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Dank je wel!  

De allerlaatste woorden die geschreven worden voor deze thesis zijn waarschijnlijk de eerste 

die gelezen worden door velen. Ongeveer vier jaar geleden startte ik mijn doctoraat bij het 

ILVO. Met volle moed begon ik aan mijn avontuur. Het ging niet altijd even vlot en ik kan eerlijk 

bekennen dat meerdere grenzen verlegd zijn. Vooral de combinatie van twee onderwerpen 

bleek niet altijd evident en kostte me meer dan eens bloed, zweet en tranen. Daarentegen 

bracht het ook vele opportuniteiten. De enige dag kon ik aan het wroeten zijn in de serre, 

terwijl ik de dag erop op de Simon Stevin sprong (en dit mag letterlijk worden genomen!) om 

plastic uit zee te vissen. Ja, het was me wel het avontuur… 

Natuurlijk zou dit allemaal niet mogelijk geweest zijn zonder de hulp van een aantal geweldige 

mensen. In de eerste plaats, mijn promotoren: Prof. Peter Dawyndt, dr. Martine Maes en 

natuurlijk Lisa Devriese. Dank je wel om vier jaar geleden het vertrouwen te hebben om mij 

dit onderzoek toe te wijzen, me steeds in de juiste richting te duwen als ik het Noorden even 

kwijt was, maar ook voor de gezellige babbels op de bureau.  

Daarnaast had ik ook een geweldige begeleidster voor mijn rhizosfeer luik. Jane, ik zal nooit 

het moment vergeten in januari 2017 toen ik in halve paniek je bureau binnenliep over een 

hoofdstuk rond biochar. Jij bleef rustig en je woorden: “No panic, biochar is my middle name” 

zullen steeds in mijn geheugen gegrift staan. Bedankt om er al die jaren voor mij te zijn! Ik kan 

eerlijk zeggen dat ik me dankzij jou meteen thuis voelde op het ILVO.  

Daarbij wil ik ook Lisa nog eens bedanken, want naast promotor ben je ook de eerste twee 

jaar mijn begeleidster geweest. Van wilde plannen voor ons blootstellingsexperiment 

(herinner: we gooien een hondenbench met plastic in het water) tot onze broodjes lunch over 

de middag, het was een mooie tijd! 

Ook had ik twee fantastische laboranten (mijn persoonlijke superman en superwoman) en een 

supertechnieker aan mijn zijde. Als ik in Oostende aan het knoeien was met touwen te knopen, 

stond Pieter mijn aardbeiplantjes water te geven. In het prille begin heeft hij me wegwijs 

moeten maken in het labo in Merelbeke en ondanks dat ik de eerste keer mijn DNA extractie 

in de mist liet lopen (wie had er gedacht dat je buisje 2 en 3 niet mocht wisselen met elkaar), 

bleef hij altijd rustig. Pieter, ons geknoei met de potgrond en de rhizosfeer zullen niet snel uit 

mijn geheugen gebannen worden! Bedankt om er steeds te zijn.  

Op deze momenten dat het tijd was om de rhizosfeer stalen te verzamelen in Merelbeke, kon 

ik rekenen op Sara om mijn plastic stalen te verzamelen en in weer in wind op zee te trekken. 

Sara, je bent een superlaborante en ik hoop ooit net zo zelfverzekerd in het labo te staan. Lang 

leve onze gezellige momenten in de keuken van de Simon Stevin en het heen en weer geklots 

op de zodiac. 
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Het blootstellingsexperiment op zee had er niet geweest zonder 1 specifieke persoon: Kevin. 

Je hebt er wel heel wat blaren, kneuzen en gezaag van mij voor moeten doorstaan (“is het nu 

nog niet klaar Kevin…”), dankzij jouw handige vingers zijn die constructies toch in zee geraakt!  

Ook nog een speciaal bedankje aan de mensen van het Genomics team die me steeds 

ondersteunden en meer specifiek onze twee specialisten: Annelies en Tom. Jullie mailbox 

werd soms bestookt met honderden vragen, maar dankzij jullie hulp ben ik niet alleen beter 

geworden in programmeren, maar ook in me te verdedigen (probeer het maar eens te winnen 

van een (soms relatief koppige) hollander…).  

Daarnaast wil ik uiteraard al mijn ILVO collega’s bedanken voor de gezellige tijd, de toffe 

babbels tijdens het eten, de vele leuke uitstapjes (frituur, een amadeuske, etc.). Vooral de cx-

namiddagen met de sportieve mensen van P96 zullen me lang bijblijven. Met uitzondering van 

1 persoon ga ik verder niemand bij naam noemen (want ik zou het niet over mijn hart krijgen 

dat ik iemand vergeet), maar mijn bureau-, cx- en gezellig-moment-babbel genootje Inge kan 

ik toch niet overschieten. In de laatste maanden ben je zeker een rots in de branding geweest 

op het ILVO. Je hebt me geleerd om rustig te blijven, mijn oneindige verhalen van de trouw en 

de bouw doorstaan en me soms vanachter mijn computer gehaald om te gaan wokken! 

Gewoon een super collega en vriendin. 

Mijn vrienden en familie kan ik uiteraard ook niet vergeten. Ze boden niet alleen mentale 

steun tijdens de periode, maar zelfs praktische (wat azobé hout van nonkel Rudi en tante 

Carin, hulp van mijn broer voor de constructies uit te tekenen, Clara met haar geweldige 

tekentalent). Vooral mijn ouders en mijn fantastische broer Steven wil ik bedanken. Zij zijn er 

al die jaren voor mij geweest en hebben me steeds gesteund in alles wat ik doe. Steven, er 

werd soms wat over- en weer geplaagd, maar uit de grond van mijn hart, je bent en blijft de 

beste broer ter wereld! Mama en papa, nog eens extra bedankt voor jullie. Papa mijn 

doorzettingsvermogen heb ik helemaal aan jou te danken.  Mama, bedankt dat je geregeld 

bijsprong in het huishouden de laatste maanden.  

En dan als laatste, Jeroen, ondertussen mijn man (wat doet dat raar om te zeggen). Schat, het 

was een helse maand voor ons. Een huis bouwen, een trouw op poten zetten en dan kwam 

die doctoraatsverdediging er nog bij. Meer dan eens kwam je toe in een niet opgeruimd huis, 

moest je zelf je potje nog opwarmen na een harde dag werk op de bouw, maar niet één keer 

heb je geklaagd. Ik beloof je dat ik er vanaf nu meer zal zijn en kijk er enorm naar uit om aan 

ons getrouwd leven samen te beginnen. Want dankzij jouw steun en stevige schouder om af 

en toe eens op te huilen (het waren écht zware maanden) ga ik nu niet alleen door het leven 

als “mevrouw De Visscher”, maar kan ik me binnenkort ook met enige trots “Doctor” noemen. 



V 
 

CONTENTS 

LIST OF ACRONYMS AND ABBREVIATIONS .................................................................................. VII 

Summary .................................................................................................................................... IX 

Samenvatting ............................................................................................................................ XIII 

Preface ..................................................................................................................................... XIX 

Chapter 1 General introduction .................................................................................................... 1 

1.1 ENVIRONMENTAL MICROBIOLOGY ............................................................................................... 3 

1.2 ENVIRONMENT 1: THE RHIZOSPHERE ......................................................................................... 11 

1.3 ENVIRONMENT 2: THE PLASTISPHERE ........................................................................................ 20 

Problem statement and thesis outline ........................................................................................ 27 

Part I THE RHIZOSPHERE ............................................................................................................... 33 

Chapter 2 Rhizosphere microbiome in response to biochar .......................................................... 35 

2.1 MATERIALS AND METHODS......................................................................................................... 39 

2.2 RESULTS ....................................................................................................................................... 50 

2.3 DISCUSSION AND CONCLUSIONS ................................................................................................ 58 

Chapter 3 Dynamics of the rhizosphere microbiome in response to biochar ................................. 67 

3.1 MATERIALS AND METHODS......................................................................................................... 71 

3.2 RESULTS ....................................................................................................................................... 77 

3.3 DISCUSSION AND CONCLUSIONS ................................................................................................ 89 

Chapter 4 Rhizosphere microbiome in response to chitin ............................................................. 95 

4.1 MATERIALS AND METHODS......................................................................................................... 99 

4.2 RESULTS ..................................................................................................................................... 107 

4.3 DISCUSSION AND CONCLUSIONS .............................................................................................. 118 

Part II THE PLASTISPHERE .......................................................................................................... 127 

Chapter 5 Bacterial community profiling of marine plastic debris................................................ 129 

5.1 MATERIALS AND METHODS....................................................................................................... 133 

5.2 RESULTS ..................................................................................................................................... 140 

5.3 DISCUSSION AND CONCLUSIONS .............................................................................................. 151 

 



VI 
 

Chapter 6 Microbial biofilm dynamics of the plastisphere ........................................................... 165 

6.1 MATERIALS AND METHODS....................................................................................................... 169 

6.2 RESULTS ..................................................................................................................................... 174 

6.3 DISCUSSION AND CONCLUSIONS .............................................................................................. 186 

Chapter 7 General discussion and future perspectives .................................................................... 195 

7.1 HIGH THROUGHPUT SEQUENCING ............................................................................................ 198 

7.2 THE RHIZOSPHERE IN RELATION TO PLANT GROWTH, PLANT HEALTH & INTERACTION TO 

HUMAN PATHOGENS ...................................................................................................................... 203 

7.3 THE PLASTISPHERE: PLASTIC AS A SUBSTRATE FOR MICROBIAL ATTACHMENT ....................... 212 

References ................................................................................................................................ 221 

Curriculum Vitae ....................................................................................................................... 249 



VII 
 

LIST OF ACRONYMS AND ABBREVIATIONS 
 

AL  Ammonium Lactate 

ANOVA Analysis of Variance 

AUDPC  Area under the disease progress curve 

bp  base pairs 

BP  Beach pellets 

BC  Biochar 

BLAST  Basic local alignment search tool 

CEN  Committee for standardization 

CFU  Colony forming unit 

CHOS  Chito-oligosaccharides  

dai  days after inoculation 

DGGE  Denaturing Gradient Gel Electrophoresis 

DM  Dry matter 

DNA  Deoxyribonucleic acid 

DNA-SIP DNA stable isotope probing 

EC  Electrical conductivity 

FAME  Fatty acid methyl ester 

FDR  False discovery rate 

FT-IR  Fourier-transformed infrared spectra 

GlcNAc  N-acetylglucosamine 

GO  Gene ontology 

HAB  Harmful algal bloom 

HDPE  High-density polyethylene  

HTS  High-throughput sequencing 

ICP-OES Inductively coupled plasma optical emission spectrometry 

ISO  International organization for standardization 

ISR  Induced systemic resistance 

ITS  Internal transcribed spacer 

LDPE  Low-density polyethylene 

MAMP  Microbe-associated-molecular pattern 

MANOVA Multivariate Analysis of Variance 

MPL  Marine plastic litter 

mRNA  messenger ribonucleic acid 

nMDS  non-Metric Multidimensional Scaling 

OD  Optical density 

OTU  Operational Taxonomic Unit 

PAMP  Pathogen-associated-molecular pattern 

PB  Phthalo blue  

PBS  Phosphate buffered saline 



VIII 
 

PCoA  Principal Coordinate Analysis 

PCR  Polymerase Chain Reaction 

PDA  Potato dextrose agar 

PERMANOVA Permutational Multivariate Analysis of Variance 

PE  Polyethylene 

PET  Polyethylene terephthalate 

PGP  Plant growth promotion 

PGPF  Plant growth promoting fungi 

PGPR  Plant growth promoting rhizobacteria  

PLFA  Phospholipid fatty acid  

PP  Polypropylene 

PS  Polystyrene 

PVC  Polyvinyl chloride 

RLP   Receptor-like protein 

RNA  Ribonucleic acid 

rRNA  ribosomal RNA 

RT-qPCR quantitative reverse transcription PCR 

SD  Spinoladijk 

SEM  Scanning electron microscopy 

STAMP  Statistical analysis of metagenomic profiles 

TOC  Total organic carbon 

T-RFLP  Terminal Restriction Fragment Length Polymorphism 

TSA  Tryptone soya agar 

VAMPS Visual analysis of microbial population structure 

WFPS  water-filled pore space



 
 

Summary 



 
 



Summary 

 

XI 
 

In this thesis, high-throughput sequencing methods were used to study microbial 

communities in two environments: the plant’s rhizosphere and on plastic debris.  

To prevent plant diseases and maintain a good crop productivity, crop cultivation often relies 

on high pesticide and fertilizer uses. There is a great interest in reducing this high use, and the 

effect of application of specific environment-friendly substrate amendments, such as biochar 

and chitin, to the soil or substrate is studied in this respect. These amendments can have a 

direct effect on the micro-organisms in the rhizosphere, the narrow zone of soil surrounding 

the plant root. This shift in rhizosphere microbiome should be directed towards beneficial 

micro-organisms such as plant-growth promotors and biocontrol agents.  

Micro-organisms in the ocean are less-extensively studied compared to a soil environment. 

Nonetheless they can reach high numbers, especially when they can attach to substrates, and 

perform similar crucial roles as for soil environments. With an expected amount of 8 million 

tons entering our marine ecosystem yearly, the major contaminator of our oceans and seas is 

probably plastic. The microbial colonization of plastic debris in the marine environment, also 

referred to as “the plastisphere”, has been studied since the seventies, but the dynamics of 

this colonization and impact on plastic degradation, the marine ecosystem and animal and 

human health is currently poorly understood. 

In the first part of this thesis, the effect of biochar and chitin on the rhizosphere microbiome 

in relation to crop growth, disease development or survival of human pathogens is studied. 

We showed that in nutrient-limiting conditions, biochar was able to change the 

physicochemical properties of soil and substrates and induced major changes in the bacterial 

composition of strawberry plants, redirecting the rhizosphere community towards a higher 

relative abundance of plant-growth promoters and biocontrol agents. No effect of biochar 

addition to peat was seen on the fungal composition of the strawberry rhizosphere. Both the 

increase in nutrient stock and the shift in bacterial community composition could be related 

to an increase in strawberry crop growth, a higher strawberry yield and an increase in 

resistance towards the fungal pathogen Botrytis cinerea. In addition, this aboveground 

infection also affected the rhizosphere bacterial community. This research indicates that upon 

biochar incorporation in peat, plants recruit rhizosphere bacteria that may help them in their 

defense and plant growth promotion.  
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In contrast, chitin addition to potting soil altered both the bacterial and fungal community 

composition of the lettuce rhizosphere, redirecting the microbiome towards higher 

abundances of chitin-degraders and plant growth promotors. These effects were correlated 

with an increase in lettuce growth and a reduction in the survival of Salmonella enterica on 

the leaves. Especially the consumption of contaminated leafy vegetables, such as lettuce, can  

be problematic for human health and reported to be the cause of S. enterica outbreaks. The 

use of chitin can thus be tested further as an interesting supplementary strategy for 

sustainable control of this zoonotic pathogen in the food chain.  

In the second part of this thesis, the major contributors and dynamics of the bacterial and 

fungal colonization of marine plastic debris located at the seafloor in the Belgian part of the 

North Sea were studied. We showed that environmental properties, plastic-related properties 

and biofilm formation stages are probably the most important factors influencing the bacterial 

colonization on plastic. Dependent on the environment, this bacterial biofilm formation can 

go through progressive temporal stages, reaching a more or less stable community after a few 

months. In addition, we studied for the first time the fungal community on plastic debris, 

which was also quite diverse for different plastics, even when they were located at the same 

site. This microbial colonization could have major influences on the marine ecosystem. We 

showed that compared to seawater and sediment, other bacterial groups were attached on 

plastic, indicating that plastic could serve as a transport vector for micro-organisms to other 

environments. In contrast, the microbial colonization could also be beneficial in terms of 

biodegradation. Despite plastic-degradation has not been shown in this study, a 

Mycobacterium species was identified which is probably able to degrade the pigments of 

beach-located resin pellets, indicating that biodegradation of plastic-related chemicals is 

possible.  

The use of high-throughput sequencing techniques made it possible to give insight in the 

microbial community composition. Here we focussed mainly on taxonomic identification using 

amplicon sequencing, but already a first step was taken towards functional annotations using 

shotgun metagenomics in function of chitinase detection. Future studies should elaborate 

more on this also including e.g. shotgun metagenomics, metatranscriptomics and stable-

isotope probing in order to identify specific biochar-, chitin- and even plastic-metabolizers and 

related functions. 
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Deze thesis beschrijft het gebruik van “high-throughput sequencing” methoden om microbiële 

gemeenschappen te bestuderen in twee omgevingen: de rhizosfeer van de plant en plastic 

afval. 

Het telen van gewassen gaat vaak gepaard met een hoog gebruik van pesticiden en 

meststoffen om ziektes te voorkomen en een goede opbrengst te verkrijgen. Het gebruik van 

milieuvriendelijke substraat additieven zoals biochar en chitine kan daarbij een goed methode 

zijn om het gebruik van pesticiden en meststoffen in de landbouw te verminderen. Zowel 

biochar en chitine zijn in staat om de microbiële gemeenschap van de rhizosfeer, het kleine 

laagje grond die de wortel van de plant omvat, te veranderen in samenstelling. Om een goede 

gewasproductie en gezondheid van de plant te behouden, wordt de microbiële gemeenschap 

van de rhizosfeer daarbij gestuurd naar een hoger aantal plantengroei promotoren en 

biocontrole organismen.  

In tegenstelling tot de bodem zijn de micro-organismen in de oceanen minder intensief 

bestudeerd. Desondanks bereiken ze hoge aantallen in de mariene omgeving, voornamelijk 

wanneer ze zich kunnen vasthechten aan substraten, en voeren ze net als in de bodem 

verscheidene cruciale processen uit. Recent onderzoek wijst uit dat jaarlijks ongeveer 8 

miljoen ton plastic in het marien milieu terecht komt, wat plastic waarschijnlijk de 

belangrijkste vervuiler maakt van onze oceanen en zeeën. De micro-organismen die zich 

vastzetten op dit plastic, ook wel “de plastisfeer” genoemd, worden reeds bestudeerd sinds 

de jaren zeventig. Desondanks blijft de dynamiek van deze microbiële kolonisatie en de impact 

op plastic degradatie, het mariene milieu en de gezondheid van mens en dier grotendeels 

ongekend.   

In het eerste deel van deze dissertatie wordt het effect van biochar en chitine toevoeging aan 

de bodem of substraat op het microbioom van de rhizosfeer in relatie tot plantengroei, ziekte 

ontwikkeling en de overleving van humane pathogenen op de plant bestudeerd. Onder 

nutriënt limiterende omstandigheden bleek biochar in staat om de fysicochemische 

eigenschappen van de bodem en substraten te veranderen. Daarnaast zorgde de toediening 

van biochar voor een wijziging in de bacteriële gemeenschap van de rhizosfeer van aardbei, 

met een verhoogd percentage aan plantengroei promotoren en biocontrole organismen. De 

schimmel gemeenschap van de aardbei rhizosfeer bleef daarentegen ongewijzigd. Biochar 

induceerde ook een groeipromotie van de aardbeiplant, een hogere vruchtopbrengst en een 
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hogere ziekteresistentie van de plant tegen Botrytis cinerea, allen gerelateerd aan het 

verhoogd aantal nutriënten en de wijziging in de bacteriële gemeenschap van de rhizosfeer. 

Ook een bovengrondse infectie met B. cinerea bleek de bacteriële gemeenschap van de 

rhizosfeer op eenzelfde manier te wijzigen in samenstelling. Dit onderzoek toont aan dat de 

toediening van biochar in substraat, de plant stimuleert om bacteriën aan te trekken die de 

plantengroei en ziekteweerbaarheid van de plant bevordert.  

In tegenstelling tot biochar zorgde de toevoeging van chitine aan potgrond voor een wijziging 

in zowel de bacteriële als schimmel gemeenschap van de rhizosfeer van sla, waarbij zowel 

plantengroei promotoren en chitine afbrekers gestimuleerd werden. Deze verschuiving in 

samenstelling van het rhizosfeer microbioom was gecorreleerd met een promotie van de 

slagroei en een reductie in de overleving van Salmonella enterica op de bladeren van de plant. 

Verschillende S. enterica uitbraken zijn gelinkt met de consumptie van bladgroenten, en dus 

kan de consumptie van deze groenten zoals sla gevaarlijk zijn voor de menselijke gezondheid. 

Het gebruik van chitine in potgrond kan dus een interessante strategie zijn om deze uitbraken 

te voorkomen.  

In het tweede deel van deze thesis werd de kolonisatie van plastic afval in het Belgisch deel 

van de Noordzee door bacteriën en schimmels bestudeerd. Omgevingsfactoren, plastic-

gerelateerde factoren en verschillen in biofilm stadia zijn daarbij waarschijnlijk de 

belangrijkste factoren die de bacteriële kolonisatie van plastic afval in het marien milieu 

beïnvloeden. Afhankelijk van de omgeving waaraan de plastic wordt blootgesteld, kan de 

vorming van de bacteriële biofilm verschillende stadia doorlopen. Na enkele maanden van 

blootstelling van de plastic aan het marien milieu kan daarbij een min of meer stabiele 

bacteriële gemeenschap worden bereikt. Ook werd voor de eerste keer de kolonisatie van 

plastic afval door schimmels bestudeerd, die redelijk divers bleek tussen verschillende plastic 

fragmenten, zelfs als de plastic fragmenten op dezelfde plaats gelokaliseerd waren.  

Deze microbiële kolonisatie van plastic kan het mariene ecosysteem op verschillende 

manieren beïnvloeden. Unieke bacteriële groepen, niet aanwezig in het zeewater of sediment, 

werden gevonden op plastic, wat erop wijst dat deze groepen afkomstig zijn uit een ander 

milieu en plastic dus als een transport vector kan dienen voor micro-organismen. De 

aanwezigheid van micro-organismen kan ook voordelig zijn, aangezien ze gekend zijn voor hun 

degradatie capaciteiten. In deze studie werd daarentegen geen biodegradatie van plastic door 
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micro-organismen aangetoond. Daarentegen werd een bacterieel taxon, Mycobacterium sp., 

geïdentificeerd op gekleurde industriële plastic pellets, een taxon die mogelijks pigmenten 

kan afbreken. Dit indiceert dus dat biodegradatie van plastic-gerelateerde chemicaliën 

mogelijk is.  

Het gebruik van high-throughput sequencing technieken maakte het mogelijk om de 

taxonomische samenstelling van microbiële gemeenschappen en hun functioneel potentieel 

in het genoom in twee omgevingen te bestuderen. Daarbij werd voornamelijk gefocust op 

taxonomische identificatie met behulp van amplicon sequencing, maar de eerste stap naar 

functionele annotatie door gebruik te maken van shotgun metagenomics werd al gemaakt 

voor de studie van chitinases. Toekomstig onderzoek naar de microbiële gemeenschappen in 

een bodem of marien milieu zou daarbij gebruik moeten maken van een combinatie van 

technieken, bv. shotgun metagenomics, metatranscriptomics en stable-isotope probing om 

specifieke biochar-, chitine- en plastic-degradeerders en gerelateerde functies te 

identificeren. 
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Preface  

This PhD is part of the Concerted Action ‘Genomics’ 2013-2017, an ILVO funded research 

project aimed at the establishment of the ILVO Genomics Platform and stimulating horizontal 

interaction across the wide spectrum of ILVO’s researchers. In the frame of this platform, high-

throughput DNA sequencing techniques are implemented for the genomic analyses of 

microbial communities and plant and animal (meta-)populations. The heart of the platform 

was formed by four PhD projects, each covering two topics, thus building bridges between 

different research units at ILVO. 

In this PhD the microbial communities and their possible ecological impact are studied in two 

different environments: a terrestrial environment (the plant’s rhizosphere) and a marine 

environment (plastic debris).  

The first part of this thesis, focusses on the rhizosphere microbiome. This environment is  

already well-defined and has been examined intensively. The rhizosphere is the interface 

between the soil and plant and it contains several microbial species that could be beneficial 

for the plant in terms of plant growth and health. In this thesis, we describe how the addition 

of soil and substrate amendments (biochar, chitin), promotes a number of plant-beneficial 

organisms in the rhizosphere microbiome, which can result in the improvement of growth and 

disease resistance of the plant. 

In the second part of the thesis, the microbial colonization of plastic debris located in the 

marine environment has been studied. So far, only a few studies related to the microbial 

colonization of marine-related plastic debris have appeared and this work is still in an 

exploratory phase. Within this thesis, the bacterial and fungal colonization of plastic debris, 

the factors influencing this colonization and the microbial source of this colonization are 

studied in the North Sea environment.  Although the work presented here is still in an 

exploratory phase, it may provide a foundation for future research to establish if microbes 

may play a role in plastic degradation and mitigate effects of plastic pollution. 

To study the microbial communities of these two environments, mainly high-throughput 

sequencing technologies have been used. Especially 16S rRNA gene and ITS2 gene amplicon 

sequencing were implemented, validated, and used to study bacterial and fungal communities 

in both environments. To get a deeper insight in the rhizosphere microbiome, changes in 
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function-related genes have also been studied using whole-genome shotgun sequencing. In 

addition, phospholipid fatty acids analysis (PLFA) has been applied to study changes in the 

microbial biomass induced by the soil and substrate amendments.   



 

 
 

Chapter 1 
General introduction 

Parts of this introduction are published in: 

De Tender C, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA. A review of 

microscopy and comparative molecular-based methods to characterize “Plastisphere” 

communities. Analytical methods 9,2132-2143. 
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1.1 ENVIRONMENTAL MICROBIOLOGY 

The study of micro-organisms in natural or artificial environments is defined as environmental 

microbiology. More precisely, multi-species assemblages and species interactions of the 

microbial community are studied (Konopka, 2009). This microbial community includes all 

species not visible to the naked eye: bacteria, archaea, Protists, and even some members of 

the fungi and algae. Micro-organisms are extensively studied, because they carry out many 

important functions in the ecosystem of the earth, such as decomposition, oxygen production, 

plant symbiosis and contaminant degradation (Cong et al., 2015; Paul, 2015). Especially 

bacteria and archaea are extremely abundant in the biosphere, with an estimated total 

amount of 4 - 6 x 1030 cells. The highest numbers of bacteria and archaea can be found in the 

oceans (1.2 × 1029) and in soils (2.6 × 1029) (Whitman et al., 1998).  

For any natural or artificial ecosystem, three central questions are asked regarding the 

discovery and characterization of microbial communities: (1) what type of micro-organisms 

are present in the environment?; (2) what do these micro-organisms do?; and (3) how do the 

activities of these micro-organisms relate to ecosystem functions (Rastogi and Sani, 2011)? 

