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[1] This paper presents an improved bivariate mixed distribution, which is capable of
modeling the dependence of daily rainfall from two distinct sources (e.g., rainfall from two
stations, two consecutive days, or two instruments such as satellite and rain gauge). The
distribution couples an existing framework for building a bivariate mixed distribution, the
theory of copulae and a hybrid marginal distribution. Contributions of the improved
distribution are twofold. One is the appropriate selection of the bivariate dependence
structure from a wider admissible choice (10 candidate copula families). The other is the
introduction of a marginal distribution capable of better representing low to moderate
values as well as extremes of daily rainfall. Among several applications of the improved
distribution, particularly presented here is its utility for single-site daily rainfall simulation.
Rather than simulating rainfall occurrences and amounts separately, the developed
generator unifies the two processes by generalizing daily rainfall as a Markov process with
autocorrelation described by the improved bivariate mixed distribution. The generator is
first tested on a sample station in Texas. Results reveal that the simulated and observed
sequences are in good agreement with respect to essential characteristics. Then, extensive
simulation experiments are carried out to compare the developed generator with three other
alternative models: the conventional two-state Markov chain generator, the transition
probability matrix model, and the semiparametric Markov chain model with kernel density
estimation for rainfall amounts. Analyses establish that overall the developed generator is
capable of reproducing characteristics of historical extreme rainfall events and is apt at
extrapolating rare values beyond the upper range of available observed data. Moreover, it
automatically captures the persistence of rainfall amounts on consecutive wet days in a
relatively natural and easy way. Another interesting observation is that the recognized
‘‘overdispersion’’ problem in daily rainfall simulation ascribes more to the loss of rainfall
extremes than the under-representation of first-order persistence. The developed generator
appears to be a sound option for daily rainfall simulation, especially in particular hydrologic
planning situations when rare rainfall events are of great importance.
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1. Introduction

[2] Daily rainfall is a major input to drive many models
of hydrologic, agricultural, ecological, and other environ-
mental systems [Mehrotra et al., 2012; Kleiber et al., 2011].

A great deal of attention has therefore been devoted to daily
rainfall modeling. Considering the fact that daily rainfall is
non-negative with point mass at zero, a discrete-continuous
mixed distribution with a probability density function (PDF)
of the following form is obtained:

� xð Þ ¼ 1� p1ð Þ� xð Þ þ p1f xð Þ; (1)

[3] This form is usually used to represent the at-site dis-
tribution of daily rainfall X, where p1 is the probability of
rainfall occurrence; �(x) is the one-dimensional Dirac delta
function, which becomes 1 if and only if x is 0, and
becomes 0 otherwise; and f(x) is a skewed density for rain-
fall amounts. Discrete-continuous mixed distributions of
this form have been used in the literature for daily rainfall
downscaling [Cannon, 2008; Carreau and Vrac, 2011].

[4] To simultaneously model multiple rainfall series
(e.g., rainfall at multiple sites or of several successive
days), it is logical to extend the univariate distribution in
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equation (1) to its multivariate analog. In theory, there is
nothing to limit building a joint discrete-continuous mixed
distribution for fully multivariate analysis. In practice,
however, this is hardly achievable, as the model complexity
increases for higher powers (2d for d-dimension model).
One simple extension is to the bivariate level, which mod-
els the pairwise dependence of daily rainfall X and Y. The
usefulness of a bivariate discrete-continuous mixed distri-
bution can be recognized in several aspects. For example,

[5] 1. If X and Y denote daily rainfall of two consecutive
days, then from the bivariate distribution one may derive
the conditional distribution of rainfall of current day given
that of previous day, which serves as the ‘‘engine’’ for
single-site daily rainfall simulation.

[6] 2. If X and Y are spatially averaged rainfall of two
neighboring watersheds or rainfall of two rain gauges, then
one may use the bivariate distribution for simultaneous
simulation of rainfall series while preserving their depend-
ence structure.

[7] 3. If X represents satellite or radar rainfall estimates
and Y denotes ground observations, then a best guess
(regression) or a conditional distribution (ensemble regres-
sion) of actual rainfall given that of satellite or radar esti-
mate may be yielded from the bivariate distribution.

[8] Thus, a well-formulated bivariate discrete-continuous
mixed distribution would have much practical appeal.

[9] There are some models, in the context of rainfall sim-
ulation, that do allow multisite modeling of daily rainfall. In
addition to the multivariate autoregressive model of
B�ardossy and Plate [1992], the nonparametric hidden Mar-
kov chain model developed by Hughes and Guttorp [1994],
the nearest neighbor bootstrap technique of Rajagopalan
and Lall [1999], and the regionalized daily rainfall genera-
tion approach of Mehrotra et al. [2012], another notable
multivariate modeling framework is the one proposed by
Wilks [1998, 2009]. In this framework, each site follows its
own model, while the dependence among sites is maintained
by driving individual models with spatially correlated random
variates. Owing to its advantage of being simple in extending
from single-site to multisite simulation, this framework has
been frequently used and improved. For instance, Mehrotra
and Sharma developed semiparametric and nonparametric

multisite models for daily rainfall simulation [2007a, 2007b]
and downscaling [2005, 2010]; Thompson et al. [2007],
Brissette et al. [2007], and Tarpanelli et al. [2012] improved
it such that the correlated random variates can be efficiently
generated. It must, however, be realized that the aforemen-
tioned multisite models are designed specifically for rainfall
simulation rather than formulating a joint distribution for mul-
tiple rainfall series. They might be unsuitable for the applica-
tion in scenario 3 as listed above, unless additional efforts are
made to reformulate the models. A multivariate or bivariate
mixed distribution might be used not only for simulation but
also for statistical inference (regression and ensemble regres-
sion), which is applicable for situations similar to scenario 3.

[10] We return to the problem of formulating a bivariate
discrete-continuous mixed distribution. The first work on
this type of distribution was introduced by Shimizu [1993].
Given that both X and Y are zero-inflated random variables,
there are four possible mutually exclusive classes, as illus-
trated in Figure 1,

S :¼ X ¼ 0;Y ¼ 0½ �; X > 0; Y ¼ 0½ �; X ¼ 0; Y > 0½ �; X > 0; Y > 0½ �f g:

[11] By the rule of total probability, a bivariate PDF
analogous to equation (1) is structured as

� x; yð Þ ¼ p00� x; yð Þ þ p10hX xð Þ� yð Þ þ p01hY yð Þ� xð Þ þ p11h x; yð Þ;
(2)

and the corresponding cumulative distribution function
(CDF) is

� x; yð Þ ¼ p00 þ p10HX xð Þ þ p01HY yð Þ þ p11H x; yð Þ; (3)

where

p00 ¼ P X ¼ 0; Y ¼ 0ð Þ;
p10 ¼ P X > 0; Y ¼ 0ð Þ;

p01 ¼ P X ¼ 0; Y > 0ð Þ;

and p11 ¼ P X > 0; Y > 0ð Þ

represent the occurrence probabilities of the four classes,
respectively; �(x, y) is the two-dimensional Dirac delta

Figure 1. Schematic showing the notation of two discrete-continuous rainfall series.
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function which yields 1 if and only if both x and y are 0,
and yields 0 otherwise; �(x) and �(y) hold the same mean-
ing as in equation (1); hX (x), hY (y), and h (x, y) are the
PDFs of rainfall amounts within relevant classes, respec-
tively; HX (x), HY (y), and H(x, y) are the corresponding
CDFs.

[12] After the pioneering work of Shimizu [1993], the
bivariate mixed distribution has been applied to investigate
the properties of the Pearson’s correlation coefficient
between rainfall gauges [Habib et al., 2001; Ha and Yoo
2007; Yoo and Ha, 2007] and has been improved such that
the joint behavior of contemporaneous rainfall amounts can
be properly modeled [Herr and Krzysztofowicz, 2005]. The
most recent treatment of this distribution was given by Ser-
inaldi [2008, 2009a, 2009b], in which the copula theory
was used to construct the joint density h(x, y). The copula
theory does circumvent restrictions to the marginal distri-
butions and can model different dependence structures with
different copulae. This model is not yet without limitation.
First, a limited number of copula families (sometimes even
one comprehensive family) were used, which may not suf-
fice to describe various autocorrelation structures of rainfall
amounts and may thus be of limited use to simulate rainfall
of different climate areas. Moreover, the significance of
marginal distributions was overlooked. The Weibull,
gamma, and Pearson type III distributions were used for
the marginal distributions of rainfall amounts, i.e., for
hX (x), hY (y) and the margins of h(x, y) [Serinaldi, 2009b].
These distributions perform well in describing the usual
behavior of rainfall. However, they might not necessarily
perform well in capturing unusual behavior or rare events
[Vrac and Naveau, 2007; Furrer and Katz, 2008; Hunde-
cha et al., 2009; Carreau et al., 2009; Carreau and Vrac,
2011; Hundecha and Merz, 2012], as can be seen from
Figure 2, which shows observed against modeled rainfall
quantiles by the Weibull, gamma, and Pearson type III dis-
tributions, respectively, at a sample station in Texas. Till
now, we are not yet aware of research on this bivari-
ate mixed distribution specifically accommodating the

heavy-tailed property of rainfall amounts, which is much
common for rainfall at finer time scales.

[13] In view of the above-mentioned limitations, the goal
of this research is to further improve the bivariate mixed
distribution based on the work of Shimizu [1993], Herr and
Krzysztofowicz [2005], and Serinaldi [2009b]. Innovations
in the improvements are twofold. One is the appropriate
selection of an optimal copula family from a wider choice
of admissible candidates such that the joint behavior of
rainfall amounts can be realistically modeled. The other
one is the introduction of a hybrid distribution for marginal
rainfall, which improves the characterization of extremes
while retaining a decent fit for low to moderate values.
Although the hybrid distribution was reported in our previ-
ous work [Li et al., 2012], therein only the distribution of
single-site rainfall amount was of interest and no mecha-
nism was designed for generating synthetic rainfall series.
Here, we extend the hybrid distribution capable of bivariate
inference and simulation of daily rainfall, with both occur-
rence and amount simultaneously taken into account. In
addition, by generalizing daily rainfall as a Markov process
with autocorrelation described by the improved distribu-
tion, a stochastic rainfall generator is developed and
analyzed in this research. Although presented here is a sin-
gle-site model, it may be used as building blocks for multi-
site simulation following the approach of Wilks [1998].
Attributing to the hybrid marginal distributions, character-
istics of historical extreme rainfall events can be preserved
in the synthetic series and rare rainfall events beyond the
upper range of available observed data may be reasonably
extrapolated. An implementational merit of the generator is
that it unifies rainfall occurrence and amount processes into
a single one. As a consequence, the lag-1 autocorrelation of
daily rainfall may be automatically captured in a relatively
natural and simple way without much extra work if any.

