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CHAPTER 2. MOLECULAR PHYSICS AND THERMODYNAMICS  

 

Topic 2.1 Subject and method of molecular physics and thermodynamics. 

Ideal gas  

Lecture 11 

 

Molecular physics and thermodynamics is the branch of science that studies 

physical properties of macroscopic systems and laws of energy transfer and 

transformation within such systems.  

Macroscopic system (or Thermodynamic system) is the physical system 

consistent of a large number of particles (molecules, atoms, ions, electrons, etc.), which 

are in continuous random thermal motion.  

While molecular physics considers microscopic characteristics of the particles 

of the system, such as their velocity and mechanical energy, thermodynamics studies 

the system as a whole without consideration of the molecular structure of the substance. 

Properties of the thermodynamic system can be described by macroscopic 

characteristics such as pressure, volume, and temperature.  

The large number of particles in the system means that statistical arguments can 

be applied to its consideration, allowing to make relation between microscopic and 

macroscopic characteristics: the large-scale properties can be related to a description 

on a microscopic scale, where matter is treated as a collection of molecules. Applying 

Newtonôs laws of motion in a statistical manner to a collection of particles provides a 

reasonable description of thermodynamic processes.  

To keep the mathematics relatively simple, we shall consider thermodynamic 

systems using the example of gases. 
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2.1.1 Fundamentals of the kinetic theory of gases 

Kinetic theory  is the microscopic model of an ideal gas. It describes a gas as a 

large number of submicroscopic particles (atoms or molecules), all of which are in 

constant rapid motion that has randomness arising from their many collisions with each 

other and with the walls of the container. 

The kinetic theory for ideal gases makes the following assumptions: 

1. The gas consists of very small particles known as molecules. The number of 

molecules in the gas is large, and the average separation between them is large 

compared with their dimensions. The size of molecules is negligible compared to 

the average separation between them, so we model the molecules as particles. The 

number of molecules in the gas is so large that statistical treatment can be applied. 

All the molecules are identical. 

2. These molecules are in constant, random, and rapid motion. They obey Newtonôs 

laws of motion, but as a whole they move randomly. By ñrandomò we mean that any 

molecule can move in any direction with any speed. Random motion of particles due 

to their thermal motion is called the Brownian motion. Brownian motion never 

stops. 

3. The rapidly moving particles constantly collide among themselves and with the walls 

of the container. All these collisions are perfectly elastic. The molecules interact 

only by short-range forces during elastic collisions and exert no long-range forces 

on each other. 

 

Atomic mass unit (unified atomic mass unit) is the standard unit for indicating 

mass on an atomic or molecular scale. It is defined as 1/12 of the mass of an unbound 

neutral atom of carbon 12C. 

1 amu = 1

12
cm  = 1.66 Ā 10 -27 kg 

Relative molecular (atomic) mass is the mass of a molecule/atom relative to the 

mass of 12C: 
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Amount of substance (ɡ) is the number of particles (molecules, atoms) present 

in an ensemble relative to the number of particles in the 12 g of 12C. The SI unit for 

amount of substance is the mole (mol). 

Mole is the amount of substance that contains as many particles (molecules, 

atoms) as there are atoms in 12 grams of carbon 12C. 

Avogadro constant (Nɸ) is the number of particles (molecules, atoms) that are 

contained in the amount of substance given by one mole: 

Nɸ = 6.02Ā 10
23 1/mol. 

Molar mass (M) is the mass of one mole of the substance:  

ʄ = ʄr Ā10
-3 kg/mol = ʄr g/mol, or ʄ = mm ĀNɸ kg/mol. 

Mass of the molecule of a substance: 
M

A

M
m

N
= . 

Amount of substance: 

A

N m

N M
u= = , (2.1) 

where N is the number of molecules (atoms) in the substance; M is the mass of the 

substance. 

Concentration of molecules is the number of molecules per unit volume.  

N
n

V
= , where N is the number of molecules contained in the volume V. 

Diffusion is a mutual penetration of molecules of one substance into another 

substance leading to the equalizing of their concentrations within the whole occupied 

volume. Therefore, diffusion is the net movement of molecules or atoms from a region 

of high concentration to a region of low concentration. This is also referred to as the 

movement of a substance down a concentration gradient.  
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Standard conditions:  The standard pressure pʦ= 1.0131Ā 105 Pa;  

The standard temperature to= 0 oC, or ʊʦ = 273 ʂ.   

The molar volume, occupied by one mole of any gas at standard conditions is  

VM =22.4 Ā 10-3 m3 =22.4 Ā liter. 

 

2.1.2 Temperature 

Temperature of the thermodynamic system is a quantity characterizing its 

thermodynamic equilibrium. Usually, by default, a thermodynamic system is taken to 

be in its own internal state of thermodynamic equilibrium . A thermodynamic state 

of internal equilibrium is a state in which no changes occur within the system, and there 

are no macroscopic flows of matter or of energy within it. All the macroscopic state 

characteristics are equivalent in all the points of the system.  

However, when two different systems are put into thermal contact with each 

other, the energy exchange begins between them. The two systems, which have been 

at different initial temperatures, eventually reach some intermediate temperature and 

the state of equilibrium. Thermal equilibrium is a situation in which two systems would 

not exchange energy by heat or electromagnetic radiation if they were placed in thermal 

contact. Two systems in thermal equilibrium with each other are at the same 

temperature. 

The zeroth law of thermodynamics (the law of equilibrium) : 

If objects A and B are separately in thermal equilibrium with a third object C, then A 

and B are in thermal equilibrium with each other. 

Thermodynamic temperature is the absolute measure of temperature. The 

International System of Units specifies the Kelvin scale for measurement of the 

thermodynamic temperature, where the triple point of water at 273.16 K is taken as the 

fundamental fixing point. Zero thermodynamic temperature is called the absolute 

zero: it is the lowest limit of the thermodynamic temperature scale, when the particle 

constituents of matter have minimal motion and can become no colder. 
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2.1.3 Ideal gas  

Ideal gas is a theoretical gas composed of a large number of randomly moving 

point particles that do not interact except when they collide elastically.  

 The size of the molecules is negligible, so they are considered as material points; 

 The long-range interaction between the molecules is absent. 

State of ideal gas is characterized by pressure p, volume V and absolute 

temperature T. Equation of state of the gas is the equation that interrelates these 

quantities. In general, the equation of state is very complicated, but for the ideal gas it 

is quite simple and can be determined from experimental results. We can use the ideal 

gas model to make predictions that are adequate to describe the behavior of real gases 

at low pressures. 

Thermodynamic process is a passage of a thermodynamic system from one 

state to another. 

Letôs find out how the quantities volume V, pressure p, and temperature T are 

related for a sample of gas of mass m. Suppose an ideal gas is confined to a cylindrical 

container whose volume can be varied by means of a movable piston. The cylinder 

does not leak, so the mass (or the number of moles) of the gas remains constant. For 

such a system, experiments provide the following information for different 

thermodynamic processes (see Figure 2.1): 

 When the gas is kept at a constant temperature, its pressure is inversely proportional 

to the volume. (Boyleôs law.) 

Isothermal process is a thermodynamic process during which the temperature 

of the closed system undergoing such a process remains constant. 

pV const=    (ʊ = const);  1 1 2 2pV p V=  (2.2) 

 When the pressure of the gas is kept constant, the volume is directly proportional 

to the temperature. (GayïLussacôs law.) 

Isobaric process is a thermodynamic process during which the pressure of the 

closed system undergoing such a process remains constant. 
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V
const

T
=    (ʨ = const);  1 2

1 2

V V

T T
=  (2.3) 

 When the volume of the gas is kept constant, the pressure is directly proportional 

to the temperature. (Charlesôs law.)  

Isochoric process is a thermodynamic process during which the volume of the 

closed system undergoing such a process remains constant. 

p
const

T
=    (V = const);  1 2

1 2

p p

T T
=  (2.4) 

 

Figure 2.1 Diagrams of the thermodynamic processes:  

1 - isothermal process T = const; const
p

V
= ; 

2 - isobaric process p = const; V const T= Ö; 

3 - isochoric process V = const; p const T= Ö. 

 

These observations are summarized by the equation of state for an ideal gas 

(Mendeleev ï Clapeyron law): 

pV RTu= ,  or  BpV Nk T= ,  or  
pV

const
T
= , (2.5) 
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where ɡ is the number of moles of gas in the sample; R is the universal gas constant, 

R = 8.31 J/molĿK; N is the total number of molecules; Bk  is the Boltzmann constant, 

B

A

R
k

N
=  = 1.38 Ā10-23 J/ʂ.  

2.1.4 Basic equation of the kinetic theory for ideal gases 

Basic equation of the kinetic theory relates pressure, a macroscopic property 

of gas, to the average (translational) kinetic energy per molecule, root-mean-square 

speed, microscopic properties of the gas:  

2

3
p nE= ,    or    

Bp nk T= ,      or      
21

3
rmsp vr= ,  (2.6) 

where n = N/V is the concentration of the molecules, E  is the average translational 

kinetic energy, ɟ is density of the gas, 
rmsv  is the root-mean-square speed of the 

molecules of gas. 

 

Figure 2.2. 

Letôs show that microscopic collisions 

of molecules with the walls of the container 

lead to the macroscopic pressure on the walls. 

Consider a collection of N molecules of an 

ideal gas in the container of volume V. The 

container is a cube with edges of length d. Letôs 

focus our attention on the i-th molecules of 

mass 0m  and assume it is moving so that its 

component of velocity in the x direction is xiv  

(Figure 2.2).  

As the molecule collides elastically with any wall, its velocity component 

perpendicular to the wall is reversed because the mass of the wall is far greater than the 

mass of the molecule. The molecule is modeled as a nonisolated system for which the 

impulse from the wall causes a change in the moleculeôs momentum: 

0 0 0( ) 2xi xi xi xip m v m v m vD =- - =-. 
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Because the molecules obey Newtonôs laws, we can apply the impulse-

momentum theorem to the molecule to give 02xi xiF t m vD =- , where xiF  is the x 

component of the average force the wall exerts on the molecule during the collision 

and ȹt is the duration of the collision. For the molecule to make another collision with 

the same wall after this first collision, it must travel a distance of 2d in the x direction 

(across the container and back). Therefore, the time interval between two collisions 

with the same wall is 
2

xi

d
t

v
D = . We can average the force over the time interval ȹt for 

the molecule to move across the cube and back. Sometime during this time interval the 

collision occurs, and exactly one collision occurs for each such time interval, so the 

change in momentum for this time interval is the same as that for the short duration of 

the collision. We obtain 
2

0 02 xi xi
xi

m v m v
F

t d
< >=- =-

D
. By Newtonôs third law, the x 

component of the average force exerted by the molecule on the wall is equal in 

magnitude and opposite in direction. Now, the total average force exerted by the gas 

on the wall is found as sum of the average forces exerted by the individual molecules: 

20

1

N

x xi

i

m
F v

d =

< >=ä . 

For a very large number of molecules such as Avogadroôs number variations in 

force with time (nonzero during the short interval of a collision and zero when no 

molecule happens to be hitting the wall) are smoothed out so that the average force can 

be considered as the constant force F.  

The average value of the square of the x component of the velocity for N 

molecules is called the root-mean square value of the xv :  

2

2 1
_

N

xi

i
x rms

v

v
N

==
ä

;  

2

1
_

N

xi

i
x rms

v

v
N

==
ä

. (2.7) 

We obtain 20
_x rms

m
F Nv

d
= . 
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Now letôs focus again on the i-th molecule with velocity components , ,xi yi ziv v v . 

The square of the speed of the molecule is the sum of the squares of the velocity 

components: 
2 2 2 2

i xi yi ziv v v v= + +. Hence, the root-mean square speed for all the 

molecules in the container 
2 2 2 2

_ _ _rms x rms y rms z rmsv v v v= + + . Because the motion is 

completely random, the x, y and z components are equal to one another: 
2 2

_3rms x rmsv v= . 

Therefore, the total force exerted on the wall is 
2

0

3

rmsNm v
F

d
= . The total pressure 

exerted on the wall is 
2

20
02 3

1

3 3

rms
rms

F F Nm v N
p m v

S d d V

å õ
= = = =æ ö

ç ÷
, where V = d3 is the 

volume of the cube, concentration of the molecules n = N/V. Thus, we have obtained 

the basic equation of the kinetic theory: 

2

0

1

3
rmsp nm v= . (2.8) 

Besides, 
2

02 2

3 2 3

rmsm v
p n nE= = , where 

2

0

2

rmsm v
E=  is the average translational 

kinetic energy of molecules. 

