Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Comparison of Unity and Unreal Engine

Antonin Smid

Supervisor: doc. Ing. Jiti Bittner, Ph.D.
Field of study: STM, Web and Multimedia
May 2017

ii

Ceské vysoké uceni technické v Praze
Fakulta elektrotechnicka

Katedra pocitacové grafiky a interakce

ZADANI BAKALARSKE PRACE

Student: Antonin Smid

Studijni program: Softwarové technologie a management
Obor: Web a multimedia

Nazev tématu: Srovnani Unity a Unreal Enginu

Pokyny pro vypracovani:

Nastudujte moznosti vyvojarskych platforem pro tvorbu pocitadovych her Unity a Unreal Engine.
Porovneite tyto platformy pomoci realizace stejné hry pfiméfené slozitosti na obou platformach (napF.
PacMan). Zaméfte se predevSim na zobrazovaci moznosti srovnavanych néstroji, jako jsou
podporované materidly, svétla, osvétlovaci mapy, reflektivni mapy, podpora shaderi a
postprocessing. Vyhodnotte vizualni kvalitu vystupu subjektivnim srovnanim a srovnanim s vystupem
z offline fotorealistické simulace. Zhodnotte vliv jednotlivych efektd na rychlost zobrazovani na
Ctyfech platforméch: notebook, herni PC, mobilni telefon a GearVR. Identifikujte Uzka hrdla
zobrazovaciho fetézce pro srovnavané nastroje na véech testovanych platformach.

Seznam odborné literatury:

[1] Adam Watkins. Creating Games with Unity and Maya, Focal Press, 2011,

(2] David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time Applications with Wild
Magic, Morgan Kaufmann, 2004.

[3] Jesse Schell. The Art of Game Design: A book of lenses. CRC Press, 2008.

[4] Tomas Akenine-Moller, Eric Haines, Naty Hoffman. Real-Time Rendering. A K Peters, 2008.

Vedouci: doc. Ing. Jifi Bittner, Ph.D.

Platnost zadani: do konce zimniho semestru 2018/2019

| =3 e
prof. Ing. Jifi Zéra, CSc. prof. Ing. [Pave thka CSe.
vedguci katedry dékan

/
/ V Praze dne 4.4.2017

iv

Acknowledgements

I am grateful to Jiri Bittner, associate
professor, in the Department of Computer
Graphics and Interaction. I am thankful
to him for sharing expertise, and sincere
guidance and encouragement extended to
me.

Declaration

I hereby declare that I have completed
this thesis independently and that I have
listed all the literature and publications
used. I have no objection to usage of
this work in compliance with the act §60
Zakon c. 121/2000Sb. (copyright law),
and with the rights connected with the
Copyright Act including the amendments
to the act.

In Prague, 25. May 2017

Abstract

Contemporary game engines are invalu-
able tools for game development. There
are numerous engines available, each
of which excels in certain features. To
compare them I have developed a simple
game engine benchmark using a scalable
3D reimplementation of the classical Pac-
Man game.

The benchmark is designed to em-
ploy all important game engine compo-
nents such as path finding, physics, ani-
mation, scripting, and various rendering
features. In this thesis I present results
of this benchmark evaluated in the Unity
game engine and Unreal Engine on differ-
ent hardware platforms.

Keywords: Game Engine, Benchmark,
Unity, Unreal, 3D Pac-Man
reimplementation

Supervisor:
Ph.D.
GCGI, FEE, CTU in Prague

Praha 2, Karlovo ndmeésti 13

doc. Ing. Jifi Bittner,

vi

Abstrakt

Soucasné herni engine jsou dilezitymi né-
stroji pro vyvoj her. Na trhu je mnoz-
stvi engint a kazdy z nich vynikd v urci-
tych vlastnostech. Abych srovnal vykon
dvou z nich, vyvinul jsem jednoduchy ben-
chmark za pouziti skdlovatelné 3D reim-
plementace klasické hry Pac-Man.

Benchmark je navrzeny tak, aby
vyuzil vSechny dilezité komponenty her-
niho enginu, jako je hledani cest, fyzika,
animace, scriptovani a rizné zobrazovaci
funkce. V této praci prezentuji vysledky
benchmarku, ktery jsem implementoval
a vyhodnotil v enginech Unity a Unreal
na ruznych platformach.

Klicova slova: Game Engine,
Benchmark, Unity, Unreal, 3D Pac-Man
reimplementace

Preklad nazvu:
a Unreal Enginu

Srovnani Unity

Contents
1 Introduction 1

2 Game Engines 3

2.1 Brief introduction into the game
development

2.2 Components of the game engine .
2.2.1 Rendering.................. [
2.2.2 Animation
2.2.3 Physical engine

2.2.4 Artificial intelligence

2.2.5 Scripting oL
226 Audio 10
2.3 Contemporary game engines . ..
2.3.1 Unity 3D Engine...........
2.3.2 Unreal Engine 4
233Cry Engine3d
3 The Pac-Man Benchmark 13
3.1 Game Concept
32TheMaze.................... [14]
3.3 Pac-Man Movement
3.4 AT characters................. 17
3.5 Maze generator
3.6 Scaling the problem

vii

3.7 VR adjustments

4 Unity implementation

4.1 Game architecture and
components

4.2 Ghost navigation

4.3 Visuals

4.3.1 Models and animations

4.3.2 Materials

4.3.3 Lighting

4.3.4 User Interface

4.3.5 Screen-space effects

4.4 Profiling

5 Unreal implementation

5.1 Game architecture and
components

5.2 Ghost navigation

5.3 Visuals

5.3.1 Models and animations

5.3.2 Materials

5.3.3 Lighting

5.3.4 User Interface

5.3.5 Screen-space effects

54 Profiling

6 Results and Comparison 41

6.1 Features 411
6.2 Benchmarks.................. 45|
6.3 Visual quality
6.4 Subjective developer’s opinion . .
7 Conclusions
References
Figures 65|
A CD Contents 69

viii

Chapter 1

Introduction

Game engines are complex, multipurpose tools for the creation of games and
multimedia content. They offer an environment for an efficient development,
sometimes even without the knowledge of scripting. Game engines should
cover many different areas of the game development process such as rendering,
physics, audio, animation, artificial intelligence, and the creation of the user
interface.

Part of the development team are usually the artists (level designers,
modelers, animators) who are unable to work with code and their tasks require
a visual environment. The team can either develop a custom environment
or licence an existing middleware solution. The choice of the game engine
in the early phase of the project is crucial. That is why I have decided to
compare two of the major engines[Web| on the today’s market: Unity3D and
Unreal Engine 4.

The definition of the game engine itself is a complicated issue whereas
the game engine’s architecture may vary greatly. Monolithic systems provide
complete out of the box solutions while the modular component engines [Ac]
may offer just API and the developer has to code all the logic including
the game loop.

Anderson et al. [Ac| have covered the problematics of defining an engine
and proposed a Whiteroom Benchmark for Game Engine Selection that
compares the engines according to the features. The Whiteroom demonstrates
basic gameplay features such as doors that can be opened, player’s interaction
with objects, stairs/steps, and elevators. The benchmark is designed to use
the technical features considered standard in modern games. They have
evaluated four engines: Source, Unity, Unreal, and CryEngine and provided
the implementation notes.

1. Introduction

Another engine selection methodology proposed by Petridis et al. [PDdEP10]
empathizes the rendering features. However, those papers do not mention
any performance measurements and I would like to include those as well.

Game engines are complex tools and comparing them is a problematic
task. It is possible to realize a subjective comparison if we have a common
experience with implementing the same project on both platforms or an objec-
tive comparison where we evaluate both implementations from the perspective
of measurable criteria. For comparison, it is important to have a project
of adequate complexity, which can be implemented on both platforms in
a very similar way. That is the task I aim to accomplish in this thesis.

I have developed a simple benchmark using a scalable reimplementation
of the classic Pac-Man game [Pit]. The benchmark is designed to employ all
important game engine components including various rendering features, path
finding, physics, animation, and scripting. I have prepared three versions
of the benchmark to run on different hardware platforms. Apart from the full
benchmark for PC, I have evaluated an Android build with touch controls
and simplified GearVR [Parl5] build, to test the virtual reality performance.

In this bachelor’s thesis, I will breathy cover the game development
process and I will describe the game engine’s components in Chapter [2. Then
I analyze the Pac-Man game characteristics and explain how I use them in
the benchmark. In Chapters 4] and [5| I will cover the implementations of the
benchmark in Unity and Unreal. I will go through the individual tools that
I have used during the implementations, explain their purpose and behavior.

Finally, in Chapter |6/ I present the measured data and show images
from the game compared to the offline render from Blender Cycles [FS15].
I will point out the differences and reasons for them. In the very end I will
present my humble opinions and recommendations from a perspective of the
benchmark developer.

Chapter 2

Game Engines

B 2.1 Brief introduction into the game development

Game development is a complex collaborative discipline [Sch08]. Considering
AAA titles, the process might take even five years (Grand Theft Auto V). The
game studios have tens to hundreds of employees in various fields. Examples
of the most common professions are the concept artists, scriptwriters, the
game designers, the engine programmers, the game programmers. In every
game studio, there are 3D artists such as the modelers, character designers, the
material designers, riggers, people who care about the lighting setup, particle
effects, simulations, post process effects, then there are animators, motion
capture actors... and directors who manage the whole process. Creation
of an interactive game is comparable to the shooting of a movie. It is very
expensive; it employs many different professions, it takes a lot of time, and
there is one more similarity: The success of the final project is unsure. When
the game is released, the gamer community may or may not like it.

In the beginning, there has to be an idea. Something that makes the
game innovative, something that attracts the players. It might be completely
new gameplay concept or just an old well-established concept with a few
innovative elements. Usually, the basic game types are distinguished based
on the camera position. Common game types are 2D platformer (Mario),
2D from top view (Bulanci), 3D First person shooter (Counter strike), 3D
third person shooter (GTA), 3D strategies from the top view (Civilization),
MMO(Massive multiplayer online games like World of Warcraft).

Let’s look closer at the First person shooter. This game concept
simulates the view from eyes of a character. The player uses the mouse to
look around and WSAD keys to walk. He can see his arms, his weapon, but

3

2. Game Engines

usually, he can not see his body. This game concept is so well approved, that
most of the shooter games just use it. The players are used to controlling it,
for most of them it feels natural. By using the first person shooter controls,
the developers know it will surely work, and they can focus on other gameplay
features. Fig. shows the typical first person view.

Figure 2.1: Example of a first person view. Player is looking through the
characters eyes, he can see his arms and weapon. Image courtesy Crytek.

Then every game needs a story, characters that live the story and
an environment. The authors have to make decisions about the visual style
of the game. Is it supposed to look realistic, cartoonish, hand-drawn? It is
also important to specify the target audience to answer these questions.

When the story, stylization, game type and environment are clear, the
process continues by prototyping the gameplay and creation of the assets
which fill the environment. Usually, the concept artists draw images based on
the art directors ideas and the modelers then create characters or environments
based on these concept images. Level designers take those 3D models and
compose them into the playable game environment. They create scripts to
make the level interactive and add the AI characters.

Until now, we have not mentioned the core component of the entire
development. There needs to be a common environment for coders and
artists to put the game together. There has to be a component that renders
the assets, takes care of the game logic, the Al, the sound and the network
multiplayer. This core component is called the game engine.

As we may anticipate, there are high expectations from the game engine.
Firstly, the engine needs to render objects in real-time. It communicates
with the graphics card and creates an environment for the artists to display
and work with their assets without any knowledge of programming. The
models have materials and textures, there are lights in the scene, there may

4

2.2. Components of the game engine

be particles, but most importantly there is a camera, that looks at the scene.

Secondly, the engine needs to handle the animations. There are various
types of animations: simple change of parameters over time (position, rotation,
color, transparency), skeletal animations (moving characters with bones)
or morphing animations for facial expressions (changing the positions of
vertices inside an object). Game engine should be able to play, edit, script or
blend those animations together.

The game engine should provide an environment for scripting the game
logic. This may involve scripting languages or visual scripting solution,
prepared structure, and interfaces for the objects, messaging systems, event
systems, debugging solution, error handling and optimization tools.

