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Abstract 

Acute kidney injury (AKI) represents a significant clinical concern that is associated with 

high mortality rates and also represents a significant risk factor for the development of 

chronic kidney disease (CKD).   This article will consider alterations in renal endothelial 

function in the setting of AKI that may underlie impairment in renal perfusion and how 

inefficient vascular repair may manifest post-AKI and contribute to the potential transition to 

CKD.  We provide updated terminology for cells previously classified as “endothelial 

progenitor” that may mediate vascular repair such as pro-angiogenic cells and endothelial 

colony forming cells.  We consider how endothelial repair may be mediated by these 

different cell types following vascular injury, particularly in models of AKI. We further 
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summarize the potential ability of these different cells to mitigate the severity of AKI, 

improve perfusion and maintain vascular structure in pre-clinical studies. 

 

Key Words: Rarefaction, Angiogenesis, Ischemia, Fibrosis, Inflammation 

 

Background 

 Acute kidney injury (AKI) represents a significant and growing clinical concern, 

which affects approximately 5% of hospitalized patients and is associated with high 

morbidity and mortality rates.  AKI is defined as a rapid loss of renal function occurring over 

the course of hours or days and is primarily caused by impaired renal blood flow, 

nephrotoxicity or sepsis leading to ischemic or hypoxic damage 
1
.   In addition, AKI is 

associated with injury to the renal parenchyma, particularly tubular epithelial cells, but also 

vascular and interstitial cells.  Repair mechanisms in the kidney typically mediate recovery of 

renal function and structure, which is observed in most surviving patients. However, it is now 

recognized that patients who have recovered from AKI are at increased risk for the 

development of either chronic kidney disease (CKD) or end-stage renal disease (ESRD) 
2-4

.  

This may result from repair processes following AKI that are either incomplete or 

maladaptive, predisposing the development of renal fibrosis 
2
.  

 

Impaired perfusion in acute kidney injury 

 In animal models of acute kidney injury such as ischemia-reperfusion, there is 

typically an impairment in renal blood flow associated with lost renal function and tissue 

damage 
5
. In models of sepsis, AKI may or may not occur in the presence of reduced renal 

blood flow, and this has been an area of some controversy 
6
.  The use of contrast media is 

another significant risk factor predisposing AKI.  Contrast media is thought to promote 

vasoconstriction of pericytes, leading to an exacerbation of hypoxia in the renal medulla 
7
 .   
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Regardless of effects on total renal blood flow, it is thought that heterogeneous disturbances 

in microvascular flow patterns are likely evident in AKI of various etiologies 
6
.  Such 

impairment at the microvascular level disrupts perfusion particularly in the renal medulla and 

is considered to be a significant reason why parenchymal cells in this region (primarily S3 

proximal tubule cells) are the most severely affected in these models 
7
.  Recent reviews have 

highlighted how impairment of renal microvascular function is of central importance in both 

initiating and predicting the severity of AKI and have called for development of new methods 

to better evaluate renal perfusion in susceptible patients 
6
.   A better appreciation for the 

complicated nature of endothelial dysfunction in the setting of AKI can be obtained from a 

number of comprehensive review articles both by us 
5, 8

 as well as other investigators 
9-11

.  

For the purposes of this article, we wish to highlight central concepts regarding impaired 

vascular function in the development of acute kidney injury, implications for transition from 

acute to chronic kidney disease, and how these may relate to the potential use of endothelial-

targeted cell-based therapies.  

 

Reductions in renal blood flow (RBF) following ischemia or hypoxia have been 

thought to be due, in part, to rapid vasoconstriction, perhaps secondary to impaired proximal 

tubular sodium reabsorption and activation of tubular glomerular feedback 
1
. However, if 

glomerular filtration rate (GFR) is reduced, sustained tubular glomerular feedback likely does 

not contribute to sustained vasoconstriction 
6
.  While activation of other vasoconstrictor 

pathways (e.g., sympathetic tone, angiotensin II, endothelin) or impairment of vasodilator 

pathways (e.g., prostacyclin, nitric oxide) have been suggested to reduce renal blood flow 

during AKI, the inability of vasodilators to reverse AKI suggests that these pathways may 

play only a modest (at best) contributory role to sustained loss of renal function 
8
.  
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In the last 10-15 years there has been considerable attention focused on the potential 

role of the post-glomerular peritubular capillaries contributing toward the development of 

AKI.  These vessels subserve reabsorption of water and solute from the interstitium back into 

systemic circulation and are a characterized by low hydrostatic pressure.  These vessels also 

deliver oxygen and nutrients to the renal tubular system and are in close apposition to these 

cells.  Counter current flow in vasa recta allows for oxygen shunting in the renal medulla and 

development of an oxygen gradient producing a relatively hypoxic environment 
9
.   

Reductions in RBF can reduce GFR and reduce tubular metabolic work, but extreme 

impairment may further exacerbate renal hypoxia and can activate inflammatory and cell 

injury pathways in nearby S3 proximal tubule or thick ascending limb 
1, 9, 10

.  Peritubular 

capillary damage may contribute further to impaired perfusion and may predict the severity 

and duration of AKI.  In studies of transplant patients receiving cadaveric grafts, renal 

biopsies obtained immediately post-perfusion demonstrated evidence of both endothelial and 

vascular smooth muscle damage as indicated by reduced von Willebrand factor staining and 

actin cytoskeletal disorganization. The degree of vascular damage in the immediate post-

transplant period was predictive of reduced graft function in the subsequent 7 days of 

recovery 
12

. 

