
Relaxed Linear References for Lock-free Data
Structures∗

Elias Castegren1 and Tobias Wrigstad2

1 Uppsala University, Sweden, Elias.Castegren@it.uu.se
2 Uppsala University, Sweden, Tobias.Wrigstad@it.uu.se

Abstract
Linear references are guaranteed to be free from aliases. This is a strong property that simplifies
reasoning about programs and enables powerful optimisations, but it is also a property that is
too strong for many applications. Notably, lock-free algorithms, which implement protocols that
ensure safe, non-blocking concurrent access to data structures, are generally not typable with
linear references because they rely on aliasing to achieve lock-freedom.

This paper presents LOLCAT, a type system with a relaxed notion of linearity that allows
an unbounded number of aliases to an object as long as at most one alias at a time owns the
right to access the contents of the object. This ownership can be transferred between aliases,
but can never be duplicated. LOLCAT types are powerful enough to type several lock-free data
structures and give a compile-time guarantee of absence of data-races when accessing owned data.
In particular, LOLCAT is able to assign types to the CAS (compare and swap) primitive that
precisely describe how ownership is transferred across aliases, possibly across different threads.
The paper introduces LOLCAT through a sound core procedural calculus, and shows how LOLCAT
can be applied to three fundamental lock-free data structures. It also discusses a prototype
implementation which integrates LOLCAT with an object-oriented programming language.

1998 ACM Subject Classification D.3.3 Language Constructs and Features – Concurrent pro-
gramming structures

Keywords and phrases Type systems, Concurrency, Lock-free programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.6

1 Introduction

In the last decade, hardware manufacturers have increasingly come to rely on scaling through
the addition of more cores on a chip, instead of improving the performance of a single core [2].
The underlying reasons are cost-efficiency and problems with heat dissipation. As a result
of this paradigm shift, programmers must write their applications specifically to leverage
parallel resources—applications must embrace parallelism and concurrency [46, 20].

Amdahl’s Law dictates that a program’s scalability depends on saturating it with as
much parallelism as possible. Avoiding serialisation of execution and contention on shared
resources favours lock-free implementations of data structures [40], which employ optimistic
concurrency control without the overhead of software transactional memory [26]. Lock-free
algorithms are complicated and require that all threads that operate on shared data follow a
specific protocol that guarantees that at least one thread makes progress at all times [30].

∗ This work is sponsored by the UPMARC centre of excellence, the FP7 project “UPSCALE” and the
project “Structured Aliasing” financed by the Swedish Research Council.

© Elias Castegren and Tobias Castegren;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 6; pp. 6:1–6:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Relaxed Linear References for Lock-free Programming

Lock-free programming is based on a combination of speculation and publication. For
example, when inserting into a lock-free linked list, a thread may speculatively read the
contents of some field x.next, v, store v in the next field of a new node, n, and if x.next
remains unchanged, publish n by replacing the contents of x.next by n. A key component of
many lock-free algorithms is the atomicity of the last two actions: checking if x.next == v
and if so, performing x.next = n. A common way to achieve such atomicity is through the
CAS primitive, which is available in modern hardware.

In a lock-free algorithm where several threads compete for the same resource, e.g., access
to the same node, care must be taken so that at most one thread succeeds in acquiring it. If
two threads successfully extract the same object from a data-structure, subsequent accesses
to this object will be subject to data-races—ownership of a resource may not be duplicated.

In the literature on type systems, duplication of ownership is typically prevented using
linear references. A linear (or unique) reference is the only reference to a particular object.
Linearity is a strong property that allows many powerful operations such as type changes and
dynamic object reclassification (e.g., [15]), ownership transfer and zero-copy message passing
(e.g., [12, 43, 14]), and safe memory reclamation of objects without garbage collection (e.g.,
[51]). In the context of parallel programming, linear references do not need concurrency
control as a thread holding a linear reference trivially has exclusive ownership of the referenced
object (no other thread can even know of its existence) (e.g., [22]). Transfer of linear values
across threads without data-races is straightforward.

When programming with linear references one must take care to not accidentally lose
linearity [5] as linear values must be threaded through a computation. Most systems maintain
linearity through destructive reads which nullify variables as they are read [32, 39, 7, 12, 13].
Other systems permit aliasing but additionally require holding a capability (or permission)
to allow dereferencing a pointer [45, 25, 52, 37]. To avoid the burden of explicitly chaining
linear values through a computation, many systems with linear references allow temporary
relaxation of linearity through borrowing, which creates a temporary alias that is eventually
invalidated, at which point linearity is re-established [4, 12, 25].

Even though a functionally correct lock-free algorithm can guarantee that at most
one thread manages to acquire a node in a data structure, linear references and lock-free
programming are at odds. Lock-free algorithms generally require an unbounded number of
threads concurrently reading from and writing to a data structure, which linear references
forbid.

Not only is aliasing a prerequisite of sharing across threads, but using destructive reads
to maintain linearity breaks down in the absence of means to write to several locations in an
atomic step. Consider popping an element off a Stack implemented as a chain of linear links.
A sequential implementation using destructive reads (explicated as consume) would perform:

Link tmp = consume stack.top; // Transfer top to the call stack
stack.top = consume tmp.next; // Transfer top’s next to the Stack object

A lock-free Stack has contention on its top field. Thus, if the top field is temporarily
nullified to preserve linearity, as in the example above, concurrent accesses might witness this
intermediate state and be forced to either abort their operations or wait until the value is
instantiated again. Similarly, if access to the top field is guarded by some capability, threads
must either wait for the capability to become available, or copy the capability and risk
overwriting each other’s results. Other relaxed techniques such as borrowing are generally
not applicable in a concurrent setting as concurrent borrowing of the same object could lead
to data-races.

E. Castegren and T. Wrigstad 6:3

In this paper, we propose a principled relaxation of linearity that separates ownership
from holding a reference and supports the atomic transfer of ownership between different
aliases to a single object without locks or destructive reads. This enables a form of linear
ownership [38] where at any point in time, there is at most one reference allowed to access an
object’s linear resources. We present a type system, LOLCAT—for Lock-free Linear Compare
and Transfer, that statically enforces such linear ownership, and use a combination of static
and dynamic techniques to achieve effective atomicity of ownership transfer strong enough to
express well-known implementations of lock-free data structures, such as stacks [48], linked
lists [27] and queues [36]. While our system does not guarantee the correctness of a data
structure’s implementation with respect to its specification (e.g., it does not guarantee
linearizability [31]), it guarantees that all allowed accesses to an object’s linear resources are
data-race free.

The paper makes the following contributions:
(i) It proposes a linear ownership system that allows the atomic transfer of ownership

between aliases (Section 2), with the goal of facilitating lock-free programming and
giving meaningful types to patterns in lock-free algorithms, including the CAS primitive.

(ii) It shows the design of a type system that enforces linear ownership in the context of a
simple procedural language, and demonstrates its expressiveness by showing that it can
be used to implement several well-known lock-free data structures (Section 2.4).

(iii) It shows a formalisation of the semantics of a simple procedural language using LOLCAT
and proves data-race freedom for accessing linear fields in the presence of aliasing, in
addition to type soundness through progress and preservation (Section 3-4).

(iv) It reports on a proof-of-concept implementation (Section 5) in a fork of the object-oriented
actor language Encore.

2 Lock-Free Programming with Linearity

This paper presents a principled relaxation of linearity that allows programs whose values
are effectively linear, although they may at times be aliased, and a hybrid typing discipline
that enforces this notion of linearity. Our goal is to enable lock-free programming with the
kind of ownership guarantees provided by linear references, and to catch linearity violations
in implementations of lock-free algorithms, such as two threads believing that they are the
exclusive owners of the same resource.

Our system combines a mostly static approach with some dynamic checks from the
literature on lock-free programming (e.g., CAS). The latter is needed to avoid data-races
when multiple threads read and write the same fields concurrently. Rather than employing
advanced program analysis or program logic, we implement our static guarantees as a
simple type system, LOLCAT. This design choice trades reasoning power for simplicity and
modularity; code can be type-checked locally without the need for interprocedural analysis.
This should make it possible or even straightforward to integrate our approach in existing
languages.

Our system captures a number of concepts in lock-free programming such as speculation,
publication, acquisition and stable paths, and imposes a typing discipline to guarantee their
correct usage with respect to linearity. Consequently, we provide a strong notion of ownership
in which a pointer (on the stack or on the heap) may own some resources (i.e., values in
fields of the object pointed to), and where access to owned resources is guaranteed to be
exclusive.

Section 2.1 through Section 2.3 give an overview of the main concepts of LOLCAT.
Section 2.4 gives concrete implementation examples.

ECOOP 2017

6:4 Relaxed Linear References for Lock-free Programming

2.1 The Challenges of Linear Lock-Free Programming
Lock-free programming is complicated, partly due to the lack of mutual exclusion (which e.g.,
locks can provide). A lock-free algorithm must take into account that values may be accessed
and updated concurrently by other threads. This is also the root cause of the challenges one
must overcome when designing a type system for lock-free programming:

CHALLENGE 1: Using linearity to exclude read–write races is too strict as it forces operations
to be serialised and allows observation of a data structure in an inconsistent state.

In the stack popping example from Section 1, we noted that reads of the top field of the
stack must not consume its value, as this prevents concurrent operations from making progress.
Similarly, all threads concurrently pushing to the stack must be able to simultaneously alias
top in the next field of a newly created node in each thread, and compete to publish their
own node at the head of the stack. Both these requirements break linearity.

We address this challenge by relaxing linearity. At the cost of losing the ability to treat
an object’s identity linearly, we allow unbounded aliasing of linear values, as long as each
field in the value is accessible through at most one alias. Hence, we have linearity of an
object’s fields, but not its identity, similar to systems using permissions (e.g., [45]). To be
able to express patterns that appear in lock-free algorithms, we further relax linearity for
certain types of fields, and allow these to be accessed through any alias: immutable val fields
(similar to Java’s final fields), once fields which become immutable after the first write, and
spec fields which explicitly allow concurrent reading and writing. For consistency, “normal”
fields are annotated var.

The main guarantee given by relaxed linearity is that accesses to var fields are free from
data-races. This is ensured by the invariant that a reference ι in a variable or field P is
always a dominator of the transitive closure C of var fields reachable from P . If f is a var
field in C, then any path P ′ ending in f contains ι. If P ′ is a field access x.f, the var field f
is dominated by the stack variable x, so the thread holding x has exclusive access to the field.

The type system tracks this ownership through the static type T of P (x in the example
above). This is important because no two aliases of P may have static types that allow access
to the same var field: the reference ι in P owns all var fields that its type T gives access to.

CHALLENGE 2: Transferring ownership between aliases, without transferring aliases.

Lock-free programming requires setting up speculative structures involving aliasing and
later attempting to acquire the necessary ownership. Since destructive reads impact other
threads’ ability to make progress, we must be able to transfer ownership between existing
aliases rather than equating ownership transfer with alias transfer.

To address this challenge, we employ a novel form of view-point adaptation [41] at the
type-level which we term field restrictions. These come in three forms: weak, strong and
transfer, which all capture existing patterns used in lock-free programming. The intuition of
the field restrictions can be explained through a rely–guarantee [34, 44] interpretation:

Weakly restricted types T | f guarantee that the field f will not be accessed through an alias
of this type, and may rely on nothing. This denotes a speculative view of a value, without
ownership of the field f.

Strongly restricted types T || f guarantee that the field f will not be accessed through an
alias of this type, and may rely on the absence of aliases through which f can be accessed.
This denotes a view of an object whose field f will never be accessed again.

