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CHAPTER 2. MOLECULAR PHYSICS AND THERMODYNAMICS

Topic 2.1 Subject and method of molecular physics and thermodynamics.

Ideal gas

Lecture 11

Molecular physics and thermodynamicdgs the branch o$ciencethat studies

physical properties of macroscopic systems and lawserdrgy transfer and

transformation within such systems.

Macroscopic_system(or Thermodynamic_system is the physical system

consistent of a large number of particles (molecules, atomsgiecsonsetc), which

are in continuous random thermal motion

While molecular physics considarscroscopic characteristicsof the particles

of the system, such as their velocity and mechanical energy, thermodynamics studie
the system as a whole without consideration of the molecular structure of the substanc

Properties of the thermodynamic systentan be described bymacroscopic

characteristicssuch agpressure, volume, and temperature.

The large number of particles in the system means that statistical arguments ca
be applied to its consideration, allowing ke relation between microscopic and
macroscopic characteristidfie largescale properties can be related to a description
on a microscopic scale, where matter is treated as a collection of molecules. Applyin
Newt onbés | aws of nmmoertd ®aolledtion ofpartElésgrovidestai ¢

reasonable description of thermodynamic processes.

To keep the mathematics relatively simple, we shall consigemodynamic
systems usinthe example bgases



2.1.1 Fundamentals of the kinetic theory ghses

Kinetic theory is themicroscopic modedf an ideal gadt describes a gas as a

large number of submicroscopic particles (atamsnolecules), all of which are in
constant rapidgnotionthat hagandomnesarising from their many collisions with each

other and with the walls of the container.
The kinetic theory for ideal gases makes the following assumptions

1. The gas consists of very small particles known as moleciiles.number of
molecules in the gas is large, and the average separation bdtweeens large

compared with their dimensionhe size of molecules 1segligible compared to

the average separation between them, so we model the molecules as particles. Ti

number of molecules in the gassis large that statistical treatment camapelied

All the molecules are identical.

2. These molecules are in constant, random, and rapid mdtibne y o b ey Ne¢€

laws of motion, but as a whole they moverando®ly. Air ando mo we
molecule can move in any direction with any sp&ahdom motion of particles due

to their thermal motion is called tH&rownian motion. Brownian motion never

stops.

3. The rapidly moving particles constantly collide among themselves and with the walls

of the container. All these collisions are perfeailgstic. The molecules interact
only by shortrange brces during elastic collisions and exert no loagge forces

on each other.

Atomic mass unit(unified atomic mass unit} the standardnit for indicating

masson an atomic or molecular scale. Idsfined as 1/12 of the mass ofambound

neutral atom otarbon'C.

lamu=1_= 1. 6%BkgA 10
:|.2mc

Relative molecular (atomic) masss the mass of a molecule/atom relative to the

mass ofC:



M = My
r im
12

Amount of substance(g) is thenumber of particles (molecules, atorpsgsent

in an ensemble relative to the number of particles in the 1214 ofThe SI unit for

amount of substance is thele (mol).

Mole is the amount of substance that contains as many particles (molecules

atoms) as there are atoms ingk@ms of carbofC.

Avogadro constant(Ny) is the number oparticles (molecules, atoms) that are

contained in thamount of substanaggven by onanole:

No= 6. @20l 10

Molar mass (M) is the mass of onmole of the substance
[ =/AJ2®Rg/mol = ;g/mol, orf  =n Anp\kg/mol.

Mass of the molecule of a substanp,ﬁ::ﬂ.
N

A

Amount of substance

N
u=—
N

A

m
= (2.1)

whereN is the number of molecules (atoms) in the substaldcis, the mass of the

substance.

Concentration of molecules is the number of molecules per unit volume.

N ) ) )
n :V’ whereN is the number of molecules contained in the voline

Diffusion is a mutual penetration of molecules of one substance into another
substance leading to the equalizing of their concentrations within the whole occupiec
volume. Therefore,iffusion is the net movement of molecules or atoms from a region
of high concentration to a region of low concentration. This is also referred to as the

movement of a substance down a concentration gradient.
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Standard conditions The standard pressupg=1 . 01 3RaA 10

Thestandardemperaturé,= 0°C, orss= 273 s .
Themolar volume occupied by onenole of any gas at standard conditions is

Vw=22.2Z2mA2204 A |liter.

2.12 Temperature

Temperature of the thermodynamic system is a quantity characterizing its

thermodynamic equilibriumJsually, by default, a thermodynamic system is taken to

be in its own internal state giermodynamic equilibrium. A thermodynamic state

of internal equilibrium is a state in which no changes occur within the system, and ther:
are no macroscopic flows of matter or of energy within it. All the macroscopic state

characteristics are equivalent in all the points of theegys

However, when twdlifferent systems are put into thermal contact with each
other, the energy exchange begins between them. The two systems, which have be
at different initial temperatures, eventually reach some intermediate temperature an
the stag of equilibrium. Thermal equilibrium is a situation in which two systems would
not exchange energy by heat or electromagnetic radiation if they were placed in therm:
contact. Two systems in thermal equilibrium with each other are at the same

temperature.

The zeroth law of thermodynamicqthe law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object C, then A

and B are in thermal equilibrium with each other.

Thermodynamic_temperature is the absolute measure of temperature. The

International System of Units specifies the Kelvin scale for measurement of the
thermodynamic temperature, where the triple point of water at 273.16 K is taken as th
fundamental fixing point. Zero thermodynantemperature is called thabsolute
zero: it is the lowst limit of the thermodynamic temperature scalbenthe particle

constituents of matter have minimal motion and can become no colder.
7



2.1.3 Ideal gas

Ideal gasis atheoreticalgascomposed of garge number of randomly moving

point particleghat do not interact except when they collide elastically.

The size of the molecules is negligible, so they are considered as material points;

The longrange interaction between the molecules is absent.

State _of ideal gasis characterized by pressupe volume V and absolute

temperaturel. Equation of state of the gas is the equation that interrelates these

quantities. In general, the equation of state is very complicated, but for the ideal gas
Is quite simple and can be determined from experimental results. We can use the ide
gas model to make prediotis that are adequate to describe the behavior of real gases

at low pressures.

Thermodynamic processis a passage of a thermodynamic system from one

state to another.

Letds find out h o W préssuep, anditemperaturéiae s v
related for a sample of gas of massSuppose an ideal gas is confined to a cylindrical
container whose volume can be varied by means of a movable piston. The cylinde
does not leak, so the mass (or the number of moles) of the gas remains coaostant. F
such a system, experiments provide the following information different

thermodynamic processésee Figure 2.1)

When the gas is kept at a constant temperature, its pressure is inversely proportion
tothevolume.Bovy Il eds | aw

Isothermal processis a thermodynamic process during which the temperature

of the closed system undergoing such a process remains constant.
pV=cons (bW = X 0p\Vtp\, (2.2)

When the pressure of the gas is kept constant, the vatudieectly proportional

to the temperatureGayiL us sac)ds | aw

Isobaric processis a thermodynamic process during which the pressure of the

closed system undergoing such a process remains constant.
8



¥=consi tec = o n\?/éztﬁ

1 T2

(2.3)

When the volume of the gas is kept constant, the pressure is directly proportiona
tothe temperatureC(h ar | e$ 6 s |

aw

Isochoric processis a thermodynamic process during which the volume of the
closed system undergoing such a process remains constant.

P = const (V = cons}; Py P (2.4)
T T T,
P P v
& 3 Y &
1 1
| 3
2 2
/ yd 5
/ 2 /
- ,/ ' /
1 4 ”
\' T

Figure 2.1Diagrams of the thermodynamic processes:

1 - isothermal procesk = const

const.
\%
2 - isobaric procesp = const V = const J;

3 - isochoric proces¥ = const p=const d.

These observations are summarized byeitngation of state for an ideal gas
(Mendeleevi Clapeyron law):

pVvV=uRT, or pV = Nk T, or p?v =consi, (2.5)



wheregis the number of moles of gas in the samples theuniversal gas constant
R=8. 31 JWNistheltdtaknumber of moleculel,; is theBoltzmann constant

= 1.38/A10

2.1.4 Basic equation of the kinetic theory for ideal gases

Basic equation of the kinetic theoryrelates pressure,raacroscopigproperty

of gas, to the average (translationahetic energyper molecule rootmeansquare

speedmicroscopigoroperties of the gas:
p =

rms?

nE, or p=nkT, or p::—ir\‘/2 (2.6)

winN

wheren = N/V is the concentration of the moleculds,is the average translational

kinetic energy,} is density of the gasy__ is the rootmeansquare speed of the

molecules of gas.

N Letds show that
Y of molecules with the walls of the contair
lead to the macroscopic pressure on the w
Consider a collection oN molecules of ar
ideal gas inthe container of volum&/. The
container is a cube with edges of length L

focus our attention on theth molecules of

massm, and assume it is moving so that

component of velocity in the direction isv,
Figure 2.2. (Figure 2.2).

As the molecule collides elastically with any wall, its velocity component
perpendicular to the wall is reversed because the mass of the wall is far greater than t
mass of the molecule. The molecule is modeleal msnisolated system for which the

i mpul se from the wall causes a change

Do, =my (mY) 29y

10



Because the molecul es obey Newt onod

momentum theorem to the molecule to giffgDt = 2my\,

[, Where F, is the x
component of the average forttee wall exerts on the molecule during the collision
andat is the duration of the collision. For the molecule to make another collision with
the same walhfter this first collision, it must travel a distance dfi@ thex direction

(across the container and back). Therefore, the time interval betweeaoltismns

: : 2 . :
with the same wall it = d . We can average the force over the time integvtbr
Y

Xi

the molecule to move across the cube and back. Sometime during this time interval tr
collision occurs, and exactly one collision occurs for each such time interval, so the

change in momentum for thtime interval is the same as that for the short duration of

the collision. We obtaik F, > —zn[;)t\&‘ %\Z' .By Newtonds xhir

component of the average force exerted by the molemul¢he wallis equal in
magntude and opposite in direction. Now, the total average force exerted by the ga:s
on the wall is found as sum of the average forces exerted by the individual molecules
N
<F, > r:rha_ Ve
d g
For a very | arge number of erwvagationgiul e
force with time (nonzero during the short interval of a collision and zero when no
molecule happens to be hitting the wall) are smoothed out so that the average force c:

be considered as the constant fdrce

The average value of the sgqe of thex component of the velocity foN

moleculess called theoot-mean squarevalue of thev, :

a vy
Vi rms_ ile ’ Vx_rms_ (27)

We obtainF = % NV, e

11



Now | et 6s f oighunwlecalgwith \relocttyrcontpdnents, v, Vv, .

The square of the speed of the molecule is the sum of the squares of the veloci

components:v’ =V; #{ ¥. Hence, the roemean square speed for all the
molecules in the containew? =V: A/ ¥, .. Because the motion is

X_ rms y_rms z m

completely random, the y andz components are equal to one anothgg=3v; ...