[14] Besides the aforementioned research on multisite
rainfall simulation, it is better to mention some other repre-
sentative single-site models such that one can get an overall
picture about the differences between the suggested genera-
tor and other alternatives. A typical approach for single-site
daily rainfall breaks down the simulation into two stages.
The first stage simulates rainfall occurrence process.
Among others, the two-state Markov chain model intro-
duced by Gabriel and Neumann [1962] has been exten-
sively used. Once the occurrence series is simulated, the
second stage simulates rainfall amounts on wet days. To
that end, independent random numbers are generated from
a fitted parametric distribution, such as exponential distri-
bution [Todorovic and Woolhiser, 1975], gamma distribu-
tion [Richardson, 1981], and mixed exponential
distribution [Wilks, 1998]. Rather than focusing on rainfall
simulation, Katz [1974, 1977] derived some important
inferential statistics of this model, for instance, probability
distributions for the number of wet days, maximum daily
rainfall, and rainfall totals over a given period. It is appa-
rent that the suggested generator bears similarity to this
model. The differences, also the merits, of the suggested
generator are the following: on one hand, instead of break-
ing down the occurrence and amount processes, it unifies
them into a single one; and on the other hand, instead of
assuming independence of rainfall amounts of two consec-
utive wet days, it properly accounts for the dependence.

Figure 2. QQ plots of observed versus gamma (g), Wei-
bull (w), and Pearson III (p) modeled quantiles of rainfall
amounts of a sample station in Texas.
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Reproduction of the structure of daily autocorrelation is
recognized as a crucial test for a stochastic rainfall genera-
tor [Gregory et al., 1993]. There exist alternative models
that do not assume independence of rainfall amounts. One
is the multistate Markov chain model also known as transi-
tion probability matrix (TPM) model [Haan et al., 1976;
Srikanthan and McMahon, 1985; Srikanthan et al., 2005].
A second alternative is the nonparametric model developed
by Harrold et al. [2003a, 2003b]. This model was then
adjusted and incorporated into other multisite rainfall simu-
lation and downscaling models [Mehrotra and Sharma,
2005, 2007a, 2007b, 2010; Mehrotra et al., 2012]. For
elaborate reviews of stochastic rainfall simulation studies
done in the past and those done more recently, one can
refer to the work by Srikanthan and McMahon [2001] and
by Sharma and Mehrotra [2010], respectively. To better
understand the merits and demerits of the suggested gener-
ator, we shall compare it with three alternate models: the
conventional Markov chain generator [Richardson, 1981],
the TPM model [Srikanthan and McMahon, 1985], and the
modified nonparametric model of Harrold et al. [2003a,
2003b] with parametric Markov chain for rainfall occur-
rences and nonparametric kernel density estimation (KDE)
for rainfall amounts.

[15] The rest of this paper is organized as follows. Sec-
tion 2 introduces the improved bivariate mixed distribu-
tion. Section 3 describes algorithms for the simulation of
random numbers and for the estimation of distribution
parameters. Based on the improved distribution, section 4
presents a single-site daily rainfall generator and tests it
on a sample station in Texas. Section 5 continues with
extensive simulation experiments to compare it with other

advanced alternatives. Finally, conclusions are presented
in section 6.

2. Improved Bivariate Mixed Distribution

2.1. Constructing h(x, y) With Copula

[16] Our first improvement to the bivariate mixed distri-
bution is reflected in introducing more and various copula
families as admissible candidates to construct the joint den-
sity h(x, y). The objective is to reduce the risk of obtaining
a misrepresented relationship between X and Y when X > 0
and Y > 0. With the use of copula theory [Joe, 1997; Nel-
son, 2006], the bivariate CDF can be written as follows:

H x; yð Þ ¼ C F xð Þ;G yð Þð Þ; (4)

where C(�) is the copula function; the marginal CDFs F(x)
and G(y) are given as:

F xð Þ ¼ P X � xjX > 0; Y > 0ð Þ;

G yð Þ ¼ P Y � yjX > 0; Y > 0ð Þ:

[17] From equation (4), the corresponding PDF can be
decomposed into:

h x; yð Þ ¼ f xð Þ � g yð Þ � c F xð Þ;G yð Þð Þ; (5)

where c(�) is the copula density, and f(x) and g(y) are the
PDFs of F(x) and G(y), respectively. Ten different copula
families are considered as admissible candidates for this
work (Table 1). They can model a wide variety of

Table 1. Copula Families Used in this Researcha

Copula C(u, v) �¼g(�) �� ��

Clayton u�� þ v�� � 1
� ��1=�

1� 2

2þ �
[0,1) (0, 1]

Frank �1

�
ln 1þ e��u�1ð Þ e��v�1ð Þ

e���1

� �
1� 4

�
1� 1

�

Z�
0

t= et � 1ð Þdt

0
@

1
A R\{0} [�1, 1]\{0}

Gumbel exp � �lnuð Þ� þ �lnvð Þ�
� �1=�

� �
1� 1

�

[1,1) [0, 1]

Survival Clayton uþ v� 1þ 1� uð Þ�� þ 1� vð Þ�� � 1
� ��1=�

1� 2

2þ �
[0,1) (0, 1]

A12b 1þ u�1 � 1ð Þ� þ v�1 � 1ð Þ�
� �1=�

� ��1

1� 2

3�
[1,1) 1

3
; 1

� 	
A14b 1þ u�1=� � 1

� �� þ v�1=� � 1
� ��� �1=�

� ���
1� 2

1þ 2�
[1,1)

FGM uvþ �uv 1� uð Þ 1� vð Þ 2�

9

[�1, 1] �2

9
;
2

9

� 	
Joe 1� 1� uð Þ� þ 1� vð Þ� � 1� uð Þ� 1� vð Þ�

� �1=�
No closed formc [1,1) (0, 1]

Gaussian Z��1 uð Þ

�/

z

Z��1 vð Þ

�/

1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p exp

2�xy� x2 � y2

2 1� �2
� �

 !
dxdy

2

�
arcsin�

[�1, 1] [�1, 1]

Student Zt�1
#

uð Þ

�1

Zt�1
#

vð Þ

�1

G #þ 2ð Þ=2ð Þ
G #=2ð Þ�#

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p 1þ x2 � 2�xyþ y2

#

� � #þ2ð Þ=2

dxdy

2

�
arcsin�

[�1, 1] [�1, 1]

�(�), standard Gaussian distribution function; t# �ð Þ, Student distribution function with # degrees of freedom.
aRepresentative contour plots for each copula family can be found in the Supporting Information.
bNumbers denote Archimedean copulas as listed in Nelson [2006].
c�¼g(�) can be approximated by �¼� arctan (�/�) using Monte Carlo simulation.
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dependence structures, including the lower and upper tail
dependencies, and cover most bivariate analyses found in
the hydrological literature.

2.2. Modeling Rainfall Amounts With
Hybrid Distribution

[18] Our second improvement is to introduce a hybrid
exponential and generalized (HEG) Pareto distribution for
rainfall amounts. The objective is to improve the character-
ization of extremes. The HEG distribution has the PDF of

fHEG xð Þ ¼ 1

Z
fE x;	ð ÞI 0;�ð � xð Þ þ fGP x;
; �; �ð ÞI �;1ð Þ xð Þ
� �

; 	; 
; �; � > 0 ;

(6)

the CDF of

FHEG xð Þ ¼ 1

Z
FE x;	ð ÞI 0;�ð � xð Þ þ FE �;	ð Þ þ FGP x; 
; �; �ð Þð ÞI �;1ð Þ xð Þ
� �

;

(7)

and the p-quantile function of

xp ¼ �	ln 1� pZð Þð ÞI 0;FE �ð Þ½ � pð Þ
þ �þ �=
 pZ � 2þ e�x=	

� ��

� 1

� �� �
I FE �ð Þ;1ð � pð Þ; (8)

where

Z ¼ FE �;	ð Þ þ 1;

fE x;	ð Þ ¼ 1=	e�x=	I 0;�ð Þ xð Þ;

FE x;	ð Þ ¼ 1� e�x=	
� �

I 0;�ð Þ xð Þ;

fGP x; 
; �; �ð Þ ¼ 1=� 1þ 
 x� �ð Þ=�ð Þ�1=
�1I �;1ð Þ xð Þ;

FGP x;
; �; �ð Þ ¼ 1� 1þ 
 x� �ð Þ=�ð Þ�1=

� �

I �;1ð Þ xð Þ;

and IA(�) is the indicator function. To ensure the continuity
of the PDF at the junction point, � can be expressed as a
function of 	 and � as follows:

� ¼ �	ln 	=�ð Þ: (9)

[19] Therefore, the HEG distribution can be fully para-
meterized by P¼[	, 
, �]. In the improved distribution,
hX(x), hY(y), f(x), and g(y) all belong to the HEG family.
Note that for simplicity, subscript ‘‘HEG’’ will be dropped
from the following relevant equations.

