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Introduction 

Distinguishing naturally- from anthropogenically-induced variability of the seabed is very difficult, as the range 

of natural variation is hard to quantify. Mostly, variations are described locally, using in-situ depth data (e.g., 

Van Lancker and Jacobs, 2000; Lanckneus et al., 2002; Degrendele et al., 2010; Roche et al., this volume), or are 

derived from newly acquired current and turbidity data. Still, in many cases the regional context is missing, and 

sound interpretations on the driving forces are not possible. Nevertheless the quantification of both naturally 

and man-made changes are needed for the definition of acceptable thresholds for alterations to the seabed 

(e.g., aggregate extraction, Van Lancker et al., this volume). Also, to assess the recovery potential of impacted 

areas after extraction, a critical parameter within Europe’s Marine Strategy Framework Directive (MSFD), 

natural system variability needs to be quantified. This can be approached through statistical analyses of long-

term databases on seabed evolution (cf. Dalyander et al. 2013). For the Belgian part of the North Sea, a 12-year 

long hindcast (1999-2010) on the main sediment transport parameters (i.e., bottom stress, bottom geometry, 

total load and bottom evolution) was therefore produced (Francken et al., 2014) and has now been expanded, 

and applied to case studies for validation. 

In this case study we evaluate the natural variability of the total load sediment transport from a long-term 

database, as it directly impacts the bottom morphology. 

 

Material and methods 

Model data 

Results from a subset (2012-2014) of the 16-year long hindcast (1999-2016) were used to assess the variability 

of sediment transport in the Hinder Banks. Purpose was to provide regional context to sediment processes in 

the monitoring area HBMC, being a subarea of the aggregate sector 4C (see Roche et al., this volume).   

Wave hindcasts for the period were obtained using the Simulating Waves Nearshore (SWAN) wave model 

(Holthuijsen et al., 1993; Booij et al., 1999), a third generation phase-averaged wave model, suited for 

modelling waves in shallow water. The model calculates in time and space, the generation of waves, their 

propagation and shoaling, non-linear wave-wave interactions (quadruplets and triads), white-capping, bottom 

friction and depth-induced wave breaking. The wave model was coupled with the results from a hydrodynamic 

model, to account for current refraction and for the influence of the changing water depth on the waves. The 

model runs on a grid resolution of about 750 m x 750 m. The boundaries for the wave model were obtained 

from two larger scale WAM models (WAMDIG, 1988) covering the entire North Sea. Detailed information on 

the wave modelling can be found in Fernández (2011) and Van Lancker et al. (2012). The currents and water 

elevations were obtained from two-dimensional hydrodynamic models (Ozer et al., 1996; Yu et al., 1990). A 

finer resolution model, using the same grid as the wave model, was set up for the Belgian Part of the North 
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Sea, which was coupled with a lower resolution model for the entire West-European Continental Shelf. 

Atmospheric data (wind speed at 10 m height above sea level), were obtained from the United Kingdom 

Meteorological Office.  

Currents and waves were used by the sediment transport model MU-SEDIM (Van den Eynde et al., 2010), 

calculating the total load, under the influence of the local hydrodynamic conditions. The MU-SEDIM model was 

improved in the framework of this project to include a more time effective method for calculating the 

combined wave-current bottom stresses, using the method of Soulsby and Clarke (2005). A new 

implementation for the calculation of the bottom geometry (ripple height and ripple length), which is 

important for the calculation of the total bottom roughness (including skin bottom roughness, bottom 

roughness from bedload and form bottom roughness), was executed based on Soulsby and Whitehouse (2005). 

The model calculates the current and wave generated ripples and takes into account their time evolution. The 

total load is then calculated using the Ackers-White formulae (Ackers and White, 1973), adapted for waves by 

Swart (1976, 1977). Model output resulted in 30 minutes time step sediment transport parameters (bottom 

stress, bottom geometry, total load and bottom evolution) on a 750 m grid resolution. 

Statistical analysis 

Yearly averages of the X and Y vectors of the total load were calculated at every grid node. The same routine 

was also used for every season, i.e., winter (January-March), spring (April-June), summer (July-September) and 

autumn (October-December), but is adaptable to cover any desired period. See Francken et al. (2014) for more 

details on the analysis. 

Results and discussion 

The results from the yearly averaging of the total load in the HBMC area are presented in Figure 1. 

Comparing the mean transport in 2012, 2013 and 2014 (Figure 1) it is clear that the depth-averaged sediment is 

mostly NE-directed. Most striking is the magnitude of transport along the SE flank of the Westhinder sandbank, 

but also the local variation in the Hinder Banks region. In the northern part of the study area, the general 

transport direction is mainly SW-directed, except for 2014 where the mean transport was near zero. In this 

year, NE-directed transport dominated on average over the whole area. 