E. Castegren and T. Wrigstad 6:5

Transfer-restricted types T ∼ f guarantee that an alias of this type will not be used to
assert ownership of the object pointed to by the field f, and may rely on the fact that
the field f will not be updated concurrently by another thread. This denotes a view of
an object where the field f is without ownership, either because it contains a speculation
or because ownership has been, or is currently being, transferred from it.

In normal linear type systems, ownership transfer involves moving a unique reference
from one place to another, e.g., by using a destructive read. LOLCAT additionally supports
ownership transfer through the addition of a field restriction for some ι.f in one place and
the corresponding removal of a field restriction for the same ι.f in another. This allows
setting up speculative structures, and also allows transferring ownership from a pointer-based
structure without destroying the pointers.

We base this kind of ownership transfer on the atomic compare-and-swap (CAS) operation.
Even though they are relatively simple, field restrictions let us give a static semantics to
the CAS primitive that precisely captures how ownership is transferred between aliases when
linking and unlinking objects into and out of linked structures (cf. Section 2.3).

CHALLENGE 3: Guaranteeing atomicity of statements that read and write multiple locations.

The atomic operations used in lock-free programming operate on a single location, yet
many lock-free algorithms require operations that modify more than one location without
interference. Due to the lack of hardware support for such operations, algorithms must
employ clever tricks to achieve “effective atomicity”. In a similar fashion, the soundness of our
approach, notably the transfer of ownership in Challenge 2, relies on the absence of concurrent
modifications of certain fields during operations that atomically move ownership of multiple
locations—otherwise, the exclusive access implied by ownership could be compromised.

We solve this problem by leveraging stable paths, i.e., fields that are guaranteed not to
change and which are therefore accessible without fear of concurrent changes. We support
several forms of stable paths: immutable val fields; once fields which are immutable after
initialisation; and fix pointers which are pointers that, once installed in a field, cannot be
overwritten. As a side-effect of installing a fix pointer in x.f where x has type T, the local
type of x changes to T ∼f, which signals that the value in f will not change. A dynamic
check prevents writes through aliases which are not yet aware that the field has been fixed.
See Section 2.5 for an example using fix pointers.

When an object is created, the first reference to it is necessarily globally unique (assuming
garbage collection, see Section 5.3). This trivially gives a guarantee that the fields of that
object will not change under foot until it has been made accessible to other threads. In
LOLCAT, the type annotation pristine denotes an object that has just been created, and
which is accessible through a single alias only.

2.2 Typing the Life of a List Node: Speculation, Publication and
Acquisition

This section exemplifies some of the concepts of LOLCAT by discussing the implementation
of a linked list. In a single-threaded setting this would be simple to implement even using
traditional linear types: insertion constitutes creating a new node and linking it in between
two existing nodes, and removal is done by unlinking a node. Both operations can be
implemented using simple destructive reads as no aliasing is required.

In a multi-threaded lock-free setting, the implementation gets more complicated. Firstly,
care must be taken to preserve the integrity of the list in the presence of concurrent accesses

ECOOP 2017

6:6 Relaxed Linear References for Lock-free Programming

View Type Alias’ Type
Newborn pristine Node N/A
Staged pristine Node∼next N/A
Published Node Node |elem
Acquired Node∼next Node |elem
Speculative Node |elem any
Dummy Node ||elem Node |elem

(a) Views of a list node during different stages
of its life. The Staged and Acquired views see
the next field as a reference without ownership.
The Speculative and Dummy views may not be
used to access the elem field.

N

A

pristine Node

S

pristine Node ~ next

D

Node || elem

P

Node Node ~ next
N/A

N/A Node | elem

Node | elem

Node | elem

(b) Transitions between views of a list node
during different stages of its life. The types in
red (below each view) show which aliases may
exist. See Section A for a more detailed version
of this figure.

Figure 1 Views, and transitions between views, of a list node with fields var elem and spec
next.

to the next fields. Secondly, if two threads were able to unlink the same node, there could
be data-races on the value stored in that node. For the reasons brought up in Challenge 1
and Section 1 we cannot solve this problem with traditional linearity, e.g., using destructive
reads. In LOLCAT we would implement the list nodes using a type Node with a var field
elem storing the element of the link, and a spec field next of type Node. Remember that
access to a var field is exclusive, while a spec field may be accessed concurrently. The spec
(and once) fields of a data-structure identifies the contention points.

A list Node goes through several distinct stages during its lifetime. First, the node is
created. The LOLCAT type of a newborn node is pristine Node, where pristine captures the
global uniqueness of the object. At this point, the thread holding the reference owns the
node and may initialise the elem field without the risk of data-races.

Second, the intended successor of the new node is speculatively read and written to the
next field, staging the node for publication (i.e., being inserted into the list). As a side-effect
of the field update, the type of the node changes to pristine Node∼next to denote that the
next field contains a speculation. This means that the current thread still owns the new
node, but not the node pointed to by the next field. We call writing a speculative value to a
field a tentative write. During this stage, the next field may be written to several times to
refresh the speculation, but never dereferenced. The fact that the node is pristine (and thus
has no aliases) means that no other thread has a view of the node that allows dereferencing
or updating next concurrently (cf., Challenge 3).

Once the node has been successfully published (cf. Section 2.3), its ownership is moved
from the stack of the publishing thread to the data structure on the heap. The type of the
node internal to the data structure is simply Node. The next field is no longer restricted as
the node now owns its successor, and the node is no longer pristine because global uniqueness
no longer holds; as mentioned in Challenge 2, any thread accessing the data structure may
hold a reference to any of the nodes. The type of such an alias is Node | elem, capturing that
these references are speculations that may not be used to read the elem field. Note that once
lost, pristineness can never be recovered. This is because we cannot place an upper-bound
on the existence of these aliases.

Finally, a thread can manage to acquire ownership of the node and remove it from the list.
The type of an acquired node from the view of the acquiring thread is Node∼next. Since
the restriction on elem is lifted, this field can be safely read without the risk of data-races.

E. Castegren and T. Wrigstad 6:7

a b c

a c
by

a
cz

b

a
b

c a b c
y

a
b

c
y

link

unlink

swap

y

y

Top: linking CAT, atomically moving
ownership of b from y to a and moving
ownership of c from a to b.
Middle: unlinking CAT, atomically moving
ownership of b from a to y and moving
ownership of c from b to a.
Bottom: swapping CAT, atomically moving
ownership of c from z to a and moving
ownership of b from a to y.

Figure 2 Different forms of Compare-And-Transfer. Dashed (red) arrows denote references
without ownership, i.e., results of speculation or pointers from which ownership has been transferred.

The restriction on next captures that next points to an object that is owned by someone
else (by the data structure on the heap, or by some other thread that have since acquired
the successor node). Note that there may still be aliases of the newly acquired node, and
that these will still have the type Node | elem. This is safe from a data-race perspective as
these may not be used to access the elem field.

Figure 1 shows how a node’s type reflects the view of the stage it is currently in, and
which transitions between these views are possible. The type Node || elem was not brought
up in this example, but reflects permanently burying ownership of the elem field (note how
there are no edges going out from this state in Figure 1b), turning the node into a “dummy
node” that will never access elem again. See Section 2.5 for an example where this type is
used. There is a more detailed version of Figure 1b in the appendix (cf. Section A).

2.3 Atomic Transfer of Ownership
As our main mechanism for transferring ownership between aliases we introduce a CAT
(compare-and-transfer) operation, which is purposely similar to a CAS, but with certain
syntactic restrictions. In general, a CAT has the form CAT(x.f, p1, p2), where p1 and p2
are paths of length one or two (i.e., y or y.g). Like a CAS, it atomically compares the values
of x.f and p1, and if they are the same, overwrites x.f with the value in p2. Additionally
the types and values of local variables may be updated as detailed below.

The effect of CAT(x.f, p1, p2) when successful is that ownership is transferred from
p2 to x.f, and from x.f to p1. Remember that LOLCAT guarantees linear ownership of an
object’s var fields; out of all aliases of an object, at most one alias may be used to access the
var fields of that object. Since x.f is overwritten, the transfer of ownership from the original
reference to the alias p1 is safe. Figure 2 overviews the CATs. (The eager reader will find
the formal type rules in Figure 12 and implementation details in Section 5.1.)

In the previous section, we saw two examples of ownership transfer: publishing and
acquiring a node. The syntactic variant CAT(x.f, n.next, n) is called a linking CAT and
publishes the necessarily pristine node n by writing it to x.f. It requires that the next field
is transfer restricted in n (pristine Node∼next) so that it actually contains a speculation
that could be an alias of x.f. If the CAT succeeds, n will be implicitly nullified to fully
transfer the globally unique node from the publishing thread to the heap. This corresponds
to the transition “Staged → Published” of Figure 1b.

Acquiring a node is done with an unlinking CAT of the form CAT(x.f, n, n.next).
This transfers n.next to x.f by overwriting it, and transfers ownership from the newly
overwritten reference in x.f to n. If x.f has ownership of a var field elem, the type of n must

ECOOP 2017

6:8 Relaxed Linear References for Lock-free Programming

1 struct Stack {
2 spec top : Node
3 }
4

5 struct Node {
6 var elem : T // T is some elided struct type
7 val next : Node
8 }
9

10 def push(s : Stack, e : T) : void {
11 let n = new Node; // n : pristine Node
12 n.elem = consume e;
13 let t = s.top; // t : Node | elem
14 n.next = t; // n : pristine Node ~ next
15 tryPush(s, consume n);
16 }

17def tryPush(s : Stack,
18n : pristine Node ~ next) : void {
19if (CAT(s.top, n.next, n)) {
20// link n between top and next success!
21} else {
22let t = s.top; // t : Node | elem
23n.next = t;
24tryPush(s, consume n);
25}
26}
27

28def pop(s : Stack) : T {
29let t = s.top; // t : Node | elem
30if (CAT(s.top, t, t.next)) { // unlink top
31// t : Node ~ next
32return consume t.elem;
33} else {
34return pop(s);
35}
36}

Figure 3 A Treiber Stack with linear nodes and elements. null-checks omitted for brevity.

have the elem field restricted (Node | elem), signaling that it is a speculative value (otherwise
the two references could not be aliases). After a successful CAT, the restriction on elem is
lifted from n making this reference the new owner of the field. However, since x.f now owns
the value in n.next, n must be marked to show that the field is without ownership via the
type Node∼next. This corresponds to the transition “Published → Acquired” of Figure 1b.

If n.next could change concurrently while performing CAT(x.f, n, n.next), this could
lead to inconsistencies in the list as well as duplicated ownership. As mentioned in Challenge
3, there is no hardware support for atomically comparing x.f and n and dereferencing
n.next. For this reason, the unlinking CAT requires that n.next is a stable field, either by
being a val or a once field, or by having a fix pointer installed. Section 2.5 has an example
of the latter.

Finally, a swapping CAT of the form CAT(x.f, n1, n2), can be used to switch a node
on the heap for a node on the stack. Like a linking CAT, it consumes (nullifies) the owning
reference n2 on success, and like an unlinking CAT, the ownership in x.f is transferred to
n1. Even though the nodes referred to by n1 and n2 switch owners, the views of the nodes
remain the same. Thus, there is no corresponding transition in Figure 1b.

2.4 LOLCAT in Action: Implementation of a Treiber Stack
Figure 3 shows an implementation of a lock-free Treiber stack [48] in a simple procedural
language using LOLCAT. The stack data structure is constructed of two data types, Stack
and Node. Stack “objects” hold a reference to a linked chain of nodes in its top field. In a
Treiber stack, multiple threads may read and write the top field concurrently. In LOLCAT,
top must therefore be marked as speculatable using the spec field modifier (Line 2).

