 86.21 81.97 93.96 97.73 96.50 96.13 91.03
31 74.80 81.42 94.00 94.32 94.80 92.41 90.02 93.06
36 94.09 81.75 86.13 96.94 99.13 83.67 97.92 94.51
—— RDR* e RDR pedian ] Q5&Q95 - ——a—-A

100

Traveled distance [km| —

50

(g)

100

100

50
Traveled distance [km| —

1

(h)

00

Figure C.6.: Further results of assessing future load uncertainty in the RDR estimation under
temperatures of 0°C (a), 06°C (b), 12°C (c), 15°C (d), 23°C (e), 25°C (f), 33°C (g) and 38°C (h).
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Figure C.7.: Difference between real and simulated power consumption (black line) and state
of use of auxiliaries (gray line) (a). Experimental results by neglecting (b) and by accounting
for (c) the influence of external loads on the RDR estimation.
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Figure C.8.: Speed (black line) and driving condition classification (gray line) (a) of an arbitrary
drive profile. Results of the SoC (b) and RDR (c) estimation of experiments performed in the
cycler by a temperature of 12°C with a residual power consumption of 4000 W activated after

2000 s.
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Figure C.9.: Speed (black line) and driving condition classification (gray line) (a) of an arbitrary
drive profile. Results of the SoC (b) and RDR (c) estimation of experiments performed in the
cycler by a temperature of 25°C with a residual power consumption of 4000 W activated after

2000 s.
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Figure C.10.: Speed (black line) and driving condition classification (gray line) (a) of an arbi-
trary drive profile. Results of the SoC (b) and RDR (c) estimation of experiments performed
in the cycler by a temperature of 38°C with a residual power consumption of 4000 W activated

after 2000 s.
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