
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

Department of Cybernetics

BACHELOR THESIS

Identifying Malicious Hosts
by Aggregation of Partial Detections

Author: Ondřej Lukáš

Advisor: Ing. Sebastián García, Ph.D.

v

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Ing. Sebastián
García, Ph.D. for the continuous support, patience, motivation, enthusiasm, and
immense knowledge. His guidance helped me in all the time of research and writing
of this thesis.

My sincere thanks also go to Mgr. Jan Šochman, Ph.D. for helping me with the machine
learning part of the thesis. Last but not the least, I would like to thank my family: my
parents and my girlfriend Agnieszka for their support and understanding throughout
the whole time I worked on this thesis.

Author statement

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

 Prague, date …………………… signature ………………………………

vi

Abstract

Due to the variety of possible ways to attack a computer system, network intrusion
detection has been always a very complex task. The main problem of detection tools
is to balance the detection ratio with the errors. The cost of generating a false alarm
can be prohibitive and should be avoided when possible. The increasing amount
of attacks witnessed in the last few years makes it very necessary to have a detection
tool for protecting the network. Stratosphere IPS is a free-software network intrusion
detection tool which uses machine learning algorithms for identification of infected
devices in the network. One of the downsides of the first version of Stratosphere IPS
is that it detects individual connections and it, therefore, generates a lot of false
alarms. This thesis proposes to design, implement and test a machine learning
improvement of Stratosphere IPS which aggregates the partial detections of hosts
and classifies them using the XGBoost algorithm to improve the overall performance
of the tool. Our method is based on an additional layer of abstraction called Source
Address layer which collects the partial data and pre-processes it or the classifier.
Compared to the first version of Stratosphere IPS proposed extension results in 40%
increase in accuracy and 26% improvement in the False Positive rate.

Keywords: Intrusion Protection System, Malware Detection, Machine Learning,
XGBoost algorithm

Abstrakt

Ochrana počítačových sítí je v důsledku širokého spektra typů malware velmi
obtížnou disciplínou. Strmý nárůst v počtu zařízení připojených k internetu
v posledních letech vede ke zvyšující se poptávce po systémech na detekci útoků
a na obranu před nimi. Stratosphere IPS je freeware využívající strojového učení
k identifikaci infikovaných zařízení v síti. Jednou z jeho slabin je analýza založená na
jednotlivých spojeních. V této práci jsme navrhli, naimplementovali a otestovali
řešení ve formě agregace dílčích detekcí a jejich následném využití k identifikaci
škodlivých hostitelů pomocí algoritmu XGBoost. Použitá metoda je založena
na přidání vrstvy nazvané Source Address Layer, ve které jsou dílčí data
shromažďována a zpracovávána tak, aby je bylo možné klasifikovat pomocí XGBoost
algoritmu. Experimenty ukazují, že použití námi navržené metody zvyšuje přesnost
detekcí o 40 % a současně snižuje míru nesprávně detekovaných adres o 26 %.

Klíčová slova: Ochrana počítačových sítí, Detekce malware, Strojové učení,
algoritmus XGBoost

vii

Contents

1. Introduction ... 1

2. Related Work ... 2

3. Stratosphere Linux IPS... 3

3.1. Matching a connection state and behavioral models .. 4

3.2. Interpreting a connection state as a Markov Chain ... 4

3.3. Implementation details of SLIPS ... 6

3.4. Limits of the current state of SLIPS... 6

4. Source address layer .. 7

4.1. Gathering information in Source Address Layer ... 8

5. Classification ... 9

5.1. Features extracted in a Time Window ... 10

5.1.1. Connection ratio .. 10

5.1.2. Connection ratios sum and mean .. 11

5.2. Sliding Detection Window (SDW) .. 12

5.3. Vector of features .. 13

5.4. Classifiers .. 13

5.4.1. Naive Bayes ... 13

5.4.2. Support Vector Machine ... 14

5.4.3. XGBoost .. 14

6. Implementation .. 15

6.1. Structure of classes in Source Address Layer ... 16

6.2. Alerts ... 16

6.3. WHOIS Information .. 17

6.4. Performance .. 17

6.5. Using SLIPS ... 17

7. Dataset ... 18

7.1. Training Data ... 18

7.2. Testing Data ... 18

8. Experiments... 19

8.1. Training .. 20

8.1.1. SVM ... 21

8.1.2. XGBoost .. 22

8.2. Testing of performance ... 24

8.2.1. Performance comparison per TW ... 24

9. Results analysis ... 26

9.1. Training .. 26

viii

9.2. Performance per TW ... 27

9.3. Performance per capture .. 27

10. Conclusion ... 28

References .. 29

Appendix ... 31

Detailed results of testing ... 31

Commonly used symbols .. 38

Content of the CD .. 38

ix

List of Figures

Labeling process in the original version..3
Key for coding flow as character used in Stratosphere IPS ...5
An Example of Markov chain created from connection state “a, a, c+d+d+”.5
Matrix related to Markov Chain in Figure 2. ..5
Process of grouping flows and connection by source address ...7
Process of collecting information in Source Address Layer ...8
Extraction of features for classification for a single host in a time window9
Computation of connection ratio for connection state “C+a+a+A+H+e”........................ 11
Extracting sum of CR from a single host .. 11
Extraction of feature vector from a single host ... 13
Workflow for processing binetflows with Source Address Layer 15
The Structure of classes in the Source. Address Layer ... 16
Learning Curves of Naive Bayes – TW only .. 20
Learning Curves of Naive Bayes - TW&SDW .. 20
Learning curves of SVM – TW only .. 21
Learning curves of SVM – TW&SDW.. 22
Cross-validation results for XGBoost using TW features only .. 22
Cross-validation results for XGBoost - results with TW&SDW... 23
Learning curve of XGBoost – TW only .. 23
Learning curve of XGB - TW&SDW ... 24
Performance comparison (measured per time window) .. 25
Performance comparison (measured per capture) ... 26
Comparison of percentage improvement in quality measurements between
individual classifiers per capture. ... 27

List of Tables

Thresholds for labeling flow based on its size ...4
Thresholds for labeling the flow based on its duration ..4
Thresholds for assigning periodicity labels based on the time difference.4
Distribution of labels in the training set. .. 18
Distribution of labels in the testing set .. 19
Cross-validation result SVM (parameters C, gamma) – TW only .. 21
Cross-validation result SVM (parameters C, gamma) – TW +SDW 21
Performance measurements per TW... 24
Performance measurements per capture ... 25
Measurements per time window – Dataset 42 ... 31
Measurements per capture – Dataset 42 .. 32
Measurements per time window – Dataset 43 ... 32
Measurements per capture– Dataset 43 ... 33
Measurements per time window - Dataset 44 .. 33
Measurements per capture- Dataset 44 .. 34
Measurements per time window - Dataset 45 .. 34
Measurements per capture- Dataset 45 .. 35
Measurements - Dataset 46 (per TW) .. 35

x

Measurements per capture - Dataset 46 ... 36
Measurements per time window- Dataset 48 ... 36
Measurements per capture- Dataset 48 .. 37
Measurements per time window- Dataset 51 ... 37
Measurements per capture- Dataset 51 .. 38

 Introduction

1

1. Introduction

One of the most common problems of intrusion detection systems is the production
of false alarms and how to deal with them. It is vital not to overwhelm the users with
reports and alarms, especially false ones because its time and resources are limited.
At the one hand, a tool that generates too many false alarms consumes the resources
of the users and endangers their trust. On the other hand, if no alarms are generated
during an attack the users will simply stop using the tool. Stratosphere IPS for Linux
(SLIPS) is a free software developed in the Stratosphere Lab of the CTU University
in Prague [1]. SLIPS processes web flows, builds a connection from them and analyzes
the behavior patterns in the connections.