Cultivating the micro-organisms in commercial growth media makes it possible to identify 

species by Sanger sequencing (Sanger et al., 1977). However, > 99% of the micro-organisms in 

any environment are not cultivable by standard cultivation techniques (Staley & Konopka, 

1985), by which a major part of the microbial community remains underexplored. With the 

introduction of culture-independent methods, it became possible to explore the “uncultivable 

part” of micro-organisms in the environment.  

The development of new molecular approaches during the 1980s, based on the extraction and 

characterization of DNA from the environment (e.g. water, soil, sediments), revolutionized the 

analysis of microbial communities in the environment (Fox et al., 1980). For the identification 

of bacteria, the 16S ribosomal RNA (rRNA) gene is generally used as molecular marker. The 

16S rRNA gene is highly conserved between different species of bacteria and archaea and 

consists of two region types: the highly conserved sites that contain regions for primer design; 

and the hypervariable regions that can provide species-specific signature sequences useful for 

identification of bacteria (Woese, 1987) (Figure 1.1). Similar to the 16S rRNA gene, the internal 

transcribed spacer (ITS) region is conserved across large groups of fungi, but contains enough 

variation to be phylogenetically informative (Lindahl et al., 2013). For most molecular 

methods, only a part of these phylogenetic marker genes can be used. In a soil environment, 
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the V3-V4 region of the 16S rRNA gene is generally used as it has a high coverage rate in most 

bacterial phyla (Vasileiadis et al., 2012; Klindworth et al., 2013). In case of the ITS region, the 

coverage of ITS1 and ITS2 region over the fungal phyla is comparable (Porras-Alfaro et al., 

2014). 

 

Figure 1.1 Structure of the 16S rRNA gene and internal transcribed spacer (ITS) region of bacteria and fungi 

respectively. A) Structure of the 16S rRNA gene sequence based on those of Escherichia coli (± 1500 bp). B) 

Structure of the ITS region (Modified from Poras-Alfarro et al., 2014). For both panels of the figure, the primer 

combinations used in this PhD dissertation are indicated by arrows.    

The genetic fingerprint techniques Denaturing Gradient Gel Electrophoresis (DGGE) and 

Terminal Restriction Fragment Length Polymorphism (T-RFLP) differentiate between microbial 

species in the environment by amplifying these specific molecular markers in environmental 

DNA and separating individual sequences based on melting properties (GC ratio) or length for 

DGGE and T-RFLP, respectively (Muyzer & Smalla, 1998; Thies, 2007). Fingerprinting 

techniques have the advantage that they are quite fast and that multiple environmental 

samples (10-16) can be analysed simultaneously, which makes comparison between samples 

possible. However, only 1-2%, of the total microbial population of an environment can be 

detected with these techniques, in which especially high abundant organisms will be identified 

(MacNaughton et al., 1999). In addition, T-RFLP fingerprint alone does not allow for conclusive 

taxonomic identification of individual phylotypes, because it is challenging to recover terminal 

fragments for direct sequencing (Dunbar, 2001).   

These limitations were overcome with the introduction of the whole community analysis 

approaches or high-throughput sequencing (HTS) techniques (section 1.1.1). To study the 

microbial community in an environment, HTS approaches can be divided in three groups: (1) 

amplicon sequencing, (2) shotgun metagenomics, and (3) metatranscriptomics. Within this 

PhD project, both amplicon sequencing and shotgun metagenomics will be applied to study 

soil (rhizosphere) and marine (plastisphere) environment related questions, giving insight in 

the microbial community composition and their genomic potential. Metatranscriptomics, 

which is not applied within this thesis, can be used to study the microbial activity, by studying 
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gene expression in specific microbial environments. Especially in soil environments, 

metatranscriptomic approaches have not been widely used, probably due to the instability of 

messenger RNAs (mRNAs) and difficulties in their extraction from complex ecosystems (Lagos 

et al., 2015). In addition, soil microbial communities are quite diverse and there is still a lack 

of representative genomes which complicate the bioinformatics analysis of 

metatranscriptome data (Carvalhais et al., 2013). One of the drawbacks of these HTS 

techniques is that they are not able to provide information on the absolute microbial biomass. 

In soil environments, phospholipid fatty acids (PLFA) analysis can be used which will provide 

information on the absolute biomass of several microbial groups (section 1.1.2).  

1.1.1 High throughput sequencing 

Since 2005, several HTS techniques have been introduced. The first commercially successful 

HTS machine which was widely available for consumers, was the Roche 454, which uses 

pyrosequencing (Margulies et al., 2005). The 454 system can sequence relatively long reads 

(~700 bp) within a short period (10 hours). Since 2016, the system is however no longer 

supported by Roche, probably due to the higher sequencing cost compared to other systems 

and relatively high error rate in terms of poly-bases longer than 6 base pairs (bp) compared to 

other technologies (Liu et al., 2012). Substitutions deletions and insertions in Roche 454 are 

present for every 1,000 to 10,000 nucleotides, which is 10 times higher compared to Sanger 

Sequencing (Erwing & Green, 1998; Quinlan et al., 2008). Therefore the technology is expected 

to disappear from the metagenomics field. Currently, the most important HTS technique is the 

Solexa method, which was acquired by Illumina (www.illumina.com). Adaptor-ligated DNA 

fragments are passed over a flow-cell containing complementary oligonucleotides. Each 

individual flow-cell bound DNA strand will be amplified by “bridge amplification” to form 

clusters containing clonal DNA fragments (Figure 1.2). After amplification, fluorescent dNTPs 

and DNA polymerase are washed over the single-stranded flow-cell bound clusters in cycles, 

by which the incorporation of a nucleotide is monitored by exciting the fluorophores with 

appropriate lasers (Heather & Chain, 2016). In comparison to Roche 454, the number of 

frameshifts (introducted by homopolymer errors) and single-base sequencing errors are lower 

for Illumina sequencing (Luo et al., 2012). Illumina currently produces a suite of sequencers 

optimized for a variety of throughputs. The most commonly used Illumina platforms used in 

environmental microbiology are the MiSeq and HiSeq. The MiSeq is a benchtop sequencer 
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with a run time of 4 (1x 36 hours) to 56 hours (2x 300 bp) and outputs intended for targeted 

amplicon sequencing and the sequencing of small genomes such as those of bacteria. MiSeq 

sequencers can generate up to 25 million read clusters of up to 2x300 bp. The HiSeq is 

engineered for high-throughput applications, such as shotgun metagenomics (Reuter et al., 

2015). The newest HiSeq sequencers can generate up to 5 billion read clusters of up to 2x125 

bp per flow cell (which consists of 8 lanes). Older HiSeq sequencers such as the HiSeq2500 can 

produce longer reads in rapid run mode (2x250 bp), but have lower output (up to 600 million 

read clusters per flow cell). 

 

Figure 1.2 Illumina sequencing technology making use of bridge PCR. Adaptor-ligated DNA fragments are passed 

over a flow-cell containing complementary oligonucleotides. DNA fragments will bind to the flow cell and ends 

are attached to the surface by complementary primers. Enzymes will create double bind strands, which will be 

denaturated to form two separate DNA fragments. This process is repeated until clusters of identical strands are 

formed. (source: http://www.atdbio.com) 

Amplicon sequencing targets a specific genomic locus for amplification, e.g. 16S rRNA gene 

(bacteria) or ITS (fungi). In general, amplicon sequencing consists of two steps. First, the 

specific genomic locus is amplified by polymerase chain reaction (PCR), making use of target-

specific primers. Further on, nucleotide indices or barcodes are added to the target region by 

a second round of PCR amplification or by enzyme ligation (Figure 1.3A). This makes it possible 

to sequence multiple samples (> 100) simultaneously, and to compare many environmental 

samples. Amplicon sequencing can therefore currently be used as a diagnostic tool to study 
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the taxonomic composition and diversity of microbial communities (Vogl et al., 2012). 

Recently, the technique has also been applied to target “functional marker genes” encoding 

key enzymes of nitrogen cycling (e.g. nifH, amoA, urea), carbon cycling (e.g. mcrA, pmoA) and 

sulphur cycling (e.g. dsrAB, apsA). So far, only a few studies have applied this technique to 

identify protein encoding genes (Lüke et al., 2015). 

 

Figure 1.3 High throughput sequencing technologies. A) Amplicon sequencing library preparation consists of 

two successive PCRs to amplify the molecular marker sequence (amplicon PCR) and to attach the dual indices 

(index PCR). B) DNA fragmentation and adaptor ligation (shotgun metagenomics). 

After sequencing the genomic loci of the environmental samples, the standard pipeline for 

amplicon analysis starts by clustering sequences with a percent sequence similarity threshold 

(typically 97% for bacteria) into “Operational Taxonomic Units” (OTUs). For each OTU, a 

representative sequence is selected and annotated using a 16S rRNA gene classification 

method and database (e.g. greengenes or SILVA) (DeSantis et al., 2006; Quast et al., 2013; 

Chaudhary et al., 2015). All sequences with a 97% similarity to this OTU will thus get the same 

annotation (Nguyen et al., 2016). 

Before the arrival of sequencers such as Roche 454 or the Illumina MiSeq, 16S rRNA gene 

sequencing was carried out using labour intensive techniques including cloning in E. coli, 

colony picking and plasmid extraction, followed by Sanger sequencing. HTS therefore brought 

two major advances: massive parallelization of the sequencing reactions, which reduces 

sequencing cost extensively, and separation of templates without the need to insert gene 

fragments in a host (Sanschagrin & Yergeau, 2014).   

Amplicon sequencing also faces some limitations. First, only a specific marker gene is targeted, 

which makes amplicon sequencing limited to taxonomic identification or restricted functional 

identification. Therefore it is impossible to directly resolve all biological functions associated 
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with these taxa (Sharpton, 2014). Second, primer mismatches or the chose of primer pair 

combination can result in reduced amplification for certain taxa, causing underrepresentation 

(or sometimes even absence) of those taxa in the data. In addition, bacterial species can 

contain multiple 16S rRNA gene copies. The number of 16S rRNA gene copies varies greatly 

from one in many species to up to 15 in some bacteria (Rainey et al., 1996). In microbial 

eukaryotes, the number of the SSU rRNA unit (18S) is positively correlated with genome size 

and can reach numbers of 100 or even thousands copies (Prokopowich et al., 2000). This can 

lead to an overestimation of certain microbial species in the environment and thus a distorted 

view on the community composition (Galtier & Steel, 2007; Vetrovský & Baldrian, 2013). Third, 

PCR errors can lead to a misinterpretation of the community composition. Additionally, high-

throughput methods generate frequent errors during the sequencing procedure. Therefore, 

data sets derived by HTS must be subjected to extensive quality control measures (Kunin et 

al., 2010). Finally, extraction of the total DNA from environments may include material from 

dormant or even dead organisms. Therefore, it is possible that the most abundant organisms 

identified from the sequencing result are not the most abundant living organisms in the 

environment (Taberlet et al., 2012). 

In shotgun metagenomics, all DNA extracted from a certain environment is analysed entirely, 

instead of targeting a specific genomic locus. This global sequencing approach is based on two 

steps. First the DNA molecules are split into tiny fragments, which are independently 

sequenced (Figure 1.3B). In a second step, these gene fragments can be reassembled (Bouchez 

et al., 2016). Some of these reads will give taxonomically relevant information (e.g. fragments 

from 16S rRNA gene), and others will provide insight in the biological functions encoded in the 

genome (fragments from coding sequences) (Sharpton, 2014).  

In comparison with amplicon sequencing, shotgun metagenomics is advantageous for two 

reasons: (1) sequencing of the global metagenome offers the most comprehensive approach 

for a diversity and functionality study of micro-organisms in an environment; and (2) if already 

present in the database, new taxa or functions can be assigned to a certain environment 

where they were previously not identified (Bouchez et al., 2016). However, the application of 

shotgun metagenomics also has some limitations. First, the cost to obtain a good sequencing 

depth and the data complexity makes it limited for only a few samples, compared to amplicon 

sequencing. Second, the data is extremely large and highly complex which requires access to 
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servers or super computers with high storage and calculating capacities (Bouchez et al., 2016). 

Third, similar as for amplicon sequencing, the detection of DNA in a sample does not imply 

that this DNA originates from viable organisms or that the associated genes are functional 

(Nielsen et al., 2007).  

The use of HTS approaches provides not only insight into the diversity of microbial species 

from a wide variety of environments, but can also provide insights or a solution for human 

health, agricultural and environmental concerns. Due to these enormous possibilities of HTS, 

the total number of microbial community studies is rising exponentially (Figure 1.4).  

 

 

Figure 1.4 Evolution of the number of microbiome / microbial communities papers as registered in Pubmed 

(microbiomedigest.com, 9 January 2017). 

Amplicon sequencing is often used in microbial ecology studies. In water quality assessments, 

HTS provides new insights into the ecology of microbial mediated processes that influence 

fresh water quality such as algal blooms, contaminant biodegradation, and pathogen 

dissemination, but can also be used to trace bio-indicators for sewage pollution (Tan et al., 

2015).  

In the human health sector, much attention is being paid to the characterization of diverse 

microbes resident to healthy human populations (Human Microbiome Project Consortium, 

2012). They have shown that obesity and inflammatory bowel disease are associated with a 

decreased microbial diversity in the gut (Turnbaugh et al., 2009; Qin et al., 2010). In contrast, 

bacterial vaginosis is associated with an increase in microbial diversity (Fredricks et al., 2005). 

HTS can also be used to study the human genome and genome-related diseases. As an 
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example, Illumina sequencing is recently used to detect Down syndrome in human foetuses 

by tracing foetal DNA in the mother’s blood (Palomaki et al., 2011).  

1.1.2 PLFA analysis 

The microbial cellular membranes of Bacteria and Eukarya contain PLFAs of different chain 

lengths and composition to maintain cell-membrane integrity and cellular function in 

response to their immediate environmental conditions. In soil, microbial PLFAs typically have 

a chain length of 14 to 20 carbon atoms and are considered to be either bacterial or fungal. In 

mixed cultures, such as in a soil environment, PLFA analysis cannot be used to identify 

individual species, but can provide an overall view of the microbial community by indicating 

microbial groups (Zelles, 1999).  

PLFA analysis consists of four steps: (1) the extraction of lipids from soil samples using a single-

phase chloroform mixture; (2) isolation of phospholipids from the other extracted lipids by 

fractionation using a solid phase extraction column; (3) methanolysis of phospholipids to 

produce fatty acid methyl esters (FAMEs); and (4) analysis of FAMEs by capillary gas 

chromatography (Quideau et al., 2016).  

The use of PLFAs to characterize the microbial community has several benefits. First, PLFAs 

are only present in viable cells, which have an intact membrane (Zelles, 1999). Second, it gives 

an estimation of the absolute microbial biomass of the environment. Third, it has been proven 

that the technique is not only rapid and inexpensive, but usually also sensitive and 

reproducible (Frostegård et al., 2013). However, the technique also has some drawbacks. First, 

caution should be taken in the decision of the studied PLFAs. Some PLFAs can be present in 

several microbial groups, leading to misinterpretations. As an example, PLFA cy17:0 and 

cy19:0 are usually considered as indicators of Gram-negative bacteria, but are also found in 

large amounts in some Gram-positive bacteria (Frostegård et al., 2013). Second, fatty acid 

composition can be influenced by temperature and nutrition (Malik et al., 2008). Third, the 

technique cannot be used to assign taxonomy to the species. Individual fatty acids cannot be 

used to represent a specific species as a single micro-organism can have numerous fatty acids 

and the same fatty acids can occur in more than one species. In addition, diversity of the 

microbial community cannot be estimated using PLFA data (Frostegård et al., 2013).  
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1.1.3 Research objectives  

In this PhD project, HTS was used to tackle two problems in the two prokaryotic richest 

biospheres: soil and oceans. First, amplicon sequencing, shotgun metagenomics and PLFA 

analysis have been used to study micro-organisms in close interaction with the plant root. 

Addition of organic amendments such as biochar or chitin to soils or substrates can enhance 

the disease-suppressiveness of the soil and disease resistance of the plant and increase plant 

growth (Sullivan, 2004; Meller-Harel et al., 2012; Cretoiu et al., 2013; Postma and Schilder, 

2015), which is possibly associated with a change in the plant root microbiology, also referred 

to as the rhizosphere.  

Second, microbial communities on plastic debris in the marine environment were 

characterized. Recently Eriksen et al. (2014) estimated that 5.25 trillion plastic particles are 

scattered over the oceans worldwide. This plastic pollution in our oceans will only grow in the 

following years. One of the possible approaches to tackle the problematic plastic pollution in 

the marine environment, is the characterization and application of plastic-biodegrading micro-

organisms. Therefore, screening and a comprehensive knowledge of the microbial community 

on plastic, defined as “the plastisphere” (Zettler et al., 2013), is necessary.  

In the following sections of the introduction, these two environments will be discussed in 

more detail.  

1.2 ENVIRONMENT 1: THE RHIZOSPHERE 

The rhizosphere comprises the narrow zone (1-2 mm) of soil surrounding or attached to and 

influenced by the plant roots (Hiltner, 1904). It consists of a mixture of soil particles and an 

overwhelming number of organisms, mainly bacteria and fungi, but also oomycetes, 

nematodes, protists, algae, viruses, archaea and arthropods (Figure 1.5) (Mendes et al., 2013). 

These organisms are attracted by and feed on rhizodeposits, including nutrients, exudates, 

border cells and mucilage released by the plant root (Philippot et al., 2013). Consequently, the 

rhizosphere microbiome is significantly different in composition from the microbial 

populations in the bulk soil (Lundberg et al., 2012).  

The main drivers of the rhizosphere microbiome composition are the type of bulk soil (de 

Ridder-Duine et al., 2005; Berg & Smalla, 2009; Santos-Gonzalez et al., 2011; Lundberg et al., 

2012; Schreiter et al., 2014), and the plant species and/or cultivar type (Ladygina & Hedlund, 

2010; Inceoglu et al., 2012). Soil represents the major source of microbes for the rhizosphere 
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and is particularly important in the microbial composition through its physicochemical 

properties. Plant species not only influence the rhizosphere microbiome by differences or 

changes in rhizodeposit release, but also by differences in root morphology (Philippot et al., 

2013). Furthermore, the rhizosphere microbiome is influenced by fertilizer addition, crop 

rotation and application of pesticides (Ikeda et al., 2011; Hilton et al., 2013; Jacobsen & 

HjelmsØ, 2014). A potential source for the assembly of the rhizosphere microbiota are the 

plant seeds. The composition of this prelaminar microbiome and the developmental stage of 

the plant, will lead to a different rhizosphere microbiome composition (Nelson, 2004; 

Schreiter et al., 2014).  

 

Figure 1.5 The narrow zone of soil surrounding the plant root is considered as the rhizosphere. It consists of 

soil particles, bacteria, fungi, oomycetes, viruses, archaea and small eukaryotes. (Figure adapted from Gaiero et 

al. (2013))  

Rhizosphere microbes have profound effects on several plant processes such as seed 

germination, seedling vigour, plant growth and development, nutrition, diseases, and 

productivity (Mendes et al., 2013). In this introduction, it is not the intention to cover all 

available knowledge regarding the rhizosphere microbiome, given the enormous number of 

publications. Two important aspects however, the influence of the microbiome on plant 

growth and diseases, are discussed in more detail.  

In general, the belowground microbial species richness has been proposed as a predictor of 

the aboveground plant productivity and can even help to maintain plant productivity under 

changing environmental conditions (Wagg et al., 2011). The predominantly studied group of 

rhizosphere organisms are those involved in plant growth and productivity. Well-known 

examples are mycorrhizal fungi, which acquire nutrients from the soil and deliver these to 
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plant roots, which in turn release photosynthates through the roots. Others are defined as 

nitrogen-fixing rhizobia, with Rhizobium as the most commonly known, which enter in close 

association with the plant and provide the plant of nitrogen (Richardson et al., 2009; 

Zamioudis & Pieterse, 2012). These micro-organisms live particularly in symbiosis with the 

plant and provide nutrients and minerals from soil to the plant through translocation (Mendes 

et al., 2013). Other beneficial associations with the plant include non-symbiotic plant-growth-

promoting rhizobacteria (PGPR) and fungi (PGPF) which stimulate plant growth through the 

degradation of soil pollutants, production of phytostimulators, nutrient mobilization, 

improvement of soil structure, or by suppressing plant diseases or pests (Zamioudis & 

Pieterse, 2012; Ahemad & Kibret, 2014). The latter are also referred to as biocontrol micro-

organisms, which are involved in plant health and disease suppression. A list of commonly 

known PGPR and their mechanism to improve plant growth are given in Table 1.1. An 

extensive overview of the mechanisms of PGP can be found in the review of Lugtenberg and 

Kamilova (2009). Caution should however be taken concerning these genera, because several 

not only contain PGP, but also pathogenic strains, e.g. Bacillus, Pseudomonas, Streptomyces. 

Therefore, a good taxonomic classification is necessary (Viaene et al., 2016).  

Several mechanisms are known in which rhizosphere micro-organisms defend the plant 

towards pathogens: (1) production of antibiotics which inhibit the growth or activity of 

competing micro-organisms; (2) competition between micro-organisms for nutrients and 

trace elements; (3) parasitism; (4) interfering quorum sensing affecting virulence; and (5) 

induction of the systemic resistance response in plants (Mendes et al., 2013). Most of these 

mechanisms are suppressive for soil-borne pathogens, with the exception of the systemic 

resistance response induction which is also related to aboveground plant infections. The 

activation of the plant’s induced systemic resistance (ISR) by micro-organisms can either be 

through the activation of the jasmonic acid and ethylene pathway or through the salicylic acid 

pathway in the plant (van de Mortel et al., 2012; Zamioudis & Pieterse, 2012).   
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Table 1.1 Commonly known plant growth promoting rhizobacteria (PGPR) and fungi (PGPF). The mechanism of 

plant growth promotion, if known, is given. However other mechanisms can be involved which are currently 

unknown are needs to be examined  

PGPR genera Specific strains Mechanism  Reference 

Acinetobacter A. calcoaceticus Gibberellin production, phosphate 

solubilization 

Kang et al., 2009 

Azetobacter  sp. A. paspali Nitrogen fixation, auxin production Okon et al., 1998 

Azospirillum sp.  Nitrogen fixation, increase in root 

development 

Lugtenberg & Kamilova, 

2009 

 A. brasilense Auxin production Barbieri & Galli, 1993 

Bacillus sp. B. amyloliquefaciens Release of volatiles (antifungal) Ryu et al., 2003 

 B. cereus Antibiotic production Lugtenberg & Kamilova, 

2009 

 B. subtilis Release of volatiles, antibiotic 

production, activation ISR 

Ryu et al., 2003; Rudrappa 

et al., 2008 

 B. thuringiensis Biocontrol against insects  

Bradyrhizobium sp.  Nitrogen fixation / root nodulation Lugtenberg & Kamilova, 

2009 

Enterobacter sp. E. cloacae Release of volatiles Glick, 2012 

Paenibacillus P. polymyxa Activation ISR Timmusk & Wagner, 1999 

Pseudomonas sp. P. fluorescens Auxin production, activation ISR, plant 

iron nutrition 

Lugtenberg & Kamilova, 

2009; Glick, 2012 

 P. putida Biocontrol  Pliego et al., 2008 

Rhizobium sp.  Nitrogen fixation / root nodulation, 

production of ACC deaminase 

Lugtenberg & Kamilova, 

2009 

Sphingomonas sp.  Chitinase production Wachowska et al., 2013; 

Zhu et al., 2007 

Streptomyces sp.  Antibiotic production, siderophore 

production, auxin production (in 

planta tests still necessary) 

Viaene et al. (2016) 

 S. platensis Volatile production (antifungal) Wan et al. (2008) 

    

PGPF genera  Mechanism Reference 

Gigaspora sp.   Promotion uptake phosphorus & 

minor elements 

Allen, 1996 

Glomus sp.  Promotion uptake phosphorus & 

minor elements 

Allen, 1996 

Lecanicillium sp.   Mycoparasitism, activation ISR Goettel et al., 2008; Van 

Nam et al., 2014; Nguyen et 

al., 2015 

Trichoderma sp.   Predation & parasitism Harman et al., 2004 

 

To improve plant productivity and disease resistance of the plant, one of the strategies is to 

reshape the rhizosphere microbiome in favour of disease and pest suppressive and plant 

beneficial microbes. Soil amendments have the potential to induce these shifts in the 

rhizosphere microbiome, improve soil and substrate quality, plant growth and plant 

resistance. Within this research, two environment friendly soil amendments, biochar and 

chitin, are used to study the effect on strawberry and lettuce growth and their disease 
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susceptibility towards aboveground pathogens. Both amendments will be discussed further in 

this introduction.  

1.2.1 Biochar 

Biochar is the collective name of carbon-rich by-products which are produced during biomass 

pyrolysis for biofuel production (Goldberg, 1985). Differences in heating rates, pyrolysis 

temperature, residence time and especially feedstock material will affect the carbon and 

nutrient composition of biochar drastically. Several feedstocks can be used for biochar 

production, for which forestry wastes, animal manures and crop residues are the most used 

(Laghari et al., 2016). Despite the fact that nutrient composition and carbon content can differ 

significantly between several types of biochar, there are efforts to set-up a more strict 

definition (EBC, 2012).  

Biochar is typically porous, has a high surface area and affinity for charged particles (Glaser et 

al., 2002; Keech et al., 2005; Steiner et al., 2008). Biochar plays a major role in sequestering 

atmospheric carbon dioxide, without releasing the carbon for centuries and even millennia, 

having the potential to reduce the CO2 release back to the atmosphere (Barrow, 2012). Further 

on, biochar has been suggested to be used in soil management, feedstuff for livestock, water 

purification, health and sanitation, environmental remediation and as source of biomass-

derived energy (Xie et al., 2015; Laghari et al., 2016). Some of these benefits are illustrated in 

Figure 1.6.  

Biochar has the potential to increase soil water permeability, soil water retention and soil pH. 

In addition, biochar increases nutrient retention and the amount of organic carbon in soil or 

substrates (Chan et al., 2007; Asai et al., 2009; Laird et al., 2010). Biochar addition to soil can 

affect the soil microbial composition (Abujabhah et al., 2016; Dai et al., 2016), with even larger 

effects on the rhizosphere microbiome (Dai et al., 2016; Egamberdieva et al., 2016). It was 

proposed that biochar could act as an additional habitat for micro-organisms due to its highly 

porous structure, or could impact the microbiome due to an increase in water retention, 

nutrient release or pH (Quilliam et al., 2013). Further on, biochar addition does not only 

influence the microbial abundance, but also the microbial activity (Quilliam et al., 2013), 

however this is still questionable (Domene et al., 2014).  

