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Abstract
In this paper we present DYNAMIC, an open-source C++ library implementing dynamic com-
pressed data structures for string manipulation. Our framework includes useful tools such as
searchable partial sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed
strings and FM indexes. We prove close-to-optimal theoretical bounds for the resources used
by our structures, and show that our theoretical predictions are empirically tightly verified in
practice. To conclude, we turn our attention to applications. We compare the performance of
five recently-published compression algorithms implemented using DYNAMIC with those of state-
of-the-art tools performing the same task. Our experiments show that algorithms making use of
dynamic compressed data structures can be up to three orders of magnitude more space-efficient
(albeit slower) than classical ones performing the same tasks.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases C++, dynamic, compression, data structure, bitvector, string

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.11

1 Introduction

Dynamism is an extremely useful feature in the field of data structures for string manipulation,
and has been the subject of study in many recent works [5, 17, 24, 31, 20, 13]. These results
showed that – in theory – it is possible to match information-theoretic upper and lower bounds
on space of many problems related to dynamic data structures while still supporting queries
in provably optimal time. From the practical point of view however, many of these results
are based on complicated structures which prevent them from being competitive in practice.
This is due to several factors that in practice play an important role but in theory are often
poorly modeled, such as cache locality, branch prediction, disk accesses, context switches,
memory fragmentation. Good implementations must take into account all these factors in
order to be practical; this is the main reason why little work in this field has been done on
the experimental side. An interesting and promising (but still under development) step in
this direction is represented by Memoria [22], a C++14 framework providing general purpose
dynamic data structures. Other libraries are also still under development (ds-vector [7]) or
have been published but the code is not available [5, 17, 2]. Practical works considering weaker
dynamic queries have also appeared. In [29] the authors consider rewritable arrays of integers
(no indels or partial sums are supported). In [30] practical close-to-succinct dynamic tries are
described (in this case, only navigational and child-append operations are supported). To
the best of our knowledge, the only working implementation of a dynamic succinct bitvector
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is [11]. This situation changes dramatically if the requirement of dynamism is dropped.
In recent years, several excellent libraries implementing static data structures have been
proposed: sdsl [12] (probably the most comprehensive, used, and tested), pizza&chili [25]
(compressed indexes), sux [34], succinct [33], libcds [18]. These libraries proved that static
succinct data structures can be very practical in addition to being theoretically appealing.

In view of this gap between theoretical and practical advances in the field, in this paper
we present DYNAMIC: a C++11 library providing practical implementations of some basic
succinct and compressed dynamic data structures for string manipulation: searchable partial
sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed strings and FM
indexes. Our library has been extensively profiled and tested, and offers structures whose
performance are provably close to the theoretical lower bounds (in particular, they approach
succinctness and logarithmic queries). DYNAMIC is an open-source project and is available
at [8].

We conclude by discussing the performance of five recently-published BWT/LZ77 com-
pression algorithms [26, 28, 27] implemented with our library. On highly compressible
datasets, our algorithms turn out to be up to three orders of magnitude more space-efficient
than classical algorithms performing the same tasks.

2 The DYNAMIC library

The core of our library is a searchable partial sum with inserts data structure (SPSI in what
follows). We start by formally defining the SPSI problem and showing how we solve it in
DYNAMIC. We then proceed by describing how we use the SPSI structure as a building block
to obtain the dynamic structures implemented in our library.

2.1 The Core: Searchable Partial Sums with Inserts
The Searchable Partial Sums With Inserts (SPSI) problem asks for a data structure PS
maintaining a sequence s1, . . . , sm of non-negative integers and supporting the following
operations on it:

PS.sum(i) =
∑i

j=1 sj ;
PS.search(x) is the smallest i such that

∑i
j=1 sj > x;

PS.update(i, δ): update si to si + δ. δ can be negative as long as si + δ ≥ 0;
PS.insert(i): insert 0 between si−1 and si (if i = 0, insert in first position).