Stack nodes in Figure 3 have two fields: var elem:T and val next:Node. The elem field
is a mutable field containing an element pushed onto the stack. The next field is immutable,
meaning that a node’s next node is fixed for life after publication.

Our relaxed linearity allows stack and node objects to be aliased freely, but guarantees
that for each node there may be at most one alias that can read its element field—all other
aliases must have type Node | elem. Because top’s type is Node, it is guaranteed to hold the

E. Castegren and T. Wrigstad 6:9

only pointer to the top node through which its element is accessible. The same holds for the
remainder of the stack because of the type of the next field is also Node. To enforce that the
only way to obtain an element in the stack is to first acquire the node holding it, we only
allow variables as targets of field accesses; the elem field can only be read after storing a
node into a local variable.

Pushing—Speculation & Publication. Pushing an element onto the Treiber stack is im-
plemented by the two functions push (Lines 10–16) and tryPush (Lines 17–26). In a real
programming language with loops, these would have been a single, much shorter, function.
We rely on recursion instead of loops in order to simplify the formalism in Section 3

The push function creates a new node n from the element argument and the current value
of top. The type of n is pristine Node, which means it is not (yet) visible to other threads.
With this knowledge, we can safely allow writes to immutable val fields (somewhat similar to
constructors writing final fields in e.g., Java) repeatedly, until the object is no longer pristine.

Line 13 performs a speculative read of top. Speculative reads copy references without
transferring ownership. This is visible as variable t on Line 13 has type Node|elem, which
means a node whose element field is inaccessible. Note that the spec field s.top has type
Node, meaning it does own the elem field. All reads of spec fields are speculative—they do
not transfer ownership, but create an alias to which ownership can later be transferred.

The assignment n.next = t on Line 14 is a tentative write. Although the next field in
the Node struct has type Node, we are allowed to store t in it, even though t is a speculation
and does not have the required ownership of elem (visible from it’s type Node|elem). This
prima facie type-violating field update is allowed—and sound—for two reasons:

1. It requires that we transfer-restrict next in n’s type, so that no ownership can be
transferred from next. This happens as a side-effect of the assignment in LOLCAT.

2. Since n is pristine, we know that there are no aliases to n, meaning that the type change
from Node to Node∼next is a strong update.

To obtain ownership of the object pointed to by n.next, the current thread must succeed
in overwriting the source of the speculation, s.top, while s.top == n.next holds (i.e.,
perform a successful CAT). This will allow the restriction on n’s type to be lifted, so that
aliasing this object with Node as its static type is sound.

The function tryPush takes a node n of type pristine Node∼next and attempts to replace
the current top by n. If it fails, it will re-read top, update n.next with the new value, and
re-attempt to replace top by n. Lines 22–24 are identical to lines 12–14 in push.

The pivotal line in tryPush is Line 19. It employs a linking CAT (cf. Section 2.3)
to attempt to push the node onto the stack. CAT(s.top, n.next, n) should be inter-
preted as “if no other thread has pushed or popped since we speculatively read s.top (i.e.,
s.top == n.next holds), transfer ownership from n to s.top and from s.top to n.next”.
If successful, the CAT will consume (nullify) n, transferring its ownership from the call stack
of tryPush to the top field of the stack data structure on the heap.

Popping—Acquisition. Popping elements off the stack is less involved than pushing them
onto the stack. The function pop speculatively reads the current value of top and then
employs an unlinking CAT, the dual version of the CAT in tryPush, to remove the node
from the linked structure. CAT(s.top, t, t.next) should be read as “if no other thread
has pushed or popped since we speculatively read s.top (i.e., s.top == t holds), transfer
ownership from t.next to s.top and from s.top to t”. The unlinking CAT requires n.next

ECOOP 2017

6:10 Relaxed Linear References for Lock-free Programming

s a b

oldTop1 : Node | elem

oldTop2

top : Node next : Node

elem : T

s
a

b
top : Node

next : Node
oldTop2 : Node | elem: Node | elem

oldTop1 : Node ~ next
elem : T

Figure 4 A Treiber stack before and after a successful pop.

to be a stable path (cf. Section 2.3), which is true by construction as next is a val field in
Node.

Notably, the transfer of ownership from t.next to s.top preserves the reference in
t.next. Thus, there are two aliases to the same object, both with type Node which seemingly
breaks linear ownership. However, on success, the type of t is changed to Node∼next which
captures that t.next does not own its value, statically preventing using t to obtain an
owning reference through next. Since t owns elem (otherwise the field would have been
restricted in its type), t.elem may be destructively read and returned on Line 32, without
risking data-races.

Any alias t’ of t in another thread will have the type Node | elem and can therefore not
access the element field. Since ownership has been transferred from the heap, there is no way
for these threads to subsequently acquire ownership of the node just popped: since s.top
has changed value, CAT(s.top, t’, t’.next) will fail until a thread manages to perform
the CAT with an up-to-date speculation of s.top in t’.

Element Ownership. Figure 4 shows a Treiber stack before (left) and after (right) a
successful pop, focusing on the ownership of the elements. On the left, s.top owns a.elem,
and a.next owns b.elem. The types, Node|elem of the two oldTop references prevent both
oldTops from accessing any elem fields. On the right, oldTop1 holds the unlinked node and
thus owns a.elem. Although a.next is not touched by the operation, it has lost its ownership
of b.elem to s.top. This is tracked at the type level by updating the type of oldTop1 to
Node∼next. This is consistent with the global view of next fields as val—unlike spec fields
like top, their ownership cannot be directly extracted by overwriting them using a CAT.

Summary. The Treiber stack example demonstrated spec fields and speculative reads, val
fields and stable paths, pristine values and tentative writes, and how different operations
impose or lift weak restrictions and transfer restrictions to preserve linear access to fields.
It also exemplified the two dual variants of the compare-and-transfer operation used for
publication and acquisition.

An important observation is that all three arguments to a CAT have the same type
(modulo restrictions) meaning it is tailored for recursive data structures. Although a CAT
involves multiple operations, the required restrictions on its arguments ensure that it is
always possible to implement using a single CAS with effective atomicity guaranteed.

2.5 Data Structures with Multiple Contention Points
As demonstrated by the previous example, linking and unlinking nodes in a LIFO stack can
rely on the inherent stability of val fields to avoid modification of nodes concurrent with
unlinking. This is possible because there is only a single point of contention in the data

E. Castegren and T. Wrigstad 6:11

1 def delete(l : List, key : int) : T {
2 let (left, right) = search(l, key);
3 if ((right == l.tail) || (right.key != key))
4 return null; // key does not exist, abort
5 else if (!isStable(right.next))
6 if (fix(right.next)) // Try to fix the field
7 if (CAT(left.next, right, right.next)) // Try to unlink right
8 return consume right.elem;
9 else

10 search(l, right.key); // Someone else came first. Try to help
11 return delete(l, key); // Something went wrong, retry
12 }

Figure 5 Harris-style linked list (Excerpt [10])

structure. To support data structures with multiple points of contention, we apply one of
the two other techniques for achieving stability mentioned under Challenge 3 in Section 2.1:

Fix Pointers References that cannot be overwritten. Storing a fix pointer into a field
effectively makes that field stable. Fix pointers can be implemented with a mark-bit à la
next pointers in a Tim Harris linked list [27]. The operation fix(x.f) creates a fix pointer
from the reference in x.f and subsequently installs it in the same field, returning true or
false depending on if the operation succeeds or not. Section 5.1 discusses implementation.

Once Fields Fields that can only be assigned once, after which they remain constant.
They are similar to Java’s final fields (and LOLCAT’s val fields), except that threads may
race on their initialisation. We implement once fields using fix pointers. We use a try
operation to write to once fields which implicitly creates a fix pointer and which may fail
due to concurrent writes from other threads.

While once fields can be replaced by a principled use of spec fields and fix pointers, they also
capture programmer intent in a clear way. A programmer can dynamically check for the
presence of a fix pointer using the predicate isStable. On a successful branch on isStable(x.f)
or fix(x.f), the type T of x is updated to T ∼f to reflect our knowledge that x.f is stable.

Figure 5 shows an excerpt of a Harris-style linked list [27] (full code is in the technical
report [10]) with one point of contention for each node. Inserting a node in a Harris-style
list is similar to the Treiber stack, but the possibility of concurrent modification of a node’s
next field during its unlinking (in contrast to the stack, where next fields were always val)
greatly complicates unlinking. To overcome this problem, Harris introduces a logical deletion
step, in which a node is rendered immutable by setting a low bit in its next pointer, causing
subsequent CAS operations on this field to fail. We mimic this design using fix pointers in
Figure 5. When right points to the node to be unlinked, we make sure it is not already
logically deleted by checking if it is fixed (Line 5), and then try to fix it ourselves (Line 6).

In a Michael–Scott queue [36], there are three points of contention: the first and last
pointers in the queue head, and the next pointer of the last node. For this data structure,
once fields are a perfect match, as they guarantee stability after initialisation, but allow many
threads to race to initialise the field in an enqueue operation. We show an implementation
of a Michael–Scott queue in Figure 6. Note that an empty queue contains a single dummy
node.

Enqueuing to a Michael–Scott queue is similar to pushing to a Treiber stack, with the
difference that the new node is appended rather than prepended. The try operation on Line
19 of Figure 6 attempts to write the new node to the next field of the last node. On success,

ECOOP 2017

6:12 Relaxed Linear References for Lock-free Programming

1 struct Node {
2 var elem : Elem;
3 once next : Node
4 }
5

6 struct Queue {
7 spec first : Node || elem;
8 spec last : Node | elem
9 }

10

11 def enqueue(q : Queue, x : Elem) : void {
12 let n = new Node;
13 n.elem = consume x;
14 tryEnqueue(q, consume n);
15 }
16

17 def tryEnqueue(q : Queue, n : pristine Node) : void {
18 let oldLast = q.last;
19 if (try(oldLast.next = n)) {
20 // Success, try advance last pointer, return
21 CAT(q.last, oldLast, oldLast.next);
22 } else { // help by advancing last, then retry
23 CAT(q.last, oldLast, oldLast.next);
24 tryEnqueue(q, consume n);
25 }
26 }

27def newQueue() : Queue {
28let q = new Queue;
29let dummy = new Node;
30q.first = consume dummy;
31q.last = this.first;
32return q;
33}
34

35def dequeue(q : Queue) : Elem {
36let oldFirst = q.first;
37if (isStable(oldFirst.next)) {
38// oldFirst.next has been written to.
39// Try to advance first
40if (CAT(q.first, oldFirst,
41oldFirst.next) => elem) {
42return consume elem;
43} else {
44// Someone else dequeued before us, retry
45return dequeue(q);
46}
47} else {
48// oldFirst.next has not been written to.
49// Retry or fail (here, fail)
50return null;
51}
52}

Figure 6 Michael–Scott queue.

a CAT is used to advance the last pointer. If the write fails, the once field has already been
written to, and the same CAT tries to help global progress by advancing the last pointer. In
both branches, we know that oldLast.next is stable, and so we change the type of oldLast
from Node | elem to Node | elem∼next.

Finally, we get to demonstrate the use of strong field restrictions in the type of first, i.e.,
Node || elem. Dequeuing from a Michael–Scott queue involves swinging the first pointer
forward to point to first.next, making the new first node the new dummy node and
extracting the element from it. Because first.next’s type is Node, first.next is the only
pointer with ownership of first.next.elem. When first.next is stored in first, this
ownership is lost, making the elem field globally inaccessible. To avoid this, a CAT is able
to preserve aliases of otherwise lost fields if they are strongly restricted in the target. We
call this residual aliasing, and it is shown on Line 41 of Figure 6 as => elem. This introduces
a variable elem which aliases the field of the same name in the node that was written to
q.first.