 

Endothelial dysfunction as a contributor to AKI 

Molitoris and Sutton suggested that disturbances in microvascular flow in the kidney 

lead to the extension phase of AKI 
13

, in which tubular damage is exacerbated by events in 

the endothelium which may include endothelial swelling, increased expression of adhesion 

molecules and associated recruitment of various leukocyte populations.  Endothelial 

leukocyte adhesion, activated in the setting of AKI, may result from increased exocytosis of 

Weibel-Palade bodies 
14

 and an immediate enhancement of surface adhesion molecules such 
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as P-selectin 
15-17

 and ICAM-1 
1, 18, 19

 
19

 (Figure 1).  Increased co-stimulatory factor 

expression is also observed on the surface of capillary endothelial cells and inhibition of B7-1 

reduces monocyte infiltration in the ascending vasa recta in response to renal ischemia 

reperfusion 
20

.   

 

The initiating pro-inflammatory activity in the endothelium requires further 

investigation.  Paracrine factors such as cytokines or other danger signals from stressed 

epithelium represent potential links between the epithelial and vascular compartments 
10

. 

Endothelial responses may also directly result from ischemia by altering endothelial 

cytoskeletal structure, resulting in reduced endothelial cell-cell contact or cell-adhesion 

complexes 
21

.  Mitochondrial damage following ischemia has been documented in peritubular 

capillaries and a recent study showed that a compound that targets mitochondrial cardiolipin 

attenuated endothelial mitochondrial damage and the development of inflammation following 

renal ischemia reperfusion 
22

.  Both ischemia and sepsis are known to induce glycocalyx 

shedding. The glycocalyx is considered an initial layer of endothelial barrier function, and its 

disruption may initiate downstream signaling cascades and increase access of leukocytes to 

endothelial adhesion molecules 
21, 23

.  Loss of endothelial cell barrier function may also 

activate coagulation cascades, and potentially influence renal function by increasing 

interstitial edema and intra tubular pressure 
23

. 

Leukocyte adhesion may contribute to the development of vascular rouleaux, which 

manifest prominently within a few hours post-ischemia in rodent models of AKI 
1, 10

.  

Vascular congestion and rouleaux have also been described in dogs following renal I/R 
24

 and 

in monkeys following LPS induced AKI 
25

.  Further, Solez et al., demonstrated significant 

intravascular leukocyte accumulation in 63 of 66 cadaver kidneys from patients with 

established AKI for greater than 24 hours 
26

.   
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Efforts to improve renal perfusion in acute kidney injury have historically been 

directed toward managing fluid volume and cardiac output.  While increased vasomotor tone 

may reduce GFR in the initial development of AKI, renal vasodilators have been shown to 

lack efficacy in improving renal function in established AKI 
27, 28

. We recently suggested that 

the failure of vasodilators  to alleviate established AKI is based on the inability of such 

therapies to resolve vascular congestion/ inflammation and that potential treatments should 

target established endothelial/leukocyte interaction 
8
. In support of this idea, retrograde 

hydrodynamic delivery of saline at high pressure into the post-glomerular vasculature of rats 

alleviated vascular congestion, improved capillary perfusion and resulted in more rapid 

recovery of serum creatinine following the establishment of AKI  
29

. 

 

Effects of renal injury on peritubular capillary rarefaction and the AKI to CKD 

transition 

The degree to which effective endothelial repair influences chronic renal function and 

the long-term sequelae of AKI has also received significant attention in the last 10-15 years. 

Several reports indicate that peritubular capillary density is reduced permanently following 

AKI despite the apparent recovery of function following the initial insult.   In rats and mice, 

there is a 30-50% reduction in capillary density following AKI, which is proposed to promote 

tissue hypoxia and activate pathways associated with the development of interstitial fibrosis 
5, 

30, 31
 and may also contribute to the sensitivity of post-ischemic rats to develop hypertension 

32
. Sustained capillary rarefaction has emerged as a potential common feature present in 

nearly all models of chronic renal injury associated with interstitial fibrosis 
33

.  Capillary 

rarefaction is present in human CKD of a variety of different etiologies and the loss of 

capillaries is strongly correlated with interstitial fibrosis
34

.  Thus it is conceivable that 

impaired renal microvascular perfusion may represent a potential biomarker to predict the 
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onset and severity of CKD. Chade and colleagues have demonstrated that CT imaging can be 

used to detect deficits in renal perfusion associated with vascular rarefaction using a swine 

model of renal artery stenosis
35

.  Similarly, MRI techniques have shown promise to identify 

differences in renal perfusion patterns in patients with mild CKD vs. healthy control patients 

36
.  These observations suggest novel imaging approaches could be used to measure impaired 

renal perfusion and identify patients at risk of progression.   

While hypoxia secondary to vascular dropout appears to contribute to the 

development of renal fibrosis following AKI, there is clearly complex interplay involving 

multiple cell types that culminate in the AKI to CKD transition 
1, 37

.  For example, in recent 

years, it has been suggested that pericyte detachment from damaged peritubular capillary 

endothelial cells trigger their activation to pro-fibrotic myofibroblasts representing the 

primary cell type contributing toward extracellular matrix (ECM) production
38

. 

In addition, recent evidence supports the view that persistently damaged tubular 

epithelium contributes to the development of fibrosis (reviewed extensively in 
37, 39, 40

).  