2.3. Conditional Distributions

[20] Two types of conditional distributions, derived from
the improved bivariate mixed distribution, constitute the
cornerstones for its applications:

I) P Y � yjX ¼ x;X > 0; Y > 0ð Þ (or P X � xjð
Y ¼ y;X > 0; Y > 0Þ)

II) P Y � yjX ¼ x;X � 0ð Þ (or P X � xjð
Y ¼ y; Y � 0Þ)

2.3.1. Type I Conditional Distribution
[21] Consider the following situation. Given contempo-

raneous occurrence of rainfall at both sites, one wants to
know the conditional distribution of rainfall amount at one
site given that at the other site, i.e., the conditional distribution
of Y given X ¼ x, X > 0, and Y > 0 (or of X given Y ¼ y,
X > 0, and Y > 0). This conditional CDF is given as follows:

HY jX¼x yjX ¼ x;X > 0; Y > 0ð Þ ¼ c1 F xð Þ;G yð Þð Þ; (10)

where c1(�) is the partial derivative of copula C(�) with
respect to its first argument [Zhang and Singh, 2007]. The
p-quantile function of the distribution is given as follows:

ypjX¼x;X>0;Y>0 ¼ G�1 c�1
12

F xð Þ; pð Þ
� �

; (11)

where G�1(�) is the inverse of G(�), which can be directly
computed by equation (8); c�1

12
�ð Þ is the quasi-inverse of

c1(�) with respect to its second argument.
2.3.2. Type II Conditional Distribution

[22] Now consider another situation where one is inter-
ested in the conditional distribution of Y given X ¼ x and
X � 0 (or of X given Y ¼ y and Y � 0). In this case, no
prior knowledge about the wet or dry state of Y (or X) is
available. This conditional CDF can be split into two parts
[Herr, 1999; Herr and Krzysztofowicz, 2005]. The first part
is the distribution of Y given X ¼ x and X ¼ 0:

�Y jX¼0 yjX ¼ 0ð Þ ¼ p00 þ p01HY yð Þ
p00 þ p01

: (12)

[23] The second part is of Y given X ¼ x and X > 0:

�Y jX¼x yjX ¼ x;X > 0ð Þ ¼ p10hX xð Þ þ p11f xð Þc1 F xð Þ;G yð Þð Þ
p10hX xð Þ þ p11f xð Þ :

(13)

[24] Correspondingly, the p-quantile functions are as
follows:

ypjX¼0 ¼ H-1
Y

p00 þ p01ð Þp� p00

p01

� �
; (14)

ypjX¼x;X>0 ¼ G-1 c�1
12

F xð Þ; p10hX xð Þ þ p11f xð Þð Þp� p10hX xð Þ
p11f xð Þ

� �� �
;

(15)

where H�1
Y �ð Þ and G�1(�) are the inverses of HY(�) and G(�),

respectively. Derivation for the CDFs of the type II condi-
tional distribution is presented in Appendix A.

3. Simulation and Estimation

3.1. Random Number Simulation

[25] Random vectors can be simulated from the bivariate
mixed distribution by an algorithm in what follows:

[26] Algorithm 1 :
1. Draw p uniformly distributed over [0, 1].
2. If p < p00, set x ¼ 0 and y ¼ 0.
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3. If p00 � p < p00þp10, then draw a random value
from HX(x) for x and set y ¼ 0.

4. If p00þp10 � p < p00þp10þp01, then set x ¼ 0
and draw a random value from HY (y) for y.

5. If p � p00þp10þp01, then draw a bivariate ran-
dom vector from the joint distribution C F xð Þ;G yð Þð Þ.

[27] In applications, oftentimes it is needed to generate
random samples Y (or X) from the conditional distribution
Y jX (or X jY ). Suppose X ¼ x, the generation algorithm can
be summarized by the following steps:

[28] Algorithm 2 :
1. Draw a random number p which is uniformly dis-

tributed over [0, 1].
2. If x ¼ 0, determine if (p00þp01)p�p00 is positive

or negative. If it is positive, then set y ¼ ypjX¼0, and set
y ¼ 0 otherwise.

3. If x > 0, determine if p10hX xð Þ þ p11f xð Þð Þp�
p10hX xð Þ is positive or negative. If it is positive, then set
y ¼ ypjX¼x;X>0, and set y ¼ 0 otherwise.

4. Repeat the above steps with new x, if necessary.

3.2. Parameter Estimation

[29] The discrete probabilities, the marginal HEG distri-
butions, and the copula function are unknowns to be esti-
mated. Although theoretically one can perform direct
maximum likelihood (ML) estimation, for simplicity and
flexibility we break down the estimation into three parts :
(1) estimate the discrete probabilities ; (2) estimate the mar-
ginal HEG distributions; and (3) select and estimate the
copula function. A stepwise estimation procedure is pre-
sented as follows. The forthcoming Monte Carlo simulation
in section 3.3 will provide empirical justification for this
separate estimation strategy.
Step 1. Estimate the Discrete Probabilities

[30] The discrete probabilities can be estimated by the
ML method as follows:

p̂10 ¼
Xn

i¼1

I 0;1ð Þ xið ÞI0 yið Þ
n

; (16)

p̂01 ¼
Xn

i¼1

I0 xið ÞI 0;1ð Þ yið Þ
n

; (17)

p̂11 ¼
Xn

i¼1

I 0;1ð Þ xið ÞI 0;1ð Þ yið Þ
n

; (18)

p̂00 ¼ 1� p̂10 � p̂01 � p̂11; (19)

where n is the number of data pairs in the sample set.
Step 2. Estimate the Marginal HEG Distributions

[31] The ML method can be used to estimate parameters
of HEG distribution. In cases when it has problems, a
decent alternative is the maximum goodness-of-fit (MGF)
method with the right-tail Anderson-Darling statistic [Li
et al., 2012]. In practice, one may apply the ML or the
MGF method for estimation of parameters in the HEG dis-
tribution, whichever provides better results.
Step 3. Select and Estimate the Copula Function

[32] A two-stage algorithm is used to determine the cop-
ula function. The first stage identifies the most suitable cop-
ula family from the 10 candidates (Table 1), and the second
stage estimates parameters of the identified family.

[33] For the first stage, there are several criteria such as
Akaike information criterion (AIC) [Akaike, 1974], Bayes-
ian information criterion (BIC) [Schwarz, 1978], Bayesian
copula selection (BCS) [Huard et al., 2006], and Genest-
R�emillard goodness-of-fit test [Genest et al., 2009]. The
Genest-R�emillard goodness-of-fit test tends to fail to dis-
criminate among different families when the association
between variables is weak, which is usually the case for
rainfall amounts of two consecutive wet days [Serinaldi,
2009b]. For this reason, we use democratic voting among
families elicited from the first three criteria. If three differ-
ent families are elicited, we arbitrarily follow the AIC
criterion.

[34] The AIC and BIC criteria are calculated as
AIC¼�2LLCþ2p and BIC¼�2LLCþplogn4, respectively,
where LLC is the log-likelihood of the sample vectors [ui,
vi] and i ¼ 1, 2, . . . , n4; ui and vi are computed by
ui ¼ F(xi) and vi ¼ G(yi) ; p is the number of parameters of
the copula family; and n4 ¼

Xn

i¼1
I 0;1ð Þ xið ÞI 0;1ð Þ yið Þ. The

smaller the AIC or BIC is, the better is the family.
[35] The BCS weight for a candidate copula family is

computed as follows:

W ¼
Z
��

Yn4

i¼1

c ui; vijg�1 �ð Þ
� �

d�; (20)

where g�1(�) is the inverse of g(�) and �� is the domain of
� , both of which have been included in Table1; the other
components hold the same meaning as defined before. In
the case of Student copula, the degree of freedom is esti-
mated first and then the weight is computed. The best fam-
ily is identified as the one with maximum BCS weight.

[36] Once the most suitable copula family is identified,
the ML method is then used to estimate the parameters. As
inferred from equation (5), the log-likelihood function can
be decomposed as follows:

LLXY ¼ LLX þ LLY þ LLC ; (21)

where

LLX ¼
Xn4

i¼1

log f xið Þð Þ;

LLY ¼
Xn4

i¼1

log g yið Þð Þ; and

LLC ¼
Xn4

i¼1

log c F xið Þ;G yið Þð Þð Þ:

[37] Equation (21) suggests that the marginal distribu-
tions and the copula function can be estimated separately.
After fitting the marginal distributions, copula parameters
are determined by numerically maximizing LLc.

3.3. Preliminary Monte Carlo Simulation

3.3.1. Simulation Design
[38] To roughly test the asymptotic properties of the esti-

mators for the bivariate mixed distribution, Monte Carlo
simulation was carried out. Random sample sets with
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varying sizes were generated from the distribution using
Algorithm 1. Model parameters were estimated following
the stepwise procedure in section 3.2. The sample size was
increased from 500 to 10,000 with varying factors. For
each sample size, random sampling and parameter estima-
tion were repeated with 100 trials.

[39] The parent distribution was parameterized as fol-
lows. Arbitrarily, the discrete probabilities were set as
p00¼0.15, p10¼0.25, p01¼0.35, and p11¼0.25. The mar-
ginal distributions hX (x), hY (y), f (x), and g (y) were
assumed to be identical with parameters P¼[5.22, 0.18,
16.30]. Two copula families were used to mimic different
dependence structures. One was Gumbel copula with
� ¼ 0.75 (� ¼ 4.0), which can simulate the upper tail de-
pendence. The other was Clayton copula also with
� ¼ 0.75 (� ¼ 6.0), which is capable of modeling the lower
tail dependence.
3.3.2. Simulation Results

[40] Estimates for the discrete probabilities and parame-
ters of hX (x) are shown by box plots in Figures 3 and 4,
respectively, as the sample size increases. The true value of
each parameter is marked by a horizontal line. The results
for the other marginal distributions are not presented as
they demonstrated similar patterns. Two major points can
be inferred from the figures: (1) the discrepancies between
the means of the estimates and true values were very small,
even negligible when the sample size was sufficiently
large; and (2) the spread of the estimates notably decreased
as the sample size increased. Thus, in general, for both dis-
crete probabilities and marginal distributions, the estima-
tors described in section 3.2 behave asymptotically
consistently and efficiently.

[41] With the aid of democratic voting, the number of
successful identifications for the true copula family was
summarized in Table 2. It may be seen that (1) the demo-
cratic voting converged to the right family as the sample
size increased; (2) AIC and BIC outperformed BCS in
identifying the true model; and (3) the democratic voting
was safer than any single criterion.

[42] After identifying the most suitable copula family,
the corresponding parameter was estimated by the ML
method. Box plots for the estimates of Kendal’s � for the
Gumbel and Clayton copulae are shown in Figure 5. As a
note, this figure contains the estimates in trials when the
true family was successively identified only. It appears that
the ML estimator for the copula parameter behaves as
expected.

[43] The above Monte Carlo simulation indicates three
major points. First, the separate estimation strategy
described in section 3.2 seems to work adequately respect-
ing asymptotic consistency and efficiency. Second, the sim-
ulation Algorithm 1 appears to perform well in the sense
that parameters estimated from the samples generated by
Algorithm 1 statistically reproduce the true values. Third,
the bivariate mixed distribution is expected to model differ-
ent dependence structures with the use of different copulae.
As a final point, it is realized that a more comprehensive
study to properties of the improved bivariate mixed distri-
bution and its estimation are required in the future consid-
ering the limited scope of this small simulation experiment.

