
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 No. 571            June 2017 
 
 

Adaptive optimal control  
of the signorini’s problem 

 
A. Rademacher, K. Rosin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISSN: 2190-1767 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/84901842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ADAPTIVE OPTIMAL CONTROL OF THE SIGNORINI’S PROBLEM

A. RADEMACHER AND K. ROSIN

ABSTRACT. In this article, we present a-posteriori error estimations in context of optimal control of contact
problems; in particular of Signorini’s problem. Due to the contact side-condition, the solution operator of the
underlying variational inequality is not differentiable, yet we want to apply Newton’s method. Therefore, the
non-smooth problem is regularized by penalization and afterwards discretized by finite elements. We derive
optimality systems for the regularized formulation in the continuous as well as in the discrete case. This is done
explicitly for Signorini’s contact problem, which covers linear elasticity and linearized surface contact condi-
tions. The latter creates the need for treating trace-operations carefully, especially in contrast to obstacle contact
conditions, which exert in the domain. Based on the dual weighted residual method and these optimality systems,
we deduce error representations for the regularization, discretization and numerical errors. Those representations
are further developed into error estimators. The resulting error estimator for regularization error is defined only
in the contact area. Therefore its computational cost is especially low for Signorini’s contact problem. Finally,
we utilize the estimators in an adaptive refinement strategy balancing regularization and discretization errors.
Numerical results substantiate the theoretical findings. We present different examples concerning Signorini’s
problem in two and three dimensions.

1. INTRODUCTION

Investigations of industrial production processes are commonly based on partial differential equations
(PDEs). We mention exemplarily the incremental rolling of a surface in order to grade the surface texture.
In such a process, the goal is to achieve a particular structure, which is modeled via the deformation. We
realize this by introducing an optimal control problem. In this context we call the deformation state and the
control is given by a volume or Neumann force. Our quantity of interest is a tracking-type goal functional
depending on the difference between the actual and wanted states as well as a Tikhonov term for the control.
Additionally to the control force; the roll exerts on the workpiece, leading to surface contact conditions. In
general, we also have to consider time-dependent elasto-plastic material laws providing lasting deformations.
However in this work, we focus on a subproblem. We study only the static case consisting in semi-linear
variational inequalitys (VIs). For instance, we consider the combination of linear, elastic material laws
with the surface contact conditions; known as Signorini’s problem. Additionally, we formulate the goal
functional for the theoretical analysis more generally, since the complexity does not increase by doing so.
Thus we arrive at an optimal control problem governed by static contact problems. The analysis of such
problems is done for instance in [6, 37].

In order to gain an efficient algorithm for solving the optimal control problem, we want to apply Newton’s
method. However due to the non-differentiability of the solution operator associated with the VIs, the
reduced cost functional is not differentiable. This is the very same challenge, as introduced for the optimal
control of the obstacle problem, see [24]. To circumvent this difficulty, we regularize the problem via
penalization and examine the sequence of penalized problems. This common approach is performed for
instance in [2, 18, 21] and [30].

Obviously, the solution of a regularized problem differs in general from the solution of the original opti-
mal control problem. Hence, we want to study the introduced regularization error as well as a discretization
error, which comes into play, when we discretize the system with bilinear finite elements (FEs). The numer-
ical treatment of the non-linear system produces another error. The error in the cost functional, is split into
three parts corresponding to those errors.
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2 A. RADEMACHER AND K. ROSIN

Our goal is an efficient, adaptive algorithm balancing the regularization and discretization error, while de-
creasing the numerical error to a negligible level. For this purpose, we develop a-posteriori error estimators
based on the dual weighted residual (DWR) method. There are many contributions regarding similar esti-
mates. Recent overviews for a-posteriori error estimators are presented in [35]. Error estimators concerning
the obstacle problem itself, without optimal control, are treated for instance in [9, 32] with the DWR method.
Far less contributions are dedicated to Signorini type contact problems, e. g. [26]. For residual based error
estimations, we refer to e. g. [11, 13, 15, 19, 34] and in particular to [16], where residual type error estimates
for a penalized obstacle problem were derived.

In the literature, error estimates are also developed for optimization problems subject to PDEs. We refer
especially to [36] and the survey [27]. Following the pioneering work of [3], we derive DWR error estimates;
cf. also [1, 4] Optimization problems subject to VIs are considered in, e. g. [14]. A-priori estimates for
optimal control problems are covered for instance in [23] and residual-based a-posteriori estimates in [17].

A short insight into early studies is granted in [8]. Therein, we consider optimal control problems subject
to elasto-plastic contact problems and use two different kinds of regularization techniques. On the one hand
a local smoothing for elasto-plasticity and on the other hand the global penalty for the contact situation.
However, the regularization error estimators in [8] are based on the Richardson extrapolation. Another
quasi-linear problem to a different regularization parameter is solved for each estimation. This approach is
obviously very time-consuming.

A more efficient error estimator for the regularization error is developed in [22]; a paper dedicated to
optimal control problems subject to standard obstacle problems. Therein, the extrapolation is based on
Taylor expansion with respect to the regularization parameter. With only one additional Newton step, it
can be evaluated. Afterwards, the DWR method is applied to gain an error estimator for the discretization
and numerical errors. However, a difficulty arises, namely the dependency of the DWR-residual on the
regularization parameter. Even though that residual is of higher order for a fixed parameter, there is no
guarantee that it is negligible, when the penalty parameter approaches infinity.

Yet we follow the basic idea of utilizing Taylor expansion in this paper. First of all, we consider the more
difficult contact problems, for instance Signorini’s problem. While the obstacle problem uses the obstacle
itself in its constraints; in Signorini’s problem a so-called initial gap function is used, leading to a different
sign in the penalty term. Furthermore, the contact situation happens on the surface, which brings the trace
operator into play. Therefore, we need to re-investigate the problems carefully.

However the more important difference is that we switch the order of applying the DWR method and
the Taylor expansion. This leads to the major advantage that the residual depends no longer on neither the
penalty parameter nor the discretization. For tracking-type goal functionals it even vanishes completely.
Furthermore, the resulting regularization error estimator is only the dual pairing of a slack variable and the
adjoint state, which is evaluated only on the contact surface for constraints of Signorini type.

In the next section, we introduce Signorini’s problem and sketch the simplified version. Afterwards, the
optimal control problem governed by contact problems is formally defined. In the third section, its regular-
ization and discretization are discussed. Here, optimality systems for the original, the regularized, and the
discrete regularized problem are derived. Section 4 is addressed to the analysis of the error. The error is split
into three parts as mentioned above. We derive a-posteriori error estimators for each part and utilize them
in an adaptive algorithm. In Section 5, we apply the algorithm to different examples in two or three dimen-
sions. The numerical results confirm that the performed error splitting and the respective error estimation
are well-posed. Additionally, we see that the error balancing takes place even though a concrete formulation
of an assumption, namely a sign condition for the Lagrange multiplier, is not fulfilled. We close the paper
with a brief conclusion and outlook.
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2. PROBLEM FORMULATION

In this section we introduce the optimal control problem governed by VIs arising from contact problems.
We start by presenting Signorini’s problem and a brief comparison to other contact problems. Next we
incorporate them into an optimization problem.

2.1. Signorini’s problem. Signorini’s problems cover linear, elastic material laws restricted by surface
contact conditions. A major difference between the Signorini’s problem and the obstacle one is implied by
the contact area itself. In contrast to the obstacle problem, where the contact area is the whole domain Ω,
this area is here part of the boundary ΓC ⊂ ∂Ω. Hence, the trace operator tr becomes very important in this
context.

Let Ω be a Lipschitz domain, with a partition of the boundary ∂Ω into ΓC,ΓD and ΓN . We presume that
the contact boundary ΓC and the Dirichlet boundary ΓD have a strict positive distance, i. e. Γ̄C ∩ Γ̄D = /0.
Hence, the Neumann boundary ΓN is nonempty. The state u lives in the Cartesian product of the scalar
function space

V := HD(Ω) :=
(
HD(Ω)

)d :=
{

v ∈ H1(Ω) | tr(v) = 0 on ΓD
}d

.

We use the parametrization of the contact surface φ and of the rigid obstacle φ̃ . Either of them must be
smooth enough such that the respective normal is well posed. Together they give the normalized, initial gap
function

ψ(α) =
φ̃(α)−φ(α)√
1+(∇α φ(α))2

,

which is a linear approximation of the gap between the obstacle and the domain at a given parameter point
α ∈Rd−1 on the boundary ΓC in the deformed configuration, cf. [25, Ch. 2.3]. This gap function shall be in
the factorial boundary space H1/2(ΓC), see [25, Ch. 5.3].

The operator τ is the trace operator in normal direction restricted to the contact boundary, i. e. τ :=
tr · n |ΓC . We know that τ is a linear, continuous operator V → L2(ΓC). Since every displacement u is
restricted by the obstacle, we get the feasible set of states K by means of the approximated gap ψ

K = {v ∈V : τ(v)≤ ψ a. e. on ΓC}.
The state u must fulfill an adequate state of equilibrium, which is in the context of Signorini’s problem

given by a linear elastic material law. The necessary notations are introduced in the following. The dual
pairing between V and its dual space V ′ is denoted by 〈·, ·〉 and the standard scalar product on V by (·, ·).
Moreover, the bilinear form a : V ×V is given by the following second-order elliptic operator A : V →V ′

〈Au, v〉= a(u, v) =
∫

Ω

σ(u) : ε(v)dx (1)

where ε denotes the linearized strain tensor,

ε(u) :=
1
2

(
∇u+∇

>u
)

and σ the second order stress tensor. The latter is given by applying the fourth order tensor C, which is
known as the elastic tensor, onto the linearized strain tensor, i. e. σ = Cε . For d = 3, it holds

Cε := λm trace(ε)I+2µmε

with Lamé constants λm >− 2
3 µm and µm > 0. The two dimensional case can be treated in different manners.