Now, letôs consider another macroscopic variable, the temperature T of the gas, 

and compare this expression with the equation of state for an ideal gas:  

2

3
pV NE=  and BpV Nk T= . 

Recall that the equation of state is based on experimental facts concerning the 

macroscopic behavior of gases. Equating the right sides of these expressions gives 

2

3 B

T E
k

= ,  (2.9) 

that is temperature of the gas is a direct measure of average kinetic energy of its 

molecules. 

The average kinetic energy per molecule is  
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2

0 3

2 2

rms
B

m v
E k T= = .  (2.10) 

As far as 
2 2

_3rms x rmsv v= , the x component of the average translational kinetic energy 

2

0 _

2 2

x rms B
m v k T

= , and y and z components are the same. Therefore, each translational 

degree of freedom contributes an equal amount of energy, 
2

Bk T
, to the gas (degree of 

freedom refers to an independent means by which a molecule can possess energy.)  

A generalization of this result is the theorem of equipartition of energy: 

Each degree of freedom contributes 
2

Bk T
 to the energy of a system, where possible 

degrees of freedom are those associated with translation, rotation, and vibration of 

molecules. 

The total translational kinetic energy of N molecules of gas is the N times the 

average energy per molecule: 

2

0 3 3

2 2 2

rms
tot B

m v
K N Nk T RTu= = = , where 

A

N

N
u=  is the number of moles of gas. 

Root-mean-square (rms) speed of the molecules (atoms) can be found as  

0

3 3B
rms

k T RT
v

m M
= = . (2.11) 

 

Questions for self-control 

1. Statistical (microscopic) and thermodynamic (macroscopic) physical quantities.  

2. Macroscopic parameters and their microscopic interpretation.  

3. Postulates of the kinetic theory of gases 

4. Temperature. Thermodynamic equilibrium. Zeroth law of thermodynamics 

5. Definition of the ideal gas. Equation of state for an ideal gas. 

6.  Basic equation of the kinetic theory of gases. 

7. Theorem of equipartition of energy   
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Topic 2.2. The first law of thermodynamics 

Lecture 12 

 

2.2.1 Internal energy  

Thermodynamic systems are characterized by the internal energy along with the 

mechanical energy. 

Internal energy of the system is the sum of all kinds of kinetic and potential 

energy of the microscopic components within the system, but excluding the kinetic and 

potential energy of the system as a whole  

Internal energy includes kinetic energy of random translational, rotational, and 

vibrational motion of molecules (atoms); vibrational potential energy associated with 

forces between atoms in molecules; and electric potential energy associated with forces 

between molecules, kinetic and potential energy of electrons in atoms. 

2 2

i i
U RT pVu= = ,  (2.12) 

where ̔ is the number of degrees of freedom of the gas molecule (ñnumber of degrees 

of freedomò is the number of independent parameters which characterize the molecule 

energy due to its translation, rotation and vibration. 

 ̔= 3 for a monoatomic molecule; 

 ̔= 5 for a diatomic molecule; 

 ̔= 6 for a many-atomic molecule. 

In three-dimensional space, for a single particle we need 3 

coordinates to specify its position during motion. For a molecule 

consisting of 2 particles the center of mass of the molecule can 

translate in 3 directions. In addition, the molecule can rotate about 

the two axes perpendicular to the line joining these particles, 1 ï 1 

and 2 ï 2 (see Figure 2.3), and 2 rotational degrees of freedom  

 

Figure 2.3. 
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are added. The total number of degrees of freedom is 5. For a general (non-linear) 

molecule with many atoms, all 3 rotational degrees of freedom are considered, and the 

total number of degrees of freedom is 6. As we know from the theorem of equipartition 

of energy, each degree of freedom contributes 
2

Bk T
 to the energy of a system, and after 

multiplying this quantity by the total number of molecules and by the number of 

degrees of freedom of the single molecule, we obtain the total internal energy of the 

gas U. The internal energy of an ideal gas depends only on its temperature.  

2.2.2 Heat 

Heat Q is the energy transferred across the boundary of a system due to a 

temperature difference between the system and its surroundings. It is the way of 

changing the energy of a system. 

Heat capacity (C) is the amount of heat Q needed to change the temperature of 

the system by 1K. 

Q
C

dT

d
= ,  (2.13) 

where Qd  is elementary amount of heat;  

Q C T= D. (2.14) 

Both heat and heat capacity are functions of the process ï they depend on the process 

through which the energy was transferred. 

Molar heat capacity (the heat capacity per one mole of the substance): 
C

Cu
u
= . 

Specific heat capacity (the heat capacity per unit mass): 
C

c
m
= . 

Specific heat is essentially a measure of how thermally insensitive a substance is to the 

addition of energy. The greater a materialôs specific heat, the more energy must be 

added to a given mass of the material to cause a particular temperature change. 
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Heat Q transferred between a body of mass m and its surroundings to a 

temperature change æʊ:  

Q mc T= D. 

Besides, transfer of energy by heat can result not in change in temperature of the 

system, but in phase change of the system. Phase change of a thermodynamic system 

is the change of state of matter when the physical characteristics of the substance 

change from one form to another. 

Two common phase changes are from solid to liquid (melting) and from liquid 

to gas (boiling); another is a change in the crystalline structure of a solid. All such 

phase changes involve a change in the systemôs internal energy but no change in its 

temperature. The increase in internal energy in boiling, for example, is represented by 

the breaking of bonds between molecules in the liquid state; this bond breaking allows 

the molecules to move farther apart in the gaseous state, with a corresponding increase 

in intermolecular potential energy. 

Heat transferred to a substance of mass m during a phase change: 

Q rm= ,  where r is the latent heat of vaporization ï the term used when the 

phase change is from liquid to gas; 

Q ml= ,  where ɚ is  the latent heat of fusion ï the term used when the phase 

change is from solid to liquid (to fuse means ñto combine by meltingò). 

This parameter is called latent heat (literally, the ñhiddenò heat) because this added or 

removed energy does not result in a temperature change. 

When two bodies are in contact, the energy transfer by heat always takes place 

from the high-temperature body to the low-temperature body.  

Equation of the heat balance: the amount of energy hotQ  that leaves the hot part 

of the system equal the amount of energy coldQ  that enters the cold part of the system.  

hot coldQ Q=  (2.15) 
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2.2.3 Work  

The work done on a deformable system, a gas, is another important mechanism 

of energy transfer in thermodynamic systems.  

 

Figure 2.4. 

Consider a gas contained in a cylinder fitted with 

a movable piston of negligible mass (Figure 2.4). At 

equilibrium, the gas occupies a volume V and exerts a 

uniform pressure p on the cylinderôs walls and on the 

piston. If the piston has a cross-sectional area S, the force 

exerted by the gas on the piston is F = pS. Now letôs 

assume we push the piston and compress the gas quasi-

statically, that is, slowly enough to allow the system to  

remain essentially in internal thermal equilibrium at all times. As the piston is pushed 

downward by a vertically directed external force F through a displacement of dh, the 

elementary work done on the gas is  

ŭA = Fdh = ï pSdh = ï pdV.  

If the gas is compressed, dV is negative and the work done on the gas is positive. 

If the gas expands, dV is positive and the work done on the gas is negative (they say 

that the gas does work on its surroundings). If the volume remains constant, the work 

done on the gas is zero. 

The work done on the gas 

A pdVd =- ;  
f

i

V

V

A pdV=-ñ .              (2.16) 

In general, the pressure depends on the 

volume and temperature of the gas, and the 

process through which the gas is progressing 

can be plotted on a graphical representation 

called a PV diagram (Figure 2.5).  

 

 Figure 2.5. 
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Pressure volume diagram is the visualization of the p(V) dependence during the 

process. The curve on a PV diagram is called the path taken between the initial and 

final states. 

The work done on a gas in a quasi-static process that takes the gas from an 

initial state to a final state is the negative of the area under the curve on a PV diagram, 

evaluated between the initial and final states. 

The work done depends on the particular path taken between the initial and final 

states. 

2.2.4 First law of thermodynamics 

The first law of thermodynamics is a special case of the law of conservation of 

energy. 

The change in the internal energy of an isolated thermodynamic system is equal to the 

sum of heat supplied to the system and the amount of work done on the system:  

_on gasU Q AD = + ,  (2.17a) 

or, 

the heat supplied to the isolated thermodynamic system converts into the change in 

internal energy of the system and work done by the system on its surroundings: 

_by gasQ U A=D + ,  (2.17b) 

where Q is the heat supplied to the system; æU is the change in internal energy of the 

system; _on gasA  is the work done on the system and _by gasA  is the work done by the 

system on its surroundings, _ _by gas on gasA A=- . 

Equivalently, perpetual motion machines of the first kind (which produce more 

work than the input of energy) are impossible. 

The first law of thermodynamics in the differential form: 

_by gasQ dU Ad d= + ,  (2.18) 
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where 
_, by gasQ Ad d  are elementary amounts of heat and work, dU is the change in the 

internal energy. 

The zeroth law of thermodynamics involves the concept of temperature, and the 

first law involves the concept of internal energy. Temperature and internal energy are 

both state variables; that is, the value of each depends only on the thermodynamic 

state of a system, not on the process that brought it to that state. On the contrary, heat, 

heat capacity and work are process variables; that is, the value of each depends on the 

process that brings the system into new state. 

As the heat capacity of the gas is the function of process, letôs find it for different 

thermodynamic processes. By substituting the expressions for heat, internal energy and 

work into the first law of thermodynamics and considering the heat capacity of one 

mole of gas, we obtain 
2

i
CdT RdT pdV= + ; 

2

i pdV
C R

dT
= + . (2.19) 

The first law of thermodynamics for different thermodynamic processes:  

1) isochoric process. 

A process that takes place at constant volume is called an isochoric (isovolumetric) 

process. Because the volume of the gas does not change in such a process, the work 

done by the gas is zero:  

0A= .  

Hence, from the first law we see that  

Q U=D ,  where 2 1 2 1( ) ( )
2 2

i i
U R T T V p puD = - = -.  

If energy is added by heat to a system kept at constant volume, all the transferred energy 

remains in the system as an increase in its internal energy. 
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Letôs find the heat capacity of the gas in this process. Using the expression 

2

i pdV
C R

dT
= +  and recalling that V= const and dV= 0 in the isochoric process, we 

obtain: 

2
V

i
C R= , (2.20) 

where VC  is the molar heat capacity at constant volume. 

2) isobaric process. 

A process that occurs at constant pressure is called an isobaric process. In such a 

process, the values of the heat and the work are both usually nonzero.  

Q U A=D +, 

where 2 1 2 1 2 1( ) ( )
2 2

i i
U U U R T T p V VuD = - = - = -; the work done by the gas in the 

isobaric process is simply 2 1( )A p V V= -  where p is the constant pressure of the gas 

during the process. 

Letôs find the heat capacity of the gas in this process. Using the expression for 

heat capacity we obtain 
2

V

i pdV pdV
C R ʉ

dT dT
= + = + . If we differentiate the equation 

of state for an ideal gas, ( ) ( )d pV d RT= , we see that pdV RdT=  when p = const. 

Then, V V

RdT
C ʉ ʉ R

dT
= + = +. Thus, 

2

2
P V

i
C C R R

+
= + = , (2.21) 

where PC  is the molar heat capacity at constant pressure. 

3) isothermal process 

A process that occurs at constant temperature is called an isothermal process.  

T = const and dT = 0, hence in an isothermal process involving an ideal gas 0UD =; 
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Q A= . 

For an isothermal process, the energy transfer Q must be equal to the work done by the 

gas. Any energy that enters the system by heat is transferred out of the system by work; 

as a result, no change in the internal energy of the system occurs in an isothermal 

process. 

Heat capacity of the gas in the isothermal process is infinity. 

Suppose an ideal gas is allowed to expand quasi-statically at constant 

temperature. Letôs calculate the work done by the gas in the expansion from state i to 

state f. 

ln

f f f

i i i

V V V

f

iV V V

VRT dV
A pdV dV RT RT

V V V

u
u u= = = =ñ ñ ñ . (2.22) 

2.2.5 Adiabatic process 

Adiabatic process is one that occurs without transfer of heat between the 

thermodynamic system and its surroundings. Energy is transferred only as work. 

0Qd =  and A dUd =- . 

