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Abstract—The origin of artificial intelligence is investigated,
based on which the concepts of hybrid intelligence and parallel
intelligence are presented. The paradigm shift in Intelligence indi-
cates the “new normal” of cyber-social-physical systems (CPSS),
in which the system behaviors are guided by Merton’s Laws.
Thus, the ACP-based parallel intelligence consisting of Artificial
societies, Computational experiments and Parallel execution are
introduced to bridge the big modeling gap in CPSS.

Index Terms—Artificial intelligence, hybrid intelligence, par-
allel intelligence, cyber-social-physical systems, ACP.

I. INTRODUCTION

IN “Steps toward artificial intelligence”[1], Marvin Minsky’s
classical paper, the artificial intelligence (AI) pioneer gave

an outstanding summary of work that had been done during
his era in AI. Today, about sixty years after that paper was
published, AI technologies have evolved drastically, and are
reaching a new peak. For instance, the computer Go program
AlphaGo by Deepmind won 4:1 in a five game match against
one of the world’s best Go players, Lee Sedol, in March
2016[2]. This victory stunned many in the AI field and beyond.
It marked the beginning of a new era in AI, that is, parallel in-
telligence: the interaction between the actual and the artificial
world, supported by new ITs (intelligent technologies) such
as deep neural networks, reinforcement learning, knowledge
automation, big data, internet, internet of things (IoT), cloud
computing, etc.

This article starts with the definition of AI, and then moves
toward the status of human-machine hybrid intelligence (HI),
where Cyber-Physical-Social systems (CPSS) must be consid-
ered instead of Cyber-Physical systems (CPS) because of the
human intelligence involved. However, for CPSS traditional
Newton’s Laws cannot be directly applied (Small Data, Big
Laws); instead, our focus shifts to Merton’s Laws (Big Data,
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Small Laws). Therefore, there exists a modeling gap between
the physical world and the artificial world. To overcome this
gap, an ACP-based parallel control approach is introduced to
achieve the ultimate “parallel intelligence”.

II. FROM CYBERNETICS TO ARTIFICIAL INTELLIGENCE

The term AI, was coined by John McCarthy in 1955, where
AI was defined as “the science and engineering of making
intelligent machines[3]”. This definition, however, leads to
another ancient debate in Cybernectics: “Can machines have
intelligence?” Many scientists during that time are optimistic
about intelligent machines, while others insist that “machines
cannot possess any degree of originality” and “nothing can
come out of the machine which has not been put into it[4]”.
To those views, Norbert Wiener, the father of Cybernetics,
made harsh criticism and stated that “It is my thesis that
machines can and do transcend some of the limitations of their
designers[5]”. Now with the milestone winning of AlphaGo,
not only the operation of machines has greatly transcended
its human designers, but also the computing capabilities of
machines have surpassed humans in a competition (the number
of games that is theoretically possible is in the order of
10700)[6]. How could this happen?

Fig. 1. CPSS: Infrastructure for Human-Machine Hybrid Intelli-
gence and Virtual-Real Interactive Parallel Intelligence.

It is said that before the historical match with Lee, AlphaGo
played more than 30,000,000 games with itself, which is more
than the number of games a 100-year old human could play
in his entire life. The big data, in turn, provided the richest
resources for the deep learning approaches behind AlphaGo,
thus improved and optimized AlphaGo’s game-playing strate-
gies through learning. Considering the immense amount of
time the human designers spent on AlphaGo, the decision
rules, learning algorithms, and evaluation models built in
AlphaGo, Lee was not defeated by a computer program, but by
all the humans standing behind the program, combined with
the significant cyber-physical information inside it. This also
verifies the belief of many AI experts that intelligence must
emerge from the process of computing and interacting. As
stated by Minsky: “What magical trick makes us intelligent?
The trick is that there is no trick. The power of intelligence
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stems from our vast diversity, not from any single perfect
principle[7].”

III. FROM CPS TO CPSS
With new technologies such as IoT, cloud computing,

robotics, AI, virtual-reality (VR) and the promotion of other
emerging social media, we have entered the new era of Hybrid
Intelligence (HI), where machines, information, and humans
are tightly coupled through pervasive physical and social
signals[8]. Therefore, we are now dealing with new types of
machines where humans are an integral part[9]. This fact puts
forward new requirements for us to think about the problems
in complex systems in a CPSS way.