Therefore, the total force exed on the wall id= = NT%% The total pressure

F F Nrrb\f 14N 0§ .
exerted on the walls p=— = = ms . whereV = & is the
PTs "¢ Tad 3BV BV

volume of the cube, concentratiohthe molecules = N/V. Thus, we have obtained

thebasic equation of the kinetidheory:

=2nm. (2.8)

Besides, p —gn M\ 2 nE, where g = MbVims

2 _’:% 2

kinetic energyf molecules

Is the average translational

No w, | et 6s consider anot her Tahthecgasp s C

and compare this expression with the equation of state for an ideal gas
2\ = _
pV:§ NE and pV = Nk, T.

Recall that the equation of state is based on experimental facts concerning th

macroscopic behavior of gasé&gjuating the right sides of these expressions gives

2
3K,

T= E’ (29)

that istemperature of the gas is a direct measure of average kinetic energy of its

molecules.

Theaverage kinetic enerqy per molecules

12



E = b Vms %kBT. (2.10)

As far asvi,, =3v;

rms

the x component of theverage translational kinetic energy

rms’?

m) V)f_rms — kBT
2

, andy andz components are the sani¥éherefore, each translational

degree of freedom contributes an equal amount of entlaﬂ?;ry, to the gagdegree of

freedomrefers to an independent means by which a molecule can possess energy.)

A generalization of this result is thieeorem of equipartition of energy

Each degree of freedom contribut{l%-£ to the energy of a system, where possible

degrees of freedom are those associated with translation, rotation, and vibration ¢

molecules.

The total translatinal kinetic energy oN molecules of gas is thé times the

average energy per molecule:

= N% %NI(BT %u RT, whereu :Nﬁ is the number of moles of gas.

A

K

tot

Root-meansquare (rms) speeadf the molecules (atomspan be found as

Vims = \/ 3T =\/ SRT. (2.11)
m, M

Questions for selcontrol

Statistical (microscopic) and thermodynamic (macroscopic) physical quantities.
Macroscopic parameters and their microscopic interpretation.

Postulates of the kinetic theory of gases

Temperature. Thermodynamic equilibrium. Zeroth law of thermodynamics
Definition of the ideal gas. Equation of state for an ideal gas.

Basic equation of the kinetic theory of gases.

N o gk~ wbd e

Theorem of equipartition of energy

13



Topic 2.2. The first law of thermodyramics

Lecture 12

2.2.1 Internal energy

Thermodynamic systems are characterized by the internal energy along with the

mechanical energy.

Internal energy of the system is the sum of all kinds of kinetic and potential

energy of the microscopic componewithin the system, bugxcluding the kinetic and

potential energy of the system as a whole

Internal energy includes kinetic energy of random translational, rotational, and
vibrational motion of molecules (atoms); vibrational potential energy assoevdted
forces between atoms in molecules; and electric potential energy associated with force

between molecules, kinetic and potential energy of electrons in atoms.
[ i
U=—uRT = pV, 2.12
SURT = p (212)

where' is thenumber of degrees of freedono f t he gas mol ecul e

of freedomod is the number of independe

energy due to its translation, rotation and vibration.
* = 3 for a monoatomic molecule;

‘= 5 for adiatomic molecule;

= 6 for amanyatomic molecule.

In threedimensional space, for a single particle we net 21

coordinates to specify its position during motion. For a mole <i> ~1

~

consisting of 2 particles the center of mass of the molecule .‘3/+c .
1/

2

|
translate in 3 directions. In addition, tim®lecule can rotate abo :
|
the two axes perpendicular to the line joining these partities,

and2i 2 (see Figure.3), and 2 rotational degrees of freedornr Figure2.3.

14



are added. The total number of degrees of freedom is 5. For a generah@aon
molecule with many atoms, all 3 rotational degrees of freedom are considered, and tr

total number of degrees of freedom is 6. As we know fronthia@rem of equipartition
of energy, each degree of freedom contribu%-g to the energy of a system, and after

multiplying this quantity by the total humber of molecules and by the number of
degrees of freedom of the single molecule, we obtain the total internal energy of the

gasU. The internal energy of an ideal gas depemdyg on its temperature.
2.2.2 Heat

Heat Q is the energyransferredacross the boundary of a system due to a
temperature difference between the system and its surroundlingsthe way of

changing the energy of a system.

Heat capacity(C) is the amount of he& needed to change the temperature of

the system by 1K.

C= ﬂ, (2.13)
dT
where dQ is elementary amount of heat;

Q=C [I. (2.14)

Both heat and heat capacity &uactions of the process they depend on the process

through which the energy was transferred.

: : C
Molar heat capacity (the heat capacity per one mole of the substa@e#:;.

. : : . C
Specific heat capacity(the heat capacity per unit mass) o

Specific heat is essentially a measure of how thermally insensitive a substance is to tt
addition of energy. The greater a mat
added to a given mass of the material to cause aylartiemperature change.

15



Heat Q transferred between a body of massand its surroundings to a

temperature changay:

Q=mcO.

Besides, transfer of energy by heat can result not in change in temperature of th

system, but in phase change of the sysimase changef a thermodynamic system

Is the change os$tate of mattewhenthe physical characteristics of the substance

changdrom one form to another

Two common phase changes are from solid to liquid (melting) and from liquid
to gas (boiling); another is a change in the crystalline structure of a solid. All such
phase changes involve a ¢ hanngehangeinitsh e
temperature. The increase in internal energy in boiling, for example, is represented b
the breaking of bonds between molecules in the liquid state; this bond breaking allow
the molecules to move farther apart in the gaseous stateg watinesponding increase

in intermolecular potential energy.

Heat transferred to a substance of nmaskiring aphase change

Q=rm, wherer is thelatent heat of vaporizationi the term used when the

phase change is from liquid to gas;

Q=/m, whereais thelatent heat of fusioni the term used when the phase
change is from solid to |iquid
This parameter is callddtentheat( | i t er al Il 'y, the #fAhi dden

removed energy does not result in a temperature change.

When two bodies are in contact, the energy transfer by heat always takes plac

from the hightemperature bodto the lowtemperature body.

Equation of the heat balancethe amount of energg,, that leaves the hot part

of the system equal the amount of eneqy, that enters the cold part of the system.

Qrot = Qe (2.15)

16



2.2.3 Work

The work done on a deformable system, a gas, is another important mechanisi

of energy transfer ithermodynamic systems.

Consider a gas contained in a cylinder fitted v
a movable piston of negligible mass (Figure 2.4).
equilibrium, the gas occupies a voluieand exerts ¢
uniform pressurgon t he cyl i nder
piston. If the piston has a cressctional are§, the force

exerted by the gas on the pistonFiss pS No w

assume we push the piston and compress thgugess

statically, that is, slowly enough to allow the g% to
Figure 2.4.
remain essentially in internal thermal equilibrium at all tinfesthe piston is pushed
downward by a vertically directed external fofe¢hrough a displacement dh, the

elementaryvork done on the gas is
UA = Fdh =1 pSdh =i pdV.

If the gas is compressatl is negative and the work done on the gas is positive.
If the gas expandslV is positive and the work done on the gas is negative (they say

that the gas does work on its surroundings). If the volume remains constant, the wor

done on the gas is zero.

The work done on the gas

Vi
dA= -pdV; A= -fjpdV. (2.16)

Vi

In general, the pressure depends on

volume and temperature of the gas, and ' |
|

process through which the gas is progres: 7 1_'_, v
can be plotted on a graphical representa |

called aPV diagram (Figure 2.5). Figure 2.5.

17



Pressure volume diagram is the visualization ofp(M@ dependence during the
process. The curve on a PV diagram is calledotitb taken between the initial and

final states.

The work done on_a gasin a quasistatic process that takes the gas from an

initial state to a final state is the negative of the area under the curve on a PV diagran

evaluated between the initial and final states.

The work done depends on the particular path taken betwermtidleand final

states.
2.2.4 First law of thermodynamics

Thefirst law of thermodynamics is a special case of the law of conservation of

energy

The change in thimternal energywf an isolated thermodynamic systenequal to the

sum ofheat suppliedo the system and the amountwairk doneonthe system
DU Q A, s (2.17a)

or,

the heat supplied to the isolated thermodynamic system converts into the change |

internal energyf the systenandwork done by the system on gsirroundings:
Q=0 A, . (2.17b)

whereQ is theheat supplied to the systeedJ is the change in internal energy of the

system; A, .. is the work donen the systenand A,, . is the work doney the

system on its surroundings,, ,..= -A

on_ ga“

Equivalently,perpetual motion machines the first kind (which producmore

work than the input oénergy) are impossible.

Thefirst law of thermodynamics in the differential form:

Q=dU +dy, ., (2.18)

18



wheredQ, @, . areelementary amounts of heat and wal¥,is the change in the
internal energy.

The zeroth law of thermodynamics involves the concept of temperature, and the
first law involves the concept of internal energy. Temperature and internal energy ar

both state variables that is, the value of each depends only on the thermodynamic

state ofa system, not on the process that brought it to that state. On the contrary, hea

heat capacity and work apeocess variablesthat is, the value of each depends on the

process that brings the system into new state.

As the heat capacity ofthegasisthf unct i on of process.
thermodynamic process By substituting the expressions for heat, internal energy and

work into the first law of thermodynamics and considering the heat capacity of one

mole of gas, we obtai@dT:IE RAT + pd\;

C=—R +—. (2.19)
2 dT

The first law of thermodynamics for different thermodynamic processes

1) isochoric process.

A process that takes place at constant volume is callégbahoric (isovolumetric)

process Because the volume of the gas does not change in such a process, the wo

done by the gas is zero:
A=0.

Hence, from the first law we see that
Q= M, whereDU =‘|§uR(T2 1) I—Zi/( B R

If energy is added biyeat to a system kept at constant volume, all the transferred energy

remains in the system as an increase in its internal energy.

19



Letds find the heat c a pUsing theyexpredsiont h

C =IER +F:jd_TV and recalling tha¥= constanddV= 0 in the isochoric processie

obtain:

C, :iE R, (2.20)

whereC, is the molaheat capacity at constant volume

2) isobaric process

A process that occurs at constant pressure is callagobaric process In such a

process, the values of the heat and the work are both usually nonzero.

Q=D A,

whereDU Y, U, lz:s/R(T2 T)- |—2 eV, \); the work done by the gas in the

isobaric process is simpbA= p(V, -V)) wherep is the constant pressure of the gas

during the process.

Letds find the heat c alysmgtheteypressibn fdr h e

heat capacity we obtai@ :IE R +pdd_TV B, %d?v . If we differentiatethe equation

of state for an ideal gasl( pV) = d( RT), we seethat pdV = RdTwhenp = const

Then,C =4, +Z—C_irT ® 1 Thus,

_ i+2
C,=C, R ==F, (2.21)

whereC, is the molaheat capacity at constanpressure

3) isothermalprocess

A process that occurs at constant temperature is callsgtiermal process

T = constanddT = 0, hence in an isothermal process involving an ideaDyas0;

20



Q=A.