Interestingly, significant damage specifically in proximal tubule cells using a transgenic 

diphtheria toxin receptor transgenic mouse model was shown to result in persistent 

inflammation, activation of fibroblasts and interstitial fibrosis 
41

.   It is thought that 

dedifferentiated cells and/or cells which become arrested in G2/M phase of proliferation 

produce pro-fibrotic mediators such as TGF-β or CTGF, interact within the interstitial 

environment and stimulate the production of ECM
 39, 40

 . 

The failure of epithelial cells to fully repair may represent a deficit of the tubular cell 

itself, however we suggest such failed recovery may also result from the lack of appropriate 

local perfusion secondary to capillary rarefaction.  Indeed, Suzuki et al., demonstrated in a 

model of microembolism that hetergeneously damaged  peritubular capillaries were in close 

apposition to areas of simplified epithelia and increased interstitial cell density
42

. Taken 
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together the development of interstitial fibrosis in the AKI to CKD transition can be viewed 

as complex interaction of damaged vascular, epithelial and interstitial cell types, and the 

targeting of any of these pathways could be envisioned to promote more successful repair and 

improved long-term outcomes 
2
. 

 

Causes of capillary rarefaction following renal injury 

If reduced peritubular capillary density represents a significant contributor toward 

progression of CKD, then an understanding of the pathophysiological loss of capillary 

density following an injury may help identify potential therapeutic strategies.  The cause of 

capillary rarefaction is not firmly established, but it likely involves endothelial mesenchymal 

transition (EndoMT), combined with a relative lack of compensatory endothelial 

proliferation
43, 44

  (Figure 2). These activities may result from a combination of a reduced 

angiogenic environment and trophic support from surrounding tubules or pericytes 
45-47

. 

Goligorsky and his colleagues have suggested inhibition of eNOS could trigger EndoMT 

48
and that in the setting of vascular stasis, reduced shear stress may be a trigger for EndoMT 

and vascular rarefaction 
49

. Patschan et  al., suggested that EndoMT may result from 

endothelial cytoskeletal alterations in response to ischemia, which reduces α-tubulin 

expression and is associated with impaired endothelial cilia function 
44

.  Interestingly, in 

animal models of AKI, EndoMT and rarefaction of capillaries is sustained despite ongoing 

renal tubular repair and recovery of renal function.  For example, our laboratory 

demonstrated evidence of EndoMT for up to 7 days following I/R in rats, while Ehling et al., 

demonstrated the nadir of capillary density was not reached until approximately 14 days 

following I/R, a time point well beyond the normal re-establishment of plasma creatinine to 

normal values 
50, 51

.  
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 We have suggested that sustained capillary rarefaction may be attributable to the lack 

of resident renal endothelial progenitor activity, representing the basis for modest EC 

proliferation and sustained rarefaction observed following injury 
50

 (described further, 

below). Interestingly, VEGF121 treatment post I/R prevented capillary rarefaction by 

attenuation of EndoMT but did not influence kidney endothelial proliferation 
43

. Therefore, 

given the sustained duration of EndoMT process contributing to capillary loss following 

recovery from acute injury, a critical therapeutic window may be available to treat patients 

recovering from AKI to improve capillary survival and long term renal function.  

Taken together, the issues highlighted above indicate a need for therapeutic 

approaches to address endothelial function to treat both the acute as well as the chronic 

vascular damage resulting from AKI.   The remainder of this article will focus primarily on 

the potential role of stem and progenitor cells targeting endothelial function and the potential 

therapeutic applications of these cells in the setting of acute kidney injury.  

 

Defining cells types with potential for endothelial repair potential  

  Numerous studies invoking a role for endothelial progenitor cells (EPC) in renal 

vascular repair in both acute and chronic kidney disease have been published.  However, the 

field has been hampered by inconsistent definitions and different methodologies used to 

isolate or identify various cell types classified as EPCs.  Because of the variety of different 

cell types used in these studies, we endorse previous suggestions to abandon the term 

“endothelial progenitor cell” in favor of more precise terminology to allow for better 

interpretation and comparison of the results from different studies 
52

.  In general, cells with 

particular relevance to angiogenic repair can be classified into two broad categories as either 

hematopoietic or endothelial in origin and these distinctions are described in greater detail 

below.   
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Historically, most studies have referred to EPCs as bone marrow-derived cells, which 

express cell surface markers common to endothelial cells and may mediate pro-angiogenic or 

vascular repair activity 
53

  (Figure 3). Several populations of cells have been described and 

characterized by the nature of their biological source, isolation procedure and the presence of 

various cell surface markers which provide insight into their origin.  Hematopoietic stem cells 

(HSC) give rise to multiple lineages of myeloid and lymphoid cells, many of which display 

pro-angiogenic activity
54-57

. Therefore different selection criteria may lead to isolation of 

upstream progenitors with the potential to differentiate into more terminally differentiated 

cells which may modulate vascular injury.  While HSC differentiate into a variety of different 

myeloid and lymphoid populations, advances in confocal imaging to improve spatial 

localization of transplanted cells 
58

 and the use of lineage specific reporter transgenic murine 

models 
59-61

  or analysis of epigenetic regulation in endothelial cells 
62

  has eliminated any 

evidence that these cells are capable of differentiating into endothelial cells.   Nevertheless, 

their involvement in processes such as vascular remodeling 
63-65

 make them particularly 

relevant in understanding potential effects in the setting of acute kidney injury. 

