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Abstract 

Due to the variety of possible ways to attack a computer system, network intrusion 
detection has been always a very complex task. The main problem of detection tools 
is to balance the detection ratio with the errors. The cost of generating a false alarm 
can be prohibitive and should be avoided when possible. The increasing amount 
of attacks witnessed in the last few years makes it very necessary to have a detection 
tool for protecting the network. Stratosphere IPS is a free-software network intrusion 
detection tool which uses machine learning algorithms for identification of infected 
devices in the network. One of the downsides of the first version of Stratosphere IPS 
is that it detects individual connections and it, therefore, generates a lot of false 
alarms. This thesis proposes to design, implement and test a machine learning 
improvement of Stratosphere IPS which aggregates the partial detections of hosts 
and classifies them using the XGBoost algorithm to improve the overall performance 
of the tool. Our method is based on an additional layer of abstraction called Source 
Address layer which collects the partial data and pre-processes it or the classifier. 
Compared to the first version of Stratosphere IPS proposed extension results in 40% 
increase in accuracy and 26% improvement in the False Positive rate.  

Keywords: Intrusion Protection System, Malware Detection, Machine Learning, 
XGBoost algorithm 

 

Abstrakt 

Ochrana počítačových sítí je v důsledku širokého spektra typů malware velmi 
obtížnou disciplínou. Strmý nárůst v počtu zařízení připojených k internetu 
v posledních letech vede ke zvyšující se poptávce po systémech na detekci útoků 
a na obranu před nimi. Stratosphere IPS je freeware využívající strojového učení 
k identifikaci infikovaných zařízení v síti. Jednou z jeho slabin je analýza založená na 
jednotlivých spojeních. V této práci jsme navrhli, naimplementovali a otestovali 
řešení ve formě agregace dílčích detekcí a jejich následném využití k identifikaci 
škodlivých hostitelů pomocí algoritmu XGBoost. Použitá metoda je založena 
na přidání vrstvy nazvané Source Address Layer, ve které jsou dílčí data 
shromažďována a zpracovávána tak, aby je bylo možné klasifikovat pomocí XGBoost 
algoritmu. Experimenty ukazují, že použití námi navržené metody zvyšuje přesnost 
detekcí o 40 % a současně snižuje míru nesprávně detekovaných adres o 26 %. 

Klíčová slova: Ochrana počítačových sítí, Detekce malware, Strojové učení, 
algoritmus XGBoost 
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1. Introduction 

One of the most common problems of intrusion detection systems is the production 
of false alarms and how to deal with them. It is vital not to overwhelm the users with 
reports and alarms, especially false ones because its time and resources are limited. 
At the one hand, a tool that generates too many false alarms consumes the resources 
of the users and endangers their trust. On the other hand, if no alarms are generated 
during an attack the users will simply stop using the tool. Stratosphere IPS for Linux 
(SLIPS) is a free software developed in the Stratosphere Lab of the CTU University 
in Prague [1]. SLIPS processes web flows, builds a connection from them and analyzes 
the behavior patterns in the connections.   

The main topic of this thesis is to improve the results of Stratosphere Linux IPS tool 
to decrease the False Positive Rate of the detection. The latest version of SLIPS 
implements Markov Chain models for detection of malware behaviors in the network. 
SLIPS examines each connection separately which leads to increased amount of False 
Alarms as well as limited accuracy. Our goal is to design and test a system, which 
eliminates mentioned limits. This thesis builds on this foundation and extends it by 
an additional layer of abstraction called Source Address Layer. This technique allows 
deeper analysis as well as more precise classification of hosts in the monitored 
network. Since SLIPS only works with flows in the traffic the data in packets is not 
inspected or monitored in any manner.  

We propose to build on the foundation of time windows (TW) which is being used 
by latest SLIPS. The time window is a set period in which decision about each host 
in the network must be made. Our goal is to extract as much information about 
the individual host in each TW and create a feature vector from the information. 
Afterward, we suggest using a machine learning classifier XGBoost [2] to classify 
the hosts as either “Normal” or “Malicious”. An additional step is to include close 
history in the decision-making process. We call this procedure Sliding Detection 
Window(SDW) and by default, it uses past 12 time windows (in other words last one 
hour of the traffic). The motivation for this extension is to evaluate each host with 
respect to its previous actions. Another advantage is softening sudden peaks and 
falls in the data. 

The main contribution of this thesis is a new version of Stratosphere Linux IPS  
which implements the method described above. It is free and accessible 
at https://github.com/stratosphereips/StratosphereLinuxIPS. Our version of the SLIPS 
contains trained XGBoost algorithm which is ready to use. Improved alerting system 
is also included in the tool. 

Another contribution of this thesis is an experimental evaluation of the accuracy 
of classification both in individual time windows and in sliding detection window. 
Comparison with the current version of SLIPS shows that the accuracy of decision has 
been increased from 0.5458 to 0.5504 with using TW only. If history is included with 
SDW average accuracy is 0.7693. The number of False Alarms is significantly reduced 
which improves the usability of the tool. For all experiments and training of the 
classifier CTU-13-Dataset  [3] and other captures created in Stratosphere Project is 
used. 
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The remaining of this thesis is divided as follows: Section 3 describes the current 
version of SLIPS and its pros and cons. Section 4 describes our research on extending 
SLIPS and the proposed design. In Section 5 we show the suggested process 
of classification. Section 6 contains detail about implementation and performance. 
CTU-13-Dataset and other datasets used during the experiments are described in 
Section 7. In Sections 8 and 9 we show our experiments and analyze the results. Our 
conclusions are stated in Section 10. 

2. Related Work 

There has been done many experiments to reduce the False Positive rate in the 
malware detection. There are two main concepts of false alarms minimalization. The 
option is designing a more accurate system which is a complex task. Machine 
Learning algorithms often used for this purpose. Sumaiya and Aswani [4]successfully 
used a combination of advanced algorithms to improve the accuracy of the 
classification and reduce the size of dataset required for training. The rise in the 
popularity of the deep learning has brought attempts to use neural networks in the 
intrusion protection. Tang [5] used Deep Neural Network in the software defined 
networks, but so far with only average results. A different approach for improving the 
performance of Network Intrusion Detection Systems (NIDS) is incorporating 
additional sources of information as shown with Bayesian networks in [6]. The method 
of adaptive learning using the human verification has been proposed in 2004 by 
T. Pietraszek in [7]. The main concept is to gradually improve the performance of the 
classifier with manually verified samples. 