There are many other functions that the engines have, it depends on the
particular engine whether or how it implements them. Most of the games need
audio handling, some physics solution, support for an artificial intelligence
or building of the User Interface. An engine can have a terrain builder, foliage
tools or cinematic tools. In these areas, the engines differ greatly.

The game engine is a key component of the game development process.
The choice of a game engine is crucial. Large game studios build upon their
proprietary engines, however, for mid-size studios, it is better to use some
of the already existing middleware solutions. It is difficult to choose an engine
based on the engines propagation materials or official documentation, that is
why I have compared two of them in this thesis.

B 22 Components of the game engine

Contemporary game engines build upon the components architecture. Game
engines are divided into several components [Ebe04], each one providing
special functionality (see Fig. 2.2). I will briefly go through the most
important ones.

. Audio
Rendering Game content
Physics
Animation Scripting Artificial
Intelligence

Figure 2.2: Game engines components overview.

2. Game Engines

B 2.2.1 Rendering

When we want to render 3D objects on the screen, our program calls the
graphical API such as OpenGL or DirectX. This interface enables us to control
the graphics card and make it display our objects. These APIs are low-level,
for simple game development, we do not want access them directly because
we would spend much more time on setup and low-level programming.

Render engine provides rendering functionalities literally at the press
of a button. We just set the objects in the scene, set up the camera, lighting,
materials and textures. When we compile the game, the render engine takes
care of rendering our scene properly. It usually comes together with a number
of shaders which we can use to simulate different materials or effects.

Render engine is the most important part of the game engine. Apart
from the gameplay, the visual presentation of the game is rated. The rendering
takes the majority of the update time. It is not unusual that over 90% of
the whole calculation is just rendering. Game logic, scripts, physics, sound
have to share the rest. Gamers expect better visual quality every year. At
the same time, the game has to run on the low-end machines as well. This
is pressuring the render engines to be as optimized as possible with visual
quality configurable during the gameplay.

In the scene, there are objects at certain positions and camera. The
camera has a configuration like real world camera lens. The most important
parameter is the view angle, in first person games, it is usually set between
60 to 90 degrees, which is equivalent to 18-28mm lens on Full Frame. Near
plane and far clipping planes define the distance from the camera, where the
objects are visible. With this information, the game engine can calculate the
matrix to transform the objects from the world coordinates to the viewport
of the camera. Then the process of occlusion culling [AMMHOS| (page 661)
cuts off all the objects, which are out of the viewing frustum (Fig. 2.3)). The
remaining objects are sorted by the depth and rendered.

camera
Y
${: = e .
near plane

Figure 2.3: Viewing frustum of the camera.

view frustum

far plane

2.2. Components of the game engine

There are different approaches to the object rendering. The traditional
Forward rendering calculates the lights and materials for every visible geome-
try and after that solves which one of them is nearest to the camera, this one is
displayed. The current approach that Unity and Unreal use is called Deferred
rendering [AMMHOS]| (pages 279-283). Multiple passes of the geometry are
rendered (Depth, Normal, Color...). The shading is the calculated based on
these passes. Only the visible fragments are shaded. Deferred rendering can
efficiently handle large amounts of lights, however, it does not help with the
shadows rendering there is no anti-aliasing and we can’t render transparent
objects using this technique.

The game engine usually provides materials or ways to create and
configure them. The materials can be unlit (just color, lights have no effect),
lit (shaded based on the lights), transparent or translucent. Textures are
images that help to define the material. There are different kinds of textures
that describe the color, roughness, reflectiveness or displacement of the
material.

When the scene is rendered, the engine applies post process effects.
These effects improve the visual quality of the final result. The most common
effects are anti-aliasing (smooths the jagged edges), ambient occlusion (darkens
the corners) and color corrections of the final image.

B 2.2.2 Animation

Not every object in the scene is a static one. Objects can be moved by physics
or animated. Almost in every game, there is some animation needed. Here 1
consider animation a predefined change in certain parameters over time. We
can animate position; the whole characters can be animated with skeletons or
the vertices inside the mesh can be formed into various poses and animated.

Simple animations are usually created inside the engine. Let’s say we
want the door to open. That means we trigger an opening animation when
the player comes close to the door and presses the action button. Door
opening animation is a change in the rotation. Because each door may open
in a different way, we do not want to animate it in the 3D software; it is
better to do so inside the engine itself. Game engines offer an environment
for animation. It usually looks like a graph. On X axes there is time and on
the Y axes there the value we want to animate. It may be any possible value
that can be set in the engine. Usually, it should be possible to change the
shape of the curve to edit the movement.

More complex types are skeletal animations. To make a character move,
we need to rig it. A rig is essentially a skeleton inside the mesh and connection

7

2. Game Engines

of bones to certain parts of the mesh. So the bones inside arm really move
the vertices on the arm. Rigged characters can be animated by hand, or by
using motion capture techniques. The final result is, for example, the walk
cycle.

The game engine is not supposed to provide an environment for the
creation of skeletal animations. However, it should be able to work with
them. The engine should be able to play and blend those animations together
so that they create continuous fluid motion. Player then does not perceive
discrete playback of animations, but a living character that can do various
tasks. For controlling the character animations, there are state machines
which decide what state the character is currently in a what animation to
play. The systems can mix more animations together and modify them to
achieve most fluid results.

Lastly, the shape of the object can be animated as well. That is useful
for creating facial expressions (Fig. . The different poses are imported
with the object into the engine. One of the poses is always the base pose.
The other poses are handled as relative distortions of the main pose. If the
distortion is set to one, the character is fully in the next pose. It is great that
the pose values can be out of the interval [0-1], they can be even negative.
All of them are then blended together to create the pose. These values can
be animated in the same way as any others. In Unity, this technique is called
Blend Shapes, in Unreal Morph Targets.

Figure 2.4: Victor facial samples - an example of using blend shapes as facial
expressions. Image courtesy Cosmos Laundromat, opensource film

2.2. Components of the game engine

B 2.2.3 Physical engine

Physics is an important part of the gameplay. Most of the games take place
in real world, so the objects within the scenes should act in a physically correct
way. The game engine usually provides a solution for such physical simulations.
Each object has a collider (simplified boundary of the object used for physics)
and some physical material which determines the mass and properties of the
surface. The engine calculates movement vectors and collisions between the
objects. We can distinguish between static objects that do not move at all
like the ground and rigid bodies which have a mass, a material with friction,
which reacts to forces, falls with gravity, etc. Additionally, the engine might
simulate soft bodies, which change their shape according to outer forces
(cloth). Although the physics simulation does not have to be extremely
accurate, it is an important part of the game development. Some engines
use external libraries for physics, such as Havok or the NVidia GPU powered
PhysX.

B 2.2.4 Attificial intelligence

Apart from the player’s character video games usually contain enemies to fight
against. These non-player characters need a certain amount of intelligence to
behave reasonably. Especially single player off-line games need the artificial
intelligence to be a bit clever so that the player does not get bored.

The main tasks of the Al are finding a path from point A to point
B and walking with the character along that path. Game engines provide
solutions for such tasks. Usually, the engine generates a navigation surface
called NavMesh (see Fig. [2.5) which is based on the static objects in the
scene. This mesh can be dynamically modified during the gameplay according
to the characters movement or rigid body physics. The Al characters are able
to walk on that mesh, and they find paths on it. The mesh can be divided
into areas with different movement costs, for example, road, mud, swamp,
water. According to the area, the Al might choose an appropriate animation.

The Al characters also have state machines, controllers and act accord-
ing to certain rules. For example in Unreal Engine, there are behavioral trees
implemented. These trees are graphs that the controller use to decide what
task the character should do. However, the game engine is not supposed to
program the Al intelligence instead of the developers. It just offers a set of
tools and systems that the developers can use, to make their AI behave as
they need.

2. Game Engines

" L N o e i

Figure 2.5: NavMesh of the Pac-Man benchmark in Unreal Engine.

B 2.2.5 Scripting

The game engine also has to provide a way to describe the game components
behavior. We can write scripts as components for objects so that the objects
can react to player’s impulses and interact with each other. In Unity, the
scripting language is C# and javascript, Unreal offers native C++ or Blueprint
visual scripting and Cry Engine scripts in C4++ or Lua. It is important that
the scripts can be added and reused to object in the scene in a way that even
a non-coder game designer could use them. It depends on the engine’s editor
how it deals with this issue. In Unity, the game designer can add the script
as a component of an object and set the properties manually. Moreover, in
Unreal, there is the whole Blueprint concept of visual coding which allows
the user to create complicated logic without writing a single line of code.

B 226 Audio

An important part of every game is a sound design and music which induces the
atmosphere. Game engines provide tools for playing and stopping soundtracks
based on game events. Advanced audio engines can simulate echo in the 3D
space or play spatial sound according to player’s position.

10

2.3. Contemporary game engines

B 23 Contemporary game engines

There is a competition between the game engines. The big companies such
as Ubisoft, Rockstar games or even Bohemia Interactive use their proprietary
engines. The third party engines are used mainly by independent developers
or smaller studios. The most used game engine in 2016 was Unity [Web]
(fig. [2.6). And it is probable it will stay this way because Unity is so easy
to use that everyone can start developing with it. The closest competition
to Unity with only 17% of its users is the Unreal Engine. Therefore I am
comparing those two engines in this thesis. Very powerful and used is also the
Cry Engine. But it is very complicated and advanced tool, not recommended
for beginners, so it is used mainly with studios.

i UNREAL <®
Q un"ly o CRY=NGIN=

Figure 2.6: Logotypes of the most used 3rd party engines.

Bl 2.3.1 Unity 3D Engine

Unity Technologies company develops Unity game engine which is currently
in version 5.6.0. It is the world’s most used engine. The first version was
released at Apple conference in 2005 and targeted only OS X development.
Since then Unity has developed and currently supports 27 platforms including
VR.

The most important quality of Unity is the ease of use. Development in
Unity is very fast, especially on mobile platforms. The projects and the build
games are small, and the export process is rather simple. The component
architecture of the engine is easy to understand. Scripting in C# is fast
and efficient. Unity has a big community; there are forums full of answers
which make the debugging easier. And lastly, there is an asset store which is
relatively cheap and contains a lot of useful assets. Only regarding graphics
Unity is a bit worse looking compared to Unreal or Cry Engine, and it does
not have good support for foliage and terrains.

11

2. Game Engines

B 2.3.2 Unreal Engine 4

Unreal engine is being developed by the Epic Games company. It is currently
the leading engine in realistic visualization, vegetation, and terrain creation.
Unreal engine is suited for larger projects. It is not suitable for developing
small mobile games, although it supports the iOS and Android support.
Unreal has Blueprint system for visual scripting. Blueprints are graphs made
of blocks connected together. The connection creates certain logic instead of
the scripts. Unreal has opened source code in C++. Also the coding language
is C++ giving the developers great control over the whole system which is
great. However, the framework is complicated and difficult to learn. The
rendering technology is a big benefit, the post-process effects are fast and
support many features. Unreal has an editor for creation of custom materials.
Unreal provides great tools for optimization and visual debugging. Lastly,
Unreal does not have such a large community as Unity, and the documentation
is weak at some points.

B 23.3 Cry Engine3

Cry Engine is a powerful engine designed by Crytek company. It is targeted
on PC and consoles. Cry engine has a state-of-the-art lighting; the rendering
capabilities are very high. Also the animation systems are advanced. Cry
engine also has powerful level design tools and supports dense vegetation.
However, it is not very user-friendly and does not suit for beginners. Logic in
Cry Engine is done by C++ and Lua scripts.

12

Chapter 3

The Pac-Man Benchmark

In this chapter, I will describe the Pac-Man game mechanics in the context
of the tested components.

Game design is a difficult discipline [Sch08], one of the well-done designs
is the Pac-Man game. Pac-Man is one of the most iconic video games of
all time. It is not too complex, but it still has a potential to employ many
components of the game engine. The original Pac-Man was an arcade game
developed by the Namco company E|7 released in 1980 in Japan [Lon07]. Pac-
Man (Figure is a yellow ball with big mouth eating little dots, also called
biscuits. The player controls the Pac-Man through the maze. There are four
ghosts in the maze, who are trying to catch the Pac-Man.