As discussed later, a consequence of the fact that our SPSI does not support delete
operations is that also the structures we derive from it do not support delete; we plan to
add this feature in our library in the future.

DYNAMIC’s SPSI is a B-tree storing integers s1, . . . , sm in its leaves and subtree size/partial
sum counters in internal nodes. SPSI’s operations are implemented by traversing the tree
from the root to a target leaf and accessing internal nodes’ counters to obtain the information
needed for tree traversal. The choice of employing B-trees is motivated by the fact that a big
node fanout translates to smaller tree height (w.r.t. a binary tree) and nodes that can fully
fit in a cache line (i.e. higher cache efficiency). We use a leaf size l (i.e. number of integers
stored in each leaf) always bounded by

0.5 logm ≤ l ≤ logm

and a node fanout f ∈ O(1). f should be chosen according to the cache line size; a bigger
value for f reduces cache misses and tree height but increases the asymptotic cost of handling
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single nodes. See Section 2.2 for a discussion on the maximum leaf size and f values used in
practice in our implementation. Letting l = c · logm be the size of a particular leaf, we call
the coefficient 0.5 ≤ c ≤ 1 the leaf load.

In order to improve space usage even further while still guaranteeing very fast operations,
integers in the leaves are packed contiguously in word arrays and, inside each leaf L, we assign
to each integer the bit-size of the largest integer stored in L. In the next section we prove that
this simple blocking strategy leads to a space usage very close to the information-theoretic
minimum number of bits needed to store the integers s1, . . . , sm. It is worth to notice that
– as opposed to other works such as [2] – inside each block we use a fixed-length integer
encoding. Such an encoding allows much faster queries than variable-length integer codes
(such as, e.g., Elias’ delta or gamma) as in our strategy integers are stored explicitly and do
not need to be decoded first. Whenever an integer overflows the maximum size associated to
its leaf (after an update operation), we re-allocate space for all integers in the leaf. This
operation takes O(logm) time, so it does not asymptotically increase the cost of update
operations. Crucially, in each leaf we allocate space only for the integers actually stored
inside it, and re-allocate space for the whole leaf whenever we insert a new integer or we
split the leaf. With this strategy, we do not waste space for half-full leaves1. Note, moreover,
that since the size of each leaf is bounded by Θ(logm), re-allocating space for the whole leaf
at each insertion does not asymptotically slow down insert operations.

2.1.1 Theoretical Guarantees
Let us denote with m/ logm ≤ L ≤ 2m/ logm the total number of leaves, with Lj , 0 ≤ j < L,
the j-th leaf of the B-tree (using any leaf order), and with I ∈ Lj an integer belonging to
the j-th leaf. The total number of bits stored in the leaves of the tree is∑

0≤j<L

∑
I∈Lj

max_bitsize(Lj)

where max_bitsize(Lj) = maxI∈Lj
(bitsize(I)) is the bit-size of the largest I ∈ Lj , and

bitsize(x) is the number of bits required to write number x in binary: bitsize(0) = 1 and
bitsize(x) = blog2 xc+ 1, for x > 0. The above quantity is equal to∑

0≤j<L

cj · logm ·max_bitsize(Lj)

where 0.5 ≤ cj ≤ 1 is the j-th leaf load. Since leaves’ loads are always upper-bounded by 1,
the above quantity is upper-bounded by

logm
∑

0≤j<L

max_bitsize(Lj)

which, in turn, is upper-bounded by

logm
∑

0≤j<L

bitsize

 ∑
I∈Lj

I

 ≤ logm
∑

0≤j<L

1 + log2

1 +
∑

I∈Lj

I

 .

In the above inequality, we use the upper-bound bitsize(x) ≤ 1 + log2(1 + x) to deal with
the case x = 0. Let M = m +

∑m
i=1 si = m +

∑
0≤j<L

∑
I∈Lj

I be the sum of all integers

1 in practice, to speed up operations we allow a small fraction of the leaf to be empty.
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stored in the structure plus m. From the concavity of log and from L ≤ 2m/ logm, it can be
derived that the above quantity is upper-bounded by

2m · (log(M/m) + log logm+ 1) .