While the types of first and last differ, the fields alias when the queue is empty. This
is fine, as neither type grants ownership of the elem field. Also note that variables and/or
fields with overlapping strong restrictions cannot alias because each alias could be used to
create residual aliases of the same field.

Figure 7 shows an overview of our three example data structures. The labels on the
arrows show the fields’ modifiers and types. The legend shows what features of our system
are exercised by the example. Thick purple arrows show contended fields. Only the once
field in the node in last is contented in the Michael–Scott queue.

E. Castegren and T. Wrigstad 6:13

Figure 7 Concepts exercised in the examples.

3 Formalising Linear Ownership in LOLCAT

This section formalises the static and dynamic semantics of a simple procedural language
using LOLCAT. Without loss of generality, we exclude “normal references” and consider
all references linear. Our implementation of LOLCAT is in an object-oriented language
(cf. Section 5).

Figure 8 shows the syntax. A program P is a sequence of structs (à la C) and functions
followed by an initial expression. Structs are named sequences of fields. A field has a modifier,
a name and a type. s and f ranges over names of structs and fields. There are four modifiers
on fields that control how a field’s content may be modified and shared across threads: var
fields are mutable and unshared; val fields are immutable and shared; spec and once fields are
mutable and shared. A once field may be written once. Read–write races are only possible
on once and spec fields. Writes to such fields may fail under contention.

Types are constructed from structs. A type can be pristine, denoting a globally unaliased
value. Types may have weak and strong field restrictions, and transfer restrictions. The
meta variable T ranges over all types and the meta variable t ranges over non-pristine types.

Expressions are values (including locations in the dynamic semantics, where they are also
subscripted by static types to simplify proofs), paths (variable accesses or field accesses),
destructive reads of paths, field updates, creation of new values, function calls, forking of new
threads, let-expressions and conditionals. Without loss of generality we restrict functions to
a single parameter. More parameters can be encoded using an extra object indirection.

Conditionals branch on boolean expressions which mostly deal with contended writes
to fields which may possibly fail due to concurrent modifications: CAT publishes and/or
acquires values; try attempts to install a value in a once field; fix attempts to write a fix
pointer into a spec field; isStable allows dynamically checking if a field has been fixed.

For simplicity, we formalise our system with let bindings instead of sequences and a flow-
sensitive type system, using the standard trick of encoding sequences e1; e2 as let _ = e1 in e2.
Consequently, CAT, fix and try must be used as guards of conditionals, and we reflect changes

ECOOP 2017

6:14 Relaxed Linear References for Lock-free Programming

P ::= S F e (Program)
S ::= struct s { Fd } (Struct)

Fd ::= mod f : T (Field)
mod ::= var | val | once | spec (Modifier)

F ::= def fn(x : T) : T { e } (Function)
T ::= pristine t | t (Type)
t ::= s | t | f | t || f | t ∼f (Struct type)
e ::= vT | p | consume p | new s | x.f = e | fn(e) |

fork fn(e); e | let x = e in e | if b { e } else { e } (Expression)
p ::= x | x.f (Path)
v ::= ι | null (Value)
b ::= CAT(x.f, e, e)⇒ z | try(x.f = y) | fix(x.f, y) | isStable(x.f) (Boolean Expr.)

Figure 8 Syntax of LOLCAT. We write x to mean “many x”.

` P ` S ` Fd ` F (Declarations)

wf-program
` S ` F
ε ` e : T

` SF e

wf-struct
` Fd

` struct s {Fd }

wf-field
` T

safeOnHeap (mod, T)
` mod f : T

wf-function
x : T1 ` e : T2

` def fn(x : T1) : T2 { e }

Figure 9 Well-formed declarations

of ownership in the types differently in the different branches. When unused, we don’t write
out the residual alias (⇒ z) of a CAT. We also rely on recursion instead of loops. These
decisions were made to simplify the presentation, and are not necessary for the soundness of
the approach. For example, by employing a simple data flow analysis, we could omit several
of the local destructive reads necessary to reflect type changes.

3.1 Static Semantics
Declarations (Figure 9). The well-formedness definitions are straightforward (WF-PROGRAM,
WF-STRUCT, WF-FIELD and WF-FUNCTION). The only unusual premise is found in WF-

FIELD—the predicate safeOnHeap that prevents fields’ types to be pristine or have transfer
restrictions. Additionally, val and once fields may not be strongly restricted. The details can
be found in the technical report [10].

Types and Field Lookup (Figure 10). Top left: The type s denotes a value which is an
instance of struct s Any well-formed struct type can be pristine. Types can additionally
have weak or strong restrictions on var fields, and transfer restrictions on non-var fields.

Top right: The relation ` T T′ denotes that a value of type T can flow (be assigned)
into a field or variable of type T′. A type t1 can flow into t2 if all fields which are restricted
in t1 are also restricted in t2 (FLOW-*-L). Notably, a value with a strongly restricted field
can only flow into a variable where the same field is weakly restricted (FLOW-STRONG-L).
We use |f ∈ t to mean “f is weakly restricted in t” and similarly for the other restrictions.
For arbitrary restrictions we write f ∈ t. By FLOW-R/S, a non-restricted type can always
flow into an additionally restricted version of itself. (We write _ f to mean | f, || f, or ∼f.)
A pristine type can flow into another pristine type (FLOW-PRIST-PRIST), and pristineness
can be forgotten if the underlying types are flow-related (FLOW-PRIST).

E. Castegren and T. Wrigstad 6:15

` T (Well-formed type)

t-struct
S (s) = Fd
` s

t-p
` t

` pristine t

t-weak
` t

F(t, f) = var f : T

` t| f

t-strong
` t

F(t, f) = var f : T

` t ‖ f

t-transfer
` t ∼ f /∈ t

F(t, f) = mod f : T mod 6= var
` t ∼ f

` T T′ (Type flow)

flow-weak-l
|f ∈ t′ ` t t′

` t| f t′

flow-strong-l
|f ∈ t′ ` t t′

` t ‖ f t′

flow-transfer-l
∼ f ∈ t′ ` t t′

` t ∼ f t′

flow-r
` s t

` s t_ f

flow-s

` s s

flow-prist-prist
` pristine t t′

` pristine t pristine t′

flow-prist
` t t′

` pristine t t′

F(T, f) = mod f : T′ (Field lookup)

lkup-f-weak
f 6= g F(t, f) = mod f : T

F(t| g, f) = mod f : T

lkup-f-strong
f 6= g F(t, f) = mod f : T

F(t ‖ g, f) = mod f : T

lkup-f-transfer-eq
F(t, f) = mod f : T

F(t ∼ f , f) = val f : T

lkup-f-transfer-neq
f 6= g F(t, f) = mod f : T

F(t ∼ g, f) = mod f : T

Figure 10 Typing and selected field lookup (F) rules.

Bottom: A weakly or strongly restricted field cannot be accessed at all (LKUP-F-WEAK),
(LKUP-F-STRONG). A transfer restricted field appears stable (LKUP-F-TRANSFER-*). For
brevity, we relegate some cases of field from Figure 10 to the technical report [10].

Expressions (Figure 11). To keep track of the static types of locations in the dynamic
semantics, we subscript values with the static type of the expression from which they were
reduced. For example, if x has static type T, and holds null at run-time, we write nullT in
the program under reduction. Type subscripts are only used to simplify the proofs, and do
not affect the semantics of a program.

As usual, null can have any valid type (E-NULL). A location is well-typed if its dynamic
type can flow into its subscripted (static) type (E-LOC). Typing locations in a program under
reduction is only used in the meta-theory. Linear variables can be read non-destructively if
the type is not pristine and all var fields are forgotten in the resulting type (E-VAR). We
use the helper function restrict(T) to restrict all var fields in a type T, preserving the linear
ownership of any var fields in x. Similarly, fields can be read non-destructively if all var
fields are forgotten in the resulting type (E-SELECT). By design, once fields cannot be read
directly, but must first be checked to have a value using isStable(x.f). This restricts the
field, making it appear as an (accessible) val field (B-STABLE) (cf., Figure 13).

Destructively reading a variable or field transfers its value to the stack of the current thread.
As the values are transferred, they are not restricted (E-CONSUME-VAR, E-CONSUME-FD).
By design, destructive reads are only available on var fields and always succeed.

Values are created from well-formed struct declarations and start in a pristine state
(E-NEW). A value remains pristine until written to the heap (i.e., it is published).

ECOOP 2017

6:16 Relaxed Linear References for Lock-free Programming

Γ ` e : t (Expressions)

e-null
` T ` Γ
Γ ` nullT : T

e-loc
Γ(ι) = s ` s T ` Γ

Γ ` ιT : T

e-var
Γ(x) = t ` Γ
Γ ` x : restrict (t)

e-select
` Γ Γ(x) = Tx

F (Tx , f) = mod f : Tf
mod /∈ {var, once}

Γ ` x.f : restrict (Tf)

e-consume-var
Γ(x) = T ` Γ
Γ ` consume x : T

e-consume-fd
` Γ Γ(x) = Tx

F (Tx , f) = var f : Tf

Γ ` consume x.f : Tf

e-new
` s ` Γ

Γ ` new s : pristine s

e-update
Γ(x) = Tx

F (Tx , f) = var f : Tf
Γ ` e : T ` T Tf

Γ ` x.f = e : Tx

e-update-pristine
Γ(x) = pristine tx F (tx , f) = mod f : Tf
mod ∈ {val, spec} Γ ` e : T ` T Tf

Γ ` x.f = e : pristine tx

e-update-tentative
Γ(x) = pristine tx F (tx , f) = mod f : Tf

mod ∈ {val, spec} Γ ` e : T 6 ∃ g . ∼ g ∈ T
6 ∃ g . ‖ g∈ T 6 ∃ g . ‖ g∈ Tf Tf 6= T ` Tf T

Γ ` x.f = e : pristine tx ∼ f

e-if
Γ ` b a Γ′

Γ′ ` e1 : T Γ ` e2 : T

Γ ` if (b) { e1 } else { e2 } : T

e-call
P (fn) = (x : T1, T2, e2)

Γ ` e1 : T1

Γ ` fn(e1) : T2

e-fork
P (fn) = (x : T1, T2, e2)
Γ ` e1 : T1 Γ ` e : T

Γ ` fork fn(e1); e : T

e-let
Γ ` e1 : T1

Γ, x : T1 ` e2 : T2

Γ ` let x = e1 in e2 : T2

Figure 11 Well-typed expressions. P denotes function lookup.

As var fields are only accessible to one thread at a time, access is data race-free. The
resulting value of a field update x.f = e is the target x, which is consumed in the process
(E-UPDATE). By binding the result in a let-expression we can track type changes to the target
(see below). With a fully flow-sensitive type system, such a trick would not be necessary.

Pristine targets allow updating val and spec fields without the use of a CAT (E-UPDATE-

PRISTINE). Since pristine values are unaliased, updates to a val field are not visible to
other threads, and writes to spec fields are uncontended. We are allowed to assign a
weakly restricted value into an unrestricted field to perform a tentative write (E-UPDATE-

TENTATIVE). This causes a strong update of the target that restricts the field written to,
which prevents unsoundly extracting an owning alias of the speculative value. We are however
allowed to publish the pristine object with a linking CAT, overwriting the source of the
speculation. This confirms the validity of the speculation and lifts the restriction on the field
(cf., B-CAT-LINK in Figure 12). To maintain the property that a strongly restricted field is
globally inaccessible, we disallow tentative writes when either type involved has any strongly
restricted fields1.