This change in microbial community in the soil or rhizosphere can affect the plant 

characteristics. Biochar has been extensively studied for its beneficial effects in agriculture. 
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Several studies have already shown a positive effect towards the growth of crops such as rice, 

wheat, maize, radish, soybean, tomato and sweet pepper (Chan et al., 2007; Asai et al., 2009; 

Graber et al., 2010; Major et al., 2010; Dong et al., 2015; Egamberdieva et al., 2016). 

Additionally, biochar can increase disease suppression and pathogen control, e.g. a higher 

resistance towards Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) for 

pepper and tomato plants, suppression of Fusarium crown and root rot and a higher resistance 

towards a foliar mite on pepper plants (Matsubara et al., 2002; Elad et al., 2010; Elmer & 

Pignatello, 2011). These positive effects can be explained by the effect of biochar on the soil 

and rhizosphere microbiome, but can also be related to changes in physicochemical and 

biological properties of soils and substrates (Elad et al., 2011; Jeffery et al., 2011). The remark 

should be made however, that despite the high number of publications showing the benefits 

of biochar on plant growth and disease resistance, also neutral or negative effects of biochar 

on these plant parameters are reported (Revell et al., 2012; Gravel et al., 2013 Copley et al., 

2015; Ebrahimi et al., 2016).  

 

Figure 1.6 Atmospheric and soil benefits of biochar addition to soil or substrate (©REG garner). 
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1.2.2 Chitin 

Chitin is composed of β-1,4-linked N-acetylglucosamine (GlcNAc) residues forming a linear 

homopolymer (Gooday et al., 1990). It has a biological role in both terrestrial and aquatic 

ecosystems as a major constituent of fungal cell walls, and insect, krill and shellfish 

exoskeletons (Gomes et al., 2001). As a result, chitin is the second most abundant biopolymer 

in nature after cellulose. Chitin has applications in several areas such as biofilms, drug release, 

wound dressing and agriculture (Younes & Rinaudo, 2015). Therefore, the commercial global 

production rate of chitin is enormous with an estimated rate of 1010 to 1011 tons year-1 (Beier 

& Bertilsson, 2013). Pure chitin is mainly produced from crab and shrimp shells and can be 

extracted either chemically or biologically. In chemical processing, chitin is extracted by acid 

treatment to dissolve the calcium carbonate followed by alkaline solution to dissolve proteins. 

In addition, a decolourization step is often added in order to remove pigments and obtain a 

colourless pure chitin. In biological processing, various proteolytic micro-organisms 

deproteinize shrimp shells to extract chitin. The biological extraction of chitin offers high 

reproducibility in shorter time, simpler manipulation, smaller solvent consumption and lower 

energy input. Additionally, the structure of chitin is preserved better compared to the 

chemical method. However, the biological method is still limited to laboratory scale studies 

(Younes & Rinaudo, 2015). 

Several organisms such as fungi, bacteria, archaea, rotifers, some algae and even plants can 

produce chitin-degrading enzymes (Hooday, 1990; Huber et al., 1995; Vrba et al., 1996; 

Strosjová & Vrba, 2005). Bacteria and fungi are however believed to be the major mediators 

of chitin degradation in nature (Beier & Bertilsson, 2013; Langner & Göhre, 2016). The 

degradation of chitin into GlcNAc residues consists of three steps: (1) cleaving the polymer 

into water-soluble oligomers, (2) splitting the oligomers into dimers and (3) cleavage of the 

dimers into monomers. The first two steps are catalysed by chitinases, while the last step 

involves N-acetylglucosaminidases (Hartl et al., 2012; Beier & Bertilsson, 2013). Growth on 

chitin is however not always accompanied by a direct degradation of the polymeric structure. 

Alternatively, chitin can be deacetylated to chitosan or even cellulose-like forms through 

deamination (Campbell & Williams, 1951). These in turn can be further degraded by the 

production of chitosanases and cellulases, in which the latter even can possess considerable 

chitosan-cleaving activity (Xia et al., 2008) (Figure 1.7).  
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Figure 1.7 Processes involved in chitin degradation. Chitin can be degraded by the production of chitinases and 

N-acetylglucosaminidases to GlcNAc residues. However if deacetylation and deamination processes are very 

active, chitosan and even cellulose-like molecules may be produced. (GH: glycoside hydrolase family; GlcNAc: N-

acetylglucosamine, GlcN: glucosamine; Glc: glucose. Adapted from Beier & Bertilsson, 2013). 

Organisms capable of hydrolysing chitin will increase in number and/or activity once chitin is 

added to soil or substrates, leading to a different microbial community composition (Gryndler 

et al., 2002; Cretiou et al., 2013; Jacquiod et al., 2013; Vida et al., 2016). The degradation of 

chitin and microbial community change can affect plant growth, as carbon and nitrogen 

nutrients will be released in substantial amounts in the soil or substrate (Williamson et al;, 

2000; Metcalfe et al., 2002). Further on, chitin and derivatives (e.g. chitosan) can enhance 

suppressiveness of plants towards pathogens. It has been shown that chitin or chitosan soil 

treatment reduces the density of nematodes in soil and results in a lower infection rate of 

plant roots by nematodes (Cretiou et al., 2013; Radwan et al., 2012). Furthermore a reduction 

in population density of Verticillium dahliae microsclerotia in soil and a reduction of disease 

severity caused by V. dahliae on antirrhinum can be noted (Dutta & Isaac, 1979; Cretiou et al., 

2013). Chitinase-producing organisms, e.g. Bacillus amyloliquefaciens, Burkholderia sp. and 

Streptomyces sp., can even be used in agriculture as effective biocontrol agent against a 
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number of phytopathogenic fungi and nematodes, in which the addition of chitin can 

accelerate the response (Bhattacharya et al., 2007). 

In addition, chitin does not only enhance suppressiveness of plants by the activation of 

chitinase production of micro-organisms which affect soilborne pathogens, but can also 

trigger plant immunity and act as a microbe/pathogen-associated-molecular pattern 

(MAMPs/PAMPs). In rice (Oryza sativa), Chito-oligosaccharides (CHOS) with a chain length n 

>= 8 formed from chitin due to chitinase activity, will be bound by the plant LysM containing 

receptor-like protein (RLP) CEBIP which will in a cascade reaction lead to the activation of plant 

defense genes (Figure 1.8) (Langner & Göhre, 2016). This chitin perception can however differ 

from the plant studied. In rice, both LysM proteins are required for chitin perception and 

signalling, whereis in the model plant Arabidospsi, the CEBiP-type molecules are not involved 

(Wan et al., 2008).    

 

Figure 1.8 Chitin triggered immunity in plants, with rice as a model species. After entry into the host plant, the 

fungal cell wall is attacked by host secreted chitinases, which liberate soluble chito-oligosaccharides (CHOS) into 

the apoplastic space. CHOS with a chain length of n ≥ 8 are bound by the plant LysM containing receptor-like 

protein (RLP) CEBiP. Subsequently, the chitin elicited receptor kinase 1 (CERK1) gets recruited, which in turn leads 

to phosphorylation of its intracellular kinase domain. Activated CERK1 subsequently phosphorylates the Rac1 

specific guanine exchange factor 1 (Rac1GEF1), which in turn activates a MAPK cascade that triggers expression 

of defense-genes, including hydrolytic enzymes (Langner & Göhre, 2016). 
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1.3 ENVIRONMENT 2: THE PLASTISPHERE 

Since its first mass production in the 1950's, plastic has improved our quality of life in ways 

that make it impossible to imagine living without it. Plastics are cheap, lightweight, strong, 

and durable (Derraik, 2002), which makes them ideal for several applications. Nearly 300 

million tons of plastic are produced each year, of which half are discarded after single use 

(PlasticOceans.com). This enormous production of plastic has however its consequences. By 

the early 1970s, plastic began appearing alongside plankton in oceanographic sampling nets 

(Carpenter and Smith, 1972; Carpenter et al., 1972). Now, plastic is the most abundant form 

of debris in the ocean, with an estimated number of around 5.25 trillion plastic particles 

scattered over our oceans and seas (Eriksen et al., 2014).  

1.3.1 Plastic pollution in the marine environment 

Nearly 80 percent of the plastic debris enters the marine environment through land sources. 

Coastal recreational activities, industrial manufacturing and handling of raw manufacturing 

materials are the major sources for littering and solid waste disposal. These plastics are 

eventually transported to the marine environment through river systems and wastewater 

treatments or through the occurrence of extreme weather conditions (e.g. flooding). The 

remaining 20 percent of plastic debris is derived from ocean-based sources, in which 

commercial fisheries is the major contributing human activity (Li et al., 2016) (Figure 1.9).  

Once plastic enters the marine environment, it will be broken down to smaller particles due 

to mechanical degradation through waves, chemical changes through UV action, thermal 

degradation, photo-degradation and even biofouling and biological degradation (Pinto da 

Costa et al., 2016) (Figure 1.10). Plastic fragments which are eventually fragmented to pieces 

smaller than 5 mm in diameter, are defined as microplastics. These microplastics can also be 

directly produced for the use in e.g. cosmetics and cleaning products. In addition, washing of 

fleece materials will also release microplastics. Through domestic wastewaters, these 

microplastics will be deposited eventually in the marine ecosystem. A third source of 

microplastics is the manufacturing of resin powders or pellets, used as feedstock for the 

manufacturing of plastic products. Through spillage from freighters, these pellets also enter 

the marine environment (Pinto da Costa et al., 2016).  
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Figure 1.9 Sources, sinks and influence on marine life of plastic debris in the marine environment.  Plastic is 

derived from land-based sources (industry, recreational activities) or ocean-based sources (fisheries). A small 

part of these plastics keeps floating, while the major part will sink to the seafloor eventually through biofouling 

and fragmentation to smaller plastic particles (microplastics). These plastics can eventually form a threat to 

marine life through ingestion and entanglement (adapted from Li et al., 2016). 

Currently, the most widely used synthetic plastics are low- and high-density polyethylene (PE), 

polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) and polyethylene tere- 

phthalate (PET), together representing around 90% of the total plastic production (Andrady 

and Neal, 2009). Most of these plastics are buoyant in water, with the exception of PVC. 

Consequently, most plastics float on seawater when entering the marine environment. 

Fragmentation and the colonization of micro-organisms on plastic debris however change 

their physicochemical properties, e.g. surface hydrophobicity and buoyancy (Ye & Andrady, 

1991), which makes the plastic fragments sink to the seafloor (Figure 1.9; Figure 1.10). 

Therefore it is estimated that the major sink of plastic debris in the marine environment is the 

seafloor (70 %) and that a minor part is located in the seawater column (15 %) or is deposited 

on beaches (15 %) (Barnes, 2009; Sherrington, 2016).  
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Figure 1.10 Natural processes affecting the distribution and fate of plastics. Once plastic enters the ocean, it 

will be fragmented through several processes such as mechanical, biological and chemical (UV) degradation. 

Plastics will eventually sink to the seafloor and/or be mistaken as food by marine organisms which ingest them. 

(source:http://www.grida.no/graphicslib/detail/natural-processes-aecting-the-distribution-and-fate-of-plastics 

_2cbc). 

The presence of (micro)plastics in the marine environment has several consequences. Due to 

its hydrophobicity, plastic debris in the marine environment will adsorb toxic metals and 

persistent organic pollutants (Aston et al., 2010; Holmes et al., 2012; Pinto da Costa et al., 

2016). In addition, several rafting species such as microalgae, Bryozoa, insects and even 

macrobenthos can attach to the plastic debris and use it as an aquatic vehicle to travel to new 

foreign habitats (Barnes, 2002; Gregory, 2009; Keswani et al., 2016).  

Plastic can be a major threat for marine life in several ways. Entanglement, which is often 

caused by ghost fishing gear, is one of the most damaging effects of debris, and can represent 

up to 0.5% of captures, including animals like turtles; penguins; albatrosses, petrels and 

shearwaters; shorebirds, gulls and auks (Gregory, 2009; Galgani, 2015). (Micro)plastics are 

also ingested by animals which can lead to wounds of the digestive tract which can lead to 
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false satiation, starvation and often death of the organisms (GESAMP, 2016). The ingestion of 

microplastics by small marine organisms and zooplankton, can lead to the distribution of 

microplastics in the food web and can eventually result in microplastics in the human gastro-

intestinal system (Keswani et al., 2016). Because plastic can act as a vector for both chemical 

and biological substances, pathogenic organisms and toxics can enter the food system through 

(micro)plastic ingestion (McCormick et al., 2014; Keswani et al., 2016).  

In addition, it has been shown that even smaller plastics, the so-called nanoplastics, are able 

to penetrate cell membranes. In Oryzias latipes, nanoplastics were not only found in the 

intestines after exposure to the plastics, but also in the blood, liver and even in the brains, 

indicating that nanoplastics are able to cross the blood-brain barrier (GESAMP 2016; Almutairi 

et al., 2016).  

To conclude, (micro)plastic pollution has severe consequences, most of them not quite yet 

understood and further research is necessary. 

1.3.2 Microbial communities on plastic  

In the early 1970s, Carpenter and Smith reported for the first time the presence of diatoms, 

bacteria and hydroids on the surfaces of plastic debris collected in the Sargasso Sea (Carpenter 

& Smith, 1972; Carpenter et al., 1972). A few years later, Sieburth (1975) noted the ubiquity 

of microbial colonization on man-made surfaces including high-density polyethylene plastic 

(HDPE) like bleach bottles in his pictorial essay book "Microbial Seascapes". His Scanning 

Electron Microscopy (SEM) images of pennate diatoms, filamentous cyanobacteria, coccoid 

bacteria and bryozoans were perhaps the first published glimpses of what has come to be 

referred to as the "plastisphere" (Zettler et al. 2013) - a name originally assigned to the diverse 

assemblage of taxa that inhabit the thin layer of life on the outer surface of plastic debris, but 

now more broadly referring to life on the surface of plastic litter in general (Figure 1.11). 

The hard surface of plastics provides an ideal environment for microbial colonization, but 

several physicochemical factors influence microbial succession. In temperate coastal water, 

the Roseobacter clade (Rhodobacterales), appears as a primary surface colonizer (Dang and 

Lovell, 2000; Dang et al., 2008). Several studies that followed, employing a diversity of plastic 

substrates, revealed that diverse microbial biofilms colonise plastic debris after the initial 

colonization (Webb et al., 2009; Lobelle and Cunliffe, 2011; Harisson et al., 2014). The amount 

of microbial biomass increases with exposure time of the plastic to seawater or marine 
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sediment in both fossil-fuel-based and biodegradable/compostable plastic (Eich et al., 2015). 

Lab experiments have shown that the microbial cell densities are five to eight times higher on 

biodegradable plastic bags than on PE bags when both are buried in sediments, showing the 

influence of hydrophobic properties on microbial colonization (Nauendorf et al., 2016). In 

addition to hydrophobic surface properties (Oliveira et al., 2001), surface roughness (rugosity) 

of the plastic material also impacts colonization (Characklis et al., 1990; Bravo et al., 2011; 

Carson et al., 2013). 

 

Figure 1.11 SEM images of microbial communities on plastic surfaces first recorded by Sieburth et al. (1975).  

Panel A shows diatoms colonizing the surface of a bleach bottle in Narragansett Bay, Rhode Island, USA. The 

magnification of the image is 950 X. Panel B shows a higher resolution view of the same microbial biofilm (5200 

X magnification). 

The colonization of plastic substrates and the formation of a microbial biofilm is however 

mainly influenced by three parameters: geographical location, season, and polymer type 

(Sudhakar et al., 2007; Artham et al., 2009; Hoellein et al., 2014; Oberbeckmann et al., 2014; 

Eich et al., 2015; Amaral-Zettler et al., 2015b). In freshwater ecosystems, location tends to be 

the major factor influencing biofilm composition, with polymer type being a secondary factor 

(Hoellein et al., 2014), a pattern also detected at global scales in the marine environment 

(Amaral-Zettler et al., 2015b). Given the impact of geography and season on the colonization 

of plastic substrates, it is challenging to compare studies across time and space.   

All published studies covering “plastisphere” communities so far, making use of several 

visualisation techniques and molecular methods are described in Table 1.2. These studies 

primarily aim to understand the diversity and ecology of the microbial plastisphere. More 

specifically, three key questions are highlighted: (1) Does microbial degradation of plastic and 
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of adsorbed co-pollutants occur in marine environments?; (2) Are plastic surfaces a potential 

site for accumulation of pathogenic micro-organisms?; (3) How do the structure and function 

of plastisphere microbial communities change during transport? (Osborn & Stojkovic, 2014).  

Table 1.2 Different methods used to study microbial composition of plastics in aquatic habitats (a Polyethylene, 
b Polypropylene, c Polystyrene , d Polyethylene terephtalate, e Polyvinyl alcohol, f Polyvinyl chloride). 

Method Plastic size Geographic location Habitat/laboratory Plastic types References 

SEM Microplastic North Atlantic Ocean Marine offshore PEa, PPb Zettler et al. (2013) 

  North Pacific Gyre Marine offshore  PE, PP, PSc Carson et al. (2013) 

  Lab test Microcosm experiment PE Harrison et al. (2014) 

  Australia-wide coastal and 

ocean region 

Marine coastal waters 

and offshore 

unidentified Reisser et al. (2014) 

  Urbanized river in Chicago, 

USA 

River water unidentified McCormick et al. (2014) 

  North Pacific and North 

Atlantic Ocean 

Marine offshore PE, PP, PS, PETd, 

other 

Amaral-Zettler et al. 

(2015b) 

 Macroplastic Mediterranean Sea Marine offshore PE, biodegradable 

plastic 

Eich et al. (2015) 

  North Sea, UK Marine coastal waters 

and offshore 

PET Oberbeckman et al. 

(2014) 

CARD-FISH Microplastic Lab test Microcosm experiment PE Harrison et al. (2014) 

Clone libraries Microplastic Lab test Microcosm experiment PE Harrison et al. (2014) 

 Macroplastic West Pacific Ocean, Quingdoo Marine coastal waters PVAe, PVCf, unknown Dang & Lovell (2000); 

Dang et al. (2008) 

DGGE Micro- and 

Macroplastic 

North Sea, UK Marine coastal waters 

and offshore 

PET, PS, PE, PP Oberbeckman et al. 

(2014) 

T-RFLP Microplastic Lab test Microcosm experiment PE Harrison et al. (2014) 

Amplicon 

sequencing 

Microplastic North Atlantic Ocean 

North Pacific Ocean, North 

Atlantic Ocean 

Marine offshore  

Marine offshore and 

coastal 

PE, PP 

PE, PP 

Zettler et al. (2013) 

Amaral-Zettler et al. 

(2015b) 

  Coast, BE Beach PE De Tender et al. (2015) 

  Urbanized river in Chicago, 

USA 

River water unidentified McCormick et al. (2014) 

 Macroplastic North Sea, BE Marine coastal waters 

and offshore 

PE, PP De Tender et al. (2015) 

  North Sea, UK Marine offshore PET Oberbeckmann et al. 

(2014) 

Shotgun 

metagenomics 

Micro- and 

macroplastic  

North Pacific Subtropical Gyre Marine offshore unidentified Bryant et al. (2016) 

 

To date, little is known both about the temporal dynamics of colonization and biofilm 

formation on plastic debris and about the microbial interactions underlying the resulting 

biodegradation process. PE, one of the major pollutants of the marine environment, is 

reported as an inert polymer with strong resistance to microbial breakdown (Weiland et al., 

1995). The degradation of polyethylene is probably a secondary process where an initial 

oxidation step first fragmentizes the polymer to smaller fragments (Scott, 1990). So far, the 

degradation of PE has been linked with lignin-degradation (fungi) under nitrogen- and carbon-

limited conditions in soil, and with the production of manganese peroxidase (Wood, 1998). 

Until now, a limited number of micro-organisms in the marine environment have been 

detected that could potentially break down PE. Within the Arabian Sea, three isolates on low-

density PE were identified that appear capable to degrade the polymer. They were classified 
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as Kocuria palustris, Bacillus pumilis and Bacillus subtilis (Harshvardhan and Bhavanath, 2013). 

In in-vitro conditions, two marine bacteria, Arthhtrobacter sp. and Pseudomonas sp., have 

been isolated that also appear capable to degrade HDPE (Balasubramanian et al., 2010). In 

addition, one fungal strain, Zalerion maritimum, has been identified as a potential PE 

biodegrader (Paço et al., 2017). Microbes have broad metabolic abilities, so finding bacteria 

that can degrade plastic is not unexpected, however, in all cases reported so far, the biological 

degradation of plastic is slow, and marine litter is expected to persist for years or even 

centuries in our marine environment (O’Brine and Thompson, 2010). Nevertheless, our 

knowledge of plastic-degrading bacteria in the marine environment remains limited. Using 

HTS techniques, screening for these organisms over wide areas is possible and can give us 

insight to which extend these organisms are present in the marine environment.  

Plastic has the ability to serve as a vector for harmful micro-organisms. Due to the long 

residence time of plastic in the marine environment, plastic can travel over long distances, 

favouring the survival of colonists (Barnes, 2002). Zettler et al. (2013) documented the 

presence of Vibrio, a genus that includes pathogenic species on plastic fragments in the 

Atlantic, and a potentially pathogenic Vibrio parahaemolyticus was detected using MALDI-TOF 

MS on a number of microplastic particles from the North Sea and Baltic Sea (Kirstein et al., 

2016). Additionally, Masó et al. (2003) has found temporary cysts of a harmful algae bloom 

(HAB) species, the dinoflagellate Alexandrium taylori, attached to plastic debris found in 

coastal and open ocean waters in the Mediterranean Sea; even in marine regions that have 

not been affected by HAB events before. The authors suggested a high potential of increasing 

HAB dispersion due to increasing plastic debris accumulation in the oceans, when they are 

able to survive attached on plastic in foreign environments. Thus, plastic can be a potential 

vector for the wide-scale dissemination of harmful micro-organisms, but the impact of this 

plastic pollution and potential pathogen/HAB distribution on human and environmental 

health is still unknown (Amaral-Zettler et al. 2015b; Vethaak & Leslie, 2016).
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Micro-organisms constitute a major fraction of the total biomass and are one of the main 

sources of biodiversity on Earth (Vieites et al., 2010). The succession of microbial community 

structure and functions remains a central topic in environmental microbiology studies, as 

micro-organisms drive the Earth’s biogeochemical cycles (Cong et al., 2015). With the 

development of high-throughput sequencing tools, the ability to characterize their temporal 

and spatial variation has become achievable (Gonzalez et al., 2012). These high-throughput 

“omics” technologies, such as amplicon and shotgun metagenome sequencing, allow for the 

analysis of microbial communities without tedious cultivation efforts (Vieites et al., 2010).  

In this thesis, “omics” technologies are applied to study microbial communities in two of the 

richest biospheres on earth: the soil and marine environment. In soils, the distribution of 

micro-organisms and the processes they are involved in, such as nutrient cycling, 

improvement of the soil structure and degradation of pollutants, are well studied (Paul, 2015). 

The distribution and activities of marine organisms are however less explored. Nonetheless 

they are highly abundant and perform several important processes such as photosynthesis, 

degradation of organic compounds and recycling of nutrients (Munn, 2011). This thesis is 

divided in two central parts, reflecting these two microbial-rich environments studied in terms 

of agricultural and marine environmental problems. 

Part I (Chapters 2, 3 and 4) is dedicated to the microbial characterization of the rhizosphere, 

the narrow zone of soil which is influenced by the growth and nutrient exchange of plants 

(Hiltner, 1904). The rhizosphere microbiome has profound effects on several plant processes, 

such as plant productivity and plant health (Mendes et al., 2013). To reshape the rhizosphere 

microbiome towards a higher abundance of plant-beneficial micro-organisms, one of the 

strategies is to use soil or substrate amendments. In Part I, biochar (Chapter 2 and 3) and chitin 

(Chapter 4) were used as soil/substrate amendments to modify the rhizosphere microbiome. 

The title and rational behind each of these research chapters are listed below:  

 Changes in the rhizosphere microbiome in response to biochar and in relation to 

plant health (Chapter 2): Can biochar alter the bacterial and fungal community of the 

rhizosphere microbiome towards plant-beneficial organisms and can this be related to 

changes in the physicochemical properties of soil and peat substrate, crop growth and 

plant disease susceptibility? To take into account the effect of different plant species 
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and growing medium on the rhizosphere microbiome, two target crop-soil biosystems 

were chosen: lettuce grown in field soil and biochar grown in peat. At the end of the 

growing medium, biological, physicochemical and plant health parameters were 

measured and correlated with changes in the rhizosphere microbiome, which was 

studied either by phospholipid fatty acid (PLFA) analysis and 16S rRNA and ITS2 gene 

amplicon sequencing.  

 Dynamics of the rhizosphere microbiome in response to biochar and aboveground 

plant inoculation (Chapter 3): Based on the results of Chapter 2, new questions raised: 

how dynamic is the effect of biochar during the plant growth cycle and is the 

rhizosphere microbiome not only altered by the addition of biochar, but also by the 

aboveground leaf infection with B. cinerea and can this interfere with the effect of 

biochar?  

 Taxonomic and functional changes in the lettuce rhizosphere microbiome in 

response to chitin and in relation to human health (Chapter 4): Chitin is believed to 

be one of the most economical and practical options to improve soil and substrate 

quality, plant growth and plant resilience (El Hadrami et al., 2010; Sharp, 2013). In this 

chapter, we studied the role of chitin as a mediator of plant growth (model plant 

lettuce) and its ability to reduce the survival of zoonotic pathogens through a change 

in the rhizosphere microbiome. A combination of PLFA, amplicon sequencing and 

shotgun metagenomics, was used to cover the composition of the rhizosphere 

microbiome.  

Part II (Chapters 5 and 6) focusses on the microbial community structure and dynamics of 

plastic debris in the North Sea, typically referred to as “the plastisphere”. Plastic is the most 

abundant form of debris in the marine environment (Laist, 1987). Since the nineteenseventies 

it has been shown that micro-organisms are able to colonise marine plastic debris (Carpenter 

et al., 1972), however the number of studies describing the composition of this microbial 

community remains limited. In Part II, the “plastisphere” microbiome is studied for plastic 

debris sampled in the Belgian part of the North Sea. The title and rational behind each of these 

research chapters are listed below: 
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 Bacterial community profiling of marine plastic debris in the North Sea (Chapter 5): 

Are bacteria able to colonise plastic debris, how variable is this colonization and where 

do these bacteria originate from? Despite most “plastisphere” studies focus on floating 

plastic, most of this debris is located at the seafloor (Eunomia, 2016). In this study, we 

examine the main drivers influencing the bacterial colonization of seafloor plastic 

debris. Plastics were sampled at five locations in the Belgian part of the North Sea and 

at the beach of Ostend (resin pellets). The bacterial community was studied using 16S 

rRNA gene amplicon sequencing and compared with sediment and seawater samples, 

to track the origin of the bacterial members of plastic.   