To conclude, we store O(1) pointers/counters of O(logM) bits each per leaf and internal
node. We obtain:

I Theorem 1. Let s1, . . . , sm be a sequence of m non-negative integers andM = m+
∑m

i=1 si.
The partial sum data structure implemented in DYNAMIC takes at most

2 ·m (log(M/m) + log logm+O(logM/ logm))

bits of space and supports sum, search, update, and insert operations on the sequence
s1, . . . , sm in O(logm) time.

Our implementation uses the standard C++ memory allocator to allocate memory for
the growing dynamic structures. As shown in the experimental section, this choice results
in a non-negligible fraction of memory being wasted due to memory fragmentation. Ad-
hoc allocators such as the one discussed in [5] can significantly alleviate this effect. In
our experiments we observed that – even taking into account memory fragmentation –
the bit-size of our dynamic partial sum structure is well approximated by function 1.19 ·
m (log(M/m) + log logm+ logM/ logm). See the experimental section for full details.

2.2 Plug and Play with Dynamic Structures
The SPSI structure described in the previous section is used as a building block to obtain all
dynamic structures of our library. In DYNAMIC, the SPSI structure’s type name is spsi and
is parametrized on three template arguments: the leaf type (here, the type packed_vector
is always used2), the leaf size and the node fanout. DYNAMIC defines two SPSI types with
two different combinations of these parameters:

typedef spsi < packed_vector ,256 ,16 > packed_spsi ;
typedef spsi < packed_vector ,8192 ,16 > succinct_spsi ;

The reasons for the particular values chosen for the leaf size and node fanout will be
discussed later. We use these two types as basic components in the definition our structures.

2.2.1 Gap-Encoded Bitvectors
DYNAMIC implements gap-encoded bitvectors using an SPSI to encode gap lengths: bitvector
0s1−110s2−11 . . . 0sm−11 (si > 0) is encoded with a partial sum on the sequence s1, . . . , sm.
For space reasons, we do not describe how to reduce the gap-encoded bitvector problem to
the SPSI problem; the main idea is to reduce bitvector’s access and rank operations to
SPSI’s search operations, bitvector’s select operations to SPSI’s sum operations, bitvector’s
insert1 operations to SPSI’s insert operations, and bitvector’s insert0/delete0 operations
to SPSI’s update operations.

DYNAMIC’s name for the dynamic gap-encoded bitvector class is gap_bitvector. The
class is a template on the SPSI type. We plug packed_spsi in gap_bitvector as follows:

2 packed_vector is simply a packed vector of fixed-size integers supporting all SPSI operations in linear
time.
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typedef gap_bitvector < packed_spsi > gap_bv ;

and obtain:

I Theorem 2. Let B ∈ {0, 1}n be a bit-sequence with b bits set. The dynamic gap-encoded
bitvector gap_bv implemented in DYNAMIC takes at most

2 · b (log(n/b) + log log b+O(logn/ log b)) (1 + o(1))

bits of space and supports rank, select, access, insert, and delete0 operations on B in
O(log b) time.

In our experiments, the optimal node fanout for the SPSI structure employed in this
component turned out to be 16, while the optimal leaf size 256 (these values represented a
good compromise between query times and space usage). Our benchmarks show (see the
experimental section for full details) that the bit-size of our dynamic gap-encoded bitvector
is well approximated by function 1.19 · b (log(n/b) + log log b+ logn/ log b).