For instance one could use plane stress, plane strain or an academical modeling. In the last approach, neither
stress nor strain are related to realistic physical behavior, but the strain and stress tensors are simply the two
dimensional analogs of the three dimensional case. More details to the first two approaches can be found for
instance in [12, Ch. VI, §5]. We only define Signorini’s problem in the weak form and we use the notation
V 0 = L2(Ω)d , which will come in handy later on.
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Definition 2.1 (Signorini’s problem). Let Ω be a given Lipschitz domain with the boundary parts ΓC, ΓD
and ΓN . For a known volume force or control q ∈V 0 find a displacement or state u ∈ K such that

a(u, v−u)≥ (q, v−u) ∀v ∈ K. (2)

We introduce the function G(u) := ψ − τ(u) to unify the notation and for comparison to other contact
problems. In respect to our convex set K and the operator τ , we define r : R+×V → V ′, such that for any
arbitrary v ∈V

r(γ;u)(v) = −
∫

ΓC

[
max

(
γ(−G(u)),0

)]3 τ(v) do. (3)

The penalty term r is derived from a bi-quadratic penalization of the respective energy functional associated
with (2) and its Gâteaux-derivatives read

∂ur(γ;u)(ϕ,v) =
∫

ΓC

3γ
[
max

(
γ(τ(u)−ψ),0

)]2 τ(ϕ)τ(v)do (4)

and

∂ 2
uur(γ;u)(χ,ϕ,v) =

∫
ΓC

6γ2 [max
(
γ(τ(u)−ψ),0

)]
τ(χ)τ(ϕ)τ(v)do.

We demand that the contact boundary ΓC is C 1,1, i. e. the normal, which is defined by derivatives evaluated on
the boundary part ΓC, is Lipschitz continuous, too. For later use, we demand for a sequence of deformations
{uγ} ⊂V the following result.

Lemma 2.1. There shall be a subdomain Ω′ ⊂Ω, such that

Ω
′ ∈ C 1,1, dist(ΓD,Ω

′)> 0 and ∂Ω
′∩∂Ω⊇ ΓC.

Furthermore, for each deformation uγ there is a corresponding function max
(
τ(uγ)−ψ,0

)
. We demand of

that very surface function to be in H1/2
00 (ΓC) - the special subspace given by Lions and Magenes, cf. [25,

Chapter 5.3]

H1/2
00 (ΓC) :=

{
v ∈ H1/2(ΓC) | v vanishes rapidly enough at ∂ΓC

}
.

Then a function U0,γ ∈V and a constant C exist, such that

τ(U0,γ) = max
(
τ(uγ)−ψ,0

)
and

‖U0,γ‖V ≤C‖max
(
τ(uγ)−ψ,0

)
‖ΓC .

If max
(
τ(uγ)−ψ,0

)
→ 0 in H1,2(ΓC) for γ → ∞, then U0,γ → 0 in Ω.

Proof. Additionally to the normal trace τ = tr ·n, there exists a surjective linear continuous mapping trT :
V → H1/2

T (∂Ω′) with the tangential space

H1/2
T (∂Ω

′) =
{

v ∈ H1/2(∂Ω
′)d | v ·n = 0

}
.

For any g ∈ H1/2(∂Ω′) and h ∈ H1/2
T (∂Ω′) there exists a v ∈H (Ω′) and a constant C such that

τ(v) = g and trT (v) = h with ‖v‖1,Ω′ ≤C
(
‖g‖1/2,∂Ω′ +‖h‖1/2,∂Ω′

)
. (5)

This is because Ω′ is smooth enough, see [25, Theorem 5.5]. We choose h = 0 and g = max
(
τ(uγ)−ψ,0

)
.

Since we presumed that g ∈ H1/2
00 (ΓC) and because every function in H1/2

00 (ΓC) can be continued trivially
onto H1/2(∂Ω′), we get the existence of a function v with

‖v‖1,Ω′ ≤C‖max
(
τ(uγ)−ψ,0

)
‖ΓC .

Each function in HD(Ω
′) can be continued trivially onto V . We conclude the proof by calling this continua-

tion U0,γ and using the relation ‖v‖1,Ω′ = ‖U0,γ‖1,Ω. �
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For further studies of Signorini’s contact problem we refer to [25].

2.2. Comparison between contact problems. Here, we show the differences in the nature of the inves-
tigated contact problems with the aid of Tables 1 and 2. Next to the common obstacle problem and the
Signorini’s problem, there is the simplified Signorini’s problem, in which Poisson’s equation is subject to a
boundary contact condition.

In the following tables we summarize the necessary function spaces, the functions that describe the obsta-
cle or the approximated gap ψ , and the areas, where the contact is expected Σ. We include the bilinear forms
a(·, ·) for the respective partial differential inequality as well. By adding the index D to the dual spaces,

TABLE 1. Function spaces

V V 0 V ′ W W ′

Obstacle H1
D(Ω) L2(Ω) H−1

D (Ω) V V ′

Simplified Signorini H1
D(Ω) L2(Ω) H−1

D (Ω) H1/2(ΓC) H−1/2(ΓC)

Signorini H1
D(Ω)d L2(Ω)d (H−1

D (Ω))d H1/2(ΓC) H−1/2(ΓC)

we want to emphasize the difference from our dual spaces to H−1(Ω). Only in case of the obstacle problem
homogeneous Dirichlet boundary data can be postulated on the whole boundary, i. e. ∂Ω = ΓD. Then H1

D(Ω)

equals the common space H1
0 (Ω) and its dual space is given by the standard notation H−1(Ω) =H−1

D (Ω). We
also bear in mind that L2(Ω)⊃H1

D(Ω)⊃H1
0 (Ω) and L2(Ω)⊂H−1

D (Ω)⊂H−1(Ω). The space W corresponds
to the respective distance function G(·).

TABLE 2. Functions, bilinear forms and contact areas Σ

ψ τ G(u) a(·, ·) Σ ds

Obstacle φ̃ Id(·) u−ψ (∇·, ∇·) Ω dx
Simplified Signorini φ̃ tr |ΓC (·) τ(u)−ψ (∇·, ∇·) ΓC do
Signorini φ̃−φ√

1+∆φ tr |ΓC (·)n ψ− τ(u) (Cε(·), ε(·)) ΓC do

Note that for any W ′ there is a subset W ′+ defined as

W ′+ :=
{

λ ∈W ′ | 〈λ , w〉 ≥ 0 ∀ w ∈W,w≥ 0
}
. (6)

Since τ : V →W and λ ∈W ′, we can declare an element τ∗λ ∈V ′ by

〈τ∗λ , ·〉V ′,V = 〈λ , τ(·)〉W ′,W . (7)

Using the notations given in Tab. 1 and Tab. 2, we arrive at the following feasible sets and penalty terms:

For the classical obstacle conditions

K := {v ∈V : v≥ ψ a. e. in Ω},

r(γ,u)(·) :=−
∫

Ω

(max{γ(ψ− τ(u)),0})3τ(·)dx,

for simplified Signorini’s conditions

K := {v ∈V : τ(v)≥ ψ a. e. on ΓC},

r(γ,u)(·) :=−
∫

ΓC

(max{γ(ψ− τ(u)),0})3τ(·)do,
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and for Signorini’s conditions

K := {v ∈V : τ(v)≤ ψ a. e. on ΓC}

r(γ,u)(·) :=
∫

ΓC

(max{γ(τ(u)−ψ),0})3τ(·)do.

We can use a common description of the convex sets of feasible states using the function G(u) and the
contact area Σ

K = {v ∈V : G(v)≥ 0 a. e. on Σ} .
The penalty term reads in general

r(γ,u)(·) =
∫

Σ

max{−γ G(u),0}3τ(·)ds.

2.3. Optimization problem. From this point on, the contact problems appear as side conditions in an
optimal control setting. This means that we consider the following optimal control problem

min
q∈V 0

J(q,u)

s.t. a(u,v−u)≥ (q, v−u) ∀v ∈ K

u ∈ K

 (P)

where Ω⊂ Rd for d = 2,3 is a Lipschitz domain and K is the convex set defined by the contact conditions.
The bilinear form a is elliptic, i.e.,

a(u,u)≥ β ‖u‖2
V ∀u ∈V (8)

with a constant β > 0. Hence the corresponding operator A, where 〈Au, v〉= a(u, v), is coercive. The goal
functional J is given by

J(q,u) = j(u)+g(q), (9)

where g : V 0→ R and j : V → R are supposed to be three times continuously differentiable. Moreover, j is
assumed to be bounded from below. Whereas, we demand of g that there exists a constant α > 0 such that

g′′(u)(h,h)≥ α ‖h‖2
V 0 ∀u,h ∈V 0. (10)

Hence, g is convex. It is well known that the VI in (P), i.e.

u ∈ K, a(u,v−u)≥ (q, v−u) ∀v ∈ K, (11)

can equivalently be reformulated by a complementarity system. Consequently, the optimal control problem
(P) is equal to

min
q∈V 0

J(q,u)

s.t. Au = q+ τ∗λ
G(u)≥ 0, λ ∈W ′+, 〈λ , G(u)〉W ′,W = 0

 (P′)

The corresponding Lagrange multiplier is λ ∈W ′+. It is well known that the side condition holds a unique
solution u for any given load q, see for instance [25, Ch. 6.3]. Furthermore, it is easily seen that the
corresponding solution operator S : V ′ 3 q 7→ u ∈ V is globally Lipschitz continuous with the constant L =
1/β , where β is the constant in (8). The existence of at least one globally optimal solution can be shown
by using standard arguments, but the uniqueness cannot be expected, because the problem (P) is not convex
in general due to the non-linearity of S. Furthermore, S is not Gâteaux-differentiable, since the directional
derivative at q in direction h is in turn a solution of a VI of first kind, as shown in [24] and [7] for the
constraints defined by the obstacle problem or Signorini’s problem respectively.
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3. REGULARIZATION AND DISCRETIZATION

Our goal is a fast and robust algorithm for solving the optimization problem (P′). Since the solution
operator S is not Gâteaux-differentiable as mentioned above, we regularize the very problem and apply the
finite element method (FEM).

3.1. Regularization: Known and preliminary results. We formulate the regularized problem

min
qγ∈V 0

J(qγ ,uγ)

s.t. Auγ + r(γ;uγ) = qγ .

 (Pγ )

Applying the same arguments as for the variational inequality (11), we get the existence and uniqueness of
a solution to the semi-linear PDE in (Pγ ), i.e.

Auγ + r(γ;uγ) = qγ (12)

for every γ > 0. The associated solution operator is denoted by Sγ : V ′ → V and is Lipschitz continuous
with the same Lipschitz constant as S, hence independent of γ . The solution for (Pγ ) exists as an immediate
consequence of the same arguments that were applied for the unregularized problem.

Owing to the monotonicity of r(γ; .), we can apply Stampacchia’s classical technique, cf. [20], to prove
the following

Lemma 3.1. For every qγ ∈V 0 the unique solution uγ of (12) is essentially bounded.