The term CPS, was coined to describe the tight conjoining
of and coordination between computational (or cyber) and
physical resources, that is, systems that feature a tight integra-
tion between computation, communication, and control in their
operation and interactions with the task environment in which
they are deployed. However, due to the unprecedented sphere
and speed of influence experienced in the cyberspace field and
its profound impact on the way we behave and interact with
each other, we must add and address the presence of human
and social dimension in CPS. We have reached the point where
social and human dynamics must be considered as an integral
part of any effective CPS design and operation, thus inserting
the term “social” into CPS is perfectly justified, and CPSS
becomes the new paradigm in our current HI Age. This change
also has a philosophical implication that brings CPSS in line
with Karl Popper’s theory of reality[10]. The theory states that
our universe consists of three interacting worlds: World 1,
the physical world; World 2, the mental world; and World
3, the artificial world, the home to abstract objects such as
theories, stories, myths, tools, social institutions, and works of
art. Cyberspace can be a materialization or reflection of Worlds
1, 2, and 3. Traditional human intelligence is the connection
between Worlds 1 and 2, AI is the connection between Worlds
2 and 3, whereas HI is the universal connection among Worlds
1, 2, and 3 (shown in Fig. 1).

Using the “old” IT (Industrial Technologies), we exploited
World 1 at the surface level; with the help of the “past”
IT (Information Technologies), we greatly stimulated human
imagination and creativity, and fully developed the under-
ground, surface, and space resources in Worlds 1 and 2;
now the human society is entering the era of the “new” IT
(Intelligent Technologies) which represented mainly by AI and
robotics, thus data and knowledge in cyberspace become the
new resources to be mined.

IV. A PARALLEL PARADIGM SHIFT: FROM NEWTON’S
LAWS TO MERTON’S LAWS

Under the framework of CPSS, Newton’s Laws, which are
applicable to traditional CPS, are no longer adequate for
describing, manipulating, and controlling entities in CPSS.
Therefore, Merton’s Laws are introduced, such as Merton’s
Self-Fulfilling Prophecy, as well as Simon’s Bounded Ratio-
nality and Heiner’s Theory of Predictable Behaviors[11].

We call the type of systems where Newton’s Laws govern
system behaviors as Newton’s Systems. Their main character-
istics are: when given the current system state and the control

actions, the next system state can be obtained theoretically
through the system equations, thus the system behaviors can
be accurately computed and predicted (shown in Fig. 2(a)).
Therefore, for Newton’s systems, the main task for modeling
is to identify Newton’ Laws that control system behavior, and
directly design corresponding control functions to achieve the
objectives.

Similarly, the types of systems where Merton’s Laws guide
system behaviors are called Merton’s Systems. Merton’s Laws
are named after American sociologist Robert King Merton, and
are in general referred as Merton’s Self-Fulfilling Prophecy
Law. More specifically, a self-fulfilling prophecy is a predic-
tion that directly or indirectly causes itself to become true, due
to feedback between belief and action. The main characteristic-
s are: although the current system state and control conditions
are given, the next system state cannot be accurately computed
and thus system behaviors cannot be accurately predicted
(shown in Fig. 2(b)). Because these types of systems have “free
will”, thus cannot be directly controlled in principle, rather,
can only be influenced indirectly to promote the appearance
of desirable objectives in a probabilistic setting. For Merton’s
systems, the main task for modeling is to design Merton’s
Laws that can effectively guide the system behaviors based
on desirable objectives[12].

Fig. 2. Newton’s Laws vs. Merton’s Laws. (a) Newton’s system-
controlling laws: Target implementation with certainty. (b) Merton’s
self-fulfilling prophecy laws: Target implementation with uncertainty.

Fig. 3. The modeling gap between physical systems and artificial
systems.