4. Application to Daily Rainfall Simulation

[44] Among different recognized applications of the
improved bivariate mixed distribution, how to use it for

Figure 3. Behavior of discrete probability estimates as
sample size increases. True values are marked by horizon-
tal lines.

Figure 4. Behavior of HEG distribution parameters esti-
mates computed from the subset X > 0 and Y ¼ 0 as sample
size increases. True values are marked by horizontal lines.
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daily rainfall simulation is of particular interest in this
research.

4.1. Bivariate Mixed Distribution-Based Markov
Chain Generator

[45] Daily rainfall can be generalized as a Markov pro-
cess with autocorrelation described by the bivariate mixed
distribution. Let X and Y in equation (2) denote rainfall of
days t�1 and t, respectively, then the conditional distribu-
tion of rainfall of day t given that of day t�1 can be mod-
eled by equations (12) and (13). Rainfall simulation may
proceed through sequentially sampling from the conditional
distribution following the steps in Algorithm 2. For sim-
plicity, we shall hereinafter refer to it as a bivariate mixed
distribution-based Markov chain generator (BMC). In par-
ticular, BMCs with HEG and gamma distributions for rain-
fall amounts are denoted by BMC-H and BMC-G,
respectively.

[46] However, caution has to be exercised while using
BMC-H for rainfall simulation, as it is recognized that on
occasion extremely large values may be generated. A simi-
lar problem is faced by other rainfall generators that simu-
late rainfall amounts in terms of distributions with
generalized Pareto tails, such as dynamic mixture of
gamma and generalized Pareto distribution [Vrac and

Naveau, 2007; Hundecha et al., 2009; Hundecha and
Merz, 2012] and hybrid gamma and generalized Pareto dis-
tribution [Furrer and Katz, 2008]. In these compound dis-
tributions, tail index (
) of the Pareto component is usually
forced to be positive in order to meet the heavy-tailed na-
ture of daily rainfall amounts. The PDF of a generalized
Pareto distribution with positive tail index is slowly vary-
ing at infinity [Feller, 1968], which means that high quan-
tiles (e.g., 0.9999þ) would be very large. Even though
these high quantiles are less likely to be generated, the pos-
sibility does exist. Very small amounts of extremely high
values may significantly change the nature of simulated
sequences, especially with respect to rainfall frequency
analysis that usually involves block maxima or peaks over
threshold only. Considering the fact that rainfall at a given
site is bounded below and above by 0 and a finite value,
corrections to BMC-H are needed such that infeasible large
values can be screened. At the same time, it is necessary to
emphasize that as a stochastic rainfall generator, it should
be able to reasonably extrapolate unseen rare rainfall events
significantly beyond the upper range of available observed
data.

[47] Keeping the above two accounts in mind, a modifi-
cation proposal for algorithm 2 is presented in the follow-
ing. Suppose in the current month, the observed maximum
daily rainfall amount is amax. We assume that simulated
rainfall amounts in this month should be no greater than
200% of amax. From the fitted HY (y), a upper-bound per-
centile (pup1) can be obtained by evaluating HY (y) at 2amax.
Similarly, another upper-bound percentile (pup2) can be
obtained from G(y). In step 2, if (p00þp01)p�p00 is posi-
tive, which means that the day to be simulated is wet, then
we repeatedly generate a uniform random variate p1 over
[0, 1] and evaluate

p00 þ p01ð Þp1 � p00

p01
;

until this quantity is exactly between 0 and pup1 ; the corre-
sponding value is denoted as pr. The rainfall amount is then
simulated as H�1

Y prð Þ. Similar modification is made in step
3 as follows. If p10hX xð Þ þ p11f xð Þð Þp� p10hX xð Þ is posi-
tive, then quantity

c�1
12

F xð Þ; p10hX xð Þ þ p11f xð Þð Þp1 � p10hX xð Þ
p11f xð Þ

� �
;

is repeatedly evaluated on randomly generated uniform
variates p1s until it falls between 0 and pup2. Denote the

Table 2. Number of Successful Identifications of the True Copula Family Over 100 Trials

Gumbel Family (� ¼ 0.75) Clayton Family (� ¼ 0.75)

Sample Size (�100) AIC BIC BCS Democratic Voting AIC BIC BCS Democratic Voting

5 73 73 65 73 100 100 100 100
10 84 84 79 84 100 100 100 100
20 96 96 94 98 100 100 100 100
50 98 98 98 98 100 100 100 100
100 100 100 100 100 100 100 100 100

Figure 5. Behavior of the Kendall’s � estimates for Gum-
bel family and the Clayton family computed from the sub-
set X > 0 and Y > 0 as sample size increases. True values
are marked by horizontal lines.
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resulting value as pr. Then the simulated amount is
G�1(pr).

[48] The above procedure screens unreasonable large
values, retains certain extrapolation ability, and ensures
autocorrelation of rainfall amounts to be maintained. We
tested this procedure at several stations and found that the
upper-bound percentile is almost always greater than
0.999, indicating that the tail behavior learned from
observed data is slightly intervened only.

4.2. Data

[49] Rainfall records spanning over a period from 1960
to 2005 at station TX411048 in Texas were used to test the
BMC-H generator. This station was selected mainly for the
account that no missing values exist in the time window.
The location of the station (map), distributions of the number
of wet days and the rainfall totals over months of year (top
right), and an overall picture about the empirical PDFs of
nonzero and annual extremes of daily rainfall (bottom right)
are shown in Figure 6. To avoid identifying dew and other
noise as rainfall, a value of 0.3 mm was adopted as the sig-
nificant rainfall threshold, which means that only days with
amounts greater than 0.3 mm were considered as wet.

[50] Historical observations were first stratified into
months of year. Then, BMC-H was fitted for each calendar
month. An implicit assumption involved in the stratification
is that rainfall process is stationary within a given month
but nonstationary across different months. On one hand,
this assumption insures a large enough sample size such
that the model can be estimated with reasonable accuracy,
and on the other hand, it properly takes rainfall seasonality
into account. It is noted that the same data stratification
was used for fitting other alternative models in the forth-
coming comparison analyses.

4.3. Preliminary Evaluation of the BMC-H Generator

[51] Copula characterizes the joint behavior of rainfall
amounts of two consecutive wet days. The fundamental
objective of copula selection is to adequately represent the

dependence structure of the data under consideration. To
demonstrate the necessity of considering more copula fami-
lies as candidates, we analyzed the copula selection for
each month based on different criteria. For the ease of com-
parison, the 10 candidates were ranked by ascending AIC
and BIC values or by descending BCS weights. After that,
families with smaller AIC or BIC values or greater BCS
weights would gain front ranks. The results are presented
in Figure 7. As can be observed, both AIC and BIC resulted
in the same ranks, which were much different from those
elicited from the BCS criterion. Other interesting findings
include the following: (1) of the 10 candidates, the most of-
ten selected families were Clayton and survival Clayton;
(2) no matter which criterion was followed, A12 and A14
were the two least suitable families as both of them admits
Kendall’s � no less than 0.333, whereas the sample esti-
mates from the rainfall records under consideration were
up to 0.118 only; (3) and besides the commonly used fami-
lies, other families like FGM and Joe might be required for
a more realistic simulation. The above analyses suggest
that it is always preferable to select a suitable copula family
from various candidates rather than to adopt a unique one
for each month and for stations from different climate
areas; otherwise, a suboptimal model might be obtained,
which would in turn misrepresent the autocorrelation
behavior of rainfall amounts.

[52] The upper-bound percentiles for screening irrational
over large values of rainfall amounts are listed in Table 3.
It is seen that all these percentile values are very close to 1
(greater than 0.999), which means that the tail behavior of
rainfall amounts of each month learned from available
observed data was slightly altered only.

[53] To evaluate the performance of BMC-H (as well as
other alternate models), 200 sequences, each with the same
length as historical records (46 years), were generated. We
evaluated the model by descriptive statistics from the fol-
lowing five aspects : (1) to reproduce basic occurrence sta-
tistics; (2) to amount statistics ; (3) to reproduce the
historical distribution of rainfall amounts; (4) to reproduce

Figure 6. Location map of the selected rainfall station in Texas (map); the distributions of the (top
right) number of wet days and rainfall totals over months of year and the (bottom right) kernel density
estimations of nonzero and annual extremes of daily rainfall at the selected station.
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characteristics of extreme rainfall events; and (5) to repro-
duce autocorrelation of rainfall amounts.

[54] Basic occurrence statistics analyzed in this research
are the number of wet days (NM), the number of dry days
(ND), the number of wet spells (NWS), the number of dry
spells (NDS), maximum wet spell length (MWSL), and
maximum dry spell length (MDSL). Monthly patterns of
these statistics are visually summarized by box plots in Fig-
ure 8. Apparently, all these statistics were reasonably well
reproduced, indicating that BMC-H can satisfactorily simu-
late the persistence of rainfall occurrences. The root-mean-
square errors (RMSEs) provided a quantitative confirma-
tion of this observation (Table 4).

[55] Basic amount statistics are the yearly mean and
standard deviation of monthly rainfall totals, and the results
are presented in Figure 9. Inspection of Figure 9 reveals
that BMC-H seems to be doing a quite good job of repro-
ducing these statistics. Except for September for which a
slight trend toward underestimating the mean was detected,
no significant overestimation or underestimation was found
in other months.

[56] To check how well BMC-H reproduces the histori-
cal distribution of rainfall amounts, we looked at the empir-
ical QQ plots of simulated values against observations on
natural and logarithmic (base 2) scales, respectively, as
shown in Figure 10. It appears that the distribution of simu-
lated amounts was in fair agreement with that of the
observations.

[57] Realistic simulation of the entire distribution of
rainfall amounts would help BMC-H to reproduce charac-
teristics of extreme rainfall events. To verify this expecta-
tion, extreme weather indices were used for further
evaluation. Maximum 1-day rainfall amount measures 1-
day block extreme rainfall events. Monthly pattern of this
statistics is shown in Figure 11 (top). To circumvent mis-
leading, it is better to explain how this graph was plotted.
First, for a given month and year, we picked out the maxi-
mum daily rainfall value from observations. Thereby we
had 46 values, one for each year. Then, we averaged these
values such that we obtained one smoothed value, as
marked by the rectangular. Similarly, we obtained another
200 values, one for each simulated sequence, as displayed
by the box plot. Figure 11 (top) was accomplished by
repeating the above steps for each month. For simplicity,
this smoothed quantity is referred to henceforth as SM1A.
As expected, BMC-H reproduced SM1A with reasonably
good accuracy. One disturbing instance was found in Sep-
tember, for which SM1A was underestimated.