Following standard techniques, we deduct the Fréchet-differentiability of r(γ; ·) from L∞(Σ) to V ′ and
we derive first-order necessary optimality conditions for the regularized problems, see, e.g., [33, Ch. 4]. In
this way we obtain the following result:

Proposition 3.2. Let qγ be a local optimum of (Pγ ) with associated state uγ = Sγ(qγ). Then there exist
λγ ,µγ ∈ L2(Σ)⊂W ′ and pγ ,θγ ∈V such that

Auγ = qγ + τ∗(λγ) (13a)

τ∗(λγ)+ r(γ;uγ) = 0 (13b)

A∗pγ = ∇ j(uγ)− τ∗(µγ), (13c)

pγ +∇g(qγ) = 0, (13d)
pγ −θγ = 0, (13e)

τ∗(µγ)−∂ur(γ;uγ)(θγ) = 0. (13f)

Note that pγ and thus θγ and µγ are uniquely defined by (13d).

The variable pγ is known as the adjoint state. Note further that µγ and θγ can be eliminated directly
from the system, but we introduced them for reasons of comparison with later optimality systems. We now
address the convergence for γ→∞. Concerning the state equation, the following approximation result holds
true:

Lemma 3.3. Let q ∈V 0 be given and denote by u,uγ ∈V the solutions to (11) and (12), respectively. Then
uγ → u strongly in V as γ → ∞.

The following first-order necessary optimality conditions for (P) can be concluded from the above results.
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Theorem 3.4. We assume that the requirements of Lemma 2.1 for all uγ , ψ and Ω hold.

(1) For every γ > 0 there is a globally optimal solution of (Pγ ), denoted by qγ . If γ → ∞, then every
sequence {qγ} of global minimizers of (Pγ ) admits a weak accumulation point q̄ ∈V 0. Every weak
accumulation point is also a strong accumulation point, i. e., qγ → q̄ strongly in V 0, and each of
these accumulation points is a global minimizer of (P).

(2) If qγ → q̄ in V 0, then the associated sequence of solutions to (13) fulfills

uγ → ū in V, (14a)

λγ → λ̄ in W ′, (14b)

τ∗λγ → τ∗λ̄ in V ′, (14c)
pγ ⇀ p̄ in V, (14d)

θγ ⇀ θ̄ in V, (14e)

µγ ⇀ µ̄ in W ′, (14f)

τ∗µγ ⇀ τ∗µ̄ in V ′, (14g)

and the limit satisfies the following optimality system:

Aū = q̄+ τ∗λ̄ , (15a)

G(ū)≥ 0 a.e. on ΓC, λ̄ ≥ 0 in W ′, 〈λ̄ , G(ū)〉W ′,W = 0, (15b)

A∗ p̄ = ∇ j(ū)− τ∗(µ̄), (15c)

p̄+∇g(q̄) = 0, (15d)

p̄− θ̄ = 0, (15e)

〈λ̄ , τ(θ̄)〉W ′,W = 0, 〈µ̄, G(ū)〉W ′,W = 0, 〈µ̄, τ(θ̄)〉W ′,W ≥ 0, (15f)

We present only the proof in case of Signorini’s contact condition. It was already proven for the obstacle
case in [22, Thm. 3.4.]. The case of simplified Signorini’s contact condition is omitted, since it is a simple
combination of both of them.

The proof follows by standard arguments known from other types of regularization, cf. e.g. [22, 30].
However, we have to consider the different sign in the penalty term and the normal trace τ .

Proof. Using standard arguments, we can prove most of the parts. For the convenience of the reader, we add
the complete proof in the appendix. However, we present the details of the trickiest part, namely the very
first complementarity relation in (15f)

〈λ̄ , τ(θ̄)〉W ′,W = 0.

We cannot adopt the techniques presented for instance in [22] straight forwardly, since V 6=W in the contact
problem at hand. We tackle this problem by analyzing auxiliary problems.

For this purpose, we construct an adequate family of test functions mγ in V = H1
D(Ω)d . Let mγ ∈V be the

solution of the mixed boundary problem

Amγ = qγ in Ω,

mγ = 0 on ΓD,

σ(mγ) ·n = 0 on ΓN ,

mγ ·n = max{τ(uγ)−ψ,0} on ΓC,

mγ · ti = 0 on ΓC.


(Paux)
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Here, n denotes the normal vector and t1 the corresponding tangential vector for Ω⊂R2. For Ω⊂R3, there
are two orthogonal, tangential vectors t1, t2. We recall the relation for the stress σ =Cε , cf. 1. The boundary
conditions on ΓC are equivalent to inhomogeneous Dirichlet data

τ(U0,γ) = max{τ(uγ)−ψ,0} on ΓC,

for a function U0,γ ∈V due to Lemma 2.1. Note, by construction U0,γ ·ti is zero. Problem (Paux) is a standard,
static, linear elastic problem with mixed boundary conditions. It is well known that this problem has a unique
solution, see, e. g. [31, Ch. 25.3]. Therefore, the description of mγ is well posed. Furthermore, the limit case
for γ → ∞ is well posed, too, because

Am̄ = q̄ in Ω

m̄ = 0 on ΓD∪ΓC

σn(m̄) = 0 on ΓN ,

 (P̄aux)

has also a unique solution m̄ in V . Additionally, it holds mγ → m̄ in V ; which is proven next. Solving the
substitute problem for vγ = mγ −U0,γ

Avγ = qγ −AU0,γ in Ω,

vγ = 0 on ΓD∪ΓC,

σn(vγ) = 0 on ΓN

 (P′aux)

instead of (Paux), we achieve

β‖vγ − m̄‖2
V ≤ a(vγ − m̄,vγ − m̄) =

(
qγ − q̄, vγ − m̄

)
+a(−U0,γ ,vγ − m̄)

≤ c‖qγ − q̄‖V 0 ‖vγ − m̄‖V + c‖U0,γ‖V ‖vγ − m̄‖V .

We use again Lemma 2.1 and conclude

‖mγ − m̄‖V ≤
c
β
‖qγ − q̄‖+

(
c
β
+1
)
‖U0,γ‖

≤ c
β
‖qγ − q̄‖+

(
c
β
+1
)

C‖max(τ(uγ)−ψ,0)‖ΓC

→ 0 as γ → ∞ .

One can show that ∫
ΓC

[
max

(
γ(τ(uγ)−ψ),0

)
τ(pγ)

]2 do≤ 1
3γ
(
∇ j(uγ), pγ

)
≤ 1

3γβ
‖∇ j(uγ)‖2

V ′ → 0 as γ → ∞ .

(16)

The details are presented in the appendix. Finally, combining inequality (16) with

‖max
(
γ(τ(uγ)−ψ),0

)
‖4

L4(ΓC)

=−
∫

ΓC

−
(

max
(
γ(τ(uγ)−ψ),0

)3 · γ max
(
τ(uγ)−ψ,0

))
do

=−γ
(
λγ , τ(mγ)

)
ΓC
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leads to

|
(
λγ , τ(pγ)

)
|2 =

∣∣∣∫
ΓC

−
[
max

(
γ(τ(uγ)−ψ),0

)]3 τ(pγ) do
∣∣∣2

≤ ‖max
(
γ(τ(uγ)−ψ),0

)
‖4

L4(ΓC)
‖max

(
γ(τ(uγ)−ψ),0

)
τ(pγ)‖2

L2(ΓC)

≤ γ
∣∣(λγ , τ(mγ)

)∣∣ 1
3γ
∣∣(∇ j(uγ), pγ

)∣∣
=

1
3

∣∣(∇ j(uγ), pγ
)∣∣ ∣∣(λγ , τ(mγ)

)∣∣ → C
∣∣(λ̄ , τ(m̄)

)∣∣= 0,

since τ(m̄) = 0. Due to (15e), the first complementarity condition in (15f) is shown.
The other complementarity conditions follow easily. �

After regularizing the optimal control problem (Pγ ) and establishing the optimality systems (13) and (15),
we deduce a discrete analog next.

3.2. Discretization. The discretization is performed by means of the FEM with d-linear Ansatz-functions.
We presume that the domain Ω is polygonal. There is a conform triangulation Th = {T } of quadrilaterals
such that Ω̄ = ∪T . Hence, we use finite element spaces Vh ⊂V and Wh ⊂W , which are boundary conform.
In case of the optimal control problem subject to Signorini’s problem, those functions spaces are defined as

Vh :=
{

vh ∈V | ∀ T ∈ Th : vh|T ∈Q1(T ;Rd)
}
⊂C(Ω̄,ΓD)

d

and

Wh :=
{

wh ∈W | ∀ E ∈ Eh : wh|E ∈P1(E ;R)
}
⊂C(Ω̄,ΓD),

where Eh = {T ∩ΓC} and P1, Q1 are spaces of linear or d-linear functions. The finite element dimension is
denoted by N. Furthermore, we require the mesh to have patch structure and restrict the number of hanging
nodes to one per hyperplane.

In view of this discretization we investigate the discretized optimal control problem, i. e. find uγ,h ∈ Vh
and qγ,h ∈Vh, which solve

min J(qγ,h,uγ,h)

s.t. Auγ,h + r(γ;uγ,h) = qγ,h.
(Pγ,h)

Applying the very same arguments as in the continuous case, we get the following discrete optimality con-
ditions.

Theorem 3.5. Let qγ,h be a local unique optimum of the discrete regularized problem (Pγ,h) with the asso-
ciated state uγ,h = Sγ,h(qγ,h). Then there exist λγ,h,µγ,h ∈Wh and pγ,h,θγ,h ∈ Vh such that for any ϕ ∈ Vh

a
(
uγ,h, ϕh

)
=
(
qγ,h, ϕh

)
+
(
λγ,h, τ(ϕh)

)
ΓC

, (17a)(
λγ,h, τ(ϕh)

)
ΓC

+ r(γ;uγ,h)(ϕh) = 0, (17b)

a
(
ϕh, pγ,h

)
= ∇ j(uγ,h)(ϕ)−

(
µγ,h, τ(ϕh)

)
ΓC

, (17c)(
pγ,h, ϕh

)
+∇g(qγ,h)(ϕh) = 0, (17d)(

pγ,h−θγ,h, ϕh
)
= 0, (17e)(

µγ,h, τ(ϕh)
)

ΓC
−∂ur(γ;uγ,h)(θγ,h,ϕh) = 0. (17f)

Note that pγ,h and thus θγ,h and µγ,h are uniquely defined by (17d).
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The gradient ∇g : V 0 → V 0 is a strongly monotone and continuous operator due to (10). Hence, (13d)

pγ +∇g(qγ) = 0

can be resolved for qγ ∈V 0, i.e., there is a mapping Qc : V 0→V 0 such that

pγ +∇g(qγ) = 0 ⇐⇒ qγ = Qc(pγ).