Another approach to the reduction of the False Positive ratio is post-processing 
generated alerts before reporting to the user. T. Pietraszek and A. Tanner [8] described 
several ways of using machine learning algorithms in this area. Clustering is a typical 
example of that as shown in [9]. Another way of dealing with the problem is to filter 
the alerts using a data mining technique. Xiao and Li [10] show the usage of Outlier 
Detection results the reducing of the FP rate.  

In our approach, we combine both ways described above. CH. Katar studied described 
several methods for combining of different models when designing in [11]. 
He concluded that even though some methods perform very well in certain classes 
of intrusion, they lack the accuracy in the global problem domain. Katar proposes 
combining the strength of several models to achieve the overall performance of the 
NIDS. 

In our solution, we build on the foundation of the first version of Stratosphere IPS [1] 
which includes a system for detecting malware by matching behavioral models. 
Partial detections are clustered, and Extreme Boosting Classifier (XGBoost) [2] used 
for classification.  
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3.  Stratosphere Linux IPS 

Stratosphere IPS is a project to research, develop and verify methods to detect 
malware traffic in the network [12]. It was born in the Computer Science department 
of the Faculty of Electrical Engineering, CVUT in 2015 as the result of a Ph.D. thesis [1]. 
The algorithms developed in this project were first implemented in an intrusion 
prevention tool for Linux called SLIPS (Stratosphere Linux IPS). SLIPS implements these 
machine learning methods to identify the behavior of malware in the network. It is 
free software and its goal is to make available the advanced algorithms to the broad 
community of civil society organizations. 

Among the main characteristics of SLIPS are that it receives bidirectional flow and it 
analyzes the traffic by separating the behaviors of each connection. SLIPS does not 
read nor receives packets from the network because its goal is to analyze high-level 
behaviors and not content. Currently, the bidirectional flows are generated 
by Argus [13].  

A stream of flows is divided into time windows (TW). Flows are grouped 
by connections - each connection is defined by quadruple of Source Address, 
Destination Address, Destination Port, Protocol. After receiving, each flow is coded 
as a character based on its properties. Character obtained in that way is appended 
 to the previous state of the connection. Afterward, the newly created state is 
compared to the behavioral models of malware. 

Each of the models has been created from real malware and represents a certain type 
of attack. If any of the models matches, the connection is labeled as 'Malicious'. If no 
similarity is found, it's label is set to 'Normal'. When all flows in the TW are processed, 
each connection with label 'Malicious' is reported. Subsequently, any host with any 
‘Malicious’ connection is marked as infected. The downside of using models 
of malware is that if the tool encounters the unknown type of attack, it has no way 
to recognize it. Such malware is labeled as ‘Normal’ which results in increased False 
Negatives. 

Figure 1: Labeling process in the original version 
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3.1. Matching a connection state and behavioral models 

A connection must be transformed to the special form before it is compared  
to the behavioral models. Since the content of packets is not used in the Stratosphere 
project, only the flow properties are used for the transformation. 

Size S (Bytes) < 250 < 1100 >= 1100  

Label Small Medium Large 

Table 1: Thresholds for labeling flow based on its size 

Duration (s) < 0.1 < 10 >= 10 

Label Short Medium Long 

Table 2: Thresholds for labeling the flow based on its duration 

Two previous flows are used for computing the periodicity of the current flow. More 
precisely, the timestamps of the flows. Let us call  ��� the timestamp of the current 
flow, ����� timestamp of previous flow and  ����� the timestamps of the flow before. 

Then Time difference TD of the current flow is computed using following formula: 

Equation 1: Time difference of a flow 

��� = |(����� − �����)− (��� − �����)| 

After obtaining the time difference, the label for periodicity can be assigned. 

Time difference  < 1.05 < 1.3 < 5 >= 5 

Periodicity Strong  
Periodicity 

Weak 
Periodicity 

Weak  
Non-Periodicity 

Strong  
Non-
periodicity 

Table 3: Thresholds for assigning periodicity labels based on the time difference. 

3.2. Interpreting a connection state as a Markov Chain 

When the class of each feature of the flow is known, it can be coded by character. 
String characters representing properties of the flow and its time difference define 
the state and behavior of the connection in time.  

 Given character and time difference are appended to the connection state. Including 
TD in the state is important to differentiate periodicity of 1 second from the periodicity 
of 1 month. Updated state of the connection is then compared to the behavioral 
model. Key in Figure 2 defines characters corresponding with each set of features. 
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Connection state represented by a string of characters can be interpreted as first 
order Markov Chain model. That is a model of transition probabilities from one 
character to another. Let us consider connection with state “a, a, c+d+d+”. Markov 
chain and corresponding matrix are shown in Figure 3 and Figure 4 

Figure 3: An Example of Markov chain created from connection state “a, a, c+d+d+”. 

Figure 4: Matrix related to Markov Chain in Figure 2. 

This method is used for detecting similarities between stored malware models and 
captured connections. Each model has its own threshold calculated using 
the probability of generating its original string using its Markov model. For each 
connection, the probability of generating its state (represented by string) is 
computed. If it overcomes the threshold of the model, the connection is reported as 
matching the model. Models for most common types of malware has been obtained 

Figure 2: Key for coding flow as character used in Stratosphere IPS 
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in the Stratosphere project and are under constant improvement. However, there is 
always a delay between the occurrence of a new type of attack and the creation 
of the corresponding model. 

3.3. Implementation details of SLIPS 

SLIPS is not designed to create flows of the traffic. For that, it uses Argus which is 
an open source tool created by Carter Bullard [13]. Argus generates the bidirectional 
netflows which SLIPS can process afterward. Since SLIPS can be run in the real-time 
traffic it is necessary to read the flows as fast as possible. For that reason, there are 
two processes in the program.  The purpose of the first is to read flows from Argus 
and store them in the Multiprocessing Queue. The second process reads flows from 
the queue, analyze them and builds connections from them. The final step is the 
compare the connection to the Markov models and generating alerts if the match is 
successful. 