 Microbial biofilm dynamics of the plastisphere (Chapter 6): How dynamic is the 

bacterial colonization of plastic? Are other microbial organisms, more specifically 

fungi, also able to colonise plastic debris in the marine environment? Based on the 

experimental set-up, it was not possible to reconstruct the bacterial biofilm formation 

of plastics studied in Chapter 5 because we do not know the history of this plastic. 

Therefore a controlled exposure experiment was done to reconstruct the bacterial 

colonization process. Polyethylene samples, the polymer that was most abundant in 

the study of Chapter 5, were used and collected from the North Sea at two locations: 

the harbour of Ostend and offshore at the Thornton windmill farm. In addition, the 

research was expanded to the study of fungal communities using ITS2 gene amplicon 

sequencing.  

In the last part of this thesis (Chapter 7) the major findings of each Chapter and future 

perspectives are discussed. For the rhizosphere microbiome, economical, ecological and 

human health impacts of biochar and chitin are evaluated. In terms of the “plastisphere” 

microbiome, the contribution of this thesis on the knowledge of “plastisphere” influences and 

impacts is discussed.
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The Rhizosphere 



 

 
 



 

 
 

Chapter 2 
Changes in the rhizosphere microbiome in response to biochar 

and in relation to plant health  

Modified from: 

De Tender CA, Debode J, Vandecasteele B, D’Hose T, Cremelie P, Haegeman A, Ruttink T, 

Dawyndt P & Maes M. (2016a). Biological physicochemical and plant health responses in 

lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology 107, 1-12. 
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Several pot and field trials have shown that biochar addition to soil or peat substrate can 

change the physicochemical properties of soil or substrate (Rondon et al., 2007; Asai et al., 

2009; Laird et al., 2010), enhance productivity and performance of crops (Chan et al., 2007; 

Asai et al., 2009; Graber et al., 2010), and act in disease suppression against fungal foliar 

pathogens (Elad et al., 2010; Meller Harel et al., 2012). Biochar addition has also been proven 

to affect the soil and substrate microbial community structure (Kolb et al., 2009; Anderson et 

al., 2011; Lehmann et al., 2011; Abujabhah et al., 2016; Grunert et al., 2016), whereas its effect 

on the microbial community structure and diversity of the rhizosphere is less well understood. 

The rhizosphere microbiome can however play an important role in the development, 

nutrition and health of the plant, as it is in close interaction with the plant root. Addition of 

biochar to peat or soil can thus enhance plant growth and resistance through an indirect effect 

via the root-associated micro-organisms, which may shift in composition due to the addition 

of biochar (Egamberdieva et al., 2016). Especially plant growth promoting rhizobacteria 

(PGPR) and fungi (PGPF) in the rhizosphere play an important role in plant growth and health. 

These organisms can stimulate plant growth through the degradation of soil pollutants, 

nutrient mobilization, production of phytostimulators or suppression of plant pathogens 

(Zamioudis & Pieterse, 2012). In addition, PGPR and PGPF can enhance the resistance of the 

plant towards plant pathogens through the induction of the induced systemic resistance (ISR) 

of the plant (Mehari et al., 2015). 

Previous studies examined generally only one or two of the above mentioned effects of 

biochar on agricultural properties (e.g. soil physicochemical and biological properties, crop 

productivity and performance, plant health or rhizosphere microbiology). However, in order 

to define biochar as a positive or negative operator on the crop-soil/substrate system, all these 

individual factors need to be integrated in order to estimate the overall impact and to 

understand the underlying mechanism. Therefore, in this chapter, two target crop systems 

were selected for bio-assays: lettuce and strawberry. Lettuce is typically well adapted for 

growth in field-soil, representing a complex environment for the plant roots. Strawberry grows 

well in a soilless system such as white peat, a well standardised environment with a low 

nutritional and microbial background. Lettuce is known to be responsive to nutrients 

(Upadhyay et al., 2014) and Rhizoctonia solani was chosen as pathogen system, as it is the 

predominant pathogen causing basal rot on lettuce (Van Beneden et al., 2009). Strawberry 

was infected with Botrytis cinerea, known as a serious pathogen reported to cause fruit losses 
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up to 50% (Jarvis, 1962). However, the leaves are also very important in the infection cycle, as 

infection of leaves by B. cinerea may lead to increased inoculum production when leaves are 

senescing in a perennial growing system (Braun and Sutton 1988; Sutton and Peng, 1993).  

The effect of 1% or 3% biochar incorporation on the lettuce-soil and strawberry-substrate 

systems will be monitored at the end of the bioassays for the composition of the plant growth 

media, the plant and root growth, plant and fruit disease susceptibility, fruit yield, and the 

rhizosphere microbiology (bacteria and fungi), in which we expect a different outcome for the 

two systems. To study the rhizosphere microbiology, both amplicon sequencing and 

phospholipid fatty acid (PLFA) analysis were used. For the strawberry system, the effect of 

additional fertilization and liming of the peat on these properties will also be tested. This 

resulted in two bioassays referred to as the ‘unfertilized peat experiment’ and the ‘fertilized 

peat experiment’ for strawberry plants grown in unfertilized/unlimed peat and 

fertilized/limed peat respectively. 

Biochar is expected to affect the composition of the plant growth media, such as pH, carbon 

content, nutrient availability, microbiology and water management and availability. It has 

previously been suggested that the effect of biochar on crop productivity would be dose and 

crop dependent (Gravel et al., 2013), but we realize that it should also be soil or substrate 

dependent. Therefore, in the present chapter the plant growth media were well characterized 

before and after the plant growth tests. The used field soil had an optimal pH and stored 

relevant nutrient concentrations for growth of lettuce. The white peat of the strawberry was 

confirmed to be low in plant nutrients and microbial diversity, and had a low pH. Based on 

previous reports, we expected that biochar has a neutralising effect on the peat pH and a 

fertilising effect for the plant (Carter et al., 2013). Effects beyond these two factors were 

tested by also combining biochar mixed in white peat with liming and extra addition of plant 

nutrient compounds. This Chapter aims to increase our understanding of the effect of biochar 

on the relation between the physicochemical properties of the plant growth media, crop 

growth, disease susceptibility and the rhizosphere microbial community. This kind of 

information is needed to fully appreciate the role of biochar as a soil or substrate amendment 

for agriculture.
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2.1  MATERIALS AND METHODS  

In this section, an overview of the materials and methods for the physicochemical 

characterisation of the plant growth media (2.1.1-2.1.3), the lettuce and strawberry bioassays 

(2.1.4-2.1.6), and the rhizosphere microbiology (2.1.7-2.1.8) is provided. In the end, an 

overview of statistical methods is given (2.1.9). 

2.1.1 Chemical characterization of biochar and plant growth medium  

Biochar (BC) was prepared from holm oak at 650 °C for 12-18 h and was kindly provided by 

Proininso S.A. (Malaga, Spain). This biochar consists of 72.4% dry matter (DM) (%/fresh), 

77.8% organic matter (%/DM) and 74.2% C (%/DM) and was previously used and fully 

characterized by Vandecasteele et al. (2014, 2016).   

Field soil used in the lettuce assay was sampled from the arable layer 0-20 cm of an ongoing 

field experiment at ILVO (D’Hose et al., 2016) and its chemical properties at the beginning and 

end of the experiment were measured as described below (2.1.2) and are listed in Additional 

Information (AI) Table AI2.1 and Table AI2.2, respectively. This sandy loam soil (pH-KCl = 5.79; 

clay = 5.3%; silt = 37.7%; sand = 57.0%) was sieved (1 cm), air-dried (99% dry matter/fresh), 

and stored at room temperature until use.  

Peat used in the strawberry assays was NOVOBALT white peat 100% (AVEVE Lammens, 

Wetteren, Belgium). The chemical properties of the ‘NOVOBALT peat’ at the beginning (week 

1) and end (week 13) of the experiments are listed in Table AI2.3 and Table AI2.4,  respectively. 

2.1.2 Chemical characterization of soil and amended soil 

Methods for the chemical characterisation of soil and peat are based on European Standards 

developed by the European Committee for standardization (CEN) or by the International 

Organization for Standardization (ISO). European Standard EN numbers or ISO numbers refer 

to the specific standards. 

Soil was sampled at the start and the end of the lettuce experiment for chemical analysis. At 

the start of the experiment, 1 L of thoroughly mixed soil was sampled after one week of pre-

incubation. At the end of the experiment the soil that remained after sampling for rhizosphere 

microbiology (section 2.1.7 and 2.1.8) was used (± 1 L).  

Prior to chemical analysis, the soil samples were thoroughly mixed and divided into three sub-

samples. The first sub-sample was used immediately for pH-KCl, Electrical Conductivity (EC) 

and soil mineral N (NO3
--N + NH4

+-N) determination. Soil dry matter content was determined 
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by oven drying at 105 °C. The pH was measured potentiometrically in a 1:5 soil:KCl (1 M) 

extract according to ISO 10390. The EC was measured by means of a temperature 

compensating conductivity meter (E SK 10B electrode, 25°C) in a 1:5 soil:H2O extract according 

to EN 13038. Soil mineral N was determined in a 1 M KCl extract according to ISO TS14256-

1:2003 with a Skalar San++ mineral N analyser. The second and third sub-sample were oven 

dried at 45 °C and 70 °C, respectively. The samples were ground in a mortar and passed 

through a 2 mm and 250 µm sieve, respectively, prior to analysis of chemical soil properties. 

Ammonium lactate (AL) extractable elements were assessed on the second sub-sample by 

extracting plant-available concentrations of P, K, Ca, Mg, Fe, Mn and Na with ammonium 

lactate (extraction ratio 1:20) in dark polyethylene bottles, shaken for 4 hours (Egnér et al., 

1960). The suspension was filtered in dark polyethylene bottles that were stored at 4 °C until 

analysis. Elements were analysed using Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES, Varian Vista-Pro) with an axial torch. Total organic carbon (TOC) was 

measured on the third sub-sample by dry combustion at 1050 °C using a Skalar Primacs SLC 

TOC analyser (ISO 10694). 

2.1.3 Chemical characterization of peat and amended peat 

The substrate was sampled at the start and the end of the strawberry. At the start of the 

experiment, 1 L of thoroughly mixed peat was sampled after one week of pre-incubation. At 

the end of the experiment, all the remaining peat after sampling for studying the rhizosphere 

microbiology (section 2.1.7 and 2.1.8) was used (± 1 L).  

Dry matter content was determined according to EN 13040. EC (EN 13038) and pHH2O (EN 

13037) were measured in a 1:5 soil to water (v/v) suspension. Determination of organic matter 

content and ash was done according to EN 13039. Extraction (1:5 v/v) of water soluble 

nutrients and elements (NO3-N, NH4-N, Cl, Na, SO4 and PO4-P) was done according to EN 

13652, and measured with a Dionex DX-600 IC ion chromatography (Dionex, Sunnyvale, CA), 

and for NH4-N with a Skalar San++ mineral N analyzer. Plant-available concentrations of P, K, 

Ca, Mg, Fe and Mn were extracted (1:5 v/v) in ammonium acetate buffered at pH 4.65, and 

measured by CCD simultaneous ICP-OES (VISTA-PRO, Varian, Palo Alto, CA). 
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2.1.4 Lettuce-soil bioassay 

Air-dried field soil was either used as pure growing medium (1323 g field soil), or mixed with 

1% biochar (18 g BC + 1310 g field soil) or 3% biochar (54 g BC + 1273 g field soil) and pre-

incubated for one week at 15 °C. Initial moisture content was set to 40% water-filled pore 

space (WFPS), and bulk density was adjusted to 1400 g L-1. Subsequently, the mixed field soil 

was put in 1.5 L pots. Per pot, one 1 month old butterhead lettuce (Lactuca sativa, cultivar 

Alexandria) seedling was planted and placed in a growth chamber at 20 °C, 16 h/8 h day-night 

light regime and 80% relative humidity. Per treatment, seven plants were grown and this was 

done for two independent experiments. So, in total, fourteen biological replicates were grown 

for each treatment in which pots were placed in the growing chamber according to a 

completely randomised design. For each replicate separately, the soil moisture was adjusted 

weekly to 40% WFPS on the basis of measured mass loss and the supplied amount of water 

was recorded. No fertilizers were added during the experiment.  

After 8 weeks, the lettuce heads were harvested and weighed (fresh weight and dry weight (2 

days at 70 °C)).  

To determine the susceptibility of the lettuce plants towards Rhizoctonia solani infection, the 

R. solani bio assay was done after 7 weeks on the lettuce leaves as described below (section 

2.1.6). In each experiment, five plants were inoculated, thus in total 80 lesions per treatment 

were scored (5 plants x 4 leaves x 2 plugs x 2 experiments). 

To differentiate between the evaporation from the soil surface and transpiration by the 

lettuce plant, a separate experiment was run in the growth chamber with an identical set-up 

as described above, but without lettuce grown in the pots. For each replicate separately, the 

soil moisture was adjusted weekly to 40% WFPS on the basis of measured mass loss and the 

supplied amount of water was recorded. 

2.1.5 Strawberry-peat bioassays 

In the strawberry bioassays, peat was used as growing medium and used as either pure 

growing medium (298 g peat)  or mixed with 1% biochar (3.2 g BC + 295 g peat) or 3% biochar 

(9.4 g BC + 289 g peat). In the ‘fertilized peat’ experiment, 1.33 g L-1 fertilizer (PGMix, 

Peltracom, Ghent, Belgium) and 3 g L-1 lime (Dolokal extra, Ankerpoort NT, Maastricht, The 

Netherlands) were added to both the peat and peat/biochar mixtures (Table 2.1). No 

additional fertilizer was applied during plant growth for all experiments. The ‘unfertilized peat’ 
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and ‘fertlized peat’ experiments were both repeated. For each experiment, all substrates were 

wetted to obtain 40% WFPS, and bulk density was adjusted to 200 g L-1. Each mixture (peat, 

biochar/peat) was put in a closed bag and pre-incubated at 15 °C for one week. Subsequently, 

1.5 L pots were filled with the mixed substrates and a cold-stored bare-root strawberry 

(Fragaria x ananassa, cultivar Elsanta) transplant was planted in each pot. The plants were 

then arranged in the greenhouse in a completely randomized design and grown at 20 °C for 

up to 13 weeks. Every week, the moisture content of the substrate was adjusted to 40% WFPS 

based on mass loss. 

Table 2.1 Experimental set-up of the strawberry experiments 

 Lime 

(3 g L-1 

substrate) 

Fertilizer 

(1.33 g L-1 

substrate) 

Biochar dose  

(% on DM 

basis) 

Rhizosphere 

sampling time 

(weeks) 

Repeated 

Unfertilized peat 

experiment 
 

- - 0%, 1%, 3% 13  

Fertilized peat 

experiment 
 

+ + 0%, 3% 13  

 

In the ‘unfertilized peat’ and ‘fertilized peat’ experiments, 24 strawberry plants were grown 

per treatment. After 12 weeks of plant growth, the B. cinerea leaf inoculation was done as 

described in section 2.1.6. In each experiment, 12 plants per treatment were inoculated, thus 

in total 216 lesions per treatment were scored (12 plants x 3 leaves x 3 plugs per leaf x 2 

repetitions). Fruits were harvested, weighted and infected with B. cinerea isolate 895 as 

described below (section 2.1.6). Thirteen weeks after planting, the strawberry plants were 

collected and weighed (fresh weight and dry weight (2 days at 70°C)) and the rhizosphere was 

sampled from non-inoculated plants for PLFA analysis and amplicon sequencing as described 

in sections 2.1.7 and 2.1.8. Five replicates were sampled for each growing medium, which 

were used for both PLFA and amplicon sequencing. This was not repeated.   

2.1.6 Botrytis cinerea and Rhizoctonia solani bioassay 

To determine the susceptibility of lettuce plants towards R. solani, the detached leaf test of 

Van Beneden et al. (2009) was conducted. Four detached leaves of five lettuce plants were 

inoculated with two mycelial plugs (4 mm) of the R. solani AG1-1B isolate S014-22, one on 

each side of the leaf. Control leaves were inoculated with sterile potato dextrose agar (PDA) 

plugs. The leaves were placed in sealable plastic containers with moistened tissue paper and 
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incubated at 20 °C in the dark. The resulting lesions on the leaflets were recorded using a 0-4 

disease scale with 0 = 0% of the leaf area infected (no symptoms); 1 = <25% of the leaf area is 

affected; 2 = 25-50% of the leaf area is affected; 3 = 51-75% of the leaf are is affected; 4 = 

>75% of the leaf area is infected. An example of this disease scale on strawberry leaves is given 

in Figure 2.1. 

Strawberry plants and fruits were inoculated with B. cinerea at pre-set time points for all 

experiments. Plant leaves were inoculated using the method of Meller-Harel et al. (2012). 

Briefly, the B. cinerea isolate 895 (Debode et al., 2013) was cultured on PDA at 20 °C for four 

days. Agar discs (4 mm) containing pathogen mycelium and conidiophores were cut out from 

the colony edge and placed, mycelium side down, on the surface of three young fully 

expanded strawberry leaves per plant, with one disc per leaflet. Control leaves were 

inoculated with sterile PDA plugs. All plants were sprayed with water and each pot (volume: 

1.5 L) was covered with a plastic box for one week to create conditions of high humidity. The 

resulting lesions on the leaflets were recorded one week after inoculation using the same 0-4 

disease scale described in the R. solani bioassay (Figure 2.1). After scoring the infection, 

inoculated leaves were removed from the plant.  

 

Figure 2.1 Disease scale used for both the lettuce and strawberry leaf infection with Rhizoctonia solani and 

Botrytis cinerea respectively. 0 = 0% of the leaf area infected (no symptoms); 1 = <25% of the leaf area is affected; 

2 = 25-50% of the leaf area is affected; 3 = 51-75% of the leaf are is affected; 4 = >75% of the leaf area is infected.  

Inoculation of the strawberry fruits was based on the method of Bhaskara Reddy et al. (2000). 

Briefly, individual ripe strawberry fruits were inoculated with 20 µL conidial suspension (2 × 
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105 conidia mL-1) of B. cinerea and incubated at 11 °C under humid conditions. When the first 

symptoms appeared, the strawberries were evaluated daily and spoiled fruits were discarded 

to avoid secondary infection. The area under the disease progress curve (AUDPC) was 

calculated for the infected fruits (Campbell & Madden, 1990).  

2.1.7 Rhizosphere microbiology: PLFA analysis 

Soil samples including plant roots (+/- 50 g) were taken from each pot and stored at -20 °C and 

then freeze-dried. In total 4 biological repetitions within the lettuce bioassay and 5 repetitions 

per treatment within the ‘unfertilized peat’ and ‘fertilized peat’ experiments of the strawberry 

bioassay were used for PLFA analysis. Total lipids were isolated from 6 g of freeze-dried soil or 

1 g of freeze-dried substrate in a phosphate buffer:chloroform:methanol mixture (0.9:1:2). 

Neutral, glycol- and phospholipids were separated by solid phase extraction, eluting, 

respectively, chloroform, acetone and methanol. Phospholipids were saponified to obtain free 

fatty acids, which were subsequently methylated using 0.2 M methanolic KOH to form fatty 

acid methyl esters (FAMEs). FAMEs were analysed with a capillary gas chromatograph-flame 

ionisation detector (Perkin Elmer Clarus 600, Perkin Elmer, Waltham, USA) with a col-elite-

2560 column (100 m length x 0.25 mm ID, 0.25 µm film thickness, Perkin Elmer). The 

temperature program started at 75 °C, followed by a heating rate of 10 °C minute-1 up to 180 

°C and followed by a final heating rate of 2 °C minute-1 up to 240 °C. PLFA’s were identified 

and quantified from the retention time and response factor of each FAME in the external 

FAME and BAME mix (Sigma Aldrich, St Louis, MO, USA). The C values were corrected using a 

working standard C19:0. 

The abundance of individual PLFAs was calculated in absolute C amounts (PLFA-C, Cx [nmol g-

1]) based on the concentrations in the liquid extracts using the following formula: 

𝐶𝑥[nmol g−1] =
Ax .  ci[µg] . 1000

Ai .  W [g] .  M [g µmol−1]
 

Where Cx is the concentration of the fatty acid studied, Ax is the peak area of the fatty acid 

studied, Ai is the peak area of the internal standard, ci is the absolute amount of internal 

standard in the vial [µg], W is the amount of soil [g], M is the molecular weight of the fatty 

acid [g µmol-1]. 

Twenty PLFAs were selected because of their use as biomarker fatty acids for six distinct 

microbial groups: Gram-positive bacteria (i-C15:0, a-C15:0, i-C16:0, i-C17:0), Gram-negative 
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bacteria (C16:1c9, C16:1t9, C17:0cy, C18:1c11, C19:0cy), bacteria (non-specific) (C14:0, C15:0, 

C16:0, C17:0, C18:0), actinomycetes (10Me-C16:0, 10Me-C17:0, 10Me-C18:0), fungi (C18:1c9, 

C18:2n9,12) and mycorrhiza (C16:1c11). PLFAs were used as markers for specific bacterial or 

fungal groups according to Kroppenstedt et al. (1984), Brennan (1988), O’Leary & Wilkinson 

(1988), Frostegård & Bååth (1996), Stahl & Klug (1996), Zelles (1997) and Olsson (1999). 

 

2.1.8 Rhizosphere microbiology: HTS 

The rhizosphere was sampled from all strawberry and lettuce roots at the end of the plant 

bioassay experiments. Rhizosphere sampling was done according to Lundberg et al. (2012). 

Briefly, roots were placed in a sterile 50 mL tube containing 25 mL phosphate buffer. Tubes 

were vortexed at maximum speed for 15 s, which released most of the rhizosphere soil from 

the roots and turned the water turbid. The turbid solution was then filtered through a 100 µm 

nylon mesh cell strainer into a new 50 mL tube to remove plant parts and large sediment 

particles. The turbid filtrate was further centrifuged for 15 min at 3,200 g to form a loose pellet 

containing fine sediment and micro-organisms. These pellets (250 mg) were immediately used 

for DNA extraction with the PowerSoil DNA isolation kit (Mo Bio, Carlsbad, USA), according to 

the manufacturer's instructions, or treated further for storage and later use. For storage, 1 mL 

subsamples were transferred to 1.5 mL microfuge tubes, spun at 10,000 g for 5 min to form 

tight pellets. These rhizosphere pellets, averaging 25 mg, were flash-frozen in liquid nitrogen 

and stored at -80 °C until DNA extraction.  

Extracted DNA was used for either identifying bacterial rhizosphere populations (V3-V4 16S 

rRNA gene) or fungal rhizosphere populations (ITS2). For all experiments (‘unfertilized peat’, 

‘fertilized peat’ experiments of the strawberry bioassay and for the lettuce bioassay), 5 

replicates were taken of non-inoculated plants.  

16S rRNA gene and ITS2 amplicon sequencing 

Illumina amplicon sequencing of the bacterial and fungal rhizosphere populations was done 

on the V3-V4 fragment of the 16S rRNA gene and the ITS2 gene fragment, respectively, using 

Illumina technology (Illumina, San Diego, CA, USA). The V3-V4 fragments were amplified using 

the primers S-D-Bact-0341-b-S-17 (CCTACGGGNGGCWGCAG) and S-D-Bact-0785-a-A-21 

(GACTACHVGGGTATCTAATCC), as described by Klindworth et al. (2013), extended with 

Illumina specific adaptors. Following PCR conditions were used: initial denaturation at 95 °C 



Chapter 2 

46 
 

for 3 min, followed by 25 cycles consisting of denaturation (95 °C for 30 s), annealing (55 °C 

for 30 s) and extension (72 °C for 30 min) and a final extension step at 72 °C for 5 min. To 

amplify the fungal rDNA-ITS2 region an adapted forward primer of fITS7bis from Ihrmark et 

al. (2012) (GTGAATCATCRAATYTTTG) and the ITS4NGSr reverse primer 

(CAWCGATGAAGAACGYAG) (Tedersoo et al. 2014) were used, both extended with Illumina 

specific adaptors. The ITS2-PCR conditions were as above, except for 30 cycles with an 

annealing time of 1 min. A second PCR was done to attach dual indices and sequencing 

adaptors to all fragments, using the Nextera XT index kit (Illumina, San Diego, CA, USA). Same 

PCR conditions were used as in the first PCR, but 8 cycles were used instead of 25 or 30 PCR 

cycles. Mastermixes for all PCRs were prepared using the Kapa HiFi Hotstart ReadyMix 

(Kapabiosystems, Wilmington, MA, USA) according to the manufacturer’s instructions and 

total reaction volumes were 25 and 50 µL for the first and second PCR, respectively. Each PCR 

was followed by a PCR product clean-up using the HighPrep PCR reagent kit (MAGBIO, 

Gaithersburg, MD). The final libraries were quality controlled using the Qiaxcel Advanced, with 

the Qiaxcel DNA High Resolution kit (QIAGEN, Germantwon, MD, USA), and concentrations 

were measured using the Quantus double-stranded DNA assay (Promega, Madison, WI, USA). 

The final barcoded libraries of each sample were diluted to 10 nM and pooled in equal 

amounts. Resulting libraries were sequenced using Illumina MiSeq v3 technology (2 x 300 bp, 

paired-end) by Macrogen, South-Korea, using 30% PhiX DNA as spike-in.  

Sequence reads processing 

Demultiplexing of the amplicon dataset and removal of the barcodes was performed by the 

sequencing provider. The raw demultiplexed sequence data is available in NCBI’s Sequence 

Read Archive under the submission PRJNA294259 for the bacterial sequences and 

PRJNA317548 for the fungal sequences of the lettuce bioassay and the ‘unfertilized peat’ and 

‘fertilized peat’ strawberry experiments. Trimmomatic v0.32 was used for removing the 

primers (Bolger et al., 2014). Raw Illumina forward and reverse reads were merged using the 

program PEAR v.0.9.8 (Zhang et al., 2014). Length cut-off values for the merged sequences 

were set between 400 and 450 bp for the V3-V4 16S rRNA gene region and between 200 and 

480 bp for the ITS2 region. A minimum overlap size of 120 bp and quality score threshold of 

30 were used for all sequences. To extract the ITS2 gene sequences from the complete 

amplicon sequence, which includes parts of the neighbouring, highly conserved, ribosomal 
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genes, the ITSx program v.1.0.11 was used (Bengtsson-Palme et al. 2013). In the following 

steps, different programs of the Usearch software v7.0.1090 were used (Edgar, 2014). Merged 

sequences were quality filtered with a maximum expected error of 3 with the “fastq_filter” 

option. Next, sequences of all samples that needed to be compared to each other were 

merged, dereplicated and sorted by size. Clustering the reads into Operational Taxonomic 

Units (OTUs) was done using Uparse, with an identity level of 97% for bacterial sequences and 

98.5% for fungal sequences (Edgar, 2014; Ihrmark et al., 2012). Chimeras were removed from 

the V3-V4 gene fragments using “uchime_ref” with the RDP Gold database as a reference 

(Edgar et al., 2011). Finally, sequences of individual samples were mapped back to the 

representative OTUs using the “usearch_global” algorithm at 97% identity, and converted into 

an OTU table (McDonald et al., 2012).  