It is worth to notice that an alternative efficient implementation of bitvectors is run-
length encoding (RLE): a bitvector 0k11k20k3 . . . can be represented with an SPSI on the
integer sequence k1, k2, k3, . . . . This representation results advantageous in cases where the
underlying bitvector contains also long runs of bits set (e.g. a wavelet tree on a string
with long equal-letter runs). We preferred using gap-encoding for two main reasons. First
of all, in our library gap-encoded bitvectors are at the core of run-length encoded strings
(more details in Section 2.2.3). In such structures, every equal-letter run is marked with
a bit set in a gap-encoded bitvector. This breaks the symmetry between zeros and ones
in the bitvector as strings with long equal-letter runs will generate bitvectors with very
few bits set. Then, note that the above-mentioned RLE bitvector representation allows for
efficient access operations, but does not support (fast) rank. To support rank, one should
store separately the cumulated lengths of runs of zeros (or ones). This is exactly what our
run-length compressed string (on the alphabet {0, 1}) does (see Section 2.2.3).

2.2.2 Succinct Bitvectors and Entropy-Compressed Strings
Let n be the bitvector length. Dynamic succinct bitvectors can be implemented using an
SPSI where all m = n stored integers are either 0 or 1. At this point, rank operations on
the bitvector correspond to sum on the partial sum structure, and select operations on
the bitvector can be implemented with search on the partial sum structure3. access and
insert operations on the bitvector correspond to exactly the same operations on the partial
sum structure. Note that in this case we can accelerate operations in the leaves by a factor
of logn by using constant-time built-in bitwise operations such as popcount, masks and
shifts. This allows us to use bigger leaves containing Θ(log2 n) bits, which results in a total
number of internal nodes bounded by O(n/ log2 n). The overhead for storing internal nodes
is therefore of o(n) bits. Moreover, since in the leaves we allocate only the necessary space
to store the bitvector’s content (i.e. we do not allow empty space in the leaves), it easily
follows that the dynamic bitvector structure implemented in DYNAMIC takes n+ o(n) bits of
space and supports all operations in O(logn) time.

3 Actually, search permits to implement only select1. select0 can however be easily simulated with
the same solution used for search by replacing each integer x ∈ {0, 1} with 1 − x at run time. This
solution does not increase space usage.
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In our experiments, the optimal node fanout for the SPSI stucture employed in the
succinct bitvector structure turned out to be 16, while the optimal leaf size 8192. DYNAMIC’s
name for the dynamic succinct bitvector is succinct_bitvector. The class is a template
on the SPSI type. DYNAMIC defines its dynamic succinct bitvector type as:

typedef succinct_bitvector < succinct_spsi > suc_bv ;

We obtain:

I Theorem 3. Let B ∈ {0, 1}n be a bit-sequence. The dynamic succinct bitvector data
structure suc_bv implemented in DYNAMIC takes n + o(n) bits of space and supports rank,
select, access, and insert operations on B in O(logn) time.

In our experiments (see the experimental section) the size of our dynamic succinct
bitvector was always upper-bounded by 1.23 ·n bits. The 23% overhead on top of the optimal
size comes mostly from memory fragmentation (16%). The remaining 7% comes from succinct
structures on top of the bit-sequence.

Dynamic compressed strings are implemented with a wavelet tree built upon dynamic
succinct bitvectors. We explicitly store the topology of the tree (O(|Σ| logn) bits) instead
of encoding it implicitly in a single bitvector. This choice is space-inefficient for very large
alphabets, but reduces the number of rank/select operations on the bitvector(s) with
respect of a wavelet tree stored as a single bitvector. DYNAMIC’s compressed strings (wavelet
trees) are a template on the bitvector type. DYNAMIC defines its dynamic string type as:

typedef wt_string <suc_bv > wt_str ;

The user can choose at construction time whether to use a Huffman, fixed-size, or Gamma
encoding for the alphabet. Gamma encoding is useful when the alphabet size is unknown
at construction time. The Huffman encoding of the string uses at most n(H0 + 1) bits; a
Huffman-shaped wavelet tree only adds a low-order overhead on top of this representation.
In our library, we store the Huffman tree topology using pointers (instead of concatenating
the wavelet tree’s bitvectors into a single bitvector). This strategy reduces the number of
operations needed to navigate the tree, but adds a O(|Σ| logn)-bits overhead. We obtain:

I Theorem 4. Let S ∈ Σn be a string with zero-order entropy equal to H0. The Huffman-
compressed dynamic string data structure wt_str implemented in DYNAMIC takes

n(H0 + 1)(1 + o(1)) +O(|Σ| logn)

bits of space and supports rank, select, access, and insert operations on S in average
O((H0 + 1) logn) time.