[58] Moreover, rainfall fractions due to wet days with
amounts greater than large rainfall quantiles (e.g., 0.90,
0.95, and 0.99) over a period measure extreme rainfall
events from a view point close to frequency analysis [Len-
nartsson et al., 2008]. Take the computation of rainfall
fraction corresponding to the 0.95 quantile as an example.
Assume over a given period that there are 100 wet days

Figure 7. Copula ranks elicited by different criteria. Ga:
Gaussian copula; St: Student copula; Cl: Clayton copula;
Fr: Frank copula; Gu: Gumbel copula; Sc: survival Clay-
ton copula; 12: A12 copula; 14: A14 copula; Fg: FGM
copula; and Jo: Joe copula.

Table 3. Upper-Bound Percentiles for Screening Irrational Over Large Values of Rainfall Amounts to be Simulated

Month 1 2 3 4 5 6 7 8 9 10 11 12

FY (y) 0.9999 0.9992 0.9991 0.9997 1.0000 0.9995 0.9995 0.9993 0.9997 0.9996 0.9999 0.9994
G (y) 0.9998 1.0000 1.0000 0.9999 0.9999 0.9994 1.0000 0.9999 0.9992 0.9994 0.9995 0.9998
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with amount of a1, a2, . . . , a100, respectively ; the 0.95
quantile of these 100 values is denoted as a ; suppose
there are 4 days whose amounts are greater than a, e.g.,
a7, a12, a25, and a70, then the fraction corresponding to
the 0.95 quantile can be computed as (a7þa12þa25þa70)/
(a1þa2 þ . . .þa100). To obtain reliable estimates for the
quantiles, all the 46 years of data were pooled together.
The results are presented in Figure 11 (bottom). It is
apparent that the three statistics were reasonably well
preserved.

[59] For the evaluation of BMC-H in capturing autocor-
relation of daily rainfall amounts, simulated and observed
lag-1 autocorrelations measured by Kendall’s � correlation
coefficient are presented in Figure 12 (top). As can be
observed, no significant evidence for misrepresentation was
detected except for a slight overestimation in January and
March. It is worthwhile to note that we used Kendall’s �
rather than the Pearson’s correlation coefficient as the de-
pendence measure, as the former is more suitable for non-
Gaussian distributed rainfall data.

[60] Autocorrelation of rainfall amounts has a direct
influence on rainfall event volumes. We therefore contin-
ued to investigate whether or not the 2-, 3-, and 4-day rain-
fall event volumes were reasonably preserved. As
consecutive wet days may last over months and over years,
the volume statistics were computed again by pooling the

46 years of data. The results are shown in Figure 12 (mid-
dle), from which it is inferred that BMC-H did a good job
of simulating short-term rainfall event volumes.

[61] In addition to Kendall’s � correlation coefficient
which mainly measures the central dependence, it is inter-
esting to look at the upper tail dependence as well. Intui-
tively, the upper tail dependence can be understood as how
likely extreme rainfall events to occur together [Cherubini
et al., 2004]. A nonparametric estimator recommended by
Frahm et al. [2005] was used to compute the upper tail de-
pendence coefficient as follows:

�̂ ¼ 2� 2exp 1=n
Xn

i¼1
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1=uið Þlog 1=við Þ

p
log 1=max ui; við Þ2
� �

0
@

1
A

0
@

1
A;

(22)

where n is the number of paired consecutive wet days;
ui ¼ F̂ t�1 xi

t�1

� �
and vi ¼ Ĝt xi

t

� �
; F̂ t�1 �ð Þ and Ĝt �ð Þ are the

empirical CDFs of rainfall amounts of days t�1 and t,
respectively. The results are presented in Figure 12 (bot-
tom). It can be seen that BMC-H exhibited a decent per-
formance in simulating the dependence of rainfall
extremes.

Figure 8. Box plots of basic raifnall occurrence statistics of observed and BMC-H-simulated sequen-
ces. Orange rectangulars with blue filled denote observed values.
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4.4. Benefits From Using HEG Distribution for
Rainfall Amounts

[62] A major innovation of the improved bivariate mixed
distribution is one of using a rather sophisticated marginal
distribution to characterize the entire distribution of rainfall
amounts. One might raise a question as to whether the syn-
thetic rainfall sequences are really sensitive to the choice of
marginal distribution. If not, then there is no need to spend
extra time and effort on a complex model. In this respect, a
comparison between BMC-H and BMC-G was carried out.

[63] The unique difference between BMC-H and BMC-
G lies in the distribution used for rainfall amounts. Thus,
there should be no overwhelming difference between them
in simulating rainfall occurrences, as verified by RMSEs in
Table 4. Either no significant difference was observed in
reproducing basic amount statistics. We therefore pay spe-
cial attention to look if BMC-H outperforms BMC-G in
capturing the entire distribution of rainfall amounts and in
reproducing characteristics of extreme rainfall events. Fig-
ure 13 shows QQ plots of BMC-G simulated versus
observed rainfall amounts. It can be seen that BMC-G
resulted in a slight overestimation of the central part and a
serious underestimation of the tail part of the distribution.
As a consequence, extreme rainfall characteristics, for
instance, SM1A and large rainfall fractions, were consis-
tently underestimated (Figure 14). When compared with
BMC-G, BMC-H provides a notable gain in capturing the
entire distribution of rainfall amounts and preserving char-
acteristics associated with extreme rainfall events.

4.5. Benefits From Accounting for Autocorrelation of
Rainfall Amounts

[64] As was previously mentioned, an implementational
benefit from applying the bivariate mixed distribution for

Table 4. Root-Mean-Square Error of Basic Rainfall Occurrence Statistics

Month

1 2 3 4 5 6 7 8 9 10 11 12

BMC-H
NW 0.61 0.46 1.13 0.61 0.58 0.53 0.43 0.48 0.71 0.51 0.49 0.55
ND 0.61 0.46 1.13 0.61 0.58 0.53 0.43 0.48 0.71 0.51 0.49 0.55

NWS 0.22 0.20 0.53 0.21 0.22 0.23 0.25 0.28 0.19 0.21 0.24 0.21
NDS 0.27 0.18 0.37 0.21 0.19 0.20 0.22 0.21 0.19 0.19 0.21 0.19

MWSL 0.50 0.25 0.21 0.20 0.25 0.25 0.24 0.34 0.43 0.34 0.21 0.26
MDSL 0.69 0.54 1.75 0.75 0.89 1.10 0.81 0.73 0.62 0.97 0.77 0.79
BMC-G

NW 0.67 0.49 0.42 0.50 0.60 0.57 0.41 0.48 0.59 0.50 0.49 0.55
ND 0.67 0.49 0.42 0.50 0.60 0.49 0.41 0.48 0.59 0.50 0.49 0.55

NWS 0.23 0.20 0.21 0.23 0.22 0.22 0.24 0.30 0.21 0.23 0.24 0.21
NDS 0.25 0.20 0.26 0.22 0.21 0.21 0.21 0.21 0.24 0.22 0.24 0.21

MWSL 0.41 0.25 0.19 0.24 0.26 0.28 0.22 0.33 0.35 0.28 0.22 0.24
MDSL 0.67 0.58 0.77 0.77 0.85 1.16 0.74 0.73 0.69 1.05 0.76 0.79
CMC-Ha

NW 0.69 0.46 1.13 0.46 0.57 0.47 0.42 0.48 0.61 0.47 0.49 0.57
ND 0.69 0.46 1.13 0.46 0.57 0.47 0.42 0.48 0.61 0.47 0.49 0.57

NWS 0.23 0.21 0.31 0.23 0.24 0.23 0.23 0.30 0.22 0.22 0.24 0.21
NDS 0.26 0.20 0.21 0.22 0.22 0.22 0.21 0.22 0.23 0.23 0.23 0.21

MWSL 0.41 0.23 0.30 0.21 0.24 0.23 0.22 0.34 0.35 0.28 0.22 0.26
MDSL 0.68 0.58 1.36 0.78 0.94 1.22 0.85 0.70 0.64 0.96 0.76 0.78
TPM

NW 0.46 0.43 0.47 0.41 0.46 0.43 0.36 0.46 0.48 0.49 0.50 0.50
ND 0.47 0.43 0.47 0.41 0.46 0.43 0.36 0.46 0.48 0.49 0.50 0.50

NWS 0.22 0.21 0.24 0.24 0.22 0.21 0.20 0.24 0.22 0.22 0.24 0.21
NDS 0.24 0.21 0.30 0.21 0.21 0.19 0.20 0.20 0.19 0.21 0.23 0.22

MWSL 0.52 0.21 0.23 0.27 0.21 0.22 0.18 0.34 0.25 0.28 0.22 0.27
MDSL 0.56 0.60 0.61 0.63 1.05 1.39 0.78 0.73 0.79 1.11 0.86 0.64

aSMC-K model had statistically the same results as CMC-H because they both use conventional two-state Markov chain model for the simulation of
rainfall occurrence.

Figure 9. Box plots of basic rainfall amount statistics of
observed and BMC-H-simulated sequences. Orange rectan-
gulars with blue filled denote observed values.
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daily rainfall simulation is that autocorrelation of rainfall
amounts can be properly taken into account in a relatively
natural and easy way. This is an important advantage of
BMC over the conventional two-state Markov chain gener-
ator (CMC) [Gabriel and Neumann, 1962; Richardson,
1981].

[65] Both BMC and CMC have the same assumption for
rainfall occurrence. They would not have significant dis-
tinction in preserving basic occurrence statistics (Table 4).
A major difference between BMC and CMC is that the lat-
ter assumes independence of rainfall amounts, whereas the
former does not. Hence, we focus on the performance in
reproducing autocorrelation of rainfall amounts. For the
sake of fair comparison, the HEG distribution was used for
both models. Figure 15 is the same as Figure 12 but for the
CMC model. As observed from Figure 15, the simulated
Kendall’s � correlation coefficients were almost symmetri-
cally distributed about 0 throughout the year without clear

seasonal cycles and regardless of observed values. Nearly
the same observations hold for the upper tail dependence
coefficients. The underestimated autocorrelation of rainfall
amounts will in turn lead to misrepresentation of rainfall
event volumes, as signified by overestimated or underesti-
mated 2- and 3-day event volumes. In summary, CMC fails
to transfer the autocorrelation information inherent in
observed rainfall records into simulated sequences, whereas
BMC successfully does that.

