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ABSTRACT  

Recently, architect pay more attention to the life-cycle cost of the structure except the aesthetic 

appearance. Due to high corrosion resistance, ease of maintenance as well as construction, also 

the high recycle rate of stainless steel members, the cold-formed stainless steel members satisfy 

the requirements of the architect, and are being widely used in civil engineering.  

Especially for the severe environment which required high corrosion resistance, the stainless 

steel is an ideal choice in such situation. For instance, the power transmission tower which can 

be located in some marine environment can use the stainless steel and popular section for this 

application is angle section. The use of stainless steel in load-bearing constructions is 

increasing, but the behavior of this material in structures has not been as accurately described 

as for carbon steel. The main difference between these two materials is the stress-stain curve, 

for stainless steel, it has high stain hardening ratio, while also a high nonlinear performance 

even at low stress levels. For carbon steel, it has a quite linear stage before yielding, but strain 

hardening is not as significant as stainless steel. 

Now most of published papers about stainless steel structural members are concentrated on 

hollow sections like RHS, CHS or H section, which are double symmetric sections. The 

primary aim of this thesis was to study the behavior of angle section columns and beam 

columns, to find if there is any need to propose some modifications to the code on the design 

of this section. The particularity of this section is that it is a monosymmetric section, except 

the flexural buckling, it can occur torsion and torsion flexural buckling as well.  

The main part of this thesis is using a numerical model for parametric studies and deal with the 

data from these analyses to reach reliable conclusions. In order to make sure the numerical 

model is accurate to some extent, FE models were created and validated according to existing 

tests and also a simple column test which is carried out in the laboratory in the Czech Technical 

University in Prague. Finally, some modifications were proposed to compression buckling 

curve and interaction curve which are used to design beam column. 
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1. Introduction  

1.1 Background  

In the early 1910s, the stainless steels were developed by adding chromium into iron alloys 

which can increase the corrosion resistance property. Including additional alloying elements 

such as nickel, molybdenum, titanium and copper, it is easily to obtain a wide range of stainless 

steel grades which have different mechanical and physical properties. The common 

Classification of stainless steel is dividing into five families according to their microscopic 

structure, namely austenitic, ferritic, duplex, martensitic and precipitation hardening.  

The attributes of stainless steels are high durability, versatility, sustainability, hygiene and 

aesthetic appeal, which increase the use of stainless steel in construction territory. For structural 

use, the selection of the proper material grade needs to take the aggressiveness of the 

environment, the fabrication route, required surface finish and the future maintenance of the 

structure into consideration. 

The studies of material property of stainless steel have achieved some promising results. 

Different material models which depict non-linearity of stainless steel are proposed and some 

of them are included in European Standards. However, even the material behavior is quite clear 

and accurate now, the influence of this material property on member behavior is not that clear 

and reliable. 

1.2 Structural application of stainless steel 

Since 1920s, the stainless steel has been used in facades and roofing which require high 

durability and aesthetic appeal. There are also some structural use in 1920s, for example, a 

reinforcing chain was installed to stabilize the dome of St Paul’s Cathedral, London. Nowadays, 

the stainless steel is widely used as load-bearing structural elements due to their attributes. 

In the past 20 years, there are many examples of structural uses of stainless steel, as shown in 

the following Table 1 and Figure 1-3. 
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Table 1  Examples of structural uses of stainless steel [1] 

 

 

 

 

 

 

 

In Figure 1, the pedestrian and cycling bridge is located in Solvesborg, south of Sweden, nearby 

is Baltic Sea. The designers looked for a material which requrie no or minimal maintenance, 

and finally they chose duplex stainless steel. Since the stainless steel can forming a self-

repairing rich oxide layer on its surface when exposed to air or any other oxidising environment 

and this layer protects the material from further reaction with the environment, providing high 

corrosion resistance, so this bridge does not need to do re-painting which saved 500 thousands 

euros. Also the high strength of the duplex stainless steel make the bridge light, saving 

materials. 

Figure 1  Pedestrian and cycling bridge, Solvesborg, Sweden (Source: ISSF) 
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Figure 2  Rail electrification, Port Elizabeth, South Africa.(Source: ISSF) 

In Figure 2, the masts were fabricated from utility ferritic stainless steel with a chromium 

content of about 11%. The location of these masts is near the sea, some places, the railway line 

was less than 100m from the sea, in severer conditions, the masts would accasionally be wet 

by sea water. The designers were guided by a philosophy that aimed at combing long service 

life and reasonable cost, also in this case, the discolouration of the element is acceptable. 

Considering these situation, the stainless steel was a good choice. And the inspection after 30 

years of installation confirmed the corrosion loss of the subsequent 20 years will reach 1μm in 

such severe marine environments. 

This bridge opened in 2005, was the first stainless steel bridge in Europe. The main structure 

of this bridge is duplex stainless steel and includes two parallel arches, two longitudinal beams 

and transverse beams. Before this bridge, there was a reinforced concrete bridge but the severe 

Figure 3  Cala Galdana Bridge, Menorca, Spain.(Source: ISSF) 
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marine atmosphere led to siginificant deterioration of the structure. Then people decided to 

raplace it with a durable bridge, and they found the solution of Duplex stainless steel. 

1.3 Design of stainless steel 

Stainless steel has a rounded response with no well-defined yield stress, leading to a non-linear 

behaviour of stress and strain in stainless steel. The nonlinear behaviour of material property 

is illustrated by material models which use some parameters to fit the curve obtained from tests. 

The widely used model is derived from the general model promoted by Ramberg and Osgood.  

Despite the increase of the use of stainless steel for structural elements in construction, the 

behaviour of this material for structural purpose is not defined accurately as the carbon steel. 

And the design princples in Eurocode for stainless steel mirror carbon steel, with changing 

some parameters. Meanwhile, current structural stainless steel design guidance is concerned 

mainly with doubly symmetric sections, primarily tubular sections and I-sections, which are 

commonly employed in structural applications. And some credible results have been published 

for these section members.  

However, mono-symmetric stainless steel sections and in particular angle sections due to their 

simple geometry and ease of fabrication of connections are widely employed in a range of 

structural applications, such as wind posts, lintels, truss chords, lattice towers, pipeline frames, 

retrofitting of current structures and so on; hence their design is of considerable practical 

significance[2].  

1.4 Objective of the thesis 

At first, a review of the actual knowledge of stainless steel is presented in this thesis. The first 

is about the material property which is very important for modeling the stainless steel correctly. 

The second part is the structural behavior of the stainless steel members under different load 

case. Several current proposals are illustrated in the state of art part, which are used to compare 

with numerical result obtained in this thesis.  

The main objective is to get a clear understanding of angle section members bearing 



5 

 

compression and combined load. If possible, propose some modifications to the EN 1993-1-4 

for the design of these sections members. In order to achieve this objective, models based on 

the finite element method (FEM) are used to study the behavior of members. The finite element 

method is extensively demonstrated that could be considered as a method able to give the 

efficiency and accuracy result when solving nonlinear problems in civil engineering. 

1.5 Structure of the thesis  

This chapter presents a brief introduction containing an overview of the origin of stainless steel 

alloys and their applications in the construction industry. Then the research objectives of the 

study presented in this thesis and corresponding methodology are described. 

Chapter 2 shows a general overview about the stainless steel property and related material 

models. Also some methods for section Classification and design for members under different 

load case. 

Chapter 3 illustrates the validation of Abaqus models according to current published test data 

and simple column tests carried out in CTU. 

Chapter 4 includes the main part of this thesis. The first is a sensitive analysis of the model, to 

decide accurate element size and element type. The second is a columns analysis to obtain an 

accurate buckling curve. 

Chapter 5 shows a capacity comparison between steel and stainless steel in section level, the 

section behaviors of these two materials are similar to a certain extent. Which means it is 

possible to mirror the principles of the carbon steel by changing some key parameters. 

Chapter 6 illustrates the procedure to study on the behavior of angle section members under 

combined load, and compare the result with two different methods. Finally in this chapter, a 

modification of current methods is proposed. 

Chapter 7 lists all the conclusions achieved in this thesis.  
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2. State of art  

2.1 The property of stainless steel  

All grades of stainless steel are characterized by a round stress-strain response with no sharply 

defined yield point. An accurate description of the stress-strain behavior is essential in structure 

design codes, advanced analytical and numerical models. Different material models describing 

this nonlinear behavior have been developed in the last few decades.  

2.1.1 Ramberg and Osgood model modified by Hill 

In 1943, Ramberg and Osgood [3] had proposed one expression for the nonlinear behavior of 

stainless steel, and it is modified by Hill [4] in 1944. The most widely used models are based 

on this expression. 

0.2

0.002

n

E

 




 
   

 
                                                      (1) 

0.2

0.01

ln(20)

ln( )

n




                                                              (2) 

Where E is the Young’s modulus, 0.2 is the 0.2% proof stress conventionally considered as 

the yield stress, and n is the strain hardening exponent, usually calculated from Eq.(2). Where 

0.01  is the 0.01% proof stress. The basic Ramberg–Osgood formulation has been shown to be 

capable of accurately representing the curve up to the yield stress, but with the stress increase, 

it will become inaccurate.  

2.1.2 Two – stage model  

In 2000, Mirambell and Real [5] proposed a two-stage model based on the Ramberg-Osgood 

expression but defining a second curve for the stresses above 0.2  with a new reference 

system denoted * *   and presented in Figure 4. 
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Figure 4  Typical stress–strain curve with definitions of key material parameters 

The transformation of the variables to the new reference system from the original one is 

defined in Eqs. (3) and (4), where 0.2  is the total strain at the 0.2% proof stress. 

*

0.2                                                                  (3) 

*

0.2                                                                   (4) 

And the expression for the second curve in the new system is as shown in Eq. (5) which is 

corresponding the Eq. (6) in the general system. 

* *
* *

*

0.2

m

up

uE

 
 



 
   

 
             for 0.2                                  (5) 

0.2 0.2 0.2
0.2 0.2

0.2 0.2 0.2

m

u
u

uE E

     
   

 

    
      

  
 for 0.2                   (6) 

Where 0.2E is the tangent modulus at the 0.2% proof stress, given by Eq.(7), * and 
*

up are 

the ultimate strength and ultimate plastic strain in the new reference system respectively, u

and u are the ultimate strength and total strain according to the general system and 0.2 is the 

total strain at the 0.2% proof stress.  
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0.2

0.2

1 0.002

E
E

E
n






                                                        (7) 

2.1.3 Simplified two-stage model  

In 2003, the two – stage model was simplified by Rasmussen [6], leading to the revised 

expression for 0.2   given by Eq. (8). He also developed predictive expressions for the 

determination of the second strain hardening parameter m, ultimate strength and ultimate strain, 

as given by Eqs. (9-11b). This proposal was included in EN 1993-1-4，Annex C. [7] for the 

modeling of stainless steel material behavior. 

 
0.2 0.2

0.2

0.2 0.2

m

u

uE

   
  

 

  
   

 
              for  0.2                    (8) 

Which consider the ultimate plastic strain in the new reference system 
*

up equals ultimate strain 

in terms of general system. 

0.21 3.5
u

m



                                                              (9) 

0.21u

u





                                                                (10) 

0.2 0.20.2 185
u E

 


      for austenitic and duplex stainless steels                   (11a) 

0.2

0.2

0.2 185

1 0.0375( 5)u

E

n









 

      for all stainless steel                              (11b) 

In 2005, Inversion of a full-range stress–strain relation for stainless steel corresponding to this 

model have been raised by K. Abdella [8], which is now adopted by the researchers. 

In terms of the normalized stress and strain, the proposed full-range inversion is given 

by: 
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Where 0.2/n    and 0.2/n   , and all the other parameters are shown in the paper. 

2.1.4 Modified two – stage model  

In 2006, Gardner and Ashraf [9] modified the Mirambell and Real’ model in order to improve 

the accuracy of the model at low strains (approximately less than 10%) by using the 1% proof 

stress instead of the ultimate strength in the second stage of the model. As shown in Eq. (13). 

Also in 2010, Gardner et al. [10] proposed a model used in fire. 

0.2,1.0

0.2 0.2 0.2
1.0 0.2 0.2

0.2 0.2 1.0 0.2

n

E E

     
   

 

    
      

  
  for 0.2 u             (13) 

2.1.5 Three –stage model  

In 2008, Quach et al. [11] proposed a material model that uses the basic Ramberg–Osgood 

curve (Eq. (1)) for the first stage, covering stresses up to the 0.2% proof stress, the Gardner and 

Ashraf [9] model (Eq. (13)) for the second stage covering stresses up to the 2% proof stress 

and a straight line from the 2% proof stress to the ultimate strength for the third stage. More 

recently, in 2013, Hradil et al. [12] proposed an alternative three-stage model which uses the 

Ramberg–Osgood equation for every stage, but with different reference systems. 