For each individual library, two negative controls were included, one for the fungal and one 

for the bacterial primer amplifications. After quality filtering, all negative controls gave a very 

low number of reads, indicating that probably no contamination of the samples occurred 

during the sample preparation.  

2.1.9 Downstream data analysis and statistics 

In the lettuce bioassay and the ‘unfertilized peat’ and ‘fertilized peat’ strawberry experiments, 

chemical soil and substrate properties and water use were analysed as a one-way ANOVA with 

treatment (i.e. % biochar) as a factor using SPSS 16.0 software. Significant differences (p < 

0.05) between means were determined by Scheffe’s test. To use the ANOVA analysis, 

homogeneity of the variances was tested using the Levene’s test.  

The plant properties data was analysed for three dependent variables: plant fresh weight, dry 

weight and leaf lesions. Homogeneity was tested using Levene’s test. If variances were equal, 

a t-test was used, otherwise the Wilcoxon-rank sum test was used. For the strawberry fruit 

inoculation experiment with B. cinerea, the effect of biochar addition (factor) was studied 

using a repeated measures ANOVA, as fruit rot was evaluated over 3 time points.   

Statistical differences in the PLFA profiles between the different treatments were determined 

using a MANOVA analysis for the absolute abundances. Statistical differences of the relative 

abundances of these PLFA data were determined using ANOVA analyses by the Statistical 
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Analysis of Metagenomic Profiles (STAMP) program (Parks and Beiko, 2010). Correction of 

multiple testing was done using the Benjamini-Hochberg False Discovery Rate (FDR) method.  

OTU tables of the 16S V3-V4 and ITS2 amplicon sequencing were analysed using the QIIME 

software package (v1.9.0) (Caporaso et al., 2010a). Taxonomy was assigned with the script 

“assign_taxonomy.py” using the uclust method considering maximum 3 database hits, with 

the Silva v119 97% rep set (as provided by QIIME) as reference for the bacterial sequences 

and UNITE v7 (dynamic) for fungal sequences (Caporaso et al., 2010b; Quast et al., 2012; 

Kõljalg et al. 2013).  

For the microbial analysis, both differences in community composition and in community 

richness were studied. Within the lettuce bioassay and the strawberry ‘unfertilized peat’ and 

‘fertilized peat’ experiments, we first focused on the total community composition differences 

between groups, in which treatment of biochar is the main factor in the experiment. The 

multivariate analysis was done using the specific R package vegan (version 2.0-10) (Oksanen 

et al., 2010). The dissimilarity matrix, based on the Bray-Curtis dissimilarity index, was 

calculated from the OTU table as generated by Usearch, for both the bacterial and fungal 

sequences. Using the betadisper function, the homogeneity of the variances was checked on 

this dissimilarity matrix. Further, the significance of biochar treatment was analyzed using 

PERMANOVA analysis, in which the Bray-Curtis dissimilarity index matrix was used as input. 

Second, the STAMP analysis software was used to study individual differences in the bacterial 

groups (Parks and Beiko, 2010). For each experiment, ANOVA analyses were done on a species 

table to determine the effect of biochar addition on the individual groups (phyla, species). To 

correct for multiple testing, we used the Benjamini-Hochberg FDR method.  

To study community diversity and richness in the lettuce bioassay and the strawberry 

‘unfertilized peat’ and ‘fertilized peat’ experiments, Shannon-Wiener diversity indices and the 

total number of observed OTUs were calculated. The Shannon-Wiener diversity indices were 

calculated using the “alpha_diversity.py” script in the QIIME software package, while the 

number of observed OTUs were counted per sample on a rarefaction depth of 10,000 

sequences. Rarefaction analysis was done using the “alpha_rarefaction.py” script. In total, two 

samples (1 sample of the lettuce 1% BC treatment, 1 sample of the lettuce 3% BC treatment) 

contained a lower number of bacterial reads than the established rarefaction depth and were 

therefore deleted for further analysis. To study differences among mean richness and diversity 
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indices, ANOVA analysis was done. Tukey HSD test was used to find the mean richness and 

diversity indices that are significantly different from each other. Both analyses were done 

using R (version 3.1.0) (R core team, 2015). To correlate chemical data with the bacterial OTU 

tables, a distance-based redundancy analysis was done, using Bray-Curtis as dissimilarity 

index. Analysis was done using the function “capscale” in the R package vegan (Oksanen et al., 

2010). 
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2.2 RESULTS 

In this section, the effect of biochar on the physicochemical properties of the plant growth 

media (2.2.1), the plant growth and disease susceptibility (2.2.2) and the rhizosphere 

microbiome (2.2.3) are studied. In addition, the relation of the microbiome community and 

the plant-soil/substrate properties are investigated (2.2.4).  

2.2.1 Effect of biochar on physicochemical properties of plant growth media 

Changes in chemical properties and water use of the plant growth media that were caused by 

the addition of biochar were measured at the beginning and end of each bio-assay. Results 

are listed in Table AI2.1 and Table AI2.2 for the field soil used for lettuce growth and Table 

AI2.3 and Table AI2.4 the peat used for strawberry growth. Only those properties in which we 

expected changes to occur during the short period of the bio-assay were measured at the end 

of the experiment (Nelissen et al., 2015).  

Addition of 3% biochar to the field soil significantly increased the plant-available 

concentrations of the macronutrients P, K, Ca and Mg. Potassium concentrations also 

increased in the 1% biochar/field soil variant. Moreover, addition of biochar in a 1% or 3% 

concentration increased pH and TOC content, which was still observed at the end of the 

experiment. A lower mineral nitrogen concentration was observed for both biochar dosages 

at the start of the experiment. This mineral N concentration was reduced at the end of the 

experiment with no significant differences in concentration between soils treated with 

different biochar dosages (Table AI2.1). At the end of the experiment, the EC value increased 

for soils treated with 3% biochar (Table AI2.2). Water use was poorly correlated with the fresh 

lettuce biomass, but was significantly lower for the 1 and 3% biochar treatment when 

compared to the 0% biochar control. Biochar addition reduced the evaporation from the soil 

rather than affecting the water use by the plants, as shown by the similar decline (12%) in 

water use by the pot mixes without lettuce plants (0% biochar: 611 ml 3% biochar: 536 ml).  

Similarly, chemical properties of the biochar amended and unamended peat were determined 

for both the ‘unfertilized’ and ‘fertilized’ peat experiments. In the ‘fertilized peat’ 

experiments, statistical variations between the non-biochar and biochar treated peat at the 

beginning of the experiment could not be determined due to a too low number of replications 

(n=2). This was also the case for the 1% biochar application on of the non-fertilized peat 

experiment (Table AI2.3). 
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For both the ‘unfertilized’ and ‘fertilized’ peat experiment, the total amount of mineral N was 

depleted after 13 weeks (mineral N concentrations < 5 mg/L peat). Application of biochar in 

unfertilized peat (experiment 1; Table 1) significantly raised the water-extractable K, Ca and 

Mn concentrations and the water-soluble P concentrations. However values remained 

extremely low compared to the reference values. Additionally the substrate with biochar had 

a significantly lower organic matter (OM) content and Cl concentration at the beginning of the 

experiments (Table AI2.3). Peat that was additionally fertilized and limed still showed an 

increase in Ca and Mn concentrations due to biochar application, but this could not statistically 

be proven. The increase of water dissolved P due to biochar addition was still detected at the 

end of the unfertilized peat experiments (Table AI2.4), but compared to the ‘fertilized peat’ 

experiment, these concentrations are extremely low. In contradiction with the lettuce growth 

in the field soil/biochar mixes, water use in the strawberry experiment was strongly positively 

correlated with the plant biomass. 

2.2.2 Effect of biochar on plant growth and disease susceptibility  

The effects of biochar on lettuce and strawberry growth and disease susceptibility are 

reported in Table 2.2. Overall, biochar addition to the field soil had no effect on the growth of 

lettuce, expressed as fresh and dry shoot weight (Table 2.2). In contrast, 3% biochar 

application raised the strawberry plant weight significantly, with 166.5% in fresh weight and 

114.3% in dry weight. Supplemental addition of lime and fertilizer to the soil reduced the 

growth stimulating effect of the biochar itself, although a distinct but not significant increase 

in fresh weight due to biochar in the mix was still noted (Table 2.2).  

Biochar addition did not affect lettuce resistance to R. solani. No remarkable differences in 

lesion sizes could be observed on the biochar/field soil grown lettuce leaves (Table 2.2), while 

biochar addition to peat did reduce the susceptibility of  the strawberry plants to B. cinerea. 

A significant reduction of lesion sizes was observed for the leaves of plants grown in peat 

treated with 3% biochar compared to the control group (0% biochar). However, this effect of 

biochar was absent when the peat was supplemented with lime and fertilizer. A trend towards 

a lower infection rate was still seen, but was not significant. It should be noted that during 

these experiments an overall low infection rate was observed (Table 2.2), which may explain 

the non-significant effect.  
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Table 2.2 Properties of lettuce (soil – 8 weeks of plant growth) and strawberry (peat – 13 weeks of plant 

growth) plants with and without biochar addition (lettuce bioassay, n=14; strawberry bioassays, n=40) 

 Fresh weight   

(g plant material) 

Dry weight 

(g plant material) 

Disease resistance (leaf 

inoculation)b 

Lettuce in soil    

0% biochar  38.56±0.32 3.88±0.08 2.16±0.30 

1% biochar 36.88±0.47 3.62±0.09 2.02±0.27 

3% biochar 34.26±0.34 3.20±0.06 2.70±0.23 

Strawberry in peat     

0% biochar  2.21±0.06 0.63±0.01 1.96±0.07 

1% biochar 2.24±0.17 0.66±0.03 2.07±0.08 

3% biochar 5.89±0.15 1.35±0.04 1.19±0.08 

Strawberry – peat + 

lime + fertilizer  

   

0% biochar + lime + 

fertilizer 

39.22±1.54 14.90±0.60 0.50±0.08 

3% biochar + lime + 

fertilizer 

42.04±1.37 15.77±0.72 0.44±0.07 

aValues marked in bold are statistically different from the control treatment (= without biochar). 
bLesions of Rhizoctonia solani on lettuce and Botrytis cinerea on strawberry using a disease scale of 0-4. 

In addition to the infection of the strawberry leaves, the strawberry fruits were infected with 

B. cinerea and the number of symptomatic fruits was recorded over time for the ‘fertilized 

peat’ experiment (Figure 2.2). Due to a low number of fruits developed in the strawberry 

grown in unfertilized peat, fruit inoculation was excluded in this experiment. Strawberry fruits 

produced on peat/biochar (3%) were less susceptible to the grey mold pathogen B. cinerea. 

The infection process was slowed down, as indicated by a reduced number of symptomatic 

fruit at time point 1 and 2 (p < 0.05) (Figure 2.2).   

 

Figure 2.2 Effect of 3% biochar treatment on the postharvest decay of strawberry fruit caused by Botrytis 

cinerea. Both lime and PGMix were added to the peat. Data were pooled across 2 plant experiment repetitions 

and 4 picks per experiment. In total, 109 fruits were inoculated per treatment. (Time: number of days measured 

since the first symptoms of infection.  
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2.2.3 Effect of biochar on the rhizosphere microbiology  

The effect of biochar on the bacterial and fungal community was first of all analysed through 

PLFA. Application of biochar at 1% or 3% in the field soil had no significant effect on the 

microbial groups, except for the stimulation of arbuscular mycorrhizae, represented by one 

biomarker (C16:1c11) (data not shown).  

In the peat substrate, the biochar addition did not change the total microbial biomass (Table 

AI2.5) and the absolute number of fatty acids per microbial group, but induced some specific 

changes in the microbial content. The relative abundances of six biomarkers were significantly 

different in the peat/biochar mix compared to the control (0% biochar), representing a 

decrease in Gram negative bacteria (ANOVA, p=0.047) and non-specific bacteria (ANOVA, 

p=5.57*10-3) and a significant increase in fungi (ANOVA, p=0.042) (Table AI2.6). Once biochar 

was enriched with fertilizer and lime however, these shifts in microbial relative abundances 

due to biochar application were absent in peat (Table AI2.6). 

Second, we used amplicon sequencing to study the effect of biochar on the bacterial 

community. Differences in bacterial community composition of the lettuce rhizosphere grown 

in field soil with variable dosage of biochar (0%, 1% and 3%) were studied using PERMANOVA 

analysis. No significant differences were observed between the treatments (p=0.127), 

indicating that biochar application did not influence the bacterial community composition in 

the lettuce rhizophere.  

For the bacterial community composition of the rhizosphere of strawberry plants of the 

‘unfertilized peat’ and ‘fertilized peat’ experiments, an interaction effect between the addition 

of lime/fertilizer and biochar was present (PERMANOVA, p=0.035). Therefore the effect of 

biochar on the bacterial community composition was analysed individually for these 

experiments. There were significant differences due to the addition of biochar in the 

rhizosphere bacterial communities developed in unfertilized and unlimed peat (PERMANOVA, 

p=0.01), and also in fertilized and limed peat (PERMANOVA, p=0.019). 

To determine the bacterial groups influenced by the addition of biochar, the taxonomic 

profiles of the strawberry rhizosphere bacteria were studied at the end of plant growth. Both 

a significant reduction in the relative abundance of Proteobacteria (ANOVA, corrected p-

value=0.020) and a significant increase in the relative abundance of Planctomycetes (ANOVA, 

corrected p-value = 0.024) resulted from addition of biochar to the peat substrate (Table 2.3). 
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Furthermore a relatively large, but not significant reduction in Acidobacteria and increase in 

Actinobacteria occurred upon addition of 3% biochar to peat. In the ‘fertilized experiment’ 

biochar addition only induced changes in two, relatively small bacterial groups: the 

Armatimonadetes (reduction) and the Cyanobacteria (increase) (Table 2.3).  

Table 2.3 Relative abundances (%) (average±standard error) of the eight most dominating phyla (relative 
abundance >1%) in the strawberry rhizosphere. These comprise almost 95% of the total bacterial community in 
the rhizosphere (n>=5). Phyla that are statistically significant (p<0.05) in abundance for the biochar treatments 
compared to the control group (0% biochar) are indicated with an asterix. 

Phylum    Experiment 1 Experiment 2 

 Control 1% biochar 3% biochar  control 3% biochar  

Proteobacteria (%) 53.0±1.4 50.8±2.0 44.1±4.4 * 49.3±2.5 44.9±1.0  

Acidobacteria (%) 17.6±1.0 16.4±0.4 15.6±0.5  15.2±0.5 16.4±0.5  

Actinobacteria (%) 7.6±1.0 7.2±0.6 10.6±0.4  8.7±0.8 9.5±0.5  

Verrucomicrobia (%) 9.0±0.5 9.5±0.7 10.2±0.9  5.8±0.6 7.1±0.3  

Bacteroidetes (%) 5.2±0.7 6.9±0.7 4.2±0.4  7.0±1.0 7.5±0.6  

Planctomycetes (%) 2.0±0.3 2.5±0.3 1.1±0.3 * 3.1±0.5 3.7±0.2  

Candidate division TM7 (%) 0.7±0.1 0.5±0.1 1.1±0.1  2.1±0.2 2.5±0.2  

Armatimonadetes (%) 0.7±0.1 0.6±0.1 1.1±0.1  2.7±0.3 1.8±0.3 * 

Cyanobacteria (%) 0.2±0.1 0.2±0.1 0.3±0.1  0.8±0.2 1.4±0.2 * 

 

Genera that shift in relative abundance due to biochar addition at the end of strawberry 

growth (‘unfertilized peat’ and ‘fertilized peat’ experiments) were also determined for either 

peat and fertilized and limed peat. Genera were first subsampled by only retaining those with 

a relative abundance of at least 0.1%. In total, eleven genera of the 190 of the strawberry 

rhizosphere in the unfertilized and unlimed peat shifted in relative abundance due to the 

addition of biochar, among which three genera known to harbour plant-beneficial agents, two 

with microbial N cycling and one playing a major role in plant growth promotion (Table 2.4). 

For the strawberry rhizosphere of fertilized and limed peat, an additional treatment of biochar 

gave significant changes in the relative abundances of thirteen genera of the 148, of which 

two are described in literature as potential biocontrol agents (increase) and one is involved in 

N cycling (increase) (Table 2.5).  

Additionally, the bacterial composition of pure biochar was studied to see if biochar could 

serve as an additional habitat for micro-organisms. Eighty-two different genera (with relative 

abundance >0.01%) were detected, and three of these genera (Bauldia, Devosia, Opitutus) 

were also among the bacterial types enriched by adding biochar to peat. 
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Table 2.4 Relative abundances of genera (mean ± standard error) of the strawberry rhizosphere (‘Unfertilized 
peat experiment’, no lime or fertilizer added), which are significantly changed by the addition of biochar.  
Functions of the genera related to promotion of plant growth and biocontrol, are listed as previously described 
in literature.  The total number of OTUs classified as the genus respectively are indicated in the column N°. 

Species N°  Peat Function References 

  0% biochar 1% biochar 3% biochar    

Acidocella (%) 5 9.85±3.15 4.78±2.62 2.55±0.94  /  

Bdellovibrio (%) 11 0.05±0.02 0.04±0.01 0.11±0.05  Biocontrol agent 

gram - bacteria 

Dori-Bachash et al. 

(2008); Jurkevitch et 

al. (2000) 

Devosia (%) 3 0.15±0.12 0.2±0.12 0.42±0.07  N fixation Rivas et al. (2002);  

Hoque et al. (2011) 

Haliangium (%) 30 0.05±0.01 0.13±0.09 0.25±0.04  Possible biocontrol 

agent (production 

haliangicin-

antifungal) 

Fudou et al. (2001);  

Kundim et al. (2003) 

Marmoricola (%) 3 0.01±0.01 0.04±0.02 0.07±0.03  /  

Phenylobacterium 

(%) 

3 0.25±0.13 0.44±0.10 0.62±0.17  /  

Rhizobium (%) 4 0.04±0.04 0.06±0.02 0.15±0.05  N fixation Courty et al. (2015); 

 Meng et al. (2015) 

Schlesneria (%) 5 0.30±0.10 0.38±0.07 0.65±0.11  /  

Singulisphaera 

(%) 

10 0.16±0.04 0.15±0.03 0.23±0.04  /  

Sorangium (%) 10 0.04±0.03 0.07±0.02 0.11±0.03  Potential biocontrol 

agent (antifungal 

activity) 

Ligon & Hill (2001);  

Kim & Yun (2011) 

Variovorax (%) 2 0.02±0.01 0.05±0.04 0.13±0.03  Plant growth 

promotion 

Chen et al. (2013);  

Zhang et al. (2013) 

 

Table 2.5 Relative abundances of genera (mean ± standard error) of the strawberry rhizosphere (‘Fertilized 
peat experiment’, lime and fertilizer added to peat), which are significantly changed by the addition of biochar. 
Functions of the genera related to promotion of plant growth and biocontrol, are listed as previously described 
in literature. The total number of OTUs classified as the genus respectively are indicated in the column N°. 

Genera N° Peat+lime+fertilizer  Function References 

   0% biochar 3% biochar    

Aquicella (%) 34  0.33±0.08 0.25±0.05  /  

Bauldia (%) 3  0.41±0.03 0.26±0.04  /  

Devosia (%) 3  0.60±0.04 0.87±0.03  N fixation Rivas et al. (2002); 

Hoque et al. (2011) 

Haliangium (%) 30  0.30±0.11 0.98±0.09  Possible biocontrol agent 

(production haliangicin-antifungal) 

Fudou et al. (2001); 

Kundim et al. (2003) 

Inquilinus (%) 2  0.07±0.01 0.15±0.02  /  

Nocardia (%) 3  0.34±0.01 0.08±0.01  /  

Opitutus (%) 16  0.34±0.12 1.10±0.07  /  

Planctomyces (%) 38  0.05±0.01 0.12±0.01  /  

Prosthecobacter 

(%) 

6  0.30±0.02 0.16±0.04  /  

Pseudolabrys(%) 2  0.31±0.07 0.94±0.07  /  

Reyranella (%) 5  1.22±0.01 0.13±0.02  /  

Rhodanobacter 

(%) 

2  1.20±0.25 3.01±0.12  Possible biocontrol agent De Clercq et al. (2006) 

Taibaiella (%) 6  0.02±0.00 0.10±0.03  /  
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To have insight in the complexity of the rhizosphere bacterial communities of both the lettuce 

and strawberry rhizospheres, community richness (number of observed OTUs) and diversity 

(Shannon-Wiener diversity indices) were estimated in the different treatments (Table 2.6).  

Table 2.6 Effect of biochar addition on the number of observed OTUs (calculated at a rarefaction depth of 10.000 
sequences) and Shannon-wiener diversity indices (mean±standard error) for the strawberry and the lettuce 
rhizosphere. 

BACTERIA Number of observed 

OTUs 

Shannon-Wiener 

diversity index 

Strawberry - peat Control 901±60 (a) 7.63±0.21 (a) 

 1% biochar 993±36 (ab) 8.07±0.12 (ab) 

 3% biochar 1198±74 (b) 8.61±0.14 (bc) 

    

Strawberry – peat + lime + fertilizer Control 857±29 (a) 7.69±0.21 (a) 

 3% biochar 946±34 (a) 8.13±0.08 (ab) 

    

Lettuce – soil  Control 1642±33 (c) 9.29±0.09 (cd) 

 1% biochar 1726±83 (c) 9.31±0.18 (cd) 

 3%biochar 1706±54 (c) 9.41±0.10 (d) 

    

FUNGI  Number of observed 

OTUs 

Shannon-Wiener 

diversity index 

Strawberry – peat + lime + fertilizer Control 462±23 (a) 5.59±0.23 (a) 

 3% biochar 446±38 (a) 5.66±0.08 (a) 

 

Significant differences in the number of observed species (ANOVA, p=5.8*10-11) and in the 

Shannon-Wiener diversity indices (ANOVA, p=2*10-16) were observed (Table 2.7). Highest 

richness and diversity were measured in the lettuce rhizosphere grown in field soil. Richness 

and diversity of the strawberry rhizosphere microbiome grown in peat substrate, were 

significantly lower. Addition of biochar however raised both the number of observed OTUs as 

the diversity of the rhizosphere microbiome. This effect was significant for the strawberry 

microbiome developed in peat, but not in the fertilized and limed peat. Nonetheless, a trend 

towards a higher diversity and richness in the rhizosphere microbiome due to biochar was 

observed.  

The effect of biochar on the fungal community composition was solely studied for the 

strawberry ‘fertilized peat’ bioassay using ITS2 gene amplicon sequencing. However, no 

significant effect of biochar addition to fertilized and limed peat medium was seen on the 

fungal community (PERMANOVA) for both experiments.  

Also for the fungal richness and diversity, no significant effects of the addition of biochar were 

observed at the end of plant growth in the ‘fertilized peat’ experiment (Table 2.6). 
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2.2.4 Relation of microbiome community and plant-soil/substrate properties 

As shown above, biochar had an effect on the physicochemical composition of the substrate 

of the strawberry bioassay. These changes could be correlated with the shifts in the 

rhizosphere microbiome observed when peat was treated with biochar. Therefore we did a 

distance-based redundancy analysis to correlate the physicochemical parameters with the 

bacterial communities on the data of  the strawberry rhizosphere obtained from plants grown 

in unfertilized peat (Figure 2.3). This figure illustrates that the microbial communities of 

unfertilized peat without lime addition are correlated with changes in the concentration of 

Mn, Ca, P and Cl when biochar was added to the peat. A similar analysis could be done for the 

limed and fertilized peat, but would be less meaningful because of the less clear clustering 

(data not shown). An analysis for the lettuce experiment was not done, because no significant 

effects of biochar amendment were observed on the bacterial composition, as described 

above.  

 

Figure 2.3 Distance based redundancy analysis of the 16S amplicon sequencing data shows differential 

taxonomic composition in the strawberry rhizosphere upon biochar addition to substrate. Substrate 

physicochemical parameters that are significantly different (Table AI2.3; Table AI2.4) are fitted to the plot. Red 

crosses represent the OTUs. The labels control, 1% biochar and 3% biochar indicate bacterial communities of the 

strawberry rhizosphere grown in non-fertilized peat, 1% biochar amended non-fertilized peat and 3% biochar 

amended non-fertilized peat respectively.  
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2.3 DISCUSSION AND CONCLUSIONS 

In the present Chapter, we studied the effect of biochar on two different crop-soil/substrate 

systems: lettuce grown in soil and strawberry grown in peat. Changes in the physicochemical 

properties of the soil and substrate were observed for both the lettuce and strawberry assays.  

Adding biochar to the field soil affected the carbon content, the pH, the soil water evaporation 

and the nutrient availability. In contradiction with the lettuce growth in the field soil/biochar 

mixes, water use in the strawberry experiment was strongly positively correlated with the 

plant biomass. The water use in the substrate was thus driven by plant growth with a minor 

or undetectable effect of the biochar amendments on the evaporation from the substrate. 

Adding biochar to the peat thus affected the nutrient availability, but had in this case only 

small effect on pH or soil water evaporation.  

Moreover, biochar addition induced major changes in (i) rhizosphere microbiology, (ii) plant 

growth and (iii) plant health exclusively in the strawberry bio-assays, especially when no 

additional fertilization or liming of the peat was done.  