3.4. Limits of the current state of SLIPS 

Processing flows in a way described suffer from several issues. Since reporting of the 
host as ‘Malicious’ depends only on the last label assigned to any of its connections, 
the progress of labeling is not considered at all. Therefore, every time the tool assigns 
label it considers the host as it was labeled for the first time. That way, a possible 
source of additional information is skipped. Secondly, the fact that result of every 
connection can lead to reporting the host as ‘infected’, leads to increased number 
of false positives. On the other hand, using Malware models means that only the 
known types of attacks are recognized. That means a high number of False Negatives 
and overall low accuracy of the detections. Additionally, connections with same host 
(same source address) are analyzed independently. That is another source 
of information being ignored. A side effect of alerting per connection detection is 
overwhelming the user with alerts. Since manual analysis of the potential malware 
takes a lot of time and effort, mistakes made by machine learning algorithms can be 
very costly. 
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4. Source address layer 

Since the original version of SLIPS deals with connections separately, running the tool 
results in repeating detections for each time window. Two connections can share 
source address and yet differ in the final detection prediction. That is a huge problem 
for the users because such output is difficult to interpret. To solve this behavior, we 
propose to extend SLIPS in a way which eliminates such behavior. If several 
connections share a host it is possible to consider them as a part of the bigger object 
and work with it as one unit. Our method is based on the additional layer 
of abstraction called Source address layer.  The main purpose of the layer is to gather 
and assemble and store pieces of data to create a complex image of the behavior 
of the host in the network in each time window. That corresponds with the main 
purpose of any network IDS - detection infected hosts.  

The concept of merging objects that share some characteristic is already being used 
in the original version, where flows that share the source IP, destination IP, port and 
protocol ale combined to create a connection. The Same process can be applied 
to connection using source address as a key to group by. The motivation 
for cumulating the information is to improve the performance of detection through 
getting more data from the connection, such as relations between them and patterns 
in their states. We suggest extracting the information from each host as a vector 
of features and use machine learning algorithms as a tool for labeling the infected 
host. Our hypothesis is that our technique improves the performance of SLIPS while 
reducing the false alarms which we identified as one of the main issues. 

Figure 5: Process of grouping flows and connection by source address 

Figure 5 shows how flows are grouped by connection as it happens 
in the original version. However, the result of matching each state to a Markov models 
is stored together with the connection state. That allows monitoring the progress 
of matching instead of the last result only is it is in the current method. 
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4.1. Gathering information in Source Address Layer 

In the Subsection 3.1, we discussed drawbacks of the original version. We propose 
to use advanced machine learning algorithms together with the data aggregated 
in the Source Address Layer to improve the overall performance of the SLIPS detection 
abilities. Classification is being done on the host level which means we need to create 
a process of summarizing information stored in the Source Address layer in a form 
which can be used by the classifier. For this purpose, a vector of features is being 
used. All features are based on the result of the comparison to the malware models. 
However, they are not tight to any specific type. That is an advantage for the further 
development of the SLIPS because additional means of similar behavior comparison 
can be easily plugged into the system. 

SLIPS works on a time window basis which means, that at the end of each TW 
(5 minutes by default) it labels every host. For the classification set of features is 
extracted from the host, which describes the behavior of the host in the TW. 
In addition to the activities in the current TW, the past behavior is considered as well. 
The Sliding Detection Window (SDW) is used for collecting information about the 
behavior of a host in a fixed number of previous time windows. In the default settings, 
we use 12 previous TW. The features from the current time window and the SDW are 
stored in a vector based on which the host is labeled.  

  

Figure 6: Process of collecting information in Source Address Layer 

In Figure 6 we show how the structure of original SLIPS is used in the information 
gathering process. Original parts are marked with dashed line. The centerpiece of the 
Source Address layer is the host in which the data from the original version is stored 
and pre-processed to a form which a classifier can work with. Potential alerts are also 
gathered in the host.  
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5. Classification 

In the 3.4 we discussed drawbacks of the original version. We propose to use 
advanced machine learning algorithms together with the data aggregated 
in the Source Address Layer to improve the overall performance of the SLIPS detection 
abilities. Classification is being done on the host level which means we need to create 
a process of summarizing information stored in the Source Address layer in a form 
which can be used by the classifier. For this purpose, a vector of features is being 
used. All features are based on the result of the comparison to the malware models. 
However, they are not tight to any specific model. That is an advantage for the further 
development of the SLIPS because additional models of malware or other means 
of behavioral detection can be easily plugged into the system. 

Slips works on a time window basis which means, that at the end of each TW 
(5 minutes by default) it labels every host. For classification set of features, which 
describe the behavior of the host in the TW, is extracted. In addition to the activities 
in the current TW, past behavior is considered as well. Sliding Detection Window 
(SDW) is used for collecting information about the behavior of a host in a set number 
of previous time windows. In default settings, we use 12 previous TW. Features 
from the current time window and the SDW are stored in a vector based on which the 
host is labeled.  

Figure 7: Extraction of features for classification for a single host in a time window  

In Figure 7, we show an example of Sliding Detection Window in a single host. 
For the sake of simplicity, we decreased the width of the SDW to 3. The important 
property of the SDW is that it changes over time so only the features from the short-
term history are included.  
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5.1. Features extracted in a Time Window 

To describe the behavior and properties of a host in 1 time window we use following 
a set of features: 

(i) Amount of connections 

(ii) Sum of connection ratios 

(iii) Mean of connection ratios 

(iv) Amount of connections without any matching state 

(v) Amount of connections with at least one matching state 

(vi) Number of connections with all matching states 

(vii) Percentage of connections without any matching state 

(viii) Percentage of connections with at least one matching state 

(ix) Percentage of connections with all matching states 

(x) Number of new connections states created in this TW 

(xi) Number of new connections states matching any model 

(xii) Percentage of new connections states matching any model 

In the following Subsections, we describe and explain each of the features. 

5.1.1. Connection ratio 

One of the most important features is a sum of Connection ratios (CR). The CR is 
a property of individual connections and describes how much does the connection 
match the Markov models. In other words, it is an amount of successful comparisons 
with any model in the TW over the number of all comparisons in the TW. Remember 
that one comparison is done for each new flow assigned to the connection. 

Equation 2: Matching function of state and model 

�:�× �  → {0,1}, �(�,� )= �
1, � ∼ �   
 0,  ��ℎ������

 

Matching functions f describes the situation when connection state s matches 
malware model m. It is a core part of the formula for Connection ratio: 

Equation 3: Connection ratio 

��:� → 〈0;1〉, ��(�)=
∑ ∑ ����,� ���

�� �
�
�� �

|�|
 

Connection ratio shows us the overall matching of the connection and Markov 
models. It is common that malicious connections tend to have more states (they 
consist of more flows). That is the reason use a percentage instead of sum.  
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Connection C1 in Figure 8 has 6 states which are compared to the malware behavioral 

model. Only 3 of the states match from which we can say that ��(��)=  
�

�
= 0.5. It is 

important to note that if ��(�) =  0  it does not mean that there is no malicious 
behaviror in connection C. Each of the models is tailored to detect a specific type 
of malware behavior. Therefore, if the behavior of the connection differs from the 
models it might be labeled clean even though it is malicious. 

5.1.2. Connection ratios sum and mean 

When CR for each of the connections is known, we can compute the sum and mean 
of connection ratios. The sum of the CRs shows how the overall matching of the host 
with the models.  