For an isothermal process, the energy trar@feust be equal to the work done by the
gas. Any energy that enters the system by heat is transferred out of the system by wor
as a result, no change in the internal energy of the system occurs in ammabther

process.
Heat capacitpf the gas irthe isothermal process is infinity.

Suppose an ideal gas is allowed to expand epiascally at constant

temperatur e. Letds calcul ate the wmor Kk
statef.
V
f " URT av
A= AQpdV = dv RT— EFRTn— 2.22
L i &Ry (222

V \ 1
2.2.5 Adiabatic process

Adiabatic processis one that occurs without transfer b&at between the

thermodynamic systend its surrounding€nergy is transferred only as work.
dQ=0anddA= dU.

Let 0s find equation describing adi
thermodynamicspdV+i—2u RdT . Taking the total differential of the equation of
state of an ideal gasd(pV)= d( RT), gives pdV+ Vdp =/ Rd". Then
pdv+i§( pdV +vdp 6; % pdV+iEVdp 0; C, pdV+ G Vdp 9;

dp+CPdV:O
p GV

21



|+
Let 6s g:e_cnio ¢|_eg the __;:,—;Isoﬂlerms
C, [ p

ratio of specific heats at constant press Adiabat

and at constant volume. Now we can wi

the previous equation as

d(ln p)+gd(iInV) =dIn pV) G, | /
V, V,

which gives as theequation for the

adiabatic procesgFigure 2.6): Figure 2.6.

pVY = cons. (2.23)

2.2.6 Polytropic process
A polytropic processis a thermodynamic process that obeys the relation:

(2.24)

pV" = cons,
wheren is the plytropic index (a real number)

Some specific values ofcorrespond to particular cases:

n=0 is an isobaric process,
n- + £is an isochoric pcess,
n = 1is anisothermalprocess,
n =s ap adiabatic process.
A process is polytropic if and only if the heat capacity in this process is kept

constant:

C, =cons!

Letds find the heat paymopaprocess usirgfthe t h

expression for heat capacity =, % If we differentiate theequation ofthe

polytropic processd( pV") =0; V"dp+ pnV'* dV 9; V"dp+ nV** pdV 9.

The total differential of the equation of state of an idealgiass (for one moleis
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pdV + Vdp =Rd". By substitutingdp= RdT - pd\into the previous equation
we obtainV"*(RdT- pd\y} +nV* pdV &, V"'RAT+(n-1)V'* pdV 6;

PAV_ R ndc=u, LY & R Finay,
dT n-1 dT n-1
C =u, —~ =R _R (2.25)

n-1 g-1 n %

that isheat capacity of the gas in th@olytropic processC, is constant.

Letds cal cul at e t h epolytropc grocess. bsing thefirstt h
law of thermodynamicsA=Q - b G TDG -T (O ) 1 For the

of ideal gasC, - C, = :—Rl and

A= UR(nTl_-sz) _H\a -_19\4_ (2.26)

Questions for sekcontrol

What is themternal energy of the thermodynamic system
Number of degrees of freedom

What is leaf

Latent heat

Equation of the heat balance

Work done on a gas

What is a quasstatic process?

The first law of thermodynamics.

© © N o g A~ wDdPRE

State variables and process variables

10. Application of the first law of thermodynamics for tHetmodynamic processedeat
capacity of gases at constant pressure and at constant volume.

11.Equation for the diabaticprocess

12.Equation for the plytropic processes.

13.Heat capacity of the gas in thelytropc process
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Topic 2.3. The second law of thermodynamics. Nernst theorem

Lecture 13

2.3.1Cyclicprocesses

Thermodynamic cycleis a linkedsequence ofhermodynamic processésat

involve transfer of heat and work into and out of the system, and that eventually return

the systento its initial state.

The cycle can convert heat from a warm sou@gdanto useful workA, and
dispose of the renrang heatQ, to a cold sink returning to the initial state, thereby

acting as deat engine.
The useful work generated during the cygle =7 Q.

The heat enginds a system that converts heat or thermal energy to mechanical

energy, which can then lised to danechanical workit takes in energy by heand,

operating in a cyclic process, expels a fraction of that energy by means of work.

A heat engine carries some working substance through a cyclic process durin
which (1) the working substance absorbs energy by heat from admgierature
energy reservoir, (2) work is done by the engine, and (3) energy is expelled by heat t
a lowertemperature reservoilrThus, the heat engine consists of 3 elemeiatsteat
"source" that generates thermal energy, a "working b¢gigs) thatgenerates work

while transferring heato the colder "sink"

Theefficiency of a heat engine

heh Q- Q (2.27)
Q Q

Equationfor the thermal efficiencghows that a heat engine has 100% efficiency

only if Q, = 0,that is, if no energy is expelled to the cold reservoir. In other words, a

heat engine with perfect efficiency would have to expel all the input energy by work.
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Because efficiencies of real engines are well below 100%, the KEhanck form of

thesecondaw of thermodynamicsstates the following:

It is impossible to construct a heat engine that, operating in a cycle, produces no effe
other than the input of energy by heat from a reservoir and the performance of an equ

amount of work.

This statement fothe second law means that during the operation of a heat
engine the useful workA can never be equal @, or, alternatively, that some energy
Q, must be rejected to the environment. Every heat engine lmustsome energy
exhaust.

An upper limit of the efficiency that an
classical thermodynamic engine can achi

during the conversion oheat into work is

provided by th&Carnot cycle,which consists o

two adiabats and two isotherms (see Figure :

0 I=/ A Carnot heat engine undergoing t
Figure 2.7. Carnot cycle, is a "perfect” engine, but it is ol

a theoretical construct.
The thermal efficiency of a Carnot engine is

_Tl' Tz

h , (2.28)

whereT, is the absolute temperature of the soufeés the absolute temperature of the

sink.

Carnotos theor em:

No real heat engine operating between two energy reservoirs can be mort

efficient than a Carnot engine operating betweersémee two reservoirs.
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2.3.2Clausius theorem

Another formulation of thgeecond law of thermodynamicsstated by Clausius,

Is following:

Heat can never spontaneously pass from a colder to a warmer body withou

external work being performed on the system.

The second law of thermodynamics is concerned with the direction of natural
processes: it asserts that a natural process runs only in one direction and is irreversib

unless external work is performed on the system.

The Clausius _theorem ( Iiequality of Clausiuso ) S a ma t

explanation of the Second law of thermodynamics:

For a system exchanging heat with external reservoirs and undergoing a cyclic
processthe amount of heat absorbed by the system from the reservoir divided by the

temperatur@f that reservoir at a particular instant is not positive

<ﬁ‘_"r—Q ¢O. (2.292)

If the process iguaststatic(throughout the entire process the system is assumed
to be in thermodynamic equilibrium with its surroundindb® processs reversible
and the absorbed amount of heat is defined only by the initial and final states of the

systemand is independent of the actual path followladhis case
(ﬁc_/r—Q =0. (2.29b)

If the process is irreversiblﬁczll_—Q <0.

2.3.3Entropy

The Clausius theorem allows to introduce a new state variable for the

thermodynamic system called the entropy.

Entropy Sis a function of state of a thermodynamic systeatdetermines the

measure oirreversibleenergy dissipation.
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In the reversible process, an infinitesimal increment in the enttBpla system
is defined to result from an infinitesimal transfer of He&®o a closed system divided

by the temperature at that instant

dS=dQ

E (reversible process). (2.30a)

For an actually possible irreversible infinitesimal process, the second law

requires that the increment in system entropy must be greater than that:

dS>dQ

= (irreversible process). (2.30b)

Because entropy is a state variable, the change in entropy during a proces
depends only on the endpoints and therefore is independent of the actual path followe

The change in entropy for a finiteversibleprocess
f
DS :r]“dTg (2.31)

The transferred energy is to be measured along a reversibleTpatHinite
change in entropy of a system depends only on the properties of the initial and fina
equilibrium states. Therefore, we are free to choose a particular reversible path ove
whichto evaluate the entropy in place of the actual path as long as the initial and fina
states are the same for both palltscalculate changes in entropy for real (irreversible)
processes between two equilibrium states we can consider a reversible poocess (

series of reversible processes) between the same two states.

Besides, for any reversible closed cyoidial and final states coincide and
DS =0,

@d% =0 (reversible closed cycle). (2.32)

Let 6 s n o wsystemrtansisting of a Aot reservoir and a cold reservoir
that are in thermal contact with each other and isolated from the rest of the Universe
The energy is transferred by heat from the hot reservoir to the cold reservoir. We can

replace the real process for each reservoir with a reversible, isothermal process |
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which the same amount of energy is transferred by heat. Because the cold reservc

absorbs errgy Q, its entropy increases /T, . At the same time, the hot reservoir

loses energ®, so its entropy change +Q/T,,.

When the heat transfer between the hot and cold parts of the system occurs, tf

increasen entropy of the cold reservoir is greater than the decrease in entropy of the

hot reservoir:g <£ becausel, , > T_,. Therefore, the change in entropy of the
hot cold
system (and of the Universe) is greater than z@S:—Q Q 0. We can
cold hot

formulate theentropy statement of the second law of thermodynamics

The total entropy of an isolated system can only increase over8né0. It
can remain constant in ideal cases where the syistema steady state (equilibrium)
or undergoing a reversible process. The increase in entropy accounts for th

irreversibility of natural processes, and the asymmetry between future and past.

Let s f i nd c¢ h aangmoleiofthe ideal tgasm g quasitadia

dQ du+ A G dT +pdv.

processUsing the first law of thermodynamicdS= = =

dS= Q,d—T +Rd—v. Taking the total differential of the logarithm of the equation of
T Vv

state of an ideal gasl(In( pV)) = dIn( RT), d(In p) + d(In V) =dIn T), gives

dp+ dv _dT_ h
p V

dp dv
endS=C¢ — +C—, and
G 0 G v

DS =C, Inr Q,In%. (2.33)

pi i
The change in entropy for any fingpelytropc process

f

C.dT T
e In%. (2.34)

The change in entropy sdiabatic process is zero because there is no energy transfer.
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2.3.4 Entropy on a microscopic scale

Entropy can also be treated from a microscopic viewpoint through statistical

analysis of molecular motions.

Letds use a microscopic model of th
discussed from a macroscopic point of view before. In the kinetic theory of gases, ga
molecules are represented as particles moving randomly. For a given uniform
distribution d gas in the volume, there are a large number of equivalent microstates,
and the entropy of the gas can be related to the number of microstates correspondi
to a given macrostate. Letds count the
ofmolecubr | ocations available to the mol e
some microscopic volum¥,. The total number of possible locations of a single
molecule in a macroscopic initial volurieis the ration; = Vi/Vi, which is the number
of waysthemolecule can be placed in the initial volumeinrother wordsthe number
of microstates We assume the probabilities of a molecule occupying any of these

locations are equal.