In combination with the L2-projection onto Vh, we get a mapping Q : Vh→Vh such that the relation(
pγ,h, ϕh

)
+∇g(qγ,h)(ϕh) = 0 ∀ϕh ∈Vh

is equivalent to (
qγ,h, ϕh

)
=
(
Q(pγh), ϕh

)
∀ϕh ∈Vh.

Therefore, the discrete system (17) can be reduced to a discrete, nonlinear system with only two unknowns

Auγ,h = Q(pγ,h)− r(γ;uγ,h), (18a)

A∗pγ,h = ∇ j(uγ,h)−∂ur(γ;uγ,h)(pγ,h). (18b)

4. AN A-POSTERIORI ESTIMATION OF THE TOTAL ERROR

In this section, we discuss the errors after the discretization of the regularized problem.

4.1. Error representation. Based on the DWR-method, we analyze the error between a local solution of
(P) and the approximated solution of (Pγ,h) w.r.t. the objective, i. e. J(q̄, ū)− J(q̃γ,h, ũγ,h). We begin by
defining the following MPEC-Lagrangian:

L : V 0×V ×V ′×V ×W ′×V → R;

L (q,u,λ , p,µ,θ) := J(q,u)−〈Au−q−λ , p〉+ 〈µ, ψ− τ(u)〉W ′,W −〈λ , θ〉.
(19)

To ease the notation we do not distinguish between λ in W ′ and τ∗λ ∈V ′ anymore, i. e. for v ∈V we use the
notation 〈λ , v〉 even so we actually perform 〈λ , τ(v)〉W ′,W . In the following, we abbreviate the collection of
variables ξ := (q,u,λ , p,µ,θ) and their approximations ξ̃γ,h := (q̃γ,h, ũγ,h, λ̃γ,h, p̃γ,h, µ̃γ,h, θ̃γ,h).

Definition 4.1. The dual residual is given by

ρ̃∗(·) := ρ∗(q̃γ,h, ũγ,h, p̃γ,h)(·) := ∇ j(ũγ,h)(·)−a(·, p̃γ,h)−∂ur(γ; ũγ,h)(p̃γ,h, ·),

the control residual by

ρ̃q(·) := ρq(q̃γ,h, p̃γ,h)(·) := ∇g(q̃γ,h)(·)− (p̃γ,h, ·),

and the primal residual by

ρ̃(·) := ρ(q̃γ,h, ũγ,h)(·) :=−a(ũγ,h, ·)+(q̃γ,h, ·)− r(γ; ũγ,h)(·).

The approximated solution ξ̃γ,h is determined by solving (18) using an inexact method. Hence, as an
L2-projection q̃γ,h equals Q(p̃γ,h) in Vh but not in V . This implies that we cannot ignore the control residual
and must not substitute q̃γ,h in the primal residual. Using all three residuals, we get the following theorem
concerning the error identity.
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Theorem 4.1. Let (q̄, ū) be the solution of problem (P) and (q̃γ,h, ũγ,h) be an approximation of the solution
of the regularized and discretized solution (Pγ,h). Then holds the error identity.

J(q̄, ū)− J(q̃γ,h,ũγ,h)

=

〈
1
2
(µ̄ + µ̃γ,h),τ(ū)− τ(ũγ,h)

〉
+

〈
λ̄ − λ̃γ,h,

1
2
(θ̄ + θ̃γ,h)

〉
+

1
2

[
ρ̃(p̄− p̃γ,h)+ ρ̃q(q̄− q̃γ,h)+ ρ̃∗(ū− ũγ,h)

]
+ ρ̃(p̃γ,h)+R

(3)
reg

(20)

with a higher order remainder term

R
(3)
reg :=

1
2

∫ 1

0
J′′′(ξ̃γ,h + t(ξ̄ − ξ̃γ,h))(ξ̄ − ξ̃γ,h)

3 t(t−1)dt.

Proof. Due to (15a) and (15f), we have J(q̄, ū) =L (ξ̄ ). We apply the trapezoidal rule such that (17a) yields

J(q̄, ū)−J(q̃γ,h, ũγ,h)

= L
(
ξ̄
)
−L

(
ξ̃γ,h
)
+
(
µ̃γ,h, ψ− τ(ũγ,h)

)
−
(

λ̃γ,h, θ̃γ,h

)
−
(

Aũγ,h− q̃γ,h− λ̃γ,h, p̃γ,h

)
=

1
2

L ′(ξ̄ )(ξ̄ − ξ̃γ,h)+
1
2

L ′(ξ̃γ,h)(ξ̄ − ξ̃γ,h)+R ′reg

+
(
µ̃γ,h, ψ− τ(ũγ,h)

)
−
(

λ̃γ,h, θ̃γ,h

)
−
(

Aũγ,h− q̃γ,h− λ̃γ,h, p̃γ,h

)
with

R ′reg :=
1
2

∫ 1

0
L ′′′(ξ̃γ,h + t(ξ̄ − ξ̃γ,h))(ξ̄ − ξ̃γ,h)

3 t(t−1)dt

=
1
2

∫ 1

0

(
j′′′(ũγ,h + t(ū− ũγ,h))(ū− ũγ,h)

3

+g′′′(q̃γ,h + t(q̄− q̃γ,h))(q̄− q̃γ,h)
3
)

t(t−1)dt

=
1
2

∫ 1

0
J′′′
(

ξ̃γ,h + t(ξ̄ − ξ̃γ,h)
)(

ξ̄ − ξ̃γ,h

)3
t(t−1)dt

= R
(3)
reg .

In view of (19), (13), and (15), we arrive at

J(q̄, ū)− J(q̃γ,h, ũγ,h)

=

〈
1
2
(µ̄ + µ̃γ,h),τ(ū)− τ(ũγ,h)

〉
+

〈
λ̄ − λ̃γ,h,

1
2
(θ̄ + θ̃γ,h)

〉
+

1
2

[
−
(

Aũγ,h− q̃γ,h− λ̃γ,h, p̄− p̃γ,h

)
+
(
∇g(q̃γ,h)+ p̃γ,h, q̄− q̃γ,h

)
+
(
∇ j(ũγ,h)−A∗ p̃γ,h− µ̃γ,h, ū− ũγ,h

)]
−
(

Aũγ,h− q̃γ,h− λ̃γ,h, p̃γ,h

)
+

1
2

(
λ̄ − λ̃γ,h, p̃γ,h− θ̃γ,h

)
+R

(3)
reg ,

(21)

after using the complementarity conditions in (15f) to switch the sign of
(
λ̄ , θ̄

)
and (µ̄, ψ− τ(ū)). Note

that pγ,h equals θγ,h almost everywhere, hence we drop the term with p̃γ,h− θ̃γ,h. Using these information
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(21) can be rewritten as

J(q̄, ū)− J(q̃γ,h,ũγ,h)

=

〈
1
2
(µ̄ + µ̃γ,h),τ(ū)− τ(ũγ,h)

〉
+

〈
λ̄ − λ̃γ,h,

1
2
(θ̄ + θ̃γ,h)

〉
+

1
2

[
ρ̃(p̄− p̃γ,h)+ ρ̃q(q̄− q̃γ,h)+ ρ̃∗(ū− ũγ,h)

]
+ ρ̃(p̃γ,h)+R

(3)
reg ,

(22)

which concludes the proof. �

The goal functional J is three times continuously Fréchet-differentiable due to the assumptions on j and
g, cf. (9) and (10). Therefore, the Lagrangian L is three times continuously Fréchet-differentiable, too. If
we assume further that the trilinear forms j′′′(u) and g′′′(q) are uniformly bounded by constants c j and cg,
then

|R(3)
reg | ≤

1
12

(
c j ‖ũγ,h− ū‖3

H1(Ω)
+ cg ‖q̃γ,h− q̄‖3

L2(Ω)

)
such that R

(3)
reg can be neglected in a neighborhood of (ū, q̄). Trivially, it holds R

(3)
reg = 0, if J is of tracking

type, i.e., if j and g are squared norms.
However, there is no guarantee that q̃γ,h→ q̄ and ũγ,h→ ū in general. After all, only the side condition

(11) is a convex problem, but not the optimal control problem (P) as a whole, and thus multiple local minima
can occur, cf. Theorem 3.4.

4.2. Towards estimation: Differentiation with respect to the regularization parameter. In the end, we
want to evaluate the error ξ− ξ̃γ,h. However, we typically do not know the exact solution and need some kind
of approximation. We start by performing Taylor expansion with respect to the regularization parameter. 1

Here, we differentiate the system (17) with respect to the regularization parameter γ and exploit the result in
the next section.

Since g′′ is coercive, cf. (10), we get that g′′(qγ) : V 0×V 0 → R is a homeomorphism. Applying the
implicit function theorem yields that the mapping Q is continuously Fréchet-differentiable and

Q′(pγ,h)vh =−g′′(Q(pγ,h))
−1vh ∀vh ∈V 0

h . (23)

With a major assumption, similar to the assumption for instance in [22], we see that the differentiation is
well posed.

Assumption 4.1.1. We assume that uγ,h and pγ,h are such that for every vh in Vh∫
Ω

j′′(uγ,h)(vh,vh)dx−
∫

Σ

6γ2 max(γ(−G(uγ,h)),0)τ(pγ,h)τ(vh)τ(vh)ds≥ 0.

This assumption holds true for instance, when

(1) The first part j of the objective, acting on the state uγ,h, is supposed to be convex in Vh, i. e. for every
vh in Vh it holds j′′(uγ,h)(vh,vh)≥ 0 a.e. in Ω.

(2) We assume that uγ,h and pγ,h are such that

max(γ(−G(uγ,h)),0)τ(pγ,h)≤ 0 a.e. on Σ.

1If the expansion is well posed, this leads to a general approximation of a function f depending on 1/γ

f (0) = f (1/γ)−1/γ f ′ (1/γ)+o
(
1/γ2) and for g(x) = f (1/x) with g′(x) =− f ′(1/x)/x2

g(∞) = g(γ)+ γg′ (γ)+o
(
1/γ2) .
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Obviously, tracking type goal functionals fulfill the condition for j. If we choose such a functional

J(q,u) :=
1
2
‖u−uD‖2

V 0 +
α
2
‖q−qD‖2

V 0 ,

the relation between the control variable q and the adjoint state p also simplifies and it holds

q := Q(p) :=− 1
α

p+qD.