When a fixed-size encoding is used (i.e. dlog2 |Σ|e bits per character), the structure takes
n log |Σ|(1 + o(1)) +O(|Σ| logn) bits of space and supports all operations in O(log |Σ| · logn)
time.

2.2.3 Run-Length Encoded Strings
To run-length encode a string S ∈ Σn, we adopt the approach described in [32]. We store
one character per run in a string H ∈ Σr, we mark the end of the runs with a bit set in a
bit-vector Vall[0, . . . , n− 1], and for every c ∈ Σ we store all c-runs lengths consecutively in a
bit-vector Vc as follows: every m-length c-run is represented in Vc as 0m−11.
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I Example 5. Let S = bc#bbbbccccbaaaaaaaaaaa. We have: H = bc#bcba, Vall =
11100010001100000000001, Va = 00000000001, Vb = 100011, Vc = 10001, and V# = 1

By encoding H with a wavelet tree and gap-compressing all bitvectors, we achieve run-
length compression. It can be easily shown that this representation allows supporting rank,
select, access, and insert operations on S, but for space reasons we do not give these
details here. In DYNAMIC, the run-length compressed string type rle_string is a template
on the gap-encoded bitvector type (bitvectors Vall and Vc, c ∈ Σ) and on the dynamic
string type (run heads H). We plug the structures of the previous sections in the above
representation as follows:
typedef rle_string <gap_bv , wt_str > rle_str ;

and obtain:

I Theorem 6. Let S ∈ Σn be a string with rS equal-letter runs. The dynamic run-length
encoded string data structure rle_str implemented in DYNAMIC takes

rS · (4 log(n/rS) + log |Σ|+ 4 log log rS +O(logn/ log rS)) (1 + o(1)) +O(|Σ| logn)

bits of space and supports rank, select, access, and insert operations on S in O(log |Σ| ·
log rS) time.

2.2.4 Dynamic FM Indexes
An FM index [10] is a data structure supporting rank operations over the Burrows-Wheeler
transform [3] (BWT) of the text, plus a suitable sampling mechanism that associates text
positions to a subset of BWT positions (i.e. a suffix array sampling). Such a data structure
takes space close to that of the compressed text (provided that the string structure used is
compressed) and supports fast counting and locating occurrences of a pattern in the text. If
the data structure used to represent the string supports also insert operations, then the
FM index support also left-extensions of the text [4, 21, 20].

We obtain dynamic FM indexes by combining a dynamic Burrows-Wheeler transform with
a sparse dynamic vector storing the suffix array sampling. In DYNAMIC, the BWT is a template
class parametrized on the L-column and F-column types. For the F column, a run-length
encoded string is always used. DYNAMIC defines two types of dynamic Burrows-Wheeler
transform structures (wavelet-tree/run-length encoded):
typedef bwt <wt_str ,rle_str > wt_bwt ;
typedef bwt <rle_str ,rle_str > rle_bwt ;

Dynamic sparse vectors are implemented inside the FM index class using a dynamic
bitvector marking sampled BWT positions and a dynamic sequence of integers (an SPSI)
storing non-null values. We combine a Huffman-compressed BWT with a succinct bitvector
and an SPSI:
typedef fm_index <wt_bwt , suc_bv , packed_spsi > wt_fmi ;

and obtain:

I Theorem 7. Let S ∈ Σn be a string with zero-order entropy equal to H0, P ∈ Σm

a pattern occurring occ times in T , and k the suffix array sampling rate. The dynamic
Huffman-compressed FM index wt_fmi implemented in DYNAMIC takes

n(H0 + 2)(1 + o(1)) +O(|Σ| logn) + (n/k) logn

bits of space and supports:
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access to BWT characters in average O((H0 + 1) logn) time
count in average O(m(H0 + 1) logn) time
locate in average O((m+ occ · k)(H0 + 1) logn) time
text left-extension in average O((H0 + 1) logn) time

If a plain alphabet encoding is used, all (H0 + 1) terms are replaced by log |Σ| and times
become worst-case.