However, only the sum is not enough. Let us consider two hosts, both with 2 
connections. Host A has one connection with all states matching some 
of the models and connection that has no such states. The sum of the CR of host A is 
1. Host B has two connections with CR = 0.5. That means the sum of CR for B is also 1. 
Using mean of the connection ratios as one of the features increases the separability 
of connections. For host in  Figure 9, the sum of CR = 1.5250 and mean of CR = 0.3813.  

Figure 8: Computation of connection ratio for connection state “C+a+a+A+H+e” 

Figure 9: Extracting sum of CR from a single host 
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5.2. Sliding Detection Window (SDW) 

When the extracting of features from a host, each TW is treated as an independent 
unit. However, the connection often last longer the 1 time window. In those cases, 
part of the information is being lost with the end of the time window. To prevent it, 
we propose the concept of the sliding frame in which information about previous 
actions of the host is gathered as a complement to the features extracted 
in the current TW. It is called Sliding Detection Window (SDW) and it is used for adding 
the short-term history in the decision-making process. Estimation of the ideal width 
of the SDW is a complex task which requires a variety of experiments. In this paper, 
we used a fixed width of both TW and SDW. A 5-minute time window is a default 
option of the original SLIPS. For the SDW we use the last 12 TW which is equal 
to the one hour of traffic. Any changes in the widths of either TW or SDW require 
re-training the classifier.  

SDW collects the following information: 

(i) Amount of connections without any matching state 

(ii) Amount of connections with at least one matching state 

(iii) Number of connections with all matching states 

(iv) Percentage of connections without any matching state 

(v) Percentage of connections with at least one matching state 

(vi) Percentage of connections with all matching states 

Features from the SDW are appended to the vector of features from 
the current time window and used as an input for the classifier. In Section 8, we show 
the comparison between classification using time window extended with SDW and 
using TW only.  
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5.3. Vector of features 

When TW finishes, a vector of features is extracted from each host which has 
a connection updated state updated. The vector contains 18 elements – 12 features 
from the TW and 6 obtained from the SDW. 

 

Figure 10: Extraction of feature vector from a single host 

If we analyze the host from Figure 10 we obtain the following vector of features: 
(2; 1.4; 0.7; 0; 2; 1; 0; 1; 0.5; 9; 6; 0.6667; 1; 3; 1; 0.25; 0.75; 0.25). First 12 items belong 
to the current time window; the rest is extracted from the SDW of width 3. 

5.4. Classifiers 

Machine learning algorithms can be used for classifying the host based on the set 
of featured gathered in both time window and SDW. For that, a set of training samples 
is required to create the model. Statistical methods are used to estimate the 
parameters of the model. In our experiments, we used three types of classifiers. First 
is based on the Bayesian decision theory. It has been used in the similar problem with 
notable results. The second type of classifier is the Support Vector Machine (SVM) [14]. 
SVM is a robust classifier which can be used even in the cases with non-separable 
data. The last classifier we use is an algorithm called XGBoost [2] which is a shortcut 
for Extreme Gradient Boosting. XGBoost was introduced in 2016 and it combines 
features of several classifiers. We use XGBoost for its scalability and ability 
to generalize which is useful with the complex task such as malware detection. 

5.4.1. Naive Bayes 

Naïve Bayes (NB) method belongs to the family of algorithms based on the studies 
of Thomas Bayes (1702-1761). The core idea in the Bayesian classification is that there 
is a hypothesis that a sample belongs to a certain class. Evidence is then gathered 
and used for computing probability that the hypothesis is correct.  
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5.4.2. Support Vector Machine 

Support Vector Machine (SVM) is a learning algorithm introduced by Vapnik 
and Chervonenkis [15] in 1979. However, improved version [14] using soft margin 
for dealing with outliers is currently the most commonly used. 

It is capable of both linear and non-linear classification. SVM tries to find 
the hyperplane which divides the training samples in such way, that the margin 
between the samples and the hyperplane. The motivation behind that is the increase 
generalization abilities of the model. SVM is capable of both linear and non-linear 
classification. If the data is not linearly separable, Kernel trick [16] transform the data 
to a higher dimension. Although it helps the separation, it also influences 
the generalization model. In our experiments, we use Radial Basis function as a kernel 
function [17]. 

5.4.3. XGBoost 

XGBoost (Extreme Gradient Boost) algorithm [2] which was introduced in 2016 and it 
has won several ML competitions since. It is based on the Gradient boosting Machine 
[18] introduced by Freidman in 1999. The algorithm combines techniques known from 
other classifiers such as prevention of overfitting with regularized model 
(used in Regularized Greedy Forrest [19]). Because of the variety of the types 
of malware, it is difficult to find a model with enough generalization abilities needed 
classifying different types of Malware. Another benefit of XGBoost is speed. The 
algorithm is designed to maximize efficiency and can be run in parallel. When running 
SLIPS online reducing the time complexity of the program is very important since lots 
of data needs to be processed in real-time. 
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6. Implementation 

We used Python for implementing all the routines and algorithms. It is a simple 
yet extremely powerful tool especially suited for machine learning problems. 
For implementing the machine learning parts we used Scipy [20], XGBoost [2] and 
scikit-learn [21]. Those are highly optimized libraries which help to speed up the run 
of the tool. Matplotlib [22] was used to generate graphs and figures. Source code with 
all can be downloaded and used for free from https://github.com/ondrej-
lukas/StratosphereLinuxIPS  

 

Figure 11: Workflow for processing binetflows with Source Address Layer 
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6.1. Structure of classes in Source Address Layer 

Source Address Layer is built on the foundation of the original version. It uses 
the same interface for reading and parsing bidirectional flows. A system for updating 
states of the connection and its matching with malware models remains unchanged.  

 

 Figure 12: The Structure of classes in the Source. Address Layer 

The core piece of the Sour Address Layer is an IPHandler class. It is responsible 
for storing the SourceAddress objects and information within them such as partial 
detection from Markov models, labels from the XGBoost and alerts corresponding 
to the. It serves as a bridge between the new functionality and structures of original 
SLIPS. Classifier class is used for the labeling. It is not designed for training 
which means pre-trained classifier should be provided in a form of serialized object. 

When the flow is read and input for the IP Handler is a tuple containing the flow, and 
the result of matching from the Markov models (partial detection). The tuples are 
stored in the SourceAddress for analysis at the end of the time window. When TW 
finishes IPHandler selects hosts which state has been changed in the TW and extract 
the feature vectors. List of vectors is processed by the classifier which returns a list 
of labels. If the address is labeled ‘Malicious’ instance of the Alert object is created 
and stored in the Source Address. 