The main topic of this thesis is to improve the results of Stratosphere Linux IPS tool
to decrease the False Positive Rate of the detection. The latest version of SLIPS
implements Markov Chain models for detection of malware behaviors in the network.
SLIPS examines each connection separately which leads to increased amount of False
Alarms as well as limited accuracy. Our goal is to design and test a system, which
eliminates mentioned limits. This thesis builds on this foundation and extends it by
an additional layer of abstraction called Source Address Layer. This technique allows
deeper analysis as well as more precise classification of hosts in the monitored
network. Since SLIPS only works with flows in the traffic the data in packets is not
inspected or monitored in any manner.

We propose to build on the foundation of time windows (TW) which is being used
by latest SLIPS. The time window is a set period in which decision about each host
in the network must be made. Our goal is to extract as much information about
the individual host in each TW and create a feature vector from the information.
Afterward, we suggest using a machine learning classifier XGBoost [2] to classify
the hosts as either “Normal” or “Malicious”. An additional step is to include close
history in the decision-making process. We call this procedure Sliding Detection
Window(SDW) and by default, it uses past 12 time windows (in other words last one
hour of the traffic). The motivation for this extension is to evaluate each host with
respect to its previous actions. Another advantage is softening sudden peaks and
falls in the data.

The main contribution of this thesis is a new version of Stratosphere Linux IPS
which implements the method described above. It is free and accessible
at https://github.com/stratosphereips/StratosphereLinuxIPS. Our version of the SLIPS
contains trained XGBoost algorithm which is ready to use. Improved alerting system
is also included in the tool.

Another contribution of this thesis is an experimental evaluation of the accuracy
of classification both in individual time windows and in sliding detection window.
Comparison with the current version of SLIPS shows that the accuracy of decision has
been increased from 0.5458 to 0.5504 with using TW only. If history is included with
SDW average accuracy is 0.7693. The number of False Alarms is significantly reduced
which improves the usability of the tool. For all experiments and training of the
classifier CTU-13-Dataset [3] and other captures created in Stratosphere Project is
used.

Related Work

2

The remaining of this thesis is divided as follows: Section 3 describes the current
version of SLIPS and its pros and cons. Section 4 describes our research on extending
SLIPS and the proposed design. In Section 5 we show the suggested process
of classification. Section 6 contains detail about implementation and performance.
CTU-13-Dataset and other datasets used during the experiments are described in
Section 7. In Sections 8 and 9 we show our experiments and analyze the results. Our
conclusions are stated in Section 10.

2. Related Work

There has been done many experiments to reduce the False Positive rate in the
malware detection. There are two main concepts of false alarms minimalization. The
option is designing a more accurate system which is a complex task. Machine
Learning algorithms often used for this purpose. Sumaiya and Aswani [4]successfully
used a combination of advanced algorithms to improve the accuracy of the
classification and reduce the size of dataset required for training. The rise in the
popularity of the deep learning has brought attempts to use neural networks in the
intrusion protection. Tang [5] used Deep Neural Network in the software defined
networks, but so far with only average results. A different approach for improving the
performance of Network Intrusion Detection Systems (NIDS) is incorporating
additional sources of information as shown with Bayesian networks in [6]. The method
of adaptive learning using the human verification has been proposed in 2004 by
T. Pietraszek in [7]. The main concept is to gradually improve the performance of the
classifier with manually verified samples.

Another approach to the reduction of the False Positive ratio is post-processing
generated alerts before reporting to the user. T. Pietraszek and A. Tanner [8] described
several ways of using machine learning algorithms in this area. Clustering is a typical
example of that as shown in [9]. Another way of dealing with the problem is to filter
the alerts using a data mining technique. Xiao and Li [10] show the usage of Outlier
Detection results the reducing of the FP rate.

In our approach, we combine both ways described above. CH. Katar studied described
several methods for combining of different models when designing in [11].
He concluded that even though some methods perform very well in certain classes
of intrusion, they lack the accuracy in the global problem domain. Katar proposes
combining the strength of several models to achieve the overall performance of the
NIDS.

In our solution, we build on the foundation of the first version of Stratosphere IPS [1]
which includes a system for detecting malware by matching behavioral models.
Partial detections are clustered, and Extreme Boosting Classifier (XGBoost) [2] used
for classification.

 Stratosphere Linux IPS

3

3. Stratosphere Linux IPS

Stratosphere IPS is a project to research, develop and verify methods to detect
malware traffic in the network [12]. It was born in the Computer Science department
of the Faculty of Electrical Engineering, CVUT in 2015 as the result of a Ph.D. thesis [1].
The algorithms developed in this project were first implemented in an intrusion
prevention tool for Linux called SLIPS (Stratosphere Linux IPS). SLIPS implements these
machine learning methods to identify the behavior of malware in the network. It is
free software and its goal is to make available the advanced algorithms to the broad
community of civil society organizations.

Among the main characteristics of SLIPS are that it receives bidirectional flow and it
analyzes the traffic by separating the behaviors of each connection. SLIPS does not
read nor receives packets from the network because its goal is to analyze high-level
behaviors and not content. Currently, the bidirectional flows are generated
by Argus [13].

A stream of flows is divided into time windows (TW). Flows are grouped
by connections - each connection is defined by quadruple of Source Address,
Destination Address, Destination Port, Protocol. After receiving, each flow is coded
as a character based on its properties. Character obtained in that way is appended
 to the previous state of the connection. Afterward, the newly created state is
compared to the behavioral models of malware.

Each of the models has been created from real malware and represents a certain type
of attack. If any of the models matches, the connection is labeled as 'Malicious'. If no
similarity is found, it's label is set to 'Normal'. When all flows in the TW are processed,
each connection with label 'Malicious' is reported. Subsequently, any host with any
‘Malicious’ connection is marked as infected. The downside of using models
of malware is that if the tool encounters the unknown type of attack, it has no way
to recognize it. Such malware is labeled as ‘Normal’ which results in increased False
Negatives.

Figure 1: Labeling process in the original version

Stratosphere Linux IPS

4

3.1. Matching a connection state and behavioral models

A connection must be transformed to the special form before it is compared
to the behavioral models. Since the content of packets is not used in the Stratosphere
project, only the flow properties are used for the transformation.

Size S (Bytes) < 250 < 1100 >= 1100

Label Small Medium Large

Table 1: Thresholds for labeling flow based on its size

Duration (s) < 0.1 < 10 >= 10

Label Short Medium Long

Table 2: Thresholds for labeling the flow based on its duration

Two previous flows are used for computing the periodicity of the current flow. More
precisely, the timestamps of the flows. Let us call ��� the timestamp of the current
flow, ����� timestamp of previous flow and ����� the timestamps of the flow before.

Then Time difference TD of the current flow is computed using following formula:

Equation 1: Time difference of a flow

��� = |(����� − �����)− (��� − �����)|

After obtaining the time difference, the label for periodicity can be assigned.

Time difference < 1.05 < 1.3 < 5 >= 5

Periodicity Strong
Periodicity

Weak
Periodicity

Weak
Non-Periodicity

Strong
Non-
periodicity

Table 3: Thresholds for assigning periodicity labels based on the time difference.

3.2. Interpreting a connection state as a Markov Chain

When the class of each feature of the flow is known, it can be coded by character.
String characters representing properties of the flow and its time difference define
the state and behavior of the connection in time.