 

Early outgrowth/ CFU Hill cells: As originally described, EPCs are isolated from either low 

density mononuclear cells or CD34+ or CD133+ enriched cells, which are cultured for 

several days on fibronectin coated plates. The cells express markers of endothelial cells such 

as CD31, CD105, CD144, CD146, vWF and KDR 
66

.  These cells have subsequently been 

referred to as “early outgrowth” cells or colony forming unit Hill (CFU-Hill) cells 
67-70

. The 

cells have generally been shown to be effective at promoting vascular repair via paracrine 

secretion of proangiogenic molecules in preclinical models of vascular repair where they 

typically improve or hasten remodeling 
70

. These cells are now all recognized to be various 

stages of hematopoietic cells with proangiogenic potential 
70-72

 . 
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Hematopoietic pro-angiogenic cells: Putative endothelial progenitor activity from cells 

isolated based on their expression of surface markers of CD34, CD133 and the VEGFR2 

(KDR) has been reported  
68

. Many studies report that these cells augment angiogenic repair 

in vascular injury models
67, 73, 74

 leading to the suggestion that these cells contain endothelial 

progenitor activity. However, careful examination has demonstrated that 

CD34/CD133/VEFR2 cells possess hematopoietic colony forming activity
75, 76

. While neither 

the CD34/CD133/VEFR2 expressing cells or CFU-Hill cells have been shown to become 

bone fide endothelial cells by incorporating into the endothelial layer of a repaired vessels, 

the ability of the CD34/CD133/VEFR2 expressing cells to promote vascular repair, and the 

ability to isolate these circulating cells from blood has suggested that these may serve as a 

potential biomarker for overall cardiovascular risk 
77, 78

. 

 

Circulating Angiogenic Cells: This term has been applied to a variety of hematopoietic 

stem and progenitor cells that display the capacity to secrete proangiogenic factors that 

participate via paracrine mechanisms to promote vascular repair and regeneration. However, 

this term may more broadly include non-hematopoietic cells present in the circulation such as 

rare endothelial colony forming cells (cECFC) or even mesenchymal cells. In essence any 

cell that can circulate in the bloodstream that produces proangiogenic molecules may be 

generally referred to as a circulating angiogenic cell; thus, the term lacks specificity and as 

such fails to provide the reader with clarity about the cell type being examined
52, 79

 

 

Myeloid angiogenic cells: This term represents a population of cells derived from 

peripheral blood derived cultures which express markers of myeloid progenitor cells, 

monocytes, or macrophages, but do not express markers of hematopoietic stem and 

progenitor cells and do not proliferate significantly ex vivo 
80-82

.  Of interest, these cells do 
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express potent angiogenic growth factors and participate in vascular remodeling and repair
83

. 

This term is a preferred choice for describing the non-ECFC types of angiogenic cells that 

participate in paracrine support of vascular repair according to a recent consensus 

statement.
40 

 

Endothelial colony forming cells. This term identifies rare circulating viable endothelial 

cells that give rise to colonies of endothelial cells when peripheral blood cells are cultured in 

vitro
84, 85

. While most circulating endothelial cells are undergoing apoptosis or necrosis in the 

bloodstream
86

 , very rare viable cells possess this endothelial colony forming cell (ECFC) 

ability 
85

. These cells have been isolated from human, baboon, rhesus monkey, cow, sheep, 

dogs, pigs, and rabbit peripheral blood (reviewed in 
87

). Human ECFC have been delivered in 

numerous animal models of human disease and display postnatal vasculogenic properties by 

making human blood vessels in all the models in which the ECFC are delivered directly into 

ischemic or injured tissue 
88, 89

. When ECFC are delivered intravascularly into injured 

animals, little engraftment has been observed and the protective effects to enhance vascular 

recovery has been demonstrated to reside in secreted molecules released by the ECFC or 

contained in their exosomes 
90, 91

 
19

. 

 

A variety of different cell types influence endothelial responses to renal injury 

 Based on the description above, we sought to classify studies based on whether the 

cells of interest could be identified as either pro-angiogenic cells, endothelial colony forming 

cells (ECFC) or endothelial cells (EC).  The term pro-angiogenic cells is meant to convey any 

cell of hematopoietic origin with potential vasculogenic activity and would therefore 

encompass cells such as early outgrowth “endothelial” cells (eOEC) or myeloid angiogenic 

cells.  In some cases, we were unable to be sure which of these categories was isolated by the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

authors of the numerous papers that have delivered “EPC” into murine models of AKI and 

therefore categorized the cell type as indeterminate (Table 1). It is of interest that exogenous 

delivery of both pro-angiogenic cells and ECFC possess protective activity in models of AKI.  

 

Pro-angiogenic cells. Interest in bone marrow-derived pro-angiogenic cells arises 

from studies demonstrating the localization of cells expressing both hematopoietic and 

endothelial markers at sites of vascular injury as well as studies indicating that exogenously 

administered pro-angiogenic cells influence outcomes in various models of vascular injury. 

Early outgrowth EPC or blood derived CD34+ cells home to sites of injury, improve 

perfusion and stimulate angiogenesis in models of ischemia of the myocardium or hindlimb 

80, 92
.  The basis for the pro-angiogenic environment created by BM-derived cells is thought to 

be the production of factors such as VEGF, HGF or G-CSF 
53, 92-94

.  Pro-angiogenic cells 

have been shown to limit neointima formation and improve arterial reactivity following aortic 

balloon injury 
93

. Since these cells do not differentiate into endothelial cells, the current view 

is that the pro-angiogenic environment created by these cells activates proliferation and 

migration of tissue resident HPP-ECFC (high proliferative potential-endothelial colony 

forming cells) to facilitate recovery from injury (Figure 4). 