6.2. Alerts 

When a host is labeled as ‘Malicious’ user should be notified. Alerts in the original 
version were reduced to a simple print in the console. We introduced the basic Alert 
class and its derivate IPDetectionAlert. An instance of IPDetectionAlert is created 
upon any detection.  

Once there is a host labeled as ‘Malicious’, the user is notified. In the original SLIPS, 
alerts were printed on the standard output. Because of the simplicity of this solution 
we created the Alert object which serves as a container for as much information about 
the detection as possible. If the detection should be checked manually, it is vital 
to provide the user with as much information as possible to make the verification 
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simpler. Alerts include the source, time, WHOIS information about the destination 
address if such is available and the vector of features which was used 
for the classification. That is essential if we want to use the manual verification 
to re-train the classifier with additional data. 

When the run of the program ends (both at the end of the capture or when 
interrupted) all alerts are stored in the log file as well as shown in the console. 

6.3. WHOIS Information 

One of the features SLIPS helps the users to verify detections is a WHOIS service1. 
It is free online databases containing the information about owners of individual 
domains. There is a library for Python which can search the online database but if 
there is a high number of queries for the database the response time rises. To prevent 
the creation of bottleneck because of the secondary feature of low importance, we 
created a WhoisHandler class which has an offline file containing the whois 
information and serves as a proxy for getting it. Before the query to the online 
database is created WhoisHandler searches the data stored locally for the presence 
of the information wanted. If the search is not the successful query is sent and the 
result is stored for further use. When the program starts, the content of the local 
WHOIS file is loaded into Python dictionary which eliminates any delay when 
searching for the information. File containing WHOIS information is distributed 
together with the rest of the scripts. 

6.4. Performance 

Since SLIPS is designed to run in real time, it is required to process a large amount 
of data very fast. There are hundreds of connections to be classified in each TW. Scipy 
library together with the scikit-learn provides us with highly optimized tools for data 
processing as well as a variety of machine learning algorithms. Because of the 
grouping on several levels, plenty of searching in the data structures is required. 
Python Dictionaries are very suitable for that as their average time complexity 
for most operations is O (1)2. 

6.5. Using SLIPS 

SLIPS can be used both for real-time detection and analysis of the binetflow files. 
For the real-time detection, Argus tool must be installed and running to process the 
traffic and create the binetflow file.  

Example of running SLIPS with real time data from Argus: 

ra -F [slipsfolder]/ra.conf -n -Z b -S 127.0.0.1:902 | python slips.py -
f [models folder] -v 2 -d 

An example of an offline run of slips with verbosity 2 and included WHOIS info: 

cat [filename] | python slips.py -f [models folder] -v 2 -d 

List of all available parameters can be displayed with the command: 

python slips.py -h 

                                                      

1 https://pypi.python.org/pypi/ipwhois  
2 https://wiki.python.org/moin/TimeComplexity  
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7. Dataset 

For both training of the classifier and evaluation of its accuracy, choice of data is 
essential. Data used in all our experiments comes from the Stratosphere Project. 
For testing CTU-13-Dataset [3] has been used. It consists of a variety of different 
Malware scenarios as well as normal hosts and background traffic. That is useful 
for simulation of regular traffic. All datasets we use in our experiments are labeled 
based on deep manual analysis of the captures.  

7.1. Training Data 

For most machine learning algorithm structure of the training data is essential. 
We combined real captures of a variety of types of malware in different scenarios 
to avoid overfitting to just one kind of malware. Normal samples are included 
in the training set as well. Those were obtained by monitoring the traffic of common 
users in the university network as well as from the normal hosts included in the 
malware captures. Deeper information about the datasets can be found in the 
description at https://stratosphereips.org/category/dataset.html. 

The balance of the samples in the training set is another key factor of learning. 
If the set it significantly imbalanced, learning of the classifier is biased towards 
the class with more samples in the set. Distribution of samples among each class is 
shown in the following table. The sample is a vector of features extracted from a host 
in one time window. 

Dataset Normal samples Malicious Samples 
CTU-Malware-Capture-Botnet-100 1,537 4,869 
CTU-Malware-Capture-Botnet-119-2 1,048 5,226 
CTU-Malware-Capture-Botnet-221-2 8,141 807 
CTU-Malware-Capture-Botnet-244-1 1,495 7,801 
CTU-Normal-3-Public 750 0 
CTU-Normal-4-only-DNS 22 0 
CTU-Normal-5 159 0 
CTU-Normal-6-filtered 73 0 
CTU-Malware-Capture-Botnet-50 (part) 272 0 
CTU-Malware-Capture-Botnet-47 (part) 101 35 
TOTAL 13,598 18,738 

Table 4: Distribution of labels in the training set. 

7.2. Testing Data 

For testing, we use data from the CTU-13-Dataset. Each of them is a real capture 
of a malware executed in the Stratosphere Project. Type of malware being executed 
differ among dataset which simulates the real network traffic. The original dataset 
contains a lot of background traffic. For such traffic, the real label is very difficult to 
assign because on limited information about the host. Therefore, we filtered all 
background traffic from all datasets and for all experiments, we used only data from 
hosts which are manually checked.  
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Datasets used for testing: 

Dataset  Normal samples Malicious Samples 
CTU-Malware-Capture-Botnet-42 192 58 
CTU-Malware-Capture-Botnet-43 67 43 
CTU-Malware-Capture-Botnet-44 998 184 
CTU-Malware-Capture-Botnet-45 142 33 
CTU-Malware-Capture-Botnet-46 17 5 
CTU-Malware-Capture-Botnet-48 14 2 
CTU-Malware-Capture-Botnet-51 147 214 
TOTAL 1,577 539 

Table 5: Distribution of labels in the testing set 

8. Experiments 

The main goal of the experiments is to measure the difference in the quality 
of detection of the original version of SLIPS and the implementation we propose. 
Secondly, we want to determine if classification based on Sliding Detection Window 
leads to better results compared to the usage of time window features only. 
Additionally, we show the process of training the classifier which is a part of the new 
version of SLIPS. For training, cross-validation and measurements of the performance 
we use tools from the scikit-learn library. Plots and graphs are created 
by Matplotlib [22] library. 

Since the original SLIPS classifies each connection separately, we need to define 
a measurement which allows us to compare it to the system which is making 
a decision per host. For the original SLIPS, we consider host as detected (labeled as 
‘Malicious’) in the time window if there is at least detected connection of the host 
in the TW. With that, we can compare the classification in each TW. A second 
measurement is the number of hosts reported over all time windows. The host is 
considered reported as ‘Malicious’ if it is detected in at least one TW. Each experiment 
is performed for the original version of SLIPS and both TW and SDW trained 
the classifier. 