1 This is strictly not necessary since the field written to will be transfer restricted, which keeps the value
inaccessible. However, showing this is complicated, and there doesn’t seem to be much to gain from
allowing it.

E. Castegren and T. Wrigstad 6:17

Γ ` b a Γ′ (Compare and transfer)

b-cat-link
` Γ Γ(x) = Tx Γ(y) = pristine ty ∼ g
F (Tx , f) = spec f : Tf F (ty ∼ g, g) = val g : Tg

` Tf Tg ` ty Tf

Γ ` CAT (x.f , y.g, y) a Γ

b-cat-unlink
` Γ Γ(x) = Tx Γ(y) = Ty

F (Tx , f) = spec f : Tf F (Ty, g) = val g : Tg

` Tf Ty ` Tg Tf

Γ ` CAT (x.f , y, y.g) a Γ[y 7→ Tf ∼ g]

b-cat-swap
` Γ Γ(x) = Tx Γ(y) = Ty Γ(z) = Tz

F (Tx , f) = spec f : Tf ` Tf Ty ` Tz Tf

Γ ` CAT (x.f , y, z) a Γ[y 7→ Tf]

b-cat-residual
Γ(x) = Tx F (Tx , f) = spec f : Tf
‖ g∈ Tf Γ ` CAT (x.f , p1, p2) a Γ′

Γ ` p2 : T2 F (T2, g) = var g : Tg

Γ ` CAT(x.f , p1, p2)⇒ zg a Γ′[zg 7→ Tg]

Figure 12 Compare and transfer.

For simplicity, we propagate type changes through if statements (E-IF). With a fully
flow-sensitive type system operations such as writing to once fields could appear anywhere,
as the field will be stable regardless of whether the write succeeds or not. The type rules for
boolean expressions b are found in Figure 12 and Figure 13. The else branch of if statements
always maintains the environment.

Function calls, forking and let-bindings are straightforward.

Compare and Transfer (Figure 12). Compare and transfer comes in three forms (cf.,
Figure 2): link (CAT(x.f,y.g,y)) inserts an object in a chain of links; its dual, unlink
(CAT(x.f,y,y.g)) removes an object from a chain; swap (CAT(x.f,y,z)) trades places
of whole trees dominated by the arguments of the CAT. To highlight these differences, we
describe each form in a separate type rule.

On success, CAT operations may modify the environment by lifting restrictions on var
fields in local variables involved in the CAT, or by adding residual aliases. Residual aliases
are otherwise lost as a side-effect of strong field restrictions on the value being transferred.
For simplicity, we consider only a single residual alias, whose type is inferred from the types
involved in the CAT. For example, if transferring a value of type T into a field of type T || f,
the residual alias be the value of the f field.

By B-CAT-LINK, inserting an object o to create a chain of links o1.f → o.g → o2 · · ·
requires that o is pristine and that its g field is transfer restricted. The requirement that it is
pristine guarantees that the g field is not modified concurrently. The restriction requirement
ensures that g actually contains a speculation, and prevents using o to obtain an owning
reference from o.g (cf., E-UPDATE-TENTATIVE). The field f where o is inserted must be a
spec field and have a type that o can flow into when the transfer restriction on g is lifted.

By B-CAT-UNLINK, unlinking the object o from the chain above requires that its g field
is stable (note that transfer restricted spec and once fields appear as val fields) and that
the target is a spec field with a type that o.g can flow into. A successful transfer installs
an owning reference to o in y, but with the g field transfer restricted. This allows keeping
the reference in o.g to avoid confusing other threads accessing o concurrently, but prevents
violating linearity by using y to turn o.g into an owning reference.

The rule for swapping two owning references, B-CAT-SWAP, corresponds to a common
CAS, except that we require the target field to be explicitly denoted speculatable.

ECOOP 2017

6:18 Relaxed Linear References for Lock-free Programming

Γ ` b a Γ′ (Fix pointers and once fields)

b-try
` Γ Γ(x) = Tx Γ(y) = pristine ty

F (Tx , f) = once f : Tf ` ty Tf

Γ ` try (x.f = y) a Γ[x 7→ Tx ∼ f]

b-fix
` Γ Γ(x) = Tx Γ(y) = Ty

F (Tx , f) = spec f : Tf ` Tf Ty

Γ ` fix (x.f , y) a Γ[x 7→ Tx ∼ f]

b-stable
` Γ F (Tx , f) = mod f : Tf Γ(x) = Tx mod ∈ {once, spec}

Γ ` isStable (x.f) a Γ[x 7→ Tx ∼ f]

Figure 13 Operations on fix pointers and once fields.

By B-CAT-RESIDUAL, a successful CAT will produce a residual alias from a strongly
restricted field whose value would otherwise be lost. For example, transferring a pointer
ι with ownership over ι.g holding v into some field whose type strongly restricts g would
lead to the program globally losing access to v in the program. Thus, v can be “saved” as a
residual alias (⇒ zg in the figure).

Fix Pointers (Figure 13). Writes to once fields must be performed using try and placed in
an if statement to handle both possible outcomes (success and failure). After a successful
write to a once field, we update the type of the target to prevent further writes to the field by
the current thread (B-TRY). This restriction means field lookups will make the field appear
as a val field, which is needed for the linking and unlinking CATs. If the write fails, the field
is also stable as it is already written to (cf., Section 2.5). For simplicity we omit that type
change in the formalism, as adding a call to isStable in the else branch gives the same result.
Even though the type change is only visible in the first branch of the if statement, having
an unrestricted alias is fine as subsequent attempted writes will fail. While writes to once
fields are discernible through the target’s type, we use specialised syntax to highlight that its
semantics is different from a normal assignment (which always succeeds).

A speculatable field can be fixed, which causes all future writes to it to fail (B-FIX). Since
fix pointer creation involves a contended write, we require a witness of the intended value.
Fixing the pointer will succeed if the witness is equal to the field. Like with try, a successful
fix changes the type of x to a type where f is transfer restricted. The same type change
occurs when checking if a field has a fix pointer installed (B-STABLE).

3.2 Dynamic Semantics

A configuration is a triple 〈H;V ;T 〉. H is a heap mapping locations ι to structs (s, F),
where s is the type of the struct and F is a map from field names to values. V is a map
from variables to values and their static types. The types of structs and variables are only
recorded to simplify meta-theoretic reasoning and do not affect the semantics of a program.
T is a list e1|| . . . ||en of expressions running in parallel, that never block and can step at any
time.

To simplify the meta-theoretic reasoning, we subscript values on the stack with their
static type. Values on the heap are subscripted by φ ::= ε | ∗ which captures whether a
reference is a fix pointer (∗) or may be overwritten (ε). This corresponds to a Harris-style
mark bit in a pointer [27].

E. Castegren and T. Wrigstad 6:19

cfg ↪→ cfg′ (Dynamic semantics)

d-var
V (x) = vT

〈H ; V ; x〉 ↪→ 〈H ; V ; vrestrict (T)〉

d-consume-var
V (x) = vT

〈H ; V ; consume x〉 ↪→ 〈H ; V [x 7→ nullT]; vT〉

d-consume-fd
V (x) = ιT H (ι) = (s,F) F(f) = vφ F (T, f) = mod f : T′

〈H ; V ; consume x.f 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ nullε])]; V ; vT′〉

d-select
V (x) = ιT

H (ι)(f) = vφ F (T, f) = mod f : T′

〈H ; V ; x.f 〉 ↪→ 〈H ; V ; vrestrict (T′)〉

d-new
ι fresh S (s) = modi fi : Ti

n

〈H ; V ; new s〉 ↪→ 〈H , ι 7→ (s, fi 7→ nullε
n); V ; ιpristine s〉

d-update
V (x) = ιTx H (ι) = (s,F) T′ = updateReturnType (Tx , f , T)
〈H ; V ; x.f = vT〉 ↪→ 〈H [ι 7→ (s,F [f 7→ vε])]; V [x 7→ nullTx]; ιT′〉

Figure 14 Dynamic Semantics 1/2 (Uncontended operations).

The amount of branching to deal with success and failure of contended operations makes
the dynamic semantics surprisingly large for such a small language. In this submission, we
therefore relegate the less interesting rules (let bindings, function calls, parallelism, etc.) to
the technical report [10].

To track local type changes in the branches of if expressions, we employ a dynamic
variable substitution scheme. The expression x:T[e] should be read as “e with the type of x
changed to T”. The details can be found in the technical report [10].

Uncontended Operations (Figure 14). The rules D-VAR and D-SELECT show that vari-
ables and fields may be read non-destructively, creating an alias with a restricted type.
Destructively reading a variable or field preserves linearity. The rules D-CONSUME-* show
how the source variable or field is nullified as a side-effect of a consume. Note that destruct-
ively reading a field is uncontended because the static semantics requires that the target is
an owning reference. By D-NEW, new objects are pristine and have their fields initialised to
null.

The rule D-UPDATE captures the semantics of an uncontended field update. The helper
function updateReturnType calculates the subscript for the return value, based on the static
types of the receiver and right-hand side value (cf., E-UPDATE-*). Note that the receiver
variable is nullified in the process, and the entire expression instead returns a new alias of the
receiver with an updated type. This is a simple implementation of tracking how a variable
changes types due to tentative writes (cf., E-UPDATE-TENTATIVE).

Contended Operations (Figure 15). Because of the possibility of failure, contended op-
erations are wrapped in conditionals, causing them to appear somewhat unwieldy. D-CAT-

SUCCESS describes a successful CAT (vε = v2). The rule abstracts over the three possible
shapes of CAT using the helper macro C, which returns a map ρ showing how variables’
types are changed in the then branch, and an assignment map α of variables to be nullified.
ρ(e) denotes an expression with all substitutions in ρ performed. α(V) denotes a variable

ECOOP 2017

6:20 Relaxed Linear References for Lock-free Programming

cfg ↪→ cfg′ (Dynamic semantics)

d-cat-success
V (x) = ιTx H (ι) = (s,F) F(f) = vε 〈H ; V ; p1〉

∗
↪→ v1T1 vε = v1

〈H ; V ; p2〉
∗
↪→ v2T2 F (Tx , f) = mod f : Tf C (Tf , T2, (p1, p2)) = (ρ, α)

〈H ; V ; if (CAT (x.f , p1, p2)) { e1 } else { e2 } 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ v2ε])];α(V); ρ(e1)〉

d-cat-residual
〈H ; V ; if (CAT (x.f , p1, p2)) { e1 } else { e2 } 〉 ↪→ 〈H ′; V ′; e′1〉

V (x) = ιTx H (ι)(f) = vε 〈H ; V ; p1〉
∗
↪→ v1T1 vε = v1

〈H ; V ; p2〉
∗
↪→ ιT F (T, g) = var g : Tg H (ι)(g) = v′φ z ′ fresh e′′1 = e′1[zg 7→ z ′]

〈H ; V ; if (CAT(x.f , p1, p2)⇒ zg) { e1 } else { e2 } 〉 ↪→ 〈H ′; V ′, z ′ 7→ v′Tg ; e′′1 〉

d-try-success
V (x) = ιTx V (y) = v1Ty H (ι) = (s,F) F(f) = v2ε

〈H ; V ; if (try (x.f = y)) { e1 } else { e2 } 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ v1∗])]; V [y 7→ nullTy];x:Tx∼f [e1]〉

d-fix-success
V (x) = ιTx H (ι) = (s,F) F(f) = v1ε V (y) = v2Ty v1ε = v2

〈H ; V ; if (fix (x.f , y)) { e1 } else { e2 } 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ v2∗])]; V ;x:Tx∼f [e1]〉

d-cat-fail
V (x) = ιTx H (ι)(f) = vφ 〈H ; V ; p1〉

∗
↪→ v1T1 vφ 6= v1

〈H ; V ; if (CAT (x.f , p1, p2)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

d-try-fail
V (x) = ιTx H (ι)(f) = v∗

〈H ; V ; if (try (x.f = y)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

d-fix-fail
V (x) = ιTx H (ι)(f) = v1φ V (y) = v2T v1φ 6= v2

〈H ; V ; if (fix (x.f , y)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

d-stable-true
V (x) = ιT H (ι)(f) = v∗

〈H ; V ; if (isStable (x.f)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ;x:T∼f [e1]〉

d-stable-false
V (x) = ιT H (ι)(f) = vε

〈H ; V ; if (isStable (x.f)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

where the form of CAT is chosen by the shape of the arguments:

(link) C(_, T, (y.g, y)) = (∅, {y = nullT})
(unlink) C(T,_, (y, y.g)) = ({y : T ∼g}, ∅)

(swap) C(Tf , Tz, (y, z)) = ({y : Tf}, {z = nullTz})

Figure 15 Dynamic Semantics 2/2 (Contended operations). Note that v∗ 6= v′ for all v and v′.