Letôs find equation describing adiabatic process. From the first law of 

thermodynamics 0
2

i
pdV RdTu+ =. Taking the total differential of the equation of 

state of an ideal gas, ( ) ( )d pV d RT= , gives pdV Vdp RdTu+ = . Then, 

( ) 0
2

i
pdV pdV Vdp+ + =; 

2
0

2 2

i i
pdV Vdp

+
+ =; 0P VC pdV C Vdp+ =; 

0P

V

dp C dV

p C V
+ =. 
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Letôs denote 
2P

V

C i

C i
g

+
= =  the 

ratio of specific heats at constant pressure 

and at constant volume. Now we can write 

the previous equation as 

(ln ) (ln ) (ln ) 0d p d V d pVgg+ = =, 

which gives as the equation for the 

adiabatic process (Figure 2.6): 

pV constg= .                         (2.23) 

 

Figure 2.6. 

2.2.6 Polytropic process 

A polytropic process is a thermodynamic process that obeys the relation: 

npV const= , (2.24) 

where n is the polytropic index (a real number). 

Some specific values of n correspond to particular cases: 

  n = 0 is an isobaric process, 

 n+¤ is an isochoric process, 

 n = 1 is an isothermal process, 

 n = ɔ is an adiabatic process. 

A process is polytropic if and only if the heat capacity in this process is kept 

constant:  

nC const=  

Letôs find the heat capacity of the gas in the polytropic process using the 

expression for heat capacity V

pdV
C ʉ

dT
= + . If we differentiate the equation of the 

polytropic process, ( ) 0nd pV = ; 
1 0n nV dp pnV dV-+ =; 

1 0.n nV dp nV pdV-+ =  

The total differential of the equation of state of an ideal gas gives (for one mole) is 
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pdV Vdp RdT+ = . By substituting Vdp RdT pdV= -  into the previous equation 

we obtain 
1 1( ) 0n nV RdT pdV nV pdV- -- + =; 1 1( 1) 0n nV RdT n V pdV- -+ - =; 

1

pdV R

dT n
=-

-
, and 

1
V V

pdV R
C ʉ ʉ

dT n
= + = -

-
. Finally, 

1 1 1
n V

R R R
C ʉ

n ng
= - = -

- - -
, (2.25) 

that is heat capacity of the gas in the polytrop ic process nC  is constant. 

Letôs calculate the work done by the gas in the polytropic process. Using the first 

law of thermodynamics, ( )n V n VA Q U C T C T C C T= -D = D - D = - D. For the ɡ moles 

of ideal gas, 
1

n V

R
C C

n

u
- =-

-
, and  

1 2 1 1 2 2( )

1 1

R T T pV p V
A

n n

u - -
= =

- -
. (2.26) 

 

Questions for self-control 

1. What is the internal energy of the thermodynamic system? 

2. Number of degrees of freedom 

3. What is heat?  

4. Latent heat 

5. Equation of the heat balance 

6. Work done on a gas 

7. What is a quasi-static process? 

8. The first law of thermodynamics.  

9. State variables and process variables  

10. Application of the first law of thermodynamics for the thermodynamic processes. Heat 

capacity of gases at constant pressure and at constant volume. 

11. Equation for the adiabatic process 

12. Equation for the polytropic processes.  

13. Heat capacity of the gas in the polytropic process 
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Topic 2.3. The second law of thermodynamics. Nernst theorem 

Lecture 13 

 

2.3.1 Cyclic processes 

Thermodynamic cycle is a linked sequence of thermodynamic processes that 

involve transfer of heat and work into and out of the system, and that eventually returns 

the system to its initial state. 

The cycle can convert heat from a warm source Q1 into useful work A, and 

dispose of the remaining heat Q2 to a cold sink returning to the initial state, thereby 

acting as a heat engine. 

The useful work generated during the cycle ɸ = Q1 ï Q2. 

The heat engine is a system that converts heat or thermal energy to mechanical 

energy, which can then be used to do mechanical work. It takes in energy by heat and, 

operating in a cyclic process, expels a fraction of that energy by means of work. 

A heat engine carries some working substance through a cyclic process during 

which (1) the working substance absorbs energy by heat from a high-temperature 

energy reservoir, (2) work is done by the engine, and (3) energy is expelled by heat to 

a lower-temperature reservoir. Thus, the heat engine consists of 3 elements: a heat 

"source" that generates thermal energy, a "working body" (gas) that generates work 

while transferring heat to the colder "sink". 

The efficiency of a heat engine: 

1 2

1 1

A Q Q

Q Q
h

-
= = . (2.27) 

Equation for the thermal efficiency shows that a heat engine has 100% efficiency 

only if 2Q  = 0, that is, if no energy is expelled to the cold reservoir. In other words, a 

heat engine with perfect efficiency would have to expel all the input energy by work. 



25 
 

Because efficiencies of real engines are well below 100%, the KelvinïPlanck form of 

the second law of thermodynamics states the following: 

It is impossible to construct a heat engine that, operating in a cycle, produces no effect 

other than the input of energy by heat from a reservoir and the performance of an equal 

amount of work. 

This statement of the second law means that during the operation of a heat 

engine, the useful work A can never be equal to 1Q  or, alternatively, that some energy 

2Q   must be rejected to the environment. Every heat engine must have some energy 

exhaust.  

 

Figure 2.7. 

An upper limit of the efficiency that any 

classical thermodynamic engine can achieve 

during the conversion of heat into work is 

provided by the Carnot cycle, which consists of 

two adiabats and two isotherms (see Figure 2.7).  

A Carnot heat engine undergoing the 

Carnot cycle, is a "perfect" engine, but it is only 

a theoretical construct. 

The thermal efficiency of a Carnot engine is 

1 2
max

1

T T

T
h

-
= , (2.28) 

where T1 is the absolute temperature of the source; T2 is the absolute temperature of the 

sink. 

Carnotôs theorem:  

No real heat engine operating between two energy reservoirs can be more 

efficient than a Carnot engine operating between the same two reservoirs. 
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2.3.2 Clausius theorem  

Another formulation of the second law of thermodynamics, stated by Clausius, 

is following:  

Heat can never spontaneously pass from a colder to a warmer body without 

external work being performed on the system.  

The second law of thermodynamics is concerned with the direction of natural 

processes: it asserts that a natural process runs only in one direction and is irreversible, 

unless external work is performed on the system.  

The Clausius theorem (ñInequality of Clausiusò) is a mathematical 

explanation of the Second law of thermodynamics:  

For a system exchanging heat with external reservoirs and undergoing a cyclic 

process, the amount of heat absorbed by the system from the reservoir divided by the 

temperature of that reservoir at a particular instant is not positive: 

0
Q

T

d
¢ñ .   (2.29a) 

If the process is quasi-static (throughout the entire process the system is assumed 

to be in thermodynamic equilibrium with its surroundings), the process is reversible, 

and the absorbed amount of heat is defined only by the initial and final states of the 

system and is independent of the actual path followed. In this case 

0
Q

T

d
=ñ .  (2.29b) 

If the process is irreversible, 0
Q

T

d
<ñ . 

2.3.3 Entropy 

The Clausius theorem allows to introduce a new state variable for the 

thermodynamic system called the entropy. 

Entropy  S is a function of state of a thermodynamic system that determines the 

measure of irreversible energy dissipation.  



27 
 

In the reversible process, an infinitesimal increment in the entropy dS of a system 

is defined to result from an infinitesimal transfer of heat ŭQ to a closed system divided 

by the temperature at that instant: 

Q
dS

T

d
=  (reversible process). (2.30a) 

For an actually possible irreversible infinitesimal process, the second law 

requires that the increment in system entropy must be greater than that:  

Q
dS

T

d
>  (irreversible process). (2.30b) 

Because entropy is a state variable, the change in entropy during a process 

depends only on the endpoints and therefore is independent of the actual path followed. 

The change in entropy for a finite reversible process 

f

i

Q
S

T

d
D =ñ .  (2.31) 

The transferred energy is to be measured along a reversible path. The finite 

change in entropy of a system depends only on the properties of the initial and final 

equilibrium states. Therefore, we are free to choose a particular reversible path over 

which to evaluate the entropy in place of the actual path as long as the initial and final 

states are the same for both paths. To calculate changes in entropy for real (irreversible) 

processes between two equilibrium states we can consider a reversible process (or 

series of reversible processes) between the same two states. 

Besides, for any reversible closed cycle initial and final states coincide and 

0SD =,  

0
Q

T

d
=ñ  (reversible closed cycle). (2.32) 

Letôs now consider a system consisting of a hot reservoir and a cold reservoir 

that are in thermal contact with each other and isolated from the rest of the Universe. 

The energy Q is transferred by heat from the hot reservoir to the cold reservoir. We can 

replace the real process for each reservoir with a reversible, isothermal process in 
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which the same amount of energy is transferred by heat. Because the cold reservoir 

absorbs energy Q, its entropy increases by / coldQ T . At the same time, the hot reservoir 

loses energy Q, so its entropy change is / hotQ T- .  

When the heat transfer between the hot and cold parts of the system occurs, the 

increase in entropy of the cold reservoir is greater than the decrease in entropy of the 

hot reservoir: 
hot cold

Q Q

T T
<  because hot coldT T> . Therefore, the change in entropy of the 

system (and of the Universe) is greater than zero: 0
cold hot

Q Q
S

T T
D = - >. We can 

formulate the entropy statement of the second law of thermodynamics:  

The total entropy of an isolated system can only increase over time 0SD ². It 

can remain constant in ideal cases where the system is in a steady state (equilibrium) 

or undergoing a reversible process. The increase in entropy accounts for the 

irreversibility of natural processes, and the asymmetry between future and past. 

Letôs find change in entropy for one mole of the ideal gas in a quasi-static 

process. Using the first law of thermodynamics, VQ dU A C dT pdV
dS

T T T

d d+ +
= = = ; 

V

dT dV
dS C R

T V
= + . Taking the total differential of the logarithm of the equation of 

state of an ideal gas, (ln( )) (ln( ))d pV d RT= , (ln ) (ln ) (ln )d p d V d T+ = , gives 

dp dV dT

p V T
+ = . Then V P

dp dV
dS C C

p V
= + , and 

ln ln
f f

V P

i i

p V
S C C

p V
D = + .  (2.33) 

The change in entropy for any finite polytropic process 

ln

f

fn
n

ii

TC dT
S C

T T
D = =ñ .  (2.34) 

The change in entropy in adiabatic process is zero because there is no energy transfer. 
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2.3.4 Entropy on a microscopic scale 

Entropy can also be treated from a microscopic viewpoint through statistical 

analysis of molecular motions.  

Letôs use a microscopic model of the free expansion of an ideal gas, which was 

discussed from a macroscopic point of view before. In the kinetic theory of gases, gas 

molecules are represented as particles moving randomly. For a given uniform 

distribution of gas in the volume, there are a large number of equivalent microstates, 

and the entropy of the gas can be related to the number of microstates corresponding 

to a given macrostate. Letôs count the number of microstates by considering the variety 

of molecular locations available to the molecules. Letôs assume each molecule occupies 

some microscopic volume Vm. The total number of possible locations of a single 

molecule in a macroscopic initial volume Vi is the ratio wi = Vi/Vm, which is the number 

of ways the molecule can be placed in the initial volume or, in other words, the number 

of microstates. We assume the probabilities of a molecule occupying any of these 

locations are equal.   

As more molecules are added to the system, the number of possible ways the 

molecules can be positioned in the volume multiplies. For example, if you consider 

two molecules, there are wi ways of locating the first molecule, and for each way, there 

are wi ways of locating the second molecule. The total number of ways of locating the 

two molecules is (wi)
2. Then, the number of ways of locating N molecules in the volume 

becomes ( )/
NN

i i i mw V VW = = . Similarly, when the volume is increased to Vf, the 

number of ways of locating N molecules increases to ( )/
N

N

f f f mw V VW = = . The ratio 

of the number of ways of placing the molecules in the volume for the initial and final 

configurations is 

N

f f

i i

V

V

W å õ
=æ ö

W ç ÷
. Taking the natural logarithm of this equation and 

multiplying by Boltzmannôs constant gives 

ln ln ln ln ln

N

f f f

B f B i B B

i i i

V V V
k k k k N R

V V V
u

å õ å õ å õ
W - W = = =æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷
. 
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When a gas undergoes a free expansion from Vi to Vf, we can find the change in 

its entropy choosing any reversible path between the initial and final state. Letôs take 

the isothermal path. Then ln
f

i

V
Q A RT

V
u= = , and the change in the entropy is 

ln
f

f i

i

V
S S R

V
u

å õ
- = æ ö

ç ÷
. Notice that the right sides of obtained equations are identical. 