 Given character and time difference are appended to the connection state. Including
TD in the state is important to differentiate periodicity of 1 second from the periodicity
of 1 month. Updated state of the connection is then compared to the behavioral
model. Key in Figure 2 defines characters corresponding with each set of features.

 Stratosphere Linux IPS

5

Connection state represented by a string of characters can be interpreted as first
order Markov Chain model. That is a model of transition probabilities from one
character to another. Let us consider connection with state “a, a, c+d+d+”. Markov
chain and corresponding matrix are shown in Figure 3 and Figure 4

Figure 3: An Example of Markov chain created from connection state “a, a, c+d+d+”.

Figure 4: Matrix related to Markov Chain in Figure 2.

This method is used for detecting similarities between stored malware models and
captured connections. Each model has its own threshold calculated using
the probability of generating its original string using its Markov model. For each
connection, the probability of generating its state (represented by string) is
computed. If it overcomes the threshold of the model, the connection is reported as
matching the model. Models for most common types of malware has been obtained

Figure 2: Key for coding flow as character used in Stratosphere IPS

Stratosphere Linux IPS

6

in the Stratosphere project and are under constant improvement. However, there is
always a delay between the occurrence of a new type of attack and the creation
of the corresponding model.

3.3. Implementation details of SLIPS

SLIPS is not designed to create flows of the traffic. For that, it uses Argus which is
an open source tool created by Carter Bullard [13]. Argus generates the bidirectional
netflows which SLIPS can process afterward. Since SLIPS can be run in the real-time
traffic it is necessary to read the flows as fast as possible. For that reason, there are
two processes in the program. The purpose of the first is to read flows from Argus
and store them in the Multiprocessing Queue. The second process reads flows from
the queue, analyze them and builds connections from them. The final step is the
compare the connection to the Markov models and generating alerts if the match is
successful.

3.4. Limits of the current state of SLIPS

Processing flows in a way described suffer from several issues. Since reporting of the
host as ‘Malicious’ depends only on the last label assigned to any of its connections,
the progress of labeling is not considered at all. Therefore, every time the tool assigns
label it considers the host as it was labeled for the first time. That way, a possible
source of additional information is skipped. Secondly, the fact that result of every
connection can lead to reporting the host as ‘infected’, leads to increased number
of false positives. On the other hand, using Malware models means that only the
known types of attacks are recognized. That means a high number of False Negatives
and overall low accuracy of the detections. Additionally, connections with same host
(same source address) are analyzed independently. That is another source
of information being ignored. A side effect of alerting per connection detection is
overwhelming the user with alerts. Since manual analysis of the potential malware
takes a lot of time and effort, mistakes made by machine learning algorithms can be
very costly.

 Source address layer

7

4. Source address layer

Since the original version of SLIPS deals with connections separately, running the tool
results in repeating detections for each time window. Two connections can share
source address and yet differ in the final detection prediction. That is a huge problem
for the users because such output is difficult to interpret. To solve this behavior, we
propose to extend SLIPS in a way which eliminates such behavior. If several
connections share a host it is possible to consider them as a part of the bigger object
and work with it as one unit. Our method is based on the additional layer
of abstraction called Source address layer. The main purpose of the layer is to gather
and assemble and store pieces of data to create a complex image of the behavior
of the host in the network in each time window. That corresponds with the main
purpose of any network IDS - detection infected hosts.

The concept of merging objects that share some characteristic is already being used
in the original version, where flows that share the source IP, destination IP, port and
protocol ale combined to create a connection. The Same process can be applied
to connection using source address as a key to group by. The motivation
for cumulating the information is to improve the performance of detection through
getting more data from the connection, such as relations between them and patterns
in their states. We suggest extracting the information from each host as a vector
of features and use machine learning algorithms as a tool for labeling the infected
host. Our hypothesis is that our technique improves the performance of SLIPS while
reducing the false alarms which we identified as one of the main issues.

Figure 5: Process of grouping flows and connection by source address

Figure 5 shows how flows are grouped by connection as it happens
in the original version. However, the result of matching each state to a Markov models
is stored together with the connection state. That allows monitoring the progress
of matching instead of the last result only is it is in the current method.

Source address layer

8

4.1. Gathering information in Source Address Layer

In the Subsection 3.1, we discussed drawbacks of the original version. We propose
to use advanced machine learning algorithms together with the data aggregated
in the Source Address Layer to improve the overall performance of the SLIPS detection
abilities. Classification is being done on the host level which means we need to create
a process of summarizing information stored in the Source Address layer in a form
which can be used by the classifier. For this purpose, a vector of features is being
used. All features are based on the result of the comparison to the malware models.
However, they are not tight to any specific type. That is an advantage for the further
development of the SLIPS because additional means of similar behavior comparison
can be easily plugged into the system.

SLIPS works on a time window basis which means, that at the end of each TW
(5 minutes by default) it labels every host. For the classification set of features is
extracted from the host, which describes the behavior of the host in the TW.
In addition to the activities in the current TW, the past behavior is considered as well.
The Sliding Detection Window (SDW) is used for collecting information about the
behavior of a host in a fixed number of previous time windows. In the default settings,
we use 12 previous TW. The features from the current time window and the SDW are
stored in a vector based on which the host is labeled.

Figure 6: Process of collecting information in Source Address Layer

In Figure 6 we show how the structure of original SLIPS is used in the information
gathering process. Original parts are marked with dashed line. The centerpiece of the
Source Address layer is the host in which the data from the original version is stored
and pre-processed to a form which a classifier can work with. Potential alerts are also
gathered in the host.

 Classification

9

5. Classification

In the 3.4 we discussed drawbacks of the original version. We propose to use
advanced machine learning algorithms together with the data aggregated
in the Source Address Layer to improve the overall performance of the SLIPS detection
abilities. Classification is being done on the host level which means we need to create
a process of summarizing information stored in the Source Address layer in a form
which can be used by the classifier. For this purpose, a vector of features is being
used. All features are based on the result of the comparison to the malware models.
However, they are not tight to any specific model. That is an advantage for the further
development of the SLIPS because additional models of malware or other means
of behavioral detection can be easily plugged into the system.

Slips works on a time window basis which means, that at the end of each TW
(5 minutes by default) it labels every host. For classification set of features, which
describe the behavior of the host in the TW, is extracted. In addition to the activities
in the current TW, past behavior is considered as well. Sliding Detection Window
(SDW) is used for collecting information about the behavior of a host in a set number
of previous time windows. In default settings, we use 12 previous TW. Features
from the current time window and the SDW are stored in a vector based on which the
host is labeled.

Figure 7: Extraction of features for classification for a single host in a time window

In Figure 7, we show an example of Sliding Detection Window in a single host.
For the sake of simplicity, we decreased the width of the SDW to 3. The important
property of the SDW is that it changes over time so only the features from the short-
term history are included.

Classification

10

5.1. Features extracted in a Time Window

To describe the behavior and properties of a host in 1 time window we use following
a set of features:

(i) Amount of connections

(ii) Sum of connection ratios

(iii) Mean of connection ratios

(iv) Amount of connections without any matching state

(v) Amount of connections with at least one matching state

(vi) Number of connections with all matching states

(vii) Percentage of connections without any matching state

(viii) Percentage of connections with at least one matching state

(ix) Percentage of connections with all matching states

(x) Number of new connections states created in this TW

(xi) Number of new connections states matching any model

(xii) Percentage of new connections states matching any model

In the following Subsections, we describe and explain each of the features.