The study presented in Mirambell and Real [13] compares the three - stage models with the 

two - stage models. Showing that the three-stage models with a high number of parameters 

provide most accurate fit to experimental stress-strain curves at high strain, but taking into 

account that two-stage models also showed excellent agreement with experimental results[5,6]. 

It is better use two-stage models with being that is the best balance between accuracy and 

practicality (the number of input variables). 
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2.1.6 Recent studies by Arrayago et al. and Bock et al. 

Recent studies (Real et al. [13], Arrayago et al. [14], Afshan et al. [15]) have confirmed the 

general accuracy of the form of the EN 1993-1-4 material model, but have identified some 

limitations in the predictive expressions for the key material parameters.  

In 2015, Arrayago et al. [16] came up with the proposal of the value and expression for the key 

parameters in the existing stainless steel material model based on the analysis of a 

comprehensive database. These parameter values have been compared to those which is 

calculated from the other existing predictive models, and the results show that the revised 

expression provide more accurate predictions. Following are the summary of these proposals: 

 For the first strain hardening parameter n 

0.2

0.05

ln(4)

ln

n





 
 
 

                for all grades                             (14) 

And also they have given some average values which are recommended for inclusion in EN 

1993-1-4. These values are shown in Table 2. 

Table 2  The recommended value for the first hardening parameter 

 

 

 

 For the second strain hardening parameter m: 

0.21 2.8
u

m



                for all grades                               (15) 

 For the ultimate strength u  

0.2 0.20.2 185
u E

 


        for austenitic, duplex and lean duplex              (16a) 

Family Recommended n 

Austenitic 7 

Ferritic 14 

Duplex and lean duplex 8 
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  For ferritic grades                                 (16b) 

 For the ultimate strain u  

0.21u

u





              for austenitic, duplex and lean duplex                (17a) 

0.20.6 1u

u






 
  

 
        for ferritic grades                               (17b)  

In this thesis I would choose simplified two-stage model proposed by Rasmussen in 2003, but 

using the n shown in Table 2. Also, using the corresponding inversion model in some cases.  

2.2 Cross-section response  

2.2.1 Section Classification in EN 1993-1-4(CEN 2006a) 

Section resistance is the ultimate capacity of a section to bearing the internal force and moments 

which is subjected. Each internal force is considered separately and also the interaction 

between them is verified. The European structural stainless steel design code takes the local 

buckling effect on the resistance into account by section Classification, as it addresses the 

susceptibility of a cross-section to local buckling and defines its appropriate design resistance 

[7].  

In the present codified rules, the Classification of the cross-section mirrors that applied to 

carbon steel. In which, set four different categories for the cross-section as shown in the 

following: 

 Class 1: cross sections are fully effective under pure compression and capable of reaching 

and maintaining their full plastic moment plM  in bending; 

 Class 2: cross-sections have a lower deformation capacity but are also fully effective in 

pure compression and capable of reaching their full plastic moments capacity in bending. 

 Class 3: cross-sections are fully effective in pure compression but local buckling prevents 

attainment of the full plastic moment capacity in bending, limiting the bending resistance 
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to the elastic moment elM   

 Class 4: cross-sections are characterized as slender and cannot reach their nominal yielding 

stress in compression or their elastic moment capacity in bending. 

However, unlike carbon steel, which material property have a sharply defined yield stress, the 

stainless steel exhibits a rounded non-linear stress–strain relationship. So by defining a proof 

stress 0.2  , and taking influence of the different elastic modulus into account, the slenderness 

limits for the stainless steel section are obtained.  

2.2.2 Proposed limits by Gardner and Theofanous 

In 2008, Gardner and Theofanous [17] by statistically analyzed the existed experimental result 

led into conclusion that the limits in EN 1993-1-4 were too conservative for austenitic and 

duplex stainless steel grades and proposed revised limits which were ratified by other research. 

These new limits were later used in the Eurocode modification EN 1993-1-4:2006/A1. 

However, some recent experimental research in ferritic stainless steel with hollow section 

elements reported by Afshan and Gardner [18] concluded that the limits for Class 1 validated 

by Gardner and Theofanous overestimate the capacity of some cross-sections due to the lower 

ultimate strain or ductility in ferritic grades. While, since plastic design is not allowed for 

stainless steel elements in EN 1993-1-4 [7], so this limitation is not relevant. In the future, 

along with the demand of plastic design of stainless element, more deep study should be 

realized in order to determine the limits. 

2.2.3 Section resistance according to EN 1993-1-4 

The section resistance in EN 1993-1-4 is calculated by Eqs. (18)-(19) 

0.2
,

0

c Rd

M

A
N




     for Class 4 the area should be effective area effA                   (18) 

0.2

,

0

pl

c Rd

M

W
M




   for Class 1 and 2                                          (19) 
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For Class 3 should be elastic section modulus elW  and for Class 4 should be effective modulus

effW . For the Class 4 sections, the effective cross-sectional properties can be calculated using 

the reduction factor given in EN 1993-1-4 cooperating with the buckling factor given in EN 

1993-1-5. This reduction factor depends on the boundary condition and also stress distribution. 

For angle sections, the legs are considered as outstand element and equations are following. 

/

28.4
p

b t

k



                                                           (20) 

2

1 0.188

p p


 

    but 1       for outstand elements                           (21) 

In the case of unsymmetrical Class 4 sections, the additional moment ∆MEd due to the 

eccentricity of the centroid axis of the effective section need to be taken into account. 

Regarding the interaction of bending moment and compression, refers to carbon steel, for the 

Class 1 and 2, partial yielding is allowed by considering the effect of axial force on the plastic 

moment capacity. 

,

2

, , ,[1 ( / ) ]

Ed N Rd

N Rd pl Rd Ed pl Rd

M M

M M N N



 
                                            (23) 

For Class 3 and 4, the maximum longitudinal stress shall satisfy the criterion 

.

0

y

x Ed

M

f



                                                               (24) 

While for Class 4 section the stress should be calculated by considering effective area. 

2.2.4 Continuous Strength Method 

The Continuous Strength Method (CSM) is a newly developed approach to replace the 

traditional cross-sections Classifications, which does not utilize the effective width concept, 

and does not assume the perfectly elastic-plastic material model [17]. It is based on the 

deformation capacity of the cross-section in question, by calculating the maximum strain that 
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the section can be achieved donated as csm  or LB  which depends on its relative slenderness

p and yield strain y . 

In 2008, L. Gardner, M. Theofanous [17] proposed one design curve to determine the 

deformation capacity – strain ratio 0/LB   according to the cross-section slenderness. 

2.71 0.69
0

1.43

p

LB

p





 


                                                          (25) 

0.2 /p cr                                                             (26) 

Where the cr  is the critical buckling stress, obtained from the lowest buckling mode in an 

eigenvalue analysis or calculated from the EN 1993-1-4(2006) for the most slender element in 

the cross-section. The former one considered the interaction of different elements and the 

second one does not. After the strain is obtained, according to the material model, the relevant 

stress can be calculated. Then the section resistance for compression and bending are illustrated 

in following equations. 

,c Rd LB gN A                                                            (27) 

,c RdM ydA                                                            (28) 

Where gA  is the gross area and y is the distance from neutral axis, for bending resistance the 

strain distribution need to be assumed first. The resistance obtained by this procedure shows a 

good fit with the test results, both in accuracy and consistency.  

In 2013, Ashraf and Gardner [19] came up with one base cure – relationship between strain 

ratio 0/csm   and slenderness p , which is similar to the one before, but this one is mainly for 

stocky cross-section by taking the strength hardening into account. Unless the previous one, 

the relevant stress is calculated according to a simplified bilinear material model proposed in 

the same paper, however it is inaccurate for ferritics due to low ductility. In 2015, Bock et al 

suggested a new bilinear model [20]. 



15 

 

0

CSM
CSM

M

A
N




                                                            (29) 

2

0.2 el

0

1 1 1PL sh csm el csm
CSM

M PL y PL y

W E W W
M

E W W

  

  

     
                  

                       (30) 

The CSM method has been statistically validated according to EN 1990 for both compression 

and bending of CHS and plated sections, offers more accurate and consistent predictions of 

resistance than the current Eurocode provisions, thereby leading to more efficient design, 

particularly for stocky cross-sections. It is envisaged that the proposed method may be adopted 

as an alternative to cross-section Classification for the treatment of local buckling in future 

revisions of EN 1993-1-4. 

Regarding the cross-section subjected to combined loading, Liew and Gardner [21] has come 

up with an alternative expression for the reduced bending capacity for carbon steel. 

* 1/

, (1 )a b

R CSM CSM csmM M n                                                    (31) 

Where definition of parameters can be found in original publication. 

Zhao et al. (22, 23) investigated the behavior of RHS and SHS subjected to combine loading 

and concluded that although the equations proposed by Liew and Gardner were accurate, the 

best way to consider the interaction is adopting the expression in EN 1993-1-4(2006) with the 

resistance obtained from CSM for Class 1 and 2, while for Class 3 and 4 use the linear 

interaction formula but with CSM endpoints. 

2.3 Member Behavior under the pure compression  

2.3.1 An explicit approach to design of stainless steel columns 

In 1997, Rasmussen and Rondal [24, 25] proposed a column strength curve for the nonlinear 

material which can be expressed with Ramberg-Osgood model. This new curve based on Perry 

curve and take the imperfection into account with parameters 0E , 0.2  and n. Later, they came 

up with an explicit approach to design of stainless steel columns failed in flexural mode by 
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using this strength curve which shows a good consistence with the test results. 

2.3.2 Codified method 

EN 1993-1-4 approach  

The expressions for the consideration of the flexural buckling behavior of stainless steel 

columns currently codified in EN 1993-1-4 [7] are presented herein. Regarding the design of 

columns, the general method established in EN 1993-1-1 [26] for carbon steel is considered 

also for stainless steel elements, where their different behavior is accounted by defining 

different buckling curves and limiting slenderness with those codified for carbon steel. For 

cold-formed stainless steel open sections EN 1993-1-4 [7] establishes the European buckling 

curve c, with the imperfection factor of and the limiting slenderness of 0 . Hence, the 

ultimate capacity ,b RdN is calculated from Eqs. (32)– (35). 

0.2
.

1

b Rd

M

A
N

 


                                                           (32) 

Being  the flexural buckling reduction factor given by Equation (33) where   is calculated 

according to equation (34). 

22

1


  



 
                                                         (33) 

2

00.5[1 ( ) ]                                                          (34) 

Where  

0.2

cr

A

N


         for Class 4 should be the effective area.                       (35) 

When there is also have torsional-flexural buckling and torsional buckling, then choosing the 

curve b to check the stability and also the buckling force should be corresponding to the 

buckling mode. 
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SEI/ASCE-8-02 

SEI/ASCE-8 [27] considers the non-linear stress-strain response of the material by allowing a 

gradual yielding thorough the use of the tangent modulus tE corresponding to the buckling 

stress into flexural buckling resistance calculation. Iterative process is involved in the 

calculation. 

AS/NZS4673 

AS/NZS4673 (2001) [28] also considers iterative design procedure in addition to an explicit 

design procedure, which is essentially the method codified in EN 1993-1-4 (2006) but 

considering a nonlinear expression for the imperfection parameter, as described in Eqs. (36) 

and (37). Six different buckling curves are provided for different stainless steel grades by 

defining different ,  , 0 and parameters 1 . 

21
(1 )

2
c                                                               (36) 

  1 0c


                                                             (37) 

2.3.3 Direct stress method 

The Direct Stress Method is a design method developed by Schafer and Pekoz in 1998 that 

allows prediction of strength from the ratio of the yield stress to elastic buckling stress in 

conjunction with a strength curve [29]. With DSM method, it is easy to establish the different 

strength curve corresponding to local buckling, local and member buckling, also distortional 

buckling. This method can be used to accompany with column curve to design some Class 3 

or Class 4 sections without considering the effective width [30].  

Regarding column behavior, the DSM method first considers the overall buckling of the 

member with a full effective cross-section and then introduce the reduction due to local 

buckling. The concept is similar to the universally accepted column curve, which can be 

expressed in terms of a column slenderness and a column strength curve.  

In 2008, Becque et al. proposed a strength curve based on the buckling curve provided in 
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AS/NZS4673 is presented in Eq (38) for stainless steel [31]. 

0.8 1.6,

1

0.4741

0.95 0.22

0.474

l

nl

b ne

l l

N

N



  




 


 

                                              (38) 

,b ne

l

crl

N

N
    

Where ,b neN  is the global buckling resistance considering the full effective cross-section, and

nlN is the final resistance considering the effect of local buckling. 