E. Castegren and T. Wrigstad 6:21

Γ ` cfg Γ ` H Γ; T ` F Γ ` T (Well-formed configuration)

wf-cfg
Γ ` H Γ ` V Γ ` T
` pristineness (H ,V ,T)

` strongRestrictions (H ,V ,T)
` linearOwnership (H ,V ,T)

Γ ` 〈H ; V ; T〉

wf-heap
∀ ι.Γ(ι) = s ⇒ H (ι) = (s,F)

dom (H) ⊆ dom (Γ)
∀ ι.H (ι) = (s,F)⇒ Γ; s ` F

Γ ` H

wf-vars
∀ x.Γ(x) = T⇒ V (x) = vT

dom (V) ⊆ dom (Γ)
Γ ` V

wf-f-val
F (s, f) = mod f : T

Γ ` vT : T Γ; s ` F
Γ; s ` F , f 7→ vφ

wf-f-empty

Γ; s ` ε

wf-t-e
Γ ` e : T

Γ ` e

wf-t-fork
Γ = Γ1 + Γ2

Γ1 ` e Γ2 ` T
Γ ` e ‖ T

` Γ (Well-formed static typing environment)

wf-env-e

` ε

wf-env-x
` Γ x 6∈ dom (Γ) ` T

` Γ, x : T

wf-env-l
` Γ ι 6∈ dom (Γ) ` s

` Γ, ι : s

Figure 16 (Top) Well-formed configuration. Definitions of pristineness and linearOwnership can
be found in Section 4. (Bottom) Typing environment.

map extended with the assignments of α.

The third argument of a CAT is nullified in linking or swapping CATs. In the case of an
unlinking or swapping CAT, the second argument of the CAT gets a new type corresponding
to the respective static rules. D-CAT-RESIDUAL shows how additionally a residual alias can
be introduced as a fresh variable z′, as long as the underlying CAT succeeds. This rule uses
direct substitution in the form of e[zg 7→ z′] rather than x:T[e]. This is because there is no
change of types involved in residual aliasing.

〈H;V ; p〉 ∗↪→ vT denotes the side-effect free evaluation of a stable path p. While we reduce
the whole CAT in a single step, the type system rejects programs where the arguments p1
and p2 can change under foot—by B-CAT-* all paths are either local variables or stable val
fields. Thus, the size of this atomic step is not important for the soundness or feasibility of
our approach.

If the second argument of a CAT is not equal to the first, the write fails (D-CAT-FAIL).
By definition, a fix pointer v∗ is not equal to any value. (This is implemented by the CAS
because fix pointers have their least significant bit set, which no aliases on the stack will).

Writing to a once field succeeds if the field is not yet fixed (D-TRY-SUCCESS). If the field
is already fixed (H(ι)(f) = v∗) the write fails (D-TRY-FAIL). Creating and installing a fix
pointer is a contended write that attempts to update the existing value v of a field with
v∗ (D-FIX-SUCCESS). It atomically compares the current value stored in the field with the
expected value, and if they are the same, updates the field with a fixed alias of the value.
The operation fails if the expected value is not equal to the field value (D-CAT-FAIL).

D-STABLE-* checks whether a field contains a fix pointer or not.

ECOOP 2017

6:22 Relaxed Linear References for Lock-free Programming

4 Meta Theory

This sections describes the key properties of LOLCAT and sketches the proofs of why they
hold. Full proofs can be found in the technical report [10]

Figure 16 defines well-formed configurations and environments. The definitions of a
well-formed heap H and variable map V state that they are modelled by the environment
Γ. In a well-formed heap, all objects have fields with values corresponding to their static
type. A well-formed thread structure T consists of well-typed expressions. The “frame rule”
Γ = Γ1 + Γ2 in WF-T-FORK makes sure that two parallel expressions cannot access the same
local variables.

The rest of this section deals with three key definitions: pristineness states that if a
reference has pristine type, then this reference has no aliases (this guarantees that such
references are globally unique); strongRestrictions states that a strongly restricted field is
globally inaccessible (cf., the rely-guarantee interpretation in Section 2.1) and that two
aliases cannot strongly restrict the same field; linearOwnership states that if two references
are aliases that both allow reading the same var field, the static type of the paths to one of
the references must prevent acquisition of the reference’s ownership.

We prove the preservation of these properties separately, as a part of proving that well-
formedness is preserved by the dynamic semantics. As a corollary of linearOwnership we
show that reading or writing a var field is always free from data-races. To save space here,
we summarize all the preservation properties with the following schema. The full definitions
and proofs can be found in the technical report [10].

I Preservation of X. If a well-formed configuration 〈H;V ;T 〉 can take a step to 〈H ′;V ′;T ′〉,
this configuration will uphold X:

Γ ` 〈H;V ;T 〉 ∧ 〈H;V ;T 〉 ↪→ 〈H ′;V ′;T ′〉 ⇒ ` X

All three properties involve reasoning about the set of references in a configuration.
A reference r ranges over fields ι.f in H, variables x in V , and locations ι appearing as
subexpressions in T . Note that a reference is not an object but a means to access an object:
after executing let x = y, x and y have the same value (are aliases), but are distinct references.
If x is reduced to ι, this value, a (sub)expression in T , is also a distinct reference that aliases
x and y.

The set of movableReferences is a subset of references and contains all r’s whose value
can be fully transferred into fields or variables of the same type. References in val and once
fields are fixed, and therefore never in movableReferences. We explain the notation and the
properties of references we are interested in below.

H;V ` r : T means r has the (static) type T
H;V ` r ↪→ v means r has the value v
H;V ` r owns ι.f means the value of r is ι and the field f is unrestricted in the type of r
H;V ` r reaches ι.f means there is a path from r to ι.f that does not include restricted

fields, and where all references in the path have types where f is unrestricted
H;V ` r reaches ι.f through r′ means r reaches a field ι.f through a path that ends with

the reference r′

The intuition for the reachability properties is that if r reaches some field ι.f , that field
can be accessed through a series of operations on r. Note that LOLCAT does not allow the
expression x.f.g, but requires x.f to first be read into a local variable z. Thus, if x.f owns

E. Castegren and T. Wrigstad 6:23

H;V ` r owns ι.f H;V ` r reaches ι.f [through r′] (see caption)

ref-owns
H ; V ` r ↪→ ι H ; V ` r : T

F (T, f) = mod f : Tf
f 6∈ T

H ; V ` r owns ι.f

ref-reaches-owns
H ; V ` r owns ι.f

H ; V ` r reaches ι.f

ref-reaches-transitive
H ; V ` r : T f 6∈ T

H ; V ` r ′ : T′ ` T′ T
H ; V ` r reaches r ′

H ; V ` r ′ reaches ι.f
H ; V ` r reaches ι.f

ref-reaches-residual
H ; V ` r : T ‖ f ∈ T

H ; V ` ι′.g : T′ ` T′ T
H ; V ` r owns ι′.g

H ; V ` ι′.g reaches ι.f
H ; V ` r reaches ι.f

ref-reaches-through
H ; V ` r : T f 6∈ T H ; V ` r ′ : T′ ` T′ T

H ; V ` r reaches r ′ H ; V ` r ′ owns ι.f
H; V ` r reaches ι.f through r ′

Figure 17 Reference reachability.

g, we will require proper operations (e.g., CAT or consume) to obtain z. How reachability
changes after a successful pop in the Treiber Stack of Section 2.4 was illustrated in Figure 4.

Figure 17 defines reachability formally. Note that a reference with a strong restriction on
a field f , and that owns some field through which it can reach another field ι.f , also reaches
ι.f (REF-REACHES RESIDUAL). This is because a series of CATs ending with the extraction
of a residual alias of ι.f . REF-REACHES RESIDUAL instantiated for the Michael–Scott queue
of Figure 6 states that q.head reaches q.head.next.elem because elem is strongly restricted
in q.head’s type, and it owns q.head.next, which in turn reaches q.head.next.elem. On
lines 40-41 of Figure 6, q.head is overwritten and a residual alias elem is introduced. Note
that after this operation, q.first no longer reaches its own elem field.

Pristineness. The pristineness property states that if r is a reference of pristine type, there
is no other reference r′ that has the same value:

` pristineness(H,V, T) ≡
∀r ∈ references(H,V, T) .
H;V ` r : pristine t ∧H;V ` r ↪→ ι⇒
∀r′ ∈ references(H,V, T) .
H;V ` r′ ↪→ ι⇒ r = r′

Proof sketch. We prove preservation of pristineness by induction over the structure of T .
By assumption 〈H;V ;T 〉 is well-formed, and in particular all existing pristine references are
globally unique. It is straightforward to show that reduction does not create any aliases of
pristine references without nullifying that reference. J

Strong Restrictions. References with strongly restricted fields rely on these fields being
globally inaccessible, which allows the creation of residual aliases. This precludes the existence
of two aliasing references that strongly restrict the same field. If this was the case, they
could both be used to extract the same residual alias, which would violate linear ownership.

To capture this, strongRestrictions states that if a reference r has the value ι and a type
with a strongly restricted field f , ι.f is globally unreachable. Additionally, there can be no

ECOOP 2017

6:24 Relaxed Linear References for Lock-free Programming

other reachable alias of r that also has f strongly restricted (unreachable is defined later):

` strongRestrictions(H,V, T) ≡
∀r ∈ references(H,V, T) .
H;V ` r : T ∧ ‖ f ∈ T ∧ H;V ` r ↪→ ι⇒
unreachable(ι.f) ∧
∀r′ ∈ references(H,V, T) .
H;V ` r′ : T′ ∧ ‖ f ∈ T′ ∧ H;V ` r′ ↪→ ι⇒
r = r′ ∨H;V ` unreachable(r′)

This property exemplified for the Michael–Scott queue of Figure 6 states that the field
q.head.elem must be globally unreachable at all times, and that there can be no aliases of
q.head that also has elem strongly restricted. Note that strongRestrictions also precludes
any other references into the queue with a strongly restricted elem field as this would violate
the reachability provided through REF-REACHES-RESIDUAL (cf., Figure 17).