5.1.1. Connection ratio

One of the most important features is a sum of Connection ratios (CR). The CR is
a property of individual connections and describes how much does the connection
match the Markov models. In other words, it is an amount of successful comparisons
with any model in the TW over the number of all comparisons in the TW. Remember
that one comparison is done for each new flow assigned to the connection.

Equation 2: Matching function of state and model

�:�× � → {0,1}, �(�,�)= �
1, � ∼ �
 0, ��ℎ������

Matching functions f describes the situation when connection state s matches
malware model m. It is a core part of the formula for Connection ratio:

Equation 3: Connection ratio

��:� → 〈0;1〉, ��(�)=
∑ ∑ ����,� ���

�� �
�
�� �

|�|

Connection ratio shows us the overall matching of the connection and Markov
models. It is common that malicious connections tend to have more states (they
consist of more flows). That is the reason use a percentage instead of sum.

 Classification

11

Connection C1 in Figure 8 has 6 states which are compared to the malware behavioral

model. Only 3 of the states match from which we can say that ��(��)=
�

�
= 0.5. It is

important to note that if ��(�) = 0 it does not mean that there is no malicious
behaviror in connection C. Each of the models is tailored to detect a specific type
of malware behavior. Therefore, if the behavior of the connection differs from the
models it might be labeled clean even though it is malicious.

5.1.2. Connection ratios sum and mean

When CR for each of the connections is known, we can compute the sum and mean
of connection ratios. The sum of the CRs shows how the overall matching of the host
with the models.

However, only the sum is not enough. Let us consider two hosts, both with 2
connections. Host A has one connection with all states matching some
of the models and connection that has no such states. The sum of the CR of host A is
1. Host B has two connections with CR = 0.5. That means the sum of CR for B is also 1.
Using mean of the connection ratios as one of the features increases the separability
of connections. For host in Figure 9, the sum of CR = 1.5250 and mean of CR = 0.3813.

Figure 8: Computation of connection ratio for connection state “C+a+a+A+H+e”

Figure 9: Extracting sum of CR from a single host

Classification

12

5.2. Sliding Detection Window (SDW)

When the extracting of features from a host, each TW is treated as an independent
unit. However, the connection often last longer the 1 time window. In those cases,
part of the information is being lost with the end of the time window. To prevent it,
we propose the concept of the sliding frame in which information about previous
actions of the host is gathered as a complement to the features extracted
in the current TW. It is called Sliding Detection Window (SDW) and it is used for adding
the short-term history in the decision-making process. Estimation of the ideal width
of the SDW is a complex task which requires a variety of experiments. In this paper,
we used a fixed width of both TW and SDW. A 5-minute time window is a default
option of the original SLIPS. For the SDW we use the last 12 TW which is equal
to the one hour of traffic. Any changes in the widths of either TW or SDW require
re-training the classifier.

SDW collects the following information:

(i) Amount of connections without any matching state

(ii) Amount of connections with at least one matching state

(iii) Number of connections with all matching states

(iv) Percentage of connections without any matching state

(v) Percentage of connections with at least one matching state

(vi) Percentage of connections with all matching states

Features from the SDW are appended to the vector of features from
the current time window and used as an input for the classifier. In Section 8, we show
the comparison between classification using time window extended with SDW and
using TW only.

 Classification

13

5.3. Vector of features

When TW finishes, a vector of features is extracted from each host which has
a connection updated state updated. The vector contains 18 elements – 12 features
from the TW and 6 obtained from the SDW.

Figure 10: Extraction of feature vector from a single host

If we analyze the host from Figure 10 we obtain the following vector of features:
(2; 1.4; 0.7; 0; 2; 1; 0; 1; 0.5; 9; 6; 0.6667; 1; 3; 1; 0.25; 0.75; 0.25). First 12 items belong
to the current time window; the rest is extracted from the SDW of width 3.

5.4. Classifiers

Machine learning algorithms can be used for classifying the host based on the set
of featured gathered in both time window and SDW. For that, a set of training samples
is required to create the model. Statistical methods are used to estimate the
parameters of the model. In our experiments, we used three types of classifiers. First
is based on the Bayesian decision theory. It has been used in the similar problem with
notable results. The second type of classifier is the Support Vector Machine (SVM) [14].
SVM is a robust classifier which can be used even in the cases with non-separable
data. The last classifier we use is an algorithm called XGBoost [2] which is a shortcut
for Extreme Gradient Boosting. XGBoost was introduced in 2016 and it combines
features of several classifiers. We use XGBoost for its scalability and ability
to generalize which is useful with the complex task such as malware detection.

5.4.1. Naive Bayes

Naïve Bayes (NB) method belongs to the family of algorithms based on the studies
of Thomas Bayes (1702-1761). The core idea in the Bayesian classification is that there
is a hypothesis that a sample belongs to a certain class. Evidence is then gathered
and used for computing probability that the hypothesis is correct.

Classification

14

5.4.2. Support Vector Machine

Support Vector Machine (SVM) is a learning algorithm introduced by Vapnik
and Chervonenkis [15] in 1979. However, improved version [14] using soft margin
for dealing with outliers is currently the most commonly used.

It is capable of both linear and non-linear classification. SVM tries to find
the hyperplane which divides the training samples in such way, that the margin
between the samples and the hyperplane. The motivation behind that is the increase
generalization abilities of the model. SVM is capable of both linear and non-linear
classification. If the data is not linearly separable, Kernel trick [16] transform the data
to a higher dimension. Although it helps the separation, it also influences
the generalization model. In our experiments, we use Radial Basis function as a kernel
function [17].

5.4.3. XGBoost

XGBoost (Extreme Gradient Boost) algorithm [2] which was introduced in 2016 and it
has won several ML competitions since. It is based on the Gradient boosting Machine
[18] introduced by Freidman in 1999. The algorithm combines techniques known from
other classifiers such as prevention of overfitting with regularized model
(used in Regularized Greedy Forrest [19]). Because of the variety of the types
of malware, it is difficult to find a model with enough generalization abilities needed
classifying different types of Malware. Another benefit of XGBoost is speed. The
algorithm is designed to maximize efficiency and can be run in parallel. When running
SLIPS online reducing the time complexity of the program is very important since lots
of data needs to be processed in real-time.

 Implementation

15

6. Implementation

We used Python for implementing all the routines and algorithms. It is a simple
yet extremely powerful tool especially suited for machine learning problems.
For implementing the machine learning parts we used Scipy [20], XGBoost [2] and
scikit-learn [21]. Those are highly optimized libraries which help to speed up the run
of the tool. Matplotlib [22] was used to generate graphs and figures. Source code with
all can be downloaded and used for free from https://github.com/ondrej-
lukas/StratosphereLinuxIPS

Figure 11: Workflow for processing binetflows with Source Address Layer

Implementation

16

6.1. Structure of classes in Source Address Layer

Source Address Layer is built on the foundation of the original version. It uses
the same interface for reading and parsing bidirectional flows. A system for updating
states of the connection and its matching with malware models remains unchanged.

 Figure 12: The Structure of classes in the Source. Address Layer

The core piece of the Sour Address Layer is an IPHandler class. It is responsible
for storing the SourceAddress objects and information within them such as partial
detection from Markov models, labels from the XGBoost and alerts corresponding
to the. It serves as a bridge between the new functionality and structures of original
SLIPS. Classifier class is used for the labeling. It is not designed for training
which means pre-trained classifier should be provided in a form of serialized object.