Recent research works done by Rossi and Rasmussen lead into a full slenderness DSM 

approach [32]. This method is also based on the same curve as Becque and accounted for strain 

hardening effect by proposing a modified expression for ,b neN . 

lim

lim 0.2,

lim2 2

1 1 1

1

c u

c

b ne

y

c

c

N

N

 
 

 

 
  


           

 
 
  


                                       (39) 

Where lim is the limiting slenderness at which  becomes equal to unity. 

2.4 Member behavior under the combined load  

During last decades, the behavior of stainless steel I section, RHS and SHS members subjected 

to compression and combined load has been significantly investigated through different 

experiments. Some proposals for the design of member under combined load have been derived. 

Nevertheless, they are usually presented as general interaction expression with difference on 

the interaction factor k and the calculation of the basic flexural buckling capacity ,b RdN  and 

bending moment capacity ,c RdM . 
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, ,

1.0Ed Ed

b Rd c Rd

N M
k

N M

 
   

 
                        (40) 

2.4.1 Codified method  

The codified interaction expression in  EN 1993-1-4 is described by Eqs (41, 42), 

, , , 1

1.0
/

Ed Ed Ed N

b Rd w y pl y y M

N M N e
k

N W f 

 
   

 
                                            (41) 

,

1 2( 0.5) Ed
c

b Rd

N
k

N
      but   

,

1.2 1.2 2 Ed

b Rd

N
k

N
                             (42) 

,w y  and 
,w z  are the values of w  determined for y and z axis respectively in which  

1w   For Class 1 or 2 cross-sections 

el
w

PL

W
W

   For Class 3 cross-sections 

eff
w

PL

W

W
   For Class 4 cross-sections  

PLW  is the plastic section modulus. 

Where the buckling resistance is calculated according to the expression described before, Ne  

is the eccentricity introduced by the effective area.  

However the provisions do not account for the effect of bending moment gradient, so this 

expression is very conservative to the non-uniform distribution of bending moment. 

While SEI/ASCE-8-02 and AS/NZS4673 also considering the same general interaction 

expression presented in Eq. (40) but with alternative buckling resistance and bending resistance 

in their corresponding procedure. The interaction factor is also calculated in different way as 

illustrated in Eq. (43) 
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1

m

Ed

cre

C
k

N

N





                                                              (43) 

Where the creN  is the elastic critical force, and mC  is equivalent uniform moment factor 

which takes bending distribution into account. 

2.4.2 Modifications to codified approach 

In 2007 and 2009, Lopes et al. [33, 34] conducted a numerical study on austenitic steel I column 

and H beam-columns and proposed some modification to the interaction factor k. 

1
1

y Ed M

y

y y

N
k

Af

 


    with   0.7 1.5y yk                                    (44) 

11 z Ed M
z

z y

N
k

Af

 


    with    0.7 1.5y yk                                    (45) 

Where  

, ,(0.97 2.11) 0.44 0.09yy M y M y        if 0.3y  then 1.0y  else 0.9y         (46) 

, ,(1.09 2.32) 0.29 0.48zz M z M z        if 0.3z  then 1.0z  else 0.9z        (47) 

, 1.8 0.7M i i                                                            (48) 

In 2008, Greiner and Kettler [35] derived interaction expressions for I section, CHS and RHS 

respectively. This proposal was limited in Class 1 and Class 2 sections, and the amount of tests 

was small and statistical validation was rough. And also it provide quite conservative results, 

especially regarding non-uniform bending moment distributions, as they do not consider the 

shape of the bending moment diagram, but some unsafe predictions of the ultimate capacity of 

ferritic stainless steel RHS and SHS columns subjected to combined loading can be found. 

In 2014, Jandera and Syamsuddin [36] found the proposal by Lopes et al is very unsafe due to 

the different stress-strain diagram considered, and modified the equation (44,45) by 

multiplying 1.2. The proposal eliminates the majority these unsafe predictions of Lopes et al’s 
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proposal, but results in a more conservative and scattered proposal, and also is limited to axial 

force and major-weak axis bending of members without lateral torsion effect. 

11.2 1 i Ed M
i

i y

N
k

Af

 



 
   

 
                                                    (49) 

In 2015, Arrayago [37] imposed one interaction factor expressions for members subjected to 

axial force and uniaxial bending which are not influenced by lateral torsion buckling. 

11 0.92 i Ed M
i

i y

N
k

Af

 


                                                       (50) 

In 2016, Zhao et al [38] conducted a test investigation on beam-column behavior of ferritic 

stainless steel. Based on the experiment data and FE model data, a new expression for the 

interaction factor k which also consider the particular response of diverse stainless steel grades 

was proposed based on the interaction factor suggested by Greiner and Kettler [35]. In his 

proposal, the column buckling resistance and section bending resistance is calculated according 

to the alternate procedure suggested by Afshan et al. (2016) and the CSM method respectively. 

d d
1 2 1 3 2

, ,

1 ) 1 )E E

b Rd b Rd

N N
k D D D D D

N N
     （ （                                  (51) 

Where 1D and 2D  are the coefficients which defines the linear relationship between k and 

in the low member slenderness range, and 3D  is a limit value, beyond which the interaction 

factor k remain constant. The values of these parameters are in the following Table 3. 

Table 3  Values of the coefficient for the interaction factor proposed by Zhao (2016) 

 

 

 

 

 

Grade 1D  2D  3D  

Austenitic 2.0 0.3 1.3 

Duplex 1.5 0.4 1.4 

Ferritic 1.3 0.45 1.6 
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3. Simple column test and numerical model validation  

In the present thesis, the analysis is mainly done by simulating tests using numerical modelling 

program which was performed with the nonlinear finite element analysis package ABAQUS 

[39]. The Finite Element Method (FEM) consists in the approximation of continuum problems 

through their discretization into a finite number of elements which are connected by a finite 

number of points that are defined nodes. The principal unknown parameter of the general 

problem is the displacements of the already defined nodes. Once the displacement of any point 

of FEM is known, it’s possible to obtain stress and strain by settling the equilibrium and 

compatibility equations and, in addition, the material constitutive stress-strain relationships. 

3.1 Beam test simulation 

Only a very limited number of tests can be found on stainless angle section members. However 

in 2015, M. Theofanous, A. Liew and L. Gardner [2] had done some bending experiment on 

stainless steel angle beams. 

A series of tests has been conducted in the Structure Laboratory of the Department of Civil and 

Environmental at Imperial College London. The tests were performed on austenitic stainless 

steel angles bent about their geometric axis.  

In order to setup the angle beam easily, two nominally identical angle section were paired with 

aid of the 25mm thick spacer plate. The following Figure 5 show it schematically. Auxiliary 

tests on material coupons extracted from the same length of section as the test specimens and 

initial geometric imperfection measurements were also conducted. 

Figure 5  The layout of the tests 

In this paper, the author establish the numerical model to check if it is possible to simulate the 

tests with certain element type and material model, also to check the strict boundary condition 
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and method to consider the imperfection. 

Constitutive expression used in model:  

Once the material properties are known, these have to be recalculated in order to receive the 

true stress-strain diagram. This fact is taken into account with Eqs. (52, 53). 

 0.2, 0.2 0.2= 1true  
                                                       (52) 

 1u u u   
                                                           (53) 

Since ABAQUS [39] requires the material properties to be inputted in the form of true stress 

and true plastic strain, the measured engineering stress–strain curves from tensile coupon tests, 

represented by the compound two-stage Ramberg–Osgood model, were converted into true 

stress-strain curves, according to Eq. (54) and Eq. (55), where true
 is the true tress, 

pl

ln  is the 

true plastic strain, nom
 is the engineering stress and nom

 is the engineering strain. 

 1true nom nom   
                                                       (54) 

 ln ln 1pl nom
nom

E


   

                                                    (55) 

Element type used in model: 

The four-nodded doubly curved shell element with reduced integration and finite membrane 

strain, S4R, was used in the study. It has been used successfully in previously published papers 

[22-23, 38, 40] concerning the modelling of stainless steel SHS and RHS beam-column 

structural members. Here is given also the checking of the accuracy of this element to 

simulation of the angle section. 

Imperfections used in model 

All the angle specimens were laser-welded sections comprising hot-rolled stainless steel plates, 

owing to the high precision of the laser beam, the heat input is kept to a minimum, and thus 

resulting in very small heat affected zones, low thermal distortions and low residual stresses 

[2]. 
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For bending test, the global imperfection can be neglected, and regarding the local imperfection, 

using the elastic local buckling Eigen mode – Figure 6 times the measured amplitude. 

Figure 6  The local imperfection 

Boundary conditions used in model 

Both end surfaces are coupled with the reference point of shear center, and at the middle of the 

section impose the restraint on out-plane displacement. 

The result comparison  

For section A100 x 65 x 11, under three point load, if put the moment rotation curves gotten by 

ABAQUS and the curve gotten in experiment, they match very well with each other.  

 

 

 

 

 

 

 

 

 

Figure 7  The result comparison 

Conclusion  

This means the shell element type and relevant methods to deal with the beam member is 

accurate to some extent.  
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3.2 Simple column test 

Even the beam test simulation shows very good consistence, however, it is still necessary to 

study the column behavior of the angle section member. Three compression tests have been 

done on the material test machine to check the column behavior. 

3.2.1 Specification of the specimen  

Three specimen were chosen according to the product list and capacity of the test machine as 

shown in the following Table 4. 

Table 4  Specimen specification 

Specimen number Length of the leg(mm) Thickness of the leg(mm) 

30-30-3-1 30 3 

30-30-3-2 30 3 

35-35-3.5-1 35 3.5 

3.2.2 The geometry measurement and material test  

Along the member length three sections were measured as shown in Figure 8, and the average 

values for the specimen are reported in Table 5. The coupons for test are shown in Figure 9, 

and material property reported in Table 6. 

 

 

Figure 8  Geometry measurement Figure 9  Coupon tests 
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Table 5  Measured geometry 

 

Table 6  Tested material property 

 

3.2.3 Test setup and failure mode 

End plate is welded at both ends of the specimen which can be seen in Figure 8 also. At the 

bottom of the specimen, it is supposed to be hinged, while at the top, it is rigid, shown in Figure 

10. 

In order to make sure the specimen is centered, a lot of lines have been drawn to locate the test-

piece. However, the welded position is not controlled very well, it should have some 

eccentricity around 2 mm or even more. 

Specimen 

number 

Leg 1 

(mm) 

t 1 

(mm) 

Leg 2 

(mm) 

t 2 

(mm) 

Length of the 

member(mm) 

Area of the 

section (mm2) 

30-30-3-1 30.04 3.04 30.11 3.00 856 172.53 

30-30-3-2 30.38 3.03 30.21 3.07 857 175.49 

35-35-3.5-1 35.74 3.79 35.77 3.61 856 250.90 

Coupon 

number 

Elastic 

modulus(MPa) 

Yield 

stress𝜎0.2(MPa) 

Ultimate 

stress𝜎𝑢(MPa) 
Ultimate strain𝜀𝑢 

1 217800 540 729 0.22 

2 225400 593 734.6 0.209 

Figure 10  Left is up end and right is bottom end 
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Figure 11 depicts the failure modes for three specimens, for the first one, interaction edge of 

the angle is in compression, the second and third one buckled in opposite direction. From all 

these three tests failure modes and no visible rotation of the lower support can be judged both 

ends are rigid. The hinge does not work due to friction or some other reason.  

 

 

 

 

 

 

 

3.2.4 Numerical model simulation 

Establish the Abaqus model using the measured geometry and material property. For the 

material property, the measured value need to change in ture stress and strain, the same 

procedure as mentioned in chapter 3.1.  

Material property 

The following Table 7 gives the material property for test 1 and test 2, while Table 8 gives the 

material property for test 3, where the pink row is the yield stress. It can be seen that the yield 

stress is really high. 