Figure 10. Empirical QQ plots on (right) natural and (left) logarithmic scales of rainfall observations
versus simulations from BMC-H. Dashed gray lines represent the 95% confidence bounds.

Figure 11. Box plots of (top) SM1A and (bottom) rainfall
fractions due to wet days with amounts greater than 0.90,
0.95, and 0.99 quantiles of observations and simulations
from BMC-H. Orange rectangulars with blue filled denote
observed values.

Figure 12. Box plots of (top) Kendall’s � correlation
coefficient, (middle) 2-, 3-, and 4-day rainfall event vol-
umes, and (bottom) upper tail dependence coefficient of
observations and simulation from BMC-H. Orange rectan-
gulars with blue filled denote observed values.
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[66] From Figure 15, one might have also noticed that
the 4-day rainfall event volume was somewhat better repro-
duced by CMC than by BMC, even though the former
assumes that rainfall amounts are independent and identi-
cally distributed. It means that long-term rainfall event vol-
ume is independent of lag-1 autocorrelation of rainfall
amounts. In view of this observation, we can remark that it
seems not necessary to take a more advanced model for
high-order autocorrelation of the rainfall records under con-
sideration and that first-order Markovian dependence (as is
used in BMC) seems adequate.

4.6. Benefit for Reducing Effects of ‘‘Overdispersion’’

[67] A typical challenge in daily rainfall simulation is
the effect of overdispersion, which generally refers to the
case where simulated rainfall only represents a smoothed
long-term variance [Katz and Zheng, 1999; Wilks, 1999;
Mehrotra and Sharma, 2007a, 2007b; Kim et al., 2012].
There are two types of overdispersion. One is related to the

rainfall occurrence process, as indicated by underestimated
long-term dry and wet spells, and the other one to the rain-
fall amount process, as signified by deflated variance of
seasonal and annual rainfall totals. It is opined that the
amount of overdispersion partly results from the independ-
ence assumption for rainfall amounts. The BMC generator
considers autocorrelation of rainfall amounts and thus
should be able to reduce amount of overdispersion. To gain

Figure 13. Empirical QQ plots on (right) natural and (left) logarithmic scales of rainfall observations
versus simulations from BMC-G. Dashed gray lines represent the 95% confidence bounds.

Figure 14. Box plots of (top) SM1A and (bottom) rainfall
fractions due to wet days with amounts greater than 0.90,
0.95, and 0.99 quantiles of observations and simulations
from BMC-G. Orange rectangulars with blue filled denote
observed values.

Figure 15. Box plots of (top) Kendall’s � correlation
coefficient, (middle) 2-, 3-, and 4-day rainfall event vol-
umes, and (bottom) upper tail dependence coefficient of
observations and simulations from CMC-H. Orange rectan-
gulars with blue filled denote observed values. Dashed
green lines are zero reference lines.
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insights into this point, we calculated standard deviations
of seasonal and annual rainfall totals (Figure 16). Yet, there
was no evident difference between BMC-H and CMC-H
(CMC with HEG distribution for rainfall amounts), which
implies that properly modeling lag-1 autocorrelation seems
to contribute little if any to the reduction of overdispersion
here. We then proceeded to look for the standard deviations
corresponding to BMC-G, as presented in Figure 16 (right).
At this time, the effect of overdispersion became apparent,
especially for rainfall totals of dry seasons and at annual
scale. Considering the difference between BMC-H and
BMC-G, the above analyses suggest that to reduce overdis-
persion, preserving lag-1 autocorrelation is relatively less
important than preserving extreme rainfall characteristics.
The improved bivariate distribution provides a gain in
reducing the effect of overdispersion.

5. Comparison With Other Advanced Daily
Rainfall Generators

[68] In terms of comparing BMC-H with simple
benchmark models (BMC-G and CMCs), our purpose

above was to efficiently appreciate the advantage of
BMC-H in reproducing characteristics related to
extreme rainfall and lag-1 autocorrelation of rainfall
amounts. One might be more willing to see comparison
between BMC-H and other relatively advanced models.
In this section, we compare BMC-H with two alternate
models. Both of them are among the most frequently
used stochastic generators for daily rainfall. One is the
TPM model [Haan et al., 1976; Srikanthan and McMa-
hon, 1985], and the other one is a semiparametric
model with parametric Markov chain for rainfall occur-
rences and nonparametric KDE for rainfall amounts
(SMC-K). The SMC-K model is rooted in the one more
recently developed by Harrold et al. [2003b], wherein a
somewhat complex algorithm is used for the generation
of rainfall occurrences [Harrold et al., 2003a]. Never-
theless, its application requires large sample size [Sri-
kanthan et al., 2005]. Considering the relatively short
records available for this research, we replace it by a
simple Markov chain model. For the benefit of the
reader, TPM and SMC-K are introduced in Appendices
B and C, respectively.

Figure 16. Box plots of (top) standard deviations of seasonal and (bottom) annual rainfall totals of
observations and simulations from (left) BMC-H, (middle) CMC-H, and (right) BMC-G, respectively.
Orange rectangulars with blue filled denote observed values.

Figure 17. Empirical QQ plots of rainfall observations versus simulations from (left) TPM and (right)
SMC-K, respectively. Dashed gray lines represent the 95% confidence bounds.

LI ET AL.: SINGLE-SITE DAILY RAINFALL SIMULATION

781



5.1. Difference in Reproducing Basic Occurrence and
Amount Statistics

[69] A quantitative assessment of the performance of
BMC-H, TPM, and SMC-K in reproducing basic occur-
rence statistics was made by comparing RMSEs of each
statistics. The results for both BMC-H and TPM are given
in Table 3. In general, BMC-H performed a little bit infe-
rior to TPM. A multistate Markov chain model seems more
suitable for the rainfall occurrence process here. Note that
SMC-K and CMC-H apply exactly the same algorithm for
the simulation of rainfall occurrences. Comparing BMC-H
with SMC-K in reproducing basic occurrence statistics is
therefore equivalent to comparing it with CMC-H. As was
already discussed in section 4.4, BMC-H presented similar
performance to CMC-H regarding the simulation of rainfall
occurrences. It should perform similarly to SMC-K as well.
With regard to basic amount statistics (mean and standard
deviation), the three models performed nearly the same. No
one was completely convincingly better than the other.

5.2. Difference in Reproducing Overall Distributional
Properties of Rainfall Amounts

[70] Figure 17 presents QQ plots of the observed against
generated rainfall amounts from the TPM and SMC-K
models, respectively. Generally, BMC-H outperformed
TPM but slightly inferior to SMC-K, which exhibited sur-
prising correspondences between observed and simulated
quantiles, in both tail and central parts. The nice correspon-
dence arises from the basic machinery of SMC-K. As illus-
trated in Appendix C, simulating rainfall amounts from a
target density built by KDE is a kind of conditional

bootstrapping smoothed by Gaussian kernels [Sharma and
O’Neill, 2002]. Through smoothing, values different from
observations can be simulated; however, the large-sample
behavior of the smoothed values is statistically similar to
the observations. It may, however, be noted that such sam-
pling machinery of SMC-K might fail to bridge the gap
between the ‘‘bulk’’ and the tail of observed rainfall
amounts and the gap between extreme values sparsely scat-
tered in the tail domain if these gaps are too wide. In the
TPM model, rainfall amounts are divided into a number of
wet states according to their magnitudes. The uniform dis-
tribution is used for rainfall amounts within each of the wet
states except for the last, for which a shifted gamma distri-
bution is assumed. This approach can essentially be seen as
a piecewise linear approximation to the distribution func-
tion below a threshold, with a gamma-shaped tail above.
The piecewise modeling did offer somewhat an improve-
ment in characterizing the tail behavior of rainfall but still
not as well as BMC-H and SMC-K.

[71] As mentioned above, simulating rainfall amounts
by SMC-K is a conditional reshuffle-perturbation proce-
dure performed on available observed data. Therefore, it
is expected to preserve most observed distributional prop-
erties of rainfall amounts, including the overall distribu-
tion of rainfall amounts and distributions of extremes,
such as block maxima and peaks over threshold. To com-
pare the three models in reproducing distributions of rain-
fall extremes, two types of frequency analysis were
performed. One is on annual maxima of daily rainfall.
The other one is on rainfall exceedances over a threshold
(0.90 quantile). The results of daily rainfall return period

Figure 18. The return period and return level relationships derived from frequency analysis performed
on (top) annual block maximum daily rainfall and (bottom) rainfall exceedances over 0.90 quantiles cor-
responding to observations (solid lines) and simulations (box plots) from (left) BMC-H, (middle) TPM,
and (right) SMC-K, respectively.
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and return level (P-L) relationships derived from the two
types of frequency analysis, respectively, are presented in
Figure 18. Among the three models, SMC-K and BMC-H
performed comparably, whereas TPM seriously underes-
timated both types of P-L relationship. It was recognized
that owing to the screening procedure, the P-L relation-
ships can be reasonably preserved by BMC-H. Without
screening, a small number of extremely large values
might be simulated, which would raise these relation-
ships, especially the first type. When compared with
BMC-H, SMC-K tends to generate rainfall realizations
bearing a somewhat too close resemblance to available
observed data. BMC-H provides more diverse rainfall
realization scenarios especially with respect to extremes
which will in turn offer diverse risk scenarios. In situa-
tions, if rare rainfall events are of particular interest,
BMC-H is preferable.

5.3. Difference in Reproducing Characteristics of
Extreme Rainfall Events

[72] The comparison of the observed and simulated
SM1A and large rainfall fractions by TPM and SMC-K,
respectively, is shown in Figure 19. Together with Figure
11, Figure 19 indicates the following: (1) the three models
performed comparably in reproducing SM1A, and (2)
BMC-H performed similarly to TPM and better than SMC-
K in reproducing large rainfall fractions. SMC-K demon-
strated a trend toward underestimating rainfall fractions,
implicating that the nonparametric KDE is less apt at cap-
turing unusual or rare rainfall events. One point worth not-
ing is with respect to the computation of SM1A. As was
explained in section 4.2, SM1A represents a smoothed
value over years. Figure 20 demonstrates the highest rather
than the smoothed maximum 1-day rainfall amount of each
month. To distinguish between these two quantities, the
shorthand notation for this highest order statistics will be
M1A. As observed from this figure, BMC-H emerged as
the best choice, whereas neither TPM nor SMC-K per-
formed as well as MBC-H. In particular, both TPM and
SMC-K underestimated M1A. The former performed
slightly better than the latter. The reasoning for the differ-
ence lies in the treatment of rainfall extremes. BMC-H

Figure 19. Box plots of SM1A and rainfall fractions due
to wet days with amounts greater than 0.90, 0.95, and 0.99
quantiles of observations and simulations from (top) TPM
and (bottom) SMC-K, respectively. Orange rectangulars
with blue filled denote observed values.