Taking this into account, we arrive at the condition for each vh in Vh

6γ3
∫

Σ

max(−G(uγ,h)),0)ατ(qD−qγ,h)τ(vh)
2ds≤ ‖vh‖2

V 0 . (24)

We could for example assume the following for Signorini’s contact condition. Where uγ,h is not feasible
(on ΓC), we require that qγ,h ·n≤ qD ·n with the outer normal n; i. e. pγ,h ·n≤ 0. The left hand side of (24)
is negative and hence Assumption 4.1.1 is fulfilled. However, numerical examinations show that we cannot
expect such behavior in general.

Theorem 4.2. Under Assumption 4.1.1 the system

Au̇γ,h−Q′(pγ,h)ṗγ,h +∂ur(γ;uγ,h)u̇γ,h = z1

A∗ ṗγ,h− j′′(uγ,h)u̇γ,h +∂ 2
u,ur(γ;uγ,h)(pγ,h, u̇γ,h)+∂ur(γ;uγ,h)ṗγ,h = z2

(25)

has a unique solution (u̇γ,h, ṗγ,h) for any (z1,z2) in V 0
h ×V 0

h .

The proof requires the following theorem, which addresses saddle point problems, cf. [5, Theorem 3.4].

Theorem 4.3. The block matrix

A =

(
A B
B −C

)
is given. Assume that H, the symmetric part of A, is positive semi-definite, B has full rank, and C is symmetric
positive semi-definite (possibly zero). Then

ker(H)∩ker(B) = {0} implies A invertible. (26)

With this Theorem we can proof the previous Theorem 4.2.

Proof of Theorem 4.2. Let Vh be equipped with the basis {ϕ1, . . . ,ϕN}. Using this discretization and defining
the respective vectors ~du, ~dp and~z1,2 in RN , and matrices in RN×N with the components

(AM)i, j := a(ϕi,ϕ j), (RM,1)i, j :=
(
∂ur(γ;uγ,h)(ϕi), ϕ j

)
,

(JM)i, j :=
(

j′′(uγ,h)ϕi, ϕ j
)
, (RM,2)i, j :=

(
∂ 2

u r(γ;uγ,h)(pγ,h,ϕi), ϕ j
)
,

(QM)i, j :=
(
Q′(pγ,h)ϕi, ϕ j

)
,

leads to the linear system (
JM−RM,2 −AM−RM,1
−AM−RM,1 QM

)(
~du
~dp

)
=

(
−~z2
−~z1

)
. (27)

When the saddle point problem (27) has a unique solution (~du, ~dp) for any (~z2,~z1) in RN+N , the theorem
is proven. Under the given Assumption 4.1.1 and (4), it obviously yields that JM−RM,2 is symmetric and
positive semi-definite. Whereas, QM is negative semi-definite, because of testing (23) with Q′(pγ,h)vh holds(

g′′(Q(pγ,h))Q′(pγ,h), Q′(pγ,h)vh
)

V 0
h
=−

(
Q′(pγ,h)vh, vh

)
V 0

h

for any vh 6= 0. Due to (10), this is equivalent to

−
(
Q′(pγ,h)vh, vh

)
V 0

h
≥ α‖Q′(pγ,h)vh‖V 0

h
≥ 0.



ADAPTIVE OPTIMAL CONTROL OF THE SIGNORINI’S PROBLEM 15

At last, we need to show that −AM−RM,1 has full rank and that

ker(JM−RM,2)∩ker(−AM−RM,1) = {0}.
We know that for any ϕi in Vh

a(ϕi,ϕi)+∂ur(γ;uγ)(ϕi,ϕi)

= a(ϕi,ϕi)+3γ
∫

Σ

max{γ(ψ− τ(uγ,h)),0}2τ(ϕi)
2 ds

≥ c‖ϕi‖V .
Hence, AM +RM,1 is positive definite, i. e. −AM−RM,1 is negative definite. The kernels of a positive and a
negative definite matrix have only the zero in common. Under consideration of these properties, the system
fulfills the requirements of Theorem 4.3. Therefore, the block matrix is invertible and the saddle point
problem (27) has a unique solution.

� �

Assumption 4.1.1 guarantees that the first block in system (27) has the properties that are needed for the
proof. However, we just need that there is a (locally) unique solution to the nonlinear system (25). Hence
we could simply presume that the Newton matrix is regular.

An immediate consequence of Theorem 4.2 is that the implicit function theorem is applicable. This gives
the following Corollaries.

Corollary 4.4. Under Assumption 1, the mapping R→V 0
h ×Vh×V 0

h ×V ×L2(Ω)×Vh, which projects the
regularization parameter to the solution of (17), i. e. γ 7→ ξγ,h is continuously differentiable with respect to
γ . This γ-derivative can be obtained by solving (27), where the right hand side (~z1,~z2) ∈ RN ×RN is given
by

(~z1)i =−∂γ r(γ;uγ,h)(ϕh,i),

(~z2)i =−∂ 2
γ,urγ(γ;uγ,h)(pγ,h, ϕh,i).

If we consider all variables, we get the MPEC-version.

Corollary 4.5. Let (qγ,h,uγ,h) with corresponding multipliers (pγ,h,λγ,h,θγ,h) satisfy the optimality sys-
tem (17). If Assumption 4.1.1 is fulfilled, then the solution tuple (qγ,h,uγ,h, pγ,h,λγ,h,θγ,h) is locally unique.
Furthermore, the solution variables are differentiable with respect to the penalty parameter γ . The deriva-
tives (q̇γ,h, u̇γ,h, ṗγ,h, λ̇γ,h, θ̇γ,h) solve the following system of linearized equations:

Au̇γ,h = q̇γ,h + λ̇γ,h, (28a)

λ̇γ,h +∂γ r(γ;uγ,h)+∂ur(γ;uγ,h)(u̇γ,h) = 0, (28b)

A∗ ṗγ,h = j′′(uγ,h)u̇γ,h− µ̇γ,h, (28c)

ṗγ,h +g′′(qγ,h)q̇γ,h = 0, (28d)

ṗγ,h− θ̇γ,h = 0, (28e)

µ̇γ,h−∂ur(γ;uγ,h)(θ̇γ,h)−∂ 2
u,γ r(γ;uγ,h)(θγ,h)−∂ 2

u,ur(γ;uγ,h)(u̇γ,h, pγ,h) = 0. (28f)

Following the same reasoning, we get a second derivative with respect to γ .

Lemma 4.6. If Assumption 4.1.1 is fulfilled, the second derivative is the solution of

Aüγ,h−Q′(pγ,h)p̈γ,h +∂ur(γ;uγ,h)üγ,h = z1

A∗ p̈γ,h− j′′(uγ,h)üγ,h +∂ 2
u r(γ;uγ,h)(pγ,h, üγ,h)+∂ur(γ;uγ,h)p̈γ,h = z2
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with the right hand side (z1,z2) in V 0
h ×V 0

h , where

z1 = Q′′(pγ,h)(ṗγ,h, ṗγ,h)−∂ 2
u,ur(γ;uγ,h)(u̇γ,h, u̇γ,h, ·)

−2∂ 2
γ,ur(γ;uγ,h)(u̇γ,h, ·)−∂ 2

γ,γ r(γ;uγ,h)(·),
z2 = j(3)(uγ,h)(u̇γ,h, u̇γ,h, ·)−∂ 3

u,u,ur(γ;uγ,h)(u̇γ,h, pγ,h, u̇γ,h, ·)
−2∂ 2

u,ur(γ;uγ,h)(ṗγ,h, u̇γ,h, ·)−3∂ 2
γ,ur(γ;uγ,h)(ṗγ,h, ·)

−∂ 3
γ,γ,ur(γ;uγ,h)(pγ,h, ·).

4.3. Estimation. Based on the error identity in Theorem 4.1, we introduce in this subsection estimates up
to terms of higher order. We aim for estimators, which have a distinct role such that

J(q̄, ū)− J(q̃γ,h, ũγ,h)≈ ηγ +ηh +ηit

and each estimator η∗ corresponds respectively to the regularization, discretization, or numerical error.
We begin to analyze the errors with the last two terms of (20). The error Rreg introduced by the DWR

method is at least of higher order. In case of a tracking type goal functional, it actually equals zero. For
this reason Rreg is dropped. The estimator ηit for the numerical error vanishes, if ξ̃γ,h → ξγ,h, since under
consideration of (17a) the residuum

ηit := ρ̃(p̃γ,h) =−a(ũγ,h, p̃γ,h)+(q̃γ,h, p̃γ,h)− r(γ; ũγ,h)(p̃γ,h)

has the limit

ρ(pγ,h) =−a(uγ,h, pγ,h)+(qγ,h, pγ,h)− r(γ;uγ,h)(pγ,h) = 0.

The remaining terms of J(q̄, ū)− J(q̃γ,h, ũγ,h), which consist of

the regularization error
(

1
2
(µ̄ + µ̃γ,h), τ(ū)− τ(ũγ,h)

)
+

(
λ̄ − λ̃γ,h,

1
2
(θ̄ + θ̃γ,h)

)
and the discretization error

1
2

[
ρ̃(p̄− p̃γ,h)+ ρ̃q(q̄− q̃γ,h)+ ρ̃∗(ū− ũγ,h)

]
,

depend on the unknown exact solution. The crucial part of the regularization error is the accurate determi-
nation of the difference. Therefore, we approximate the average of the analytical and discrete variables by
the discrete ones.We know that the mapping γ 7→ ξγ is twice continuously differentiable under Assumption
4.1.1, because of Theorem 4.4 and Lemma 4.6. In the next step, we perform the well posed Taylor expansion
for the variables u and λ , which leads to

ũ∞,h = ũγ,h + γ ˙̃uγ,h +o(γ−2), (29a)

λ̃∞,h = λ̃γ,h + γ ˙̃λγ,h +o(γ−2). (29b)

Hence, ũ∞,h and λ̃∞,h are better approximations of ū and λ̄ than ũγ,h and λ̃γ,h. We substitute ξ̄ with ξ̃∞,h in
the regularization error so that〈

1
2
(µ̄ + µ̃γ,h),τ(ū)− τ(ũγ,h)

〉
+

〈
λ̄ − λ̃γ,h,

1
2
(θ̄ + θ̃γ,h)

〉
≈
〈
µ̃γ,h,τ(ū)− τ(ũγ,h)

〉
+
〈

λ̄ − λ̃γ,h, θ̃γ,h

〉
≈ γ

(〈
µ̃γ,h,τ( ˙̃uγ,h)

〉
+
〈

˙̃λγ,h, θ̃γ,h

〉)
=:~ .
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Afterwards, we exploit the identities given by (17f) and (28b).