Table 7  Material property for tests 1 and 2 

Stress(MPa) strain plastic strain true stress(MPa) true plastic strain 

199.084 0.000895868 -2.24058E-05 199.262353 -1.942E-05 

219.982 0.001015568 5.46685E-06 220.2054066 4.00841E-06 

Test 30-30-1 

Test 30-30-2 Test 35-35-1 

Figure 11  Failure modes of the tests 
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239.474 0.001115668 1.37395E-05 239.7411734 1.4306E-05 

258.867 0.001211768 1.80121E-05 259.1806867 2.10403E-05 

279.198 0.001318968 3.33848E-05 279.5662532 3.45072E-05 

299.155 0.001428568 5.11574E-05 299.5823632 5.20555E-05 

319.419 0.001563068 9.383E-05 319.9182736 9.29849E-05 

338.531 0.001658468 9.74027E-05 339.0924428 0.000100196 

359.611 0.001804368 0.000151475 360.2598705 0.000148656 

379.187 0.001948168 0.000203448 379.9257199 0.000201894 

399.011 0.002147968 0.000311421 399.8680628 0.000309723 

418.635 0.002296268 0.000367893 419.5962981 0.000367114 

439.732 0.002506968 0.000486766 440.834394 0.000479798 

459.204 0.002741868 0.000629838 460.4630767 0.00062396 

479.665 0.003017968 0.000814111 481.1126136 0.000804458 

499.283 0.003378968 0.001083284 500.9700612 0.001073134 

519.391 0.003798168 0.001410656 521.3637342 0.0013972 

539.448 0.004495268 0.002015929 541.8729633 0.001997256 

547.966 0.004875168 0.002359098 550.6374262 0.002335144 

559.729 0.005616668 0.003045502 562.8728119 0.003016597 

579.763 0.008081268 0.005418274 584.4482201 0.005365372 

599.861 0.015134068 0.012379247 608.9393371 0.012224826 

619.338 0.030549668 0.02770302 638.2585702 0.027161838 

639.853 0.046261568 0.043323092 669.453603 0.042149691 

659.575 0.065764168 0.062733865 702.951401 0.060464562 

679.642 0.088459068 0.085336937 739.7624978 0.081366475 

699.704 0.119876468 0.11666251 783.5820441 0.109620669 

719.853 0.170128868 0.166823083 842.3207759 0.153246481 

729.847 0.222275768 0.218924069 892.0743023 0.196618663 

Table 8  Material property for test 3 

Stress(MPa) strain plastic strain true stress(MPa) true plastic strain 

199.81 0.000954682 6.73708E-05 200.0008 6.6912E-05 

219.434 0.001026182 5.01397E-05 219.6592 5.11256E-05 

239.771 0.001080582 1.58085E-05 240.0301 1.50916E-05 

259.685 0.001176182 2.26774E-05 259.9904 2.20286E-05 
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278.844 0.001244482 2.24623E-06 279.191 5.0616E-06 

299.856 0.001348682 1.77151E-05 300.2604 1.56511E-05 

319.8 0.001450982 3.12839E-05 320.264 2.90609E-05 

339.992 0.001547082 3.86528E-05 340.518 3.51592E-05 

349.48 0.001606382 5.35872E-05 350.0414 5.21147E-05 

358.98 0.001658182 6.10217E-05 359.5753 6.15328E-05 

399.868 0.001935282 0.000160659 400.6419 0.000155941 

418.837 0.002080582 0.000217228 419.7084 0.00021636 

439.272 0.002257582 0.000305497 440.2637 0.000301783 

459.468 0.002460082 0.000419266 460.5983 0.00041359 

479.241 0.002661182 0.000531635 480.5163 0.000525809 

498.784 0.002903282 0.000685004 500.2321 0.000679767 

518.942 0.003160582 0.000853572 520.5822 0.000846006 

539.933 0.003462182 0.001066441 541.8023 0.001052466 

558.785 0.003801082 0.00131661 560.909 0.001305372 

592.742 0.004654982 0.002024104 595.5012 0.002002206 

599.501 0.004896482 0.002234548 602.4364 0.00221179 

619.643 0.005894382 0.003143717 623.2954 0.003111793 

639.965 0.008192382 0.005352986 645.2078 0.005296505 

659.879 0.015579282 0.012651154 670.1594 0.01248597 

679.783 0.036748182 0.033731323 704.7638 0.032962342 

699.946 0.063289782 0.060184192 744.2454 0.058065783 

719.982 0.102656582 0.099462261 793.8929 0.094200192 

734.6 0.200000000 0.196716948 881.52 0.178410643 

Boundary condition  

According to the failure mode, both ends are rigid. In FE model, both ends are established to 

be rigid. 

Imperfection  

Similar to the previous simulation, the imperfection shape refer to the elastic buckling modes, 

and the amplitude for global imperfection is 2.2 mm which value is considered to cover the 

imperfection due to setup, while for the local imperfection, fabrication tolerance is used as b/50 

with 0.8 reduction factor.  
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Analysis method  

In order to get the whole load-deflection diagram including also the descending branch, static 

risk method is chosen as it allows the decrease of the load. 

3.2.5 Result comparison 

1. Ultimate load comparison 

The ultimate loads achieved in tests and model simulations are reported in table 9. It shows 

very good consistence, which means the imperfection considered in FE model make sense. 

However, it should be remained, the imperfections in the test-setup, mainly the eccentricity, 

were not possible to be covered in the numerical mode accurately.  

Table 9  Ultimate load comparison 

 

 

 

2. Load-displacement curve comparison 

As mentioned before, the whole process is simulated and the load-displacement curve is also 

recorded during the test. However, the test is really simple, no displacement gage is used, and 

the displacement mentioned here is the crosshead displacement which is recorded 

automatically by the test machine. It is affected also by the deformation of the supports and the 

machine frame itself. Therefore, accurate comparison in terms of the displacement is not 

possible.  

To make at least some comparison, the end-shortening in the Abaqus model was modified 

linearly (by factor equals to two) to match the linear stage of the test diagram. The reason for 

using the factor is that at the very first stage the axial stiffness for the column should be around 

EA/L. If the elastic modulus and area measured during test are used, this stiffness equals 41712 

N/mm, while the slope from recorded test data is 20311 N/mm which is half of the calculated 

one and clearly a wrong result. The slope from Abaqus is 417803 N/mm, which is very similar 

Test number Tests result (kN) Abaqus result (kN) Difference (100%) 

30-30-3-1 41.47 41.31 -0.37 

30-30-3-2 48.06 49.53 +2.98 

35-35-3.5-1 71.25 70.99 -0.36 
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to the first calculation, and this problem is the same for all the three tests. The result from 

Abaqus times 2 fits very well with the test record. The reason for such a significant difference 

is unknown. Following are the figures showing the comparison between tests and simulations 

(displacement is modified by 2 times). 

 

 

 

 

 

 

Figure 12  The result for 30-30-3-1 

 

 

 

 

 

 

Figure 13  The result for 30-30-3-2 
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Figure 14  The result for 35-35-3.5-1 
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From all these curves it is clear that the load capacity is similar. The difference is that the 

behavior in Abaqus is more non-linear than the one in the test. 

3. Stress – strain curve comparison  

For all three tests, no displacement gage and no strain gage were used, but one extensometer 

was used. It can measure the displacement between two points and calculate the average strain. 

Using formula
L


  , for the tensile material test, this is supposed it can replace the strain gage. 

However, during this column test, it is combined with moment, and for one section it will rotate, 

not only transformation along member axis. The figure 15 shows the detail of the extensometer. 

Figure 15  Detail of extensometer 

As mentioned before, the contact is placed on the interaction edge of the angle legs, and for the 

first test, the distance between the black line and bottom end is 300mm and for other two tests, 

the distance is 400mm. Also the failure mode for the first test is different with others. As far as 

the author is concerned, this extensometer works well for the tensile coupon tests since the 

section only has transformation deformation while for the combined load including bending, it 

is not accurate enough. The reason of the very significant inaccuracy in the measurements is 

not known. 

When the contact edge is in compression, the initial slope of load – strain curve comparing to 

the Abaqus result is 1.5 lower, while for the rest, the slope ratio at the very start point is about 

2 times different. A similar process to the process done for displacement is used for the 

comparison with the extensometer measurement. The results are as following. 
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Figure 16  The result for 30-30-3-1 

 

 

 

 

 

 

Figure 17  The result for 30-30-3-2 

 

Figure 18  The result for 35-35-3.5-1 

From these load - strain curves, even the real value from Abaqus does not fit the value recorded 

in experiment, but in the author’s point of view, the slope at the beginning of the experiment 
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should be corresponding to the theoretical calculation and the Abaqus result is. However, it is 

still hard to explain why the data from the test record are always around 2 times different. It is 

believed the extensometer was calibrated well as the tensile coupon test showed elasticity 

modulus around 200 GPa.  

3.3 Concluding remarks 

a. The material test is quite necessary when a model is validated on tests. For instance, in this 

simple column test, the specimens are supposed to be grade 1.4301, for which the yield stress 

should be at least 210MPa, while during the tensile coupon tests, much higher 0.2% proof 

strength (exceeding 500 MPa) was recorded. Therefore also the column resistances were much 

higher than initially expected.  

b. From the column test simulation, by comparing the ultimate loads, a conclusion can be drawn 

that the residual stress somehow could be covered by the geometric imperfection. However, 

according to the study of Rachel Bethan Cruise [41], the residual stress for the hot rolled angle 

section is also negligible. 

c. After these tests simulation, it shows the procedure to analyses the angle section column is 

accurate as the predicted resistances are very close to the test ones. And it is possible to analyze 

the beam-column behavior as the model was successfully validated on a beam test as well.  
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4. Behavior of angle section columns 

4.1 Models of angle section column  

The nonlinear material behavior of stainless steel leads to different limiting width to thickness 

ratios for local buckling and different member buckling behavior in compression and bending. 

In low slenderness, due to the benefits of strain hardening, the resistance can exceed squash 

load; in high slenderness, the ultimate stage will be in linear region, the behavior is similar to 

carbon steel providing similar imperfection and residual stress; in intermediate slenderness, 

average stress in column lies between the limit of proportionality and the 0.2% permanent strain, 

in this situation the stainless steel is less strong than carbon steel column. 

In this part numerical simulations were carried out on single span pin-ended stainless steel 

angle columns, accounting for initial geometric imperfections, with the member slenderness 

ranging between 0.2 and 2.0, to check the buckling curve codified in EN 1993-1-4. 

4.1.1 General principles of the model 

Material: 

Stainless steel grades - 1.4301, 1.4512 and the product form is hot rolled plate, the following 

Table is the key parameter for these materials. 

Table 10  Material Table 

material 
Modulus 

(Mpa) 

fy (Mpa) fu (Mpa) n 

1.4301 200000 210 520 7 

 200000 210 520 14 

 200000 210 380 7 

1.4512 200000 210 380 14 

The material model chosen in this paper is simplified two-stage model proposed by Rasmussen 

in 2003, with the parameters in the upper Table. 
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Boundary conditions:  

Boundary conditions for both end are applied by coupling all the nodes of the section to the 

centroid which are considered as reference point. And the restrains are imposed on these 

reference points, allowing only longitudinal translation and rotation about the axis of buckling. 

An axial load is applied to the column model through centroid reference point, resulting the 

pure compression. 

Imperfection: 

Both the global and local imperfections are considered.  

The local imperfection distribution is considered to be the same with the first local buckling 

mode. The amplitude can be calculated by several methods. 

The most popular method is the modified equation from Dawson and Walker (D&W), and the 

parameter in the equation has been studied by Rachel Bethan Cruise [41]. 

0.2
0

cr

w t







                                                            (56) 

By measuring a certain number of samples and doing data analysis, one recommendation is 

proposed. For hot rolled angle section,  depends on the buckling length of the plate, and 

buckling length to width ratio is illustrated with parameter . The upper and lower bound for 

 is 10 and 1, where 1 represent the buckling length equals width, 10 represents buckling 

length equals member length, and corresponding  is 0.4154 and 0.04, when  lies between 

the bound, the linear interpolation is acceptable. 

Another method which is accepted in Eurocode for the numerical calculation is the fabrication 

tolerance with the reduction factor 0.8. 

The comparison for the two methods is shown in the below Table 11. And it is obvious that the 

fabrication tolerance close to the upper bound proposed by Rachel Bethan Cruise. Actually the 

buckling length to width ratio is between 1 and 10, but it is not clear to judge which value to 

choose, so in this paper the imperfection is calculated using the philosophy of accepting the 

fabrication tolerance. 
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Table 11  Comparison of different amplitude for local imperfection 

Section 
Fabrication 

tolerance (mm) 

upper bound 

(D&W) (mm) 

lower bound 

(D&W)(mm) 

L50*50*5 0.8 1.07854922 0.018296353 

L60*60*10 0.96 1.294259065 0.013173374 

L75*75*5 1.2 1.617823831 0.041166794 

L75*75*10 1.2 1.617823831 0.020583397 

L100*100*6 1.6 2.157098441 0.060987843 

L100*100*10 1.6 2.157098441 0.036592706 

L200*200*8 3.2 4.314196882 0.18296353 

For the global imperfection, similar to the local, the first global buckling mode is taken as the 

imperfection distribution, and the amplitude is taken as Le/1000, which is also derived from 

fabrication tolerance. 

Residual stress: 

According to the study of Rachel Bethan Cruise [41], the mean value of the residual stress for 

the press braked angles and hot rolled angles, are less than 1% of 0.2 . Thus, the residual stress 

is negligible in the model. 