As more molecules are added to the system, the number of possible ways th
molecules can be positioned in the volume multiplies. For example, if you consider
two molecules, there amg ways of locating the first molecule, and for each way, there
arew; ways of locating the second molecule. The total number of ways of locating the

two molecules i$w:)2. Then the number of ways of locatidgmolecules in the volume

becomesW =w" #//\,)". Similarly, when the volume is increased ¥ the

: : N :
number of ways of locatinh molecules increases ¥, =w} (=Vf /Vm) . The ratio

of the number of ways of placing the molecules in the volume for the initial and final

: : . W, &V, ¢ : : : :
configurations |S,szavf g- Taking the naturalogarithm of this equation and
i CVioo-

mul tiplying by Boltzmannds constant gi

0
ud%n

0 N

k.| k.| |an9 =N

Ban_ Bn Wk:BnW o I%—Nn
Qi -

_<|<

s
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When a gas undergoes a free expansion ¥amV;, we can findthe change in
its entropychoosing any reversible path between the initial and §nla t e . Let

: Vv : :
the isothermal path. The@ = A :uRTIan, andthe change in the entrojgy

av : : : : : : :
S-S w F{navf . Notice that the right sides of obtained equations are identical.
cVi
Therefore, from the left sides, we make the following important connection between

entropy and the number of microstat&dor a given macrostate:
S=kinV (2.35)

Thisformulais themicroscopic definition of entropy:

Entropy S defined by t he number of
thermodynamic system can have when in a state specified by some macroscop
variables.The more microstates there are that correspond to a given macrostate, th

greater the entropy of that macrost&ietropy is a measure of disord#rthe system
2.35 Nernst theorem.

The Nernst theorem (the third law of thermodynamics) says that as

temperature of a system approactasolute zero, the entropy change fthrs

macrosystem also approaches zero

imDS 0. (2.36)

Now we can calculate the absolute value of the entagpy

]
o C(MdT

T (2.37)

0

Heat capacityC of a macrosystem must approach zasotemperature of the

system approaches absolute zero.

As entropy is related to the number of microstates, for a system consisting of

many patrticles there is only one unique state (called the ground state) with minimun
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energy.At absolute zero, the system must be in a stdtie thhe minimum possible

energy
Another formulation of the third law of thermodynamics is following:

The entropy change associated with any condensed system undergoing a reversik
iIsothermal process approaches zero as the temperature at which it is performe

approaches 0 K.

Questionsfor self-control

What is a thermodynamic cycle?
What is a heat engine?

Efficiency of the heat engine

Carnot cycle and its efficiency.

The second law of thermodynamics
Clausius inequality.

Reversible and irreversible processes

What is entropy?

© 0o N o g b~ 0w DdhPE

Entropystatement of the second law of thermodynamics
10. Microscopic definition of entropy

11. The third law of thermodynamics. Nernst theorem.
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Topic 2.4. Statistical distribution

Lecture 14

The motion of the gas molecules is extremely chaGi&s consists diillions of
molecule and @y individual molecule collides with others billion times per second.
Each collision results in a change in the speed and direction of motion of each of th
participant moleculesStatistical distribution allows us to find out# is the relative
number of molecules that possess some characteristic such as@rsgrggdvithin a

certain range
2.4.1 The Maxwell distribution

Let s consi derataconstanhtengperatiddfe knovi that) thes
rms velocity of the gas molecules is determined by the gas tempekédwever, not
all the molecules ahegas at a certain temperature move at the same velacityally
velocities of gas molecules vary wideRhus, it is necessary to determine tledoeity
distribution of the moleculeso that the number of moleculbaving a speed in a
certain rangean be determined. Vexpect tIs distribution tohave itspeak in the

vicinity of the rms speed

Figure 2.8.
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Let us imagine a velocity spaeath pairwise perpendicular coordinate axes

v,,V,,V, (Figure 2.8, & Then the instantaneous velocity vecioof each molecule can

x1 Yy
be represented as a point with coordinatgsv,, v,in this velocity spaceThough

coordinates of the point corresponding to a single molecule vary with time, for a very
large number of molecules these variations are smoothed out, so that the overa
distribution of points remainsoastant in the state of thermodynamic equilibrium.
Moreover, Bcause the motion is completely randalh,the directions are equgl
probable, and distribution of points in the velocity spacst havespherical symmetry
(Figure2.8,b)That 6 s why di stri buti owofmdlecuyres i nt
Let 6s I ndistributobii_furectiora G(v), also called aprobability density

function, so thatli(v)dV is the number of molecules per unit voludiéin the velocity

spacewith speedbetweenv andv + dv.

Let the total number of molecules in the gasNboél'he number of molecules
whose speeds lie betweerndv + dv would be represented by the spherical strip of

thicknessdv, and be denoted bgN,. Let dN, represent the number of molecules

whosex -component velocities lie betwegpnandvy + dvy. The ratio of the number of
molecules that have the desired characteristic to the total number of molecules is th
probability that a particular molecule has that characteriBtienthe probability of an

arbitrary molecule having-component of velocityithin the interval (x ; vx + dvy) Is

Vx

dp, = 7 (v,) dy, where/ (v,) is the distribution function fox -component of

X

Vy

velocity. Similarly, for y- andz- components of velocity(;zlpVy = 7 (v,) dy, and

Vz

dp, = 7 (V) dv,.

Probabilities that the molecule has components of velocity within intervals
(Vx ; W+ dvy) and(vy ; vy + dv) and(v; ; v, + dv,) are independent, so

dn, .. =dpdp dp, F(WA Y (Y dydyd (2.38)
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On the other handip, =/ (V) dV, that is he number of representative points per

unit volume, or the density of point in velocity space is

J (V)= /%) v) (). (2.39)

Since the velocity distribution is isotropia the state of thermodynamic

equilibrium theprobabilitydensity is the same in any volume elemeatthat
J ()= Av) (%) (%) =consandd(/ (v))=0.
Letos find this differential

J VI AV) )dv+ () (%) (wydy + (/Y (Y dy &

/. '(Vx) dV +j '(Vy) dV Ijl(vz) d\é @
ST A T )

As far asdistribution of points in the velocity space has spherical symmetry,

while the velocity componentg,,v,,Vv, vary in the result of molecule collisions, the

total speed remains constant:

vV:=V: A2 ¥ cens.

X y z
If we differentiate thisxpression,

v dy, + v dy +ydy 6.

Let 0s a papd rya ntgtea sarid mudtiply the last expressiorby
undetermined multipliee-and addt to the expression for the distribution function:

&™), §, &) L 8 &) 0. o
ST gv Eiv) B F) THO
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Sincev,,v,,V, are now independent variables, the coefficientslgf dv,, dy

X yl

are individually equated to zero:

J (V) +/v, D /‘.I(Vy)_,_/vy - /v )+/V 0. (2.40)
j (V) J ) J (V)

Integrating these equations, we obtain

Inj (v,) = gons, or / (v,) = const @/*'2,

N |><<|\J

2
(I1\2)/2

Similarly, / (v,) = const @ ./ (v,) = const @',

The symmetry provides the same integration constant for all the three equations
According to thecondition for normalization of the probability density, for all possible

values ofv, between- cand+ «,

+ o

= /Y (v)dy, 4; fconstOe’ "2 dy . (2.41)

It is known that fie *“"2dy, =, /2/—’0 , then the constamtonst= //5 . We obtain:

(V ) \/; @(/v )/2 (V ) \/7 é)(/" )/2 (V ) \/; @(/v )/2 and

3/2 / 3/12 o
al 0 s54% W A 8 2
dp, = 5 ©72 dy dy dy = 6€0 dy dv d. (2.42)
Sp 2 2 2

The probability density is found to be a function speedv only. To calculate
the probability that moleculeshavespeeds betweenandv + dv, the volume of the

spherical shell of thicknessv at a distancer from the originmust be considered:

dV =4pVvdv =dy dy dy. Then,
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al 3(152 v a 312 0 iy
dp, = & ©2 4pVdv 4:p5$ #0¥% d; (2.43)
(; - -
) _ 2/ 3(52 . —/Ev2
J(v)=4 5 Be? . (2.44)
(; -

The most probable speedyv, , is the speed at which the distribution curve

reaches a peak. Using the condition that the derivative of the distribution function

we find that/ :%.

mp

equals zera (v)/dv=0whenv=y,_,

\/2
Using the law of conversation of energyg can state tha{n% =k;T, where

m, is the mass of the gas moleculéen, v, = 2keT , and we obtain the final form

m,
of the distribution function:
o 3L2 n’sz
. 4 0 . -
¢l =

This is theMaxwell distribution : the probability that molecules have speeds

betweernv andv + dvis

o 3[2 I’Tb\/2

dN, _4am O ., o7
dp, = = . 5 Vel d\, 2.46
TN et 2 o

: : Y : :
By denoting a relative speedl=—/, we can obtain a simpler form of the

mp

Maxwell distribution, which is independent of the gas nature and temperature:

dp, :%p Ge” di (2.47)
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Knowing the distribution function, we can find tleverage speed of the

o 32
0]

o o \/2
. 4,8 m, o . .
molecules asv,, =/ (Wdv = ?/'?a'az— g e’ d. Calculating this integral
’ ?/ 0 ¢ kBT -

gives

vy, = [T (2.48)
pm,

We see that/ >V, V.

Having obtained the speed distribution, now we can obtain ethergy
distribution of the gas moleculdsinetic energy of a molecule B :% .Nowlet 6s

denoteF (E) the energy distribution function, such thafE) dE is the probability that

molecules have energy betwdeandE+dE. Then, | et 6s expr e:c
energy and speedlistributions F(E)dE =/ (J)dv. Take into account that

dE= dam)vz 8=ngvd\;ﬁ= 2myE.
g = dv
o 32 I’T’b\l2
4 a o] }
So,F(E) 5 (V 5 Ve e =
()/()dE \/Eg‘z T9 2m E
3/2 E

Qo

0 ekt _gl 2 d \gﬁeE.Finally,

T‘*’Z_ naeBTJZHrn)E kT =

o 3[2
F(E) S 8x/EékBET, (2.49)
\/EQEBT =

which is the expression for tHanction of the Maxwell energy distribution . The

probability of finding the molecules in a particular energy state varies exponentially as

the negative of the energy divided kyT .
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The most probable energy can be found from the condition of maximum for this

function: E = kBTT :

2.4.2Barometric formula andBoltzmanndistribution

The Maxwell distribution lawis obtainedfor an ideal gas in the state of
thermodynamic equilibrium with no exte
gas in the gravitational field of the Earthl the molecules would fall onto the Earth
surfaceunder the action of gravitational foramless the thermal agitatioat a
temperaturd did not excitehemto thermal motionDistribution of the gas molecules
in the atmosphere of the Earth is the result of collective influence of the thermal motior
and gravitational fieldConsequently, dertyiof the gas as well as its pressure depend

on the height above the Earth surface.

Barometric formula is a formula used to model how the pressure (or density)

of the air changes with altitude.

Suppose we have a horizontal slab of air v Z A
thicknessdh at the altitudeh above the sea lew
(Figure 2.9). The density of ajr is a function of h+dh

heighth, but within the thin slab it may be considel

as constant. The pressure of the air at héigmist be

F

equal to the pressure of the air above it plus tbig
of the air in the slab. In other words, the chang: Figure 2.9.

pressure as we go from heidghto h + dhis
dp= -+ gdh,

whereg s the acceleration of gravity. The minus sign accounts for the fact that pressure
decreases as vg® higher.
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According to thebasic equation of the kinetic theory for gasgss nk,T.