Figure 3.1: Pac-Man, the main character.

The game is simple to play; originally it was controlled by a joystick,
in this benchmark version I use a script to move the Pac-Man precisely or
keyboard arrows to make the game actually playable. I have transferred
the maze into today’s graphics, using physically based shaders. There is
a physical component used for moving the characters around. The benchmark
also uses navigation Al component to manage the ghost’s movements.

"http://pacman.com/en/

13

3. The Pac-Man Benchmark

B 3.1 Game Concept

The Pac-Man is an arcade game. The main yellow character is going through
the maze, eats biscuits and avoids the ghosts. Ghosts begin in prison located
in the center of the maze. Pac-Man has three lives, if he gets caught, he loses
one.

There are ten score points for each biscuit. There are also four larger
biscuits called the energizers. When Pac-Man eats such a biscuit, he gets
energized for a while. The fortune is changed, and he can chase the ghosts.
When a ghost is caught, he moves back to ghost prison and player’s score is
increased by 200 points for the first ghost, 400 for the second. When Pac-Man
eats all the biscuits player has completed the level, the maze restarts and the
chase starts again. In the next level, ghosts move slightly faster. This cycle
goes on until the player loses all his lives.

B 3.2 The Maze

In the original Pac-Man, there is a static maze (Figure 3.2)). The large orange
circles are the energizers. In the Pac-Man benchmark, I generate the maze
using a script. The individual biscuits are instantiated as dynamic objects at
the beginning of every level. The number of separate objects increases the
draw calls amount, which is performance heavy for the rendering engine and
tests how efficiently it can batch the draw calls.

Figure 3.2: Screen from the original Pac-Man maze. Image courtesy of Shaune
Williams.

14

3.3. Pac-Man Movement

In the middle of the maze, there is a prison for three ghosts. Pac-Man
starts at the first junction exactly under the prison. There are no dead ends.
On the left and right side, there are corridors which lead into darkness. Those
corridors act as teleports. When a game character enters the teleport, it
appears on the other side. The dimensions of the maze are 28x31 tiles; it
is symmetrical around the Y axis. The prison is 8x5 tiles including walls.
From the logical perspective of the game the corridors have width of one tile,
however visually they appear two tiles wide.

The maze itself (Figure offers a variety of opportunities to test
the rendering engine. In Pac-Man benchmark the walls are covered with
a displacement map, there are models of small roofs on the walls. The material
on those roofs uses hardware tessellation to create roof tiles. Moreover, there
is grass on the ground. The grass consists of many tussocks with alpha
texture to test the engines ability to handle transparent materials. The direct
shadows are computed in real-time. The static maze is ideal for precomputed
indirect lighting, baked into the lightmaps [AMMHOS](pages 339, 411).

Figure 3.3: Benchmark maze with various materials and precomputed indirect
lighting. Screenshot from the Unity Benchmark version.

. 3.3 Pac-Man Movement

The original Pac-Man does not move in a physically correct way. He moves
at a constant speed, begins to move immediately, stops immediately and
does not have to slow down to take a turn. This behavior is part of the
gameplay. It would be simple to implement without physics component. To
take the physics into account, I have created a system of collision detectors
and forces (Figure to make the Pac-Man move right in the physically
correct environment.

15

3. The Pac-Man Benchmark

Pacman object

Player’sinput | ———» | Pacman control script | ——— | Rigidbody

I I
I Outer sensors Inner sensors I
I I
I l free ways l wall collision !
I I
| keys apply force |
I I
I I

Figure 3.4: Components of the Pac-Man control system.

The basic characteristic of the Pac-Man’s controls is, that he does not
stop in the middle of the corridor. If the key is pressed, he continues that
way, until he runs into a wall. According to the key’s map, the control sript
determines the direction of the force, that keeps pushing Pac-Man to move
at a constant speed. When he bumps into a wall, the detectors notice that
situation.

To avoid pulsing in speed, when the top speed is reached, the script
only adds the force needed to achieve the target speed, based on the formula
3.1, Where vmax is maximum speed, v is current speed and ¢ is the frame
time.

F=m%———— (3.1)

To deal with the unrealistic way of the Pac-Man’s turning, I have used
sensors to detect free ways to turn. The control script evaluates the input
data, and if the way is free and turn key pressed, it touches the internal
physics vector of the rigidbody’s velocity and modifies it’s direction (See
Figure|3.5). This is not physically correct, but it leads to the desired behavior.

UP ARROW is pressed T
]
—— 1
————— -
—— 1
time=0 time=1

Figure 3.5: Decisions during turn on a cross.

16

3.4. Al characters

. 3.4 Al characters

Characters in the game are always standing on one tile. However, their body
is approximately 2x2 tiles large, so it fits in the corridor.

In the game, there are four ghosts (Figure [3.6). Each one of them has
a different personality. The character of the ghost determines the way he
chooses his target. They only make decisions when they enter a new tile.
They never change direction to go back to the tile they came from. They
choose the next tile per distance to their target (each ghost has a different
target), the lowest distance wins. Ghosts do not collide with each other.

Blinky Clyde Inky Pinky

Figure 3.6: There are four ghosts in the game.

The red ghost Blinky goes after the Pac-Man. The Pac-Man character
itself is his target.

Pac-man has a point called bait, which is always 5 tiles in front of him.
This bait is the target of the pink ghost Pinky. If Pac-Man is heading up,
the bait moves another 5 tiles left.

The blue ghost is called Inky. There is another bait, let’s call it baits.
It acts as the first bait, but it is just 3 tiles far. There is an imaginary line
between ghost Blinky and Inky’s target, which moves so that the baits is
always in the middle of the line.

Ghost Clyde, the orange one, has Pac-Man as his target. However,
when he approaches Pac-Man to a distance of 10 tiles, he changes his mind
and switches the target to the left corner. When the distance to Pac-Man is
above 10 again, the target is switched back.

The ghosts do not calculate the optimal way to their targets but decide
on each tile instead. Therefore, I could not use the navigation system of the
AT game engine component. Instead, we have implemented custom scripts to
control ghost’s behavior. However, I do use the Al component to physically
move the ghost’s rigidbody from one tile to another.

Ghosts always move according to one of the movement modes: Chase,
Scatter, Frightened. The game is most of the time in the Chase mode state.

17

3. The Pac-Man Benchmark

In this mode, ghosts are pursuing their targets. However, the Chase mode is
not active all the time. The game uses a timer, which changes the Chase and
the Scatter mode [Bii].

In the Scatter mode ghosts forget about their targets, and each one

chooses a target in one corner of the maze. Switching between the Scatter
and the Chase modes creates a wave effect. So, it seems that ghosts attack
Pac-Man and after sometime lose interest, then attack again. This makes the
game more interesting to play.
The last movement mode Frightened is activated whenever the Pac-Man eats
an energizer. Ghosts change color, slow down and randomly decide which
way to go. This behavior creates the illusion of trying to run away from the
Pac-Man.

B 35 Maze generator

Figure [3.7] shows the Original Pac-Man maze divided into logical tiles. It
is the same maze in every level. In my implementation of Pac-Man, I have
prepared a way to generate various maze models. Maze generator creates
a model by analyzing the input text file and populating the right models
on their locations. It has to be done in the editor, before compiling the
executable game. The reason for this is baked light. To achieve the best
visual results, I had to bake the indirect lighting into lightmaps. I have not
found a way in Unity, to run this process inside the final executable game.
Because the maze generation does not affect the real-time performance and
therefore plays no role in the comparison, I have implemented just the Unity
version. Still it is possible to move the newly generated maze into Unreal
through the .obj format.

There are several rules for the maze, to be valid Pac-Man maze. The
maze is 28x31 tiles large, symmetrical about the vertical axes. It has a prison
in the middle. There should be no dead ends. Pac-Man always has another
way to leave corridor. The walls are at least two tiles thick, which implies
there are no sharp turns. In the middle part, there are two teleports on the
sides. Any maze with these parameters can be considered Pac-Man maze. 1
have chosen the input to generate the original maze for the game, but it is
not necessary. To create any maze in Unity editor we need to follow six steps:

18

3.5. Maze generator

Pac-Man

R i i

i fIIIIIII|
,|_LH£__|4|i |
aas | e

| 0T

i
]_...... -

NN

|
]
R
|
o
T

100 1) I 1 1 (0 1 0 I

Figure 3.7: The grid that shows 28x31 tiles creating the original Pac-Man Maze.

1. Modify input file map.txt in the root folder

2. Remove the old maze from game hierarchy

3. Check Instantiate Mesh Walls in the MazeCreator component

4. Run the game and copy paste the newly generated walls into the scene
5. Set the walls Solid; lighting will then rebuild automatically

6. Regenerate the NavMesh (Navigation, Bake)

In the following paragraphs I will describe how exactly the generator
works. In the beginning, the script loads the map from txt file and saves it
into a two-dimensional integer array. It makes the new map one tile larger
on each side and writes walls in there. The map syntax is simple: one means
wall and zero means free corridor. The script continues by evaluating this
array.

On each tile position, we assign a different number, according to the
wall type, which fits there. The method evaluateBrickType counts how
many neighbors of the file are walls. Then there is a big switch that decides
about the rotation of the brick.

19

3. The Pac-Man Benchmark

Let’s go through one example, which is displayed in Fig/3.8. We have
to evaluate the brick type of the tile. We count there are three neighbor
walls. That means our tile mush be corner brick. So, we look at the four
corner positions, to know how the corner is rotated. The top left corner is
wall, which means the wall is a southeast corner.

Figure 3.8: Tile evaluation diagram describes the process of choosing the right
tile type to be instantiated.

The reason why I have made the map larger on each side is clear now.
There is a condition, that every wall has to be at least two tiles thick, this
would not be true for the border walls. So, we make the border walls two tiles
thick to keep the algorithm working and then simply remove the additional
walls.

When the map is evaluated, we just need to instantiate the right objects
on places. In the hierarchy, under maze/wallTypePrefabs there are object
prefabs to create the maze. These can be modified as well. The script
instantiates walls according to the evaluated map and food instances in the
corridors. This happens at the beginning of the game. Walls can remain the
same, but the food is regenerated in every level.

B 36 Scaling the problem

The goal of this bachelor project is to create a benchmark for multiple gaming
platforms: Gaming PC, laptop, Android phone and VR. These platforms
differ in controls as well as in graphical performance. I have defined three
configurations (see Table 3.1), to match the targeted platforms. Q++ are used
for PC and notebook, Q+ for mobile and the light version Q- for GearVR.

To scale the problem and create various versions I had to modify some
of the game components. For VR deploy, I use fast mobile shaders with baked
light. However, on the PC version, I have chosen physically based shaders,
together with real-time direct and indirect lighting, HDRI sky based global
illumination, reflection probes and other advanced techniques provided by
the game engines. To make the calculation, even more, performance heavy
for the gaming PC, I have duplicated the maze up to seven times and created
autonomous mazes where ghosts move independently.

20

3.7. VR adjustments

Q++ | Q+ | Q-
models full full simplified
maze instances | 1-7 1 1 lowpoly
shaders PBR PBR | mobile
realtime light yes yes no
baked light yes yes yes
reflect. probes | yes yes no
SSAO yes no no
motion blur yes no no
antialias FXAA2 | no 4x

Table 3.1: The platform features overview.

In the final compare test, I have configured the game to look as similar
as possible on both Unity and Unreal engines. Most of the parameters can
be measured and configured. Theoretically, the games should look identical.

B 37 VR adjustments

I have been porting the benchmark to VR as well. I have chosen the GearVR
platform with Samsung S6 phone because unlike Google Cardboard it has
a clear hardware specification while it still remains reasonably affordable
VR solution. Moreover, if we compare the serious VR headsets (not taking
cardboard in account) GearVR is the best selling VR solution in 2016 [Kor].

With the screen-space effects turned out Samsung can run the Unity
Benchmark version with framerate over 20 frames per second, which is
impressive for a phone, however still too low for fluent VR experience. That is
why I had to rebuild the environment; use less vertexes, bake all the lighting
and use mobile unlit shaders according to the Unity VR optimization guide
[VRo]. In the end of the process, there are three 4K textures with baked
lighting to cover the maze. The large textures are no problem for the phone; it
has enough memory. There are only 33K triangles. I have baked the lighting
setup in Blender Cycles render engine. There is no doubt the game looks
much worse as we can compare looking at the Fig. |3.9, but it runs on mobile
as VR in real-time.