We observed shifts in the composition and diversity of the microbial community of the 

strawberry rhizosphere due to the addition of biochar. Previously, it has been described that 

biochar can alter the microbial composition of bulk soil, but the factors that drive these 

changes in microbial composition are still unknown (Graber et al., 2014a). The following 

hypotheses have been suggested: (1) Biochar could provide an additional habitat for bacteria 

and fungi (Ezawa et al., 2002; Thies and Rillig, 2009) and may provide places of refuge for 

fungal grazers for microbes (Warnock et al., 2007), (2) Biochar may interfere with microbial 

intercellular signalling (Masiello et al., 2013), (3) Due to its chemical composition, biochar 

could have an effect on microbial composition. Biochar borne organic chemicals may suppress 

some members of the microbial community and promote others (Kolton et al. 2011), (4) 

Biochar may change the physicochemical properties (e.g. pH, EC), which could have an effect 

the microbial communities (Graber et al., 2014b). Based on our observations, we suggest two 

additional hypotheses: (5) An effect of biochar on the microbial community due to its effect 

on the nutrient composition of soil and substrate. The biggest changes in rhizosphere 

microbial composition and diversity were observed when peat was not limed and fertilized. 

Additional application of fertilizer and lime reduced the effects on the strawberry rhizosphere 

microbiology. Complementary, no effects of biochar application on the lettuce rhizosphere 
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microbiology were observed in nutrient rich soil. This strengthens our hypothesis that in 

nutrient limiting conditions, biochar provides an additional nutrient source for the present 

microbial community, which can alter the proportion and composition of microbial 

communities. (6) Biochar could serve as a source of micro-organisms. We showed that from 

the 82 bacterial species present on pure biochar, at least three species were found in the 

strawberry rhizosphere after 12 weeks of growth in peat-biochar mixtures. Adding biochar to 

soil or substrate can therefore enhance species to the habitat.  

Biochar addition promoted plant growth solely in the strawberry assay with unfertilized peat 

that was not limed. This made us suspect that biochar only promotes plant growth in nutrient 

limiting conditions. Following explanations for this assumption are proposed: (1) Biochar could 

serve as a fertilizer (Altland and Locke, 2013). In both lettuce and strawberry bio-assays, an 

increase of nutrients, e.g. P, K, Ca and Mg, was observed when biochar was added to soil or 

peat, respectively. In nutrient-rich conditions, the soil or substrate already stored a relevant 

concentration of nutrients, and nutrients are not expected to be limiting for plant growth. 

Adding more nutrients will increase the nutrient stock but will not directly enhance plant 

growth. In nutrient-limiting conditions, these changes in nutrients will supply necessary 

nutrients for the plant and the microbial community, e.g. P, resulting in plant growth 

promotion. (2) Biochar could have an effect on the plant growth by changing the rhizosphere 

microbiome. First a higher number of bacteria involved in the microbial N cycling were 

observed in the rhizosphere of strawberry plants grown in unfertilized peat. This can lead to 

a higher amount of plant-available N, which subsequently can promote plant growth (Brewin, 

2010). Second a higher number of PGPR were observed, which can ease the uptake of 

nutrients for the plants and enhance the plant availability of phosphorus (Egamberdiyeva, 

2007; Krey et al., 2013). Additionally, it has been shown that these stimulatory effects are 

higher in nutrient deficient soil than in nutrient rich soil (Egamberdiyeva, 2007). Finally, the 

increased diversity of bacteria in the strawberry rhizosphere might enhance the N 

mineralization and therefore improve plant nutrition and plant growth (Weidner et al., 2015). 

These effects of biochar on the rhizosphere microbiome were only observed in the strawberry 

assay where peat was not fertilized and limed. The hypothesis stated above might explain 

partly why this is the only assay where we observed improvement of plant growth by biochar 

addition.  
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Within the lettuce bio-assay no effect of leaf infection with Rhizoctonia was observed. 

However, here we used a detached leaf assay, instead of an attached leaf assay as in the 

strawberry bio-assays. Nonetheless these detached leaf assays are common in 

phytopathological research, this could have affected our results (Liu et al., 2007). In the 

strawberry bio-assay, where we used an attached leaf assay, addition of biochar had an effect 

on plant disease resistance against B. cinerea for both the leaves and fruits. We suggest 

following explanations: (1) Biochar could have an effect on the plant’s resistance towards 

pathogens as fertilizer. Plants that are deficient in potassium are less resistant to pests, 

diseases and nematode attacks. Addition of K to K-deficient soils can therefore reduce the 

incidence of plant diseases (Römheld and Kerkby, 2010). In the strawberry assay we observed 

a significant increase of the K concentration in the substrate when no fertilizer or lime was 

added. The higher amount of nutrients, especially K, could thus partly explain the higher 

disease resistance measured of the strawberry plants to B. cinerea in nutrient limiting 

conditions, as indicated by the concentrations being lower than the reference values. In the 

lettuce bio-assay, K concentrations also increased significantly. However, concentrations of K 

were already higher than the reference values before biochar was added to the soil, which 

could explain why the higher amount of K did not have an effect on the disease resistance. (2) 

The effect of biochar on the rhizobiome could have an effect on the plant’s resistance to 

pathogens. First, we identified species previously described as potential biocontrol agents that 

increased significantly in relative abundance after biochar addition to the peat. Second, we 

also detected a higher number of PGPR, which can promote the ISR of the plant. Our 

observations thus confirm previously published suggestions that biochar can promote the ISR 

of the plant, resulting in increased disease resistance (Mehari et al., 2015).  

The extensive amount of literature on biochar application as a soil improver or fertilizer in 

agriculture shows the high expectations for this product in our society. However, next to the 

frequently described benefits of the use of biochar mainly in poor tropical soils (Alling et al., 

2014), also neutral or in a few cases negative effects are observed, most often in more rich 

soils (Nelissen et al., 2015). This raises the question if biochar can really improve soil quality 

and crop production in general. These dissimilarities across studies could be due to the 

absence of a standardized protocol for biochar production, differences in feedstock and 

pyrolysis process in the biochar production process, differences in biochar application rate, or 
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as we showed, could even be crop or soil/substrate dependent. From our study we can 

conclude that the effect of biochar on the plant-soil system is not singular and multiple factors 

are involved. We show that biochar can alter physicochemical properties of the soil/substrate, 

plant growth, disease resistance and microbial communities in the plant-soil/substrate system 

and that these changes are related to each other. Therefore we suggest that future studies 

should focus on the effect of biochar on the plant, the soil and the microbial system 

simultaneously. Depending on the crop-soil/substrate system used, biochar can thus be 

valuable in agriculture. Analysing two different plant-soil systems revealed that biochar is 

useful under nutrient-limiting conditions, and we hypothesize that it could serve as a fertilizer, 

affecting plant growth, disease resistance and the microbial composition of the rhizosphere. 
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ADDITIONAL INFORMATION CHAPTER 2 
 

Table AI2.1: Chemical and physical properties of field soil one week after starting the experiment. Values are averages ± standard deviations for 3 replicates. (AL: 

ammonium lactate extractable concentration) 

 pH-KCl 

 

EC 

(µS/cm) 

NO3-N 

(mg/kg DM) 

NH4-N 

(mg/kg DM) 

Min N 

(mg/kg DM) 

P-AL 

(mg/100g DM) 

K-AL 

(mg/100g DM) 

Optimal Range 6.2-6.6 Not applicable Not applicable Not applicable Not applicable 12-18 14-20 

Lettuce-soil        

0% biochar 5.77±0.03 (a) 84.67±4.73 13.71±0.07 (c) 9.09±0.23 (ab) 22.80±0.29 (c) 22.10±0.40 (a) 23.87±0.25 (a) 

1% biochar 6.80±0.09 (b)  9.75±0.37 (b) 9.89±0.43 (b) 19.63±0.60 (b) 22.33±0.72 (a) 28.80±0.96 (b) 

3% biochar 7.31±0.06 (c)  6.68±0.38 (a) 8.29±0.27 (a) 14.97±0.34 (a) 24.63±0.57 (b) 39.87±0.87 (c) 

        

 Ca-AL 

(mg/100g DM) 

Mg-AL 

(mg/100g DM) 

Fe-AL 

(mg/100g DM) 

Mn-AL 

(mg/100g DM) 

Na-AL 

(mg/100g DM) 

TOC 

(%/DM) 

Optimal Range 100-240 9-14 Not applicable Not applicable 3.1-6.0 1.2-1.6 

Lettuce-soil       

0% biochar 70.20±2.16 (a) 13.13±1.29 (a) 48.27±0.80 (a) 15.28±0.46 (a) 0.96±0.00 (a) 0.86±0.01 (a) 

1% biochar 105.70±16.20 (a) 13.37±0.59 (a) 46.00±2.79 (a) 15.14±0.97 (a) 0.96±0.00 (a) 1.53±0.13 (b) 

3% biochar 186.13±18.08 (b) 16.77±0.75 (b) 47.40±0.60 (a) 16.22±0.35 (a) 0.96±0.00 (a) 2.67±0.15 (c) 

Values within the same columns and following the same letter are not significantly different (p<0.05) 

 

Table AI2.2: Chemical and physical properties of field soil at the end of the experiment (week 8). Values are averages ± standard deviations for 10 replicates. 

 pH-KCl EC 

(µS/cm) 

NO3-N 

(mg/kg DM) 

NH4-N 

(mg/kg DM) 

Min N 

(mg/kg DM) 

TOC* 

(%/DM) 

Water availability 

(ml) 

Water in plant (ml) 

Lettuce-soil         
0% biochar 5.73±0.14 (a) 135.00±37.03 (a) 3.15±3.53 (a) 1.30±0.45 (a) 4.45±3.72 (a) 0.88±0.03 (a) 725±240 (b) 34.7±3.9 (a) 

1% biochar 6.86±0.12 (b) 136.10±35.64 (a) 2.67±2.65 (a) 1.91±0.50 (ab) 4.57±3.00 (a) 1.48±0.16 (b) 667±227 (b) 33.3±5.9 (a) 

3% biochar 7.67±0.05 (c) 173.10±50.39 (b) 2.07±1.78 (a) 2.07±0.95 (b) 4.13±2.60 (a) 2.60±0.53 (c) 443±223 (a) 31.1±4.2 (a) 

* Interaction effect between treatment and repetitions of experiments 
Values within the same columns and following the same letter are not significantly different (p<0.05) 
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Table AI2.3: Chemical and physical properties of peat one week after starting the experiment. Values are averages ± standard deviations for 4 replicates. AmAc: 

ammonium acetate extractable concentration(OM: organic matter, DM: dry matter, EC: electrical conductivity) 

 pH-H2O EC 

(µS/cm) 

NO3-N in H2O 

(mg/L peat) 

NH4-N in H2O 

(mg/L peat) 

NO3-N+NH4-N 

(mg/L peat) 

P-AmAc 

(mg/L peat) 

K-AmAc 

(mg/L peat) 

Ca-AmAc 

(mg/L peat) 

Optimal Range 3.8-6.0 200-400 Not 

applicable 

Not 

applicable 

60-140 30-70 150-360 325-2100 

Strawberry-peat        

0% biochar 4.50±0.08 (a) 47.50±4.20  (a) 2.50±0.00 (a) 6.60±3.28 (a) 9.10±3.28 (a) 7.00±0.00 (a) 20.65±1.48 (a) 

1% biochar 4.48±0.08              43.00±4.24  2.50±0.00 3.95±2.05  6.45±2.05  7.00±0.00  27.55±3.46  

3% biochar 4.63±0.14 (a) 42.50±1.29 (a) 2.50±0.00 (a) 5.20±3.13 (a) 7.70±3.13 (a) 7.00±0.00 (a) 36.15±1.58 (b) 

Strawberry-peat+lime+fertilizer        

0% biochar 4.80±0.01 150.50±3.54 25.05±0.78 27.00±0.57 52.05±1.34 32.75±0.92 93.40±2.12 

3%biochar 5.05±0.01 128.50±9.19 19.70±3.68 20.95±3.60 40.65±7.28 28.65±3.32 108.30±4.10 

         

 Fe-AmAc 

(mg/L peat) 

Mn-AmAc 

(mg/L peat) 

SO4 in H2O 

(mg/L peat) 

Na in H2O 

(mg/L peat) 

Cl in H2O 

(mg/L peat) 

OM 

(%OM/DM) 

P in H2O 

(mg/L peat) 

Mg-AmAc 

(mg/L peat) 

Optimal Range 1-5 0.5-10 0-100 0-50 0-100 Not 

applicable 

Not 

applicable 

150-300 

Strawberry-peat         

0% biochar 1.50±0.00 (a) 0.75±0.00 (a) 26.85±3.77 (a) 16.45±4.59 (a) 16.03±4.41 (b) 98.15±0.17 (b) 0.38±0.52 (a) 63.63±17.58 (a) 

1% biochar 1.50±0.00 0.75±0.00  20.95±2.76 12.50±0.00 13.45±0.35  97.9±0.00  0.45±0.07  38.00±0.00  

3% biochar 1.50±0.00 (a) 1.825±0.09 (b) 23.325±2.00 (a) 15.65±3.64 (a) 11.05±1.16 (a) 97.38±0.13 (a) 1.00±0.12 (b) 64.10±18.83 (a) 

Strawberry-peat+lime+fertilizer         

0% biochar 1.50±0.00 2.55±0.07 114.50±3.68 12.50±0.00 5.00±0.00 93.25±0.21 61.20±2.82 141.70±2.40 

3%biochar 1.50±0.00 3.05±0.21 98.80±16.54 12.50±0.00 10.00±7.07 93.00±0.00 39.15±4.74 132.90±3.68 

Values within the same columns following the same letter are not significantly different (p <0.05) 
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Table AI2.4: Chemical and physical properties of peat at the end of the experiment (week 13) (DM: dry matter, EC: electrical conductivity). Values are averages ± standard 

deviations for 10 (Strawberry-Peat) or 38 (Strawberry – peat+lime+fertilizer) replicates. 

 pH-H2O EC 

(µS/cm) 

SO4 in H2O 

(mg/L peat) 

Cl in H2O 

(mg/L peat) 

P in H2O 

(mg/L peat) 

Water 

availability (ml) 

Water in 

plant (ml) 

NO3-N 

(mg/L peat) 

NH4-N 

(mg/L peat) 

Strawberry-peat           

0% biochar 4.49±0.19 (a) 35.10±10.24 (a) 11.93±5.25 (a) 8.54±3.68 (a) 0.33±0.25 (a) 1038±427 (a) 5±4 (a)*   

1% biochar 4.51±0.12 (a) 30.40±10.90 (a) 11.77±9.44 (a) 8.78±5.18 (a) 0.54±0.05 (a)     

3% biochar 4.53±0.22 (a) 36.40±8.95 (a) 17.47±9.55 (a) 6.71±2.63 (a) 1.30±0.51 (b) 2788±776 (b) 17±16 (b)*   

Strawberry-

peat+lime+fertilizer 

         

0% biochar 4.62±0.07 (a)* 65.47±6.59 (a) 49.94±5.40 (a) 9.81±1.62 (a) 5.05±1.02 (a)* 1255±285 (a) 23±5 (a)   

3%biochar 4.86±0.03 (b)* 65.89±3.26 (b) 59.50±3.91 (b) 9.35±0.57 (a) 4.68±0.44 (a)* 1246±211 (a) 24±7 (a)   
* Interaction effects between experiment replications and properties were measured with higher values in the second replicate. However if significant values were measured, this was for both 

experimental replicates. 

Values within the same columns, following the same letter are not significantly different (p <0.05) 
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Table AI2.5: Absolute abundances of the PLFA of strawberry ‘unfertilized peat’ and ‘fertilized peat’ experiments. Asterix indicate the level of significance between control 

groups and biochar treated peat for each experiment (*p<0.05; **p<0.01 by analysis of variance n=5). Values are expressed in nmol g-1 (average±standard error). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community PLFA Peat Peat+lime+fertilizer 

  Control 3% biochar  control 3% biochar  

Gram positive bacteria  i-C15:0 7.8±3.3 8.1±1.3  39.7±12.8 34.5±3.3  
 a-C15:0 4.0±2.0 3.4±1.1  14.1±4.1 11.6±1.0  
 i-C16:0 3.2±2.0 2.6±1.0  10.5±4.3 9.4±1.5  
 i-C17:0 2.3±1.5 1.9±0.8  6.6±2.1 5.6±0.6  
        
Non-specific bacteria C14:0 1.5±0.5 1.0±0.3  3.8±0.7 2.9±0.2 * 
 C15:0 0.9±0.2 0.7±0.1 * 2.9±1.1 2.9±0.6  
 C16:0 16.4±6.1 13.0±4.8  44.7±10.8 42.1±2.6  
 C17:0 0.5±0.3 0.5±0.3  1.7±0.6 1.5±0.2  
 C18:0 3.0±1.5 2.8±1.4  9.8±2.4 9.5±0.4  
        
Gram negative bacteria C16:1c9 5.3±2.1 5.6±1.5  17.7±4.5 16.3±1.5  
 C16:1t9 2.2±1.7 1.6±1.1  3.9±1.8 3.0±0.6  
 C17:0cy 1.0±0.5 1.4±0.6  6.7±1.4 6.7±0.7  
 C18:1c11 10.3±3.1 7.6±2.6  22.1±4.4 22.0±1.8  
 C19:0cy 7.9±3.0 6.5±2.1  25.3±4.9 24.7±2.6  
        
Actinomycetes 10Me-C16:0 4.1±2.7 3.6±1.7  9.2±6.6 8.9±2.4  
 10Me-C17:0 2.5±1.3 2.7±0.8  8.6±3.0 7.6±0.8  
 10Me-C18:0 0.7±0.5 0.5±0.3  1.7±1.4 1.6±1.3  
        
AM Fungi C16:1c11 2.4±1.9 1.9±0.8  7.7±3.9 6.0±0.9  
        
Fungi C18:1c9 14.0±5.3 15.4±6.0  46.9±10.1 41.9±2.8  
 C18:2n9,12 9.0±4.7 12.1±7.0  29.2±7.0 28.2±2.5  
        
Total PLFA biomass  98.9±14.9 90.76±12.3  310.9±31.6 285.2±8.4  
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Table AI2.6: Relative abundances of the PLFA of strawberry ‘unfertilized peat’ and ‘fertilized peat’ experiments. Asterix indicate the level of significance between control 

groups and biochar treated peat for each experiment (*p<0.05; **p<0.01 by analysis of variance n=5). Values represent percentages (average±standard error).  

Community PLFA Peat Peat+lime+fertilizer 

  Control 3% biochar  control 3% biochar  

Gram positive bacteria  i-C15:0 8.02±0.34 9.5±0.86  12.59±0.51 12.02±0.14  

 a-C15:0 3.97±0.26 3.86±0.30  4.51±0.20 4.06±0.11  

 i-C16:0 3.13±0.15 2.91±0.08  3.28±0.34 3.26±0.13  

 i-C17:0 2.13±0.18 2.02±0.06  2.08±0.09 1.94±0.04  

        

Non-specific bacteria C14:0 1.53±0.08 1.30±0.26  1.24±0.05 1.02±0.04  

 C15:0 0.96±0.07 0.80±0.08 ** 0.91±0.12 1.01±0.07  

 C16:0 16.95±0.72 14.26±0.27 * 14.33±0.11 14.70±0.09  

 C17:0 0.50±0.03 0.57±0.03  0.52±0.03 0.53±0.02  

 C18:0 2.89±0.13 2.95±0.19  3.16±0.08 3.31±0.06  

        

Gram negative bacteria C16:1c9 5.49±0.18 6.33±0.26 * 5.70±0.28 5.67±0.09  

 C16:1t9 2.07±0.45 1.60±0.19  1.19±0.11 1.04±0.07  

 C17:0cy 1.02±0.03 1.51±0.04 ** 2.15±0.06 2.32±0.04  

 C18:1c11 10.87±0.52 8.41±0.16 ** 7.15±0.27 7.67±0.15  

 C19:0cy 8.02±0.19 7.19±0.22  8.20±0.37 8.60±0.12  

        

Actinomycetes 10Me-C16:0 4.00±0.25 3.60±0.21  2.86±0.71 3.07±0.27  

 10Me-C17:0 2.40±0.08 2.90±0.10 ** 2.71±0.11 2.65±0.04  

 10Me-C18:0 0.79±0.18 0.70±0.15  0.55±0.15 0.55±0.17  

        

AM Fungi C16:1c11 2.16±0.29 2.04±0.09  2.39±0.23 2.08±0.10  

        

Fungi C18:1c9 14.61±0.37 15.89±0.35  15.13±0.51 14.61±0.14  

 C18:2n9,12 8.49±0.73 11.64±1.23  9.35±0.35 9.89±0.57  
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In Belgium and The Netherlands, strawberry cultivation relies mainly on cold-stored 

strawberry plants used as planting material. They are taken from a nursery field (field soil) in 

December/January and cold-stored at -1.5 °C. Starting in January until the end of August, 

strawberry plants can be planted and cultivated, which greatly extends the traditional 

production season and provides an important economic benefit (Lieten et al., 1995; Lieten, 

2013). The cold-stored strawberry plantlets are generally planted into peat substrate. The 

main cultivar used in this cultivation system is “Elsanta” (Lieten, 2013). This cultivar is 

susceptible to fungal diseases, including Botrytis cinerea (gray mold),  which is one of the most 

destructive diseases on strawberry worldwide. Controlling the disease with fungicides is 

difficult, mainly because of the long latency period between inoculation and the appearance 

of symptoms, the prolonged and overlapping flowering and fruiting periods, the explosive 

fungal development that occurs at or near harvest time and the onset of fungal strains 

resistant to fungicides (Sutton, 1990).  

In Chapter 2, strawberry plantlets of the cultivar Elsanta were grown for thirteen weeks in 

peat with and without biochar. Adding biochar to the peat resulted in a lower susceptibility of 

the plants towards B. cinerea. After these thirteen weeks an increased bacterial biodiversity 

was noted in the strawberry rhizosphere and a shift towards bacterial genera including species 

previously reported to be involved in biological control and induced resistances. In addition, 

there were also small differences in the chemical composition of the peat versus the biochar-

amended peat.  

However, these biological and physicochemical changes were only measured at the end of the 

experiment (thirteen weeks after planting). The moment that the shift in bacterial community 

composition took place within the rhizosphere remained unknown. Furthermore, the effect 

of the B. cinerea inoculation on the rhizosphere community has not been monitored, as only 

rhizosphere samples of non-inoculated plants have been studied. Therefore, two major 

questions still remain: (1) what are the dynamics of the biochar-mediated shift in the 

strawberry rhizosphere microbiome, and (2) is there an effect of an aboveground infection 

with B. cinerea on the rhizosphere microbiome of the strawberry plants? An additional aim 

was to gain more insight in the role of fungal communities in the strawberry rhizosphere. 

To study the rhizosphere microbiome, both bacterial and fungal communities were studied 

using 16S rRNA V3-V4 gene region and ITS2 metabarcoding, respectively. Two experiments 

were set-up: (1) a time course experiment in which the effect of biochar and the dynamics 
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over time on the rhizosphere microbiome were studied, and (2) an inoculation experiment in 

which the effect of B. cinerea leaf inoculation on the bacterial community in the rhizosphere 

was studied. For both experiments, plants were grown in peat or biochar-amended peat for 

thirteen weeks, in which the rhizosphere was sampled at the end in the inoculation 

experiment, and at eight pre-set time points during the plant growth cycle in the time course 

experiment. In addition to the rhizosphere microbiome analysis, chemical properties of peat 

and biochar-amended peat were analyzed and the effect of biochar on plant and root growth, 

fruit yield, and disease susceptibility against B. cinerea inoculation on both plant leaves and 

fruits were analyzed. 
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3.1 MATERIALS AND METHODS 

In this section, an overview of the materials and methods for the physicochemical 

characterisation of the plant growth media (3.1.1), the strawberry bioassays (3.1.2) and the 

rhizosphere microbiology (3.1.3) is provided. In the end, an overview of statistical methods is 

given (3.1.4). 

 3.1.1 Chemical characterization of biochar, peat and amended peat 

The biochar used in this chapter is the same as described in Chapter 2 section 2.1.1.  

The substrate was sampled at different time points (described below) during the strawberry 

experiments. Dry matter content was determined according to EN 13040. Electrical 

Conductivity (EC) (EN 13038) and pH-H2O (EN 13037) were measured in a 1:5 soil to water 

(v/v) suspension. Determination of organic matter content and ash was done according to EN 

13039. Extraction (1:5 v/v) of water soluble nutrients and elements (NO3-N, NH4-N, Cl, SO4 and 

PO4-P) was done according to EN 13652, and measured with a Dionex DX-600 IC ion 

chromatography (Dionex, Sunnyvale, CA), and for NH4-N with a Skalar San++ mineral N 

analyzer.  

 3.1.2 Strawberry bioassays 

Peat was used as either pure growing medium (298 g peat) or mixed with 3% biochar (9.4 g 

biochar + 289 g peat). Additionally, 1.33 g L-1 fertilizer (PGMix, Peltracom, Ghent, Belgium) and 

3 g L-1 lime (Dolokal extra, Ankerpoort NV, Maastricht, The Netherlands) were added to both 

the peat and the peat/3% biochar mixture. No additional fertilizer was applied during plant 

growth. Both substrates were wetted to obtain 40% water-filled pore space (WFPS), and bulk 

density was adjusted to 200 g L-1. Each mixture was put in a closed bag and pre-incubated at 

15 °C for one week. Subsequently, 1.5 L pots were filled with the mixed substrates and a cold-

stored bare-root strawberry (Fragaria x ananassa, cultivar Elsanta) transplant was planted in 

each pot. The plants were then arranged in the greenhouse in a completely randomized design 

and grown at 20 °C for up to 13 weeks. Every week, the moisture content of the substrate was 

adjusted to 40% WFPS based on mass loss. 

Two experiments were done. In a first experiment, referred to as the ‘time course 

experiment’, in total 24 plants were grown in peat and 24 in peat amended with 3% biochar. 

Plants were sampled in a completely randomized way for rhizosphere microbiome analysis at 

nine time points: before planting and 1, 2, 3, 6, 9, 10, 12 and 13 weeks after planting. Three 
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replicates were sampled for each time point x growing medium combination. After 9 and 12 

weeks of plant growth, the B. cinerea bio-assay was done on the plant leaves as described in 

Chapter 2 section 2.1.6.  

In a second experiment, further referred to as the ‘the inoculation experiment’, in total 24 

plants were cultivated in peat and 24 in peat amended with 3% biochar (n=48). Half of the 

plants in each treatment were inoculated with B. cinerea on a leaf at 12 weeks after planting 

using the method described in Chapter 2 section 2.1.6. This resulted in four treatments: peat 

non-inoculated (peat NI), peat inoculated (peat I), peat amended with biochar non-inoculated 

(Peat+BC NI) and peat amended with biochar inoculated (Peat+BC I). Additionally, fruits were 

harvested, weighed and inoculated with B. cinerea as in Chapter 2 section 2.1.6. At one week 

after inoculation (i.e., after 13 weeks of plant growth) the rhizosphere of six biological 

replicates per treatment was sampled (section 3.1.3).  