~= γ
[
∂ur(γ; ũγ,h)( ˙̃uγ,h, p̃γ,h)−∂γ r(γ; ũγ,h)(p̃γ,h)−∂ur(γ; ũγ,h)( ˙̃uγ,h, p̃γ,h)

]
= − γ∂γ

(∫
Σ

max{γ(−G(ũγ,h)),0}3 τ(p̃γ,h) ds
)

= −3γ
(∫

Σ

max{γ(−G(ũγ,h)),0}2 τ(p̃γ,h)
(
−G(ũγ,h)

)
ds
)

= −3
(∫

Σ

max{γ(−G(ũγ,h)),0}3 τ(p̃γ,h) ds
)

= 3
(

λ̃γ,h, p̃γ,h

)
=: ηγ .

Thus, we arrive at the very compact formulation of the regularization error estimator. Note, that we do
not evaluate the γ-derivative for this error estimator, but need its existence for the derivation. Furthermore,
we deduced an error estimator that would be a natural choice, too. The violation of the complementarity
condition in the continuous optimality system is measured, cf.(15f).

In the next step, we want to eliminate the exact solution variables in the discretization error terms, i. e. in
1
2

[
ρ̃(q̄− p̃γ,h)+ ρ̃q(q̄− q̃γ,h)+ ρ̃∗(ū− ũγ,h)

]
.

As each summand vanishes for any ϕh in Vh, we cannot apply the same approximation as described above
in (29a), but need a further improved approximation. For this task, we consider the interpolation operator
I := I(2)2h : Vh→V (2)

2h and the function space V (2)
2h , which reads as follows in case of Signorini’s problem

V (2)
2h :=

{
vh ∈C(Ω̄,ΓD)

d | ∀ T ∈ T2h : vh|T ∈Q2(T ;Rd)
}
,

which contains the interpolating functions. Thus, ũ∞,h ∈Vh is replaced by its interpolant I(ũ∞,h). Likewise,
are q̃∞,h := q̃γ,h + γ ˙̃qγ,h and p̃∞,h := p̃γ,h + γ ˙̃pγ,h. This standard substitution is substantiated by numerical
experience, e. g. [10] and [28]; as the theoretical aspect is still an open question for adaptively refined
meshes or non-smooth solutions. However, it is well known that this approximation is of higher order for
smooth solutions on uniformly refined meshes, see [1, Ch. 5.2.ii]. The final discretization error estimator
reads as

ηh :=
1
2

[
ρ̃
(
I(p̃∞,h)− p̃γ,h

)
+ ρ̃q(I(q̃∞,h)− q̃γ,h

)
+ ρ̃∗

(
I(ũ∞,h)− ũγ,h

)]
.

Furthermore, if the wanted control qD is indeed an element of Vh, s.t. ρ̃q = 0, we can actually describe
J(q̄, ū)− J(q̃γ,h, ũγ,h) depending only on u and p.
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5. NUMERICAL RESULTS

In this section we substantiate the theoretical findings by numerical experiments. First, we introduce
briefly the canonical adaptive algorithm. Afterwards two examples based on the Signorini’s problem in two
dimensions and one three-dimensional example are presented.

5.1. Adaptive algorithm. The different estimators have distinct roles, which can be utilized in an h,γ-
adaptive algorithm. The goal is an error balancing of the regularization error and the discretization error.
Therefore, the numerical error should be less than either of them by a safety factor of at least κ = 0.01.
Furthermore, we demand of the underlying globalized Newton’s method that a damping factor equal to one
is achieved. This implies that the current approximation is in or at least near the neighborhood of quadratic
convergence. The balancing itself is realized with an equilibration factor ce = 5.

Algorithm 5.1. The quantity tol denotes the exit tolerance of the algorithm.

(1) Perform few Newton steps and get (ũγ,h, p̃γ,h).
(2) Solve the same system with another right hand side to get ( ˙̃uγ,h, ˙̃pγ,h).
(3) Evaluate ηh and ηit.
(4) If ηit > κηh, go to step 1.
(5) Evaluate ηγ .
(6) If |η | ≤ tol, then stop.
(7) If |ηh|> ce |ηγ |, use an h−adaptive refinement strategy. Go to step 1.
(8) If |ηγ |> ce |ηh|, increase the penalization parameter γ by an constant factor.

Go to step 1.
(9) Else (if c−1

e ≤
∣∣ηh/ηγ

∣∣≤ ce), perform alternately either step 7 or step 8.

In step 9 of the Algorithm 5.1, we chose to perform alternately either a local refinement or an amplification
of the penalization. This variation is more robust than the performance of both actions at the same time, yet
the path following algorithm is slowed down.

The local refinement is based on the filtering techniques presented in [10] and the optimal mesh strategy
developed in [29].

5.2. Optimal control of Signorini’s problem in two and three dimensions. Although we derived our
estimator and the adaptive algorithm for general optimal control problems restricted by different contact
problems, we only focus on one specific type to prevent a cluttered section. We consider optimal control
problems with tracking type goal functional, e. g.

min
q∈V 0

J(q,u) =
1
2
‖u−uD‖2 +

α
2
‖q−qD‖2

s.t. a(u,v−u)≥ (q, v−u) ∀v ∈V,

where the side condition is given by the Signorini’s problem in two or three dimensions. The Tikhonov
parameter is set to α = 10−6.

The tracking type goal functional meets many of the theoretical requirements; for example additive split-
ting of in the goal functional (9) and the convexity of its control part (10). Furthermore, the higher order
remainder of the error identity (20) vanishes as mentioned previously in Section 4.1. Note, that all integra-
tions are performed with a two point Gaussian formula, which might not be exact for the wanted states qD
or initial gap functions ψ . However, numerical tests proved that the quadrature error is negligible for the
momentary study, hence we use this variant reducing the computational costs.

Signorini with known solution.
We start with a known solution, cf. [26], (ū, q̄) on the rectangular domain Ω = (−3,0)× (−1,1). The left
boundary ΓD = {−3}× (−1,1) is fixed and contact occurs only on the right boundary ΓC = {0}× (−1,1).
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We presume homogeneous Neumann data on ΓN = ∂Ω\ΓD∪ΓC. The exact state ū = (u1,u2)
> is given by

u1(x,y) :=

−(x+3)2
(

y− x2

18 − 1
2

)4(
y+ x2

18 +
1
2

)4
, if |y|< x2

18 +
1
2 ,

0, else,

u2(x,y) :=

{
27
π sin

(
4π(x+3)

3

)[
(y− 1

2 )
3(y+ 1

2 )
4 +(y− 1

2 )
4(y+ 1

2 )
3
]
, if |y|< 1

2 ,

0, else

and the exact control is the volume force q̄ =−div(σ(ū)) with a plain strain model for the two dimensional
stress σ . The material parameters are E = 10.0 and ν = 0.3. The deformation on the contact boundary
ΓC defines the initial gap function ψ(y) := u(0,y)× (1,0)> = u1(0,y). We aim to reproduce the analytic
solution and hence choose uD = ū and qD = q̄. The limit p̄ of the adjoint states p̃γ,h equals consequently
zero.

(a) l = 0, γ = 102 (b) l = 7, γ = 103

FIGURE 1. First example: deformation and adaptive refinement with the obstacle

Figure 1 shows the deformation on a coarse mesh and the adaptive refinement. We see that the refinement
is mostly done in the interior and not at the contact zone. At first glance this seems to contradict the usual
behavior of contact problems, where refinement occurs mostly at the transition area between contact and
non-contact. However, since we exert a force qD, which shapes the domain into the right form, the influence
of the contact conditions is lessened. The wanted state uD does not intersect with the obstacle and so does
the discrete state uh, except for numerical reasons.

The L2-error E = J(q̄, ū)− J(q̃γ,h, ũγ,h) and its estimator η is shown in Tab. 3. They decrease steadily
in each iteration. After the second iteration both values are close to each other, which is depicted by an
efficiency index Ieff := E/η of nearly one. The respective parts of the estimators are also presented in Tab. 3
and plotted in Fig. 2. The iterations, in which the numerical error is reduced, are skipped for a clearer display.
The figure is also clipped to a lower bound of 1

8 · 10−16 for a better visualization and hence some marks of
the numerical error estimator are cut off. The expected balancing of the discretization and regularization
error estimates is observed.

In Figure 3 the development of the regularization parameter γ and the mesh size is presented. The error
splitting in (20) and the corresponding assignment of the parts to the regularization or the discretization error
is reflected by the behavior of the estimators. For example, the regularization parameter γ is increased be-
tween iteration 5 and 6. That leads to a decrease of the estimated regularization error, whereas the estimated
discretization error is almost constant. On the other hand, when the mesh is refined, like from iteration 6 to
7, the discretization error estimate decreases clearly, while the regularization error estimate almost stagnates.

We observe further that the interaction of regularization and discretization actually happens. The esti-
mated regularization error decreases in the first iterations, although the parameter γ remains the same. This
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TABLE 3. First example: error, estimators and efficiency index

Iter ηh ηit ηγ η E Ieff

0 −1.44·10−5 −1.59·10−13 −2.28·10−7 −1.46·10−5 −1.37·10−4 9.35
1 −9.55·10−6 3.51·10−21 −1.60·10−8 −9.57·10−6 −7.17·10−5 7.49
2 −2.82·10−6 −1.52·10−10 −2.04·10−8 −2.84·10−6 −5.73·10−6 2.02
3 −3.02·10−7 −8.28·10−20 −1.07·10−8 −3.13·10−7 −4.10·10−7 1.31
4 −3.39·10−8 −4.39·10−11 −9.71·10−9 −4.36·10−8 −1.28·10−7 2.94
5 −3.30·10−8 −8.63·10−19 −5.51·10−8 −8.81·10−8 −8.36·10−8 0.95
6 −6.31·10−9 −1.97·10−11 −5.40·10−8 −6.04·10−8 −4.83·10−8 0.80
7 −5.93·10−9 −1.89·10−11 −1.36·10−8 −1.96·10−8 −1.15·10−8 0.59
8 −1.58·10−9 −1.74·10−12 −1.29·10−8 −1.45·10−8 −8.37·10−9 0.58
9 −1.54·10−9 1.46·10−21 −1.63·10−9 −3.16·10−9 −1.96·10−9 0.62
10 −2.63·10−10 −9.74·10−13 −1.63·10−9 −1.89·10−9 −1.00·10−9 0.53
11 −2.63·10−10 1.47·10−21 −1.75·10−10 −4.38·10−10 −2.50·10−10 0.57
12 −7.78·10−11 −1.11·10−13 −1.75·10−10 −2.53·10−10 −1.38·10−10 0.54
13 −7.74·10−11 −4.13·10−13 −2.52·10−11 −1.03·10−10 −5.85·10−11 0.57
14 −1.24·10−11 −7.17·10−14 −1.83·10−11 −3.08·10−11 −1.62·10−11 0.53
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FIGURE 2. First example: absolute value of the estimator in the l-th iteration

interaction is a direct result of the higher order dependency of between the regularization and discretization
errors, cf. (29a).