Therefore, from the left sides, we make the following important connection between 

entropy and the number of microstates W for a given macrostate: 

lnBS k= W  (2.35) 

This formula is the microscopic definition of entropy:  

Entropy is defined by the number of microscopic configurations ɋ that a 

thermodynamic system can have when in a state specified by some macroscopic 

variables. The more microstates there are that correspond to a given macrostate, the 

greater the entropy of that macrostate. Entropy is a measure of disorder of the system. 

2.3.5 Nernst theorem. 

The Nernst theorem (the third law of thermodynamics) says that as 

temperature of a system approaches absolute zero, the entropy change for this 

macrosystem also approaches zero:  

0
lim 0
T

S

D =.  (2.36) 

Now we can calculate the absolute value of the entropy as 

0

( )
T

C T dT
S

T
=ñ .  (2.37) 

Heat capacity C of a macrosystem must approach zero as temperature of the 

system approaches absolute zero. 

As entropy is related to the number of microstates, for a system consisting of 

many particles there is only one unique state (called the ground state) with minimum 
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energy. At absolute zero, the system must be in a state with the minimum possible 

energy.  

Another formulation of the third law of thermodynamics is following: 

The entropy change associated with any condensed system undergoing a reversible 

isothermal process approaches zero as the temperature at which it is performed 

approaches 0 K. 

 

Questions for self-control 

1. What is a thermodynamic cycle? 

2. What is a heat engine? 

3. Efficiency of the heat engine 

4. Carnot cycle and its efficiency.  

5. The second law of thermodynamics 

6. Clausius inequality.  

7. Reversible and irreversible processes 

8. What is entropy? 

9. Entropy statement of the second law of thermodynamics 

10. Microscopic definition of entropy 

11.  The third law of thermodynamics. Nernst theorem. 
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Topic 2.4. Statistical distribution 

Lecture 14 

 

The motion of the gas molecules is extremely chaotic. Gas consists of billions of 

molecule and any individual molecule collides with others billion times per second. 

Each collision results in a change in the speed and direction of motion of each of the 

participant molecules. Statistical distribution allows us to find out what is the relative 

number of molecules that possess some characteristic such as energy or speed within a 

certain range. 

2.4.1 The Maxwell distribution 

Letôs consider a container of gas at a constant temperature. We know that the 

rms velocity of the gas molecules is determined by the gas temperature. However, not 

all the molecules of the gas at a certain temperature move at the same velocity; actually 

velocities of gas molecules vary widely. Thus, it is necessary to determine the velocity 

distribution of the molecules, so that the number of molecules having a speed in a 

certain range can be determined. We expect this distribution to have its peak in the 

vicinity of the rms speed. 

 

(a) 

 

(b) 

Figure 2.8. 
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Let us imagine a velocity space with pair-wise perpendicular coordinate axes 

, ,x y zv v v  (Figure 2.8, a). Then the instantaneous velocity vector v  of each molecule can 

be represented as a point with coordinates , ,x y zv v v in this velocity space. Though 

coordinates of the point corresponding to a single molecule vary with time, for a very 

large number of molecules these variations are smoothed out, so that the overall 

distribution of points remains constant in the state of thermodynamic equilibrium. 

Moreover, because the motion is completely random, all the directions are equally 

probable, and distribution of points in the velocity space must have spherical symmetry 

(Figure 2.8, b). Thatôs why distribution of points depends on the speed v of molecules. 

Letôs introduce a distribution function  ű(v), also called a probability density 

function, so that ű(v)dV is the number of molecules per unit volume dV in the velocity 

space with speeds between v and v + dv.  

Let the total number of molecules in the gas be N. The number of molecules 

whose speeds lie between v and v + dv would be represented by the spherical strip of 

thickness dv, and be denoted by vdN . Let 
xvdN  represent the number of molecules 

whose x -component velocities lie between vx and vx + dvx. The ratio of the number of 

molecules that have the desired characteristic to the total number of molecules is the 

probability that a particular molecule has that characteristic. Then the probability of an 

arbitrary molecule having x -component of velocity within the interval (vx ; vx + dvx) is 

( )x

x

v

v x x

dN
dp v dv

N
j= = , where ( )xvj  is the distribution function for x -component of 

velocity. Similarly, for y- and z- components of velocity, ( )y

y

v

v y y

dN
dp v dv

N
j= =  and 

( )z

z

v

v z z

dN
dp v dv

N
j= = .  

Probabilities that the molecule has components of velocity within intervals  

(vx ; vx + dvx) and (vy ; vy + dvy) and (vz ; vz + dvz) are independent, so 

, , ( ) ( ) ( )
x y z x y zv v v v v v x y z x y zdp dp dp dp v v v dv dv dvj j j= = . (2.38) 
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On the other hand, ( )vdp v dVj= , that is the number of representative points per 

unit volume, or the density of point in velocity space is 

( ) ( ) ( ) ( )x y zv v v vj j j j= . (2.39) 

Since the velocity distribution is isotropic in the state of thermodynamic 

equilibrium, the probability density is the same in any volume element, so that  

( ) ( ) ( ) ( )x y zv v v v constj j j j= =  and ( ( )) 0d vj = . 

Letôs find this differential: 

'( ) ( ) ( ) ( ) '( ) ( ) ( ) ( ) '( ) 0x y z x x y z y x y z zv v v dv v v v dv v v v dvj j j j j j j j j+ + =; 

'( )'( ) '( )
0

( ) ( ) ( )

yx z
x y z

x y z

vv v
dv dv dv

v v v

jj j

j j j
+ + =. 

As far as distribution of points in the velocity space has spherical symmetry, 

while the velocity components , ,x y zv v v  vary in the result of molecule collisions, the 

total speed remains constant: 

2 2 2 2

x y zv v v v const= + + = . 

If we differentiate this expression, 

0x x y y z zv dv v dv v dv+ + =. 

Letôs apply the Lagrangeôs method and multiply the last expression by 

undetermined multiplier ɚ and add it to the expression for the distribution function: 

'( )'( ) '( )
0

( ) ( ) ( )

yx z
x x y y z z

x y z

vv v
v dv v dv v dv

v v v

jj j
l l l

j j j

å õå õ å õ
+ + + + + =æ öæ ö æ öæ ö

ç ÷ç ÷ ç ÷

. 
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Since , ,x y zv v v  are now independent variables, the coefficients of , ,x y zdv dv dv  

are individually equated to zero: 

'( )
0

( )

x
x

x

v
v

v

j
l

j
+ =;  

'( )
0

( )

y

y

y

v
v

v

j
l

j
+ =;  

'( )
0

( )

z
z

z

v
v

v

j
l

j
+ =. (2.40) 

Integrating these equations, we obtain  

2

ln ( )
2

x
x

v
v constj l=- + , or 

2( ) / 2
( ) xv

xv const e
lj -

= Ö .  

Similarly, 
2( ) / 2

( ) yv

yv const e
l

j
-

= Ö , 
2( ) / 2

( ) zv

zv const e
lj -

= Ö . 

The symmetry provides the same integration constant for all the three equations. 

According to the condition for normalization of the probability density, for all possible 

values of vx between -¤ and +¤, 

( ) 1
xv x xp v dvj

+¤

-¤

= =ñ ;  
2( ) / 2

1xv

xconst e dv
l

+¤

-

-¤

Ö =ñ . (2.41) 

It is known that 
2( ) / 2 2
xv

xe dv
l p

l

+¤

-

-¤

=ñ , then the constant 
2

const
l

p
= . We obtain: 

2( ) / 2
( )

2
xv

xv e
ll

j
p

-
= Ö ; 

2( ) / 2
( )

2

yv

yv e
ll

j
p

-
= Ö ; 

2( ) / 2
( )

2
zv

zv e
ll

j
p

-
= Ö , and 

2 2 2 2
3/ 2 3/ 2

( )
2 2

2 2

x y zv v v v

v x y z x y zdp e dv dv dv e dv dv dv
l l

l l

p p

- + + -å õ å õ
= Ö = Öæ ö æ ö
ç ÷ ç ÷

. (2.42) 

The probability density is found to be a function of speed v only. To calculate 

the probability that molecules have speeds between v and v + dv, the volume of the 

spherical shell of thickness dv at a distance v from the origin must be considered: 

24 x y zdV v dv dv dv dvp= = . Then,   
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2 2
3/ 2 3/ 2

2 22 24 4
2 2

v v

vdp e v dv e v dv
l l

l l
p p

p p

- -å õ å õ
= Ö = Öæ ö æ ö
ç ÷ ç ÷

;  (2.43) 

2
3/ 2

2 2( ) 4
2

v

v v e
l

l
j p

p

-å õ
= Öæ ö
ç ÷

. (2.44) 

The most probable speed mpv  is the speed at which the distribution curve 

reaches a peak. Using the condition that the derivative of the distribution function 

equals zero dű(v)/dv = 0 when v = mpv , we find that 
2

2

mpv
l= . 

Using the law of conversation of energy we can state that 

2

0

2

mp

B

m v
k T= , where 

0m  is the mass of the gas molecule. Then, 
0

2 B
mp

k T
v

m
= , and we obtain the final form 

of the distribution function: 

2
0

3/ 2

2204
( )

2
B

m v

k T

B

m
v v e

k T
j

p

-å õ
= Öæ ö

ç ÷
. (2.45) 

This is the Maxwell distribution : the probability that molecules have speeds 

between v and v + dv is 

2
0

3/ 2

2204

2
B

m v

k Tv
v

B

dN m
dp v e dv

N k Tp

-å õ
= = Öæ ö

ç ÷
. (2.46) 

By denoting a relative speed 
mp

v
u

v
= , we can obtain a simpler form of the 

Maxwell distribution, which is independent of the gas nature and temperature: 

224 u

udp u e du
p

-= Ö . (2.47) 



37 
 

Knowing the distribution function, we can find the average speed of the 

molecules as 

2
0

3/ 2

230

0 0

4
( )

2
B

m v

k T

avg

B

m
v v v dv v e dv

k T
j

p

¤ ¤ -å õ
= = Öæ ö

ç ÷
ñ ñ . Calculating this integral 

gives  

0

8 B
avg

k T
v

mp
= . (2.48) 

We see that rms avg mpv v v> > . 

Having obtained the speed distribution, now we can obtain the energy 

distribution of the gas molecules. Kinetic energy of a molecule is 
2

0

2

m v
E= . Now letôs 

denote ( )EF  the energy distribution function, such that ( )E dEF  is the probability that 

molecules have energy between E and E + dE. Then, letôs express accordance between 

energy and speed distributions: ( ) ( )E dE v dvjF = . Take into account that 

2

0
0

2

m v
dE d m vdv

å õ
= =æ ö
ç ÷

; 02
dE

m E
dv
= .  

So, 

2
0

3/ 2

220

0

4 1
( ) ( )

2 2

B

m v

k T

B

dv m
E v v e

dE k T m E
j

p

-å õ
F = = Ö Öæ ö

ç ÷
 = 

3/ 2 3/ 2
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2 1
( ) B

E
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B

E Ee
k Tp

-å õ
F = æ ö

ç ÷
, (2.49) 

which is the expression for the function of the Maxwell energy distribution . The 

probability of finding the molecules in a particular energy state varies exponentially as 

the negative of the energy divided by Bk T . 



38 
 

The most probable energy can be found from the condition of maximum for this 

function: 
2

B
mp

k T
E = . 

2.4.2 Barometric formula and Boltzmann distribution 

The Maxwell distribution law is obtained for an ideal gas in the state of 

thermodynamic equilibrium with no external forces acting on it. Now letôs consider a 

gas in the gravitational field of the Earth. All the molecules would fall onto the Earth 

surface under the action of gravitational force unless the thermal agitation at a 

temperature T did not excite them to thermal motion. Distribution of the gas molecules 

in the atmosphere of the Earth is the result of collective influence of the thermal motion 

and gravitational field. Consequently, density of the gas as well as its pressure depend 

on the height above the Earth surface. 

Barometric formula  is a formula used to model how the pressure (or density) 

of the air changes with altitude. 

Suppose we have a horizontal slab of air with 

thickness dh at the altitude h above the sea level 

(Figure 2.9). The density of air ɟ is a function of 

height h, but within the thin slab it may be considered 

as constant. The pressure of the air at height h must be 

equal to the pressure of the air above it plus the weight 

of the air in the slab. In other words, the change in 

pressure as we go from height h to h + dh is 

dp gdhr=- , 

 

Figure 2.9. 

where g is the acceleration of gravity. The minus sign accounts for the fact that pressure 

decreases as we go higher. 
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According to the basic equation of the kinetic theory for gases, 
Bp nk T= . 