When the flow is read and input for the IP Handler is a tuple containing the flow, and
the result of matching from the Markov models (partial detection). The tuples are
stored in the SourceAddress for analysis at the end of the time window. When TW
finishes IPHandler selects hosts which state has been changed in the TW and extract
the feature vectors. List of vectors is processed by the classifier which returns a list
of labels. If the address is labeled ‘Malicious’ instance of the Alert object is created
and stored in the Source Address.

6.2. Alerts

When a host is labeled as ‘Malicious’ user should be notified. Alerts in the original
version were reduced to a simple print in the console. We introduced the basic Alert
class and its derivate IPDetectionAlert. An instance of IPDetectionAlert is created
upon any detection.

Once there is a host labeled as ‘Malicious’, the user is notified. In the original SLIPS,
alerts were printed on the standard output. Because of the simplicity of this solution
we created the Alert object which serves as a container for as much information about
the detection as possible. If the detection should be checked manually, it is vital
to provide the user with as much information as possible to make the verification

 Implementation

17

simpler. Alerts include the source, time, WHOIS information about the destination
address if such is available and the vector of features which was used
for the classification. That is essential if we want to use the manual verification
to re-train the classifier with additional data.

When the run of the program ends (both at the end of the capture or when
interrupted) all alerts are stored in the log file as well as shown in the console.

6.3. WHOIS Information

One of the features SLIPS helps the users to verify detections is a WHOIS service1.
It is free online databases containing the information about owners of individual
domains. There is a library for Python which can search the online database but if
there is a high number of queries for the database the response time rises. To prevent
the creation of bottleneck because of the secondary feature of low importance, we
created a WhoisHandler class which has an offline file containing the whois
information and serves as a proxy for getting it. Before the query to the online
database is created WhoisHandler searches the data stored locally for the presence
of the information wanted. If the search is not the successful query is sent and the
result is stored for further use. When the program starts, the content of the local
WHOIS file is loaded into Python dictionary which eliminates any delay when
searching for the information. File containing WHOIS information is distributed
together with the rest of the scripts.

6.4. Performance

Since SLIPS is designed to run in real time, it is required to process a large amount
of data very fast. There are hundreds of connections to be classified in each TW. Scipy
library together with the scikit-learn provides us with highly optimized tools for data
processing as well as a variety of machine learning algorithms. Because of the
grouping on several levels, plenty of searching in the data structures is required.
Python Dictionaries are very suitable for that as their average time complexity
for most operations is O (1)2.

6.5. Using SLIPS

SLIPS can be used both for real-time detection and analysis of the binetflow files.
For the real-time detection, Argus tool must be installed and running to process the
traffic and create the binetflow file.

Example of running SLIPS with real time data from Argus:

ra -F [slipsfolder]/ra.conf -n -Z b -S 127.0.0.1:902 | python slips.py -
f [models folder] -v 2 -d

An example of an offline run of slips with verbosity 2 and included WHOIS info:

cat [filename] | python slips.py -f [models folder] -v 2 -d

List of all available parameters can be displayed with the command:

python slips.py -h

1 https://pypi.python.org/pypi/ipwhois
2 https://wiki.python.org/moin/TimeComplexity

Dataset

18

7. Dataset

For both training of the classifier and evaluation of its accuracy, choice of data is
essential. Data used in all our experiments comes from the Stratosphere Project.
For testing CTU-13-Dataset [3] has been used. It consists of a variety of different
Malware scenarios as well as normal hosts and background traffic. That is useful
for simulation of regular traffic. All datasets we use in our experiments are labeled
based on deep manual analysis of the captures.

7.1. Training Data

For most machine learning algorithm structure of the training data is essential.
We combined real captures of a variety of types of malware in different scenarios
to avoid overfitting to just one kind of malware. Normal samples are included
in the training set as well. Those were obtained by monitoring the traffic of common
users in the university network as well as from the normal hosts included in the
malware captures. Deeper information about the datasets can be found in the
description at https://stratosphereips.org/category/dataset.html.

The balance of the samples in the training set is another key factor of learning.
If the set it significantly imbalanced, learning of the classifier is biased towards
the class with more samples in the set. Distribution of samples among each class is
shown in the following table. The sample is a vector of features extracted from a host
in one time window.

Dataset Normal samples Malicious Samples
CTU-Malware-Capture-Botnet-100 1,537 4,869
CTU-Malware-Capture-Botnet-119-2 1,048 5,226
CTU-Malware-Capture-Botnet-221-2 8,141 807
CTU-Malware-Capture-Botnet-244-1 1,495 7,801
CTU-Normal-3-Public 750 0
CTU-Normal-4-only-DNS 22 0
CTU-Normal-5 159 0
CTU-Normal-6-filtered 73 0
CTU-Malware-Capture-Botnet-50 (part) 272 0
CTU-Malware-Capture-Botnet-47 (part) 101 35
TOTAL 13,598 18,738

Table 4: Distribution of labels in the training set.

7.2. Testing Data

For testing, we use data from the CTU-13-Dataset. Each of them is a real capture
of a malware executed in the Stratosphere Project. Type of malware being executed
differ among dataset which simulates the real network traffic. The original dataset
contains a lot of background traffic. For such traffic, the real label is very difficult to
assign because on limited information about the host. Therefore, we filtered all
background traffic from all datasets and for all experiments, we used only data from
hosts which are manually checked.

 Experiments

19

Datasets used for testing:

Dataset Normal samples Malicious Samples
CTU-Malware-Capture-Botnet-42 192 58
CTU-Malware-Capture-Botnet-43 67 43
CTU-Malware-Capture-Botnet-44 998 184
CTU-Malware-Capture-Botnet-45 142 33
CTU-Malware-Capture-Botnet-46 17 5
CTU-Malware-Capture-Botnet-48 14 2
CTU-Malware-Capture-Botnet-51 147 214
TOTAL 1,577 539

Table 5: Distribution of labels in the testing set

8. Experiments

The main goal of the experiments is to measure the difference in the quality
of detection of the original version of SLIPS and the implementation we propose.
Secondly, we want to determine if classification based on Sliding Detection Window
leads to better results compared to the usage of time window features only.
Additionally, we show the process of training the classifier which is a part of the new
version of SLIPS. For training, cross-validation and measurements of the performance
we use tools from the scikit-learn library. Plots and graphs are created
by Matplotlib [22] library.

Since the original SLIPS classifies each connection separately, we need to define
a measurement which allows us to compare it to the system which is making
a decision per host. For the original SLIPS, we consider host as detected (labeled as
‘Malicious’) in the time window if there is at least detected connection of the host
in the TW. With that, we can compare the classification in each TW. A second
measurement is the number of hosts reported over all time windows. The host is
considered reported as ‘Malicious’ if it is detected in at least one TW. Each experiment
is performed for the original version of SLIPS and both TW and SDW trained
the classifier.

To demonstrate the process of training we show data from cross-validation which
was used for tuning the parameters of the classifiers. 5-folds with Leave on out
technique. Accuracy was the criterion used in the finding the optimal parameters.
Because of the time complexity of the cross-validation. We used only 10 000 samples
in the cross-validation.

Settings of parameters obtained from the cross-validation are used for the learning
curves. Those show how the size of the testing dataset influences the performance.