Figure 20. Box plots of M1A of observations and simula-
tions from (top) BMC-H, (middle) TPM, and (bottom)
SMC-K. Orange rectangulars with blue filled denote
observed values.
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characterizes rainfall exceedances over a threshold by a
generalized Pareto distribution, which is motivated from
the extreme value theory specifically for describing unusual
behavior or rare events, and thus can properly reproduce
historical extremes and reasonably extrapolate unseen val-
ues beyond the upper range of available observed data.
TPM characterizes large rainfall in terms of a gamma dis-
tribution, which can simulate values significantly greater
than the observed extremes [Srikanthan et al., 2005]. How-
ever, the gamma distribution is not heavy enough to
adequately capture the unusual tail behavior. This explains
why TPM underestimated M1As for several months and why
many outliers appeared in the box plots. SMC-K uses a non-
parametric KDE to approximate the distribution of rainfall
amounts. An implicit assumption of KDE is that the support
of the underlying distribution is the same as the range of the
available sample, or at least approximately so. This assump-
tion implies that values much greater than the observed
extremes cannot be simulated unless larger bandwidth is
exerted on kernels in the tail domain. This interprets why
SMC-K-simulated M1A had a J-shaped distribution.

5.4. Further Explanation for the Difference in
Reproducing Extreme Rainfall Event Characteristics

[73] Analyses in the above section suggest that when
compared with BMC-H and TPM, SMC-K is less apt at
reproducing characteristics of extreme rainfall events. This
is consistent with the statement made by Srikanthan et al.
[2005]. It is also in agreement with the point of view of
existing researches that KDE might provide misleading tail
behavior for heavy-tailed data, for instance, Markovich

[2007] and Carreau and Bengio [2009] amongst many
others. At the first glance, however, it seems against the
previous observations in section 5.2 that SMC-K performs
rather well in reproducing distributions of overall rainfall
amounts and extremes. To see why they make sense, we
first enumerate typical characteristics of samples from
heavy-tailed and light-tailed distributions. If a random sam-
ple is from a heavy-tailed distribution, then there are sparse
observations or ‘‘outliers’’ isolated from other values or the
‘‘bulk’’ of the sample, as demonstrated by the rug plot in
Figure 21(b). Although if a random sample is from a light-
tailed distribution, there is no such outliers and all the sam-
ple data are compactly distributed, as demonstrated by the
rug plot in Figure 21(a). For a light-tailed distribution, the
nonparametric KDE is a good estimator for the correspond-
ing PDF, as illustrated by the solid line in Figure 21(a).
However, if the distribution is heavy-tailed, KDE provides
a misleading approximation to the tail domain. In general,
it has sharp bumps centered at the outliers and does not pro-
vide correct rate of the PDF decay to 0 [Silverman, 1986],
as illustrated here by the solid line in Figure 21(b). As a
result, high quantiles of the underlying distribution will be
underestimated. Moreover, a PDF with bumps in the tail
domain is hard to interpret, representing an unrealistic fea-
ture in rainfall.

[74] The distorted tail estimation for heavy-tailed data by
KDE can be more realistically demonstrated in terms of a
simple Monte Carlo experiment. First, we generated a ran-
dom sample of size 1000 from a dynamic mixture of
gamma and generalized Pareto distribution, which has been
extensively used for daily rainfall simulation and

Figure 21. (a) Demonstration for kernel density estimation based on sample from a light-tailed distri-
bution. (b) The same as in Figure 21(a) but based on sample from a heavy-tailed distribution. (c) Kernel
density estimation and parametric HEG probability density function fitted to data sampled from a
dynamic mixture of gamma and generalized Pareto distribution. (d) The same as in Figure 21(c) but pot-
ted on a semilogarithmatic scale.
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downscaling [Vrac and Naveau, 2007; Hundecha et al.,
2009; Hundecha and Merz, 2012]. The parent distribution
was parameterized such that it honors typical distributional
characteristics of daily rainfall. We fitted the random sam-
ple using nonparametric KDE with Gaussian kernel (Ap-
pendix C) and parametric HEG distribution, respectively,
and the results are presented in Figures 21(c) and 21(d).
The rug plots indicate existing sparse observations toward
the tail end of the distribution. Figure 21(c) implies that
both KDE and HEG provided a reasonable fit for low to
moderate values. However, the tail part was distorted by
the former, which is efficiently illustrated by Figure 21(d).
The distorted tail will cause the underestimation of high
quantiles. For instance, the real 0.9995 quantile is 64.77,
whereas the KDE-estimated quantile was 39.28, which is
slightly different from the largest sample value (39.11)
only.

[75] It must, however, be emphasized that the above dis-
cussion should not be interpreted as suggesting either para-
metric distributions or nonparametric estimators are
preferred to the other type, but properly appreciating the
different working machineries of BMC-H and SMC-K for
simulating rainfall amounts. In situations where values
much higher than the observed extremes are not as promi-
nent, nonparametric rainfall generators (such as SMC-K)
are preferred. Here, we want to point out again that as a sto-
chastic rainfall generator, it should be able to reasonably

extrapolate unseen rare rainfall events significantly beyond
the upper range of historical records. In the context of cli-
mate change, growing extreme weather events (e.g., severe
storms and snowfalls) have been witnessed in different pla-
ces over the world. Most of the extreme events are unseen
in recent history and may lead to large losses. Extrapolating
certain high values becomes more imperative to meet cli-
mate change-induced risks faced by hydrologic design and
planning.

5.5. Difference in Reproducing Lag-1 Autocorrelation
of Rainfall Amounts

[76] The comparison of historical and simulated lag-1
autocorrelation of rainfall amounts, the corresponding
upper tail dependence, and rainfall event volumes by TPM
and SMC-K is shown in Figure 22. Recalling what have
been observed in Figure 12 and comparing them with Fig-
ure 22, three major points can be inferred: (1) all the three
models closely reproduced lag-1 autocorrelation of rainfall
amounts; however, BMC-H preserved seasonal cycles of
autocorrelation slightly better than the other two models;
(2) the 2- and 3-day rainfall event volumes were slightly
better reproduced by BMC-H, whereas the 4-day rainfall
event volume was preserved reasonably well by the three
models; and (3) the upper tail dependence of rainfall
extremes was somewhat more likely to be underestimated
throughout the year by TPM than by BMC-H and SMC-K.

Figure 22. Box plots of (top) Kendall’s � correlation coefficient, (middle) 2-, 3-, and 4-day rainfall
event volumes, and (bottom) upper tail dependence coefficient of observations and simulations from
(left) TPM and (right) SMC-K, respectively. Orange rectangulars with blue filled denote observed
values.
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The first point seems to be different from the conclusion
obtained by Srikanthan et al. [2005], stating that TPM does
not perform as well as SMC-K in preserving autocorrela-
tion of rainfall amounts. This may be due to the relatively
higher autocorrelations of their rainfall records (approxi-
mately ranged from 0.2 to 0.4). The TPM model is not ex-
plicitly structured for reproducing autocorrelation of
rainfall amounts. In situations where the autocorrelation is
small, TPM provides a decent performance. When the auto-
correlation is high, the performance of TPM will deterio-
rate and the advantage of BMC-H and SMC-K will be
apparent. Point 2 supports our previous suspicion that the
assumed Markovian first-order dependence is adequate for
the rainfall amount process under consideration. It is inter-
esting to note that although the averaged behavior of upper
tail dependence simulated by BMC-H and SMC-K were
similar, the former presented much clearer seasonal cycles
than the latter. The above three points highlight the value
of BMC-H in representing central as well as upper tail
dependencies of daily rainfall amounts.

6. Conclusions

[77] Based on the work by Shimizu [1993], Herr and
Krzysztofowicz [2005], and Serinaldi [2008, 2009a, 2009b],
we present an improved bivariate mixed distribution, which
is useful for pairwise daily rainfall analysis. The improved
distribution is more flexible in modeling various depend-
ence structures and is capable of modeling the entire range
of rainfall when it is heavy-tail distributed. Several prob-
lems involved in hydrology can be addressed with the aid
of this bivariate distribution, for example, daily rainfall
simulation, radar rainfall bias correction [Smith et al.,
2012], uncertainty estimation of satellite rainfall [Gebremi-
chael et al., 2011], and so forth.

[78] Among several recognized applications of the
improved distribution, particularly presented here is its util-
ity for single-site daily rainfall simulation. A stochastic
daily rainfall generator is developed, which generalizes
daily rainfall as a Markov process with autocorrelation
described by the improved bivariate mixed distribution.
Instead of breaking down rainfall occurrence simulation
and amount simulation separately, the developed generator
unifies them and thus autocorrelation of daily rainfall is
automatically accounted for. The developed generator is
first tested on a sample station in Texas. The results reveal
that the simulated and observed sequences are in good
agreement with respect to essential characteristics. To effi-
ciently appreciate the advantage of the developed generator
in reproducing characteristics related to extreme rainfall
and the lag-1 autocorrelation of rainfall amounts, we com-
pared it with two benchmark models (BMC-G and
CMC-H).

[79] In addition, extensive simulation experiments are
carried out to compare it with two other relatively advanced
alternate models: the TPM model and the semiparametric
Markov chain model with parametric Markov chain for
rainfall occurrences and nonparametric KDE for rainfall
amounts (SMC-K). The results show that (1) when com-
pared with TPM and SMC-K, the developed generator is
apt at reproducing the central and upper tail dependencies
of rainfall amounts of two consecutive wet days; (2) the

developed generator performs best in simulating maximum
daily rainfall amount in the sense that it can reasonably
extrapolate unseen rare rainfall values significantly beyond
the upper range of available observed data; (3) with regard
to reproducing the entire distribution of rainfall amounts
and the distributions of rainfall extremes such as annual
maxima and peaks over threshold, there is no clear-cut dif-
ference between the developed generator and SMC-K
except that the former is more apt at providing diverse rain-
fall realization scenarios and risk scenarios. Another inter-
esting observation found in this research is that to reduce
the amount of overdispersion, preserving lag-1 autocorrela-
tion is relatively less important than preserving extreme
rainfall characteristics.