21

3. The Pac-Man Benchmark

Figure 3.9: The Unity Editor environment.

The last thing was mapping the controls to GearVR touchpad. The
touchapad recognizes swipes, but compared to keys swipe can not remain
pressed during a time interval. Moreover there can be only one swipe active
at a time while we can hold multiple keys pressed at once. To overcome this
difference I have decided that swipe means pressing the key and releasing
the other keys. The swipe key remains pressed until the next swipe. The
gaming experience is not the best, but it is controllable and for the purposes
of a benchmark it serves as a sufficient solution.

22

Chapter 4

Unity implementation

The first part of the benchmark is implementation in Unity 3D engine.

Unity Engine is one of the industry standards in game development. It is
a component based multi-platform solution, it is easy to learn, and it has
large developers base [Watll]. I have been using version 5.3.3. This engine
relatively easy to learn. On the other side, it is a bit like a black box. It does
not allow the user to go too deep into the settings and overall, we do not
know how exactly are the functions implemented. I have been writing scripts
in C+#, because unlike JavaScript or Boo it is similar to Java. I have built 3D
models in Blender 3D version 2.7 and exported them into Unity through .fbx
format. Unity has support for direct import of .blend files, but it seems to
have some unresolved problems since Blender 2.71 and Unity 5. I have used
free PBR textures from http://textures.com.
There have not been any major problems during the Unity development.
The whole Unity environment is user-friendly as Fig. shows. Unity
documentation is detailed and easy to search. I had no problem to find all the
answers on their support forums. Obviously, there is large Unity developers
base.

B 4.1 Game architecture and components

Unity is a component-based game engine. The basic entity in the scene
is a game object. The game object itself does not have any functionality.
It serves as a container for the components. There is no hierarchy of the
components, they are stored in a list inside the game object. Each component
takes care of single functionality. Usually, the primary components are
Transform (where the game object is located in the scene), Mesh (the visual

23

4. Unity implementation

Figure 4.1: The Unity Editor environment.

representation of the object), Mesh Renderer (how the object is drawn in
the scene), Material, Animator, Rigidbody, Script and many others. One of
the components can be a script. The scripts are written in C# or Javascript.
Scripts take care of the functionality of the object. They can reference each
other, change the game objects components or react to the player’s actions.
Obe game object can contain many scripts for different kinds of behavior.

Another important concept in Unity is Prefab asset. Let’s say we
configure a few game objects, add certain components, set them up, so they
work together and create one unit. Then a Prefab can be created from them.
The settings of the components and their relations are stored inside the Prefab
enabling us to spawn an exact copy of this setup in the runtime. In this way,
we can prepare complicated structures and reuse them in the game multiple
times.

The Pac-Man Benchmark uses the Prefabs for ghosts, biscuits, energizers
or walls. On the top of the game object hierarchy, there is a maze object.
This object does not have any visual interpretation, but it contains important
scripts for the maze logic. There is a script for the creation of a maze based
on the text file, then Navigation controller which takes care about the ghost
pathfinding logic and finally there is a Game Controller script which stores
the game state variables. Because of the object hierarchy, characters inside
the maze have an access to this maze object and communicate with it. The
maze object is equivalent to the Unreal level blueprint with one exception.
In the versions of the benchmark with more mazes, there are actually more
maze objects, while in Unreal the level blueprint is a singleton.

24

4.2. Ghost navigation

B 4.2 Ghost navigation

Unity has navigation system implemented as part of the engine. We can
control Al behavior easily through the API calls. There is an automatic
NavMesh generation, which constructs mesh for Al navigation from static
objects in the scene. Unity has NavAgent component, which controls the
character’s movement. The only problem with using this system directly
was that it was too clever and ghosts in the original Pac-Man acts a bit
different. The game would be unplayable if all the ghosts just plan the
optimal trajectories to catch Pac-Man. They act in a simpler way that I have
described in |3.4. However, to test the Unity navigation system, I could not
just throw the NavMesh away. Apart from finding the way, navigation system
solves one more important issue. It applies forces to the characters to move
them from place to place. I wanted to use at least this feature. So, the
final implementation has a custom navigational system based on the original
Pac-Man. However, the final ghost movement is performed by the NavAgents.

The navigation system has one central component (Navigation Con-
troller it is shown in Fig. |4.2) which makes decisions about the ghost’s target
locations, switches the movement modes, etc. This component is connected
to the maze object itself, and it closely cooperates with the Game Controller
component, which manages the game’s state. Ghosts just have simple ghost
Navigation Script, which is parametrized for each ghost type. The script
watches ghost’s position, and when ghost reaches new tile, it makes a call to
the central navigation component, to ask for new coordinates.

This centralized architecture gives up better overview and management
of the ghost movement states, compared to separate intelligent ghost scripts.
In this way, the ghost is in a position of a terminal to the server. It just does,
what it is said to and does not contain almost any logic.

. 4.3 Visuals

Considering visuals Unity has been behind other game engines since it’s first
release. The Unity 5 version as made a great step forward introducing the
Unity Standard shader, physically based shading and image-based lighting
techniques, however in comparison to Unreal or Cry Engine Unity still has
some deficits. It is obvious that the best-looking graphics is not the main goal
of the Unity engine. Unity has become the world’s most used game engine
solution because it is availability and ease of use. This is a great example

25

4. Unity implementation

Maze object

game state

Navigation Controller Game Controller

[— p— — —_— A |—_— —_— —_— —m e—m e—_—m e—_— e—_— —_— —_— —_— —_— p—
position reached Lnew target position

Ghost object

Ghost Navigation Script

' |
' |
' |
| iseﬂarget |
' |
' |
' |

apply force to move

NavAgent EE— Rigidbody

Figure 4.2: Ghost navigation system in Unity.

showing us that the visuals are not always the most important aspect of the
game development.

B 4.3.1 Models and animations

I have made the models in open source software Blender. I have exported
them as .fbx files and imported into Unity. To animate ghost’s waving, I have
used Blender Shape keys (Fig. 4.3) and animated them in as Blend-Shapes
inside Unity Editor.

Shape keys are commonly used for facial animations. The model has
a base shape key, which holds the default state. Every other shape key
represents a modification of the vertex positions. The position is relative to
the position in the base shape key. This allows us to combine multiple shape
keys together and animate the percentage of use of particular shape key. The
workflow turned out successful, so I used it for animating Pac-Man as well.

B 4.3.2 Materials

Materials are a crucial part of the graphical presentation. Realistic materials
and textures are more important than the quality of the 3D models. Unity
Standard Shader is a built-in implementation of Physically Based Shading
(PBR). In real-time graphics, this is quite a recent concept which empathizes

26

4.3. Visuals

Add Prgarty |

Figure 4.3: Animation using shape keys inside the Unity Editor.

realistic material behavior. In contrast to Phong Shading Model, the artist
does not configure materials visual parameters, but it is physical properties
such as Metallic or Roughness (Fig. |4.4).

Albedo defines the material color. Metallic says whether the material
is metal or diffuse one, such as ground. Smoothness specifies how shiny the
reflections are. Whether it is clear reflection like a mirror or a blurred one.
There is a possibility to define Normal Map for bump mapping, Height map,
Occlusion map, and Emission. These are the basic PBR parameters. There is
an option to change Rendering mode, from default Opaque to Cutout (binary
alpha channel), Fade, or Transparent.

Most of the materials in Pac-Man Benchmark are Standard Shader
Opaque. Ghosts use the Transparent render mode. They have to be rendered
on top of the grass. If we let Unity decide automatically based on the camera
distance, the grass suddenly pops in front of the ghost while he is going above
it.

To test one of the latest features in OpenGL 4, or DirectX 11 I could
not forget the parallax mapping. This technology dynamically changes the
number of vertices in the object. Based on the high map it generates real

27

4. Unity implementation

wall %
v Shader [Standard =
Rendering Mode [Cpaque o]
Main Maps
[esibede 12
 onemalic G |-
- Smonthness, (0224
-'ﬂo'l!mmgl Map gL
@Height Map Cr [0.0336 |
% lusi e, lnes |
- o
X1 PYE |
: 10 [¥io |
‘Sacondary Maps
. oDetal albedo 12
| @Nermal Map
Tiling: X1 5 |
Offset %0 ¥ |
LV St [Lvo 4

Figure 4.4: Animation using shape keys inside the Unity Editor.

Figure 4.5: Unity Tesselation Shader used on the roof, creating real bump
according to the height map.

bumps, a new structure on top of the existing object. I have used Tesselation
Shader on the roofs (Fig. to achieve this effect. The only tricky part
was that Unity takes the height map from alpha channel of the height map,
which might be unexpected. For grass straws, I have used a mobile shader.
It is fast and allows us to render a large number of transparent objects at
once. Grass has three different material colors, to add variety.

28

4.3. Visuals

B 4.3.3 Lighting

The lighting setup is very simple. There is one directional light as the sun, with
soft shadows and slightly yellowish light color. Then the scene is lightened up
by sky. The sky is spherical high dynamic range image; Unity uses it as an
ambient light source. An interesting feature in Unity’s lighting is the ability
to precompute real-time global illumination. It saves lightmap with indirect
light intensity and its direction. In real-time, the indirect component depends
on the direction of the light. Unity does not need to rebake the lighting when
we change the intensity, color, position or direction of the lights whitch is very
useful while tweaking the lighting setup. This real-time global illumination
solution is called Enlighten [Geo] and it is developed by company Geometrics.

B 4.3.4 User Interface

The User interface in Unity is a bit difficult to handle. Unity has a Canvas
game object that has a Canvas component attached. The Ul elements are
supposed to be the children of this game object. The Canvas elements are
shown as 2D. However, the canvas object is part of the 3D scene for some
reason. It gets a little confusing. The UI elements can interact with other
scripts; they can be animated. The problem is that there is no central place
to manage the UL Therefore, the Ul development is not as intuitive as the
rest of Unity Editor.

After hours of trying to get the elements positioned right, I have used the
Immediate Mode GUI (IMGUI) feature that is totally separate from the rest
of the GUIL. IMGUI is code-driven interface intended for programmers. The
elements are not objects in the scene, but Unity generates them procedurally
from the script code. The setup was much more intuitive this way.

B 4.3.5 Screen-space effects

Concerning screen-space effect, I decided to use just the typical representatives,
that are common for most of the AAA games. I have used motion blur, anti-
aliasing script and screen space ambient occlusion They work very well on the
computer, but they were unusable on other platforms. The settings are shown
in Fig. 4.6. The mobile was just not capable of handling them; framerate has
dropped from 20 to 4 frames per second.

29

4. Unity implementation

Y@ ¥ camera Motion Blur (Script) @ = vglghmﬂn HRaE Amh?:.:;:::::::i;:?gi_|“;im_" E:
Simulates camera based mah"m_‘__lz Radie TETTE
TECh"i_que LR Samplz Count | High — o |
s S e Geelusion Intensity e |
Tila =28 uzed during recanstruction filter: P o e—
Velocity Max 2110 Downsampling O —
Velocity Min e 10:1 S : < —
Technique Specific Min Z o 01
Exclude Layers | Hathing 4| SS5A0 Shader 5 Hidden/S5A0 |
Welocity Downsample 1 Random Texture {BiRandomVectors | @
Samale Jitter: [EiMotiona lurdtt=r 2 v[e|Manualiasing (script) @ &

Elian e g = {9:05 Luminance based fullscraen antialiasing
Praview - Tachniaus | FXAAZ]

Figure 4.6: Screen- space effects setup. Motion blur, Antialiasing and ambient
occlusion

B 24 Profiling

Unity has own profiling system called Profiler. It offers analysis of the
processor time as well as the memory, physics, and graphics. The only
problem is that it can run only in the Unity editor. Otherwise, the data are
unavailable.

For benchmark purposes, I have measured frame time and saved it into
a file. The frame time is one of the few variables available without Unity
Editor. We can read this one from Time.deltaTime, which tells us the time
it took to prepare the last frame. It is commonly used to make some variable
real time dependent instead of framerate dependent. (Player with higher
framerate should not have faster gameplay) There is an option to connect
profiler to an instance of the game on the PC, but no way to profile the
mobile instance (ideally over Wi-Fi, because of the VR).