 

 In kidney, selective injury to the renal vascular endothelium via infusion of 

concanavalin A into the renal artery was shown to induce homing of bone marrow derived 

CD34+/Flk1+ positive cells, which were referred to as EPCs.  Mobilization of these cells was 

evident within 3 hours in the blood and infiltration into the kidneys established within 3-5 

days 
95

. Mediators of this homing activity have been suggested to include secretion of 

cytokines such is IL-8, G-CSF or GM-SCF. Injury induced up-regulation of the chemokine 

SDF-1 was shown stimulate homing of pro-angiogenic cells in CXCR4 dependent fashion 
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following I/R injury in mice 
96

, while others have suggested that the up-regulation of 

adhesion molecules on the surface of damaged endothelial cells may promote homing of 

these cells to injured kidney 
97

.  Finally, uric acid, which is produced abundantly by ischemic 

kidney and is elevated in pigs with renal artery stenosis 
98

, has also been suggested as a 

potential homing signal, since administration of a uricase inhibitor blunted the mobilization 

of cells into mouse kidney following I/R 
99

.   

 

Bone marrow derived pro-angiogenic cells appear to influence renal vascular function 

in the setting of AKI (Figure 5).  Patschan and colleagues demonstrated increased levels of 

“EPC”-activity, defined as c-Kit+/Tie-2+ cells in a mouse model of ischemic 

preconditioning.  When these cells were isolated from preconditioned kidneys, they conveyed 

protection in recipient mice subjected to I/R injury 
100

.  Other studies using exogenous pro-

angiogenic cells (derived from isolated and cultured mouse mononuclear cells), demonstrated 

similar effects on protection from renal injury, but did not directly assess vascular function 

101, 102
.  Recently, administration of these cells was shown to attenuate peritubular capillary 

rarefaction post I/R, in part by inhibition of EndoMT 
44

. 

 

Other preparations of hematopoietic stem cells with putative pro-angiogenic activity have 

led to conflicting results on the outcome of renal injury.   For example, Burger et al., isolated 

CD133+ cells from human cord blood, of which up to 83 percent of the cells were CD34+, 98 

% were CD45+, while only 26% were KDR positive.  Administration of these cells to NOD 

SCID mice following renal I/R worsened changes in serum creatinine, tubular damage and 

promoted inflammation, while the cells did not home to the kidney 
103

.  These studies suggest 

that isolation based on CD133+ alone includes diverse hematopoietic progenitor cells that 

increases the inflammatory response to AKI rather than promoting protection.  
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In contrast, Li et al., studied HSPC from adult volunteers pretreated with G-CSF to 

promote HSC mobilization.  Mobilized CD34+ cells enriched from peripheral blood 

mononuclear cells by magnetic separation were primarily CD45+ and only a small percentage 

expressed CD14, CD133, CD146, CD31 or KDR.  However transplanted cells homed to 

kidney 24 hours following renal ischemia reperfusion injury, and improved renal function 

and survival in NOD SCID mice.  Many cells were localized in the perivascular area between 

2-3 days post-injury and expressed markers of endothelial cells such as human hCD31 or 

KDR, however these exogenous cells were essentially absent by 7 days post-injury 
104

.  

Interestingly, in human transplant patients, a transient elevation in recipient CD34+ cells 

were observed frequently along the peritubular capillary lining within 2 weeks of ischemia, 

while no evidence of recipient cells were observed in the vasculature after 35 or 73 days 
105

. 

Taken together, these data support the view that transient homing of bone marrow derived 

pro-angiogenic cells migrate to areas of vascular injury and may stimulate remodeling, but 

these cells do not stably integrate into the vasculature, suggesting they do not act as de facto 

progenitor cells.   

 

Despite this, these cells may stimulate endothelial cell proliferation and migration, and 

have been shown to induce angiogenic branch formation in vitro and in vivo 
53, 92-94

. These 

cells are thought to subserve an important homeostatic function.  Goligorsky and colleagues 

have articulated that the concept of “EPC incompetence”, based on studies demonstrating that 

the number or activity of bone marrow derived pro-angiogenic cells is impaired in patients 

with increased cardiovascular risk factors.  Vascular impairment in these patients can be 

thought of as a result of reduced activity or mobilization of these cells to maintain vascular 

homoeostasis, a viewpoint consistent with the increased susceptibility of patients with CKD 

to develop AKI 
106

. 
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Endothelial colony forming cells 

As described above, endothelial colony forming cells (ECFC), often referred to as “late 

outgrown endothelial cells” have been isolated following culture of blood cells on collagen 

following removal of non-adherent monocytes and subsequent expansion 
53

.  ECFC express 

classic markers of endothelial cells including CD31 and VEGFR2, as well as other markers. 

In contrast to hematopoietic pro-angiogenic cells, ECFCs do not express markers such as 

CD45 and are capable of forming and stably integrating into functional vessels in vivo 
53, 55, 

107
.   

 ECFCs can be classified based on their proliferative potential in single cell colony 

forming assays, in which high proliferative potential (HPP) ECFC will form large colonies 

(>10,000) , while low proliferative potential (LPP) ECFC form small colonies (<2000).  