Taking Figure 2 into account, we see another expected effect. There is a correlation between regulariza-
tion parameter and the difficulty of the nonlinear problem, measured by the number of necessary Newton
iterations during a global iteration. By increasing the penalty parameter the condition number worsens lead-
ing to more Newton steps (and even more damping steps), while after a mesh-refinement the non-linear
problem is treated like a linear one. The solution is computed by only one Newton step.

Another investigation is addressed to the assumption (24). We evaluated the term

6γ3QE
(
max(−G(uγ,h)),0)ατ(qD−qγ,h)τ(vh)

2)−‖vh‖2
L2(T ) =: a(vh). (30)

for each standard base function vh on every face E ⊂ ΓC. Obviously, the respective cell T is uniquely
determined as the cell containing the face E. The normal trace of such a function is either zero or equals
either of both standard linear 1D-base functions. In Figure 4 we plotted the maximum value of a(vh) for
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(a) regularization parameter γ and mesh size
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(b) Newton iterations

FIGURE 3. First example: development of simulation parameters and number of Newton
iterations per global iteration

each edge E ⊂ ΓC. If and only if the maximum is negative on each and every face, assumption (4.1.1) holds
true. Hence, we see clearly a violation in the contact area, yet the adaptive algorithm operates as wanted.
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(a) l = 5, γ = 105/2
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(b) l = 13, γ = 109/2

FIGURE 4. First example: evaluation of (30) corresponding to the assumption (4.1.1).
Additionally, the initial gap function is scaled and plotted for an easier comparison to Fig.
1.
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Signorini without known solution.
In contrast to the previous example, the analytical solution is in the following example unknown. Here, we
aim for a state of the form

uD(x) =
(
−0.1sin(πx1)sin(πx2)

0

)
on the domain Ω = [0,1]2, which is fixed on the left edge ΓD = {0}× [0,1]. Whereas, the contact boundary
is the right edge ΓC = {1}× [0,1]. The initial gap function g : ΓC→ R2 reads

g(x) =−0.05+(x2−0.5)2.

The corresponding obstacle prevents the state from achieving its wanted form. Therefore, the goal func-
tional does not vanish and we get a more interesting optimal control problem. In addition, this leads to an
intersection of the wanted state and the obstacle and a distinctive refinement at the contact zone, especially
at the transition of contact to non-contact. Figure 5 shows the deformation and refinement.

(a) l = 0, γ = 100 (b) l = 9, γ = 104

FIGURE 5. Second example: refinement on the deformed mesh and the obstacle

The adaptive simulation terminated, because the new mesh size exceeded a size limit of 200,000 cells. In
Figure 6, we see as expected a similar trend for the errors as in Fig. 2. The equilibrium behaves congruently
to the development of the mesh and the regularization, which is shown in Fig. 7. The Table 4 corresponds
to the total estimator.
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FIGURE 6. Second example: absolute value of the estimator in the l-th iteration
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(a) regularization parameter γ and mesh size
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(b) Newton iterations

FIGURE 7. Second example: development of simulation parameters and number of New-
ton iterations per global iteration

An approximation of the analytical goal value Jref = 2.7000744835864975 · 10−5 was calculated on a
uniformly refined mesh with 262,144 cells. Hence, we get E = Jref− J(q̃γ,h, ũγ,h) for an approximated error
and an approximated efficiency index Ieff = E/η . Table 4 shows in almost every step an index close to one.
The outliers in iteration 10 and 14 are results of switching signs in the column describing the total error
estimator η .

TABLE 4. Second example: error, estimators and efficiency index

Iter ηh ηit ηγ η E Ieff

0 −1.44·10−5 −1.59·10−13 −2.28·10−7 −1.46·10−5 −1.37·10−4 9.35
1 −9.55·10−6 3.51·10−21 −1.60·10−8 −9.57·10−6 −7.17·10−5 7.49
2 −2.82·10−6 −1.52·10−10 −2.04·10−8 −2.84·10−6 −5.73·10−6 2.02
3 −3.02·10−7 −8.28·10−20 −1.07·10−8 −3.13·10−7 −4.10·10−7 1.31
4 −3.39·10−8 −4.39·10−11 −9.71·10−9 −4.36·10−8 −1.28·10−7 2.94
5 −3.30·10−8 −8.63·10−19 −5.51·10−8 −8.81·10−8 −8.36·10−8 0.95
6 −6.31·10−9 −1.97·10−11 −5.40·10−8 −6.04·10−8 −4.83·10−8 0.80
7 −5.93·10−9 −1.89·10−11 −1.36·10−8 −1.96·10−8 −1.15·10−8 0.59
8 −1.58·10−9 −1.74·10−12 −1.29·10−8 −1.45·10−8 −8.37·10−9 0.58
9 −1.54·10−9 1.46·10−21 −1.63·10−9 −3.16·10−9 −1.96·10−9 0.62

10 −2.63·10−10 −9.74·10−13 −1.63·10−9 −1.89·10−9 −1.00·10−9 0.53
11 −2.63·10−10 1.47·10−21 −1.75·10−10 −4.38·10−10 −2.50·10−10 0.57
12 −7.78·10−11 −1.11·10−13 −1.75·10−10 −2.53·10−10 −1.38·10−10 0.54
13 −7.74·10−11 −4.13·10−13 −2.52·10−11 −1.03·10−10 −5.85·10−11 0.57
14 −1.24·10−11 −7.17·10−14 −1.83·10−11 −3.08·10−11 −1.62·10−11 0.53

Signorini without known solution - three dimensions.
The three dimensional example is motivated by a rolling process on a thin plate. The domain Ω is a quadratic
section with the dimensions [−1,1]× [−1,1]× [0;0.25]. We assume that the plate is somehow fixed from
below, which implies homogeneous Dirichlet-data on ΓD = [−1,1]× [−1,1]×{0}. The contact surface is on
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FIGURE 8. Second example: evaluation of (30) corresponding to the assumption (4.1.1).
Additionally, the initial gap function is scaled and plotted for an easier comparison to Fig.
5.

the opposite boundary ΓC = [−1,1]× [−1,1]×{0.25}. The Neumann boundary is given by the remaining
faces.

Here, we want as little change of the body as possible implying the wanted state qD ≡ 0. The roll-
obstacle is given by the lower half of a sphere surface, where the sphere is B1.0(0,0,1.125). The linearized
gap function is

g(x) =

{
−
√

1− x2
1− x2

2 +0.875, if x2
1 + x2

2 ≤ 1.0

0.875 else.
We observe the very same behavior in the three dimensional example as in the previous ones. However

the higher order dependency is even more prominent as depicted in Fig. 9. Another striking feature of the
3D-example is that mostly regularization steps are performed, see Fig. 10. That leads to another problem,
namely the worsening condition number of the Newton matrix. While the algorithm in the two dimensional
examples aborted, because the error tolerance of 10−10 was achieved or the mesh size exceeded a limit
which we set to 105 elements; the algorithm in the present example terminated, because Newton’s algorithm
did not converge within over 100 steps. The simulation ended, before the discretization error could be
reduced. However, the regularization error decreases steadily and a small downward trend in step 8 and 11
is observable.

We modified the algorithm 5.1 in order to resolve that problem. In the h,γ-adaptive step 9, we choose
originally to perform alternately either an adaptive mesh refinement or an increase of the penalty parameter
γ . Since the problems in this example originates from a γ that became too fast too large, we change the
relation of h- or γ-adaptive steps that are performed instead of an h,γ-adaptive one. Previously the relation
was 1 : 1; now it is manually set to 3 : 1.

The example still proves itself difficult, because a mesh refinement does not guarantee a reduction of the
discretization error. This can be seen in the global iteration step 7 (before and after modification) as well as
in steps 9 and 13. Step 13 is in particular an interesting one, since only few cells are additionally refined,
but the discretization error increases quite much. This behavior can be explained by the signed sum of the
cell contributions. While the absolute maximum decreases always, terms might cancel each other out in the
signed sum; e.g. leading to switching signs between step 7 and 8.

Note that once again Assumption (4.1.1) is not fulfilled.
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FIGURE 9. Third example: absolute value of the estimator in the l-th iteration
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(a) regularization parameter γ and mesh size - before modification
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(b) Newton iterations - before modification
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(c) regularization parameter γ and mesh size - after modification
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(d) Newton iterations - after modification

FIGURE 10. Third example: development of simulation parameters and number of New-
ton iterations per global iteration
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6. CONCLUSIONS AND OUTLOOK

In this paper, we proposed an a-posteriori error estimator for discrete, regularized optimal control prob-
lems governed by contact problems. The error between the solution of the original optimal control problem
and the solution of the discrete, regularized problem is measured by the evaluation of the goal functional.
We used the DWR method to prove an error identity, which consists of three parts. Each one is assigned to
one error source; the regularization, the discretization or the numerical approximation.

The numerical results undermine that the performed error splitting as well as the respective estimators
are well posed; even though a higher order dependency is noticeable. The adaptive path following algorithm
provides a balancing strategy for the regularization and discretization error estimates. As expected after an
adaptive mesh refinement the discretization error decreases and the regularization error almost stagnates;
while after a γ-adaptive step, increasing the penalty parameter, the regularization error is reduced and the
discretization error almost stagnates.

Note that for the (simplified) Signorini’s problem the error estimator for the regularization error is evalu-
ated only on the contact boundary leading to a highly efficient computation. The main costs are introduced
by the discretization error estimator, while the numerical error estimator is its by-product with a negligible
overhead.