Nm _m

—r=, whereN is the total number of
Vm Vg

- N
Concentration of moleculas= v

molecules,m, is the mass of the single molecule. Thers myn =n3%. We obtain
B

_ p .. dp_ mg
dp= -m g—— dF; “F=- _99n,
b= KT p kg T

ConsideringgandTas constants since the atm
large enough to affegtand the gas is in the state of thermodynamic equilibrium, we

can integrate the equation to get

Mg,

p=p0)e’’ (2.50)

So, we have obtained thearometric formula showing that the pressure

decreases exponentially with altitude.

Now we can obta the law of molecules distribution in the gravitational field.
Since p=nk, T,
_ Mgy,
n=n(0)e'e" . (2.51)
The obtained distribution is universal, it is valid for any macroscopic system of

particles located in the potential field of external forces. In terms of potential energy,

this law can be written as tiB®»ltzmann distribution:

U
n=n(0)e ‘" (2.52)

whereU(h) is the potential energylso, the number of molecules located inside the
Y
elementaryolume can be found aN = n(0)e'e" dV.
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Maxwell and Boltzmann distributions can be united into Maxwell 1

Boltzmann distribution law. The number of molecules whose coordinates and

components of velocity lie within intervals; & + dx), (y; y + dy), (z z+ d2), (vx; W+

dw), (vy; W+ dw), (Vz; v.+ dv,) is

U my
AN, , ...y = CONSt@<" €T dxdydzgv v  or
AN,y .y = CONSt éi(pge m’% ?;deydzdy dv ¢, (2.53)
¢ ke g
312

where the constartonst= NO)% 8 V=V A ¥, the potential energy is
coPkeT =

y

the function of molecule coordinatels= U(x, v, 2.

Questions for sekcontrol

What is the velocity space?
What is the distribution function?
Maxwell speed distribution

The most probable speed
Maxwell energy distribution
Boltzmann distribution

Barometric formula

© N o O A~ Wb BE

Maxwell-Boltzmann distributions.
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Lecture 15

2.4.3 Transport phenomena in gases

Whenever a thermodynamic system is brought out of the state of thermodynamic
equilibrium, it will attempt to achievéhe equilibrium statagain But the entropy of
the system increases, so the process is irreverd$iéurbance of equilibrium is
alwaysaccompanied by physical phenomena where particles, energy, or other physice
quantities are transferred inside a system due toreohanismsdiffusion and

convection. These irreversible processes are caiedport phenomena

Though speed of thermal man of gas molecules is very high, macroscopic
distances covered by molecules are small due to many collisions between them. Evel

collision modifies direction of motion or energy or other molecule properties.

The mean free path<I> of a particle (a gas molecul&) the average distance

the particle travels between successive collisions with other moving particles.

Consider a gas molecule as an absolutely elastic sphere of diaimgher

effective diameter of a molecule Then in uit time the molecule travels a distance

<v> and collides with all the molecule withacylinder of volumepd®<v :. The
mean number of collisions equals to the number of molecules inside this cylinder
pd’n<v > wheren is concentratiorof moleculesin the gas Instead of absolute
velocity of the moleculetiis more convenient to consider its relative velocity with

respect to other molecules participating in collisidkecording to theMaxwell speed

distribution,<v >

re

| 42 v<. Then the mean number of collisions in unit time is

<z >Fpdn «, (2.54)
i <v X
and the mean free path4dd > = ,
<z X
1 1

(2.55)

<| >\_/§pd2n \/_Esn'
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The quantitys = m’ is called theeffective crosssectional area of collision

while the molecules in the gas are treated as hard spheres of effective ddtinater

interact by direct contact
Using the basic equation of kinetic theory of gasgspbtain

KeT

J2sp’

2.4.4 Diffusion

<| >

(2.56)

Diffusion is the mutual penetration of molecules of contacting substances due ta
their thermal motion. It is spontaneous net motion of particles down their concentratior

gradient (from a region of high concentration to a region of low concentration).

Molecular diff usionis the thermal motion of all particles at temperatures above

absolute zero. The rate of this movement is a function of temperature, viscosity of the
fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules
from a regim of higher concentration (density) to one of lower concentration (density).

Once the concentrations are equal the molecules continue to move, but since there
no concentration gradient the process of molecular diffusion has ceased and is inste:

governel by the process @eli-diffusion, originating from the random motion of the

molecules. The result of diffusion is a gradual mixing of material such that the
distribution of molecules is uniform. Since the molecules are still in motion, but an
equilibrium has been established, the end result of molecular diffusion is called a

"dynamic equilibrium".

In diffusion, we are interested in the movement of molecular concentriti®n.

described by the Fick's laws.

Fick's law of diffusion relates the diffusive flux to the concentration under the
assumption of steady state. It postulates that the flux goes from regions of higkh
concentration to regions of low concentration, with a magnitude that is proportional to

the concentradn gradient (spatial derivative).
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Transport of materi al (a fimass f 1l ux

gradient, and in one (spatial) dimension, the law is:

j, = D (2.57)
dx
o e . .. _ Dm ) i
where j . is the 'tiffusion flux," or the mass flux densityj,, “Ds o’ ( kg / s £

which measures the amount of substance that will flow through a waatduring a

unit time interval;

D is the diffusion_coefficient or diffusivity, which depends on themperature,

viscosity of the fluid and the size of the patrticles
} is the concentratiqror density thatis theamour of substance per unit volume;

ar is the density gradient

dx

In two or more dimensions we must utee gradient operato®, which

generalises the first derivative, obtaining

=D E (2.58)

Jm

Let s obt ai nConsider asdi-diftugiom ; athia siab of gas of
crosssectional are& We divide the box in half so that the number of molecules on
one side of the partition N¥; and on the other side M. Assume that the whole box is
at a constant temperatureSince only half the molecules will, on average, be moving

towards the paition in three dimensions of spgdéenumberDN, of molecules that

cross the partition in a timBt, which is the time it takes a molecule to move distance

of mean free pathlsx, is DN, zz%g(Nl N,). The same number of molecules cross

the partition in the opposite directiddN, = -N[, and thenetnumber of molecules

DN 2 M XN N
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If the gradient in moleculaumberis aN then we haveDN A K Q>N— and
dx 3 dx
the net rate at which molecules cross the partition per unit thegasthe diffusion
. ,_.DN 14 dgN 1 wdN 1 v <| xN > dr
flux, is|j|= = = = — 4 ¢ >= where
Sbt 3SDxdx 3 S dx 3 \% dx 3 C

volumeV =S < and molecular concentration= N/V. The absolute value indicates
that this is the magnitude of the flux. As the flux is in the opposite direction to the

gradient, we will have

<| >«
3 dx

The quantityd% Is an approximation for the diffusion const@&nfor an

ideal gas, and we can writes equatioms t he Fi ckds | aw for
szgg. (2.60)
dx
It i s easy to obtain now the Fickos

j,= D %é where} is the mass density.

2.4.5Internal friction in gases

Internal friction appears when random thermal motion of the gas molecules is

superposed with the ordered motitmat is when the gas flow occurs.

Letds consider two horizontal, para
them. If one plate moves parallel to the other, the gas between the plates exerts a dr
force inhibiting the motion of the plates. In the reference frame with the lowergtlat
rest and the upper plate moving at somespgedo t he ri ght, webd
between the plates to be moving at a speed that increases from zero next to the low

plate up tou, next to the uppeplate.
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The speed, of the fluid flow is directed along the

axis and depends only on the coordirebetween the plate
(see Figure 2.10). This gradient in speed is the resL

momentum transfebetween adjacent layers in the flu

Because of Newt onods | aw ¢

X horizontal drag force exerted on each plate is equal
Figure 2.10. opposite to the force on the fluid layer directly adjacent tc
plate.
The force on each plate is proportional to the S@fahe plate and to the relative

speed of the upper and lower platgs,,, - U, .. @and inversely proportional to the

distanceqz between the plates. The last two assumptions are equitalssying that

the force is proportional to the velocity gradieint / dz. That is

Foopd (2.61)
S dz

where is thecoefficient of viscosityor just the viscosity.

The force of internal frictiorfF, :/7SduX :

dz

Ontheotherhand from t he New'fsﬁro%?sp,amcwerimingd I

the Fickds | aw for the transfer of mo r

jp:DpX 14 dp, 1 v< mdy _1_v<|>rrm;(1>_1:I < ?_&J’

SDt 3 SDx dz 3 S dz 3 V dz 3 C
we obtain
jp: m>géi /7:99‘_’ (262)
3 dz dz

where Dp, is the transferred momentunp, = mu, is the momentumm is the total

mass of gas in a slab of af®@and thicknesslz,; = igwengity of the gas.
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<| > r:

Thus, viscosity? = 3

(2.63)

2.4.6 Thermal conductivity of gases

Thermal conductivity is the transfer of heat in the material across the temperature

gradient.

Consider a box of molecules with a temperature gradient indirection.The

DQ

flux of thermal energy iy, =ﬁ' Derivingt he Fi ckds | aw for

similarly to the previous cases, the net heat trandd§) = UL, where

1
3

U=uN, g')kBT |—2=LRT (=1 is the internal thermal energy ofthe gas. Then,

jo = —1CVE . Assuming a linear temperature gradjddt = K g;[,we obtain
3 " SDt dx
jo = _}CV<I > \K r>d5 ; dT. (2.64)
3 3 dx X

<l >x r

The quantityk:%C\, " is called thermal conductance Recalling

the formula for the average speed-, we see that the thermal conductakceT .

Questions for sekcontrol

What are the transport phenomena?
What is a mean free path?

What is diffusion?

What is seHdiffusion?

The Fickds | aw

Internal friction in gasegd/iscosity.

N o g M wDdPRE

Thermal conductivity of gases.
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Topic 2.5. Real gases

Lecture 16

2.5.1 Thevan der Waals equation of state

For most applications, the ideal gas approximation can be used with reasonabl
accuracy. But imeal life gases are not ideal. They are made @pomhs and molecules
that actually take up some finite volume, and interact with each other through
intermolecular forceslhe realgas models have to be used near the condensation point

of gases, near critical points, at very high pressures or low temperat

Real gasesre norhypothetical gases whose moleculesupgcspace and have

interactions

Thevan der Waals equationis the equation of state for real gases. The van der

Waals model of a substance is able to predict (qualitatively) the existence of the liquid
gas phase transition and the critical point (where there is no clear distinction betwee
the liquid and gas phes). The model is a refinement of the ideal gas equation of state,
pV =uRT, which looks like this:

@/m -b) RT, or

whereV_ is the molar volumea andb are constants whose values depend on the

<‘g

8/ ub) =R, (2.65)

VC)%QJO
+

3<N‘ Q
»o%mo

particular substance wedre describing.

The correction to the volume term is due to the fact that in a real substance, it i
not possible to reduce the volume to zero since the molecules have a size below whic
they cannot be compressed further. Thus the minimum volumen adnaount of
substance containirggmolesis g bwhereb depends on the nature of the substance.