To investigate the underlying reasons for this distinct year-to-year variability in total load sediment transport, 

all data was regrouped into seasonal averages and cross-related to atmospheric data coming from the 

measuring pile at the Westhinder Bank (MOW7) (Meetnet Vlaamse Banken, Agentschap Maritieme 

Dienstverlening en Kust). Averaged wind speed at 10m above the sea surface and averaged wind direction 

were combined in wind roses and compared to the total load sediment transport in the Figures 2 to 5. 

Figures 2 and 3 show for 2013 overall predominant winds blowing from the SW and less frequent and less 

strong winds blowing from the NE, which is a normal regime for the Belgian part of the North Sea (Meetnet 

Vlaamse Banken). However, in winter, winds were predominantly blowing from the NE sector and were much 

stronger than in spring and summer. They were often equally strong than the SW winds that occurred less 

frequent. This had a clear effect on the total load. In the northern part of the area, as well along the deeper 

southern part of the Oosthinder sandbank, the mean transport was directed S to SW. In autumn, SW sector 

winds were predominant, but showed a large spread. Almost no wind came from the NE sector. This resulted in 

a predominant SW to NE oriented total load transport. 

The next two figures (Figs. 4 and 5) show the wind roses and averaged total load sediment transport for the 

four seasons of 2014. 
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Figure 1: Yearly (2012-2013-2014) averaged direction of the total load sediment transport in the region of the Hinder Banks. HBMC area is shown in red. 
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Figure 2: Seasonal averaged total load sediment transport and wind roses for winter and spring 2013. 
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Figure 3: Seasonal averaged total load sediment transport and wind roses for summer and autumn (fall) 2013. 
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Figure 4: Seasonal averaged total load sediment transport and wind roses for winter and spring 2014. 
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Figure 5: Seasonal averaged total load sediment transport and wind roses for summer and autumn (fall) 2014. 
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Figure 4 shows the winter of 2014 characterised by strong and very frequent winds blowing from the W and 

SW sector. Almost no wind originated from the N or the NE. The effect on the average total load transport 

direction is obvious. The global transport over the entire study area was SW-NE oriented. Spring and summer 

showed comparable patterns as in 2013. Both winds from the SW and NE sectors, giving rise to the same 

transport patterns as the previous year. Autumn 2014 again showed winds predominantly blowing from the W 

and SW sector, showing strong winds and wide spread. 

It is clear that the winter of 2014 differed from the one of 2013. Model results show a distinct overall transport 

from the SW to the NE, which is at least partly explained by the meteorological conditions at that time. For the 

validation of the model results, measurements were sought on the depth and morphological evolution in the 

area. To this end FPS Economy, Continental Shelf Service provided a set of monitoring data (multibeam 

datasets) of the HBMC area on a 1m by 1m grid, for the years 2012 – 2014, each year containing two datasets.   

In the SW part of the monitoring area a 2D profile was selected for the analysis of the morphological evolution 

(Figure 6).  

 
Figure 6: Digital elevation model of the HBMC area in 2012. Superimposed (south) is a profile along which depth 

data were extracted for comparison in time. Data courtesy FPS Economy, Continental Shelf Service. 

Depth (m) 
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Figure 7: 2D profiles extracted from the digital elevation model time series. Dark blue and orange are profiles in 

2012, yellow and purple in 2013, green and light blue in 2014. 

Figure 7 shows the time series of the selected 2D profile. The dunes at the beginning of the profile (deeper 

water parts) show a yearly progressive migration. Most striking is the migration of the very large dune at the 

NE extremity of the profile, being located nearest to the top of the sandbank. The position of the dune was 

quasi stable in the years 2012 and 2013, but clearly a large bedform migration occurred at the end of 2013, 

beginning 2014 (winter 2014). In a period of several months, the top of the dune shifted for 80m in a NE 

direction and reduced in height. This testifies that also in the offshore area, dunes have dynamic behaviours 

and respond to changing hydro-meteorological conditions.    

 

Conclusions 

The previously created on-demand queryable sediment transport database (spanning 1999 – 2010) was 

expanded with four more years (2011 – 2014). From this, a subset (2012 – 2014) was selected to study 

variations in the total load sediment transport in the hinder Banks region. At first sight aberrant model output 

could at least be partially explained by deviant atmospheric conditions and the effects were validated by time 

series of a digital terrain model of the HBMC monitoring area in the aggregate sector 4C. Future applications 

are wide-spread and can include the estimation of the regeneration or recovery potential of the seabed, based 

on the natural deposition character of the area. It will also provide insight into the areas that are naturally 

more erosive, hence more vulnerable to the impact of human activities. With direct relevance to Europe’s 

Marine Strategy Framework Directive, future work will concentrate also on the development of envelopes of 

natural variability, critical to distinguish naturally- versus anthropogenically-induced sediment dynamics. 
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