Concentration of molecules 0

0 0 0

N Nm m
n

V Vm Vm m

r
= = = =, where N is the total number of 

molecules, 0m  is the mass of the single molecule. Then, 0 0

B

p
m n m

k T
r= = . We obtain 

0

B

p
dp m g dh

k T
=- ;  0

B

dp m g
dh

p k T
=- . 

Considering g and T as constants since the atmosphereôs thickness isnôt really 

large enough to affect g and the gas is in the state of thermodynamic equilibrium, we 

can integrate the equation to get  

0

(0) B

m g
h

k T
p p e

-

=  (2.50) 

So, we have obtained the barometric formula  showing that the pressure 

decreases exponentially with altitude. 

Now we can obtain the law of molecules distribution in the gravitational field. 

Since 
Bp nk T= , 

0

(0) B

m g
h

k T
n n e

-

= . (2.51) 

The obtained distribution is universal, it is valid for any macroscopic system of 

particles located in the potential field of external forces. In terms of potential energy, 

this law can be written as the Boltzmann distribution:  

( )

(0) B

U h

k T
n n e

-

= ,  (2.52) 

where U(h) is the potential energy. Also, the number of molecules located inside the 

elementary volume can be found as (0) B

U

k T
dN n e dV

-

= .  
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Maxwell and Boltzmann distributions can be united into the Maxwell ï 

Boltzmann distribution law . The number of molecules whose coordinates and 

components of velocity lie within intervals (x; x + dx), (y; y + dy), (z; z + dz), (vx ; vx + 

dvx), (vy ; vy + dvy), (vz ; vz + dvz) is  

2
0

2

, , , , ,
B B

x y z

U m v

k T k T

x y z v v v x y zdN const e e dxdydzdv dv dv
- -

= Ö , or 

2

0
, , , , ,

/ 2
exp

x y zx y z v v v x y z

B

m v U
dN const dxdydzdv dv dv

k T

å õ+
= Ö -æ ö

ç ÷
, (2.53) 

where the constant 

3/ 2

0(0)
2 B

m
const n

k Tp

å õ
= æ ö

ç ÷
; 

2 2 2 2

x y zv v v v= + +; the potential energy is 

the function of molecule coordinates U = U(x, y, z). 

 

Questions for self-control 

1. What is the velocity space? 

2. What is the distribution function? 

3. Maxwell speed distribution  

4. The most probable speed 

5. Maxwell energy distribution  

6. Boltzmann distribution 

7. Barometric formula 

8. Maxwell-Boltzmann distributions.  
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Lecture 15 

 

2.4.3 Transport phenomena in gases 

Whenever a thermodynamic system is brought out of the state of thermodynamic 

equilibrium, it will attempt to achieve the equilibrium state again. But the entropy of 

the system increases, so the process is irreversible. Disturbance of equilibrium is 

always accompanied by physical phenomena where particles, energy, or other physical 

quantities are transferred inside a system due to two mechanisms: diffusion and 

convection. These irreversible processes are called transport phenomena. 

Though speed of thermal motion of gas molecules is very high, macroscopic 

distances covered by molecules are small due to many collisions between them. Every 

collision modifies direction of motion or energy or other molecule properties. 

The mean free path <l> of a particle (a gas molecule) is the average distance 

the particle travels between successive collisions with other moving particles.  

Consider a gas molecule as an absolutely elastic sphere of diameter d (the 

effective diameter of a molecule). Then in unit time the molecule travels a distance 

<v> and collides with all the molecule within a cylinder of volume 
2d vp < >. The 

mean number of collisions equals to the number of molecules inside this cylinder 

2 ,d n vp < > where n is concentration of molecules in the gas. Instead of absolute 

velocity of the molecule it is more convenient to consider its relative velocity with 

respect to other molecules participating in collisions. According to the Maxwell speed 

distribution, 2relv v< > = < >. Then the mean number of collisions in unit time is  

22z d n vp< >= < >, (2.54) 

and the mean free path is 
v t

l
z t

< >
< >=

< >
, 

2

1 1

2 2
l

d n np s
< >= = . (2.55) 
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The quantity 
2ds p=  is called the effective cross-sectional area of collision, 

while the molecules in the gas are treated as hard spheres of effective diameter d that 

interact by direct contact. 

Using the basic equation of kinetic theory of gases, we obtain 

2

Bk T
l

ps
< >= . (2.56) 

2.4.4 Diffusion 

Diffusion is the mutual penetration of molecules of contacting substances due to 

their thermal motion. It is spontaneous net motion of particles down their concentration 

gradient (from a region of high concentration to a region of low concentration). 

Molecular diff usion is the thermal motion of all particles at temperatures above 

absolute zero. The rate of this movement is a function of temperature, viscosity of the 

fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules 

from a region of higher concentration (density) to one of lower concentration (density). 

Once the concentrations are equal the molecules continue to move, but since there is 

no concentration gradient the process of molecular diffusion has ceased and is instead 

governed by the process of self-diffusion, originating from the random motion of the 

molecules. The result of diffusion is a gradual mixing of material such that the 

distribution of molecules is uniform. Since the molecules are still in motion, but an 

equilibrium has been established, the end result of molecular diffusion is called a 

"dynamic equilibrium ".  

In diffusion, we are interested in the movement of molecular concentration. It is 

described by the Fick's laws. 

Fick's law of diffusion relates the diffusive flux to the concentration under the 

assumption of steady state. It postulates that the flux goes from regions of high 

concentration to regions of low concentration, with a magnitude that is proportional to 

the concentration gradient (spatial derivative).  
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Transport of material (a ñmass fluxò) in solute will move across a concentration 

gradient, and in one (spatial) dimension, the law is:  

m

d
j D

dx

r
=- ,  (2.57) 

where mj  is the "diffusion flux," or the mass flux density, m
m

j
S t

D
=
D D

, (kg/sĀm2), 

which measures the amount of substance that will flow through a unit area during a 

unit time interval; 

D is the diffusion coefficient or diffusivity, which depends on the temperature, 

viscosity of the fluid and the size of the particles;  

ɟ is the concentration, or density, that is the amount of substance per unit volume; 

d

dx

r
 is the density gradient.  

In two or more dimensions we must use the gradient operator Ð, which 

generalises the first derivative, obtaining 

mj D r=- Ð. (2.58) 

Letôs obtain the Fickôs law. Consider a self-diffusion in a thin slab of gas of 

cross-sectional area S. We divide the box in half so that the number of molecules on 

one side of the partition is N1 and on the other side is N2. Assume that the whole box is 

at a constant temperature T. Since only half the molecules will, on average, be moving 

towards the partition in three dimensions of space, the number 1ND  of molecules that 

cross the partition in a time tD, which is the time it takes a molecule to move distance 

of mean free path <l>, is 1 1 2

1
( )

2 3
N N ND = -

Ö
. The same number of molecules cross 

the partition in the opposite direction 2 1N ND =-D, and the net number of molecules 

1 1 2

1
2 ( )

3
N N N ND = D = -. 
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If the gradient in molecule number is 
dN

dx
 then we have 

1

3

dN
N l

dx
D = < > , and 

the net rate at which molecules cross the partition per unit area, that is the diffusion 

flux, is 
1 1 1 1

3 3 3 3

N l dN v dN v l dN dn
j l v

S t S t dx S dx V dx dx

D < > < > < >< >
= = = = = < >< >
D D

, where 

volume V S l= < > and molecular concentration n = N/V.  The absolute value indicates 

that this is the magnitude of the flux. As the flux is in the opposite direction to the 

gradient, we will have 

3

l v dn
j

dx

< >< >
=- Ö. 

The quantity 
3

l v< >< >
 is an approximation for the diffusion constant D for an 

ideal gas, and we can write this equation as the Fickôs law for the flux of concentration: 

dn
j D

dx
=- Ö. (2.60) 

It is easy to obtain now the Fickôs law for the mass flux 

m

d
j D

dx

r
=- Ö, where ɟ is the mass density. 

2.4.5 Internal friction in gases 

Internal friction appears when random thermal motion of the gas molecules is 

superposed with the ordered motion, that is, when the gas flow occurs.  

Letôs consider two horizontal, parallel flat plates with a gas sandwiched between 

them. If one plate moves parallel to the other, the gas between the plates exerts a drag 

force inhibiting the motion of the plates. In the reference frame with the lower plate at 

rest and the upper plate moving at some speed xu  to the right, weôd expect the fluid 

between the plates to be moving at a speed that increases from zero next to the lower 

plate up to xu  next to the upper plate. 
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Figure 2.10. 

The speed xu  of the fluid flow is directed along the x 

axis and depends only on the coordinate z between the plates 

(see Figure 2.10). This gradient in speed is the result of 

momentum transfer between adjacent layers in the fluid. 

Because of Newtonôs law of equal action and reaction, the 

horizontal drag force exerted on each plate is equal and 

opposite to the force on the fluid layer directly adjacent to the 

plate. 

The force on each plate is proportional to the area S of the plate and to the relative 

speed of the upper and lower plates _ _x top x bottomu u- , and inversely proportional to the 

distance ȹz between the plates. The last two assumptions are equivalent to saying that 

the force is proportional to the velocity gradient /xdu dz. That is 

x xF du

S dz
h= , (2.61) 

where h is the coefficient of viscosity or just the viscosity. 

The force of internal friction x
x

du
F S

dz
h= . 

On the other hand, from the Newtonôs second law, x x
p

F p
j

S S t

D
= =
D

, and deriving 

the Fickôs law for the transfer of momentum,  

1 1 1 1

3 3 3 3

x x x x x
p

p l dp v m du v l m du du
j l v

S t S t dz S dz V dz dz
r

D < > < > < >< >
= = = = = < >< >
D D

, 

we obtain  

3

x x
p

l v du du
j

dz dz

r
h

< >< >
=- Ö =-,  (2.62) 

where xpD  is the transferred momentum, x xp mu=  is the momentum, m is the total 

mass of gas in a slab of area S and thickness <l>, ɟ = m/V is density of the gas. 
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Thus, viscosity 
3

l v r
h
< >< >
= . (2.63) 

2.4.6 Thermal conductivity of gases 

Thermal conductivity is the transfer of heat in the material across the temperature 

gradient.  

Consider a box of molecules with a temperature gradient in the x direction. The 

flux of thermal energy is Q
Q

j
S t

D
=
D

. Deriving the Fickôs law for the transfer of energy 

similarly to the previous cases, the net heat transfer 
1

3
Q UD =- D, where 

2 2
A B V

i i
U N k T RT C Tu u= Ö = = is the internal thermal energy of the gas. Then, 

1

3
Q V

T
j C

S t

D
=-

D
. Assuming a linear temperature gradient, 

dT
T l

dx
D =< >, we obtain 

1

3 3
Q V

l v dT dT
j C

dx dx

r
k

< >< >
=- Ö =-. (2.64) 

The quantity 
1

3 3
V

l v
C

r
k

< >< >
=  is called thermal conductance. Recalling 

the formula for the average speed <v>, we see that the thermal conductance Tḱ . 

 

Questions for self-control 

1. What are the transport phenomena? 

2. What is a mean free path? 

3.  What is diffusion? 

4. What is self-diffusion? 

5. The Fickôs law 

6. Internal friction in gases. Viscosity. 

7. Thermal conductivity of gases. 
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Topic 2.5. Real gases 

Lecture 16 

 

2.5.1 The van der Waals equation of state 

For most applications, the ideal gas approximation can be used with reasonable 

accuracy. But in real life gases are not ideal. They are made up of atoms and molecules 

that actually take up some finite volume, and interact with each other through 

intermolecular forces. The real-gas models have to be used near the condensation point 

of gases, near critical points, at very high pressures or low temperatures.  

Real gases are non-hypothetical gases whose molecules occupy space and have 

interactions.  

The van der Waals equation is the equation of state for real gases. The van der 

Waals model of a substance is able to predict (qualitatively) the existence of the liquid-

gas phase transition and the critical point (where there is no clear distinction between 

the liquid and gas phases). The model is a refinement of the ideal gas equation of state, 

pV RTu= , which looks like this: 

( )2 m

m

a
p V b RT

V

å õ
+ - =æ ö

ç ÷
,  or  ( )

2

2

a
p V b RT

V

u
u u

å õ
+ - =æ ö

ç ÷
, (2.65) 

where mV  is the molar volume, a and b are constants whose values depend on the 

particular substance weôre describing.  