The correction to the pressuretine ideal gas law accounts for the fact that gas
molecules do in fact attract each other and that real gases are therefore mol

compressible than ideal gasBslie to electric interactions, all molecules exhibit a long
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term attraction to each othérhis auses the additional pressure called the internal

2
pressurep, = % wherea depends on the nature of the substance.

When the molar volum¥), is large,b becomes negligible in comparison with
Vm, @/V2 becomes negligible with respectgoand the van der Waals equatieduces

to the ideal gas law.
2.5.2Energy of the van der Waals gas

Internal energy of the van der Waals gas is the sum of the kinetic energy of
random thermal motion of molecules and the net potential energy of the intermolecula

interaction:U = K + Ujp.

The work by interaction forces equals to the negative of poteatiatgy:

dA= dU_ .. The potenti al energy 1 s negative

int *

interaction. Thus two molecules separated by some finite distance require positive
work done on them to pull them apart to an infinite distanaehih point the potential
energy is zero. That is, the work is required to pull them out of a potential well, so their

potential energy is negative.

The attractive forces are characterized by the internal prewar\e% Then

m

the elenentary work by these forces ##A= -pdV, (during gas expansion the work

done on the gas is negative, that is, the gas does work on its surroundiegsjtain

dA= v, =d

m

a
- 2.66
V. (2.66)

DOPBQJO

We can make a conclusion tipaitential energy of the intermolecular interaction

a N : :
U, = v The total kinetic energy due to thermal motion of molecules is

m

:I—ZRT =, T.

Thus, the internal energy of one mole of the van der Waals gas is
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a
Un=CT . (2.67)

m

2.5.3 The van der Waals isotherms P

From the van der Waals equation,

SYILALI (2.68)

or pV2- (bp +RTI V¥ -4y abO.

This is a cubic equation, and depend

on the values op andT it can have differen

Figure 2.11.

roots.

We can plot van der Waals isotherms on a PV diagram (FRLie As we see, there
Is a critical temperaturé; when all the three roots of thguation are equalAt the

critical temperatur@d = T, the minimum in the pressure curve becomes an inflection

d’p

VZ

point, where bothg—s and are zero (this is a point like that in the graply efx®

atx=0). This point is called a critical point. At the temperatures higher than the critical
T > T. the minimum in the pressure disappears (it corresponds to one real and twir
imaginary roots of the cubic equation) and we are left with a curve that getstolose
that for an ideal gas, wheig =  g(®Rhich ¥ a hyperbola)see Figure 2.11,
temperaturds. At the temperatures lower than the criti€at T, the equation has tree

real roots and the curve shows a minimum pressure as we reduce the volume, whic
seems to indicate that as we compress the substance, its pressure actually decrea
see Figure 2.11, temperatuiigs T». Actually, such behavior indates transition from

the gas phase to the liquid phase.

At the critical point where the tree roots are equal we can rewrite the van der

Waals equation in the form
p.(V,- V.)° 9;

pVs- 3pV.Ve BpMV, -pV 0O,
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and comparing the multiples of corresponding terms, we obtain ghat= ab,

3p.V> =a, 3pV.=bp. +RT. Then,

= iz ; VC = 3b, TC = 8a .
27b 27Rb

P

However, experimental isotherms for real gases show that for temperatures
lower than the critical there is a region wherss a constant function of at given

temperature@egion CD at Figure 2.12Jhis pressure is calledvapor pressure that

Is, a pressurefavapor in thermodynamic equilibrium with its condensed phases (solid

or liquid) at a given temperatur€his region corresponds to theuefaction of gases

whenthe liquid phase and the gas phase are in equilibfitevan der Waals equation
fails to accurately model observed experimebtiaviorin regions near the critical

point.

p! Though, experiments show th

B real gases can be brought into the s

Hmh predicted by the theoretical van c
C D : : :
Waals isothan (points A and B in the

Figure 2.12). This states however i

A . metastable without thermodynami
I/'

equilibrium at given temperature.
Figure 2.12.

Region CA corresponds to theuperheated liquid while region BD

corresponds teupersaturated vapor

Superheating is thehenomenon in which a liquid is heated to a temperature
higher than its boiling point, without boiling. Superheating is achieved by heating a
homogeneous substance in a clean container, free of nucleation sites, which are cent

of initiating phase transon.

Supersaturated vapor has pressure higher than the vapor pressure at give
temperature, but without condensation. It can be achieved by increasing the pressu

of gas in a clean container, free of condensation sites.
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The Clausiug Clapeyron relation characterizes behavior of a closed system

during a phase change, during which temperature and pressure are constant.

It is a way of characterizing a discontinuous phase transition between two phase
of matter of a single constituent. Two phases coexisginlibrium only at the certain
pressure depending on the temperature. On a préssugerature (PT) diagram, the
line separating the two phases is called a coexistence curve. The Clalegasron

relation gives the slope of the tangents to this civahematically,

do__L DS (2.69)
dT TDV, D¢’
dp

Whered—_l_ is the slope of the tangent to the coexistence curve at any pamthe

specific latent heaf] is the temperatureDV, is the specific volume change of the

phase transition, anbS; is the specific entropy change of the phase transition.

Questions for sekcontrol

The difference between the real gas and the ideal gas.

Van der Waals equation.

Internal energy of the real gas.

Isotherms of real gases.

Critical temperature

Phase transition

Difference between the theoretical and experimental van der Waals isotherms

Metastable states

© © N o g s> w P

Liquefaction of gases.
10. Clausiu$ Clapeyron relation
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CHAPTER 3. ELECTROSTATICS

Topic 3.1. Electrostatic field in vacuum

Lecture 17

3.1.1. Electrostatic force

Electrostatics is a branch ofphysicsthat deals with the phenomena and

properties of stationary electric charges.

Electric chargeis thephysical propertyf matterthat causes it to experience a

force when interacting with other charged objects. There are two types of electric
chargespositiveandnegative Charges of theame sign repel one another and charges

with opposite signs attract one another.

Point chargeis a charged particle of zero size.

Elementary charge (e) is the smallest electric charge existing for isolatable

particles. It is the electric chargarried bya singleproton (or by a singlelectronj e).

The value of the elementarychagge 1. ®CA 10

Charge gquantizationis the principle that the charge of any object isna@ger

multiple of the elementary chargEhat is, electric charge existsdiscrete value:
g = +Ne, whereN is some integer.

Electric charge conservation law

In an isolated system the algebraic sum of electric charges is always conservec
qt+td t. & cens (3.1)

That is, when the object is electrified, charge is not created in the process. Thi
electrified state is due to a transfer of charge from one object to the otieer.
electrified state appears when one object gains some amount of negative charge whi

the dher gains an equal amount of positive charge.
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The electric force is one of the fundamental forces in natxperimental
observations carried out by Charlésulombhave allowed tgeneralize the properties

of the electric force between two stationaraiged particles.

The magnitude of thelectric force (sometimes called th€oulomb force)

between two point chargesisgiven®p ul omhbdés | aw
—cA (3.2)
er? ’

where|q,| and |g,| are themagnitudes of the charges; the scalas the distance

between the chargdsjs the Coulomb constanlc=%€ = 9 NmT?

B= 8. 8YNin?idelkctric constant(also called as the permittivity of free space

or vacuum permittivity){J is therelative permittivity of the medium (in vacuum or

in the air = 1); e :%, whereF, is the force between charges in vacubims the

force between charges in the medium.

Coul ombdés | aw expressed in vector

chargeq; on a second chargg, is

_— oﬂQ;I .
F, = k 6',[’22 o, (3.3)
whereég ="' is a unit vector directed froop towardaqy, (see Figurd.l).

!

According to the Newtonds t piomgdisl aw

equal in magnitude to the force exerteddayon ., and in the opposite direction

F,= F,,. The electric force vector is directed along the line joining the two charges.

Finally, if g; andg, have the same sign (Figure 3.1a), the prodigtis positive

and the electric force on one particle is directed away from the other partegzlantd
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gz are of opposite sign (Figure 3.1b), the prodygq is negative and the electric force

on one particle is directed toward thider particle.

A\

\/r ) Flz ) 4,
\ :/ © :/ Flz
e, @/ F,
& 9
F, q,

(a) (b)

Figure 3.1 Electric force on the charged particles.
When more than two charges are present, the resultant force on any one of the

equals the vector sum of the forces exebgthe other individual charges:

— — —

F=F #, * Fi

For example, for the syste

of 3 chargegFigure 3.2)

Electric force on o

— — —

F=F, i
Electric force on Q.

F,=F, g,

Electric force on Qs

Figure 3.2. Fy=Fy, 4y

3.1.2.Electrostatic field

Electric charges or charged objects are the source of electrid/fleéeh another
charged objedd the test chargé enters this electric field, an electric force acts on
it. The existence of an electric field is a property of its source; the test charge just serve
as a detector of the electric field presence. The fieldes can act through space,

producing an effect even when no physical contact occurs between interacting object:
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The electric field vector E is the electric forceF acting on a test charge

divided by the magnitude of this charge:

E=—. (3.4)

o |

The electric field vector at a given point in space has the same direction as th

electric force that would act on a positive test charge placed at that point.

Hence, theelectric force experienced by point charge q in the electric field

F =qE. (3.5)
If qis positive, the force is in the same direction as the fietglisinegative, the
force is in the opposite direction as the field.

Electric field lines are the visualization of the electric field in a region of space
(Figure 3.3)

The electric field vector is tangent to the elec

£ E field line at each point.
The number of lines per unit area is proportic
to the magnitude of the electric field in that regi
Figure 3.3. The lines begin on a positive charge and termi

on a negative charge.

If the electric field vector is constant at every point in space then the electric field is

calleduniform.

Superposition principle: at any point in space, the total electric field due to a

group of source charges equals the vector sum of the electric fields of all the charges

— — —

E=E +, .+ E. (3.6)

This superposition principle applied to fields follows directly fromubetor addition

of electric forces.
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For example,for the system of two charg
I (Figure3.4):
E

— —

E=E +E.

q,>0 q,.<0

Figure 3.4.

Electric field due to a point chargeq at a distance
away from it(Figure 3.5) E 7

ﬁ_% (3.7) s £
qg>0 g<?0
Figure 3.5.

3.1.3Electric field due to acontinuousdistributed charge

The system of closely spaced charges is equivalent to a total charge that i

continuously distributed along sonli@ee, over some surface, or throughout some
volume.

If a chargeq is uniformly distributed throughout a volunsé the volume charge

. : dq
density} is defined byr =—:
Y| y qv

If a chargeq is uniformly distributed on a surface of arf8athe surface charge

density( is defined bys = g—g;

If a chargeq is uniformly distributed along a line of lengththe linear charge

densityads defined by/ = (;?