There is a way to save and load Profilers data, for later analysis.
However, the data are saved in byte form and are readable again only in the
Profiler. The script saves 300 frame samples into files, which we can load
in. Still, the game has to run inside the Unity Editor for this feature to
work. We can also save profiler data into text files from our scripts. The
class UnityEditor.UnityStats is not documented, but the API is opened
to read from.

30

Chapter 5

Unreal implementation

To implement the second version I have used Unreal Engine 4.15. Unreal is
a complex development system. The working environment is called Unreal
Editor (See Fig. 5.1)). It can deploy apps to almost any platform, Unreal
supports PC, gaming consoles, mobile devices, VR platforms, smart TVs.
Unlike Unity, it is targeted on large projects. Unreal offers solutions for
the development of large-scale environments and massive multiplayer games.
They expect the developers to aim the latest hardware. Therefore, the system
requirements are high for the development as well as for the final runnable
games. Unreal is considered the leading platform in photo-realistic rendering
and architectural visualization.

Unreal Engine has opened C++ source code. It allows the developers
to write the pure C++ and have greater control over the engine’s actions. On
the other hand, Unreal has an option for non-coders as well. It is called The
Blueprints. Moreover, it is essentially the node-based editor that allows users
to implement logic without the knowledge of coding. Every node has a certain
function; it has inputs and outputs. The nodes are connected and create the
logic. The Blueprints can contain functions, macros, custom events or event
dispatchers. They have variables, data types, arrays, enums and hash maps.
In Unreal most of the components use blueprints. The game designers build
the game logic with Blueprints, the artists setup the materials as blueprints,
and even the artificial intelligence uses blueprints too. At first I have tried to
script the game exclusively in C++. However, the Unreal framework is so
complicated, that it just does not make sense to write game logic inside C++.
The code is long, complicated and hard to read. Paradoxically the Blueprints
were much closer to C# scripting from Unity. An example of a blueprint
ensuring the ghost target update is at Fig. 5.2

The game objects in the scene are called Actors. The objects that can
be controlled by player or Al are called Pawns. Unreal terminology for such

31

5. Unreal implementation

Figure 5.1: The Unreal Editor environment.

Figure 5.2: An example of simple blueprint for Ghost Target update.

control is that the Pawn s possessed by the Player.

Unreal is a component-based engine. The components inside a game
object are stored in a hierarchy. The root of the hierarchy is usually a blueprint
which contains the logic. Inside the hierarchy, there are the components -
functional parts of the object itself. For example, the mesh, triggers, colliders,
or even a camera. This is very different from Unity (Unity does not implement
any component hierarchy just game object which contains list of components
where the control script is usually one of them.)

32

5.1. Game architecture and components

. 5.1 Game architecture and components

In Unreal Engine, every scene has a level blueprint. This blueprint is running
through the whole level, and unlike other blueprints, it has access to all the
objects inside the scene. It is ideal to place the top level game management
here. In our case, the level blueprint contains all the settings at the beginning
of the game. It solves the Pac-Man-ghost collisions (based on common tile,
not an actual component collision) and it manages the game state and player’s
score.

The level blueprint can be very useful for one more thing. In the scene,
there might be many objects that need to interact with each other. However,
we do not want them to reference each other directly, that would lead to
spaghetti code. Moreover, some of the objects may not be in the scene the
whole play time. The connections may appear or be broken after some time.
It is a good to maintain low coupling.

Blueprints can have custom events. We can call these events from the
level blueprint. Additionally, blueprints have event dispatchers which act like
a trigger informing that some action has happened on the current blueprint.
With this setup, one object can fire an event dispatcher. The level blueprint
listens on this action and reacts to it lets say by calling event on some other
objects. The original object does not know about the following actions, and
the final objects do not know where the action has come from. They are
not connected to each other directly. The connection is set up in the level
blueprint. This indirect invocation is shown in Fig. [5.13| I have used this
method multiple times especially in the context of Pac-Man-ghost collision.
Each character fires event dispatcher whenever it reaches new tile. The level
blueprint evaluates the collisions and the subsequent actions based on the
game state.

The setting of the game objects in Pac-Man Benchmark is nothing
complicated. As we can see in the Fig. [5.4l Pac-Man is possessed by the
player controller and receives the input keys. Pac-Man blueprint has detectors
of walls and free ways as I have described them in Section 3.3, The blueprint
informs level blueprint about the new tiles, biscuits, and energizers that
the Pac-Man has eaten and about the new ghost bait positions. The level
blueprint process these information and reacts accordingly by changing the
game state or invoking characters events. The ghosts are possessed by the Al
controllers and communicate with the level blueprint in a similar way that
Pac-Man does.

33

5. Unreal implementation

level blueprint

dispatcher 1 on A invoke event 2 Object B

| |
| I
I l — |
| I
| event dispatcher 1 |
| ObJeCt A ——_’ / \X invoke event 3 Obiect C |
|event20nB| |event3onC| B Y)
| |
_______________________ —
Figure 5.3: Indirect event invocation using the level blueprint.
g P

| |
|| Player’s input |
| Al controller |

- key pressed |
! level blueprint
l - new position tile + game settings - move |

- biscuit / energizer eaten + collision solving R ition til
| - update ghost baits/v + game state, score new postion e !
| \ |
- freeze

| Pacman blueprint -setin prison Ghost blueprint !
| |
-~ —J

Figure 5.4: Diagram of the main components in the Unreal Pac-Man Benchmark.

B 52 Ghost navigation

The AT itself is much more complicated in Unreal compared to Unity. The
basic structure is illustrated in Fig.5.5| The Character class is a child of Pawn
suited for AI characters. It is possessed by Character controller. Behavioral
trees are process diagrams that describe the decision process of the character.
Black board is a set of variables determining the characters state. Behavioral
tree references a copy of the Blackboard and makes decisions based on
the values of the blackboard variables. Character controller then runs the
behavioral tree, uses and sets the variables of the blackboard accordingly to
the situation. The controller also uses NavMesh - navigation surface generated
based on the static meshes in the scene. Characters can walk on the mesh
and find paths on it.

In order to simulate the original Pac-Man ghosts, I had to change the
AT system from the basic setup. Ghosts decide which way to choose when
they enter the new tile. They measure the distance to their bait and choose
a direction. In the center of the next tile in the chosen direction there is the
position of a ghost Target object. Target is an Actor that the ghost follows all
the time and it moves from tile to tile, depending on the direction chosen by

34

5.3. Visuals

(- - - - T - - - - - - - - - - - - = - = = 1
react to values . |

I BlackBoard | — 3 | Behavioral Tree
| I

use, set values runs
| I
| ch is controlled by I
aracter | — 3 | Character Controller uses NavMesh
| > I
Figure 5.5: The basic Artificial Intelligence setup in Unreal Engine.
- - - - - - -\ -\ ¥ -""¥ -\ -"\¥-"" -""\-\¥"\"-" -"\"¥-""¥-""¥ -""¥ - - -”" —_—" — - -\
| X — P updateeveryframe |
Level blueprint Target
| > + =+ » updatewithnewtile |
1
: i set position set position 7 \always follow I
|
4

I) get position is controlled by I
| Bait [« « « « «| Ghost | ______y | Character Controller |
L - - - - - - - - - - D D D - O /= e == —

Figure 5.6: The ghost control setup in Unreal Pac-Man Benchmark.

the ghost. With this setup, the level blueprint only changes the ghost baits
and each ghost then set his target accordingly. The relationships between
the objects are shown in the Fig. [5.6L

. 5.3 Visuals

Unreal engine is famous for its visuals. It allows the user to build his materials
with nodes (basically shader programming with a visual interface). The lights
look great and can be real-time or baked. The best of all are the inbuilt
post-process effects, which make the difference. Unreal engine is widely used
for architectural visualizations in the form of real-time walk-throughs. The
developer does not need any other plugins to make the game look as good as
today’s AAA titles. However, all these visuals are performance heavy matter
and require appropriate hardware.

B 5.3.1 Models and animations

The unreal engine does not support such a wide spectrum of formats as Unity
does, but it can import the most used ones. For 3D the supported formats
are .obj and .fbx. Both of them are supported in Blender as well. So getting

35

5. Unreal implementation

Figure 5.7: The animation curves inside The Unreal Editor.

the assets from Blender to UE4 was no problem at all I have used the .fbx
format. The UV maps have migrated correctly as well. I only needed to set
the coordinates system right. Unreal uses centimeters as the base unit and
the coordinates are rotated 90 degrees clockwise around the Z axes. The
translation Blender — Unreal therefore is X - Y; Y —»-X; Z—Z.

The animation process was rather similar to Unity. I have exported
the character animations (ghost waving and Pac-Man mouth opening) as
Shape Keys and imported them as Morph Targets to Unreal. This process
only worked with FBX 6.1 ASCII version and Apply Modifier deselected.
The modifiers inside Blender must be applied separately before exporting the
model. Animating and timing the translations between poses of the morph
targets was simple animation with curves inside the editor (Fig. very
similar to the one in Unity.

B 5.3.2 Materials

Material system is one of the best features that Unreal offers. It works as
a node-based system for creation of materials (Fig. . For each material,
Unreal compiles the shader. We can use the material as it is or change with
parameters to create different variations of the same material called material
Instances. This method gives the artist powerful tool for creating stunning
materials. The downside is that the compile times of more complicated
shaders might be higher (up to minutes).

For walls, ground, and wood I have used a simple Lit material with
three textures for Color, Roughness, and the Bump map. The result was
very similar to Unity. The artist can add parallax mapping to any material
with any settings which is great. (Unity has parallax shader with limited
settings considering roughness and reflections) I have noticed the largest
difference while creating the ghosts material. Unreal supports light refraction

36

5.3. Visuals

WMutiply ¥

Figure 5.8: An example of a parallax material of the roof.

Figure 5.9: The ghost reflective material.

and screen space reflections. We can combine these features with Fresnel
effect [AMMHOS]| (pages 231-236) to achieve better-looking results. If we look
at face from the vector of its normal, it seems more transparent while when
we lower the view angle close to zero, the surface gets more reflective. That
is how the ghosts material (Fig. 5.9) appears.

The only complicated material was the grass. Grass has to be transpar-
ent, for the purposes of this benchmark it can be unlit, but the shader should
be as fast as possible. In Unity version, I have used the mobile transparent
shader, and it worked well. In Unreal the situation was not that easy, I had
to construct the material by hand. After experiments with dithered masked
alpha, I have set regular unlit material with two-sided transparency. This
material fades out with the distance, so the far away grass does not seem
super green while the close tufts are still visible.

37

5. Unreal implementation

B 5.3.3 Lighting

The scene has simple light setup. It is lit by one directional light as the
sun that casts real-time shadows and then one environmental light to lit the
scene with the HDR sky. The setup and baking are slightly faster than in
Unity because the editor allows us to set up the baking quality. Still, we
must rebuild the lighting after every change. (Unity does not need to rebuild
lighting after the light adjustments thanks to Enlighten [Geo|. This solution
is available for Unreal as well, however it is monetized.) I should mention
that Unreal also supports the IES light profiles [Dra] even though I have not
used them in the benchmark.

Unreal engine implements an optimization of shadows called Cascade
Shadows [AMMHOS](page 358). It renders multiple shadow maps based on
the camera distance so that the objects close to the camera have sharper
shadows compared to the objects far away. There is also nice blend between
the shadow maps, so the map change is almost not noticeable, This technique
helps Unreal to boost the performance, and it is very efficient especially for
the larger scenes (the setup with seven maze instances).

B 5.3.4 User Interface

For the creation of user interface Unreal has a very powerful, yet simple tool:
Unreal Motion Graphics UI Designer (UMG) (Fig. |5.10). The core of this
tool are Widgets - pre-made functions that we use to create pieces of the
interface such as buttons, progress bars, text boxes, check boxes... The UMG
consists of two tabs: The Designer and The Graph tab. In Designer tab, we
can set up the composition and appearance of the Ul elements. The Graph
tab contains widget blueprint that controls the functionality of the UIL. The
UMG provides a much more efficient way of Ul development than the Unity
tools.