To demonstrate the process of training we show data from cross-validation which 
was used for tuning the parameters of the classifiers. 5-folds with Leave on out 
technique. Accuracy was the criterion used in the finding the optimal parameters. 
Because of the time complexity of the cross-validation. We used only 10 000 samples 
in the cross-validation. 

Settings of parameters obtained from the cross-validation are used for the learning 
curves. Those show how the size of the testing dataset influences the performance.  
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8.1. Training 

 

Figure 13: Learning Curves of Naive Bayes – TW only 

 

Figure 14: Learning Curves of Naive Bayes - TW&SDW 
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8.1.1. SVM 

 gamma = 0.001 gamma = 0.0001 gamma = 1e-05 
C = 1 0.630 0.627 0.597 
C = 10 0.639 0.628 0.622 

C = 100 0.806 0.638 0.629 
C = 1000 0.826 0.645 0.634 

 Table 6: Cross-validation result SVM (parameters C, gamma) – TW only 

Table 7:Cross-validation result SVM (parameters C, gamma) – TW +SDW 

Figure 15: Learning curves of SVM – TW only 

 gamma = 0.001 gamma = 0.0001 gamma = 1e-05 
C = 1 0.622 0.615 0.580 
C = 10 0.618 0.610 0.610 
C = 100 0.733 0.620 0.615 

C = 1000 0.818 0.617 0.620 
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Figure 16: Learning curves of SVM – TW&SDW  

8.1.2. XGBoost 

 

Gamma= 0.1 
 

Gamma= 0.2 
 

  estimators lr =0.2 lr=0.3 lr = 0.4   estimators lr =0.2 lr=0.3 lr = 0.4 
400 0.8250 0.8230 0.8270 400 0.8250 0.8200 0.8220 
600 0.8250 0.8230 0.8270 600 0.8250 0.8200 0.8220 
800 0.8250 0.8230 0.8270 800 0.8250 0.8200 0.8220 
1,000 0.8250 0.8230 0.8270 1,000 0.8250 0.8200 0.8220 

Gamma = 0.3 
 

Gamma = 0.4 
 

 estimators lr =0.2 lr=0.3 lr = 0.4  estimators lr =0.2 lr=0.3 lr = 0.4 
400 0.8270 0.8180 0.8250 400 0.8180 0.8150 0.8170 
600 0.8270 0.8180 0.8250 600 0.8180 0.8150 0.8170 
800 0.8270 0.8180 0.8250 800 0.8180 0.8150 0.8170 

1,000 0.8270 0.8180 0.8250 1,000 0.8180 0.8150 0.8170 
Figure 17: Cross-validation results for XGBoost using TW features only3 

 

 

                                                      

3 lr is a shortcut for Learning rate 
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Gamma= 0.1 
 

Gamma= 0.2 
 

  estimators lr =0.2 lr=0.3 lr = 0.4   estimators lr =0.2 lr=0.3 lr = 0.4 
400 0.8220 0.8170 0.8130 400 400 0.8200 0.8170 
600 0.8220 0.8170 0.8130 600 600 0.8200 0.8170 
800 0.8220 0.8170 0.8130 800 800 0.8200 0.8170 
1,000 0.8220 0.8170 0.8130 1,000 1,000 0.8200 0.8170 

Gamma = 0.3 
 

Gamma = 0.4 
 

 estimators lr =0.2 lr=0.3 lr = 0.4  estimators lr =0.2 lr=0.3 lr = 0.4 
400 0.8200 0.8230 0.8270 400 0.8220 0.8200 0.8250 
600 0.8200 0.8230 0.8270 600 0.8220 0.8200 0.8250 
800 0.8200 0.8230 0.8270 800 0.8220 0.8200 0.8250 
1,000 0.8200 0.8230 0.8272 1,000 0.8220 0.8200 0.8250 

 

Figure 18: Cross-validation results for XGBoost -  results with TW&SDW 

Figure 19: Learning curve of XGBoost – TW only 
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Figure 20: Learning curve of XGB - TW&SDW 

8.2. Testing of performance 

8.2.1. Performance comparison per TW 

 TW&SDW TW only Original 
True positive rate 0.2206 0.2206 0.0021 
True negative rate 0.9362 0.9250 0.9014 
Precision 0.5755 0.5311 0.3663 

Negative predictive value 0.7638 0.7624 0.4159 
False positive rate 0.0638 0.0750 0.0986 
False discovery value 0.4245 0.4689 0.6337 
False negative rate 0.7794 0.7794 0.9979 
Accuracy 0.7445 0.7359 0.4171 
F1-score 0.2965 0.2832 0.0041 

Table 8: Performance measurements per TW 
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 TW&SDW TW only Original 
True positive rate 0.6404 0.8571 0.4286 
True negative rate 0.7366 0.3333 0.6429 

Precision 0.6278 0.4432 0.2667 
Negative predictive value 0.8972 0.9000 0.7381 
False positive rate 0.2634 0.6667 0.3571 
False discovery value 0.3722 0.5568 0.7333 
False negative rate 0.3596 0.1429 0.5714 
Accuracy 0.7693 0.5504 0.5458 
F1-score 0.5541 0.5528 0.2619 

Table 9: Performance measurements per capture 

Figure 21: Performance comparison – measurements per time window 
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Figure 22: Performance comparison – measurements per capture  

9. Results analysis 

Apart from accuracy, the most watched measurement for network protection 
systems is a number of False positives due to the costs connected to them. Because 
of that, we focus mainly on three types of measurement in the testing: False Positive 
rate (also known False alarm ratio), Accuracy and F1 score which is a weighted 
average of precision and recall. The F1 score shows the balance between False 
positives and False negatives. When tuning the parameters of the classifiers we used 
accuracy as a leading measure of quality. 

9.1. Training 

From the Learning curves, we see that accuracy of Naïve Bayes in much lower than 
other classifiers. There are several reasons for that. Firstly, the Bayesian method 
requires prior probabilities of each class. However, estimation of this values in the real 
world in nearly impossible. We can also see that the variance of in the results of NB. 
Naive Bayes method assumes of independence of features. When processing partial 
detections from Markov models such condition is violated. 