If, instead, we combine a run-length compressed BWT with a gap-encoded bitvector and
an SPSI as follows:

typedef fm_index <rle_bwt , gap_bv , packed_spsi > rle_fmi ;

we obtain:

I Theorem 8. Let S ∈ Σn be a string whose BWT has r runs, P ∈ Σm a pattern occurring
occ times in T , and k the suffix array sampling rate. The dynamic run-length compressed
FM index rle_fmi implemented in DYNAMIC takes

r · (4 log(n/r) + log |Σ|+ 4 log log r +O(logn/ log r)) (1+o(1))+O(|Σ| logn)+(n/k) logn

bits of space and supports:
access to BWT characters in O(log |Σ| · log r) time
count in O(m · log |Σ| · log r) time
locate in O((m+ occ · k)(log |Σ| · log r)) time
text left-extension in O(log |Σ| · log r) time

The suffix array sample rate k can be chosen at construction time.

3 Experimental Evaluation

We start by presenting detailed benchmarks of our gap-encoded and succinct bitvectors, that
are at the core of all other library’s structures. We then turn our attention to applications:
we compare the performance of five recently-published compression algorithms implemented
with DYNAMIC against those of state-of-the-art tools performing the same tasks and working
in uncompressed space. All experiments were performed on a intel core i7 machine with
12 GB of RAM running Linux Ubuntu 16.04.

3.1 Benchmarks: Succinct and Gap-Encoded Bitvectors

We built 34 gap-encoded (gap_bv) and 34 succinct (suc_bv) bitvectors of length n = 500 ·106

bits, varying the frequency b/n of bits set in the interval [0.0001, 0.99]. In each experiment, we
first built the bitvector by performing n insertb queries, b being equal to 1 with probability
b/n, at uniform random positions. After building the bitvector, we executed n rank0, n
rank1, n select0, n select1, and n access queries at uniform random positions. Running
times of each query were averaged over the n repetitions. We measured memory usage in
two ways: (i) internally by counting the total number of bits allocated by our procedures –
this value is denoted as allocated memory in our plots –, and (ii) externally using the tool
/usr/bin/time – this value is denoted as RSS in our plots (Resident Set Size).
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Working space. We fitted measured RSS memory with the theoretical predictions of
Section 2.1.1 using a linear regression model. Parameters of the model were inferred using the
statistical tool R (function lm). In detail, we fitted RSS memory in the range b/n ∈ [0, 0.1]4
with function k · f(n, b) + c, where: f(n, b) = b · (log(n/b) + log log b + logn/ log b) is our
theoretical prediction (recall that memory occupancy of our gap-encoded bitvector should
never exceed 2f(n, b)), k is a scaling factor accounting for memory fragmentation and average
load distribution in the B-tree, and c is a constant accounting for the weight of loaded
C++ libraries (this component cannot be excluded from the measurements of the tool
/usr/bin/time). Function lm provided us with parameters k = 1.19 and c = 28, 758, 196
bits ≈ 3.4MB. The value for c was consistent with the space measured with b/n close to 0.