Section resistance: 

The section resistance like illustrated before, there are several methods to do it. In this paper, 

since the objective is to validate the buckling curve in Euro code, so the procedure to calculate 

the section resistance is corresponding to the principles codified in EN 1993-1-4.  

For section 50-50-5 and section 60-60-10, according to code Classification, they are Class 2 

and Class 1, so squash load is considered as ultimate load. While for section 200-200-8, 

according to Eurocode it is Class 4, due to the influence of local buckling, it is necessary to 

consider the effective area of the section. There are two methods, one is using reduction factor

 , the other is using Abaqus model which only allow local buckling. 
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Table 12  Boundary condition for effective area 

Location Translation(=0) Rotation(=0) 

Bottom point U1,U2.U3 R3 

Up point U1,U2 R3 

Along the interaction edge U1,U2 R3 

Three different length members have been calculated and the result compared to code 

calculation is in Table 13. From the Table effective area 2400 2mm  is accepted. The ultimate 

stage of the member is shown in Figure 19. 

Table 13  Comparison of effective area 

 

 

 

 

 

 

 

4.1.2 Boundary conditions for different buckling mode 

 Minor axis flexural buckling  

At mentioned before, surfaces of both ends are coupled with reference center points – bottom 

point and up point, boundary conditions for minor axis flexural buckling are: 

Length(mm) 
Effective area 

Abaqus( 2mm ) 

Effective area 

Code( 2mm ) 

1000 2464.43 2042.24 

3000 2413.19  2042.24 

8000 2412.81 2042.24 

average 2430.15  2042.24 

Figure 19  The ultimate stage of effective area calculation 
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Figure 20  Boundary condition for minor axis flexural buckling 

Table 14  Boundary conditions for minor axis flexural buckling 

Location Translation(=0) Rotation(=0) 

Bottom point U1,U2.U3 R3 

Up point U1,U2 R3 

 Major axis flexural buckling  

Table 15  Boundary conditions for major axis flexural buckling 

Location Translation(=0) Rotation(=0) 

Bottom point U1,U2.U3 R3 

Up point U1,U2 R3 

Along the interaction edge U1 - 

 Torsion 

Table 16  Boundary conditions for torsion buckling 

Location Translation(=0) Rotation(=0) 

Bottom point U1,U2.U3 R3 

Up point - - 

Along the interaction edge U1,U2 - 

The buckling mode for torsion is shown in the following Figure 21. 
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Figure 22  Torsion and flexural buckling mode 

 

    Figure 21  Tosion buckling mode 

 Torsion and flexural buckling  

For angle section, around major axis, it will occur torsion and flexural buckling.  

Table 17  Boundary conditions for torsion and flexural buckling 

Location Translation(=0) Rotation(=0) 

Bottom point U1,U2.U3 R3 

Up point U2 - 

Along the interaction edge U1 - 

The buckling mode for torsion and flexural is shown in the following Figure. 

 

 

 

 

 

4.1.3 Elastic buckling analysis 

As illustrated before, the geometric imperfection is considered as the buckling mode shape 

with the reasonable amplitude. So, at the beginning a linear eigenvalue buckling analysis was 

performed. 

Also, there is not enough existing experiment on angle section columns, in this paper, a series 

buckling analyses are done and comparing to the hand calculation using Euler formulas.  
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Three section column have been analyzed, they are 50-50-5, 60-60-10, and 200-200-8 

respectively. As mentioned before, the shell element can simulate angle beam quite accurate, 

but the equivalent width to thickness ratio before is 18, here for section 60-60-10, the ratio is 

12, which is quiet small. The first step is to decide if it is possible to use the shell element for 

50-50-5 and 60-60-10. 

Table 18  Section 50-50--5 

slenderness 
Ncr- 

shell(kN) 

Ncr-

solid(kN) 

Ncr-hand 

calculation(kN) 

0.629621499 243  247.1 251.625011 

1.46911683 45.3 45.85 46.21683875 

 Table 19  Section 60-60-10 

 

 

 

  

 

 

 

slenderness 
Ncr- 

shell(kN) 

Ncr-

solid(kN) 

Ncr-hand 

calculation(kN) 

0.706430914 436.55 456.8 462.8844464 

1.412861827 110 115.2 115.7211116 

0.92

0.94

0.96

0.98

1

1.02

0.629621499 1.46911683

50-50-5
shell solid Ncr-hand calculation

0.92

0.94

0.96

0.98

1

1.02

0.706430914 1.412861827

60-60-10
shell solid Ncr-hand calculation

Figure 23  Critical load comparison for shell and solid element 
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The comparison chart is showing in the up Figure 23. From the data it can be concluded that 

for both section, it is more accurate simulating with solid element, but considering different 

analysis time between solid element and shell element, since the difference for section 50-50-

5 is less than 4% by using the shell element, it is quite suitable to use shell element for this 

section members. While for section 60-60-10 since the difference is bigger than 6%, solid 

element is chosen to do the analysis. For section 200-200-8, there is no doubt, shell element 

will be accurate enough. 

The following Figure 24 shows the comparison of the critical buckling load from Abaqus and 

from hand calculation. The horizontal axis is the slenderness of the member calculated from 

Euler equation, and vertical axis is the ratio between the buckling load from Abaqus and hand 

calculation. For section 200-200-8 since it is too slender, for the slenderness smaller than 0.9, 

it is hard to get the flexural buckling mode, so the data for this section starts from 0.9. 

 

Figure 24  Critical load comparison between Abaqus and hand calculation 

From Figure 24 it can be concluded that the model used for the column analysis is accurate 

since the maximum difference is less than 5%. And the buckling mode for global and local 

imperfection is showing in the following Figures. When considering the amplitude used for the 

imperfection, the most severe situation has been taken into account. For minor axis, the tips of 

the leg will bearing compression under the global buckling situation, and the deformation of 

the local buckling at middle of the member will cause the angle section expand which situation 
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will reduce the stiffness of bending at the middle. For other buckling mode, the same principle 

to choose the sign of the amplitude. 

 

Figure 25  Global imperfection distribution 

 

Figure 26  Local imperfection distribution 

4.1.4 Sensitivity analysis 

At the beginning of column tests simulation, a sensitivity analysis on element type and element 

size, also the influence of the material parameter has been conducted on section 50-50-5. The 

results are shown in following paragraphs. 

 Minor axis flexural buckling  

A sensitivity analysis on shell element type, element size and material property has been done 

for this buckling mode. 

1. Element type influence 

Table 20  Element type influence on buckling load 

Member 

length(mm) 

Ncr - kN 

(S4R) 

Ncr - kN 

(S8R) 
Difference (%) 

200 577.52 579.4 0.32 

600 243 242.1 -0.37 

1400 45.3 45.32 0.04 
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Table 21  Element type influence on reduction factor 

Member 

length(mm) 
χ (S4R) χ (S8R) Difference (%) 

200 0.96793 0.961602 -0.66  

600 0.708983 0.709001 0.00  

1400 0.332453 0.332038 -0.12  

The influence of the shell element type is very small, so S4R is a suitable shell element type in 

these tests simulations. 

2. Element size influence  

The element size influence on the critical load for the first mode. 

 

Figure 27  The element size influence on the critical load for the first mode 

The element size influence on the compression resistance. 

 

Figure 28  The element size influence on the compression resistance 

From the result shown in Figures 27 and 28 and take the time consuming into account, the 

element size 25 elements along the leg and 5mm length along the member is suitable. 
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3. The material property influence 

Since Eurocode has three types of stainless steel and for each type the material has a bit 

different behavior, so here will analysis the influence of the two material parameters, first 

hardening component n and the strength ratio R= 02/u  . 

The Figure 29 shows that the first hardening component n has a little big influence on the 

buckling resistance of the columns while the strength ratio have nearly no influence. For n, the 

bigger value will cause higher reduction factor. 

 Major axis flexural buckling  

For this buckling mode only material property analysis has been analyzed. 

 

It is similar to the influence on the flexural buckling around minor axis, but here the smaller 

strength ratio will decrease the reduction factor at lower slenderness, and have no influence at 

high slenderness. 
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Figure 29  Material property influence on the minor axis buckling resistance 

Figure 30  Material property influence on the major axis buckling resistance 
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 Torsion buckling  

For this buckling mode only material property analysis has been analyzed. 

In this case the bigger n and lower R will decrease the reduction factor. 

 Torsion and flexural buckling  

For this buckling mode only material property analysis has been analyzed. 

 

 

  

 

 

 

It is similar to the influence on the flexural buckling around major axis. 

4.1.5 Concluding remarks  

After done all these buckling analyses and sensitivity analyses, these conclusions can be 

generated. 

a. The shell element type S4R is suitable for the angle section column tests simulation, since it 

has less than 1% difference comparing S8R and less than 4% comparing solid element. 
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Figure 31  Material property influence on the torsion buckling resistance 

Figure 32  Material property influence on the torsion and flexural buckling resistance 
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b. The influence of the element size is not that big, comparing the most rough mesh and most 

fine mesh, the difference is less than 3%, so the mesh among them is considering acceptable. 

c. For the influence of the material parameter, it shows that the first hardening component will 

increase the resistance at medium and high slenderness but decrease the resistance at very low 

slenderness, The same of the strength ratio R= 02/u  . This is cause that the higher n and lower 

R means the material is more stiff but lower ductile. 

So for three section column members, when the slenderness is smaller than 0.8, both austenitic 

steel 1.4301 and ferrictic steel 1.4512 need to be analyzed, but for higher slenderness according 

to the data before, only austenitic steel 1.4301 is necessary. 

4.2 Result analysis  

From all the tests simulations, 4 types of buckling resistance are obtained for these three section 

members with the assumed imperfections.  

4.2.1 Flexural buckling 

For section 50-50-5, the two flexural curves are shown in Figure 33. Since this section is Class 

2 according to EN 1993-1-4 and also the element type is shell, all the procedure is the ones 

mentioned before, so no particular point for these models,  

 

Figure 33  Flexural buckling curve for section 50-50-5 
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Figure 33 shows that for the medium slender members, there is a big difference between the 

code curve and test simulation curve. As mentioned before, this phenomenon can be caused by 

the nonlinearity of the material. So iterative calculations similar to AS/NZS4673 and 

SEI/ASCE-8-02 are conducted, for flexural buckling around minor axis. It shows iterative 

calculation will give safe values comparing the tests simulation, and in some extent proves the 

drop at the medium slenderness is caused by nonlinearity of material. 

The following Figure 34 shows the failure mode for steel column and stainless steel. 

Comparing with steel members, stainless steel members will introduce bigger deflection. And 

this deflection will reduce the buckling capacity. 

Buckling curve in Eurocode for steel and stainless steel of angle section columns is also 

compared in below Figure 35. The scatters are for different stainless steel grades which cover 

the austenitic and ferric and duplex, and also cover high and low yield stress. The procedure 

for steel column test simulation is the same as for the stainless steel without considering the 

residual stress, this is the reason the tests curve slightly higher than the code curve. While for 

different grades of stainless steel, the behaviors are similar and proposed curve cover all of 

them as the Figures showing. 

Figure 34  Comparison between steel (left) and stainless steel (right) members 
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Figure 35  Buckling curve comparison 

For section 60-60-10, the element type is solid element, and this section is very stock section, 

so its behavior should be similar to section 50-50-5 or even more favorable. 

 

Figure 36  Flexural buckling curve for section 60-60-10 
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will occur local buckling, reduce the effective area, and as illustrated before, the effective area 

has been calculated.  
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will introduce additional bending moment, which will reduce the capacity of the buckling. So 

for this section, it is better to take the additional bending moment into account by using 

interaction formula. 

,

cr

1
1

1

Ed Ed

Edb Rd Rd

N N e

NN M

N

 



                                                    (60) 

For the major axis, when the column occur buckling around major axis, due to the moment 

around major axis, the compression force for two legs are different, and effective lengths are 

different, which will also cause additional moment. The following failure mode shows one leg 

buckles more serious than the other of the section when buckling around major axis. 

Figure 37  Flexural buckling failure mode for section 200-200-8 around major axis 

When calculate the buckling capacity of Class 4 section, additional moment caused by 

eccentricity need to be taken into account for both axis buckling. While the eccentricity is not 

constant for different slenderness, however by considering the safe and convenient calculation, 

it is easier to calculate the eccentricity when the section under pure bending around major axis. 

The effective length can calculate according to EN 1993-1-4. According to the equation (4.8), 

the buckling capacity is achieved as shown in Figure 38. It shows that this method is very 

conservative for the Class 4 section. 
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Figure 38  Flexural buckling curve for section 200-200-8 

From these results for three different sections, it is shown that the code curve for hot rolled and 

cold formed section members, in the range of medium slenderness, the result is really unsafe. 