To find the electric field due to tlestributed chargeelt 6 s use t he o
- integration procedure. First, divide the charge distribution into small elements, eack

of which contains a small chardgas shown in Figur8.6. Next, use equation for the
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electric field due to a pointharge to calculate the electric field due to one of these
elements at a poirR. Finally, evaluate the total electric field Rtdue to the charge
distribution by summing the contributions of all the charge elements (that is, by

applying the superpositigorinciple).
The electric field aP due to one charge element carrying chalges

_ dg .
dE = kr_g o, (3.8)
wherer is the distance from the charge element to pBi@ind € is a unit vector

directed from the element towalrd The total electric field & due to all elements in

the charge distribution is

dq

E =k (3.9)

where the integration is over the entire charge distribution.
3.1.3.1Electric field due to a uniformly charged rod

Let 6s calcul at
due to an infinitely long straight ro
carrying a uniformly distributed positiv
charge of linear densitgat a pointP at
adistanceaf rom t he r oc

the rod is lying along theaxis,dxis the

length of one small segment, add is
the charge on that segment (¢
Figure3.6).

Figure 3.6.

The field dE at P due to the elementary chardeis

. dg . Jdx .
dE:kr—g@ ez B

In order to calculate the integral dE we need to make a substitution:
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r=——; x=a @a; dx= aa .
cosa cosa
Then,dE= k/ cosa a dé k—/=d F:
’ a® coda a '

Now we need to considgrandy components of the vector quantiyg :

dE, = —smada, dE, = —cosada

Now we can obtain th& andy components of the total electric field by

calculating the integrals:

pl2

E.= fj—sinad a = K cos f’/’jz G
- a
P2y K/ . w2 2K
E, = n—cosada--—sn}a/2 =
iz & a p a

The resulting electric field is directed along thaxis and its magnitude is

g =2 (3.10)
a

3.1.3.2Electric field due to a uniformly charged thimning

Consider a ring of radiusR
carrying a uniformly distributes
positive charge of linear densiylL e t

calculate the electric field due to the ri

at a pointP lying a distancex from its

center along the central ax

perpendicular to the plane of the ri

(see Figure 3.7).

Figure 3.7.

Letds consider an el ement danchargegme n

The field dE at P due to the elementary chardeis
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. dg . /dl
dEzkr—g@ e B

The distance” =R? +*is the same for all the points on the ring. Now we have

to consider the components of the field veal&; parallel to the axis of the ring and
dE. perpendicular to the axis. Because of the symmetry of the situation, the

perpendicular components of the field cancel. That is, the resulting field is directed

along thex axis and its magnitude

E = fYE,, wheredE, = k% sy ; cosq:?x ﬁ
oo ldl X X
Then,E= Qk o 2R [k——— 5, or
(R X) R (R+x)"
E=kq—~ (3.11)
(R2+x2)3/2’ '

whereqis the total charge of the ring.
3.1.4 Electric potential

When the test charge is moved in the field by some extagealt, the work done
by the field on the charge is equal to the negative of the work done by the externa

agent causing the displacement.

For an infinitesimal displacemedt of a point chargepimmersed in an electric
field, the work done within the chargeeld system by the electric field on the charge

is A= F,dl =g,Edi. As this amount of work is done by the field, the potential energy

of the charggfield system is changed by ananmt dW = -A :q-Eal. The negative

sign means that in a system consisting of a positive charge and an electric field, th
electric potential energy of the system decreases when the charge moves in tt
direction of the field. Equivalently, an electric field does work on a pesitharge

when the charge moves in the direction of the electric fiedd a finite displacement
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of the charge from point 1 to point 2, the change in potential energy of the systen
W= W1 Wy is

Edi.

DW = g (3.12)

Because the electrostatic forggE is conservative, this line integral does not
depend on the path taken frdnto 2. Moreover, the integral over a closed path, called

acirculation of the vectorE in the electrostatic field, equals zero:
@Edl =0. (3.13)

For a given position of the test charge in the field, the chael@ system has a
potential energyV. Dividing the potential energy by the test charge gives a physical
guantitythat depends only on the source charge distribution and has a value at ever

point in an electric field.

Electric potential is the amount oélectric potential energy of a charged particle

at any location divided by thehargeof that particle

' :V—V. (3.14)
Qo
Then, the potential difference is
— 2 > —
d/ = Edl; D/ = fEdl. (3.15)
1
E Theelectric potential differencel = P
.
is calledvoltage Potential difference betwee
'

®) two points 1 and 2 separated by a distahicea
; | uniform electric field E = const Figure 3.8) will
> |
/ | be
-

® __________ - 2 o 2
= D/ =fEdl =Hficosa Ed,
1 1

Figure 3.8.
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whered is the distance between the two points projected onto the vectdihe
negative sign indicates that the electric potential at point 2 is lower than at point 1.

Electric field lines always point in the direction of decreasing electric potential.

The electric potential at any point in space is equal tovibrk done by the

electric field in carrying a unitary charge from that point to infinity without any

acceleration. The work by the electric field in carrying the test clepfgem point 1
to point 2 is

A=, - /), (3.16)

where; , - J, is the potential difference between the two points

The equipotential surfaceis the 4 -
. . — E
locus of points having the same eleci
potential (see Figure 3.9Equipotential Equipotential
surfaces are always perpendicular to ﬁ surface
net electric field lines passing through +Q Electric field
lines

The work done to move a charge frc

any point on the equipotential surface

any other point on the same surface v

zero since they are of the same potdn Figure 3.9.

3.1.4.1Electric potential due to a point charge

To find the electric potential at a point located a distaricem the point charge
q | etds begin with the genej=aEd.Usinyres

the expression for the electric field due to the point charge, we obtain

2

dj = krﬂ el hsqu dr Oc@‘ekrg - const.
¢

Now we see, that the potential due to the point charge is

j = k%. (3.17)
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Electric potential is a scalar quantity, and its sggiven by the source electric

charge.

The total electric potential due to a group of source charges at any point in

space equals the algebraic sum of the electric potentials created by every individue

charge at that point.

J =4+ £ + (3.18)

For the case afontinuously distributed charge,

J :kfﬁ—q. (3.19)

3.1.5Relation between the electric potential and the electric field vector

Letds find comp E.nCensitlesing digplacerest along the o r

axis,d/ = Edl =E-dx Then,E, = 9 Similarly, E, = OI—/; E, = 9 Then,
dx dy dz

the vectorE is

- ad/ - dj. d {2 ~ .
E= i +£] —+k ,orE= -qgrad(/). 3.20
'ge& dyJ dz E (j ) ( )

3.1.6Electric dipole

Electric dipole is defined as a positive chargeand a negative chardgey

separated by ixed distancd. Neutral atoms and molecules behave as dipoles when

placed in an external electric field.

Electric field due to the dipole is considered at a distanitem the dipole,
r >> |. Electric potential due to thedectricdipoleat point P
r-r,

q 0
r gqur_ .

~

I

>~
WO o
& 2

+
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Asfarag >>1,r -r, Tcogg; rr °r? (see Figurg.10. Then,

j =k A2 (3.21)
r
where}  =is theklectric dipole moment Actually, the electric dipole moment is a
vector directed from the negative charge to the positive:
F=ql. (3.22)

Figure3.11.

(b)

Figure 3.10.

Now | etds find the el ect/(seeEigufei3.20b)d

Component of the electric field parallel to thdirection of radius vector

E,= _?:iir @.Component of the electric fieleegpendiculato thedirection
: s /sin L
of radius vectoiE, . = P k——— . Then, the total electric field
rdg r

;
E= /E:‘I £ kr—3\/1 3¢0<q . (3.23)

In particular casg whend=0 ord #2, we obtain expressions for the electric

field on the dipole axisg;) and perpendicular to the dipole axis, {:
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2r r
B =k E =k (3.24)

3.1.6.1Force on the electric dipole

Letds consider an el ec tfield(€gurd 8.1 d)dhee i

electric field vector at the points of positive and negative charges of the difgle is
and E_. Then, the net electric force on the dipoleFissq(E, -E). The quantity

DE =E, E_is the change in the electric field over an infinitesimal distdn&o

DE =(2|—IIEI . Thus we obtain thiarce on the electric dipole momenj :

- _ dE
F=r—. 3.25
d (3.25)

The force on thelectric dipole is nonzero only in the nonuniform electric field.
3.1.6.2Torque on the electric dipole

An object with an electric dipole moment is subject to a torque when placed in

an external electric field. The net torque on the dipdle=g,.qE, g T &E .

° &, i gE gg?,qﬁ ,where E, ° E_ °E as far as the distandebetween the

positive and negative charges is small. Thus,
M=grE . (3.26)

Now consider an electric dipole placed in a uniform external electric Eeld
making an angldwith the field as shown in Figure 3.12. The electric forces acting on
the two charges are equal in magnituéle £ F_. qE) and opposite in direction as
shown in Figure 3.12. Therefore, the net force on the dipole is zero. However, the twc

forces produce a net torque on the dipole. As a result, the dipole rotates in the directic
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> that brings the dipole moment vector ir
T q( ) > greater alignment with the field. The torq

— 7 F
p’// /9 * due to the force on the positive charge ak
/ /6 ” an axis throughO in Figure 3.12 ha:
— // .

=
Le_q E magnitudquIEsinq:%sin ¢. This force
- tends to produce a clockwise rotation. 1
Figure 3.12. torque abou© on the negative charge has i

same magnitude and also tends to produce a clockwise rotatienefore, the

maghnitude of the net torqus the dipole in the uniform electric fieisl

M =rEsin ¢ (3.27)

3.1.6.3 Energy of the electric dipole in the electric field

The torque tends to align the dipole parallel with the electric field v&tiwhen
d = 0. A dipole aligned parallel to the electric field has lower potential energy than a
dipole making some angle with it. The work done by an external agent to rotate the
dipole through the angle is then stored as potential energy in the system of the dipo

and the external electric field.
As we know, potential energy of the point chagge the external electric field
isSW=qg , wh e r eelediric potential &t ¢he point where the chayge located.

As far as electric dipole & system of two point charges of opposite signs, its energy

in the external electric field i8W=q/ , \q/ . d / , 4, wherej, and/_ are
potentials due to the external electric field at the points wihereharges ¢andiq

are locatedy , + /. :o{_l . But according to the relation between the electric field

: . df : L .
vector and electric potentlal,é =E , wheregF, is projection of the vectoE on the
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vector I, which shows the direction of the electric dipole momentql . Then,

J.t /. %I =+ Ef , and the electric potential energy of the dipole is

W= qEl =FE. (3.28)

It is seen, that electric dipole has its minimum potential energy
(W

min

= + Ecos0 = /E) when it is aligned parallel with the external electric field

7 - —E, which is the equilibrium orientatomf t he di pol e. That ¢

tend to align with the fieldlf the change in the system is matlee dipole begins to

rotate back toward the configuration in which it is aligned with the field.

Questions for sekcontrol

What is theelectrostatic field?

What is the point charge? Properties of the electric charges
Charge quantizatiolaw

Electric charge conservation law

Coulomb's law

What is the kectric field vector

Superposition principle

Properties of thelectric field lines

© 00 N o g b~ WP

Uniform electric field

10. Electric field due to a point charge

11.Properties of the distributed electric charge

12.Calculation of the electric field due to the linearly distributed charge
13. Circulation of the electric field vector

14.Electric potential

15.What is the equiptential surface?