The complex characteristics of human and social behaviors
with high uncertainty, spatiotemporal dynamics, and variety,
etc., create a gap between the physical systems and its model,
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thus presenting a big challenge for the modeling of Merton’s
systems (shown in Fig. 3). Because of this gap, the modeling
focus will be shifted from Newton’s Laws where system
behaviors are directly controllable (small data, big laws), to
Merton’s Laws where system behaviors are only indirect-
ly implied (big data, small laws)[13]. In Newton’s systems,
causality normally prevails. But in Merton’s systems, where
only association revealed by data or experience is available,
causality is a luxury that is no longer attainable with limited
resources for Uncertainty, Diversity, and Complexity (UDC).

V. THE ACP APPROACH: BRIDGING THE MODELING GAP
BY PARALLEL INTELLIGENCE

Due to the pervasive use of mobile devices, location-based
services, social media Apps, etc., cyberspace has become as
real to human beings as physical space. In cyberspace data
becomes the most important resource. Using Big Data as input,
Software-Defined Objects (SDO), Software-Defined Process-
es (SDP), Software-Defined Systems (SDS), and Software-
Defined Humans (SDH) in parallel with physical objects, pro-
cesses, systems, and humans can be designed and constructed
through learning, based mainly on existing data, knowledge,
experience, or even intuition[14]. With Software-Defined ev-
erything, computational experiments can be conducted (i.e.,
self-play, self-run, self-operation, self-evaluation), and a huge
amount of “artificial data” can be generated. That data is then
used for reinforcement learning to enhance intelligence and
decision-making capabilities. Meanwhile, the decisions are
evaluated against various conditions. In the end, the physical
objects, processes, and systems interact with the SDOs, SDPs,
and SDSs, forming a closed-loop feedback decision-making
process to control and manage the complex systems (as Fig. 4
shows). This is the core concept of the ACP-based parallel
intelligent systems[15−17]. We believe parallel intelligence (PI)
will be the successor of HI.

Real-time Interaction

Parallel Execution

Learning and Training Experiment and Evaluation Control and Management

Fig. 4. The CPSS-based parallel execution for control and manage-
ment for complex systems.

In ACP, “A” stands for “artificial systems”, which is the
generalized form of software-defined systems; “C” denotes
“computational experiments”, which aims at accurate analysis
and reliable evaluations; and “P” represents “parallel execu-
tion”, which targets at innovative and prescriptive decision-
making. As indicated in Fig. 4, such parallel intelligence
can be used in three modes of operations: 1) Learning and

training, 2) Experiment and evaluation, and 3) Control and
management.

Thus, ACP approach consists of three major steps. 1)
Using Artificial systems to model complex systems; 2) Using
Computational experiments to train and evaluate complex
systems; and 3) Setting the actual physical system to interact
with the virtual artificial system, and through the virtual-
real system interaction, realizing effective Parallel control and
management over the complex systems.

Based on the ACP approach, the parallel intelligence can
be defined as one form of intelligence that is generated from
the interactions and executions between physical and artifi-
cial systems. Parallel intelligence is characterized by being
data-driven, using SDS-based modeling and computational
experiments-based system behavior analytics and evaluation.

The core philosophy of parallel intelligence for a complex
system is firstly, constructing a parallel system, which consists
of the real physical systems and the virtual artificial systems.
Then, through virtual-real interaction, the objective of parallel
intelligence is to control, guide, and manage decision-making
processes to drive the real system convergence to the virtual
system. In this way, the main UDC challenges in complex
system problems are simplified utilizing the virtual artificial
system, and the AFC (Agility, Focus and Convergence) man-
agement and control of the complex systems are achieved
(shown in Fig. 5).
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Fig. 5. ACP-based Parallel Intelligence: From UDC to AFC.

It is obvious that we paid more attention to what AI can
do than what AI really means. This is because we are trying
to figure out the essence of the question that came from
Cybernetics long long age. AI is not “artificial” any more.
Ultimately, it becomes the “real” intelligence that can be
embodied into machines, artifacts, and our societies. Under
the framework of CPSS, with new technologies in Big Data,
social computing, knowledge automation, etc., the ACP-based
parallel control and management architecture provides a new
paradigm to observe, depict, predict, and prescript the dynam-
ics of the flowing intelligence, thus leading the way to achieve
the ultimate goal of parallel intelligence.
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