Experiments

20

8.1. Training

Figure 13: Learning Curves of Naive Bayes – TW only

Figure 14: Learning Curves of Naive Bayes - TW&SDW

 Experiments

21

8.1.1. SVM

 gamma = 0.001 gamma = 0.0001 gamma = 1e-05
C = 1 0.630 0.627 0.597
C = 10 0.639 0.628 0.622

C = 100 0.806 0.638 0.629
C = 1000 0.826 0.645 0.634

 Table 6: Cross-validation result SVM (parameters C, gamma) – TW only

Table 7:Cross-validation result SVM (parameters C, gamma) – TW +SDW

Figure 15: Learning curves of SVM – TW only

 gamma = 0.001 gamma = 0.0001 gamma = 1e-05
C = 1 0.622 0.615 0.580
C = 10 0.618 0.610 0.610
C = 100 0.733 0.620 0.615

C = 1000 0.818 0.617 0.620

Experiments

22

Figure 16: Learning curves of SVM – TW&SDW

8.1.2. XGBoost

Gamma= 0.1

Gamma= 0.2

 estimators lr =0.2 lr=0.3 lr = 0.4 estimators lr =0.2 lr=0.3 lr = 0.4
400 0.8250 0.8230 0.8270 400 0.8250 0.8200 0.8220
600 0.8250 0.8230 0.8270 600 0.8250 0.8200 0.8220
800 0.8250 0.8230 0.8270 800 0.8250 0.8200 0.8220
1,000 0.8250 0.8230 0.8270 1,000 0.8250 0.8200 0.8220

Gamma = 0.3

Gamma = 0.4

 estimators lr =0.2 lr=0.3 lr = 0.4 estimators lr =0.2 lr=0.3 lr = 0.4
400 0.8270 0.8180 0.8250 400 0.8180 0.8150 0.8170
600 0.8270 0.8180 0.8250 600 0.8180 0.8150 0.8170
800 0.8270 0.8180 0.8250 800 0.8180 0.8150 0.8170

1,000 0.8270 0.8180 0.8250 1,000 0.8180 0.8150 0.8170
Figure 17: Cross-validation results for XGBoost using TW features only3

3 lr is a shortcut for Learning rate

 Experiments

23

Gamma= 0.1

Gamma= 0.2

 estimators lr =0.2 lr=0.3 lr = 0.4 estimators lr =0.2 lr=0.3 lr = 0.4
400 0.8220 0.8170 0.8130 400 400 0.8200 0.8170
600 0.8220 0.8170 0.8130 600 600 0.8200 0.8170
800 0.8220 0.8170 0.8130 800 800 0.8200 0.8170
1,000 0.8220 0.8170 0.8130 1,000 1,000 0.8200 0.8170

Gamma = 0.3

Gamma = 0.4

 estimators lr =0.2 lr=0.3 lr = 0.4 estimators lr =0.2 lr=0.3 lr = 0.4
400 0.8200 0.8230 0.8270 400 0.8220 0.8200 0.8250
600 0.8200 0.8230 0.8270 600 0.8220 0.8200 0.8250
800 0.8200 0.8230 0.8270 800 0.8220 0.8200 0.8250
1,000 0.8200 0.8230 0.8272 1,000 0.8220 0.8200 0.8250

Figure 18: Cross-validation results for XGBoost - results with TW&SDW

Figure 19: Learning curve of XGBoost – TW only

Experiments

24

Figure 20: Learning curve of XGB - TW&SDW

8.2. Testing of performance

8.2.1. Performance comparison per TW

 TW&SDW TW only Original
True positive rate 0.2206 0.2206 0.0021
True negative rate 0.9362 0.9250 0.9014
Precision 0.5755 0.5311 0.3663

Negative predictive value 0.7638 0.7624 0.4159
False positive rate 0.0638 0.0750 0.0986
False discovery value 0.4245 0.4689 0.6337
False negative rate 0.7794 0.7794 0.9979
Accuracy 0.7445 0.7359 0.4171
F1-score 0.2965 0.2832 0.0041

Table 8: Performance measurements per TW

 Experiments

25

 TW&SDW TW only Original
True positive rate 0.6404 0.8571 0.4286
True negative rate 0.7366 0.3333 0.6429

Precision 0.6278 0.4432 0.2667
Negative predictive value 0.8972 0.9000 0.7381
False positive rate 0.2634 0.6667 0.3571
False discovery value 0.3722 0.5568 0.7333
False negative rate 0.3596 0.1429 0.5714
Accuracy 0.7693 0.5504 0.5458
F1-score 0.5541 0.5528 0.2619

Table 9: Performance measurements per capture

Figure 21: Performance comparison – measurements per time window

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Performance per time window

TW&SDW TW only Original

Results analysis

26

Figure 22: Performance comparison – measurements per capture

9. Results analysis

Apart from accuracy, the most watched measurement for network protection
systems is a number of False positives due to the costs connected to them. Because
of that, we focus mainly on three types of measurement in the testing: False Positive
rate (also known False alarm ratio), Accuracy and F1 score which is a weighted
average of precision and recall. The F1 score shows the balance between False
positives and False negatives. When tuning the parameters of the classifiers we used
accuracy as a leading measure of quality.

9.1. Training

From the Learning curves, we see that accuracy of Naïve Bayes in much lower than
other classifiers. There are several reasons for that. Firstly, the Bayesian method
requires prior probabilities of each class. However, estimation of this values in the real
world in nearly impossible. We can also see that the variance of in the results of NB.
Naive Bayes method assumes of independence of features. When processing partial
detections from Markov models such condition is violated.

SVM and XGBoost have similar results. Analysis of the learning curves indicates that
with more training samples, results of both algorithms could improve. When
comparing the variance of the results, XGBoost outruns the SVM. Higher variance is
caused by overfitting the model to the training data. That is undesirable behavior.
After the examination of the learning process, XGBoost is suggested to be used for
classification in SLIPS.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Performance per capture

TW&SDW TW only Original

 Results analysis

27

9.2. Performance per TW

 The graph in Figure 21 shows that the similarities in the performance of both
classifiers using SDW and using features from TW only. However, compared
to the original version, we can see improvement in most of the quality
measurements. We can see that using only the features from the time window
increases the volume of correctly identified attacks. When the history is included with
the SDW, accuracy is yet increased while FP rate drops by 14%. Comparison of SDW
with the original version is even more obvious.

 The increase in accuracy is 78% in favor of SDW and the F1 score changed from 0.0041
for original version to 0.2965 with SDW which more than 70 times better result. The
main reason for this is an enormous number of false negatives of the original version.
In other words, the original version is too moderate. However, it is important to note
that when measured per time window is disadvantageous for the original version
because of assigning a label to a host based on each of its connections.

9.3. Performance per capture

When comparing results at the end of a capture we can see that using features from
TW only increases the True Positive rate significantly.

However, Figure 23 shows that cost for high TP rate is an increase in the FP rate, which
is increased by 86% compared to the original version. The difference in the accuracy
in the original version and usage of the time window only is minimal. From the user
point of view, false alarms are a great issue which means that using the classification
based on single time window is not a valid replacement of the current approach.

Results of the classifier based on the SDW are much more promising. Detections of
SDW are 40% more accurate than either in original version or when using single

Figure 23: Comparison of percentage improvement in quality measurements between individual
classifiers per capture.

100,0
86,7

0,8

111,1

49,4

-26,3

40,9

111,6

-25,3

-60,5

39,8

0,2

-75

-55

-35

-15

5

25

45

65

85

105

TP rate FP rate Accuracy F1 Score

Percentage improvements of quality measurements
between individual classifiers

TW only vs. Original TW&SDW vs. Original TW&SDW vs. TW only

Conclusion

28

TW only. There is also a significant drop in the False positive ratio – more half of the
value of the single TW classifier and 26% decrease compared to the original SLIPS.

The results support the hypothesis that records of short-term history can help to
improve the performance of SLIPS both in the more accurate detections and reduced
amount of false alarms.