ECFCs can be isolated and expanded from blood of humans and other large species, but 

cannot be isolated from blood of rodents 
55

. However, ECFC can also be isolated from tissues 

of a variety species, including rodents.  This observation has led to the hypothesis that a 

cooperative interaction between infiltrating pro-angiogenic cells of hematopoietic origin 

work to provide a trophic environment to stimulate local ECFC progenitor activity to 

stimulate vascular repair 
108

 (Figure 4).  Interestingly, our data in rats failed to demonstrate 

evidence of HPP-ECFC populations in kidney; rather we found only evidence of cells 

capable of forming small colonies, i.e., low proliferative potential ECFC 
50

. These 

observations combined with the lack of BrdU+ capillary endothelial cells following renal I/R 

43
 suggest that a low degree of endogenous ECFC activity may contribute to impaired 

recovery and maintenance of vascular rarefaction following AKI (Figure 2).  

Because ECFC represent true endothelial progenitors, there is considerable interest in 

exploiting these cells for potential therapeutic effects.  Human cord blood represents one of 

the richest sources of HPP-ECFC 
85

 and recent studies also demonstrate that iPS cells can be 
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differentiated into highly active HPP-ECFC 
88

. To date, the potential therapeutic benefit of 

ECFC has been less well studied in preclinical models of vascular impairment than 

hematopoietic pro-angiongenic cells.  Nevertheless, ECFCs stimulate neovascularization in a 

hindlimb ischemia model 
109

 and attenuate the development of pulmonary hypertension in a 

rat model of arrested alveolar development 
90

 

 

ECFC appear to effectively ameliorate the severity of injury in models of AKI (Figure 5), 

an observation gleaned initially from studies in which the influence of HUVEC 

administration was assessed in a model of I/R.  HUVEC rapidly expand in culture and 

contain a significant population of HPP-ECFC 
108

. In these studies, systemic infusion of 

HUVEC in athymic rats following I/R injury significantly improved  capillary flow rates as 

observed by video microscopy 
110, 111

.  HUVEC infusion also resulted in a significant 

protection against the loss of renal function (e.g., by serum creatinine) and tubular injury. 

Surrogate non-endothelial cells had no effect on I/R induced damage, but when cells 

overexpressed eNOS, there was an improvement in renal blood flow leading to the suggestion 

endothelial supplementation influenced AKI via the nitric oxide pathway 
102, 103

.   

 

  Recent results from Burger et al., support the suggestion that ECFC have renal protective 

properties.  Using human cord-blood derived HPP-ECFC injected immediately following 

ischemia reperfusion, AKI was attenuated in SCID mice as assessed by creatinine, tubular 

necrosis, macrophage infiltration and oxidative stress 
112

.  In contrast to results obtained with 

bone marrow derived pro-angiogenic cells, ECFCs showed very little evidence of homing 

into the kidney. Similarly, our group recently demonstrated that rat pulmonary microvascular 

endothelial cells (PMVEC), which have a high level of HPP-ECFC, failed to home to the 

kidney but protected Sprague Dawley rats from I/R induced AKI 
19

. In contrast, studies by 
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Pang et al., demonstrated that a small number of EC/ECFC from isolated from human renal 

artery migrate into the renal peritubular region of SCID mice following severe I/R injury 113, 

suggesting that the fate of transplanted EC/ECFC following kidney injury is not clearly 

understood.   

It is of interest that low proliferative potential ECFC (from pulmonary artery) had no 

protective effect on ischemia reperfusion injury 
19

, indicating that the protective effects are a 

function of the proliferative capacity of ECFC. Interestingly, Patschan et al., found only 

minimal protection from AKI by late outgrowth cells obtained from mouse peripheral blood 

and spleen
114

.  These cells expressed markers of EC such as VE-cadherin, but since ECFC do 

not circulate in mice 
114

, these cells likely had low proliferative potential relative to other 

studies demonstrating protective effects of ECFC.  

 

The lack of homing of ECFC suggests that secreted factors may promote resistance to 

AKI. Exosomes derived from ECFC conditioned media improve renal function post ischemia 

and prevent endothelial injury to hypoxia in vitro 
112

.  ECFC derived  exosomes contain a 

high level of microRNA486-5p which may mediate these protective effects by decreasing 

endothelial PTEN (Phosphatase and tensin homolog) and increasing Akt 
91

.  Other 

investigators have demonstrated microvesicles (MV) from conditioned media of human blood 

derived EC protected Wistar rats from AKI, while micro-vesicles derived from fibroblasts did 

not.  Treatment of MV with Dicer or antimir 126 or 296 blocked the protective effect of 

microvessicles
115

.  The authors proposed a so-called “horizontal transfer” of information of 

miRNA from micro-vesicles into the endothelium as the basis by which protection is 

mediated 
115, 116

.  We recently demonstrated that rat PMVEC or conditioned media of human 

ECFC protected against early alterations in renal hemodynamics following ischemia 

reperfusion injury, by preventing the loss of renal medullary blood flow.  Human ECFC 
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conditioned media also prevented the immediate up-regulation of endothelial ICAM-1 and 

the rapid infiltration of T-lymphocytes into the kidney within hours of ischemia reperfusion  

19
. 

Despite protective effects of both bone marrow derived pro-angiogenic cells and ECFC in 

acute kidney injury, whether these strategies can be used to effectively reverse the rarefaction 

of vessels associated with AKI and prevent progressive CKD has not been explored. The 

paradigm of cooperative interaction 
108

 (and Figure 4) highlights the role of local ECFC in the 

vascular repair response which could be stimulated by pro-angiogenic cell-treatment.   