The correction to the volume term is due to the fact that in a real substance, it is 

not possible to reduce the volume to zero since the molecules have a size below which 

they cannot be compressed further. Thus the minimum volume of an amount of 

substance containing ɡ moles is ɡb, where b depends on the nature of the substance. 

The correction to the pressure in the ideal gas law accounts for the fact that gas 

molecules do in fact attract each other and that real gases are therefore more 

compressible than ideal gases. Due to electric interactions, all molecules exhibit a long 
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term attraction to each other. This causes the additional pressure called the internal 

pressure 
2

2i

a
p

V

u
= , where a depends on the nature of the substance. 

When the molar volume Vm is large, b becomes negligible in comparison with 

Vm, a/ 2

mV  becomes negligible with respect to p, and the van der Waals equation reduces 

to the ideal gas law. 

2.5.2 Energy of the van der Waals gas 

Internal energy of the van der Waals gas is the sum of the kinetic energy of 

random thermal motion of molecules and the net potential energy of the intermolecular 

interaction: U = K + U int. 

The work by interaction forces equals to the negative of potential energy: 

intdA dU=- . The potential energy is negative since weôre dealing with an attractive 

interaction. Thus two molecules separated by some finite distance require positive 

work done on them to pull them apart to an infinite distance, at which point the potential 

energy is zero. That is, the work is required to pull them out of a potential well, so their 

potential energy is negative. 

The attractive forces are characterized by the internal pressure 
2i

m

a
p

V
=   Then 

the elementary work by these forces is i mA p dVd =-  (during gas expansion the work 

done on the gas is negative, that is, the gas does work on its surroundings). We obtain 

2 m

m m

a a
A dV d

V V
d

å õ
=- =- -æ ö

ç ÷
.  (2.66) 

We can make a conclusion that potential energy of the intermolecular interaction 

int

m

a
U

V
=- . The total kinetic energy due to thermal motion of molecules is 

2
V

i
K RT C T= = .  

Thus, the internal energy of one mole of the van der Waals gas is 
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m V

m

a
U C T

V
= - .  (2.67) 

2.5.3 The van der Waals isotherms 

From the van der Waals equation, 

2

m m

RT a
p

V b V
= -

-
,                                   (2.68) 

or 3 2( ) 0m m mpV bp RT V aV ab- + + - =. 

This is a cubic equation, and depending 

on the values of p and T it can have different 

roots. 

 

Figure 2.11. 

We can plot van der Waals isotherms on a PV diagram (Figure 2.11). As we see, there 

is a critical temperature Tc when all the three roots of the equation are equal. At the 

critical temperature T = Tc the minimum in the pressure curve becomes an inflection 

point, where both 
dp

dV
 and 

2

2

d p

dV
 are zero (this is a point like that in the graph of y = x3 

at x = 0). This point is called a critical point. At the temperatures higher than the critical 

T > Tc the minimum in the pressure disappears (it corresponds to one real and two 

imaginary roots of the cubic equation) and we are left with a curve that gets closer to 

that for an ideal gas, where p = ɡRT/V (which is a hyperbola), see Figure 2.11, 

temperature T3. At the temperatures lower than the critical T < Tc the equation has tree 

real roots and the curve shows a minimum pressure as we reduce the volume, which 

seems to indicate that as we compress the substance, its pressure actually decreases, 

see Figure 2.11, temperatures T1, T2. Actually, such behavior indicates transition from 

the gas phase to the liquid phase. 

At the critical point where the tree roots are equal we can rewrite the van der 

Waals equation in the form 

3( ) 0c m cp V V- =; 

3 2 2 33 3 0c m c c m c c m c cp V p V V p V V p V- + - =, 



50 
 

and comparing the multiples of corresponding terms, we obtain that 3

c cp V ab= , 

23 c cp V a= , 3 c c c cp V bp RT= + . Then, 

227
c

a
p

b
= ;  3cV b= ; 

8

27
c

a
T

Rb
= . 

However, experimental isotherms for real gases show that for temperatures 

lower than the critical there is a region where p is a constant function of V at given 

temperatures (region CD at Figure 2.12). This pressure is called a vapor pressure, that 

is, a pressure of vapor in thermodynamic equilibrium with its condensed phases (solid 

or liquid) at a given temperature. This region corresponds to the liquefaction of gases 

when the liquid phase and the gas phase are in equilibrium. The van der Waals equation 

fails to accurately model observed experimental behavior in regions near the critical 

point.  

 

Figure 2.12. 

Though, experiments show that 

real gases can be brought into the state 

predicted by the theoretical van der 

Waals isotherm (points A and B in the 

Figure 2.12). This states however are 

metastable, without thermodynamic 

equilibrium at given temperature.  

Region CA corresponds to the superheated liquid, while region BD 

corresponds to supersaturated vapor.  

Superheating is the phenomenon in which a liquid is heated to a temperature 

higher than its boiling point, without boiling. Superheating is achieved by heating a 

homogeneous substance in a clean container, free of nucleation sites, which are centers 

of initiating phase transition.  

Supersaturated vapor has pressure higher than the vapor pressure at given 

temperature, but without condensation. It can be achieved by increasing the pressure 

of gas in a clean container, free of condensation sites. 



51 
 

The ClausiusïClapeyron relation characterizes behavior of a closed system 

during a phase change, during which temperature and pressure are constant.  

It is a way of characterizing a discontinuous phase transition between two phases 

of matter of a single constituent. Two phases coexist in equilibrium only at the certain 

pressure depending on the temperature. On a pressureïtemperature (PïT) diagram, the 

line separating the two phases is called a coexistence curve. The ClausiusïClapeyron 

relation gives the slope of the tangents to this curve. Mathematically, 

s

s s

dp L S

dT T V V

D
= =
D D

, (2.69) 

where 
dp

dT
 is the slope of the tangent to the coexistence curve at any point, L is the 

specific latent heat, T is the temperature, sVD  is the specific volume change of the 

phase transition, and sSD  is the specific entropy change of the phase transition. 

 

Questions for self-control 

1. The difference between the real gas and the ideal gas.  

2. Van der Waals equation.  

3. Internal energy of the real gas.  

4. Isotherms of real gases.  

5. Critical temperature 

6. Phase transition 

7. Difference between the theoretical and experimental van der Waals isotherms 

8. Metastable states 

9. Liquefaction of gases. 

10. ClausiusïClapeyron relation 
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CHAPTER 3. ELECTROSTATICS 

 

Topic 3.1. Electrostatic field in vacuum 

Lecture 17 

 

3.1.1. Electrostatic force  

Electrostatics is a branch of physics that deals with the phenomena and 

properties of stationary electric charges. 

Electric charge is the physical property of matter that causes it to experience a 

force when interacting with other charged objects. There are two types of electric 

charges: positive and negative. Charges of the same sign repel one another and charges 

with opposite signs attract one another. 

Point charge is a charged particle of zero size. 

Elementary charge (e) is the smallest electric charge existing for isolatable 

particles. It is the electric charge carried by a single proton (or by a single electron, īe). 

The value of the elementary charge ʝ = 1.6 Ā 10-19 C 

Charge quantization is the principle that the charge of any object is an integer 

multiple of the elementary charge. That is, electric charge exists as discrete value: 

q = +Ne, where N is some integer. 

Electric charge conservation law: 

In an isolated system the algebraic sum of electric charges is always conserved: 

1 2 ... nq q q const+ + + =  (3.1) 

That is, when the object is electrified, charge is not created in the process. The 

electrified state is due to a transfer of charge from one object to the other. The 

electrified state appears when one object gains some amount of negative charge while 

the other gains an equal amount of positive charge. 
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The electric force is one of the fundamental forces in nature. Experimental 

observations carried out by Charles Coulomb have allowed to generalize the properties 

of the electric force between two stationary charged particles.  

The magnitude of the electric force (sometimes called the Coulomb force) 

between two point charges is given by Coulombôs law: 

1 2

2

r

q q
F k

re

Ö
= , (3.2) 

where 1q  and 2q  are the magnitudes of the charges; the scalar r is the distance 

between the charges; k is the Coulomb constant: 
0

1

4
k

pe
=  = 9Ā109 Nm2/C2;  

Ů0 = 8.85 Ā 10
-12 C2/Nm2 is electric constant (also called as the permittivity of free space 

or vacuum permittivity); Ůr is the relative permittivity  of the medium (in vacuum or 

in the air Ůr = 1); 0
r

F

F
e= , where F0 is the force between charges in vacuum; F is the 

force between charges in the medium. 

Coulombôs law expressed in vector form for the electric force exerted by a 

charge q1 on a second charge q2, is 

1 2
12 2 r

r

q q
F k e

re

Ö
= Ö, (3.3) 

where 
r

r
e

r
=  is a unit vector directed from q1 toward q2, (see Figure 3.1). 

According to the Newtonôs third law, the electric force exerted by q2 on q1, is 

equal in magnitude to the force exerted by q1 on q2, and in the opposite direction 

12 21F F=- . The electric force vector is directed along the line joining the two charges.  

Finally, if q1 and q2 have the same sign (Figure 3.1a), the product 1 2q q  is positive 

and the electric force on one particle is directed away from the other particle. If q1 and 
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q2 are of opposite sign (Figure 3.1b), the product 1 2q q  is negative and the electric force 

on one particle is directed toward the other particle. 

 

(a) 

 

(b) 

Figure 3.1 Electric force on the charged particles. 

When more than two charges are present, the resultant force on any one of them 

equals the vector sum of the forces exerted by the other individual charges: 

1 2 ... nF F F F= + + +. 

 

Figure 3.2. 

For example, for the system 

of 3 charges (Figure 3.2): 

 Electric force on q1  

1 21 31F F F= + ; 

 Electric force on q2  

2 12 32F F F= + ; 

 Electric force on q3  

3 13 23F F F= + ; 

3.1.2. Electrostatic field 

Electric charges or charged objects are the source of electric field. When another 

charged object ð the test charge ð enters this electric field, an electric force acts on 

it. The existence of an electric field is a property of its source; the test charge just serves 

as a detector of the electric field presence. The field forces can act through space, 

producing an effect even when no physical contact occurs between interacting objects.  
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The electric field vector E  is the electric force F  acting on a test charge q 

divided by the magnitude of this charge: 

F
E

q
= .  (3.4) 

The electric field vector at a given point in space has the same direction as the 

electric force that would act on a positive test charge placed at that point. 

Hence, the electric force experienced by a point charge q in the electric field  

F qE= .  (3.5) 

If q is positive, the force is in the same direction as the field; if q is negative, the 

force is in the opposite direction as the field. 

Electric field lines are the visualization of the electric field in a region of space 

(Figure 3.3): 

 

Figure 3.3. 

 The electric field vector is tangent to the electric 

field line at each point.  

 The number of lines per unit area is proportional 

to the magnitude of the electric field in that region.  

 The lines begin on a positive charge and terminate 

on a negative charge. 

If the electric field vector is constant at every point in space then the electric field is 

called uniform . 

Superposition principle: at any point in space, the total electric field due to a 

group of source charges equals the vector sum of the electric fields of all the charges.  

1 2 ... nE E E E= + + +. (3.6) 

This superposition principle applied to fields follows directly from the vector addition 

of electric forces. 
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Figure 3.4. 

For example, for the system of two charges 

(Figure 3.4):       

1 2E E E= + . 

 

Electric field due to a point charge q at a distance r 

away from it (Figure 3.5): 

2

q r
E k

r re
= Ö                                                          (3.7) 

 
 

Figure 3.5. 

3.1.3 Electric field due to a continuous distributed charge 

The system of closely spaced charges is equivalent to a total charge that is 

continuously distributed along some line, over some surface, or throughout some 

volume. 

 If a charge q is uniformly distributed throughout a volume V, the volume charge 

density ɟ is defined by 
dq

dV
r= ; 

 If a charge q is uniformly distributed on a surface of area S, the surface charge 

density ů is defined by 
dq

dS
s= ; 

 If a charge q is uniformly distributed along a line of length l, the linear charge 

density ɚ is defined by 
dq

dl
l= . 

To find the electric field due to the distributed charge, letôs use the differentiation 

- integration procedure. First, divide the charge distribution into small elements, each 

of which contains a small charge dq as shown in Figure 3.6. Next, use equation for the 
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electric field due to a point charge to calculate the electric field due to one of these 

elements at a point P. Finally, evaluate the total electric field at P due to the charge 

distribution by summing the contributions of all the charge elements (that is, by 

applying the superposition principle). 