At 13 weeks after planting, the strawberry plants were collected and weighed (fresh weight 

and dry weight (48 hours at 70°C)) and the root development was measured. This was done 

by observing the root systems that show up at the substrate surface when removing the pot. 

Depending on the number of visible lateral roots (lateral roots and root hairs), a 0-3 

developmental score was given, with 0 = no lateral roots , 1 = a few lateral roots, 2 = lateral 

roots all over the substrate surface , and 3 = substrate surface fully covered with lateral roots.   

 

3.1.3 Rhizosphere microbiology: high-throughput sequencing 

In the time course experiment, the rhizosphere was sampled from strawberry roots before 

planting, followed by sampling at 1, 2, 3, 6, 9, 10, 12 and 13 weeks after planting. Three 

replicates were taken at each time point for the plants grown in peat and biochar-amended 

peat. For the inoculation experiment, the rhizosphere of strawberry plants was sampled after 

13 weeks of plant growth. For each condition (peat NI, peat I, peat+BC NI and peat+BC I; in 

which NI= non-inoculated, I=inoculated, BC= biochar addition) six biological replicates were 

taken. Rhizosphere sampling was done according to Lundberg et al. (2012), in which 25 mL of 

root material was used. The resulting pellets (250 mg), which are considered as the 

rhizosphere sample, were immediately used for DNA extraction with the PowerSoil DNA 

isolation kit (Mo Bio, Carlsbad, USA), according to the manufacturer's instructions. DNA was 

stored at -20 °C until further use.  
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16S rRNA gene amplicon sequencing 

Amplicon sequencing of the bacterial and fungal rhizosphere populations was done on the V3-

V4 fragment of the 16S rRNA gene and the ITS2 gene fragment respectively, using Illumina 

technology (Illumina, San Diego, CA, USA). Using an amplification and dual-index PCR 

successively, fragments were amplified and extended with Illumina specific adaptors, which is 

described in detail in Chapter 2 section 2.1.8. Each PCR step was followed by a PCR product 

clean-up using the CleanPCR reagent kit (MAGBIO, Gaithersburg, MD, USA).  

Final libraries were quality controlled using the Qiaxcel Advanced, with the Qiaxcel DNA High 

Resolution kit (QIAGEN, Germantown, MD, USA), and concentrations were measured using 

the Quantus double-stranded DNA assay (Promega, Madison, WI, USA). The final barcoded 

libraries of each sample were diluted to 10 nM and pooled in a 2:1 ratio for bacterial and 

fungal libraries respectively. Resulting libraries were sequenced using Illumina MiSeq v3 

technology (2 x 300 bp) by Macrogen, South-Korea, using 30% PhiX DNA as spike-in.  

Sequence reads processing 

Demultiplexing of the amplicon dataset and removal of the barcodes was performed by the 

sequencing provider. The raw sequence data is available in the NCBI Sequence Read Archive 

under the accession number SRA399532 for the time course experiment and SRA416875 for 

the inoculation experiment. A detailed description of the sequence read processing can be 

found in Chapter 2 section 2.1.8.  

 3.1.4 Downstream data analysis and statistics 

All statistical analyses were done using the R statistical software, version 3.2.2 (R core team).  

Chemical substrate properties were analyzed as a two-way ANOVA with biochar treatment 

and time as the two factors within the time course analysis, and biochar treatment and the 

presence of infection as the factors in the inoculation experiment. To use the ANOVA analysis, 

first Levene’s test was used to study homogeneity of the variances.  

The plant properties data was analyzed for seven dependent variables: plant fresh weight, dry 

weight, root development, number of fruits picked, fruit weight per plant, leaf lesions and 

AUDPC for the fruit rot. Homogeneity was tested using Levene’s test. If variances were equal, 

a t-test was used, otherwise the Wilcoxon-rank sum test was used.  

OTU tables of the 16S V3-V4 gene region and ITS2 amplicon sequencing were analyzed using 

the QIIME software package (v1.9.0) (Caporaso et al., 2010a). Taxonomy was assigned with 



Chapter 3 

74 
 

the script “assign_taxonomy.py” using the uclust method considering maximum 3 database 

hits, with the Silva v119 97% rep set (as provided by QIIME) as reference for the bacterial 

sequences and UNITE v7 (dynamic) for fungal sequences (Caporaso et al., 2010b; Quest et al., 

2012; Kõljalg et al., 2013).  

For the microbial analysis, both differences in community composition and in community 

richness were studied.  

Within the time course analysis, we first focused on the total community composition 

differences between groups, in which treatment of biochar and time were indicated as the 

main factors in the experiment. The multivariate analysis was done using the specific R 

package vegan (version 2.0-10) (Oksanen et al., 2010). The dissimilarity matrix, based on the 

Bray-Curtis dissimilarity index, was calculated from the OTU table as generated by Usearch, 

for both the bacterial and fungal sequences. Using the betadisper function, the homogeneity 

of the variances was checked on this dissimilarity matrix. Further, the significance of biochar 

treatment, time and the interaction effect between treatment of biochar and time were 

analyzed using PERMANOVA analysis, in which the Bray-Curtis dissimilarity index matrix was 

used as input.  

Secondly, we assessed differential abundance using likelihood-ratio tests. We tested for (1) 

the effect of time within non-biochar treated samples and the biochar treated samples, 

separately and (2) the effect of treatment within each time point. The analyses were done 

upon clustering the bacterial and fungal OTU tables generated by QIIME at family level for 

research question 1 above and on genus level for research question 2 above. In a filtering step 

OTUs with low count number in most samples were removed. For both fungal and bacterial 

OTU tables on family or genus level, only those families/genera with a count of four in at least 

three samples were kept for analysis. Normalization is based on the trimmed mean of M-

values (TMM) in which we correct for effective library size of the count tables (Robinson and 

Oshlack, 2010). This normalization takes the sequencing depth into account and corrects for 

the presence of highly abundant families. The counts are modeled OTU by OTU using a 

negative binomial (NB) model with main effects for time and biochar, as well as a biochar x 

time interaction. The effective library size was used as an offset in the model for normalization 

purposes, hence, all model parameters have an interpretation in terms of changes in relative 

abundance.  Empirical Bayes estimation of the overdispersion parameters of the NB model 
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was adopted using the quantile-adjusted conditional maximum likelihood (qCLM) method by 

shrinking the OTU-level overdispersion towards the common dispersion across all OTUs. 

Statistical tests were adopted on the appropriate contrasts of the model parameters to assess 

the research questions of interest. We adopted the Benjamini-Hochberg False Discovery Rate 

procedure to correct for multiple testing. All of these analyses were done using edgeR 

package, version 3.12.0 (Robinson et al., 2010).  

Third, statistical differences in richness between groups was studied for both the bacterial and 

fungal sequences. Rarefaction analysis was done using the “alpha_rarefaction.py” script of 

QIIME. A plateau was reached at 50,000 sequences for the bacterial OTUs and 20,000 

sequences for the fungal OTUs. Richness of the bacteria and fungi was determined on rarefied 

data, for which the number of sequences was set on the reached plateau. The temporal 

evolution of richness is expected to be nonlinear. Therefore an additive model is used with 

two thin plate regression spline components:  

yi=fa(ti) + xi fb(ti)+ εi, 

 

with yi the richness of observation i, ti the time in weeks at which observation i is taken, fa(ti) 

a smoother to model the evolution in average richness, xi an indicator variable, which is xi=0.5 

when observation i is treated with biochar and xi=-0.5  when observation i originates from the 

control treatment and fb(ti) a smoother modeling the average difference in richness between 

biochar amended medium and the control medium. The knots of the splines are placed at the 

9 observed time-points  (t=0, 1, 2, 3, 6, 9, 10, 12, 13 weeks) and the smoothness penalty is 

tuned by exploiting the link between smoothing and mixed models (Ruppert et al., 2003; 

Wood, 2006). Upon fitting, the additive model can used to study the average evolution of the 

richness in peat (fa(ti) - 0.5 fb(ti)) and biochar amended medium (fa(ti) - 0.5 fb(ti)), separately. 

However, it is more appealing to assess the first derivative of these average richness profiles 

since it indicates if the richness is increasing or decreasing over time. Next, inference on 

smoother fb(ti) is adopted to study the effect of biochar addition over time. Note, that the 

additive model can provide inference on average richness, difference in richness and their first 

derivatives at any timepoint t, however, if we want to assess these effects at multiple time-

points we have to adjust for multiple testing. We address the multiple testing issue by using a 

grid based approach for constructing approximate simultaneous confidence intervals (Ruppert 
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et al., 2003) and adjusted p-values (Yang et al., 2013). To control the multiple testing burden, 

we consider a grid that is spanned by the 9 observed time-points in the experiment. 

Within the inoculation experiment, the total community composition differences between 

groups were analyzed similar to the time course experiment, using PERMANOVA analyses. 

Within these experiments, both the main effect of biochar treatment and infection with B. 

cinerea were studied, as the interaction effect between the factors. Second, we wanted to 

test which genera show differences in relative abundances between: (1) peat NI versus peat I, 

(2) peat NI versus peat + BC NI, (3) peat I versus peat + BC I and (4) peat + BC NI versus peat + 

BC I. To do so we used the bacterial OTU tables clustered on genus level, as generated by 

QIIME. Differential abundance at OTU-level was assessed using the EdgeR procedure 

described above. Third, the significant differences in richness were estimated on the rarefied 

data, obtained from the OTU table as generated by QIIME. Data was rarefied at 50,000 

sequences. Equality of variances between groups was tested using Levene’s test. Statistical 

differences in richness were analyzed using a linear model with main effects for infection and 

biochar addition and the infection x biochar interaction. 
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3.2 RESULTS 

In this section first the effect of biochar on the chemical properties of the substrates (3.2.1) 

and the plant properties (3.2.2) is described. Further on, results concerning the time course 

experiment (3.2.3) are described. In the end, the effects of aboveground B. cinerea infection 

of the leafs on the rhizosphere microbiome are noted (3.2.4).  

 3.2.1 Effect of biochar on chemical properties of the substrates 

Within the time course experiment, changes in chemical parameters of the strawberry 

substrates (peat and peat amended with 3% biochar) were measured over time. Additionally, 

the effect of biochar amendment in peat was studied for each time point (Additional 

Information (AI) Table AI3.1). Over time, no significant changes were observed in the chemical 

parameters within 13 weeks of plant growth for both the peat and biochar amended peat 

treatment. The addition of biochar to the growing medium, however, significantly raised the 

pH and reduced the amount of NH4-N, independent of the time point at which the parameters 

were measured.  

In the inoculation experiment, the effects of biochar incorporation and B. cinerea leaf infection 

on peat chemical parameters were measured at the end of the experiment, after 13 weeks of 

plant growth (Table AI3.2). The aboveground infection did not affect the plant available 

nutrients and pH of the peat. Similar to the time series experiment, adding biochar to the 

growing medium of strawberry raised the pH. Other chemical parameters were not altered by 

the addition of biochar, however.  

 

 3.2.2 Effect of biochar on plant growth, root growth and strawberry production 

Seven dependent plant properties were measured at the end of the strawberry growth cycle: 

plant fresh weight, dry weight, root development, number of fruits picked, fruit weight per 

plant, leaf lesions and AUDPC for evaluating fruit rot caused by B. cinerea. For these results, 

measurements of strawberry plants of both the time course and inoculation experiment were 

pooled, as no interaction effect of biochar treatment and experiment was noticed.  

Addition of 3% biochar to peat significantly increased the development of lateral roots, the 

number and weight of the strawberry fruits and the resistance of the fruits  to  B. cinerea. 

Biochar had no effect on leaf and petiole fresh and dry weight nor on the leaf lesions caused 

by B. cinerea (Table 3.1). For the leaf lesions, it should be noted that the infection rate was 
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very low (mean score was <1, with about 15% of the leaf area was affected). The effect on 

disease severity after adding 3% biochar to fresh and dry weight of peat corresponds to the 

results of Chapter 2.  

Table 3.1 Properties of strawberry plants (n=6) grown for 13 weeks in peat with (3%) and without biochar.  

 Leaf and petiole 

weight (g per plant) 

Root 

development 

(0-3) 

Fruits per plant 

 

Disease severity 

(B. cinerea) 

 

 Fresh Dry  Amount Weight (g) Leaf lesions 

(0-4) 

Fruits decay 

(AUDPC) 

Peat 42.19±2.15 16.92±0.73 1.54±0.18 2.23±0.22 12.43±1.15 0.68±0.07 65.31±6.09 

Peat +  

3% biochar 

44.78±1.91 18.09±0.80 2.76±0.15 4.22±0.35 21.95±1.96 0.69±0.07 45.46±2.27 

P-value 0.18 0.36 <0.001 0.02 0.02 0.90 0.04 

 

 3.2.3 Time course experiment 

Within this experiment we questioned how rhizosphere microbiome compositions evolve 

during growth of the plants by analyzing successive time points. Subsequently, the effect of 

biochar mixed in the peat substrate was analyzed for each time point, comparing the 

rhizospheres in peat and in the peat/biochar mix. To study these effects, changes in 

community composition as well as differences in richness are analyzed on both the bacterial 

and fungal community.  

First, shifts in the bacterial and fungal community structure were studied. The bacterial and 

fungal community composition of the strawberry rhizosphere were studied during a 13 week 

growth period. The main effects of the biochar treatment and time, and their interaction 

effect were estimated using the complete OTU dataset. The OTUs were homoscedastic 

between groups, and therefore general effects could be studied using PERMANOVA analysis.  

For the bacteria, the interaction effect between biochar addition and time was extremely 

significant (p<0.001). In other words, both the time and biochar treatment affect the bacterial 

community composition; further, the temporal changes in community structure are different 

for the biochar-amended and unamended peat. For the fungi however, only a significant effect 

of time (p<0.001) was measured. Biochar treatment did not alter the fungal community 

composition of the rhizosphere, which is in accordance to the results of Chapter 2.  
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Second, the temporal variation in bacterial and fungal community structure was studied. 

Both the bacterial and fungal communities of the rhizosphere changed significantly over time, 

both for the plants grown in peat and biochar-amended peat separately.  

These temporal changes in bacterial and fungal community are represented in Figure 3.1, in 

which the number of significantly altered families within a three-week timeframe are 

represented. Especially within the first six weeks of plant growth, a high number of bacterial 

families changed in relative abundances over time, both for plants grown in biochar-amended 

or unamended peat (Figure 3.1A and Figure 3.1B).  

 

Figure 3.1 Number of bacterial and fungal families of the strawberry rhizosphere that altered significantly over 

time (weeks). The number of families that increased and decreased in relative abundance within a three week 

timeframe are shown above and below the horizontal line, respectively. Number of significantly altered bacterial 

families in the rhizosphere of strawberry grown in (A) peat, and (B) biochar amended peat. Number of 

significantly altered fungal families in the rhizosphere of strawberry grown in (C) peat and (D) biochar amended 

peat. Plants were leaf-inoculated with B. cinerea at the beginning of weeks 9 and 12. 

In total 77 bacterial families changed significantly in relative abundance between at least two 

successive time points within the strawberry rhizosphere of plants grown in peat or biochar 

amended peat. In total, 45 of these families represented at least 0.1% of the total community 

for at least one time point (Figure 3.2).  
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Figure 3.2 Representation of the bacterial families that change significantly in relative abundance (%) over time. The mean relative abundance (n=3) of the bacterial families 

that change significantly over time between at least two successive time points are represented. Only those families that contribute for at least 0.1% of the total community 

for at least one time point are represented in the graph. Time points where no sampling was done are visualized as an empty space. Time points of infection with B. cinerea 

are indicated using arrows Upper figure: The rhizosphere of strawberry grown in peat. Bottom figure: The rhizosphere of strawberry grown in peat amended with 3% biochar. 
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Within the first three weeks of plant growth, a reduction in the relative abundance of 

especially the Flavobacteriaceae, Sphingomonadaceae and Microbacteriaceae and an 

increase in relative abundance of the Rhizobiales incertae sedis were noticed. Between weeks 

3 and 6, a reduction in the relative abundance of Chitinophagaceae was mainly observed, 

especially in the non-amended peat. The period from week 6 onwards, was characterized by 

a significant increase in relative abundance of the Acidobacteriaceae for plants grown in peat 

and the peat/biochar mixture and of the Acetobacteriaceae and Rhodospirillaceae solely in 

the biochar-amended peat (Figure 3.2).  

In contrast with the bacteria, the main changes in fungal community composition occurred 

during the first week of plant growth, both for the plants grown in peat and in biochar-

amended peat (Figure 3.1C and Figure 3.1D). This was characterized by a prominent decrease 

of the Amphisphaeriaceae and an increase of the Morteriellaceae and Lasiosphaeriaceae 

(Figure 3.3). From week 3 onwards, no important shifts occurred in the fungal community, 

with the exception of Auriculariales Incertae sedis, which increased significantly between 

weeks 3 and 9, and then decreases again at the end of the strawberry growth period in week 

13 (Figure 3.3). In total, 38 fungal families of the strawberry rhizosphere altered in relative 

abundance between at least two successive time points for plants grown in peat or biochar 

amended peat. In total, 10 of these families represented at least 0.1 % of the total fungal 

community and are represented in Figure 3.3.  

Third, the effect of biochar was studied per sampling time point. An effect of biochar was 

only observed for the bacterial rhizosphere. This effect was further studied for each time 

point, using the OTU table clustered on genus level. The bacterial genera that changed 

significantly in relative abundance (p<0.05) within each time point as a response to the 

addition of biochar are listed in Table 3.2. Three groups could be discriminated, representing 

different effects of biochar on three time frames. The first group (group A), consisted of genera 

that changed in relative abundance within the first 6 to 9 weeks of plant growth as a response 

to the biochar supplemented to the peat. Group B contained genera that changed in relative 

abundance from week 6 of plant growth until the end of the experiment. Finally, group C 

contains bacterial genera that change in relative abundance from week 9 to 13 of plant 

growth. 
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Figure 3.3 Representation of the fungal families that change significantly in relative abundance (%) over time. The mean relative abundance (n=3) of the fungal families 

that change significantly over time between at least two successive time points are represented. Only those families that contribute for at least 0.1% of the total community 

for at least one time point are represented in the graph. Time points where no sampling was done are visualized as an empty space. Time points of infection with B. cinerea 

are indicated using arrows Upper figure: The rhizosphere of strawberry grown in peat. Bottom figure: The  rhizosphere of strawberry grown in peat amended with 3% biochar. 
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Table 3.2 Bacterial genera showing significant differences in relative abundance (%) according to presence or 
absence of biochar. Bacterial genera showing significant differences according to the presence of biochar are 
listed. Only those genera significantly different in relative abundance between the biochar and non-biochar 
treated peat for at least two time points are listed. Genera that decrease in relative abundance in the rhizosphere 
of biochar-treated peat compared to the control (non-biochar) are indicated with a “-“, those that increase in 
relative abundance are indicated with a “+”.  The total number of bacterial genera that increased or decreased 
in relative abundance are indicated at the bottom of the table. Genera that were also identified in strawberry 
‘unfertilized peat’ (underlined) and ‘fertilized peat’ (bold) experiments are indicated. 

 GENUS t1 t2 t3 t6 t9 t10 t12 t13 

 Achromobacter - - - -     
 Dyella - - -      
 Granulicella -  -      
 Bordetella  - -      
 Asticcacaulis  +  -     
A   Aquincola  +  +     
 Byssovorax  +  +     
 Gemmata  +   +    
 Acidobacterium - -       
 Acidicapsa -  - - -    
 Telmatobacter -  - -     
 Burkholderia -  - -     
 Sporocytophaga   - -     
 Chthonomonas   +  -    
 Telmatospirillum   -  - -   
 Acidocella -   - - - - - 
 Aeromicrobium +   + +  + + 
 Mesorhizobium +   + +  + + 
 Nitratireductor +   + +  + + 
 Bradyrhizobium    + + + + + 
 Rhodoplanes    + + + + + 
 Alkanibacter    + + + + + 
B Streptomyces    + +  + + 
 Gemmatimonas    + +  + + 
 Planctomyces    + +  + + 
 Marmoricola + +  + +  +  
 Rickettsia    + + + +  
 Parvibaculum    + +  +  
 Devosia +   + +    
 Verrucomicrobium +   - -    
 Holophaga    + +    
 Woodsholea    + +    
 Arthrobacter    +   +  
 Steroidobacter    +   +  
 Massilia    -    + 
 Pseudomonas    +    + 
 Pseudoxanthomonas    +  -   
 Nocardioides +    +  + + 
 Jatrophihabitans     + + + + 
 Crossiella     + + + + 
 Pseudolabrys     + + + + 
 Novosphingobium     -  -  
C Nitrosospira     +  +  
 Spirochaeta     +  +  
 Bryocella     + +   
 Ferruginibacter       + + 
 Taibaiella      + + + 
 Dongia       + + 
 Sediminibacterium      + +  
 Total + 7 5 1 21 23 10 24 18 
 Total - 8 4 9 9 6 3 2 1 
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The major changes in the bacterial community of the rhizosphere due to the addition of 

biochar were observed from week 6 onwards, however (groups B and C). In general, these 

were mainly increases in relative abundances noticed for those genera that differed 

significantly between the biochar and non-biochar treatment at the specified time point. In 

contrast, in group A we observed decreases in relative abundance due to the addition of 

biochar (Table 3.2).  

Fourth, the bacterial and fungal richness was studied based on the number of observed OTUs. 

The bacterial and fungal community richness of the strawberry rhizosphere was estimated 

over 13 weeks of plant growth (Figure 3.4). After planting the cold-stored bare-root 

strawberry plants, a significant increase in bacterial richness is seen at time points 0, 1 and 2 

(p<0.05), for plants grown in peat and in peat amended with biochar. Subsequently, the 

bacterial richness continued increasing till the end of the strawberry growing period (week 

13), although not significantly (Figure 3.4A). The number of fungal OTUs in the strawberry 

rhizosphere increased significantly at week  0 and 1 of plant growth (p<<0.01), but stabilized 

thereafter, independent whether biochar had been added to the peat (Figure 3.4B).  

 

Figure 3.4 Richness of the microbial community in the strawberry rhizosphere measured over 13 weeks of 

plant growth. The richness derived from peat and biochar-amended samples are indicated in black and red, 

respectively. The observed rarefied richness’s of the biological replicates are depicted with dots. The lines 

represent the fitted average richness using an additive model with thin plate regression smoothers. The shaded 

areas are simultaneous 95% confidence bands that are estimated on a grid spanned by the observed time points 

(t=0,1,2,3,6,9,10,12,13 weeks). (A) Bacterial community richness of the strawberry rhizosphere. (B) Fungal 

community richness of the strawberry rhizosphere. 
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The average bacterial richness of the strawberry rhizosphere was significantly larger in the 

biochar amended peat than in the non-amended peat from week 9 of plant growth onwards 

(p<0.01). Before week 9 the effect of biochar addition was not significant. In contrast, no 

significant effects of the addition of biochar were observed for the fungal rhizosphere richness 

(p>0.65).  

 3.2.4 B. cinerea leaf inoculation experiment 

In this experiment, the effect of an aboveground infection (plant leaf) on the bacterial 

rhizosphere was studied. In addition, the effect of biochar addition to the peat and the 

interaction with the aboveground infection was studied. Rhizosphere samples were taken only 

at the end of plant growth (13 weeks of growth), one week after the inoculation with B. 

cinerea. Only the effects on the bacterial community were observed, as the time course 

experiment showed that the number and composition of fungal OTUs did not change from 

week three onwards and were not affected by the addition of biochar.  

First, the composition of the bacterial community was studied. The main effects of biochar 

addition and inoculation of the strawberry leaves with B. cinerea on the bacterial community 

composition of the strawberry rhizosphere and the interaction between both were studied 

using PERMANOVA analysis. This could be done because the condition of homogeneity of 

variances was fulfilled. The addition of biochar had a significant effect on the bacterial 

community (p<0.001), but there was no general effect of infection and no interaction effect 

was revealed. This is illustrated with a PCoA plot, in which the first axis seems to corresponds 

to the variability in the community composition due to the addition of biochar and the second 

axis to the percentage of variability due to infection (Figure 3.5).  

Subsequently, four individual comparisons were made, studying: (1) the effect of biochar on 

the rhizosphere bacterial community of non-inoculated plants, (2) the effect of biochar on the 

rhizosphere bacterial community of inoculated plants, (3) the effect of B. cinerea inoculation 

on the rhizosphere bacterial community of strawberry plants grown in peat and (4) the effect 

of B. cinerea inoculation on the rhizosphere bacterial community of strawberry plants grown 

in biochar-amended peat. For these analyses, the OTU table was clustered on genus level. For 

non-infected plants, the 13 weeks of growth in substrate with biochar had a significant 

influence on the relative bacterial abundances. In total, 38 bacterial genera increased and 25 

bacterial genera decreased in relative abundance when compared to the rhizosphere 
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microbiome of the plants grown in the unamended peat. The effect of biochar was less 

prominent when plants were infected: 12 bacterial genera increased and 17 decreased in 

relative abundance when compared to the  rhizosphere microbiomes of the infected plants 

grown in the unamended peat.  

 

Figure 3.5 Principal Coordinate Analysis (PCoA) profile of pairwise community dissimilarity (Bray-Curtis) indices 

of 16S V3-V4 sequencing data of the strawberry rhizosphere grown in biochar-amended (green) and 

unamended (blue) peat. Ellipses represent the 95% confidence intervals. Half of the plants were infected (I) with 

B. cinerea (dark coloured), the other half were not (NI) (light coloured). The first and second axes represent 37.1% 

and 23.0% of the variance in the dataset, respectively. A clear separation is seen in the first axis, representing 

the major amount of variance in the dataset due to the biochar (BC) addition. Microbiome sequences of plants 

grown in non-biochar treated peat are indicated as control (CT). 

Second, the effect of infection on the bacterial community composition was studied. In total, 

31 bacterial genera increased and three genera decreased significantly in relative abundance 

in the strawberry-peat bio-assay due to inoculation of the leaves with B. cinerea. The 

aboveground infection did not alter the bacterial community of the rhizosphere of strawberry 

grown in biochar amended peat (Table 3.3).  
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Table 3.3 Significant differences in the relative abundance of bacterial genera (%) ± standard error between 

strawberry rhizospheres in peat with and without infection of B. cinerea on the strawberry leaves (n = 6). 

Genera followed by an asterisk indicate a significant increase or decrease in the relative abundance in the 

infected samples as compared to the non-infection samples for the non-biochar treatment. As a comparison, the 

values of the biochar treated samples are included in the table in grey, in which no significant differences were 

observed. The total number of OTUs classified as the genus respectively are indicated in the column N°. 