Even though the balancing strategy works fine, the three dimensional example proves itself quite diffi-
cult. At first, the regularization parameter became too quickly too large such that the adaptive algorithm
aborted because of non-converging Newton’s method. After modifying the implementation of algorithm,
the problem was shifted to the mesh size. The simulation terminated due to the memory limits. We were
able to reduce the estimated error at least slightly. Hence, further considerations regarding an automatic
parameter fitting of the algorithm are advisable. For instance an automatic choice of the factor, which is
used to increase the penalty parameter.

Other expansions should be considered as well; in particular, the simulation of elasto-plastic contact
problems. The additional nonlinearity transforms the semi-linear regularized problem into a quasi-linear
one. We expect that the error estimator for the plasticity error is, analogously to the regularization estimator
at hand, the dual paring of the corresponding slack and adjoint variables.

Another natural yet non-trivial extension is the inclusion of friction on the contact surface.
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APPENDIX A. PROOF OF THEOREM 3.4

As stated above, we present the complete proof of Theorem 3.4 here.

Proof.
Convergence of the primal variables:

The first part of the theorem is a collection of the above results. We have already noted that every
regularized problem (Pγ ) has a globally optimal solution qγ . The sequence {qγ} of global minimizers has a
weak accumulation point q̄ ∈ V 0, because of the boundedness of the goal functional J. Taking the obvious
relation

J(qγ ,Sγ(qγ))≤ J(q,Sγ(q))

for any q ∈V 0 and Lemma 3.3 into account, we arrive at

J(q̄, ū) = J(q̄,S(q̄))≤ liminf
γ→∞

J(qγ ,Sγ(qγ))≤ limsup
γ→∞

J(qγ ,Sγ(qγ))

≤ lim
γ→∞

J(q,Sγ(q)) = J(q,S(q)).

Hence, the accumulation point q̄ is a global minimizer of (P) and with q̄ = q we achieve the convergence of
the objective. The strong convergence results from the following considerations. First of all, the convergence
in the dual norm

‖qγ − q̄‖V ′ = sup
v∈V\{0}

|〈qγ − q̄, v〉|
‖v‖ → 0

implying the strong convergence of the state variable

‖uγ − ū‖V = ‖Sγ(qγ)−S(q̄)‖V ≤ L‖qγ − q̄‖V ′ +‖Sγ(q̄)−S(q̄)‖V → 0 (31)

is an immediate consequence of the compact embedding V 0 ↪→V−1, of the Lipschitz continuity of Sγ and of
Lemma 3.3. As the objective converges, we further know∣∣∣ ∣∣g(qγ)−g(q̄)

∣∣− ∣∣ j(S(qγ))− j(S(q̄))
∣∣ ∣∣∣≤ ∣∣∣J(qγ ,Sγ(qγ))− J(q̄,Sq̄)

∣∣∣ → 0

lim
γ→∞

∣∣g(qγ)−g(q̄)
∣∣= lim

γ→∞

∣∣ j(S(qγ))− j(S(q̄))
∣∣≤ lim

γ→∞
C‖Sγ(qγ)−S(q̄)‖V → 0,

because of the regularity of j, which gives a constant C, and (31). The mapping g is presumed to be convex,
and twice continuously differentiable. The first derivative g′(q̄) is an element of the dual space (V 0)∗.
Therefore there exists a t ∈ [0,1] so that together with (10)

g(qγ)−g(q̄) = g′(q̄)(qγ − q̄)+
1
2

g′′
(
q̄+ t(qγ − q̄)

)
(qγ − q̄)2

≥ g′(q̄)(qγ − q̄)+
α
2
‖qγ − q̄‖2

V 0 → 0.

This concludes the proof of the first claim.
Convergence of the dual variables. The convergence of the slack variables is an easy consequence of the

continuity of A : V →V ∗.

τ∗λγ = Auγ −qγ → Aū− q̄ = τ∗λ̄ in V ∗

and λγ → λ̄ in W ′ because of the continuity of τ . As ū = S(q̄) is the solution of (11), λ̄ is the associated
slack variable fulfilling the complementarity system in (15b). To prove the weak convergence of the adjoint
state, insert θγ and µγ in (13c) to obtain

A∗pγ +∂ur(γ;uγ)(pγ) = ∇ j(uγ).
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Testing this equation with pγ itself yields

‖pγ‖V ≤
1
β
‖∇ j(uγ)‖V ′ (32)

due to the coercivity of the bilinear form a(·, ·). Additionally, we get∫
ΓC

[
max

(
γ(τ(uγ)−ψ),0

)
τ(pγ)

]2 do≤ 1
3γ
(
∇ j(uγ), pγ

)
≤ 1

3γβ
‖∇ j(uγ)‖2

V ′ → 0 as γ → ∞,

(33)

where we used (4) and (32). The boundedness of {uγ} in V is exploited for the passage to the limit. Note,
that we presume that j is three times continuously differentiable. From (32) we infer the existence of a
subsequence, weakly converging in V to p̄. For simplicity we denote this subsequence by {pγ}, too. This
proves equation (14d). Moreover, the convergence of µγ and (15c) follow from

µγ = ∇ j(uγ)−A∗pγ ⇀ ∇ j(ū)−A∗ p̄ =: µ̄ in V ′.

Complementarity relations. It remains to verify the complementarity relations in (15f). For this purpose, we
construct an adequate family of test functions mγ in V = H1

D(Ω)d . Let mγ ∈V be the solution of the mixed
boundary problem

Amγ = qγ in Ω,

mγ = 0 on ΓD,

σn(mγ) = 0 on ΓN ,

mγ ·n = max{τ(uγ)−ψ,0} on ΓC,

mγ · ti = 0 on ΓC.


(Paux)

Here, n denotes the normal vector and t1 the corresponding tangential vector for Ω⊂R2. For Ω⊂R3, there
are two orthogonal, tangential vectors t1,2. We recall the relation for the stress σ = Cε , cf. 1. The boundary
conditions on ΓC are equivalent to inhomogeneous Dirichlet data

τ(U0,γ) = max{τ(uγ)−ψ,0} on ΓC,

for a function U0,γ ∈V due to Lemma 2.1. Note, by construction U0,γ ·ti is zero. Problem (Paux) is a standard,
static, linear elastic problem with mixed boundary conditions. It is well known that this problem has a unique
solution, see, e. g. [31]. Therefore, the description of mγ is well posed. Furthermore, the limit case for γ→∞

is well posed, too, because

Am̄ = q̄ in Ω

m̄ = 0 on ΓD∪ΓC

σn(m̄) = 0 on ΓN ,

 (P̄aux)

has also a unique solution m̄ in V . Additionally, mγ → m̄ in V . To show this, we solve the substitute problem
for vγ = mγ −U0,γ

Avγ = qγ −AU0,γ in Ω,

vγ = 0 on ΓD∪ΓC,

σn(vγ) = 0 on ΓN

 (P′aux)

instead of (Paux) and get

β‖vγ − m̄‖2
V ≤ a(vγ − m̄,vγ − m̄) =

(
qγ − q̄, vγ − m̄

)
+a(−U0,γ ,vγ − m̄)

≤ c‖qγ − q̄‖V 0 ‖vγ − m̄‖V + c‖U0,γ‖V ‖vγ − m̄‖V .
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We use again Lemma 2.1 and conclude

‖mγ − m̄‖V ≤
c
β
‖qγ − q̄‖+

(
c
β
+1
)
‖U0,γ‖→ 0 as γ → ∞.

Finally, combining the inequality (33) with

‖max
(
γ(τ(uγ)−ψ),0

)
‖4

L4(ΓC)

=−
∫

ΓC

−
(

max
(
γ(τ(uγ)−ψ),0

)3 · γ max
(
τ(uγ)−ψ,0

))
do

=−γ
(
λγ , τ(mγ)

)
ΓC

leads to

|
(
λγ , τ(pγ)

)
|2 =

∣∣∣∫
ΓC

−
[
max

(
γ(τ(uγ)−ψ),0

)]3 τ(pγ) do
∣∣∣2

≤ ‖max
(
γ(τ(uγ)−ψ),0

)
‖4

L4(ΓC)
‖max

(
γ(τ(uγ)−ψ),0

)
τ(pγ)‖2

L2(ΓC)

≤ γ
∣∣(λγ , τ(mγ)

)∣∣ 1
3γ
∣∣(∇ j(uγ), pγ

)∣∣
=

1
3

∣∣(∇ j(uγ), pγ
)∣∣ ∣∣(λγ , τ(mγ)

)∣∣ → C
∣∣(λ̄ , τ(m̄)

)∣∣= 0,

since τ(m̄) = 0. Due to (15e), the first complementarity condition in (15f) is shown.
To derive the second equation of the complementarity conditions, we observe that the definition of µγ

in (13f) implies (
µγ , τ(uγ)−ψ

)
= 3

∫
ΓC

[
max

(
γ(τ(uγ)−ψ),0

)]2 τ(pγ)γ(τ(uγ)−ψ)) do

= 3
∫

ΓC

[
max

(
γ(τ(uγ)−ψ),0

)]3 τ(pγ) do

=−3
(
λγ , τ(pγ)

)
→ 0.

Since µγ ⇀ µ̄ in W ′ and uγ → ū in V , this gives the claim. In order to prove the sign condition in (15f), we
test (13c) and (15c) each with pγ − p̄ and subtract the arising equations to obtain(

µγ − µ̄, τ(pγ − p̄)
)
=
(
∇ j(uγ)−∇ j(ū), pγ − p̄

)
−a(pγ − p̄, pγ − p̄)

≤
(
∇ j(uγ)−∇ j(ū), pγ − p̄

)
.

Employing again the definition of µγ in (13f), we find(
µγ , τ(pγ)

)
= 3

∫
Ω

γ
[
max

(
γ(τ(uγ)−ψ),0

)]2 τ(pγ)
2 dx≥ 0 ∀γ > 0.

Thus we arrive at
〈µ̄, τ(p̄)〉= 〈µγ − µ̄, τ(pγ − p̄)〉−

(
µγ , τ(pγ)

)
+
(
µγ , τ(p̄)

)
+ 〈µ̄, τ(pγ)〉

≤
(
∇ j(uγ)−∇ j(ū), τ(pγ − p̄)

)
+
(
µγ , τ(p̄)

)
+ 〈µ̄, τ(pγ)〉.

Because of uγ → ū in V , pγ ⇀ p̄ in V , and µγ ⇀ µ̄ in V ′, the right hand side converges to 2〈µ̄, τ(p̄)〉, which
gives the desired sign condition. �
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