B 5.3.5 Screen-space effects

As I have mentioned before, the Unreal screen-space effects [Doc| are on the
top industry standard. These effects are very easy to setup from the menu,
and the results are visually stunning. For Pac-Man Benchmark I have used
only Anti-Aliasing, Motion Blur and Ambient Occlusion to match the Unity
setup. However, it is worth to mention the rest as well because together they
have a great impact on the final result.

38

5.3. Visuals

A P e

0 DECTDOED - CEr—

0.0 5.0

Figure 5.11: Chromatic aberration example, image courtesy Epic Games, Inc.

The vignette effect darkens the edges of the screen; this happens in
photography because in the center of the lens there is more light, then on
the edges. The effect is usually visible at low f-numbers (f/1.4). Another
real lens effect is a chromatic aberration (Fig. . When the light is going
through the lens, each wavelength refracts in a slightly different angle which
causes the colors to split on the edges of the image. Then Unreal can simulate
lens flares, bloom and depth of field, all of them are greatly customizable.
An interesting effect is eye adaptation which changes the scene exposure
dynamically. When the player looks into the dark, the image gets brighter,
and when the player reaches a very shiny scenery, the exposure decreases
accordingly. This effect acts as a simulation of a human pupil movement.
Lastly Unreal supports color grading. The artists can define the function of
mapping the High Dynamic Range render to the low dynamic range screen.
For further color refinement, there is an option of loading a color grading
LUT texture [AMMHOS](page 474) or grading the image manually with
sliders. Three different LUTs and the graded results are shown in the Fig.
0.12)

39

5. Unreal implementation

Figure 5.12: Look Up Tables and the color graded results, image courtesy Epic
Games, Inc.

Figure 5.13: GPU Visualizer showing the duration of processes.

B 54 Profiling

Unreal Engine provides developers with various Profiling tools. We can
simply show the FPS on screen, or enable more detailed views like stat
SceneRendering which allows us to read the draw calls, lights in the scene or
number of static/dynamic meshes. The data can be recorded into a file and
analyzed later. (Unity needs a plugin to do this) Unreal has two tools for
performance data analysis: The GPU Visualizer tells us what amount of a
frame time the parts (lights, translucency, shadows, post process) of the GPU
process take. The second option is Session Fronted tool which can load the
detailed data and display the processes that we pick in time. An important
part of performance optimization is also Shader Complexity view. It is one
of the view modes that we can choose from (lit, unlit, wireframe...). It shows
how difficult is to evaluate certain pixel on a scale of green to red.

40

Chapter 6

Results and Comparison

Comparing the engines is nothing trivial. Each one of them is different; each
one has strong features and weaknesses; each is suited for different project or
developer. Here I present four approaches to engine comparison: The table
comparison which might serve as a base point for detailed research of the
features. Then I present the benchmark results on multiple platforms and
different scene scales. After that, I will compare the visuals themselves with
the offline Blender cycles render [FS15]. And finally, I will share a subjective
opinion from a perspective of a developer.

. 6.1 Features

At first, I would like to give a brief comparison with a simple table where
we can find the most common responsibilities that engines have and a short
description of the solutions that certain engine offers. Both engines are
powerful and both provide complete pack of tools for game development.
Most of the times it is a matter of preference, which tool the developer finds
more suitable. However, there are areas, where one of the engines provides
apparently better or more complete solution:

1. Unity supports much more target platforms, but Unreal has the most
important of them as well. The exact same example is with import
formats. Unity supports more of them, but in the end of the day, it does
not matter.

2. Considering materials Unreal has material editor which enables the
developer to create new shaders. This approach is much more powerful
compared to Unity Standard Shader.

41

not.

6. Results and Comparison

3. Unity supports prebaked real-time global illumination, while Unreal does

Unreal has much better cascade particle system.

Unreal offers great inbuild post process effects. Unity can achieve similar
results only with external plugins.

Unreal provides cinematic tools. Matinee cinematic toolset and sequencer
tool allow developers to work with animations and camera in a way of
movie production. This features are great for creating in-game cinematics.

Unreal has much better and complex solution for terrain and foliage.
Similar tools can be purchased and added to Unity with plugins.

Feature Unity Unreal

Platforms

desktop Win, OSX, Linux, WebGL Win, OSX, Linux, HTML5

mobile Windows Phone, iOS, iOS, Android
Android, BlackBerry 10,
Tizen

console Xbox 360; Xbox One; Wii U; PlayStation 4, Xbox One,
PlayStation 3; PlayStation 4; Nintendo Switch
PlayStation VitaNintendo
Switch

VR SteamVR/HTC Vive, Oculus SteamVR/HTC Vive, Oculus
Rift, Google VR/Daydream, Rift, Google VR/Daydream,
Samsung Gear VR, Hololens, Samsung Gear VR, Playstation
Playstation VR VR, OSVR

TV AndroidTV, Samsung Smart | tvOS
TV, tvOS

Editor Unity Editor Unreal Editor, VR Editor for

HTC Vive

Special scene view and game view as | Possess & Eject, simulate,

features two windows content browser

Scripting C#, UnityScript C+++, Blueprint visual

Languages scripting

Engine Code

closed

C+-+ source code available
via GitHub

42

6.1. Features

Feature Unity Unreal
import
formats
image psd, jpg, png, gif, bmp, tga, tiff, | psd, jpg, png, exr, dds, exr, hdr,
iff, pict, dds, exr, hdr tga, pcx, float, bmp, ies
audio mp3, ogg, aiff, wav, mod, it, sm3 | mp3, wav, wma, wave, snd, caf,
cdda, aiff, aif, au
video mov, avi, asf, mpg, mpeg, mp4 mov, avi, mp4, wmv, aac
3D models fbx, .dae (Collada), .3ds, .dxf, fbx, obj, srt (speedtree)
c4d, jas, 1xo, blend, skp
Rendering Deferred shading Deferred shading or Forward
shading for VR
Materials Physically based, Unity Physically based, Blueprint
Standard shader, tesselation material editor, tesselation,
shader, mobile shaders layred materials, material
instances, lit translucency,
subsurf shading model
Lighting Directional, Point, Spotlight, Directional, Point, Spot light,
Area Light Sky Light, IES light profiles
Shadows realtime hard/soft shadows realtime hard/soft shadows,
cascade shadows, distance
filed shadows
Global Image-based GI, Precomputed | Image-based GI, Baked GI
illumination realtime GI, Baked GI

Reflections /

Reflection probes

Reflection probes, screen space

Refractions reflections, Refraction
Particles simple curves based particle Cascade particle system with
system GPU particles
PostProcess Effects with additional assets | Effects as a part of the engine
(e.g. Post Processing Stack) | (AA, Bloom, Color Grading,
DoF, Eye Adaptation, Lens
Flare, Scene Fringe, Vigenette,
Screen space reflections), support
for post process materials
Animation Animation curves editor, Animation curves editor,

Skeletal animations, Blend
shapes, animation weights,
events at animations, State
Machine and transitions

Persona animation toolset, state
machines, physics-based
animation, animation blueprints,
morph targets

43

6. Results and Comparison

Feature Unity Unreal
Physics rigidbodies, collisions, joints, rigidbodies, collisions, physic
cloth, wheel collider, physic materials, APEX integration,
materials, PhysX PhaT (skeletal mesh physics
editor), vehicle physics, PhysX
Cinematic - Matinee cinematic toolset,
Tools sequencer tool

Terrain &

simple Terrain Engine, Texture

Very advanced Landscape and

Foliage painting, Tree Editor, plugins for | Foliage painting tools inside the
world building editor.

Ul UI objects on the Canvas, Widgets and blueprints
IMGUI

Al NavMesh, NavAgents, path Behavioral trees, Character
finding controllers, NavMesh, path

finding
Optimization | Unity Profiler (CPU, GPU, GPU/CPU Profiling, Saving

memory, physics), LOD support,
quality presets

statistics to file, Hierarchical
LOD, automatic LOD
generation, Optimization
viewmodes

44

6.2. Benchmarks

PC | i7-4770S 3.10 GHz; 16GB RAM,;

NVidia GeForce GTX 970; Win 7 64bit
NR: 1920 x 1200, TR: 1920 x 1200
Notebook | ThinkPad Edge 430; i7-3632QM 2.20 GHz;
16GB RAM; NVidia 635M; Win 7 64bit
NR: 1366 x 768, TR: 1920 x 1200

Mobile | Samsung Galaxy S6; Exynos 7420 Octa 2.10 GHz;
3GB RAM; Mali-T760MP8; Android 6.0.1
NR: 1440 x 2560, TR: 1920 x 1080

VR | Samsung GearVR + Samsung Galaxy S6
NR: 1440 x 2560, TR: 1440 x 2560

Table 6.1: Benchmark platforms. NR - native resolution, TR - tested resolution

. 6.2 Benchmarks

I have designed four tests to measure frame time on each platform. I have
automated the tests with the script which simulated user input to create
the same conditions multiple times. Table [6.1| contains the test platform
specifications.

In the Fig. 6.1 we can see the comparison of the average frame times the
benchmark measured. The Unity times start at lower values than the Unreal
ones, and they grow approximately 4ms per added maze. This constant
growth is independent on the platform (PC/notebook). Unreal times start at
10ms for one maze instance on PC which is two times more than the Unity.
However, Unreal times for more maze instances stay stable. They are even
slightly lower. Obviously, Unreal is optimized for more powerful machines
and more complicated scenes. Each maze has around 1.2 million vertices,
so the version 7 has over 8 million vertices. For Unity, this amount means
considerable slow down (six times slower than the test with one maze), while
for Unreal this makes absolutely no problem.

There are two main reasons for this results. Unity has dynamic draw
call batching during the real-time, while Unreal batches the static meshes
before compilation. When it comes to larger scenes, Unity can not optimize so
many draw calls at once. The second reason for this might be Unreal’s cascade
shadows [AMMHOS8| (pages 358-361). Unity supports cascade shadows from
version 5.6 released at the end of March 2017, I have used the 5.3.3 version.
When we add more mazes and look at them from a greater distance, the
shadows far away have lower resolution. If Unity has to calculate all the
shadows in high quality, it has to be slower than Unreal.

45

6. Results and Comparison

average frame times in ms 107,86 102,17
M unity
B Unreal 84,86 84,15
69,97
55,59
29,1
16,42
10,06 9,23 8,14
4,78
= B [| [|
PC1 PC 4 PC 7 NB1 NB4 NB7

Figure 6.1: Average frame times on PC and notebook. Versions of the benchmark
with one, four and seven maze instances. (1.2 - 8.4 million vertices)

53,45 average frame times in ms
M unity
M unreal
30,51
19,16
~16
1
1
1
1
MOBILE VR

Figure 6.2: Benchmark results on Android and GearVR platforms. Unreal
version of the VR was not measured exactly, however from the character of the
gameplay I assume the frame time is around 16ms.

On mobile devices, Unreal has better results as we can see in the Fig.
The benchmark runs faster than Unity, and the game itself looks better
(compare for yourself [6.3)). The .apk file is larger (Fig. and the phone
heats up faster. However, the frame time is considerably lower. The simplified
VR version has run on Unreal better as well. The gameplay was fluid without
any lags, while the Unity version was playable with minor lags. The problem
is that I was not able to measure the framerate value correctly, so I can not
state it in the graph. Despite that, the anticipated value is around 16ms.

The size of the projection does matter in Unreal but does not play a
role in Unity according to the Fig. The Unity stays at the same frame
time, while Unreal speeds up almost three times. Both engines use deferred
shading, but it seems Unreal has better optimization than Unity.

46

6.2. Benchmarks

average frame times in ms
M unity
M unreal

5,09

3,53

9,67
5,41 I

SMALL (600X400PX) LARGE (1920X1200PX)

Figure 6.3: The effect of the projection size of one maze to the framerate. Unity
frame time stays the same, while Unreal time decreases almost three times.

100,00% 100,00% 96,50% 96,31% M Unity

[
85,71% M unreal
I 64,29%
MID

MAXIMUM (DEFAULT) Low

Figure 6.4: Performance speed up with lowering the render settings. Measured
with one maze instance on PC.