SVM and XGBoost have similar results. Analysis of the learning curves indicates that 
with more training samples, results of both algorithms could improve. When 
comparing the variance of the results, XGBoost outruns the SVM. Higher variance is 
caused by overfitting the model to the training data. That is undesirable behavior. 
After the examination of the learning process, XGBoost is suggested to be used for 
classification in SLIPS. 
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9.2. Performance per TW 

 The graph in  Figure 21 shows that the similarities in the performance of both 
classifiers using SDW and using features from TW only. However, compared 
to the original version, we can see improvement in most of the quality 
measurements. We can see that using only the features from the time window 
increases the volume of correctly identified attacks. When the history is included with 
the SDW, accuracy is yet increased while FP rate drops by 14%. Comparison of SDW 
with the original version is even more obvious.  

 The increase in accuracy is 78% in favor of SDW and the F1 score changed from 0.0041 
for original version to 0.2965 with SDW which more than 70 times better result. The 
main reason for this is an enormous number of false negatives of the original version. 
In other words, the original version is too moderate. However, it is important to note 
that when measured per time window is disadvantageous for the original version 
because of assigning a label to a host based on each of its connections. 

9.3. Performance per capture 

When comparing results at the end of a capture we can see that using features from 
TW only increases the True Positive rate significantly.  

However, Figure 23 shows that cost for high TP rate is an increase in the FP rate, which 
is increased by 86% compared to the original version. The difference in the accuracy 
in the original version and usage of the time window only is minimal. From the user 
point of view, false alarms are a great issue which means that using the classification 
based on single time window is not a valid replacement of the current approach.  

Results of the classifier based on the SDW are much more promising. Detections of 
SDW are 40% more accurate than either in original version or when using single 

Figure 23: Comparison of percentage improvement in quality measurements between individual 
classifiers per capture. 
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TW only. There is also a significant drop in the False positive ratio – more half of the 
value of the single TW classifier and 26% decrease compared to the original SLIPS.  

The results support the hypothesis that records of short-term history can help to 
improve the performance of SLIPS both in the more accurate detections and reduced 
amount of false alarms.  

10. Conclusion 

In this thesis, we presented a possible extension of the Stratosphere IPS tool based 
on aggregation of partial detection and its impact on the performance of the tool. We  

described the designed and implementation details of Source Address Layer with and 
its relation to the existing version of the SLIPS. 

As part of the technique, we defined a set of features which define the behavior of a 
host in one time window and presented their extraction. We also presented the 
concept of Sliding Detection Window and its impact on the quality of detection. We 
showed the process of aggregating and processing partial detections and 
demonstrated how the processed data can be used with the machine learning 
algorithms. We examined the performance of different types of classifiers when using 
only data from single time window and when the short-term from SDW history is 
included. 

The main contribution of the thesis is a method of grouping connections by hosts in 
the Source Address Layer and gathered information to improve the quality of 
detections infected hosts. We experimented with several classifiers such as Support 
Vector Machine(SVM) and XGBoost (XGB) and showed the quality of their predictions 
using the CTU-13 Dataset. Based on the experiments, we picked the XGBoost 
algorithm, tuned its parameters and trained it. Serialized trained XGB, which was 
published together with the new SLIPS, is another contribution of the thesis. It is ready 
to use for users without any inside knowledge. We also created a new alerting system 
for SLIPS which simplifies the output of the program for a user and allows easier 
verification of the detections. 

To verify the impact of our technique we designed a set of test in which we compared 
performance in detecting an infected host of the original SLIPS and our extended 
version. The tests proved that by using the aggregated data processed by the Source 
Address layer accuracy of detections is increased by 40% while the False positive rate 
decreased by 30%. F1 score, which is another measure of quality shows an increase 
over 110%. Therefore, we proved that our approach helps to solve some of the main 
flaws of the original SLIPS.  

During the testing, we experimented with the inclusion of the short-term history of 
host behavior in the classification process and proved, that by using SDW to gather 
information about the close history, both precision and accuracy of detections are 
improved.  

In the future, we would like to extend SLIPS in a way of variable width of both time 
windows and SDW. Also, we would like to focus on the system of using the user-
verified alerts to re-training the classifier and boosting its performance. Another 
possible way of continuation of the research is a potential usage of neural networks 
and deep learning in the SLIPS.  
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Appendix 

In the first part of the appendix, results of individual experiments are listed. The 
second part contains a table of symbols which are commonly used throughout the 
thesis and their explanation. The content of the CD attached to the thesis is described 
in the last part of the appendix. 

Detailed results of testing 

In Subsection 8.2 only the average results were shown. In this section of appendix 
results of experiments in individual datasets are listed. Data is divided by the time of 
experiment: measurements per TW means that the confusion matrix was updated in 
every time window while in the results per capture confusion matrix was created after 
all input file was processed. All datasets are part of CTU-13-Dataset. Numbers in the 
dataset name correspond with the labels used in CTU-13-Dataset. For example, 
Dataset 42 is equal to CTU-Malware-Capture-Botnet-42. 

 
TW&SDW TW only Original 

TPR 0.4828 0.4828 0.0027 

TNR 0.9896 0.9115 0.3333 

Precision 0.9333 0.6222 0.9355 

NPV 0.8636 0.8537 0.0001 

FP rate 0.0104 0.0885 0.6667 

FDR 0.0667 0.3778 0.0645 

FN rate 0.5172 0.5172 0.9973 

Accuracy 0.8720 0.8120 0.0027 

F1 score 0.6364 0.5437 0.0053 

Table 10: Measurements per time window – Dataset 42  
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TW&SDW TW only Original 

TPR 1.0000 1.0000 1.0000 

TNR 0.6667 0.3333 0.3333 

Precision 0.5000 0.3333 0.3333 

NPV 1.0000 1.0000 1.0000 

FP rate 0.3333 0.6667 0.6667 

FDR 0.5000 0.6667 0.6667 

FN rate 0.0000 0.0000 0.0000 

Accuracy 0.7500 0.5000 0.5000 

F1 score 0.6667 0.5000 0.5000 

Table 11: Measurements per capture – Dataset 42  

 

 
TW&SDW TW only Original 

TPR 0.8605 0.4186 0.0118 

TNR 0.9254 0.9701 0.9921 

Precision 0.8810 0.9000 0.8852 

NPV 0.9118 0.7222 0.1619 

FP rate 0.0746 0.0299 0.0079 

FDR 0.1190 0.1000 0.1148 

FN rate 0.1395 0.5814 0.9882 

Accuracy 0.9000 0.7545 0.1700 

F1 score 0.8706 0.5714 0.0233 

Table 12: Measurements per time window – Dataset 43  
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TW&SDW TW only Original 