[80] It is realized that the improved bivariate mixed dis-
tribution bears similarities with the error model for satellite
rainfall of Gebremichael et al. [2011]. With the given satel-
lite rainfall estimates, they developed two separate condi-
tional distributions of ground observations: one for when
satellite estimates are zero and another one for positive val-
ues. This bivariate mixed distribution combines both
instances. It is therefore not hard to modify the presented
generator for obtaining the ensemble estimates (or distribu-
tion) of ground rainfall observations with the given satellite
estimates. Nevertheless, it is important to note that in this
situation, the model should be calibrated and validated
before putting it into application. Actually, the developed
generator is applicable not only for rainfall simulation but
also for streamflow simulation, especially it is suitable for
stations located in arid or semiarid regions, where zero
observations are not uncommon. When all observations are
nonzero, the generator developed here reduces to a model
similar to the one proposed by Lee and Salas [2011] and
Hao and Singh [2012].

Appendix A: Derivation of the Type II Conditional
Distribution

[81] As a note, derivations in this appendix make sub-
stantial use of the work of Herr [1999] and Zhang and
Singh [2007].

A1. Case 1: X ¼ x and X ¼ 0

[82] Applying the definition of conditional probability
yields the following equation:

�Y jX¼0 yjX ¼ 0ð Þ ¼ P Y � y; X ¼ 0ð Þ=P X ¼ 0ð Þ: (A1)

[83] The denominator of equation (A1) is

P X ¼ 0ð Þ ¼ P X ¼ 0; Y ¼ 0ð Þ þ P X ¼ 0; Y > 0ð Þ ¼ p00 þ p01;

(A2)

and the numerator is

P Y � y;X ¼ 0ð Þ ¼ P Y ¼ 0;X ¼ 0ð ÞP Y � yjY ¼ 0;X ¼ 0ð Þ
þP Y > 0;X ¼ 0ð ÞP Y � yjY > 0;X ¼ 0ð Þ ¼ p00 þ p01HY yð Þ:

(A3)

[84] Substituting the denominator and numerator back
into equation (A1) yields the following equation:
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�Y jX¼0 yjX ¼ 0ð Þ ¼ p00 þ p01HY yð Þð Þ= p00 þ p01ð Þ: (A4)

A2. Case 2: X ¼ x and X > 0

[85] Similarly, applying the definition of conditional
probability leads to the following equation:

�Y jX¼x yjX ¼ x;X > 0ð Þ ¼ � x; yjX > 0; Y � 0ð Þ=�X xjX > 0ð Þ:
(A5)

[86] Marginalizing Y out from equation (2) results in the
following equation:

�X xjX � 0ð Þ ¼
Z
� x; yð Þdy

¼ p00� xð Þ þ p10hX xð Þ þ p01� xð Þ þ p11f xð Þ: (A6)

[87] From equation (A6), it is apparent to obtain the de-
nominator of equation (A5) as follows:

�X xjX > 0ð Þ ¼ p10hX xð Þ þ p11f xð Þ: (A7)

[88] Rewrite the numerator of equation (A5) as follows:

� x; yjX > 0; Y � 0ð Þ ¼ p10� yð ÞhX xð Þ þ p11h x; yð Þ: (A8)

[89] Rewrite h(x, y) in equation (A8) as follows:

h x; yð Þ ¼ f xð ÞhY jX yjX ¼ x;X > 0; Y > 0ð Þ: (A9)

[90] Substituting equations (A7), (A8) and (A9) into
equation (A5) yields the PDF of Y given X ¼ x and X > 0
as follows:

�Y jX¼x yjX ¼ x;X > 0ð Þ ¼
p10� yð ÞhX xð Þ þ p11f xð ÞhY jX yjX ¼ x;X > 0; Y > 0ð Þ

p10hX xð Þ þ p11f xð Þ :
(A10)

[91] Integrating equation (A10) yields the corresponding
CDF as follows:

�Y jX¼x yjX ¼ x;X > 0ð Þ ¼
p10hX xð Þ þ p11f xð ÞHY jX yjX ¼ x;X > 0; Y > 0ð Þ

p10hX xð Þ þ p11f xð Þ :
(A11)

[92] After applying the copula theory, HY jX yjX ¼ x;ð
X > 0; Y > 0Þ in equation (A11) can be expressed by
equation (10). Substituting equation (10) into equation
(A11) yields the following equation :

�Y jX¼x yjX ¼ x;X > 0ð Þ ¼ p10hX xð Þ þ p11f xð Þc1 F xð Þ;G yð Þð Þ
p10hX xð Þ þ p11f xð Þ :

(A12)

Appendix B: TPM Generator

[93] The TPM model used herein follows the work of
Haan et al. [1976] and Srikanthan and McMahon [1985],

with slight modifications: (1) use 0.3 mm rather than
0.1 mm as the significant rainfall threshold; (2) adjust the
number of states for each month such that there are enough
data for the last state; and (3) accommodate the boundary
problem caused by the changing number of states.

[94] The states partition of the TPM model is given in
Table B1. Alternations from state i to j are determined by
the estimated TPM P whose elements are pij, where i,
j ¼ 1, 2, . . . , c, and c is the maximum number of states.
The uniform distribution is used for rainfall amounts of wet
states except the last for which a shifted gamma distribu-
tion is used.

[95] Due to the relatively short historical records avail-
able for this study, parameter estimates with reliable accu-
racy, when assuming seven states for all months, might not
be obtained. We therefore adjusted the number of states
such that for each month there were at least 80 observations
for the last state. However, this may cause a boundary
problem. For instance, suppose there are five states in June
and three states in July and suppose the simulated state for
last day of June happens to be 5, then for the first day of
July, the simulation algorithm will crash. To avoid this
problem, we arbitrarily assume a dummy state as the last
state of the current month to aid the simulation of state for
the first day of the month.

[96] Software for the TPM model described in Srikan-
than et al. [2005] can be freely available at http://toolkit.
ewater.com.au/Tools/SCL. It must, however, be noted that
the TPM model implemented in the present research is
somewhat different from the one in Srikanthan et al.
[2005]. To avoid misleading due to different results from
different models, we provide the computational procedure
in MATLAB for interested readers.

Appendix C: Semiparametric Markov Chain
Generator With KDE for Rainfall Amounts

[97] The simulation model described in this appendix
mainly follows the work of Harrold et al. [2003b]. Major
differences are as follows: (1) instead of the nonparametric
model of Harrold et al. [2003a], we used the conventional
two-state Markov chain model for the simulation of rainfall
occurrences; (2) instead of dividing wet days into four
classes, we divided them into two classes conditionally on
the previous day is wet or dry; (3) instead of using 31-day
moving window to accommodate rainfall seasonality, we
assumed that rainfall is stationary within months; (4) we
applied the least-squares cross-validation (LSCV) method
suggested by Sharma et al. [1997] to obtain the optimal
kernel smoothing parameter rather than the adjusted band-
width derived from a trial and error procedure; (5) to avoid

Table B1. State Partition of TPM Model Used in This Research

State Number Intermediate State (mm) Last State (mm)

1 [0, 0.3)
2 [0.3, 0.9) [0.3,1)
3 [0.9, 2.9) [0.9,1)
4 [2.3, 6.9) [2.9,1)
5 [6.9, 14.9) [6.9,1)
6 [14.9, 30.9) [14.9,1)
7 [30.9,1)
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generating values smaller than 0.3 mm, we repeated the
random sampling until a reasonable value was obtained
rather than using ‘‘variable kernel,’’ which will lead to bias
in the density estimate [Silmonoff, 1996; Salas and Lee,
2010].

[98] Suppose a synthetic rainfall occurrence sequence
has been generated from a two-state Markov chain model,
for the ease of explanation, we assume that the day whose
amount to be simulated is in month m, then the simulation
can be split into two cases.

C1. Class 1: The Previous Day Is Dry

[99] A univariate kernel density is used for rainfall
amounts of class 1 as follows:

f̂ xð Þ ¼
Xn1

i¼1

N x� x ið Þð Þ=hð Þ=n1h; (C1)

where n1 is the number of observations x(i) in class 1
within month m ; h is the kernel bandwidth, which is deter-
mined by LSCV; and N(�) is the PDF of the standard Gaus-
sian distribution. To simulate rainfall amounts of this class,
(1) first pick an x0 value from x(i) (i ¼ 1, 2, . . . , n1) with
equal probability; (2) then perturb this value by drawing a
random variate from a Gaussian distribution with mean x0

and variance h2; and (3) repeat the perturbation until a
value no less than 0.3 mm is obtained and assign it as the
simulated amount.

C2. Class 2: The Previous Day Is Wet

[100] Suppose the simulated amount of previous day is
xg

t�1, then a conditional kernel density is used to approxi-
mate the distribution of rainfall amount xt of current day
conditioning on xg

t�1

f̂ xtjxg
t�1

� �
¼
Xn2

i¼1

w ið ÞN xt; b ið Þ; �2S
0

� �
; (C2)

where

w ið Þ ¼ N xg
t�1; xt�1 ið Þ; �2St�1

� �
=
Xn2

j¼1

N xg
t�1; xt�1 jð Þ; �2St�1

� �
;

b ið Þ ¼ xt ið Þ þ xg
t�1 � xt�1 ið Þ

� �
St�1;t=St�1;

S
0 ¼ St � S2

t�1;t=St�1;

n2 is the number of observed pairs [xt�1(i), xt(i)] in class 2
within month m ; � is the optimal kernel smoothing factor
determined by LSCV; N(� ; �, �) is the PDF of a Gaussian
distribution with mean � and variance � ; St�1 and St are
the sample variance of xt�1(i) and xt(i) (i ¼ 1, 2, . . . , n2),
respectively; and St�1,t is the sample covariance between
xt�1(i) and xt(i). To simulate rainfall amounts of this class,
(1) first pick an [x

0
t�1, x

0
t] vector from [xt�1(i), xt�1(i)]

(i ¼ 1, 2, . . . , n2) with probability w(i) ; (2) then compute
b0 with xt�1(i) and xt(i) in b(i) replaced by x

0
t�1 and x

0
t,

respectively; (3) sample a random variate from a Gaussian
distribution with mean b0 and variance �2S0 ; and (4) repeat

sampling until a value no less than 0.3 mm is obtained and
assign it as the simulated amount.
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