So one more factor β is added into the buckling curve. 
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So now for angle section column, the buckling curve including three parameters, they are  

  0.76 

0  0.2 

  0.8 

Put all the test simulation results in one Figure as shown in the following Figure 39.  

Different color of the point represents the different section, which corresponding to the Figures 

before. 
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Figure 39  Comparison of different buckling curve 

From the scatters, it is clear that the code curve (black line) is unsafe for the medium 

slenderness while for the lower and higher slenderness, it is quite accurate. The code curve 

(purple line) for the welded open section members, for slender members, it is too conservative. 

While the proposed curve (red line) is between the two codified curves but still a bit 

conservative for slender members.  

4.2.2 Torsion and Torsion-flexural buckling 

For angle section, the length of column has no influence on the torsion buckling load since the 
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               cy is the distance between gravity centroid and shear centroid 

The following Table shows the comparison of critical torsion buckling load and flexural 

buckling load around major axis. 

Table 22  Comparison critical buckling load of different buckling modes 

 

 

 

 

 

 

 

 

 

 

 

The Table 22 shows that for section 50-50-5 and 60-60-10, critical torsion buckling load is 

higher than flexural buckling load, while for section 200-200-8 is opposite. And the results of 

tests simulations are shown in the following Figure. 
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50-50-5 

800 384.1 537.2 288.95 

1000 382.91 347.3 233.2 

1400 381.7 177.84 147.3 

2000 381.4 87.9 80.4 

60-60-10 

800 2418.99 686.2 1311.3 

2000 2418.99 268.1 269.4 

4500 2418.99 54.2 54.15 

200-200-8 

900 401.4 48950.8 404.4153 

3000 397.6 4405.572 390.1833 

5500 396 1310.749 352.4136 

12000 396.4 275.3483 197.8265 



54 

 

 

 

Figure 40  Capacity of the column under different failure mode 

From Figure 40, it is clear that for section 50-50-5 and section 60-60-10, the capacity of torsion 

flexural failure mode is very close to major axis flexural buckling failure which corresponding 

to the Table 22, when the critical torsion buckling load is bigger than the major flexural 

buckling load, then the capacity of torsion flexural buckling is close to capacity of major axis 

buckling. 

Put all the torsion and torsion flexural results in one Figure as shown in the Figure 41. Different 

color of the point represents the different section, which corresponding to the Figures before. 
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Figure 41 shows that the proposed curve for the flexural buckling also suitable for torsion and 

torsion flexural buckling failure modes and it is very conservative. However, from these test 

simulations, the flexural buckling failure mode is dominate, in other word, if flexural buckling 

capacity is satisfied, the other failure mode should be also satisfied. 

4.3 Concluding remarks 

a. After summarizing and analyzing all the results of column tests simulation, a modification 

of the buckling curve for angle section in EN1993-1-4 is proposed.  

b. The comparison of different curve shows that even the proposed curve is not so suitable, it 

is too conservative for very small slenderness and high slenderness. And a good solution could 

be to use a different curve in different slenderness range. From all the data above, one 

conclusion can be achieved that for slenderness 0.3-1.4, it should be checked according to 

proposed curve, while for other slenderness, the curve in EN1993-1-4 is quite accurate. 

c. For Class 4 section, the local buckling of the member will reduce the load capacity 

significantly despite the local buckling effect is considered in the section resistance. The reason 

for this is that after the tips of the section subjected to compression are buckling, the centroid 

of the section will change which means additional bending moment is derived. 

When checking the buckling capacity of the member, it is necessary to take this additional 

bending moment into account by calculating the eccentricity between effective area and gross 

area. However, it is difficult to calculate the effective area since for different slenderness the 

effective area is different. In this thesis, one solution is suggested by calculate the most severe 

situation, and this will cause over conservative design. 

d. Capacity of torsion buckling failure is favorable when compared to the flexural buckling and 

torsion buckling cannot be the failure mode with the most unfavorable buckling curve. 

Capacity of torsion flexural failure mode is usually similar to the flexural failure mode around 

major axis. And the proposed curve cover all these three section members for torsion and 

torsion flexural failure modes.  
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5. The particularity of angle section under combined load 

Equal leg angle section is monosymmetric section, it has its particular property when it is 

corresponding to axial force and bending. 

For steel, there are a lot of papers about the angle section members. While, the study about 

stainless steel is mainly focus on symmetrical section-RHS, CHS et cetera. However, stainless 

steel will have some similar property as steel.  

In 2011, A.E. Charalampakis [42] showed full plastic capacity of equal leg angle sections under 

biaxial bending and normal force, see the following Figure 42. 

This Figure shows that when the angle section is subjected to the axial force and major axis 

bending, the most critical region where will go into the plastic range at first is at the tips of the 

angle leg, and if there has some minor axis moment which will have positive influence for the 

stress distribution will increase bending capacity around major axis, while the bending capacity 

around minor axis just a little decrease. 

From the above curve, it can be seen that the curve is really different with symmetrical section 

member. For symmetrical section members under axial force and biaxial bending usually use 

the linear interaction curve - see the red line in the Figure, which is too conservative for the 

angle section. 

Since this curve is gotten by assuming perfect elastic-plastic material property, when 

considering the stainless steel, which property is inelastic with high nonlinearity, it is hard to 

Figure 42  Full plastic capacity of equal leg angle section [23] 
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define full capacity of the section. However in this thesis, one simple comparison between the 

steel and stainless steel section response under combined load is achieved by using some simple 

programming. 

5.1 Numerical model in matlab 

In order to study the performance of the angle section under axial force and bending, a 

numerical model is established in matlab. Following is the flow diagram used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some hypotheses in the model 

1. Model the steel with the ideal elastic plastic model. 

2. Model the stainless steel with inversed material model proposed by K. Abdella[6]. 

3. Using Plane hypothesis. 

4. Angle 50x50x5 is widely used, so using this dimensions and neglect the corner. 

5. Neglect the different strain distribution along the thickness. 
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The section specification and element mesh 

  

 

The right Figure shows that each leg is divided into 200 elements and using the red line 

represent the section, it means in this way the strain distribution along the thickness is assumed 

to be uniform. 

The material used for stainless steel. 

K. Abdella [8] proposed one revised material model based on a modified Ramberg–

Osgood equation, which shows very good consistence with each other. 

 

Figure 44  Material model used in the numerical model 

5.2 The result from matlab 

For this numerical model, the main purpose is to check when the section is under the 
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minor axis and changing the compression ratio, the second is imposing bending moment around 

major axis and also changing the compression ratio. 

5.2.1 The minor axis bending and compression 

In this part, the independent variable is the curvature 2  which 

is around the minor axis. The M1 is the moment around the 

major axis, M2 is the moment around the minor axis. 

 Following graph is the result for minor axis bending and compression.  

5.2.2 The major axis bending and compression 

In this part, the independent variable is the curvature 1  which is around the major axis. The 

M1 is the moment around the major axis, M2 is the moment around the minor axis. Following 

graph is the result for major axis bending and compression. 
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5.3 Concluding remarks 

Compare the graphs in chapter 5.2.1 and 5.2.2, these conclusions can be achieved: 

a. If the moment is around the symmetrical axis---major axis, when there is no axial force, then 

the bending moment around the other axis equal 0, but if there has the axial force, then there 

will arise the moment around the minor axis. While, if the moment is around the unsymmetrical 

axis---minor axis, it does not matter if there has the axial force or not, no moment around the 

other axis. 

b. Compare the two different material, It can be found that stainless steel behave very similar 

behavior to carbon steel. So the full capacity of the section may have the similar property with 

the carbon steel. This means that if we consider about the interaction of axial force and two 

axis bending moment, the interaction curve should be different with other double symmetric 

section members. 

c. It seems necessary to study on the interaction formula for the stainless steel angle section 

members. 
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6. Beam - column behavior of angle section members 

As shown in the chapter 5, for angle section beam column members, it should have the similar 

behavior with carbon steel when considering the compression force combined with double axis 

bending, the interaction formula should take the direction of moment into account to decide 

the linear formula or use a better nonlinear formula. In this chapter, the first exploration about 

combined load for angle section is implemented. The interaction factor for angle section beam 

columns under combined compression with minor axis bending moment. The FE model in this 

chapter is similar with the one in chapter 4, the only difference is the load. 

In this chapter the parametric study is mainly on different grades of material, four different 

grades of material is chosen which cover ferritic, austenitic and duplex groups. The section are 

50-50-5 and 200-200-8, mainly concentrated on 50-50-5. 

And uniform bending moment distribution is considered, this is because according to the 

previous work by Marc Rodriguez Ares [43], the most critical situation is for uniform bending 

moment distribution. 

First, comparing the results with the current methods like Ou Zhao and the Eurocode; then 

propose modifications to Ou Zhao method. 

Table 23  Material used for parametric study 

Material grade Group type 
Elastic modulus 

(Mpa) 

Yield stress 

(Mpa) 

Ultimate stress 

(Mpa) 

1.4301 Austenitic 200000 210 520 

1.4462 Duplex 200000 460 660 

1.4003 
Ferritic 

200000 280 450 

1.4512 200000 210 380 

The way to do the comparison is according to the equation (66) and always taking into account 

that the condition of section resistance is satisfied. 

,

1.0Ed Ed

b Rd Rd

N M
k

N M
                                                         (66) 
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In this thesis the 
,b RdN  and RdM  are calculated by a FE model using Abaqus, while the 

resistance used for the current two method is different. As for EN 1993-1-4, the 
,b RdN  is 

calculated according to the buckling curve in code which will be too unsafe for angle section, 

and RdM  is also calculated according to code procedure. For Ou Zhao proposal, the resistance 

for compression buckling 
,b RdN  is based on the curve proposed by Afshan et al. (2016), the 

bending moment is calculated by Continuous Strength Method. But here, all the methods are 

compared by using the resistance gotten from Abaqus. 

6.1 EN 1993-1-4 

The following Figure 47 shows the comparison of k factor gotten from equation 6.1 by Abaqus 

results and calculated according to EN 1993-1-4. 
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Figure 47  k factor for different material comparing with EN 1993-1-4 
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These curves in Figure 47 show that for some grades like 1.4301 and 1.4512, the k factor 

calculated according to EN 1993-1-4 will cause some unsafe result as shown in the following 

Figure 48. 

 

The values smaller than 1 mean it is not safe, by comparing these values with 1, it can be 

concluded that EN 1993-1-4 is not suitable for material 1.4301,1.4003 and 1.4512, while for 

material 1.4462, it is very conservative. Also, it is clear that the result for different compression 

ratio is really scattered. 
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6.2 Ou Zhao’s Proposal 

The following Figure 49 shows the comparison of k factor gotten from equation 6.1 by Abaqus 

result and calculated according to Ou Zhao’s proposal. 

 

 

The Figure 50 shows the interaction equation calculated with Ou Zhao’s proposal will cause 

some unsafe result especially for the small compression ratio. 
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Figure 49  k factor for different material comparing with Ou Zhao's proposal 
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The values smaller than 1 mean it is not safe, by comparing these values with 1, it can be 

concluded that Ou Zhao’s proposal is not suitable for material 1.4301,1.4003 and 1.4512, while 

for material 1.4462, it looks better. Also, it is clear that the result for small compression ratio 

is really unsafe, with the increasing of the compression ratio, the result looks better.  

6.3 A simple modification to Ou Zhao’s proposal 

The result of the k factor shows for the small compression ratio, it will be more unsafe. And 

also k factor is depends on the material grade, since for material 1.4462, the result is quite okay 

both for EN 1993-1-4 and Ou Zhao’s proposal. 

Comparing the curves for material 1.4301 and 1.4512 in Figure 49, it can be conclude that the 

k factor for these two materials is similar at small slenderness. In order to see the relationship 

between different materials, the Ou Zhao’s proposal are put together as shown in the following 

Figure 51.  

 

 

 

 

 

 

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.5 1 1.5 2 2.5

In
te

ra
ct

io
n

 e
q

u
at

io
n

Slenderness

Material 1.4003

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.5 1 1.5 2 2.5

In
te

ra
ct

io
n

 e
q

u
at

io
n

Slenderness

Material 1.4512

Figure 50  Interaction equation according to Ou Zhao's proposal 
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According to Figure 51, the k factor for austenitic is usually bigger than other two materials, 

while for ferritic is the smallest k factor. However as mentioned before, for 1.4301 and 1.4512, 

the k factor is similar at small slenderness, only a slight difference at high slenderness. Put all 

the result for different material and Ou Zhao’s proposal for Austenitic together to check the 

difference. 