TPR 1.0000 1.0000 1.0000 

TNR 0.5000 0.0000 0.5000 

Precision 0.5000 0.3333 0.5000 

NPV 1.0000 NaN 1.0000 

FP rate 0.5000 1.0000 0.5000 

FDR 0.5000 0.6667 0.5000 

FN rate 0.0000 0.0000 0.0000 

Accuracy 0.6667 0.3333 0.6667 

F1 score 0.6667 0.5000 0.6667 

Table 13: Measurements per capture– Dataset 43 

 

 
TW&SDW TW only Original 

TPR 0.0870 0.0163 0.0000 

TNR 0.9940 0.9930 0.9909 

Precision 0.7273 0.3000 0.0106 

NPV 0.8552 0.8456 0.2755 

FP rate 0.0060 0.0070 0.0091 

FDR 0.2727 0.7000 0.9894 

FN rate 0.9130 0.9837 1.0000 

Accuracy 0.8528 0.8409 0.2748 

F1 score 0.1553 0.0309 0.0001 

Table 14: Measurements per time window - Dataset 44 

  



Appendix 

34 

 

 
TW&SDW TW only Original 

TPR 1.0000 1.0000 1.0000 

TNR 0.6667 0.3333 0.6667 

Precision 0.5000 0.3333 0.5000 

NPV 1.0000 1.0000 1.0000 

FP rate 0.3333 0.6667 0.3333 

FDR 0.5000 0.6667 0.5000 

FN rate 0.0000 0.0000 0.0000 

Accuracy 0.7500 0.5000 0.7500 

F1 score 0.6667 0.5000 0.6667 

Table 15: Measurements per capture- Dataset 44 

 

 
TW&SDW TW only Original 

TPR 0.0909 0.3333 0.0000 

TNR 1.0000 0.8592 0.9969 

Precision 1.0000 0.3548 0.0000 

NPV 0.8256 0.8472 0.6892 

FP rate 0.0000 0.1408 0.0031 

FDR 0.0000 0.6452 1.0000 

FN rate 0.9091 0.6667 1.0000 

Accuracy 0.8286 0.7600 0.6878 

F1 score 0.1667 0.3438 0.0000 

Table 16: Measurements per time window - Dataset 45 
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TW&SDW TW only Original 

TPR 1.0000 1.0000 0.0000 

TNR 1.0000 0.3333 0.3333 

Precision 1.0000 0.3333 0.0000 

NPV 1.0000 1.0000 0.5000 

FP rate 0.0000 0.6667 0.6667 

FDR 0.0000 0.6667 1.0000 

FN rate 0.0000 0.0000 1.0000 

Accuracy 1.0000 0.5000 0.2500 

F1 score 1.0000 0.5000 0.0000 

Table 17: Measurements per capture- Dataset 45 

 

 
TW&SDW TW only Original 

TPR 0.0000 0.2000 0.0000 

TNR 1.0000 1.0000 1.0000 

Precision NaN 1.0000 NaN 

NPV 0.7727 0.8095 0.6438 

FP rate 0.0000 0.0000 0.0000 

FDR NaN 0.0000 Nan 

FN rate 1.0000 0.8000 1.0000 

Accuracy 0.7727 0.8182 0.6438 

F1 score 0.0000 0.3333 0.0000 

Table 18: Measurements - Dataset 46 (per TW) 
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TW&SDW TW only Original 

TPR 0.0000 1.0000 0.0000 

TNR 1.0000 1.0000 1.0000 

Precision NaN 1.0000 NaN 

NPV 0.7500 1.0000 0.7500 

FP rate 0.0000 0.0000 0.0000 

FDR NaN 0.0000 NaN 

FN rate 1.0000 0.0000 1.0000 

Accuracy 0.7500 1.0000 0.7500 

F1 score 0.0000 1.0000 0.0000 

Table 19: Measurements per capture - Dataset 46 

 

 
TW&SDW TW only Original 

TPR 0.0000 0.0000 0.0000 

TNR 0.9286 0.8571 1.0000 

Precision 0.0000 0.0000 NaN 

NPV 0.8667 0.8571 0.9022 

FP rate 0.0714 0.1429 0.0000 

FDR 1.0000 1.0000 NaN 

FN rate 1.0000 1.0000 1.0000 

Accuracy 0.8125 0.7500 0.9022 

F1 score 0.0000 0.0000 0.0000 

Table 20: Measurements per time window- Dataset 48 
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TW&SDW TW only Original 

TPR 0.0000 0.0000 0.0000 

TNR 0.6667 0.3333 1.0000 

Precision 0.0000 0.0000 NaN 

NPV 0.6667 0.5000 0.7500 

FP rate 0.3333 0.6667 0.0000 

FDR 1.0000 1.0000 NaN 

FN rate 1.0000 1.0000 1.0000 

Accuracy 0.5000 0.2500 0.7500 

F1 score 0.0000 0.0000 0.0000 

Table 21: Measurements per capture- Dataset 48  

 

 
TW&SDW TW only Original 

TPR 0.0607 0.0935 0.0000 

TNR 0.9796 0.8844 0.9963 

Precision 0.8125 0.5405 0.0000 

NPV 0.4174 0.4012 0.2388 

FP rate 0.0204 0.1156 0.0037 

FDR 0.1875 0.4595 1.0000 

FN rate 0.9393 0.9065 1.0000 

Accuracy 0.4349 0.4155 0.2386 

F1 score 0.1130 0.1594 0.0000 

Table 22: Measurements per time window- Dataset 51 
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TW&SDW TW only Original 

TPR 1.0000 1.0000 0.0000 

TNR 0.3333 0.0000 0.6667 

Precision 0.8333 0.7692 0.0000 

NPV 1.0000 NaN 0.1667 

FP rate 0.6667 1.0000 0.3333 

FDR 0.1667 0.2308 1.0000 

FN rate 0.0000 0.0000 1.0000 

Accuracy 0.8462 0.7692 0.1538 

F1 score 0.9091 0.8696 0.0000 

Table 23: Measurements per capture- Dataset 51 

Commonly used symbols 

Symbol Explanation 
SLIPS Stratosphere Intrusion Protection System for Linux 
TW Time window  
SDW Sliding detection window 
SVM Support Vector Machine 
Cr Connection Ratio 
NB Naive Bayes 
XGBoost Extreme Gradient Boosting algorithm 
TPR True positive rate 
TNR True negative rate 
NPR Negative predicted value 
FDR False discovery rate 
FP False positive 
FN  False negative 

 

Content of the CD 

Attached CD contains the text of this thesis, all python scripts, and source code. 
Additionally, trained ready-to-use XGBoost classifier in a form of serialized object and 
WHOIS file containing used as a local storage for whois information. Two binetflows 
for testing are included together with their description. Lastly, results of experiments 
and corresponding graphs and plots are stored on the CD. 