Proof sketch. We prove preservation of strongRestrictions by induction over the structure
of T . It is straightforward to show that a strongly restricted field f is always globally
inaccessible since a value that flows into a reference where f is strongly restricted must have
f unrestricted. The source of this value, which by linearOwnership held the sole ownership
of f , is nullified or buried in the process. The same constraints on how values may flow
into strongly restricted references make it straightforward to show that two such reachable
references will never alias. J

Linear Ownership. Our relaxed notion of linearity allows unlimited aliasing, as long as
ownership is linear. Operations maintains linearity by either transferring a pointer (CAT or
consume), adding field restrictions on the source reference (possibly in combination with fix
pointers), or by making the source reference inaccessible to the program (cf., alias burying
[4]). The latter is captured by unreachable:

H;V ;T ` unreachable(r) ≡
r = ι.f∧
6 ∃r′ ∈ movableReferences(H,V, T) . H;V ` r′ reaches r

After a tentative write, e.g., Line 14 in Figure 3, the field written to will have overlapping
ownership with some other reference. The tentative write changes the type of the target to
one where the written field is transfer restricted, so the field is no longer considered reachable
through the target. Since the target is a pristine value it has no aliases, and so the field is
globally unreachable. Note that variables and locations are always considered reachable.

Sometimes an alias is reachable, but only from references whose types prevent them from
transferring the ownership out of the reference. To reasoning about these situations we define
a notion of ownership burying:

H;V ;T ` buried(r, ι.f) ≡
H ` stableField(r) ∧
6 ∃r′ ∈ movableReferences(H,V, T) . H;V ` r′ reaches ι.f through r

Let r be a reference whose value is ι. Now, r’s ownership of the field ι.f is buried if
r is some stable field y.g (i.e., is a val field or contains a fix pointer), and there are no
movable references that can reach ι.f through it. Stability of y.g ensures that we cannot CAT
against y.g to acquire the value in ι.f (for example by unlinking ι: z = y.g;CAT(y.g, z, z.g′)).

E. Castegren and T. Wrigstad 6:25

The condition that no references reach ι.f through y.g ensures that even if there is some
speculatable field x.f ′ aliasing y (x.f ′ reaches y.g which in turn owns ι.f), and we swing
x.f ′ forward to alias y.g by CAT(x.f ′, y, y.g), the type of x.f ′ does not grant access to f .
This was exemplified in Figure 4: after the pop, the field a.next still owns b.elem, but this
ownership is buried (and therefore benign).

Finally, linearOwnership states that if two different references in a configuration alias
some location ι, and can read or write the same var field ι.f (they both own ι.f), then
either (1) one of the references’ ownership of ι.f is buried, or (2) one of the references is
unreachable:

` linearOwnership(H,V, T) ≡
∀ι, f . H ` varField(ι.f)⇒
∀r1, r2 ∈ references(H,V, T) .
H;V ` r1 owns ι.f ∧H;V ` r2 owns ι.f ⇒
r1 = r2
∨H;V ;T ` buried(r1, ι.f) ∨H;V ;T ` buried(r2, ι.f) (1)
∨H;V ;T ` unreachable(r1) ∨H;V ;T ` unreachable(r2) (2)

Note that a reference ι′.g being unreachable still allows aliases of ι′, but any such alias
must have g transfer restricted, meaning it appears as a val field and cannot be acquired by
a CAT.

Proof sketch. We prove preservation of linearOwnership by induction over the structure
of T , making sure that whenever an alias owning some var field is introduced, (1) and (2)
are preserved. The proof also shows that no configuration changes affect reachability from
existing references in such a way that (1) or (2) is violated.

In any well-formed configuration we have a set of references r (fields, variables and free
locations) for which linearOwnership holds. An observation we make use of in the proof is
that if we step to a configuration where the new set of references r′ is a subset of r and any
types that might have changed are more restricted than the original types we do not break
(1) or (2), since these are ultimately concerned with which references are not reachable. The
intuition here is that removing a reference cannot make a previously unreachable reference
reachable. Similarly, restricting fields in the type of a value will not enable reaching any
references previously unreachable since restrictions shrink the set of reachable fields. J

Corollary: Data-Race Free Var Field Accesses. A corollary of linearOwnership is that
two variables on the stack can never alias unless the intersection of their accessible var fields
is empty. This means that reading or writing a var field x.f is always free from data-races,
as there can never be a variable y aliasing x that can read or write the same field.

5 Prototype Implementation & OO Support

We have a prototype implementation of LOLCAT in a fork of the Encore programming
language [9]. Encore is an actor-based object-oriented programming language with trait-
based inheritance and a capability-based type system that includes a linear capability
denoting the only reference to an object in the system, and a subordinate capability denoting
a reference that may not escape its enclosing structure (key to providing actor isolation).

We extend Encore with a lockfree capability, once fields, spec fields, and associated
operations. Speculative reads are explicated using a speculate keyword. An object with a

ECOOP 2017

6:26 Relaxed Linear References for Lock-free Programming

lockfree capability must not contain var fields, and may thus be aliased freely. We restrict
once and spec fields to hold values whose types are both linear and subordinate, and relax the
semantics of the linear capability to allow non-destructive reads following the LOLCAT rules.
As subordinate objects may not escape their enclosing objects, this restricts the data-flow of
linear references and encapsulates all shared mutable state inside lockfree capabilities. This
is useful for garbage collection (cf. Section 5.3) and keeps LOLCAT specific types isolated.

We have used our prototype to implement the examples of this paper (using loops rather
than recursion). Additionally we have implemented a dictionary based on Fomitchev and
Ruppert’s lock-free skip list [19], as well as a set based on the lock-free binary search tree
by Ellen et al. [16]. LOLCAT can also be used to implement simpler constructs such as
spin-locks, a variant of which has been used to implement the lazy list-based set by Heller
et al. [29].

5.1 Implementing CAT and Fix Pointers

The Encore compiler is a source-to-source translator from Encore into C11. The spec fields
and once fields are implemented as word-aligned fields in structs that correspond to classes.
Fix pointers are implemented using a mark bit in the least significant bit of pointer addresses.
Consequently, reading speculative fields and once fields involve masking this bit out which
causes some overhead.

Well-typed linking and unlinking CATs desugar into several statements surrounding a
swapping CAT. The statement if CAT(x.f, y, y.g) then e1 else e2, desugars to:

let tmp = speculate y.g in // tmp fresh
if CAT(x.f, y, tmp) then e1 else e2

The swapping CAT is translated into C as CAS(&x.f, y, tmp). The try and fix expressions
are translated similarly, but also manipulate the mark bit; e.g., try(x.f, y) desugars into:

void *z = mark_least_significant_bit(y); CAS(&x.f, y, z);

Future work involves support for installing fix pointers in multiple fields of the same
object atomically through a double-word CAS in the case of two (adjacent) fields, and a
hidden pointer indirection to an immutable tuple of pointers in the case of more than two
fields.

5.2 LOLCAT and Object-Oriented Programming

Extending LOLCAT with support for object-oriented programming is straightforward. The
key problem going from procedural to object-oriented is solving the issue of self typing in the
presence of field restrictions. In a procedural setting, changing the type of a variable x from T
to T | f propagates the restriction on f because x must be passed to all functions as an explicit
argument, requiring that the function’s signature has a type which is at least as restrictive.
With object-oriented programming, care must be taken so that the restriction does not only
apply to the client view of the object but to the object’s view of itself. Several approaches
exist in the literature: annotate each method to reflect the self type (e.g., [39, 50]); employ
an effect system [47] that captures what variables are read and disallow x.m() on x : T | f if
m reads or writes x (e.g., [24, 11]); or use program analysis.

While Encore does not have an effect system as such, traits in Encore explicitly require
fields and provide methods. A trait’s methods can only use fields it requires. This enables
straightforward field restrictions: if x : T | f, then x.m() is allowed only if m is defined

E. Castegren and T. Wrigstad 6:27

in a trait that does not require f. This admittedly somewhat coarse-grained support for
restriction is still enough to implement all examples mentioned above.

5.3 Garbage Collection and ABA

Traditional linear types have been useful in the past to detect when a value can be deallocated
without causing dangling pointers. Our relaxation of linearity notably excludes this use. In
this paper we have implicitly assumed garbage collection (GC), and Encore is also a garbage
collected language. However, the invariants of LOLCAT can be made to hold without GC.
Without a GC, we could automatically compile CATs to use a monotonically increasing
counter (cf., [33]) in combination with pointer identity, effectively implementing an LL/SC
on-top of CAS, to avoid ABA problems.

Recently, in the context of the implementation of LOLCAT in Encore, Yang and Wrigstad
devised Isolde [53], a slot-in GC protocol that leverages the LOLCAT type system. Isolde
manages the memory in each lock-free data structure separately from the rest of the system,
and does not stop threads from making progress for GC. Notably, Isolde relies on identifying
the type of CAT to insert different GC behaviour.

6 Related Work

We are not aware of other type systems aimed at implementing lock-free algorithms, or type
systems that allow atomic transfer of ownership without using locks or destructive reads.
Specifically, we have not seen types that give meaningful static semantics to the CAS primitive.
There are several type systems for programming with linear (or unique) references, alone
e.g., [32, 39, 18, 4] or with other techniques [7, 1, 12, 3, 6, 8, 42, 13, 25, 22], or systems with
linear reference permissions [52, 45]. These systems rely on one or more of the following
techniques:

1. Destructive reads enforce strict linearity;
2. Alias burying allows aliases of linear variables guaranteed to be updated before next use;
3. Borrowing allows temporary violations of linearity for a well-defined scope, after which

linearity is re-established;
4. Linear references are guaranteed to be the only reference to an object outside of the

object’s representation.

Several of the systems above use linearity in the context of concurrent and parallel
programming to avoid data-races, e.g., holding the only reference to an object guarantees
absence of concurrent readers or writers. None of the systems handle lock-free programming
because of the reliance of destroying or burying aliases. Conceptually, the “life cycle” of a
linear reference in LOLCAT: newborn → published → acquired is similar to borrowing, but
we are statically never able to get back to a strictly linear state after publication. Similarly,
acquisition is also conceptually similar to burying: we transfer an owning reference to the
stack, where it is guaranteed to remain until the current thread voluntarily gives it up.

Wadler notes that linear values can be deallocated as soon as they are used [51]. Kobay-
ashi’s Quasi-Linear types allow deallocating a linear value when it goes out of scope [35].
Our relaxation of linearity prevents this optimisation as linear objects may have restricted
aliases. Ennals et al. define a concurrent linearly typed programming language for packet
processing which relaxes linearity to allow multiple references from the same thread [17].

ECOOP 2017

6:28 Relaxed Linear References for Lock-free Programming

Turon defines reagents, basic building blocks for lock-free programming [49]. These
simplify implementation of lock-free data structures, but do not provide any guarantees of
data-race freedom for acquired references.

Militão uses Rely-Guarantee Protocols to guarantee safe interference over shared memory,
allowing unbounded aliasing but only a single linear capability to an object [37]. The transfer
of this capability is very similar to LOLCAT’s ownership transfer, but uses locks to ensure
mutual exclusion, whereas LOLCAT allows non-blocking atomic transfer of ownership.

Gordon uses Rely-Guarantee References to verify functional correctness of lock-free data
structures [21]. This system is more expressive than ours, but also more heavyweight as it
requires writing specifications and mechanised proofs. Gotsman et al. use rely-guarantee
reasoning for similar purposes but also develop a tool for automating the proofs [23]. Haziza
et al. develop a tool that can automatically verify correctness of the Treiber Stack and
Michael–Scott Queue with little or no hints from the programmer [28].