Figures 1 and 2 show memory occupancy of DYNAMIC’s bitvectors as a function of the
frequency b/n of bits set. In Figure 1 we compare both bitvectors. In Figure 2 we focus on
the behavior of our gap-encoded bitvector in the interval b/n ∈ [0, 0.1]. In these plots we
moreover show the growth of function 1.19 · f(n, b) + 28, 758, 196. Plot in Figure 1 shows that
our theoretical prediction fits almost perfectly the memory usage of our gap-encoded bitvector
for b/n ≤ 0.7. The plot suggests moreover that for b/n ≥ 0.1 it is preferable to use our
succinct bitvector rather than the gap-encoded one. As far as the gap-encoded bitvector is
concerned, memory fragmentation5 amounts to approximately 15% of the allocated memory
for b/n ≤ 0.5. This fraction increases to 24% for b/n close to 1. We note that RSS memory
usage of our succinct bitvector never exceeds 1.29n bits: the overhead of 0.29n bits is
distributed among (1) rank/select succinct structures (≈ 0.07n bits) (2) loaded C++
libraries (a constant amounting to approximately 3.4 MB, i.e. ≈ 0.06n bits in this case),
and memory fragmentation (≈ 0.16n bits). Excluding the size of C++ libraries (which is
constant), our bitvector’s size never exceeds 1.23n bits (being 1.20n bits on average).

Query times. Plots in Figures 3-6 show running times of our bitvectors on all except
rank0 and select0 queries (which were very close to those of rank1 and select1 queries,
respectively). We used a linear regression model (inferred using R’s function lm) to fit query
times of our gap-encoded bitvector with function c+ k · log b. Query times of our succinct
bitvector were interpolated with a constant (with n fixed). These plots show interesting
results. First of all, our succinct bitvector supports extremely fast (0.01µs on average)
access queries. rank and select queries are, on average, 15 times slower than access
queries. As expected, insert queries are very slow, requiring – on average – 390 times the
time of access queries and 26 times that of rank/select queries. On all except access
queries, running times of our gap-encoded bitvector are faster than (or comparable to) those
of our succinct bitvector for b/n ≤ 0.1. Combined with the results depicted in Plot 1, these
considerations confirm that for b/n ≤ 0.1 our gap-encoded bitvector should be preferred to
the succinct one. access, rank, and select queries are all supported in comparable times
on our gap-encoded bitvector (≈ 0.05 · log b µs), and are one order of magnitude faster than
insert queries.

4 For b/n ≥ 0.1 it becomes more convenient – see below – to use our succinct bitvector, so we considered
it more useful to fit memory usage in b ∈ [0, 0.1]. In any case – see plot 1 – the inferred model fits the
experimental data well in the (wider) interval b/n ∈ [0, 0.7].

5 We estimated the impact of memory fragmentation by comparing RSS and allocated memory, after
subtracting from RSS the estimated weight – approximately 3.4 MB – of loaded C++ libraries.
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bitvectors (n = 500 x 106 bits)
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Figure 1 Memory occupancy of DYNAMIC’s bitvectors. We show the growth of function f(n, b) =
b(log(n/b) + log log b + log n/ log b) opportunely scaled to take into account memory fragmentation
and the weight of loaded C++ libraries.

gap_bv (n = 500 x 106 bits)

Frequency of bits set (b/n)

R
A

M
 (

 1
06  b

its
)

0 0.02 0.04 0.06 0.08 0.1

0
10

0
20

0
30

0
40

0
50

0
60

0 RSS gap_bv
allocated gap_bv
1.19 f(n,b) +  28758196

Figure 2 Memory occupancy of DYNAMIC’s gap-encoded bitvector in the interval b/n ∈ [0, 0.1]
(for b/n > 0.1 the succinct bitvector is more space-efficient then the gap-encoded one). The picture
shows that allocated memory closely follows our theoretical prediction (function f(n, b)).
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bitvectors: access queries
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Figure 3 Running times of our bitvectors on access queries. Bitvectors’ size is n = 5× 108 bits.

bitvectors: insert queries
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Figure 4 Running times of our bitvectors on insert queries. Bitvectors’ size is n = 5× 108 bits.
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bitvectors: rank1 queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

suc_bv
gap_bv
−0.82  +  0.05  log(b)
0.14

Figure 5 Running times of our bitvectors on rank1 queries. Bitvectors’ size is n = 5× 108 bits.