16. Electric potential due to a point charge

17.work doneby the electric field

18.Relation between the electric potential and the electric field vector
19. Electric dipole Dipole moment

20. Torque on the electric dipole
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Lecture 18

3.1.7Electric flux

Electric flux is the measure of flow of the electric field through a given area. It

Is proportional to the number of electric field lines going through a normally
perpendicular surface.
If the electric field is uniform, the electric flux passing throwlsurface of

vector areaS (see Figure 33) is
F =ES =£SXo0sa (3.29)

whereE is the electric fieldE is its magnitudeS is the vector area, whose direction
Is defined to be perpendicular to the surf&is,magnitude of tharea of the surface,

andUis the angle between the electric field lines and the perpendicule snirface

We see that the flux through a surfaxfefixed
S

area has a maximum value when the surfac

perpendicular to the field; the flux is zero when

surface is parallel to the field.

For a noauniform electric field, the electric flu

d dthrough a small surface ard&is given by Figure 3.B.

dF =EdS =F£d$osa

The electric flux over a surfa&is therefore given by the surface integral:

F =fEAS = EqRoia. (3.30)

S

We are often interested in evaluating the flux through a closed suffaes.

vectordS is a differential area on the closed surfSeeith an outward facing surface

normal defining its direction.
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3.1.8Gauss's law

Ga u s s Oisa gerenal relationship between the net electric flux through a

closed surface (often callegiaussian surfacgand the charge enclosed by the surface.

The electric flux through a closed surface is equal to the total electric charge

enclosed within this surface divided by the electric constant:

D |o
—_
w
w
=)

PEAS=
S

Consider a positive point chargécated at the cente
of a sphere of radius and surface are& as shown ir

Figure3.14. The magnitude of the electric field everywh:
on the surface of the spherefs= kqg/ r*. The field lines are

directed radially outward and hence are perpendicular t

surface at every point on the surface. Therefore, the ele

Figure 3.4.

flux through the surface elemetbis

dF =Eds £94s =9 g
r o g

Then we obtain the net flux through the gaussian surface by integrating

F =pjEdS © FfS © d, where we have movegoutside of the integral because,
S

S S

by symmetryE is constant over the surface. As the surface is sphegifi = 4o r,

S

and the net fluis F = qzé@rz L so the Gaussé theor

4o @ 0

Is independent of the radiudecause the area of the spherical surface is proportional

to r?, whereas the electric field is proportional to?1/

By definition, flux is proportional to the number of electric field lines passing
through a surface surrounding the chaggBut the number of lines through spherical

surface is equal to the number of lines through the nonspherical s(stafaeeS, in
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Figure 3.4). Therefore, the net flux through anlposed surface surrounding a point

chargeqis given byeﬂ and is independent of the shape of that surface.

0

Now consider a point charge located outside a cl E
surface of arbitrarghape as shown in Figure 3.1As can /
-/

be seen from this construction, any electric field |

L
entering the surface leaves the surface at another poin= i
\
number of electric field lines entering the surface equal: \
number leaving the surface. Therefaitee net electric flu

through a closed surface that surrounds no charge is zt
Figure 3.5.
Now | etds generalize the Gausso | a:
charges and due to a continuous distribution of charge. Using the superpositiot

principle, the flux through any closed surface can be expressed as

GEAS=0(fF +E +#)dS O=E@SO +EdH. +, = F .-

We know thatfiE dS= if the chargey is inside the surface, @fE dS=0 if
e
S

0 S

the charge is outside the surfadée obtain that

e q

PEAS=—a q =", (3.3)
S € i &

whereq,, is the net charge inside the gaussian surface. For the continuous distributiot

of charge,q, = fy dV, wherej is the volumetric charge densityjs the volume over
\%

which the charge is distributed inside the Gaussian sui$age.

FEdS=1 rav. (3.33)
S eO \Y/
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3.19Di f ferenti al form of t he Gausso |

For t he di stri buted el ectric char

<r >

\%cﬁﬁdéz , Where ¢> is the average volumetric charge density throughout the
S

0

volumeV, gi, = g >V.

Divergence of the electric field vector represents the volume density of the

outward flux of a vector field from an infinitesimal volume around a given point:
T .
divE =lim =@ EdS. (3.34)
v- 0\/ S

For the Cartesian coordinate system we obtain

L d
ave= pp & 95 JE (3.35)
dx dy dz

Divergence theoremalso known a®strogradsky's - Gauss's theorem states

that the outward flux of a vector field through a closed surface is equal to the volume

integral of the divergence over the region inside the surface:

$EAS=  yEdV. (3.3)
S \

By the combination of the Gauss law and thd#ivergence theorem,

q‘ﬁEdS:i rplv = di\7ﬁd\, the Gauss' law can alternatively be written in the
e
S

(VY] \%

differential form :

dive="_. (3.37)

D

3.1.10Circulation and curl of the electric field vector

The curl of a vector field describes the infinitesimal rotatetnevery point in

the fieldand is defined as the infinitesimal area density of the circulation of that field.

Consider a vector fiel& and an infinitesimal areBS enclosed by the path

Let the unit vectom be perpendicular to the plane of the ab$and related with the
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direction of circulation along the pathaccording to the righhand rule (Figur8.16).
Then, the curl of the vector field projected onto thes defined as
@Edl

rot E = lim + . (3.3)
ps-0 DS

For the Cartesian coordinate system,

N

rothgDE g

o —

(3.39)

oo =

Figure 3.5.

<
Jm ('3-|D_ ~

m Q

E

X y

The Stokes theorenrelates the surface integral of the curl of a vector fEld

over a surfac&to the line integral of the vector field over its boundary

ffotEdS=0 . (340)

As far ascirculation of the vectorE in the electrostatic field equals zero,

ﬁotEdS= 0. That means that in the electrostatic field
S

rotE =0. (341)

It gives the condition for the vector field to petential: n the potential field

circulation of the field vector over a closed path equals zero.

Equations

dive=": rotE =0 (3.42)
eO

are thebasic equations of electrostatics

Questions for selcontrol

1. What is theelectric flux?

2. Gauss's law
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A

Gausso6 |l aw for the electric flux due t
Gausso6 |l aw for the electric flux due t
Divergence of the electric field vector

Ostrogradsky Gauss theorendivergence theorem

Di fferential form of the Gaussodo | aw

Curl of the electric field vector

© 0 N o O b~ W

Stokes' theorem

10.Basic equations of electrostatics
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Lecture 19

3.1.11Appl i cation of gaussdés | aw to val
Gaussobds |l aw is useful for deter mini
Is highly symmetricln such a case we cahoo® the gaussian surface over which the

surface integradﬁl?dé can be simplified and the electric field determinBae goal in
S

this type of calculation is to determine a surface for which each portion of the surface

satisfies one or more of the followirgnditions:

1. The value of the electric field can be arguedsyaymetry to be constant over the

portion of the surfageso thate can be removed from the integral

2. The dot producEdS can be expressed as a simple algebraic prdeti@because
vectorsE anddS are parallel.

3. The dot producEdS=0 becauseectorsE anddS areperpendicular.

4. The electric field is zero over the portion of the surface.

Differentportions of the gaussian surface can satisfy different conditions as long
as every portion satisfies at least one condition. If the charge distribution does not hav
sufficient symmetry such that a gaussian surface that satisfies these conditions can |
fou nd, Gaussods |l aw is not usef ul for C

distribution.
3.1.11.1Electric field due to a spherical charge distribution

Let 6 s c @&ectic fikld due ta a spherical surfaceof radiusR and of

total positivechargeq, which is uniformly distributed over the surface, depending on

a distance from the center of the sphere

Because the charge is distributed uniformly throughout the spherical surface, the
charge distribution has spherical symmetry and we caryapgbaus s o6s | aw

electric field. To refl ect t he spher.i
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surface of radius, concentric with the spherical surface, as shown in Figuie For

this choice, fiEdS=0 FfiS=B dFFEL’.
S S S

for the region inside thspherical surfacé < R)

no charges are inside thaussian surface, and
E=0; (3.43a)
for the region outside the sphere and on its sur
(r  th&total charge of the surfageés inside
thegaussi an surface, a
law,

GEAS= E4p ¥ —}.Then,
S

0

E=—d x93 (3.430)
o g r

The plot of theE(r) dependence for theharged

spherical surface is shown in Figure&.1

+ .,_,-o-"f+

Figure 3.B.

Now | et 6 s electinfgeld due to a aphereof radiusR and of total

positive chargey, which is uniformly distributed over the volume wiiolumeric

charge density.

Because the charge is distributed uniformly throughout the egpther charge

di stribution has spherical symmetry

ar

field. As in the previouscase | et 6s choose a sphemica

concentric with the spheras shown in Figurg.19. For this choice,

$EdS=0 FfIS=B dFy=L .
S S S
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for the region inside the spherg < R), accor di ng t o t he

?Edé: Edpr _el:\, I\ Lé;/ dVv, whereV is the volume of the smaller sphere
bounded by thegaussian surface\/z%pr?’. Then, EQlpr? =;; gff and,
considering that the total charge rg Ji2

EzsLeor :k%r; (3.44a)

for the region outside the sphere and onits suffa® )R ccor di ng t o

law E Qlor? =r—ﬁjv, whereV is the volume of the charged sphere because now

eOV

the total charge of the spheayés inside thegaussian surfac®, = gp R’. Then,

E Glpr? égc"pé ﬂ?; E:4pqg2 *rﬂ. (3.44b)
0

The plot of theE(r) dependence for the charged sphere is shown in Figz0e 3.

Figure 3.D. Figure 320.
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The electric field due to a uniformly charged sphere of total chaugethe
region external to the sphere is equivalent to that of a point clgdgmated at the
center of the sphere. The field external to a spherically symmetric charge distributior

varies as 1F.
3.1.11.2Electric field due to a cylindricasymmetrycharge distribution

Let 6s consi datradistancefdmalme of inficite [€ngtle Hawng

total positive chargg and constant linear charge density

Because the charge is distributed uniformly als
the line, the charge distribution has cylindrical symm:
and we can apply Gauss?o
To reflect the symmetry
choose a cylindrical gaussianrface of radiusr and

lengthl, that is coaxial with the line charge (Figurel3.z

For the lateral surface of the cylindd, is constant ir

magnitude and perpendicular to the surface at each |
Figure 3.2.

Furthermore, the flux through the ends of the gaussian cylinder is zero becaus

E is parallel to these surfaces. Thati® must take the surf:

law over thelateral surface of the cylinder because for the flat endsThen,
. Considering thaff = wesobtain and
(3.45)

The electric field due to a cylindrically symmetric charge distribution varieg as 1/
3.1.11.3Electric field due to a planar charge distribution

Let 6s élactncdield doesto an infinite planeof positive charge with

uniform surface charge densily

Because the charge is distributed uniformly on the plane, the dliatgleution

I S symmetri c; hence, we can uBysymraearyys s
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