 

 

From Figure 52, it can be concluded that for small compression ratio, Ou Zhao’s proposal is 

unsafe however with the increasing of the compression ratio, it becomes better. By comparing 

different material, it shows that for 1.4301 and 1.4512, at small slenderness they behave 

similarly and the difference is the upper bound. Comparing material 1.4301 and 1.4462, it is 

clear that material 1.4462 have much smaller k factor than material 14301, while the main 

difference for these two material is yield stress. For Ou Zhao’s proposal, it set different 

parameter for different stainless family type. But from these curves, it can be concluded the k 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.5 1 1.5 2 2.5

K
 f

ac
to

r

Slenderness

n=0.15

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5

K
 f

ac
to

r
Slenderness

n=0.35

0.8

1.3

1.8

2.3

2.8

3.3

0 0.5 1 1.5 2 2.5

K
 f

ac
to

r

Slenderness

n=0.85

Figure 52  k factor for different material under different n ratio 

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.5 1 1.5 2 2.5

K
 f

ac
to

r

Slenderness

n=0.5



67 

 

factor depends both on family type and yield stress and the yield stress have bigger influence, 

which can be seen in Marc Rodriguez Ares’s study [43]. In Marc Rodriguez Ares’s thesis, he 

studied the k factor for different family type, however, the parameter he changed is not the 

whole material property, and he changed the first hardening parameter n meanwhile keeping 

the yield stress as constant value. From his result, he generated the conclusion that it is not 

necessary to set different value for different family group and proposed one curve for all the 

three family groups. 

From all the results in this thesis, some modifications to Ou Zhao’s proposal can be generated 

by taking the influence of yield stress, compression ratio into account. 

6.3.1 Modification to the coefficients 

Since the family group will influence the upper bound of the k factor, so the values for 3D  

should be different for different family group. 

Table 24  Values of the coefficient for the interaction factor proposed by Wenjing (2016) 

 

 

 

6.3.2 Modification to the formula  

From the curves in Figure 52, it is clear the slope at the first stage depends on yield stress and 

also the compression ratio and the relationship is not linear correlation. Inspired from Marc 

Rodriguez Ares’s proposal, the modifications lead to equation (67). 

0.7 0.7

d d
1 2 1 3 2

, ,

1 ) 1 )E E

b Rd b Rd

N N
k D D D D D

N N

 

     （ （                               (67) 

Where 
0.2

235 stainless

steel

E

E



  is the one used for section Classification. 

Grade 
1D  2D  3D  

Austenitic 1.5 0.25 1.6 

Duplex 1.5 0.25 1.45 

Ferritic 1.5 0.25 1.35 
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6.3.3 The result of the modified Ou Zhao method 

 

Figure 53  Result for compression ratio 0.15 

 

Figure 54  Result for compression ratio 0.35 
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Figure 55  Result for compression ratio 0.5 

 

Figure 56  Result for compression ratio 0.85 

As shown above, the modified Ou Zhao’s method is much accurate than the previous one. The 

interaction equation comparison is shown in following Figure 57. 
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Comparing the previous result, this modified method is quite better, the result is less scattered 

and most of the result is safe, some unsafe point is less than 1% smaller than 1.  

6.4 The interaction formula for Class 4 section 

For Class 4 section, due to its section slenderness is really high, it’s easily to occur local 

buckling under compression load. When considering combined load, the bending moment need 

to add the additional moment caused by eccentricity and axial force leading to equation (68). 

,

1.0Ed Ed Ed

b Rd Rd

N M N e
k

N M


                                                   (68) 

And the result of interaction equation is shown below. 
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Figure 57  Interaction formula according to modified Ou Zhao proposal 
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For Class 4 section, this method is over conservative, it needs more study on Class 4 section. 

6.5 Concluding remarks 

a. For angle section members, under compression and minor axis bending moment, both 

EN1993-1-4 and Ou Zhao’s method are not safe, however for high compression ratio like 0.85, 

it is better than lower compression ratio like 0.15. This difference shows that the relationship 

between k factor and compression ratio is not linear correlation.  

b. For different materials, the curves of k factor are different. By comparing the curves for 

1.4301 and 1.4462, whose difference is the yield stress with the first hardening parameters are 

7 and 8 respectively. The shapes of the curves are similar, but with different slope and upper 

bound. This comparing group shows the yield stress will influence the value of k factor. By 

comparing the curves for 1.4301 and 1.4512, whose yield stress are the same with the first 
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Figure 58  Interaction equation for section 200-200-8 
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hardening parameters n are 7 and 14 respectively. The slope of the curves are the same at lower 

slenderness, but the upper bound for high slenderness is different. This comparing group shows 

the first hardening parameter will influence the value of k factor as well. 

c. Taking the nonlinear relation of compression ratio, yield stress and first hardening parameter 

into account, one modified Ou Zhao formula is proposed. It shows good performance for 

section 50-50-5. 

d. Regarding Class 4 section, due to the higher slenderness of section, one similar process with 

column buckling curve is suggested to be used in interaction formula. Such procedure is safe 

but can be over conservative. 
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7. Conclusions  

7.1 Specific conclusions 

a. Regarding column members, for angle section, the codified curve in EN1993-1-4 is not safe 

for some medium range of slenderness. In this thesis, some FE models were established and 

validated according to beam test in a published paper and also three simple compression tests 

carried out in the laboratory in Czech Technical University of Prague. The results of these test 

simulations are quite accurate for the load bearing capacity. The models of column are 

established to simulate the column test considering the global and local imperfection to get the 

buckling curve for angle section column members. By analyzing the data from these 

simulations, one curve for open section is proposed which is suitable for Class 1 and 2 sections. 

For Class 3, there is no available data to verify it. For Class 4, considering the higher 

slenderness of the section, one process to take the influence of local imperfection is suggested 

but with a possible conservativeness of the result. 

b. Some lesson is learnt from tests. The first is that the material test is really important, 

whenever a test is conducted, it is better to prepare the coupon tests. The second is the 

measurement should be well designed and controlled. For instance, in the simple tests of this 

thesis, no accurate measurement was used for the deformation as the tests were done quickly 

without any financial support. Then after the test, the test simulation cannot match the data 

recorded during the test without any clear reason. The most possible one is the measurement is 

not accurate, since the displacement in these tests are quite small, small inaccurate will cause 

big influence. 

c. Come to the beam column members, first study is about section resistance. There are some 

of published papers concentrated on behavior of angle section beams and columns, but the 

material is carbon steel. And the particularity of angle section is the interaction curve for axial 

force and two axises bending moment as shown in Chapter 5. In this thesis, the comparison 

between carbon steel and stainless steel on the behavior under axial force with one axis bending 

moment is studied. It shows these two materials have similar response under axial force and 
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one axis bending moment. The difference is that for stainless steel is shown this non-

symmetrical phenomenon earlier than carbon steel. It is also necessary to study the behavior of 

stainless steel angle section members under combined load. 

d. For stainless steel angle section members under combined load, the study in this thesis is 

just the start of this new point. FE models of angle section members under axial force and 

minor axis bending moment were established, and the interaction factor k in the formula 

defined in EN 1993-1-4 is studied. The results were compared with EN 1993-1-4 and Ou 

Zhao’s proposal. Both EN 1993-1-4 and Ou Zhao’s method are not safe, however for high 

compression ratio like 0.85, it is better than lower compression ratio like 0.15. This difference 

shows that the relationship between k factor and compression ratio is not linear. By comparing 

the difference between different materials, it shows yield stress and first hardening parameter 

will influence the value of k factor. Taking all the parameters into account, some modifications 

to Ou Zhao’s proposal are generated, which show good corresponding with all the simulation 

data. For Class 4 section, the same process as for column study is suggested to be used in 

interaction equation. 

7.2 Future research work 

a. The buckling curve proposed in this thesis need more data to verify and modify. So the next 

step can have more section type to cover Class 1 to 4, especially for Class 3 and 4, the 

recommended method is too conservative, in order to design stainless steel economically, more 

accurate method is necessary and consequential. 

b. Stainless steel angle section members under combined load need more study about the 

behavior under axial force and two axises bending moment which can base on the interaction 

curve for section. 

c. The k factor used for interaction equation to check the stainless steel members under 

combined load should also depends on yield stress not only on first hardening parameter. In 

case to verify this conclusion, it would be better to study it on SHS sections as Ou Zhao’s 

proposal is mainly based on this type of section. 
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d. For study of the k factor, more load cases can be taken into account as a parameter to do 

some parametric study. The proposal in this thesis need more data to verify and also a serious 

reliable analysis is expected. 

e. Some accurate tests should be carried out to study the behavior of angle section members 

and for a reliability analysis of suggested calculation procedures.  
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Annex 

The programing for comparing the section behavior for steel and stainless steel is reported here. 

The main part for both material is almost the same, only the function for material is different.  

a. Main part of the programing for steel 

clear clc 

%this program is mainly consider that the bending moment around the major axis 

%assumptios 

%1.the elastic-plastic property 

%2.the small deformation 

%3.plane hypothesis 

format long 

global fy ey E A Imajor Iminor lengt v1_new v2_new h1_new h2_new n1 n2 t 

 

%% the specific of the cross section and the coordinate  

t=5; 

L1=50; 

L2=50; 

lengt=1/200;      % THE length of the elment we will divid ll 

nn=200;       % the numeber of the increment of the curvature     

n=9;          % the number of the increment of the axial force 

n1=L1/lengt;                   % THE number of the elment of the lower leg 

n2=L2/lengt;                   % THE number of the elment of the upper leg 

h1=(linspace(0,L1,n1+1))';  %the X column of the lower leg 

v1=zeros(n1+1,1);           %the Y column of the lower leg 

h2=zeros(n2+1,1);           %the X column of the vertical leg 

v2=(linspace(0,L2,n2+1))';  %the Y column of the vertical leg 

fy=345; 

E=206000; 
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ey=fy/E; 

%% the calculation of the cross section property 

A=(L1+L2-t)*t;   

xc=(L1*t*L1/2+(L2-t)*t*t/2)/A;                       %the centrid of the corss section 

corresding to SMATH. 

yc=(L1*t*t/2+(L2-t)*t*(t+((L2-t)/2)))/A;                     

Ixc=(L1*t^3)/12+L1*t*(yc-t/2)^2+((L2-t)^3*t)/12+(L2-t)*t*((L2-t)/2+t-yc)^2; 

Iyc=(L1^3*t)/12+L1*t*(L1/2-xc)^2+((L2-t)*t^3)/12+(L2-t)*t*(xc-t/2)^2; 

Ixyc=0+L1*t*(L1/2-xc)*(-yc+t/2)+0+t*(L2-t)*(-xc+t/2)*((t+L2)/2-yc); 

Imajor=(Ixc+Iyc)/2+1/2*sqrt((Ixc-Iyc)^2+4*Ixyc^2);                 % the seconf modulus of the 

major axis 

Iminor=(Ixc+Iyc)/2-1/2*sqrt((Ixc-Iyc)^2+4*Ixyc^2); 

sita=atan(-2*Ixyc/(Ixc-Iyc))/2;                     % the rotation degree of major coordinatior  

sita_degree=sita*180/pi; 

 

%% changing the coordinator for the elment in the major-minor system 

XY_lower_old=[h1 v1];  

XY_vertical_old=[h2 v2];   % the coordinator of the element in the old system 

h1_new=(h1-xc)*cos(sita)+(v1-yc)*sin(sita);   % where h=X  v=Y represent the coordinate, while 

the 1 means lower leg 

v1_new=(v1-yc)*cos(sita)-(h1-xc)*sin(sita);   %the 2 means the vertical leg 

h2_new=(h2-xc)*cos(sita)+(v2-yc)*sin(sita); 

v2_new=(v2-yc)*cos(sita)-(h2-xc)*sin(sita); 

XY_lower_new=[h1_new,v1_new]; 

XY_vertical_new=[h2_new, v2_new];     % the coordinator of the element in the new system 

 

%%  the main part to calculate the N_M_Phi 

phi1_p=ey/v2_new(n2+1);     % the curvature when the first fiber go into platis 

phi1_u=30*phi1_p;           % the ultimate curvature of the section. 

phi1=(linspace(0,phi1_u,nn+1))'; 

phi2=zeros(nn+1,1); 
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ea_P=zeros(nn+1,1); 

M_major=zeros(nn+1,1); 

p=linspace(0.1,1,n+1); 

[e1,e2,sgm_vertical,sgm_lower,b]=XY_to_strain(phi1(1),phi2(1),ea_P(1)); 