10. Conclusion

In this thesis, we presented a possible extension of the Stratosphere IPS tool based
on aggregation of partial detection and its impact on the performance of the tool. We

described the designed and implementation details of Source Address Layer with and
its relation to the existing version of the SLIPS.

As part of the technique, we defined a set of features which define the behavior of a
host in one time window and presented their extraction. We also presented the
concept of Sliding Detection Window and its impact on the quality of detection. We
showed the process of aggregating and processing partial detections and
demonstrated how the processed data can be used with the machine learning
algorithms. We examined the performance of different types of classifiers when using
only data from single time window and when the short-term from SDW history is
included.

The main contribution of the thesis is a method of grouping connections by hosts in
the Source Address Layer and gathered information to improve the quality of
detections infected hosts. We experimented with several classifiers such as Support
Vector Machine(SVM) and XGBoost (XGB) and showed the quality of their predictions
using the CTU-13 Dataset. Based on the experiments, we picked the XGBoost
algorithm, tuned its parameters and trained it. Serialized trained XGB, which was
published together with the new SLIPS, is another contribution of the thesis. It is ready
to use for users without any inside knowledge. We also created a new alerting system
for SLIPS which simplifies the output of the program for a user and allows easier
verification of the detections.

To verify the impact of our technique we designed a set of test in which we compared
performance in detecting an infected host of the original SLIPS and our extended
version. The tests proved that by using the aggregated data processed by the Source
Address layer accuracy of detections is increased by 40% while the False positive rate
decreased by 30%. F1 score, which is another measure of quality shows an increase
over 110%. Therefore, we proved that our approach helps to solve some of the main
flaws of the original SLIPS.

During the testing, we experimented with the inclusion of the short-term history of
host behavior in the classification process and proved, that by using SDW to gather
information about the close history, both precision and accuracy of detections are
improved.

In the future, we would like to extend SLIPS in a way of variable width of both time
windows and SDW. Also, we would like to focus on the system of using the user-
verified alerts to re-training the classifier and boosting its performance. Another
possible way of continuation of the research is a potential usage of neural networks
and deep learning in the SLIPS.

 References

29

References

[1] S. Garcia, Identifying Modeling and Detecting Botnet Behaviors in the Network,
Tandil, Buenos Aires, Argentina: UNICEN, 2014.

[2] T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, University of
Washington, 2016.

[3] S. Garcia, M. Grill, J. Stiborek and A. Zunino, "An empirical comparison of botnet
detection methods," Computers and Security Journal, Elsevier, pp. 100-123,
2014.

[4] S. T. Ikram and C. K., "Improving Accuracy of Intrusion Detection Model Using PCA
and optimized SVM," Journal of Computing and Information Technology, vol. 24,
no. 2, p. 133–148, 2016.

[5] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi and M. Ghogho, "Deep learning
approach for Network Intrusion Detection in Software Defined Networking," in
Wireless Networks and Mobile Communications (WINCOM), 2016, Fez, Morroco,
2016.

[6] C. Kruegel, D. Mutz, W. Robertson and ValeurFredrik, "Bayesian Event
Classification for Intrusion Detection," in Computer Security Applications
Conference, Las Vegas, NV, USA, USA, 2003.

[7] P. T., "Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection," Recent Advances in Intrusion Detection, vol. 3224, pp. 102-124, 2004.

[8] T. Pietraszek and A. Tanner, "Data mining and machine learningd Towards
reducing false positives in intrusion detection," Information Security Technical
Report, vol. 10, no. 3, pp. 169-183, 2005.

[9] R. Perdisci, G. Giacinto and F. Roli, "Alarm clustering for intrusion detection
systems in computer networks," Engineering Applications of Artificial
Intelligence , no. 19, pp. 429-438, 2006.

[10] F. Xiao and X. Li, "Using Outlier Detection to Reduce False Positives in Intrusion
Detection," in IFIP International Conference on Network and Parallel Computing,
Shanghai, China, China, 2008.

[11] Katar and Chaker, "Combining Multiple Techniques for Intrusion Detection,"
International Journal of Computer Science and Network Security, vol. 6, no. 2, pp.
208-218, 2006.

[12] S. Garcia, "Stratosphere IPS Project," [Online]. Available:
https://stratosphereips.org/. [Accessed 2 20 2017].

[13] QoSient, "Argus," QoSient, LLC, 2000. [Online]. Available:
https://qosient.com/argus/. [Accessed 17 3 2017].

References

30

[14] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning , vol. 20,
no. 3, p. pp 273–297, 1995.

[15] V. Vapnik and A. Chervonenkis, Theory of Pattern Recognition, Moscow: Nauka,
1979.

[16] Y. Cho and L. K. Saul, "Kernel Methods for Deep Learning," in Advances in Neural
Information Processing Systems 22, Vancouver, B.C., Canada, 2009.

[17] B. Schölkopf, K.-K. Sung, C. J. C. Burges, F. Girosi and V. Vapnik, "Comparing
Support Vector Machines with Gaussian Kernels to Radial Basis Function
Classifiers," IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 45, no. 11, pp. 2758-
2765, 1997.

[18] J. H. Friedman, "Greedy Function Approximation: A Gradient Boosting Machine,"
The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.

[19] T. Zhang and R. Johnson, "Learning nonlinear functions using regularized greedy
forest," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 5, 2014.

[20] E. Jones, E. Oliphant, P. Peterson and e. al, "SciPy: Open Source Scientific Tools for
Python," 2001. [Online]. Available: http://www.scipy.org/ . [Accessed 30 4 2017].

[21] P. Fabian and Et Al., "Scikit-learn: Machine Learning in Python," in Journal of
Machine Learning Research, Brookline, MA, Microtome Publishing, 2011, pp. 2825-
2830.

[22] J. D. Hunter, "Matplotlib: A 2D Graphics Environment," Computing in Science &
Engineering, no. 9, pp. 90-95, 2007.

[23] G. P. Spathoulas and S. K. Katsikas, "Reducing false positives in intrusion
detection systems," Computers & Security, no. 29, pp. 35-44, 2010.

[24] W. Meng, X. Luo, S. Furnell and J. Zhou, Protecting Mobile Networks and Devices:
Challenges and Solutions, Auerbach Publications, November 17, 2016.

 Appendix

31

Appendix

In the first part of the appendix, results of individual experiments are listed. The
second part contains a table of symbols which are commonly used throughout the
thesis and their explanation. The content of the CD attached to the thesis is described
in the last part of the appendix.

Detailed results of testing

In Subsection 8.2 only the average results were shown. In this section of appendix
results of experiments in individual datasets are listed. Data is divided by the time of
experiment: measurements per TW means that the confusion matrix was updated in
every time window while in the results per capture confusion matrix was created after
all input file was processed. All datasets are part of CTU-13-Dataset. Numbers in the
dataset name correspond with the labels used in CTU-13-Dataset. For example,
Dataset 42 is equal to CTU-Malware-Capture-Botnet-42.