 

Future Directions 

We hypothesize that a limited endogenous kidney ECFC proliferative potential contributes 

to impaired vascular repair and sustained rarefaction following injury.   Whether cell-based 

therapies may have a future in treating patients with AKI is not yet clear. While preclinical 

data using ECFC, pro-angiogenic cells or their conditioned media indicate the potential to 

preserve vascular function in AKI, translating these observations to the clinic represents a 

significant hurdle. We propose cell-based therapies in AKI, or any therapeutic study in AKI, 

should not be restricted to acute hospital outcomes but incorporate the potential development 

of subsequent CKD following discharge of AKI survivors, which may take months or years 

to manifest. We envision that agents with little obvious acute protective effect in the recovery 

period may provide long-term benefit and that such goals should be considered in clinical 

study design.  

From a revascularization point of view, the inability of ECFC to home to the kidney 

following I/R hampers efforts to facilitate vascular remodeling and is a hurdle that must be 

overcome. By extension, supplementing with high proliferative ECFC may result in 

improved vascularization, if retention and integration could be achieved. Future studies 
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should investigate how improved methods of administration of cells could help overcome 

barriers toward homing of ECFC and facilitate repair.    It is possible that a combination of 

bone marrow derived pro-angiogenic cells with ECFC may help to revascularize the kidney. 

In support of this hypothesis, co-culture of these two cell types promoted cooperative 

formation of capillary-like structures in Matrigel plugs, while co-adoptive transfer of both 

cell types in hind limb ischemia promotes greater in vivo neo-angiogenesis when compared to 

a single cell transfers alone 
117

.   It is of interest that Chade et al., have demonstrated that 

administration of endothelial progenitors described as a mix of “early” and “late” outgrowth 

cells directly into the renal artery of swine with renal artery stenosis improved in renal 

vascular structure, renal function and an attenuated renal fibrosis 
118

.  

 

New approaches such as the use of stromal vascular fraction (SVF), which contain both 

ECFC like cells and pro-angiogenic trophic cells could be used as SVF has been shown in 

animal models to attenuate the development of AKI and progressive CKD following I/R 
119

. 

Similarly, we demonstrated that human adipose derived stromal cells could prevent the loss 

of renal peritubular capillaries and limit renal fibrosis up to 1 week after recovery from renal 

ischemia reperfusion in rats 
120

.  Therefore, a combination of different cells with cooperative 

activities could be envisioned to improve vascular repair or prevent capillary loss following 

kidney injury as a means to enable better long term renal function.  

 

Finally, it will be important to more fully understand the biological basis for low level of 

ECFC proliferative potential in kidney.  At the current time, these progenitor cells can only 

be effectively studied and identified ex vivo using clonal analysis. No unique set of markers 

has yet been identified for HPP ECFC, although efforts are clearly underway to identify key 

genes regulating ECFC activity 
88

. If proper markers can be identified, it may enable efforts 
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to study the nature of ECFC activity in the kidney, the pathways that subserve the high 

proliferative potential, and even perhaps to devise strategies to influence progenitor activity 

of the renal EC themselves. 
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Table 1.  

Author, 
reference, 
year 

Cell Type Biological Source Model/Biological Effect 

Patschan et 
al.  

100
2006 

Pro-
angiogenic 

Murine spleen 
and kidney 

Unilateral I/R in FVB/NJ and Tie-2-GFP 
mice 
Reduced plasma creatinine by ~50% post 
I/R 
No evidence of homing  

Patschan et 
al. 

101
 2010 

Pro-
angiogenic 

Murine peripheral 
blood, spleen 
and bone marrow 

Unilateral I/R in male C57BL/6N mice 
Reduced plasma creatinine by ~40-75% 
post-I/R 
Reduced plasma creatinine by ~90% 
post-I/R with Epac-1 Ac pretreatment 
Evidence of minimal homing 

Patschan et 
al.

121
 2012 

Patschan et 
al.

122
 2013 

Patschan et 
al.

123
 2013 

 Murine peripheral 
blood and spleen 

Similar models as above; pretreatment of 
cells with melatonin, Angiopoietin-1 and 
BMP-5 enhances protective response, 
with minimal homing 

Patschan et 
al.

124
 2015 

Patschan et 
al. 

44
2016 

Pro-
angiogenic 

Murine peripheral 
blood and spleen 

Bilateral I/R in male C57BL/6N mice, 
reduced plasma creatinine, increased 
endothelial autophagy and decreased 
EndoMT and attenuated capillary 
rarefaction 

Burger et al.  
112

2015 
ECFC & 
ECFC 
exosomes 

Human  
umbilical cord 

Bilateral I/R in male NOD-SCID mice 
Reduced plasma creatinine by ~40% 
post-I/R 
Improved tubular morphology 
No evidence of homing  

Collett et al. 
19

2017 
ECFC Rat PMVEC and 

human ECFC-
conditioned 

Bilateral I/R in male Sprague Dawley rats 
Reduced plasma creatinine by ~50% 
post-I/R 
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media Improved tubular morphology 
Prevented loss of medullary blood flow 
No evidence of homing  

Viñas et al.
91

 
2016 

ECFC Human umbilical 
cord blood ECFC 
derived 
exosomes 

Bilateral I/R in male FVB mice 
Reduced plasma creatinine by ~90% 
post-I/R 
Improved tubular morphology 
 

Brodsky et 
al. 