M_major(1)=(sgm_lower)'*v1_new*t*lengt+(sgm_vertical)'*v2_new*t*lengt; 

wb=waitbar(0,'Simulation inprogress'); 

for i=1:n+1 

    P=-p(i)*fy*A;      %axial force will change 10 times 

    ea_P(1)=P/(A*E);           %the strain caused by the axial force AT FIRST and 

    for l=2:nn+1       %then this will itrative to the average strain for the section 

        phi2_f=phi2(l-1);   %including the plastic strain 

        ea_P_f=ea_P(l-1); 

        x0=[phi2_f;ea_P_f]; 

        xx=x0; 

        for j=1:100 

 [de1,de2,dsgm_vertical,dsgm_lower,db1]=XY_to_strain(phi1(l),phi2_f,ea_P_f); 

            

[de1,de2,dsgm_vertical,dsgm_lower,db2]=XY_to_strain(phi1(l),phi2_f+phi1(l)/100,ea_P_f); 

            

[de1,de2,dsgm_vertical,dsgm_lower,db3]=XY_to_strain(phi1(l),phi2_f,ea_P_f+ea_P_f/30); 

            B11=(db2(1)-db1(1))/phi1(l)*100; 

            B12=(db3(1)-db1(1))/(ea_P_f/30); 

            B21=(db2(2)-db1(2))/phi1(l)*100; 

            B22=(db3(2)-db1(2))/(ea_P_f/30); 

            B=[B11,B12;B21,B22]; 

            b=db1; 

            x1=x0-B\b; 

            if norm(x1-x0)/norm(x1)<=1e-4; 

                break; 

            else 
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                x0=x1; 

                phi2_f=x0(1); 

                ea_P_f=x0(2); 

            end     

        end 

        if j==100 && l<(nn/10) 

            errordlg ('the maximum iteration','warning') 

        end 

        phi2(l)=x1(1); 

        ea_P(l)=x1(2); 

        [e1,e2,sgm_vertical,sgm_lower,b]=XY_to_strain(phi1(l),x1(1),x1(2)); 

        M_major(l)=(sgm_lower)'*v1_new*t*lengt+(sgm_vertical)'*v2_new*t*lengt; 

    end 

    plot(phi1,M_major) 

    hold on 

    waitbar(i/(n),wb,['Completed',num2str(fix((i/(n))*100)),'%']) 

end 

hold off 

close(wb) 

 

b. Steel material function used in the main part of programing  

function [e1,e2,sgm_vertical,sgm_lower,b]=XY_to_strain(phi1,phi2,ea_P) 

   global fy ey E lengt v1_new v2_new  h2_new h1_new n1 n2 t 

   e1=ea_P+phi1*(v1_new)-phi2*(h1_new); 

   e2=ea_P+phi1*(v2_new)-phi2*(h2_new); 

   sgm11=(e1>ey); 

   sgm12=(e1<-ey); 

   sgm13=((-ey<=e1)&(e1<=ey)); 

   sgm_lower=sgm11*fy-sgm12*fy+sgm13.*e1*E;  %to verify the real stress in the lower leg 
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   sgm21=(e2>ey); 

   sgm22=(e2<-ey); 

   sgm23=((-ey<=e2)&(e2<=ey)); 

   sgm_vertical=sgm21*fy-sgm22*fy+sgm23.*e2*E;  %to verify the real stress in the vertical leg 

b=[((sgm_lower(1)+sgm_lower(n1+1)+2*sum(sgm_lower(2:n1)))/2*t*lengt+(sgm_vertical(1)+sgm_v

ertical(n2+1)+2*sum(sgm_vertical(2:n2)))/2*t*lengt);-(sgm_lower)'*h1_new*t*lengt-

(sgm_vertical)'*h2_new*t*lengt]; 

c. Main part of the programing for stainless steel 

clear clc 

%this program is mainly consider that the bending moment around the major axis 

%assumptios 

%1.the elastic-plastic property 

%2.the small deformation 

%3.plane hypothesis 

format long 

global fy ey E A Imajor Iminor lengt v1_new v2_new n1 n2 e02 

 

%% the specific of the cross section and the coordinate  

t=5; 

L1=50; 

L2=50; 

lengt=1/200;      % THE length of the elment we will divid ll 

nn=200;       % the numeber of the increment of the curvature   

promot='the compression ratio=\'; 

n=input(promot); 

% n=10;          % the number of the increment of the axial force 

n1=L1/lengt;                   % THE number of the elment of the lower leg 

n2=L2/lengt;                   % THE number of the elment of the upper leg 

h1=(linspace(0,L1,n1+1))';  %the X column of the lower leg 

v1=zeros(n1+1,1);           %the Y column of the lower leg 
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h2=zeros(n2+1,1);           %the X column of the vertical leg 

v2=(linspace(0,L2,n2+1))';  %the Y column of the vertical leg 

%% property of the stainless steel 1.4401 

E02=200000; 

sgma02=240; 

sgmau=530; 

RSn=7; 

RSm=1+3.5*sgma02/sgmau; 

eu=1-sgma02/sgmau; 

erito=sgma02/E02; 

E2=E02/(1+0.002*RSn/erito); 

e02=sgma02/E02+0.002; 

r=E02*e02/sgma02; 

r2=E2*e02/sgma02; 

rstar=E2*(eu-e02)/(sgmau-sgma02); 

Eu=E2/(1+(rstar-1)*RSm); 

ru=Eu*(eu-e02)/(sgmau-sgma02); 

p=r*(1-r2)/(r-1); 

pstar=rstar*(1-ru)/(rstar-1); 

enu=eu/e02; 

ey=sgma02/E02; 

%% the calculation of the cross section property 

A=(L1+L2-t)*t; 

xc=(L1*t*L1/2+(L2-t)*t*t/2)/A;                       %the centrid of the corss section 

corresding to SMATH. 

yc=(L1*t*t/2+(L2-t)*t*(t+((L2-t)/2)))/A; 

Ixc=(L1*t^3)/12+L1*t*(yc-t/2)^2+((L2-t)^3*t)/12+(L2-t)*t*((L2-t)/2+t-yc)^2; 

Iyc=(L1^3*t)/12+L1*t*(L1/2-xc)^2+((L2-t)*t^3)/12+(L2-t)*t*(xc-t/2)^2; 

Ixyc=0+L1*t*(L1/2-xc)*(-yc+t/2)+0+t*(L2-t)*(-xc+t/2)*((t+L2)/2-yc); 

Imajor=(Ixc+Iyc)/2+1/2*sqrt((Ixc-Iyc)^2+4*Ixyc^2);                 % the seconf modulus of the 
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major axis 

Iminor=(Ixc+Iyc)/2-1/2*sqrt((Ixc-Iyc)^2+4*Ixyc^2); 

sita=atan(-2*Ixyc/(Ixc-Iyc))/2;                     % the rotation degree of major coordinatior 

sita_degree=sita*180/pi; 

 

%% changing the coordinator for the elment in the major-minor system 

XY_lower_old=[h1 v1]; 

XY_vertical_old=[h2 v2];   % the coordinator of the element in the old system 

h1_new=(h1-xc)*cos(sita)+(v1-yc)*sin(sita);   % where h=X  v=Y represent the coordinate, while 

the 1 means lower leg 

v1_new=(v1-yc)*cos(sita)-(h1-xc)*sin(sita);   %the 2 means the vertical leg 

h2_new=(h2-xc)*cos(sita)+(v2-yc)*sin(sita); 

v2_new=(v2-yc)*cos(sita)-(h2-xc)*sin(sita); 

XY_lower_new=[h1_new,v1_new]; 

XY_vertical_new=[h2_new, v2_new];     % the coordinator of the element in the new system 

 

%%  the main part to calculate the N_M_Phi 

phi1_p=ey/v2_new(n2+1);     % the curvature when the first fiber go into platis 

phi1_u=20*phi1_p;           % the ultimate curvature of the section. 

phi1=(linspace(0,phi1_u,nn+1))'; 

M1=zeros(nn+1,1); 

M2=zeros(nn+1,1); 

phi2=zeros(nn+1,1); 

% p=linspace(0,1,n+1); 

wb=waitbar(0,'Simulation inprogress'); 

% for i=1:n+1 

P=-n*sgma02*A;      %axial force will change 10 times 

for l=1:nn+1 

    ea_0=P/(A*E02);  %the strain caused by the axial force 

    for j=1:100 
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        e1=ea_0+phi1(l)*(v1_new); 

        e2=ea_0+phi1(l)*(v2_new); 

        [sgm_lower,sgm_vertical]=XY_TO_F(e1,e2); 

        

F=((sgm_lower(1)+sgm_lower(n1+1)+2*sum(sgm_lower(2:n1)))/2*t*lengt+(sgm_vertical(1)+sgm_ve

rtical(n2+1)+2*sum(sgm_vertical(2:n2)))/2*t*lengt); 

        if abs(F-P)/abs(P)<=1e-6 || P==0 

            break; 

        else 

            ea_0=ea_0+(P-F)/(A*E02);          %the strain caused by the axial force 

        end 

    end 

    if j==100 && l<(nn/10) 

        errordlg ('the maximum iteration','warning') 

    end 

    e1=ea_0+phi1(l)*(v1_new); 

    e2=ea_0+phi1(l)*(v2_new); 

    [sgm_lower,sgm_vertical]=XY_TO_F(e1,e2); 

    M1(l)=(sgm_lower)'*v1_new*t*lengt+(sgm_vertical)'*v2_new*t*lengt; 

    M2(l)=(sgm_lower)'*h1_new*t*lengt+(sgm_vertical)'*h2_new*t*lengt; 

    %         phi2(l)=(e2(n2)-ea_0-phi1(l)*v2_new(n2))/h2_new(n2); 

    waitbar(l/(nn),wb,['Completed',num2str(fix((l/(nn))*100)),'%']) 

end 

% end 

Figure 

plot(phi1,M2) 

close(wb) 

d. Stainless steel material function used in the main part of programing  

function [sgm_lower, sgm_vertical]=XY_TO_F(e1,e2) 

format long 
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global  n1 n2 

E02=200000; 

sgma02=240; 

sgmau=530; 

RSn=7; 

RSm=1+3.5*sgma02/sgmau; 

eu=1-sgma02/sgmau; 

erito=sgma02/E02; 

E2=E02/(1+0.002*RSn/erito); 

e02=sgma02/E02+0.002; 

r=E02*e02/sgma02; 

r2=E2*e02/sgma02; 

rstar=E2*(eu-e02)/(sgmau-sgma02); 

Eu=E2/(1+(rstar-1)*RSm); 

ru=Eu*(eu-e02)/(sgmau-sgma02); 

p=r*(1-r2)/(r-1); 

pstar=rstar*(1-ru)/(rstar-1); 

enu=eu/e02; 

sgm_lower=zeros(n1+1,1); 

sgm_vertical=zeros(n2+1,1); 

en1=e1/e02; 

en2=e2/e02; 

for i=1:n1+1 

    if  en1(i)>=enu 

        errordlg ('too big strain','warning') 

    else if en1(i)>=1 

            sgm_lower(i)=(1+r2*(en1(i)-1)/(1+(rstar-1)*((en1(i)-1)/(enu-1))^pstar))*sgma02; 

        else if  en1(i)>=0 

                sgm_lower(i)=r*en1(i)/(1+(r-1)*(en1(i))^p)*sgma02; 

            else if  en1(i)>=-1 
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                    sgm_lower(i)=-r*abs(en1(i))/(1+(r-1)*(abs(en1(i)))^p)*sgma02; 

                else if  en1(i)>=-enu 

                        sgm_lower(i)=-(1+r2*(abs(en1(i))-1)/(1+(rstar-1)*((abs(en1(i))-1)/(enu-

1))^pstar))*sgma02; 

                    else en1(i)<-enu 

                            errordlg ('too big strain','warning') 

                    end  

                end 

            end 

        end 

    end 

end 

for j=1:n2+1 

    if  en2(j)>=enu 

        errordlg ('too big strain','warning') 

    else if en2(j)>=1 

            sgm_vertical(j)=(1+r2*(en2(j)-1)/(1+(rstar-1)*((en2(j)-1)/(enu-1))^pstar))*sgma02; 

        else if  en2(j)>=0 

                sgm_vertical(j)=r*en2(j)/(1+(r-1)*(en2(j))^p)*sgma02; 

            else if  en2(j)>=-1 

                    sgm_vertical(j)=-r*abs(en2(j))/(1+(r-1)*(abs(en2(j)))^p)*sgma02; 

                else if  en2(j)>=-enu 

                        sgm_vertical(j)=-(1+r2*(abs(en2(j))-1)/(1+(rstar-1)*((abs(en2(j))-

1)/(enu-1))^pstar))*sgma02; 

                    else en1(j)<-enu 

                            errordlg ('too big strain','warning') 

                    end  

                end 

            end 

        end 
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    end 

 

end 

 

 

 

 

 

 

 

 

 