TW&SDW TW only Original

TPR 0.4828 0.4828 0.0027

TNR 0.9896 0.9115 0.3333

Precision 0.9333 0.6222 0.9355

NPV 0.8636 0.8537 0.0001

FP rate 0.0104 0.0885 0.6667

FDR 0.0667 0.3778 0.0645

FN rate 0.5172 0.5172 0.9973

Accuracy 0.8720 0.8120 0.0027

F1 score 0.6364 0.5437 0.0053

Table 10: Measurements per time window – Dataset 42

Appendix

32

TW&SDW TW only Original

TPR 1.0000 1.0000 1.0000

TNR 0.6667 0.3333 0.3333

Precision 0.5000 0.3333 0.3333

NPV 1.0000 1.0000 1.0000

FP rate 0.3333 0.6667 0.6667

FDR 0.5000 0.6667 0.6667

FN rate 0.0000 0.0000 0.0000

Accuracy 0.7500 0.5000 0.5000

F1 score 0.6667 0.5000 0.5000

Table 11: Measurements per capture – Dataset 42

TW&SDW TW only Original

TPR 0.8605 0.4186 0.0118

TNR 0.9254 0.9701 0.9921

Precision 0.8810 0.9000 0.8852

NPV 0.9118 0.7222 0.1619

FP rate 0.0746 0.0299 0.0079

FDR 0.1190 0.1000 0.1148

FN rate 0.1395 0.5814 0.9882

Accuracy 0.9000 0.7545 0.1700

F1 score 0.8706 0.5714 0.0233

Table 12: Measurements per time window – Dataset 43

 Appendix

33

TW&SDW TW only Original

TPR 1.0000 1.0000 1.0000

TNR 0.5000 0.0000 0.5000

Precision 0.5000 0.3333 0.5000

NPV 1.0000 NaN 1.0000

FP rate 0.5000 1.0000 0.5000

FDR 0.5000 0.6667 0.5000

FN rate 0.0000 0.0000 0.0000

Accuracy 0.6667 0.3333 0.6667

F1 score 0.6667 0.5000 0.6667

Table 13: Measurements per capture– Dataset 43

TW&SDW TW only Original

TPR 0.0870 0.0163 0.0000

TNR 0.9940 0.9930 0.9909

Precision 0.7273 0.3000 0.0106

NPV 0.8552 0.8456 0.2755

FP rate 0.0060 0.0070 0.0091

FDR 0.2727 0.7000 0.9894

FN rate 0.9130 0.9837 1.0000

Accuracy 0.8528 0.8409 0.2748

F1 score 0.1553 0.0309 0.0001

Table 14: Measurements per time window - Dataset 44

Appendix

34

TW&SDW TW only Original

TPR 1.0000 1.0000 1.0000

TNR 0.6667 0.3333 0.6667

Precision 0.5000 0.3333 0.5000

NPV 1.0000 1.0000 1.0000

FP rate 0.3333 0.6667 0.3333

FDR 0.5000 0.6667 0.5000

FN rate 0.0000 0.0000 0.0000

Accuracy 0.7500 0.5000 0.7500

F1 score 0.6667 0.5000 0.6667

Table 15: Measurements per capture- Dataset 44

TW&SDW TW only Original

TPR 0.0909 0.3333 0.0000

TNR 1.0000 0.8592 0.9969

Precision 1.0000 0.3548 0.0000

NPV 0.8256 0.8472 0.6892

FP rate 0.0000 0.1408 0.0031

FDR 0.0000 0.6452 1.0000

FN rate 0.9091 0.6667 1.0000

Accuracy 0.8286 0.7600 0.6878

F1 score 0.1667 0.3438 0.0000

Table 16: Measurements per time window - Dataset 45

 Appendix

35

TW&SDW TW only Original

TPR 1.0000 1.0000 0.0000

TNR 1.0000 0.3333 0.3333

Precision 1.0000 0.3333 0.0000

NPV 1.0000 1.0000 0.5000

FP rate 0.0000 0.6667 0.6667

FDR 0.0000 0.6667 1.0000

FN rate 0.0000 0.0000 1.0000

Accuracy 1.0000 0.5000 0.2500

F1 score 1.0000 0.5000 0.0000

Table 17: Measurements per capture- Dataset 45

TW&SDW TW only Original

TPR 0.0000 0.2000 0.0000

TNR 1.0000 1.0000 1.0000

Precision NaN 1.0000 NaN

NPV 0.7727 0.8095 0.6438

FP rate 0.0000 0.0000 0.0000

FDR NaN 0.0000 Nan

FN rate 1.0000 0.8000 1.0000

Accuracy 0.7727 0.8182 0.6438

F1 score 0.0000 0.3333 0.0000

Table 18: Measurements - Dataset 46 (per TW)

Appendix

36

TW&SDW TW only Original

TPR 0.0000 1.0000 0.0000

TNR 1.0000 1.0000 1.0000

Precision NaN 1.0000 NaN

NPV 0.7500 1.0000 0.7500

FP rate 0.0000 0.0000 0.0000

FDR NaN 0.0000 NaN

FN rate 1.0000 0.0000 1.0000

Accuracy 0.7500 1.0000 0.7500

F1 score 0.0000 1.0000 0.0000

Table 19: Measurements per capture - Dataset 46

TW&SDW TW only Original

TPR 0.0000 0.0000 0.0000

TNR 0.9286 0.8571 1.0000

Precision 0.0000 0.0000 NaN

NPV 0.8667 0.8571 0.9022

FP rate 0.0714 0.1429 0.0000

FDR 1.0000 1.0000 NaN

FN rate 1.0000 1.0000 1.0000

Accuracy 0.8125 0.7500 0.9022

F1 score 0.0000 0.0000 0.0000

Table 20: Measurements per time window- Dataset 48

 Appendix

37

TW&SDW TW only Original

TPR 0.0000 0.0000 0.0000

TNR 0.6667 0.3333 1.0000

Precision 0.0000 0.0000 NaN

NPV 0.6667 0.5000 0.7500

FP rate 0.3333 0.6667 0.0000

FDR 1.0000 1.0000 NaN

FN rate 1.0000 1.0000 1.0000

Accuracy 0.5000 0.2500 0.7500

F1 score 0.0000 0.0000 0.0000

Table 21: Measurements per capture- Dataset 48

TW&SDW TW only Original

TPR 0.0607 0.0935 0.0000

TNR 0.9796 0.8844 0.9963

Precision 0.8125 0.5405 0.0000

NPV 0.4174 0.4012 0.2388

FP rate 0.0204 0.1156 0.0037

FDR 0.1875 0.4595 1.0000

FN rate 0.9393 0.9065 1.0000

Accuracy 0.4349 0.4155 0.2386

F1 score 0.1130 0.1594 0.0000

Table 22: Measurements per time window- Dataset 51

Appendix

38

TW&SDW TW only Original

TPR 1.0000 1.0000 0.0000

TNR 0.3333 0.0000 0.6667

Precision 0.8333 0.7692 0.0000

NPV 1.0000 NaN 0.1667

FP rate 0.6667 1.0000 0.3333

FDR 0.1667 0.2308 1.0000

FN rate 0.0000 0.0000 1.0000

Accuracy 0.8462 0.7692 0.1538

F1 score 0.9091 0.8696 0.0000

Table 23: Measurements per capture- Dataset 51

Commonly used symbols

Symbol Explanation
SLIPS Stratosphere Intrusion Protection System for Linux
TW Time window
SDW Sliding detection window
SVM Support Vector Machine
Cr Connection Ratio
NB Naive Bayes
XGBoost Extreme Gradient Boosting algorithm
TPR True positive rate
TNR True negative rate
NPR Negative predicted value
FDR False discovery rate
FP False positive
FN False negative

Content of the CD

Attached CD contains the text of this thesis, all python scripts, and source code.
Additionally, trained ready-to-use XGBoost classifier in a form of serialized object and
WHOIS file containing used as a local storage for whois information. Two binetflows
for testing are included together with their description. Lastly, results of experiments
and corresponding graphs and plots are stored on the CD.