111
 2001 

EC Human umbilical 
cord 

Unilateral I/R in male Athymic rats 
Reduced plasma creatinine by ~50% 
post-I/R 
Maintained microvascular perfusion 
Evidence of minimal homing 

Cantaluppi et 
al.  

115
 2012 

ECFC derived 
microvesicles 

Human 
peripheral blood 

Unilateral I/R in male Wistar rats 
Reduced plasma creatinine by ~80% 
post-I/R 
Improved tubular morphology 
Prevented capillary rarefaction 

Liang et al. 
125

 2015 
EC Human Umbilical 

cords (Wharton’s 
Jelly) 

Unilateral I/R in male C57BL/6 mice 
Reduced plasma creatinine by ~70% 
post-I/R 
Improved tubular morphology 
Potential prevention of capillary 
rarefaction 
Evidence of minimal homing 

Pang et al.
113

 
2017 

EC or ECFC Human renal 
artery  

Bilateral I/R and nephron mass reduction 
in NOD-SCID mice. Reduced plasma 
creatinine by ~50% post-I/R 
Prevented capillary rarefaction 
Minimal homing near peritubular 
capillaries up to 10 days 

Patschan et 
al.

114
 2017 

Indeterminate Murine peripheral 
blood and spleen 

Bilateral I/R in male C57BL/6 mice 
Reduced plasma creatinine by ~10% at 1 
week, did not prevent capillary rarefaction 

Zullo et al.
126

 
2015 

Indeterminate Murine 
embryonic EPC 
line cultured with 
MSCs 

Improved renal function, medullary RBF 
and increased M1 to M2 macrophage 
polarization in LPS induced endoxemia in 
C57BL6 mice.  
 

 
ECFC-endothelial colony forming cells; EC-endothelial cells 
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Figure Legends 

Figure 1. Alterations in endothelial function contribute to the extension phase of acute 

kidney injury.  On the left, a peritubular capillary is shown in close apposition to tubular 

epithelium in a normal kidney. B) In response to injury, endothelial swelling narrows 

capillary space.  Increased adhesion molecule expression facilitates leukocyte attachment, 

contributing to erythrocyte rouleaux formation and disrupting normal blood flow.   Reduction 

in flow contributes to reduced shear stress and inhibition of NO formation, a potential trigger 

for endothelial mesenchymal transition (EndoMT). Addition potential contributors toward 

EndoMT include a reduction in trophic support from damaged tubules or injury activated 

perictyes.  Disruption of blood flow exacerbates tissue hypoxia and further compromises 

epithelial injury and a reduction in renal  

 

Figure 2. Failed vascular recovery leads to peritubular capillary rarefaction following AKI. 

Concurrent with resolution of GFR and tubular repair recovery of the capillary endothelium 

is inefficient due to a combination of EndoMT and low endothelial proliferation.  Infiltration 

of pro-angiogenic hematopoietic cells provide pro-angiogenic stimulation but renal 

endothelium is unresponsive due to the lack of HPP-ECFC activity intrinsic in kidney.   

Expansion of fibroblasts or myofibroblasts, which derive from either pericyte activation or 

EndoMT, may occlude blood vessels leading to a rarefied capillary bed.   

 

Figure 3. Human “endothelial progenitor cells” (EPC) have been identified using 

monoclonal antibodies or specific ligands to detect numerous cell surface antigens.  

Three key antigens CD34, AC133, and KDR are the most frequently utilized as markers  

for human EPC. No unique antigen has been reported that can discriminate the human  

EPC from other cell lineages (many of the above antigens are present on blood cells).  

 

 

Figure 4. Proangiogenic hematopoietic cells (PHC) do not become endothelial cells but 

do stimulate resident endothelial colony forming cells (ECFC) to repair the intima. Moving 

from the left to the right on the image, one can visualize that any denudation injury that  

causes loss or turnover of the resident endothelial cells results in an area of exposed 

subendothelial basement membrane. Circulating platelets would be readily recruited to the 

exposed basement membrane and would release chemokines and growth factors to recruit 

circulating PHC, ranging from bone marrow progenitor cells to mature circulating monocytes 

and neutrophils, to assist in adhering to the basement membrane. The recruited PHC secrete a 

host of growth factors, chemokines, and proteolytic enzymes to stimulate the proliferation 

and migration of resident ECFC into the site of the injury to reconstitute the endothelial 

barrier and promote normal homeostatic functions through the injured vessel segment. The 

PHC merely migrate into the tissue where they can differentiate into mature tissue resident 

cells, re-enter the circulation, or undergo senescence and are cleared by macrophages in the 

tissues. 

 

Figure 5.  Both HPP-ECFC and pro-angiogenic hematopoietic cells can mitigate 

acute kidney injury.  Both cell types have been shown to improve renal function and renal 

perfusion when administered prior to the establishment of renal injury.  Possible mechanisms 

include a direct inhibition of adhesion molecule expression proposed to maintain perfusion in 

the early injury phase (See Figure 1). Maintenance of vascular structure likely is based on 

prevention of endothelial loss for which EndoMT represents  a primary mechanism. 
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Protection is likely mediated by released factors such as pro-angiogenic factors or exosomal 

transfer of microRNA to protect endothelial injury.  Whether administered ECFC could 

repopulate capillary endothelium is currently subject to debate (likely depends on mode of 

administration). We propose that co-operative activity of both HPP-ECFC and pro-angiogenic 

hematopoietic cells could potentially lead to successful engraftment in the acutely injured 

kidney.  
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