Unity and Unreal both offers different quality settings. In the Fig.
I have shown the speed up percentage with lowering the quality settings. I
have shown this in percent because this is what would happen during the
development. We develop the best looking game graphically, and when the
target PC parameters are insufficient, we lower the engine quality settings.
Unity has dropped to 64% from maximum to lowest quality, but the low
result does not pleasing at all. It is much better to optimize the assets or
turn off screen space effects manually inside the Unity Editor than decrease
the quality settings in the case when we need higher performance.

In Figl6.5 there are sizes of the final builds. Considering development
for PCs and consoles it is not a big deal, however, on Mobile platforms,
space is still precious. The Unreal version of mobile Pac-Man benchmark was
three times larger than Unity version. Also, the Unreal project sources are
incredibly large, the Pac-Man benchmark had over five GB.

Lastly, I will comment two time-graphs. The first one is Figl6.6, it is
the graph of frame times measured with Unreal benchmark running on a
notebook with one instance of the maze. The frame times are changing based
on the percentage of the screen that contains the maze. If the Pac-Man is
going through a corridor close to the edge of the maze, the maze is getting
out of the screen. Therefore the frame times decreases. Also, Pac-Man is

47

6. Results and Comparison

File size in MB
336 . 5232
M unity
M unreal
203
173 173
87
61
I l 391
[
PC MOBILE VR PROJECT

Figure 6.5: Size of the final builds and the game projects in MB.

[ms]
95
90
85
80
75
70
65
60

55

frame time in ms

50
CoORNLOMH NN AN DM o
AN MYTITHNOBRIB S AN

number of frame

Figure 6.6: Frame time measured with Unreal benchmark running on a notebook
with one maze instance. The frame time decreases based on the screen coverage
and number of objects in the scene.

eating the biscuits, so the number of objects and draw calls decreases as well.
At frame 185 Pac-Man is caught by a ghost, the level restarts and Pac-Man
appears in the middle of the maze again.

The second time graph (Fig. shows frame times measured with
Unity benchmark running on a PC with one maze instance. We can say that
the frame time remains the stable for most of the time. The garbage collector
starts running at frames 175 and 283, slows down the process and creates the
peaks in the graph.

48

—
SWw ulaw} swelsy

6vE
EVE
LEE
TEE
E143
61€
€1€
L0E
T0€
S6T
68T
€8T
LLe
T
S9T
65T
€ST
JA74
we
SE€T
67T
{144
L1
1174
S0z
66T
€61
L81
181
SLT
69T
€91
LST
1T
SPT
6€T
€ET
a7t
1148
STt
60T
€0T
L6

16

S8

6L

€L

L9

9

SS

(34

k314

LE

1€

ST

6T

€1

number of frame

Frame time measured with Unity benchmark running on a PC with

one maze instance. The frame time decrease peaks are caused by the garbage

collector.

Figure 6.7

6. Results and Comparison

‘,, s
-

Default sRGB Filmic Blender

Figure 6.8: An example of using Filmic color management in Blender cycles.
Image courtesy Blender Guru.

B 6.3 Visual quality

Visual quality is an important aspect of a game. Players rate the game mostly
by gameplay and graphics. In this section, I will show how the benchmark
looks like in Unity and Unreal and compare it to the offline render from
Blender Cycles [ES15]. The cycles render engine + backward path tracing
method (sending rays from camera instead from light sources). I have been
rendering on Nvidia GTX970 with one thousand render samples. The render
time was between one and three hours per frame. The scene was set up the
same as the one in the real benchmark. There was no direct light, I have lit
up the scene entirely using the hdri image of the sky.

To achieve even more realistic results I have used Filmic color configura-
tion [Sob]. The Filmic plug-in brings significantly higher dynamic range
then regular cycles with sSRGB color management. This is very important in
the context of reflected light. If I have used just the SRGB settings, the white
would not be bright enough to produce the sufficient amount of indirect light.
Filmic solves this problem. I have then gamma corrected the final image to
match the game engine results.

50

6.3. Visual quality

Figure 6.9: Maze overview rendered with Cycles engine inside Blender. Render
time approximately 2 hours on nvidia GTX970.

The Figl6.10| shows the overview of the maze. This is the default view
at the beginning of the game. Figl6.9/shows the reference offline render. Unity
has sharper shadows compared to Unreal. However, shadows in Unreal have
darker and colder feeling because of the stronger ambient occlusion effect. In
the offline render, the shadows are sharp at the touching point and get softer
with the distance. Also in the offline realistic simulation, the direct light has
to be much stronger to create sufficient indirect reflection, close to the game
engine results. The offline render is much more contrast between lights and
shadows. There is also no ambient occlusion.

o1

6. Results and Comparison

Figure 6.10: Maze overview comparison. The upper image is produced by Unity,
the lower one comes from Unreal.

52

6.3. Visual quality

Figure 6.11: Pac-Man closeup, reference render from Blender Cycles. Yellow
light reflected from the Pac-Man to the wall corner is apparent.

Figures and show detailed view of the Pac-Man. The most
noticeable difference of the real-time pictures and off-line render is the indirect
light reflected from Pac-Man. Game engines can precompute the light reflected
from static meshes. Bake it into the lightmaps or apply it to the dynamic
meshes. However, in Unity neither Unreal there is no simulation of indirect
light reflected from the dynamic mesh (Pac-Man). In Fig we can clearly
see the yellow light on the wall corner left from Pac-Man. This light reflects
from Pac-Man, and it is missing in the real-time pictures.

53

6. Results and Comparison

score; 0
— i

Score. 10

Figure 6.12: Pac-Man close up from Unity (top) and Unreal (bottom). None of
the images shows light reflected from the Pac-Man to the wall corner.

o4

6.3. Visual quality

Figure 6.13: Ghost close up reference rendered with Blender Cycles. It is
obvious that the ghosts with refractive glass material cast shadows.

The ghosts are visible in Figs)6.14, The material in Unity is just
transparent. There is no light reflection or refraction. There are possibilities
of adding this features to transparent materials with custom shaders, but
the Standard Shader does not support that. Unreal supports light refraction
and reflection on transparent meshes together, although the refraction is
somehow simplified. These parameters also depend on the view angle thanks
to the Fresnel effect [AMMHOS|(pages 231-236). Figl6.13| shows the offline
simulation, and there are ghost shadows visible which are not visible in the
real-time pictures. Also, the light on the wall (lower right corner) is much
brighter compared to the shadows.

The last comparison (Figl6.15) shows the mobile versions of the bench-
mark. The Unity version runs almost twice slower than the Unreal version.
However, the shadows are a little sharper, and the bumps on the walls are
much more clear in Unity compared to Unreal. The Unreal has more vivid
colors and the indirect light reflected from the ground to the biscuits is much
more visible.

55

6. Results and Comparison

Figure 6.14: Ghost close up rendered with game engines. The upper image is
Unity; the lower one is from Unreal. Unity supports no refraction; the ghosts
are only transparent The indirect light reflected from the floor to the biscuits is
also much more visible in the Unreal version.

56

6.3. Visual quality

Figure 6.15: The mobile versions running on Samsung Galaxy S6. The top one
is Unity (53ms), the bottom one is Unreal (30ms).

o7

6. Results and Comparison

B o4 Subjective developer’s opinion

Developing in Unity is easy. The engine’s architecture is quite simple. There
are game objects inside the scene, each object has components, and that
is all. Some of the components can be scripts, which control the behavior
of the object and modifies the variables of other components. The scripting
language C# is very powerful. I was able to learn the Unity framework within
a week to become reasonably productive. Also, the documentation is very
well written. It contains explanations and examples of the code, which can
be copy-pasted and modified for user’s needs. The community is very large,
I have found all of my questions answered at answers.unity3D.com.

Developing a game in Unity is comfortable. Unity solves many problems
for me, so I do not have to care about them. The development process is
fast and efficient. Because the Engine does not have any strict architecture
considering the script relations, it is up to the developer to manage the
overall structure by himself. If a script has a public variable, the variable
automatically appears in the Editor, and the initial value can be set in the
Editor, outside of the script. That is comfortable for tweaking the gameplay.
However, it supports hand-made relations between the objects and high
coupling. The code becomes a mess very easily because assigning an object
as a reference to a script’s variable works as drag and drop. Once there are
many objects with different scripts, and all of them are connected inside the
editor, it is easy to loose control the game’s behavior.

Unity offers a Prefabs concept which helps to put the scene together.
Prefab is a set of objects connected together with variables already set up.
This pre-made object can be then instantiated and modified to create similar
instances. For example, I have created all the ghosts from one prefab. They
have a lot of the behavior in common. Just the pathfinding strategies and
colors are different. Another example of a prefab use are the biscuits. They
all look the same and have the same tags. Therefore they are instantiated
from one prefab with a script.

Unity materials are solved mainly with the Unity Standard Shader
which is easy to set up and does not force the user to spend too much time
on it. The light baking was great and surprisingly fast. However the post
processing is weak, there were some scripts for screen space effects, but since
they were not part of the engine, the results turned out rather average. Export
to various platforms works fine without any problems. The setup of export
is simple and well documented.

I have enjoyed the Unity development a lot. It is a pleasure to work
with Unity, the results appear pretty quickly, the development is efficient,
and the workspace itself is simple to understand and use. I would recommend

o8

6.4. Subjective developer’s opinion

Unity to any beginner game developer. It is a great platform.

Starting with Unreal was nothing simple. Clearly said, Unreal is not
suited for beginners. The engine is very powerful. However, it is equally
complex as well. The first weeks with Unreal were painful. The biggest
problem was different architecture from Unity.

In Unity, there is a game object in the scene, and this object has a list
of components. One of the components is a script which controls the others
and adds the interactive functionality. In Unreal, the basic idea is that every
interactive object is a Blueprint. The Blueprint (or C++ script) stays on top
of a hierarchy of components. The components could be various mesh objects,
lights, cameras, functions... With this philosophy, Blueprint represents an
object but functionally is closer to Unity’s Prefab.

Scripting the game in C++ is complicated. The framework is open
source; it is very large and complex. The compilation times are very long
compared to Unity. I have spent two weeks trying to script the game using
C++, then I gave up and moved to blueprints entirely. Blueprints are
an event-based way of visual scripting. My first impression was that visual
scripting could not be anything serious, but blueprints cover almost everything
a developer might need from scripting logic. It took me a few days to get
used to connecting nodes instead of writing code. However, the development
has accelerated rapidly. I have ended up with two C++4 scripts in the entire
benchmark, I have solved the rest with blueprints.

The more time I have spent with Unreal, the more I have liked the
environment. The Unreal tools are much more powerful that those in Unity.
Moreover Unreal covers some areas that Unity entirely skips like an advanced
terrain creator or vegetation tools. The Al tools are a bit complicated, but
they create a solid base for creating an advanced character logic.

Material creation in the Unreal engine is breathtaking. With the node-
based logic similar to Blueprints Unreal allows us to write shaders without
ever realizing it. The process of creating new materials is creative, and this
amazing tool opens entirely new possibilities of materials.

In comparison to Unity, the Unreal source projects are very large; the
development is slower. However, the results are much more solid. Unreal
aims on large game development; expects skilled developers and gamers with
powerful machines.

For any simple or mobile project, I would choose Unity, because of its

ease of use. For anything serious targeted on PC or consoles, I would go with
Unreal.

99

60

Chapter 7

Conclusions

In this bachelor’s thesis, I have proposed a method for comparison of the
game engines. The method is based on implementing a game of appropriate
complexity using tested game engines and measuring the performance. I have
implemented the Pac-Man game in Unity and Unreal engine and deployed
it on PC, notebook, Android mobile and GearVR platforms. The Pac-
Man benchmark can scale the load from one up to seven independent maze
instances.