bitvectors: select1 queries
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Figure 6 Running times of our bitvectors on select1 queries.
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3.2 An Application: Space-Efficient Compression Algorithms
We used DYNAMIC to implement five recently-published algorithms [26, 28, 27] computing
the Burrows-Wheeler transform [3] (BWT) and the Lempel-Ziv 77 factorization [35] (LZ77)
within compressed working space: cw-bwt [27] builds a BWT within n(Hk + 1) + o(n log σ)
bits of working space by breaking it in contexts and encoding each context with a zero-order
compressed string; rle-bwt builds the BWT within Θ(r) words of working space using the
structure of Theorem 6; h0-lz77 [28] computes LZ77 online within n(H0 + 2) + o(n log σ)
bits using a dynamic zero-order compressed FM index; rle-lz77-1 and rle-lz77-2 [26]
build LZ77 within Θ(r) words of space by employing a run-length encoded BWT augmented
with a suffix array sampling based on BWT equal-letter runs and LZ77 factors, respectively.
Implementations of these algorithms can be found within the DYNAMIC library [8]. We
compared running times and working space of our algorithms against those of less space-
efficient (but faster) state-of-the-art tools solving the same problems. BWT construction tools:
se-sais [1, 12] (Θ(n) Bytes of working space), divsufsort [23, 12] (Θ(n) words), bwte [9]
(constant user-defined working space; we always used 256 MB), dbwt [6] (Θ(n) Bytes). LZ77
factorization tools: isa6r [16, 19] (Θ(n) words), kkp1s [15, 19] (Θ(n) words), lzscan [14, 19]
(Θ(n) Bytes). We generated two highly repetitive text collections by downloading all
versions of the Boost library (github.com/boostorg/boost) and all versions of the English
Einstein’s Wikipedia page (en.wikipedia.org/wiki/Albert_Einstein). Both datasets
were truncated to 5 · 108 Bytes to limit RAM usage of the and computation times of the
tested tools. The sizes of the 7-Zip-compressed datasets (www.7-zip.org) were 120 KB
(Boost) and 810 KB (Einstein). The datasets can be found within the DYNAMIC library [8]
(folder /datasets/). RAM usage and running times of the tools were measured using the
executable /usr/bin/time.

In Figure 7 we report our results. Solid and a dashed horizontal lines show the datasets’
sizes before and after compression with 7-Zip, respectively. Our tools are highlighted in red.
We can infer some general trends from the plots. Our tools use always less space than the
plain text, and from one to three orders of magnitude more space than the 7-Zip-compressed
text. h0-lz77 and cw-bwt (entropy compression) always have working space very close
to (and always smaller than) the plain text, with cw-bwt (k-th order compression) being
more space-efficient than h0-lz77 (0-order compression). On the other hand, tools using
a run-length compressed BWT – rle-bwt, rle-lz77-1, and rle-lz77-2 – are up to two
orders of magnitude more space-efficient than h0-lz77 and cw-bwt in most of the cases. This
is a consequence of the fact that run-length encoding of the BWT is particularly effective in
compressing repetitive datasets. bwte represents a good trade-off in both running times and
working space between tools working in compressed and uncompressed working space. kkp1s
is the fastest tool, but uses a working space that is one order of magnitude larger than the
uncompressed text and three orders of magnitude larger than that of rle-bwt, rle-lz77-1,
and rle-lz77-2. As predicted by theory, tools working in compact working space (lzscan,
se-sais, dbwt) use always slightly more space than the uncompressed text, and one order
of magnitude less space than tools working in O(n) words. To conclude, the plots show that
the price to pay for using complex dynamic data structures is high running times: our tools
are up to three orders of magnitude slower than tools working in Θ(n) words of space. This
is mainly due to the large number of insert operations – one per text character – performed
by our algorithms to build the dynamic FM indexes.
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Figure 7 BWT and LZ77 compression algorithms. In red: tools implemented using DYNAMIC.
Solid/dashed lines: space of the input files before and after 7-Zip compression, respectively.
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