The electric field at P due to one charge element carrying charge dq is 

2 r

dq
dE k e

r
= Ö,  (3.8) 

where r is the distance from the charge element to point P and re  is a unit vector 

directed from the element toward P. The total electric field at P due to all elements in 

the charge distribution is  

2 r

dq
E k e

r
= Öñ ,  (3.9) 

where the integration is over the entire charge distribution. 

3.1.3.1 Electric field due to a uniformly charged rod 

 

Figure 3.6. 

Letôs calculate the electric field 

due to an infinitely long straight rod 

carrying a uniformly distributed positive 

charge of linear density ɚ at a point P at 

a distance a from the rod. Letôs assume 

the rod is lying along the x axis, dx is the 

length of one small segment, and dq is 

the charge on that segment (see 

Figure 3.6).  

The field dE  at P due to the elementary charge dq is  

2 2r r

dq dx
dE k e k e

r r

l
= Ö = Ö. 

In order to calculate the integral of dE  we need to make a substitution: 
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cos

a
r

a
= ;  x a tga= Ö ;  

2cos

a
dx da

a
= Ö . 

Then, 
2

2 2

cos

cos
r r

a k
dE k d e d e

a a

a l
l a a

a
= Ö Ö = .  

Now we need to consider x and y components of the vector quantity dE : 

sinx

k
dE d

a

l
a a= ;   cosy

k
dE d

a

l
a a= . 

Now we can obtain the x and y components of the total electric field E  by 

calculating the integrals: 

/ 2
/ 2

/ 2

/ 2

sin cos 0x

k k
E d

a a

p
p

p
p

l l
a a a

-

-

= =- =ñ ;  

/ 2
/ 2

/ 2

/ 2

2
cos siny

k k k
E d

a a a

p
p

p
p

l l l
a a a

-

-

= = =ñ . 

The resulting electric field is directed along the y axis and its magnitude is 

2k
E

a

l
= .  (3.10) 

3.1.3.2 Electric field due to a uniformly charged thin ring 

 

Figure 3.7. 

Consider a ring of radius R 

carrying a uniformly distributed 

positive charge of linear density ɚ. Letôs 

calculate the electric field due to the ring 

at a point P lying a distance x from its 

center along the central axis 

perpendicular to the plane of the ring 

(see Figure 3.7). 

Letôs consider an elementary segment of the ring of the length dl and charge dq. 

The field dE at P due to the elementary charge dq is  
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2 2r r

dq dl
dE k e k e

r r

l
= Ö = Ö. 

The distance 2 2 2r R x= +  is the same for all the points on the ring. Now we have 

to consider the components of the field vector xdE  parallel to the axis of the ring and 

dE^ perpendicular to the axis. Because of the symmetry of the situation, the 

perpendicular components of the field cancel. That is, the resulting field is directed 

along the x axis and its magnitude  

xE dE=ñ , where 
2

cosx

dl
dE k

r

l
q= Ö ; 

2 2
cos

x x

r R x
q= =

+
. 

Then, 
( ) ( )

2

3/ 22 2 2 2 2 2
0

2

R
dl x x

E k R k
R x R x R x

p
l

p l= Ö =
+ + +

ñ , or  

( )
3/ 2

2 2

x
E kq

R x
=

+
,  (3.11) 

where q is the total charge of the ring. 

3.1.4 Electric potential 

When the test charge is moved in the field by some external agent, the work done 

by the field on the charge is equal to the negative of the work done by the external 

agent causing the displacement. 

For an infinitesimal displacement dl  of a point charge q0 immersed in an electric 

field, the work done within the chargeïfield system by the electric field on the charge 

is 
0elA F dl q Edl= = . As this amount of work is done by the field, the potential energy 

of the chargeïfield system is changed by an amount 
0dW A q Edl=- =- . The negative 

sign means that in a system consisting of a positive charge and an electric field, the 

electric potential energy of the system decreases when the charge moves in the 

direction of the field. Equivalently, an electric field does work on a positive charge 

when the charge moves in the direction of the electric field. For a finite displacement 
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of the charge from point 1 to point 2, the change in potential energy of the system 

ȹW = W2 ï W1 is 

2

0

1

W q EdlD =-ñ .  (3.12) 

Because the electrostatic force 0q E  is conservative, this line integral does not 

depend on the path taken from 1 to 2. Moreover, the integral over a closed path, called 

a circulation  of the vector E  in the electrostatic field, equals zero: 

0Edl =ñ .  (3.13) 

For a given position of the test charge in the field, the chargeïfield system has a 

potential energy W. Dividing the potential energy by the test charge gives a physical 

quantity that depends only on the source charge distribution and has a value at every 

point in an electric field. 

Electric potential is the amount of electric potential energy of a charged particle 

at any location divided by the charge of that particle.  

0

W

q
j= . (3.14) 

Then, the potential difference is  

d Edlj=- ;  
2

1

EdljD =-ñ . (3.15) 

 

Figure 3.8. 

The electric potential difference U j=D 

is called voltage. Potential difference between 

two points 1 and 2 separated by a distance d in a 

uniform electric field (E = const, Figure 3.8) will 

be  

2 2

1 1

cosEdl Edl Edj aD =- =- =-ñ ñ , 
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where d is the distance between the two points projected onto the vector E . The 

negative sign indicates that the electric potential at point 2 is lower than at point 1. 

Electric field lines always point in the direction of decreasing electric potential. 

The electric potential at any point in space is equal to the work done by the 

electric field in carrying a unitary charge from that point to infinity without any 

acceleration. The work by the electric field in carrying the test charge q from point 1 

to point 2 is 

1 2( )A qj j= - ,  (3.16) 

where 
1 2j j-  is the potential difference between the two points. 

The equipotential surface is the 

locus of points having the same electric 

potential (see Figure 3.9). Equipotential 

surfaces are always perpendicular to the 

net electric field lines passing through it. 

The work done to move a charge from 

any point on the equipotential surface to 

any other point on the same surface is 

zero since they are of the same potential. 

 

Figure 3.9. 

3.1.4.1 Electric potential due to a point charge  

To find the electric potential at a point located a distance r from the point charge 

q, letôs begin with the general expression for potential difference, d Edlj=- . Using 

the expression for the electric field due to the point charge, we obtain 

2 2r

q q q
d k e dl k dr d k const

r r r
j

å õ
=- Ö =- Ö =- +æ ö

ç ÷
. 

Now we see, that the potential due to the point charge is  

q
k

r
j= .  (3.17) 
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Electric potential is a scalar quantity, and its sign is given by the source electric 

charge. 

The total electric potential due to a group of source charges at any point in 

space equals the algebraic sum of the electric potentials created by every individual 

charge at that point.  

1 2 ... nj j j j= + + +.  (3.18) 

For the case of continuously distributed charge,  

dq
k

r
j=ñ . (3.19) 

3.1.5 Relation between the electric potential and the electric field vector 

Letôs find components of the vector E . Considering displacement along the x 

axis, 
xd Edl E dxj=- =- . Then, x

d
E

dx

j
=- . Similarly, y

d
E

dy

j
=- ; z

d
E

dz

j
=- . Then, 

the vector E  is  

d d d
E i j k

dx dy dz

j j jå õ
=- + +æ ö
ç ÷

, or ()E grad j=- . (3.20) 

3.1.6 Electric dipole 

Electric dipole is defined as a positive charge q and a negative charge ïq 

separated by a fixed distance l. Neutral atoms and molecules behave as dipoles when 

placed in an external electric field.  

Electric field due to the dipole is considered at a distance r from the dipole, 

r >>  l. Electric potential due to the electric dipole at point P 

q q r r
k kq

r r r r
j - +

+ - - +

å õ -
= - =æ ö
ç ÷

. 
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As far as r >> l , cosr r l q- +- º ; 2r r r- +º  (see Figure 3.10). Then, 

2

cos
k

r

q
j r= , (3.21) 

where ɟ = ql is the electric dipole moment. Actually, the electric dipole moment is a 

vector directed from the negative charge to the positive:  

qlr= . (3.22) 

 
 

 

Figure 3.11. 

(a) (b) 
Figure 3.10. 

Now letôs find the electric field due to the electric dipole (see Figure 3.10b). 

Component of the electric field parallel to the direction of radius vector 

|| 3

2 cos
r

d
E k

dr r

j r q
=- = . Component of the electric field perpendicular to the direction 

of radius vector 
3

sin
r

d
E k

rd r

j r q

q
^=- = . Then, the total electric field 

||

2 2 2

3
1 3cos

r r
E E E k

r

r
q

^
= + = + . (3.23) 

In particular cases, when ɗ = 0 or ɗ = ˊ/2, we obtain expressions for the electric 

field on the dipole axis (||E ) and perpendicular to the dipole axis (E )̂: 
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|| 3

2
E k

r

r
= ;  

3
E k

r

r
^= . (3.24) 

3.1.6.1 Force on the electric dipole  

Letôs consider an electric dipole in nonuniform electric field (Figure 3.11). The 

electric field vector at the points of positive and negative charges of the dipole is E+ 

and E-. Then, the net electric force on the dipole is ( )F q E E+ -= - . The quantity 

E E E+ -D = - is the change in the electric field over an infinitesimal distance l. So 

dE
E l

dl
D = . Thus we obtain the force on the electric dipole moment ɟ: 

dE
F

dl
r= .  (3.25) 

The force on the electric dipole is nonzero only in the nonuniform electric field. 

3.1.6.2 Torque on the electric dipole 

An object with an electric dipole moment is subject to a torque when placed in 

an external electric field. The net torque on the dipole , ,M r qE r qE+ + - -
è ø è ø= - ºê ú ê ú, 

, ,r r qE l qE+ -
è øè øº - =ê úê ú, where E E E+ -º º  as far as the distance l between the 

positive  and negative charges is small. Thus, 

,M Erè ø=ê ú.  (3.26) 

Now consider an electric dipole placed in a uniform external electric field E  

making an angle ɗ with the field as shown in Figure 3.12. The electric forces acting on 

the two charges are equal in magnitude (F F qE+ -= = ) and opposite in direction as 

shown in Figure 3.12. Therefore, the net force on the dipole is zero. However, the two 

forces produce a net torque on the dipole. As a result, the dipole rotates in the direction  
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Figure 3.12. 

that brings the dipole moment vector into 

greater alignment with the field. The torque 

due to the force on the positive charge about 

an axis through O in Figure 3.12 has 

magnitude sin sin
2 2

l E
qE

r
q q= . This force 

tends to produce a clockwise rotation. The 

torque about O on the negative charge has the 

same magnitude and also tends to produce a clockwise rotation. Therefore, the 

magnitude of the net torque on the dipole in the uniform electric field is 

sinM Er q= .  (3.27) 

3.1.6.3 Energy of the electric dipole in the electric field 

The torque tends to align the dipole parallel with the electric field vector E  when 

ɗ = 0. A dipole aligned parallel to the electric field has lower potential energy than a 

dipole making some angle with it. The work done by an external agent to rotate the 

dipole through the angle is then stored as potential energy in the system of the dipole 

and the external electric field. 

As we know, potential energy of the point charge q in the external electric field 

is W qj= , where ű is the electric potential at the point where the charge q is located. 

As far as electric dipole is a system of two point charges of opposite signs, its energy 

in the external electric field is ( )W q q qj j j j+ + - - + -= + = +, where j+ and j- are 

potentials due to the external electric field at the points where the charges +q and ïq 

are located; 
d

l
dl

j
j j+ -+ = . But according to the relation between the electric field 

vector and electric potential, l

d
E

dl

j
- = , where lE  is projection of the vector E  on the 
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vector l , which shows the direction of the electric dipole moment qlr= . Then, 

l

d
l E l El

dl

j
j j+ -+ = =- =-, and the electric potential energy of the dipole is 

W qEl Er=- =-.  (3.28) 

It is seen, that electric dipole has its minimum potential energy  

(
min cos0W E Er r=- =-) when it is aligned parallel with the external electric field 

Er¬¬ , which is the equilibrium orientation of the dipole. Thatôs why electric dipoles 

tend to align with the field. If the change in the system is made, the dipole begins to 

rotate back toward the configuration in which it is aligned with the field. 