Compared to systems that facilitate manual or automatic verification of lock-free al-
gorithms, LOLCAT trades reasoning power for simplicity and modularity. LOLCAT types
have meaning on their own and provide useful invariants without requiring inter-procedural
analysis; looking at the types of a piece of code explains how it this code affects ownership.

7 Conclusions & Future Work

LOLCAT is a type system for lock-free programming with linear types. It provides static
semantics for a number of patterns found in lock-free programming, such as speculation,
publication and acquisition. Specifically, it gives meaningful types to the CAS primitive which
precisely describe ownership transfer in linked data structures. The type system is expressive
enough to encode several algorithms from the literature on lock-free programming.

In future work, we will develop a library of lock-free data structures in our Encore
implementation to further evaluate the expressiveness of LOLCAT. We are currently working
on a garbage collection scheme that uses our types to achieve pause-free garbage collection
[53]. We will also consider other correctness aspects of lock-free algorithms and investigate
how the language can be extended to further aid programmers in writing correct lock-free
code.

Acknowledgments. We are grateful for the comments from Dave Clarke, Sophia Dros-
sopoulou, the SLURP reading group at Imperial College, and the anonymous reviewers.

References
1 Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for pro-

gram understanding. In ACM SIGPLAN Notices, volume 37, pages 311–330. ACM, 2002.
2 Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communications of

the ACM, 54(5):67–77, 2011.
3 Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-free

java programs. In ACM SIGPLAN Notices, volume 36, pages 56–69. ACM, 2001.
4 John Boyland. Alias burying: Unique variables without destructive reads. Softw., Pract.

Exper., 31(6):533–553, 2001.
5 John Boyland. The interdependence of effects and uniqueness. In Workshop on Formal

Techs. for Java Programs, 2001.
6 John Boyland. Checking interference with fractional permissions. In Static Analysis, pages

55–72. Springer, 2003.

E. Castegren and T. Wrigstad 6:29

7 John Boyland, James Noble, and William Retert. Capabilities for sharing. In ECOOP
2001—Object-Oriented Programming, pages 2–27. Springer, 2001.

8 John Tang Boyland and William Retert. Connecting effects and uniqueness with adoption.
ACM SIGPLAN Notices, 40(1):283–295, 2005.

9 Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, EinarBroch
Johnsen, KaI. Pun, S.LizethTapia Tarifa, Tobias Wrigstad, and AlbertMingkun Yang. Par-
allel Objects for Multicores: A Glimpse at the Parallel Language Encore. In Formal Meth-
ods for Multicore Programming, volume 9104 of LNCS, pages 1–56. Springer International
Publishing, 2015. doi:10.1007/978-3-319-18941-3_1.

10 E. Castegren and T. Wrigstad. Lolcat: Relaxed linear references for lock-free program-
ming. Technical Report 2016-013, 2016. Uppsala University. URL: http://www.it.uu.
se/research/publications/reports/2016-013/.

11 Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In ACM SIGPLAN Notices, volume 37, pages 292–310. ACM, 2002.

12 Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. ECOOP 2003,
pages 59–67, 2003.

13 Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Johnsen. Minimal ownership for
active objects. Programming Languages and Systems, pages 139–154, 2008.

14 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capab-
ilities for safe, fast actors. In AGERE, 2015.

15 Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Gi-
annini. Fickle: Dynamic object re-classification. In ECOOP 2001—Object-Oriented Pro-
gramming, pages 130–149. Springer, 2001.

16 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pages 131–140. ACM, 2010.

17 Robert Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet processing. In
Programming Languages and Systems, pages 204–218. Springer, 2004.

18 Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical linear types for
imperative programming. In ACM SIGPLAN Notices, volume 37, pages 13–24. ACM,
2002.

19 Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings
of the twenty-third annual ACM symposium on Principles of distributed computing, pages
50–59. ACM, 2004.

20 Anwar Ghuloum. Face the inevitable, embrace parallelism. Communications of the ACM,
52(9):36–38, 2009.

21 Colin S Gordon. Verifying Concurrent Programs by Controlling Alias Interference. PhD
thesis, University of Washington, 2014.

22 Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In ACM SIGPLAN Notices,
volume 47, pages 21–40. ACM, 2012.

23 Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis. Proving that
non-blocking algorithms don’t block. In ACM SIGPLAN Notices, volume 44, pages 16–28.
ACM, 2009.

24 Aaron Greenhouse and John Boyland. An object-oriented effects system. In
ECOOP’99—Object-Oriented Programming, pages 205–229. Springer, 1999.

25 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In ECOOP
2010–Object-Oriented Programming, pages 354–378. Springer, 2010.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-319-18941-3_1
http://www.it.uu.se/research/publications/reports/2016-013/
http://www.it.uu.se/research/publications/reports/2016-013/

6:30 Relaxed Linear References for Lock-free Programming

26 Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. In Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 48–60. ACM, 2005.

27 Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In DISC,
volume 1, pages 300–314. Springer, 2001.

28 Frédéric Haziza, Lukáš Holík, Roland Meyer, and Sebastian Wolff. Pointer Race Free-
dom, pages 393–412. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. doi:10.1007/
978-3-662-49122-5_19.

29 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N Scherer III, and
Nir Shavit. A lazy concurrent list-based set algorithm. In International Conference On
Principles Of Distributed Systems, pages 3–16. Springer, 2005.

30 Maurice Herlihy. A methodology for implementing highly concurrent data structures. In
ACM SIGPLAN Notices, volume 25, pages 197–206. ACM, 1990.

31 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

32 John Hogg. Islands: Aliasing protection in object-oriented languages. In ACM SIGPLAN
Notices, volume 26, pages 271–285. ACM, 1991.

33 IBM. Ibm system/370 extended architecture, principles of operation, 1983. publication no.
SA22-7085.

34 Cliff B Jones. Specification and design of (parallel) programs. In IFIP congress, volume 83,
pages 321–332, 1983.

35 Naoki Kobayashi. Quasi-linear types. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 29–42. ACM, 1999.

36 Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing, pages 267–275. ACM, 1996.

37 Filipe Militão. Rely-Guarantee Protocols for Safe Interference over Shared Memory. PhD
thesis, Carnegie Mellon University & Universidade de Lisboa, 2015.

38 Filipe Militão, Jonathan Aldrich, and Luís Caires. Aliasing control with view-based
typestate. In Proceedings of the 12th Workshop on Formal Techniques for Java-Like Pro-
grams, page 7. ACM, 2010.

39 Naftaly H Minsky. Towards alias-free pointers. In ECOOP’96—Object-Oriented Program-
ming, pages 189–209. Springer, 1996.

40 Mark Moir and Nir Shavit. Concurrent data structures. Handbook of Data Structures and
Applications, pages 47–14, 2007.

41 Peter Müller. Modular Specification and Verification of Object-oriented Programs. Springer-
Verlag, Berlin, Heidelberg, 2002.

42 Peter Müller and Arsenii Rudich. Ownership transfer in universe types. In ACM SIGPLAN
Notices, volume 42, pages 461–478. ACM, 2007.

43 Johan Östlund. Language Constructs for Safe Parallel Programming on Multi-cores. PhD
thesis, Department of Information Technology, Uppsala University, Jan 2016.

44 Amir Pnueli. In transition from global to modular temporal reasoning about programs. In
Logics and models of concurrent systems, pages 123–144. Springer, 1985.

45 Francois Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’13), pages 173–184, September 2013.

46 Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s journal, 30(3):202–210, 2005.

http://dx.doi.org/10.1007/978-3-662-49122-5_19
http://dx.doi.org/10.1007/978-3-662-49122-5_19

E. Castegren and T. Wrigstad 6:31

47 Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
computation, 111(2):245–296, 1994.

48 R Kent Treiber. Systems programming: Coping with parallelism. International Business
Machines Incorporated, Thomas J. Watson Research Center, 1986.

49 Aaron Turon. Reagents: expressing and composing fine-grained concurrency. In ACM
SIGPLAN Notices, volume 47, pages 157–168. ACM, 2012.

50 Jan Vitek and Boris Bokowski. Confined types in java. Software: Practice and Experience,
31(6):507–532, 2001.

51 Philip Wadler. Linear types can change the world. In IFIP TC, volume 2, pages 347–359.
Citeseer, 1990.

52 Edwin Westbrook, Jisheng Zhao, Zoran Budimli, and Vivek Sarkar. Practical permissions
for race-free parallelism. In James Noble, editor, ECOOP 2012, volume 7313 of LNCS,
pages 614–639. Springer, 2012. doi:10.1007/978-3-642-31057-7_27.

53 Albert Mingkun Yang and Tobias Wrigstad. Type-assisted automatic garbage collection
for lock-free data structures. In International Symposium on Memory Management, 2017.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-642-31057-7_27

6:32 Relaxed Linear References for Lock-free Programming

A Type Transitions in LOLCAT

The figure below shows how the type of a node in a linked data structure changes to reflect
the different views of the node during its lifetime. It is an extended version of Figure 1b with
added transition labels showing which operations changes the view of the node. Depending
on the data structure and operation at hand, the field x.f represents the top field of a stack,
the first field of a queue, or the next field of another node. Other transitions are possible,
but we focus on operations that appear in our examples and where ownership changes.

The types above each view is the type of the node as seen by its owning reference, which
may be stored in a local variable on the stack, or in a field on the heap. The types below
each view (in red) show which types aliases of the node may have. In the transition labels,
when the variable n is red it is a speculative alias of the node.

The labels on the nodes refer to the same views as in Figure 1a: Newborn, Staged,
Published, and Acquired. It also includes the view Dummy, where ownership of a var field
has been permanently buried, and the view Fixed, where a spec or once field has been made
immutable. In the Fixed view, there is no single type that completely describes the node;
the internal type Node does not show that the next field has been fixed, but the external
type Node∼next | elem does not have ownership of the elem field. Once a fixed node has
been acquired however, the acquiring thread again sees the fully accurate type Node∼next.
If the node was fixed before being acquired, aliases of type Node∼next | elem may still exist,
as well as “normal” speculative aliases of type Node | elem.

The transition “Newborn → Dummy” permanently forgets the ownership of the elem
field. The transition “Published → Dummy” allows extracting a residual alias elem since
the owning reference in n.next is buried in a strongly restricted field (cf. Section 2.5). Note
that in this transition, it is actually the view of the node originally in n.next which changes.

x.f = consume n

N

A

pristine Node

S

pristine Node ~ next

D

Node || elem

P
Node Node ~ next

N/A

N/A

Node | elem

Node | elem

Node | elem
(Node ~ next | elem)

let nxt = x.f
n.next = nxt

CAT(x.f, n.next, n)

CAT(x.f, n, n.next)
CAT(x.f, n, n.next) => elem

F

fix(n.next)

Node ~ next | elem
Node | elem

n.next is val

n.next is spec/once

nxt : Node|elem

isStable(n.next)

try(x.f = n)
x.f is once

x is pristine
let n = new Node

	Introduction
	Lock-Free Programming with Linearity
	The Challenges of Linear Lock-Free Programming
	Typing the Life of a List Node: Speculation, Publication and Acquisition
	Atomic Transfer of Ownership
	LOLCAT in Action: Implementation of a Treiber Stack
	Data Structures with Multiple Contention Points

	Formalising Linear Ownership in LOLCAT
	Static Semantics
	Dynamic Semantics

	Meta Theory
	Prototype Implementation & OO Support
	Implementing [style=capabilities,basicstyle=,keywordstyle=]@CAT@ and Fix Pointers
	LOLCAT and Object-Oriented Programming
	Garbage Collection and ABA

	Related Work
	Conclusions & Future Work
	Type Transitions in LOLCAT