At first, I have briefly described game development process and the con-
temporary game engines in Chapter 2. Then I have analyzed the Pac-Man
game and clarified the principles of the game and how they are used in the
benchmark in Chapter 3 After that, I have implemented the game twice
using Unity and Unreal engines with physically based shaders and models
from Blender animated with Shape Keys. I have described the development
process and techniques that I have used in Chapters 4] and 5. T have deployed
the benchmark to for platforms PC, laptop, mobile, and VR. I have designed
tests to measure the system’s performance on each platform, performed the
testing and presented the results in Chapter |6

The Unity benchmark runs with frame time around 4ms on PC, 55ms
on the laptop. In Unity adding another maze instances does not multiply the
frame times, but just adds the constant of 4ms/maze, both on the PC and
laptop. I found that interesting concerning the significant difference between
the graphical cards. On mobile, it runs with frame time slightly above 50ms.
The VR version’s frame time moves around 20ms, which is not optimal, but
acceptable on the GearVR.

The Unreal Benchmark runs with frame time slightly above 10ms with
one maze on PC. However, the time does not grow with adding another maze
instances. That means with one instance Unreal is twice slower than Unity,

61

7. Conclusions

but with seven instances Unreal becomes three times faster. The notebook
was too weak for the Unreal benchmark; the resulting frame times stayed
between 85 and 110ms per frame. On mobile, the Unreal benchmark runs
with 30ms per frame, which is much better result compared to Unity. I was
unable to measure the VR times correctly. However the game was running
fluently, so I expect frame times around 16ms. The frame time is independent
on the projection size in Unity benchmark. However, it is dependent in the
Unreal benchmark.

In Chapter [6| I have also shown a visual comparison of the benchmarks
with an off-line render from Blender Cycles and explained the differences.
Lastly, I presented my humble opinions and recommendations from the
perspective of a developer.

As a future work, I would like to test the implementation in Cry Engine,
mainly to compare the visual results with Unreal. I might be interesting
to deploy the benchmark on more powerful VR platforms such as Oculus
Rift C1 or the HTC Vive to compare the performance of a full benchmark
in VR. Concerning Unreal and Unity, the next steps are the location of the
bottlenecks and proposal of optimization techniques. The final output of such
work in the future might be an optimization guide for the game developers
for each engine and target platform.

62

References

[AMMHO8]

[Bir]

[Doc]

[Dra]

[Ebe04]

[Fri]

[FS15]

[Geo]

E. F. Anderson and col., Choosing the infrastructure for enter-
tainment and serious computer games - a whiteroom benchmark
for game engine selection, 2013 5th Intl. Conf. on Games and
Virtual Worlds for Serious Apps, pp. 1-8.

Tomas Akenine-Moller, Tomas Moller, and Eric Haines, Real-time
rendering, 3rd ed., CRC Press, 2008.

Chad Birch, Understanding pac-man ghost behavior,
lgameinternals.com/post/2072558330/, Accessed: 2017-05-09.

Unreal Engine 4 Documentation, Unreal engine 4 documenta-
tion, https://docs.unrealengine.com/latest/INT/Engine/|
Rendering/PostProcessEffects/|, Accessed: 2017-05-07.

Atul Dravid, Understanding ies lights, http://www.cgarena,
lcom/freestuff/tutorials/max/ieslights/, Accessed: 2017-
05-07.

D. H. Eberly, 3d game engine architecture: Engineering real-time
applications with wild magic, Morgan Kaufmann, 2004.

Jay Friesen, What 18 look up table (lut),
anyway?, http://nofilmschool.com/2011/05/
what-is-a-look-up-table-lut-anyway, Accessed: 2017-
05-07.

Gottfried Hofmann Frederik Steinmetz, The cycles encyclopedia,
Blender Foundation, 2015.

Geometrics, Enlighten, http://www.geomerics.com/

Accessed: 2017-05-20.

63

http://gameinternals.com/post/2072558330/
http://gameinternals.com/post/2072558330/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/
http://www.cgarena.com/freestuff/tutorials/max/ieslights/
http://www.cgarena.com/freestuff/tutorials/max/ieslights/
http://nofilmschool.com/2011/05/what-is-a-look-up-table-lut-anyway
http://nofilmschool.com/2011/05/what-is-a-look-up-table-lut-anyway
http://www.geomerics.com/enlighten/
http://www.geomerics.com/enlighten/

References

[Kor] Maria Korolov, Report: 98phones,
|/ /www.hypergridbusiness.com/2016/11/ |
report-98-of-vr-headsets-sold-this-year-are-for-mobile-phones/|
Accessed: 2017-05-09.

[Lon07] T. Long, Oct. 10, 1979: Pac-man brings gaming into pleistocene
era, http://archive.wired.com/science/discoveries/|
news/2007/10/dayintech_1010, 2007.

[Par15] Tony Parisi, Learning virtual reality : developing immersive ex-
periences and applications for desktop, web, and mobile, O’'Reilly
Media, Inc, Sebastopol, CA, 2015.

[PDAFP10] P. Petridis, I. Dunwell, S. de Freitas, and D. Panzoli, An engine
selection methodology for high fidelity serious games, 2010 2nd
Intl. Conf. on Games and Virtual Worlds for Serious Appss,
March 2010, pp. 27-34.

[Pit] Jamey Pittman, The pac-man dossier, http://www.gamasutral
lcom/view/feature/3938/the_pacman_dossier.php?print=1]
Accessed: 2017-05-19.

[Sch08] J. Schell, The art of game design: A book of lenses, CRC Press,
2008.

[Sob] Troy James Sobotka, Filmic view and look transformations for
blender, https://sobotka.github.io/filmic-blender/, Ac-
cessed: 2017-05-10.

[VRo] Official unity documentation: Optimisation for v,
http://archive.wired.com/science/discoveries/news/ |
12007/10/dayintech_1010.

[Wat11] A. Watkins, Creating games with unity and maya, Focal Press,
2011.

[Web] The Next Web, This engine is dominating the gaming in-
dustry right now, https://thenextweb.com/gaming/2016/03/
[24/engine-dominating-gaming-industry-right-now/, Ac-
cessed: 2017-05-10.

64

http://www.hypergridbusiness.com/2016/11/report-98-of-vr-headsets-sold-this-year-are-for-mobile-phones/
http://www.hypergridbusiness.com/2016/11/report-98-of-vr-headsets-sold-this-year-are-for-mobile-phones/
http://www.hypergridbusiness.com/2016/11/report-98-of-vr-headsets-sold-this-year-are-for-mobile-phones/
http://archive.wired.com/science/discoveries/news/2007/10/dayintech_1010
http://archive.wired.com/science/discoveries/news/2007/10/dayintech_1010
http://www.gamasutra.com/view/feature/3938/the_pacman_dossier.php?print=1
http://www.gamasutra.com/view/feature/3938/the_pacman_dossier.php?print=1
https://sobotka.github.io/filmic-blender/
http://archive.wired.com/science/discoveries/news/2007/10/dayintech_1010
http://archive.wired.com/science/discoveries/news/2007/10/dayintech_1010
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/

Figures

2.1 Example of a first person view. Player is looking through the
characters eyes, he can see his arms and weapon. Image courtesy Crytek.

2.2 Game engines components OVErview.oueuenenen ..
2.3 Viewing frustum of the camera................ 6

2.4 Victor facial samples - an example of using blend shapes as facial

expressions. Image courtesy Cosmos Laundromat, opensource film
2.5 NavMesh of the Pac-Man benchmark in Unreal Engine............
2.6 Logotypes of the most used 3rd party engines.
3.1 Pac-Man, the main character.

3.2 Screen from the original Pac-Man maze. Image courtesy of Shaune
WillIams. ..ot e

3.3 Benchmark maze with various materials and precomputed indirect

lighting. Screenshot from the Unity Benchmark version.
3.4 Components of the Pac-Man control system.
3.5 Decisions during turn on a cross.c..ouiiiiiinnea..
3.6 There are four ghosts in the game.

65

Figures

3.7 The grid that shows 28x31 tiles creating the original Pac-Man Maze. |19

3.8 Tile evaluation diagram describes the process of choosing the right tile

type to be instantiated. 20
3.9 The Unity Editor environment. 22
4.1 The Unity Editor environment. 24
4.2 Ghost navigation system in Unity. 26
4.3 Animation using shape keys inside the Unity Editor. 27
4.4 Animation using shape keys inside the Unity Editor. 28

4.5 Unity Tesselation Shader used on the roof, creating real bump
according to the height map. 28

4.6 Screen- space effects setup. Motion blur, Antialiasing and ambient

OCCIUSION . .ot 30
5.1 The Unreal Editor environment. 32
5.2 An example of simple blueprint for Ghost Target update. 32
5.3 Indirect event invocation using the level blueprint. 34

5.4 Diagram of the main components in the Unreal Pac-Man Benchmark. (34

5.5 The basic Artificial Intelligence setup in Unreal Engine. 35
5.6 The ghost control setup in Unreal Pac-Man Benchmark. 35
5.7 The animation curves inside The Unreal Editor. 36
5.8 An example of a parallax material of the roof. 37
5.9 The ghost reflective material.. 37
5.10 The Unreal Motion Graphics UI Designer interface. 39
5.11 Chromatic aberration example, image courtesy Epic Games, Inc... [39

66

Figures

5.12 Look Up Tables and the color graded results, image courtesy Epic
Games, INC.o 40

5.13 GPU Visualizer showing the duration of processes. 40

6.1 Average frame times on PC and notebook. Versions of the benchmark
with one, four and seven maze instances. (1.2 - 8.4 million vertices) . |46

6.2 Benchmark results on Android and GearVR platforms. Unreal version
of the VR was not measured exactly, however from the character of the
gameplay I assume the frame time is around 16ms. 46

6.3 The effect of the projection size of one maze to the framerate. Unity
frame time stays the same, while Unreal time decreases almost three
IS, .« ottt 47

6.4 Performance speed up with lowering the render settings. Measured
with one maze instance on PC. 47

6.5 Size of the final builds and the game projects in MB. 48

6.6 Frame time measured with Unreal benchmark running on a notebook
with one maze instance. The frame time decreases based on the screen
coverage and number of objects in the scene. 48

6.7 Frame time measured with Unity benchmark running on a PC with
one maze instance. The frame time decrease peaks are caused by the
garbage collector. 49

6.8 An example of using Filmic color management in Blender cycles.
Image courtesy Blender Guru. 50

6.9 Maze overview rendered with Cycles engine inside Blender. Render
time approximately 2 hours on nvidia GTX970..................... o1

6.10 Maze overview comparison. The upper image is produced by Unity,
the lower one comes from Unreal. 52

6.11 Pac-Man closeup, reference render from Blender Cycles. Yellow light
reflected from the Pac-Man to the wall corner is apparent. 53

6.12 Pac-Man close up from Unity (top) and Unreal (bottom). None of the
images shows light reflected from the Pac-Man to the wall corner. 04

67

Figures

6.13 Ghost close up reference rendered with Blender Cycles. It is obvious
that the ghosts with refractive glass material cast shadows. 95

6.14 Ghost close up rendered with game engines. The upper image is
Unity; the lower one is from Unreal. Unity supports no refraction; the
ghosts are only transparent The indirect light reflected from the floor to
the biscuits is also much more visible in the Unreal version. 00

6.15 The mobile versions running on Samsung Galaxy S6. The top one is
Unity (53ms), the bottom one is Unreal (30ms). 57

68

Appendix A

CD Contents

DVD
bin ..o contains the executable games
IMAEES ¢ vttt screens from the game
1ateX ettt LATEX source files of this text
STC t ettt e source files of the benchmarks
thesis.pdf ..o PDF version of this text
README. txt

69

	Introduction
	Game Engines
	Brief introduction into the game development
	Components of the game engine
	Rendering
	Animation
	Physical engine
	Artificial intelligence
	Scripting
	Audio

	Contemporary game engines
	Unity 3D Engine
	Unreal Engine 4
	Cry Engine 3

	The Pac-Man Benchmark
	Game Concept
	The Maze
	Pac-Man Movement
	AI characters
	Maze generator
	Scaling the problem
	VR adjustments

	Unity implementation
	Game architecture and components
	Ghost navigation
	Visuals
	Models and animations
	Materials
	Lighting
	User Interface
	Screen-space effects

	Profiling

	Unreal implementation
	Game architecture and components
	Ghost navigation
	Visuals
	Models and animations
	Materials
	Lighting
	User Interface
	Screen-space effects

	Profiling

	Results and Comparison
	Features
	Benchmarks
	Visual quality
	Subjective developer's opinion

	Conclusions
	References
	Figures
	CD Contents