 

Questions for self-control 

1. What is the electrostatic field? 

2. What is the point charge? Properties of the electric charges 

3. Charge quantization law 

4. Electric charge conservation law 

5. Coulomb's law 

6. What is the electric field vector 

7. Superposition principle 

8. Properties of the electric field lines 

9. Uniform electric field 

10. Electric field due to a point charge 

11. Properties of the distributed electric charge 

12. Calculation of the electric field due to the linearly distributed charge 

13. Circulation of the electric field vector 

14. Electric potential 

15. What is the equipotential surface?  

16. Electric potential due to a point charge 

17. work done by the electric field 

18. Relation between the electric potential and the electric field vector 

19. Electric dipole. Dipole moment 

20. Torque on the electric dipole   
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Lecture 18 

 

3.1.7 Electric flux 

Electric flux  is the measure of flow of the electric field through a given area. It 

is proportional to the number of electric field lines going through a normally 

perpendicular surface.  

If the electric field is uniform, the electric flux passing through a surface of 

vector area S  (see Figure 3.13) is 

cosES ES aF= =   (3.29) 

where E  is the electric field, E is its magnitude, S  is the vector area, whose direction 

is defined to be perpendicular to the surface, S is magnitude of the area of the surface, 

and Ŭ is the angle between the electric field lines and the perpendicular to the surface. 

We see that the flux through a surface of fixed 

area has a maximum value when the surface is 

perpendicular to the field; the flux is zero when the 

surface is parallel to the field.  

For a non-uniform electric field, the electric flux 

dū through a small surface area dS is given by 

 

Figure 3.13. 

cosd EdS EdS aF= =  

The electric flux over a surface S is therefore given by the surface integral: 

cos
S S

EdS EdS aF= =ññ ññ.  (3.30) 

We are often interested in evaluating the flux through a closed surface. Then 

vector dS is a differential area on the closed surface S with an outward facing surface 

normal defining its direction. 
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3.1.8 Gauss's law 

Gaussôs law is a general relationship between the net electric flux through a 

closed surface (often called a gaussian surface) and the charge enclosed by the surface. 

The electric flux through a closed surface is equal to the total electric charge 

enclosed within this surface divided by the electric constant: 

0S

q
EdS

e
=ñ   (3.31) 

Consider a positive point charge q located at the center 

of a sphere of radius r and surface area S as shown in 

Figure 3.14. The magnitude of the electric field everywhere 

on the surface of the sphere is 2/E kq r= . The field lines are 

directed radially outward and hence are perpendicular to the 

surface at every point on the surface. Therefore, the electric 

flux through the surface element dS is  

 

Figure 3.14. 

2 2

04

kq q
d EdS dS dS

r rpe
F= = = . 

Then we obtain the net flux through the gaussian surface by integrating 

S S S

EdS EdS E dSF= = =ñ ñ ñ, where we have moved E outside of the integral because, 

by symmetry, E is constant over the surface. As the surface is spherical, 24
S

dS rp=ñ , 

and the net flux is 
2

2

0 0

4
4

q q
r

r
p

pe e
F= Ö =, so the Gaussô theorem is proved. The flux 

is independent of the radius r because the area of the spherical surface is proportional 

to r2, whereas the electric field is proportional to 1/r2.  

By definition, flux is proportional to the number of electric field lines passing 

through a surface surrounding the charge q. But the number of lines through spherical 

surface is equal to the number of lines through the nonspherical surface (surface S1 in 
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Figure 3.14). Therefore, the net flux through any closed surface surrounding a point 

charge q is given by 
0

q

e
 and is independent of the shape of that surface. 

Now consider a point charge located outside a closed 

surface of arbitrary shape as shown in Figure 3.15. As can 

be seen from this construction, any electric field line 

entering the surface leaves the surface at another point. The 

number of electric field lines entering the surface equals the 

number leaving the surface. Therefore, the net electric flux 

through a closed surface that surrounds no charge is zero.   

Figure 3.15. 

Now letôs generalize the Gaussô law for the electric flux due to many point 

charges and due to a continuous distribution of charge. Using the superposition 

principle, the flux through any closed surface can be expressed as 

1 2 1 2 1 2( ...) ... ...
S S S S

EdS E E dS E dS E dS= + + = + + =F +F +ñ ñ ñ ñ  

We know that 
0

i
i

S

q
E dS

e
=ñ  if the charge qi is inside the surface, or 0i

S

E dS=ñ  if 

the charge is outside the surface. We obtain that 

0 0

1 in
i

iS

q
EdS q

e e
= =äñ ,  (3.32) 

where inq  is the net charge inside the gaussian surface. For the continuous distribution 

of charge, in

V

q dVr=ñ , where ɟ is the volumetric charge density, V is the volume over 

which the charge is distributed inside the Gaussian surface. So, 

0

1

S V

EdS dVr
e
=ñ ñ.  (3.33) 
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3.1.9 Differential form of the Gaussô law 

For the distributed electric charge, the Gaussô law can be written as 

0

1

S

EdS
V

r

e

< >
=ñ , where <ɟ> is the average volumetric charge density throughout the 

volume V, qin = <ɟ>V. 

Divergence of the electric field vector represents the volume density of the 

outward flux of a vector field from an infinitesimal volume around a given point: 

0

1
lim
V

S

divE EdS
V

= ñ .  (3.34) 

For the Cartesian coordinate system we obtain 

yx z
dEdE dE

divE E
dx dy dz

=ÐÖ = + +. (3.35) 

Divergence theorem, also known as Ostrogradsky's - Gauss's theorem, states 

that the outward flux of a vector field through a closed surface is equal to the volume 

integral of the divergence over the region inside the surface:  

S V

EdS divEdV=ñ ñ .  (3.36) 

By the combination of the Gauss law and the divergence theorem, 

0

1

S V V

EdS dV divEdVr
e
= =ñ ñ ñ, the Gauss' law can alternatively be written in the 

differential form :  

0

divE
r

e
= .  (3.37) 

3.1.10 Circulation and curl of the electric field vector 

The curl  of a vector field describes the infinitesimal rotation at every point in 

the field and is defined as the infinitesimal area density of the circulation of that field. 

Consider a vector field E  and an infinitesimal area SD  enclosed by the path L. 

Let the unit vector n  be perpendicular to the plane of the area SD  and related with the 
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direction of circulation along the path L according to the right-hand rule (Figure 3.16). 

Then, the curl of the vector field projected onto the n  is defined as 

0
lim L

n
S

Edl

rot E
SD 

=
D

ñ
. (3.38) 

For the Cartesian coordinate system,  

,

x y z

i j k

d d d
rotE E

dx dy dz

E E E

è ø= Ð =ê ú . (3.39) 
 

Figure 3.16. 

The Stokes theorem relates the surface integral of the curl of a vector field E  

over a surface S to the line integral of the vector field over its boundary L: 

S L

rotEdS Edl=ñ ñ.  (3.40) 

As far as circulation of the vector E  in the electrostatic field equals zero, 

0
S

rotEdS=ñ . That means that in the electrostatic field  

0rotE= .  (3.41) 

It gives the condition for the vector field to be potential: in the potential field 

circulation of the field vector over a closed path equals zero.  

Equations 

0

divE
r

e
= ;  0rotE=   (3.42) 

are the basic equations of electrostatics. 

 

Questions for self-control 

1. What is the electric flux? 

2. Gauss's law 
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3. Gaussô law for the electric flux due to many point charges  

4. Gaussô law for the electric flux due to the continuous distribution of charge 

5. Divergence of the electric field vector 

6. Ostrogradsky - Gauss theorem (divergence theorem) 

7. Differential form of the Gaussô law 

8. Curl of the electric field vector 

9. Stokes' theorem 

10. Basic equations of electrostatics 

  



74 
 

Lecture 19 

 

3.1.11 Application of gaussôs law to various charge distributions 

Gaussôs law is useful for determining electric fields when the charge distribution 

is highly symmetric. In such a case we can choose the gaussian surface over which the 

surface integral 
S

EdSñ  can be simplified and the electric field determined. The goal in 

this type of calculation is to determine a surface for which each portion of the surface 

satisfies one or more of the following conditions: 

1. The value of the electric field can be argued by symmetry to be constant over the 

portion of the surface, so that E can be removed from the integral. 

2. The dot product EdS can be expressed as a simple algebraic product EdS because 

vectors E  and dS are parallel. 

3. The dot product 0EdS=  because vectors E  and dS are perpendicular. 

4. The electric field is zero over the portion of the surface. 

Different portions of the gaussian surface can satisfy different conditions as long 

as every portion satisfies at least one condition. If the charge distribution does not have 

sufficient symmetry such that a gaussian surface that satisfies these conditions can be 

found, Gaussôs law is not useful for determining the electric field for that charge 

distribution. 

3.1.11.1 Electric field due to a spherical charge distribution 

Letôs consider an electric field due to a spherical surface of radius R and of 

total positive charge q, which is uniformly distributed over the surface, depending on 

a distance r from the center of the sphere. 

Because the charge is distributed uniformly throughout the spherical surface, the 

charge distribution has spherical symmetry and we can apply Gaussôs law to find the 

electric field. To reflect the spherical symmetry, letôs choose a spherical gaussian 
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surface of radius r, concentric with the spherical surface, as shown in Figure 3.17. For 

this choice, 24
S S S

EdS EdS E dS E rp= = = Öñ ñ ñ . 

 for the region inside the spherical surface (r < R) 

no charges are inside the gaussian surface, and 

E = 0 ;                                                       (3.43a) 

 for the region outside the sphere and on its surface 

(r Ó R), the total charge of the surface q is inside 

the gaussian surface, and according to the Gaussôs 

law,  

2

0

4
S

q
EdS E rp

e
= Ö =ñ . Then, 

2 2

04

q q
E k

r rpe
= = .                                      (3.43b) 

The plot of the E(r) dependence for the charged 

spherical surface is shown in Figure 3.18. 

 

Figure 3.17. 

 

Figure 3.18. 

Now letôs consider an electric field due to a sphere of radius R and of total 

positive charge q, which is uniformly distributed over the volume with volumetric 

charge density ɟ.  

Because the charge is distributed uniformly throughout the sphere, the charge 

distribution has spherical symmetry and we can apply Gaussôs law to find the electric 

field. As in the previous case, letôs choose a spherical gaussian surface of radius r, 

concentric with the sphere, as shown in Figure 3.19. For this choice, 

24
S S S

EdS EdS E dS E rp= = = Öñ ñ ñ . 
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 for the region inside the sphere (r < R), according to the Gaussôs law 

2

0 0

1
4

S V V
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= Ö = =ñ ñ ñ, where V is the volume of the smaller sphere 

bounded by the gaussian surface, 34
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considering that the total charge 34
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 for the region outside the sphere and on its surface (r Ó R), according to the Gaussôs 

law 2

0
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V
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p
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Ö =ñ , where V is the volume of the charged sphere because now 

the total charge of the sphere q is inside the gaussian surface, 34
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The plot of the E(r) dependence for the charged sphere is shown in Figure 3.20. 

 

 

 

 

Figure 3.19. Figure 3.20. 
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The electric field due to a uniformly charged sphere of total charge q in the 

region external to the sphere is equivalent to that of a point charge q located at the 

center of the sphere. The field external to a spherically symmetric charge distribution 

varies as 1/r2. 

3.1.11.2 Electric field due to a cylindrical symmetry charge distribution 

Letôs consider an electric field at a distance r from a line of infinite length having 

total positive charge q and constant linear charge density ɚ. 

Because the charge is distributed uniformly along 

the line, the charge distribution has cylindrical symmetry 

and we can apply Gaussôs law to find the electric field. 

To reflect the symmetry of the charge distribution, letôs 

choose a cylindrical gaussian surface of radius r and 

length l, that is coaxial with the line charge (Figure 3.21). 

For the lateral surface of the cylinder, E  is constant in 

magnitude and perpendicular to the surface at each point. 
 

Figure 3.21. 

Furthermore, the flux through the ends of the gaussian cylinder is zero because 

E  is parallel to these surfaces. That is, we must take the surface integral in Gaussôs 

law over the lateral surface of the cylinder because  for the flat ends. Then, 

. Considering that q = ɚl, we obtain  and  

.  (3.45) 

The electric field due to a cylindrically symmetric charge distribution varies as 1/r. 

3.1.11.3 Electric field due to a planar charge distribution 

Letôs find the electric field due to an infinite plane of positive charge with 

uniform surface charge density ů.  

Because the charge is distributed uniformly on the plane, the charge distribution 

is symmetric; hence, we can use Gaussôs law to find the electric field. By symmetry, 