Phylum Family Genus N° Peat - NI Peat - I  Peat + BC 

- NI 

Peat + BC 

- I 

 

Acidobacteria Unknown Family Bryobacter 20 2.13±0.23 1.09±0.09 * 0.64±0.04 0.71±0.04  

 Acidobacteriaceae Edaphobacter 2 0.50±0.04 0.29±0.04 * 0.28±0.02 0.31±0.02  

Actinobacteria Acidothermaceae Acidothermus 4 0.33±0.04 0.84±0.14 * 0.77±0.09 0.92±0.09  

 Cellulomonadaceae Cellulomonas 1 <0.01 0.06±0.06 * <0.01 0.01±0.00  

 Conexibacteraceae Conexibacter 3 0.13±0.02 0.38±0.05 * 0.23±0.02 0.30±0.03  

 Frankiaceae Jatrophihabitans 3 0.06±0.01 0.14±0.06 * 0.34±0.03 0.39±0.04  

 Iamiaceae Iamia 4 <0.01 0.02±0.01 * 0.01±0.01 0.01±0.00  

 Intrasporangiaceae Phycicoccus 1 <0.01 0.04±0.01 * 0.02±0.01 0.08±0.05  

 Micromonosporaceae Actinoplanes 1 0.00±0.00 0.01±0.01 * <0.01 0.03±0.03  

 Mycobacteriaceae Mycobacterium 2 0.06±0.01 0.26±0.02 * 0.30±0.03 0.30±0.05  

 Nocardiaceae Nocardia 2 0.03±0.01 0.08±0.02 * 0.06±0.01 0.08±0.01  

  Williamsia 1 <0.01 0.08±0.07 * <0.01 <0.01  

 Nocardioidaceae Aeromicrobium 1 <0.01±<0.0 0.02±0.01 * 0.01±0.00 0.03±0.01  

  Marmoricola 2 <0.01 0.03±0.01 * 0.02±0.01 0.04±0.01  

  Nocardioides 10 0.05±0.01 0.19±0.05 * 0.36±0.03 0.45±0.06  

 Patulibacteraceae Patulibacter 7 <0.01 0.02±0.01 * <0.01 0.01±0.00  

 Pseudonocardiaceae Pseudonocardia 1 0.01±0.00 0.03±0.01 * 0.03±0.00 0.03±0.00  

 Solirubrobacteraceae Solirubrobacter 1 <0.01 0.02±0.01 * 0.02±0.00 0.02±0.00  

 Streptomycetaceae Streptomyces 3 0.01±0.00 0.05±0.05 * 0.08±0.02 0.11±0.04  

Armatimonadetes Chthonomonadaceae Chthonomonas 3 1.31±0.34 0.38±0.17 * 0.45±0.06 0.46±0.07  

Bacteroidetes  Flavobacterium 12 0.02±0.01 0.16±0.10 * 0.01±0.00 0.01±0.00  

 Sphingobacteriaceae Pedobacter 6 0.01±0.01 0.10±0.05 * <0.01 0.01±0.00  

Planctomycetes Planctomycetaceae Gemmata 14 0.25±0.02 0.47±0.10 * 0.50±0.04 0.50±0.02  

  Pirellula 8 0.00±0.00 0.01±0.01 * 0.01±0.00 0.01±0.01  

  Planctomyces 16 0.02±0.00 0.04±0.00 * 0.11±0.01 0.10±0.01  

  Singulisphaera 11 0.03±0.00 0.06±0.01 * 0.07±0.00 0.07±0.00  

Proteobacteria Bradyrhizobiaceae Rhodopseudomonas 1 0.01±0.00 0.02±0.02 * 0.05±0.01 0.05±0.00  

 Hyphomicrobiaceae Devosia 2 0.44±0.07 0.78±0.18 * 0.96±0.05 1.12±0.08  

 Hyphomonadaceae Hirschia 1 0.01±0.01 0.09±0.04 * 0.02±0.01 0.02±0.00  

  Woodsholea 4 <0.01±0.00 0.02±0.02 * 0.04±0.01 0.03±0.01  

 Phyllobacteriaceae Mesorhizobium 1 0.01±0.01 0.04±0.01 * 0.04±0.01 0.05±0.02  

  Nitratireductor 1 0.01±0.001 0.04±0.01 * 0.05±0.01 0.06±0.00  

 Rhizobiaceae Shinella 1 0.02±0.01 0.07±0.05 * 0.06±0.01 0.07±0.02  

 Rhodospirillaceae Defluviicoccus 3 <0.01 0.01±0.01 * <0.01 <0.01  

 

Second, the effect of biochar addition and aboveground infection on the bacterial richness 

was studied. The number of OTUs was estimated for each of the four groups (peat NI, peat I, 

peat+BC NI and peat+BC I). For strawberry plants grown in peat, the average bacterial richness 

of the rhizosphere was 1327.5±9 OTUs and 1509.3±73.8 OTUs for the non-infected and the B. 

cinerea infected plants, respectively. For strawberry plants grown in biochar-amended peat, 

the average bacterial richness was 1698.1±32.1 OTUs and 1654.2±38.9 OTUs for the non-

infected and the B. cinerea infected plants respectively. In general, two significant effects were 

measured. First, infection of the plants induced a significant increase in bacterial richness 
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(p=0.039)  in the rhizosphere when the plants were grown in unamended peat. Second, 

biochar amended to the peat substrate also induced a significant increase in bacterial richness 

(p<0.01) in the rhizosphere, and this condition was not further influenced by the infection of 

the plants.  
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3.3 DISCUSSION AND CONCLUSIONS 

In previous studies, the effect of biochar on the microbial community of the rhizosphere was 

analyzed on a single sampling date in pot trials (Chapter 2; Egamberdieva et al., 2016, Kolton 

et al., 2011). In the present study we have evaluated the temporal dynamics of bacterial and 

fungal communities of the strawberry rhizosphere by sampling at nine time points during the 

13-week strawberry growing period. Two factors were evaluated: (1) the change in the 

rhizosphere microbiome community over time, and (2) the effect of biochar addition to peat 

on the bacterial and fungal community of the strawberry rhizosphere. First, we showed that 

the bacterial and fungal community changed in composition and richness over time. The 

fungal community composition changed mainly during the first week of plant growth and 

stabilized thereafter, with the exception of the Auriculariales. In contrast, the composition of 

the bacterial community changed especially during the first six weeks of plant growth. We 

believe that the major shift in bacterial and fungal community composition in the rhizosphere, 

that occurs in the first week of plant growth, is mediated by a change in growing medium. At 

the beginning of the experiment, the growing medium of the strawberry plants changed from 

field soil (nursery fields) to peat, which is common practice in Belgian strawberry cultivation 

(Lieten et al., 1995; Lieten, 2013). One of the main drivers of the rhizosphere microbiome is 

soil type (Berg and Smalla, 2009). Therefore, changes brought in this bulk soil will eventually 

affect the rhizosphere microbial community (Mendes et al., 2014). During the experiment, no 

significant changes in chemical parameters of the peat were observed over time. This indicates 

that the shift in bacterial community profile of the rhizosphere measured from week 1-6 was 

not mediated by a shift in chemical composition of the growing medium. Within the 

experiment, plants were either in a vegetative phase (week 1 to 3) or in a flowering and fruiting 

stage (from week 4 onwards). It has already been shown that the rhizosphere composition 

could be different between plant stages and that this could be related to the excretion of 

chemical compounds through the roots (Chaparro et al., 2014). We therefore hypothesize that 

the observed changes in the first weeks of plant growth were plant-driven, as plants can 

influence the rhizosphere by the release of rhizodeposits from the roots (Philippot et al., 

2013). An alternative hypothesis could be that the rhizosphere microbiome is influenced by 

an interplay between the microorganisms of the plant root itself (Dennis et al., 2010). 

Second, the effect of biochar on the bacterial and fungal community of the rhizosphere was 

evaluated over time. During the strawberry growth period, no effect on the fungal rhizosphere 
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community was observed due to the addition of biochar which is in accordance to the results 

of Chapter 2. In contrast, starting at week nine of plant growth onwards, increased richness 

was observed in the biochar-treated bacterial rhizosphere community as compared to the 

non-biochar treated rhizosphere. Additionally, a higher number of genera were induced from 

week six onwards. Some of these genera contain species previously reported to be involved 

in the N-cycle, e.g. Nitratireductor, Devosia, Nitrospira and Taibaiella (Hoque et al., 2011; Kox 

and Jetten, 2015; Penton et al., 2013; Rivas et al., 2002; Zhang et al., 2013) and some contain 

species that can act as biocontrol agent, e.g. Streptomyces and Nocardioides (Carrer et al., 

2008; Saharan and Nehra, 2011; Viaene et al., 2016). These so-called plant-growth promoting 

rhizobacteria (PGPR) have been extensively studied because of their beneficial effects on plant 

growth and health (Berendsen et al., 2012). This is in accordance with the results of Chapter 

2 in which we studied the rhizosphere community at the end of the strawberry growth period 

in peat and also found PGPR linked genera which increased by biochar addition to peat. Based 

on the results of the current Chapter, we believe that the effect of biochar on the rhizosphere 

bacterial community is postponed, as it is measurable from week six of strawberry growth. 

This is in contrast to the study of Kolton et al. (2016), who measured the biggest effect of 

biochar on the bacterial community the first six weeks of tomato growth. This could however 

be due to the difference in growing medium (dune sand versus peat).   

Within the time course experiment and the inoculation experiment, the effect of biochar on 

some plant properties after thirteen weeks of plant growth was evaluated. The addition of 

biochar to fertilized and limed peat resulted in an increase in plant root development and 

strawberry fruit production. We suggest the following explanations: (1) biochar could have a 

nutrient-addition effect, i.e. could act as a fertilizer in the growing medium. In previous 

experiments biochar addition to unfertilized peat resulted in an increase in plant growth (De 

Tender et al., 2016). These effects however were less obvious once the peat was fertilized, 

indicating a role of fertilization on the effect of  biochar on strawberry growth (Chapter 2). 

Those experiments also revealed that incorporating biochar to peat resulted in an increase in 

potassium (K) concentration of 20.65 mg L-1 peat to 36.15 mg L-1 in unfertilized peat and 93.40 

mg L-1 to 108.0 mg L-1 in fertilized peat. Strawberry has high nutrient demands, especially for 

K (Tagliavini et al., 2005). A potential higher K concentration in the growing medium may have 

resulted in the higher production of strawberry fruits, as K has an effect on fruit quality and 
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quantity, and roots in the biochar treatment (Ebrahimi et al., 2012). To prove this concept 

however, more research is necessary in which the concentration of K and other nutrients 

should be measured in the strawberry plant and fruits. (2) The effect of biochar on the plant 

properties could be indirect through a change in the rhizosphere microbiome. The increase in 

PGPR bacteria from week six onwards, could have resulted in the higher production of 

strawberry fruits and roots in the biochar treatment. (3) Biochar could have a direct or indirect 

(through its effect on the rhizosphere microbiome) response on the auxin pathway of the 

plant. It has been shown that biochar application can induce auxin-related genes (Viger et al., 

2014). Auxin is known to be connected with the plant root development, with a major role in 

the production of lateral roots and root hairs (Overvoorde et al., 2010). Subsequently, it is 

known that bacteria interacting with the plant, i.e. rhizosphere associated organisms, can 

produce auxin and interfere with the auxin-regulated plant developmental processes 

(Spaepen and Vanderleyden, 2011). Therefore, the increase in lateral root development of the 

plants grown in biochar-amended peat could be auxin-related.  

Biochar also increased the post-harvest resistance of the strawberry fruits against B. cinerea. 

Previously, it has been shown that biochar increased disease resistance of (1) strawberry 

grown in peat against B. cinerea, Colletotrichum acutatum and Podosphaera apahanis leaf 

infections (Meller-Harel et al. 2012) and (2) field-grown pepper and tomato plants against to  

B. cinerea and Leveillula taurica leaf infections (Elad et al., 2010). Moreover, induced 

resistance against soilborne pathogens, including nematodes, by biochar has been reported 

more recently (Jaiswal et al., 2015; Huang et al., 2015; George et al., 2016). Following 

hypotheses are made for the mechanisms involved: (1) A nutrient addition effect of biochar 

(see above), as the susceptibility of plants to diseases is also known to be influenced by its 

nutritional status (Nam et al., 2006; Xu et al., 2013; Lecompte et al., 2010). Therefore, in 

further research the plant tissue nutrient content should be analyzed in the biochar-amended 

plants as compared to the control plants, (2) The change in the rhizosphere microbiome from 

week six onwards due to biochar towards bacteria involved in biological control. It is known 

that the susceptibility of plants to diseases is influenced by its rhizosphere microbiome (e.g., 

Berendsen et al., 2012), (3) Biochar could have directly or indirectly (through its effect of the 

rhizosphere microbiome) changed the metabolite composition of the strawberry fruits. It is 

shown that biochar addition to substrate alters the secondary metabolite composition of 

tomato fruits (Petrucelli et al., 2015). Furthermore, antioxidant and fatty acid composition of 



Chapter 3 

92 
 

fruits has been shown to be related to the disease resistance of fruits (Cao et al., 2014). 

Therefore, biochar addition to the peat, could result in a change in strawberry fruit 

composition, which could make them less susceptible for B. cinerea infection. This effect of 

biochar on the overall composition of the strawberry fruits will be tested in future 

experiments, based on the protocol described in Palencia et al. (2016).  

We established an experiment to evaluate the effect of B. cinerea on the strawberry 

rhizosphere microbiome after leaf inoculation on plants grown in peat with and without 

incorporation of biochar. First we observed an increase in bacterial richness when strawberry 

plants grown in peat were infected with B. cinerea; this was not observed in plants grown in 

peat amended with biochar. The microbial species richness of the rhizosphere has been 

proposed as a predictor of the aboveground plant diversity and productivity (van der Heijden 

et al., 2008; Lau and Lennen, 2011; Wagg et al., 2011). A higher belowground richness and 

diversity could even act as an insurance for maintaining plant productivity, even under 

changing environmental conditions (Wagg et al., 2011). Therefore, the increase in bacterial 

richness could be a reaction of the plant on the aboveground infection, to maintain its 

productivity or counteract the pathogen. Second, the relative abundance of 34 bacterial 

genera in the strawberry rhizosphere was influenced by the aboveground infection in the non-

biochar treatment, but was not seen in the biochar-amended peat. It is known that five factors 

can influence the rhizosphere microbial composition: soil type, plant genotype, addition of 

fertilizers, crop rotation and application of pesticides (Massart et al., 2015). Rosberg et al. 

(2014) already showed that inoculation of tomato with the root pathogen Pythium results in 

changes in the rhizosphere community. Nonetheless, to our knowledge the present study is 

the first report to reveal that an aboveground fungal infection can change the rhizosphere 

community composition. Additionally, this effect seemed to be neutralized once biochar is 

added to the peat. A comparison of the relative abundances of the bacterial genera that were 

significantly changed in the peat-assay compared to biochar-amended peat, reveals that after 

infection the relative abundance of the bacterial genera came near the levels observed in the 

rhizosphere of the biochar-amended peat for the same genera. This indicates that biochar 

already “prepared” the rhizosphere’s community to the infection in three ways: (1) by 

increasing the richness of the bacterial community, (2) by shifting towards a higher relative 

abundance of genera including species acting as biocontrol agent or involved in the N-cycle 
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and (3) by shifting the relative abundance of the bacterial genera in the rhizosphere towards 

those which we obtain after infection of the plant. However, these rhizosphere microbiome 

effects were not accompanied with an increased resistance of the leaves against B. cinerea. 

This may be attributed to the low disease severity observed on the leaves (about 15% of the 

leaf area was affected in the control treatment). In Chapter 2, we showed that biochar 

amendment in unfertilized and non-limed peat increased the resistance of leaves against 

B. cinerea, but in that experiment a disease severity of 50% was observed in the control 

treatment. Using more conducive conditions for B. cinerea on the leaves in the present study 

may have shown a difference between both treatments, but further research is necessary to 

confirm this.  

In conclusion, this chapter indicates that upon both biochar incorporation in peat and above 

ground pathogen attack, plants recruit rhizosphere microbes that may help them in their 

defence and plant growth promotion. These findings are important for a sustainable 

strawberry production worldwide. 



 
 

 
 

Table AI3.1: Chemical properties of peat and peat amended with 3% biochar during a 13 weeks interval. Values are averages±standard errors for 3 replicates 

 pH-H2O EC  
(µS/cm) 

NO3-N  
(mg/L peat) 

NH4-N  
(mg/L peat) 

SO4  

(mg/L peat) 
Cl 

(mg/L peat) 
P in H2O 

(mg/L peat) 
 Peat (a) peat+BC 

(b) 
peat Peat+BC peat Peat+BC Peat (a) Peat+BC 

(b) 
peat Peat+BC peat Peat+BC peat Peat+BC 

Optimal 
range 

3.8 – 6.0 200 - 400 Not applicable Not applicable 0-100 0-100 Not applicable 

T1 4.41±0.06 4.73±0.07 76.33±8.83 68.67±5.33 6.50±1.21 6.60±0.90 10.83±1.85 6.73±1.14 36.17±9.73 38.40±5.12 10.00±0.00 10.23±0.12 5.93±1.04 5.43±0.68 

T2 4.83±0.32 4.79±0.04 91.00±27.05 70.00±8.62 9.70±3.60 6.90±0.71 16.43±7.38 5.03±0.03 56.63±30.41 30.60±0.61 10.37±0.37 10.77±0.39 8.63±3.93 4.80±0.10 

T3 4.73±0.09 5.04±0.20 37.00±10.00 55.00±9.64 5.00±0.00 7.67±2.67 5.87±0.87 5.07±0.07 12.50±0.80 24.00±3.98 10.70±0.70 10.00±0.00 4.70±0.00 5.10±0.40 

T6 4.35±0.05 4.90±0.03 86.33±16.68 46.67±3.17 8.97±2.18 5.93±0.66 6.97±1.97 5.00±0.00 49.93±15.86 23.17±4.4 11.40±0.84 10.00±0.00 8.50±2.06 4.70±0.00 

T9 4.28±0.10 4.61±0.06 83.00±43.25 50.33±6.96 13.57±8.57 5.00±0.00 9.73±4.73 5.00±0.00 50.73±32.09 35.03±9.09 13.23±3.23 10.57±0.43 10.10±5.40 4.70±0.00 

T10 4.41±0.05 5.18±0.58 80.67±7.86 59.00±14.01 6.17±1.17 7.13±2.13 6.37±1.37 5.00±0.00 45.07±12.88 34.37±8.94 18.43±6.74 13.03±2.84 6.00±1.30 5.47±0.77 

T12 4.36±0.02 4.72±0.04 61.67±8.84 49.00±4.51 5.47±0.37 5.00±0.00 5.60±0.60 5.00±0.00 31.50±7.04 32.70±5.24 14.83±3.36 10.10±0.10 4.83±0.13 4.70±0.00 

T13 4.36±0.02 4.75±0.09 51.68±2.91 51.67±7.36 5.00±0.00 5.23±0.27 5.60±0.00 5.00±0.00 26.63±3.70 39.47±7.91 10.00±0.00 11.03±0.61 4.70±0.00 4.70±0.00 

 

Table AI3.2: Chemical and physical properties of peat at the end of the experiment (week 13) (DM: dry matter, EC: electrical conductivity). Values are averages ± standard 

deviations for 10 replicates. 

 pH-H2O EC 

(µS/cm) 

SO4 in H2O 

(mg/L peat) 

Cl in H2O 

(mg/L peat) 

P in H2O 

(mg/L peat) 

Water 

availability (ml) 

Water in 

plant (ml) 

NO3-N 

(mg/L peat) 

NH4-N 

(mg/L peat) 

Inoculation experiment          

0% biochar + NI 4.31±0.04 (a) 76.00±17.90 (a) 47.24±14.45 (a) 10.66±0.66 (a) 8.15±3.38 (a)   8.24±2.49 (a) 6.61±1.61 (a) 

0% biochar + I 4.55±0.20 (ab) 76.27±12.55 (a) 42.98±9.69 (a) 14.93±4.90 (a) 5.82±0.78 (a)   6.45±0.87 (a) 5.47±0.35 (a) 

3% biochar + NI 4.86±0.05 (b) 71.73±6.88 (a) 58.09±6.15 (a) 12.15±0.72 (a) 6.30±0.69 (a)   8.14±1.67 (a) 5.12±0.08 (a) 

3% biochar + I 4.84±0.05 (b) 59.58±7.28 (a) 47.07±6.98 (a) 10.93±0.43 (a) 5.48±0.81 (a)   7.51±1.67 (a) 5.00±0.00 (a) 

Values within the same columns, following the same letter are not significantly different (p <0.05) 



 
 

 
 

Chapter 4   

The lettuce rhizosphere microbiome in response to chitin and 

in relation to human health 

Parts of this study are published in: 

Debode J, De Tender C, Soltaninejad S, Van Malderghem C, Haegeman A, Van der Linden I, 

Cottyn B, Heyndrick M, Maes M. (2016). Chitin mixed in potting soil alters lettuce growth, the 

survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Frontiers 

in Microbiology, 7, 565. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this chapter, following analysis were perfomed by the author of this PhD dissertation:  

Statistical analysis of the PLFA data 
All analysis covering the amplicon sequencing data 

All analysis covering the whole genome shotgun sequencing data
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Utilization of organic amendments such as chitin is one of the most economical and practical 

options for improving soil and substrate quality, plant growth and plant resilience (De Boer et 

al., 1999; El Hadrami et al., 2010; Sharp, 2013). Soil treatment with chitin has been shown to 

decrease the infection rate of plant roots by nematodes (Sarathchandra et al., 1996; Radwan 

et al., 2012) and to increase disease suppressiveness against the fungal soil-borne pathogens 

Verticillium dahliae and Rhizoctonia solani (Cretoiu et al., 2013; Postma and Schilder, 2015). 

The mechanism behind this suppressiveness is often related to a change in the soil and 

rhizosphere microbiome (Cretoiu et al., 2013). Micro-organisms capable of hydrolyzing the 

chitinous cell wall of pathogenic fungi and nematodes eggs will increase in numbers and/or 

activities in response to the chitin amendment. In addition, also secondary responders to the 

added chitin confer overall pathogen suppression (El Hadrami et al., 2010). Next to a direct 

effect on pathogens, changes in this rhizosphere microbiology may also affect the plant 

physiology and its capacity to be colonised by micro-organisms, including plant and human 

pathogens (El Hadrami et al., 2010; Gu et al., 2013; Markland et al., 2015). Rhizosphere 

organisms well studied for their beneficial effects on plant growth and health, can be 

increased by the utilization of chitin amendment in order to enhance plant growth and 

resilience to plant pathogens (Dutta & Isaac, 1979; Hallman et al., 1999). In addition, chitin 

has also been shown to trigger plant immunity and acts as a pathogen-associated-molecular 

pattern (PAMP), triggering the plant defense against chitin-containing harmful organisms (de 

Jonge et al., 2010; Sharp, 2013). To date, no research has been done to investigate the indirect 

effect of chitin soil amendment on zoonotic bacterial human pathogens that can survive on 

fresh produce crops. 

Authorities promote the consumption of fresh fruit and vegetables, but at the same time 

concerns have been raised about the food safety of leafy vegetables. Leafy vegetables, such 

as lettuce, are considered as high risk food, as various Escherichia coli O157:H7 and Salmonella 

enterica outbreaks have been related to the consumption of lettuce greenery that can carry 

these pathogens (Ward et al., 2002; Horby et al., 2003; Welinder-Olsson et al., 2004; Friesema 

et al., 2008; Nygård et al., 2008; Söderström et al., 2008). It is usually accepted that zoonotic 

bacterial pathogens enter the agricultural environment via animal faeces, which in turn may 

contaminate irrigation water and soil. Irrigation water is considered as the most likely key 
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route of dispersal of zoonotic pathogens from faeces to plants (Barak and Schroeder, 2012; 

Holvoet et al., 2015).  

The biology of E. coli and S. enterica on lettuce leaves under various conditions has been 

extensively studied (e.g., Brandl and Amundson, 2008; Oliveira et al., 2012; Van der Linden et 

al., 2014). A recent study showed that butterhead lettuce grown in greenhouses with a 

sprinkle irrigation system may present a potential health hazard when the green parts are 

contaminated near harvest (Van der Linden et al., 2013). Reduction in the survival of zoonotic 

bacterial human pathogens in the preharvest environment can help prevent spread of 

pathogens during postharvest washing and packaging. A variety of direct control mechanisms 

such as disinfectants (including chlorine, hydrogen peroxide, organic acids and ozons) are 

being used to reduce this pre-harvest survival, but there is a need to preserve food by natural 

means (Oliveira et al., 2015). Hence, bacteria isolated from the rhizosphere and leaves of leafy 

greens have been shown to suppress human pathogens (e.g., Markland et al. 2015; Oliveira et 

al., 2015) and chitin derivates have been found to have antibacterial activity against zoonotic 

bacterial pathogens (e.g., Jeon et al., 2014). However, no studies have investigated the indirect 

effect of chitin addition to the growing medium on the survival on zoonotic bacterial 

pathogens on the leaves. Growing media that could reduce the carrier capacity of crops for 

these pathogens would be an interesting strategy for sustainable control. 

The objectives of this chapter were twofold. First, we studied the effect of chitin mixed in 

potting soil on lettuce growth and on the capacity of these lettuce plants to carry two zoonotic 

bacterial pathogens, E. coli O157:H7 and S. enterica on their leaves. Second, changes in the 

microbial rhizosphere of lettuce were assessed. We hypothesize that the chitin favours chitin-

degrading micro-organisms in the soil, among which important populations of plant growth 

promoting rhizobacteria (PGPR) and fungi (PGPF), and the stimulation of these groups in the 

lettuce rhizosphere could make the plant leaves less prone to colonization by the human 

pathogens. To assess this colonization, we used selective platings as described by Van der 

Linden et al. (2013). To assess the microbial rhizosphere dynamics, three techniques were 

used: phospholipid fatty acid (PLFA) analysis, 16S and ITS2 rRNA gene amplicon sequencing 

and shotgun metagenomics. 
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4.1 MATERIALS AND METHODS 

Within this section, an overview of the materials and methods for the lettuce growth (4.1.1), 

the E. coli and S. enterica inoculation and detection assay (4.1.2) and rhizosphere microbiome 

community profiling (4.1.3 – 4.1.6) is provided. In the end, an overview of statistical methods 

is given (4.1.7). 

 4.1.1 Lettuce-peat bioassay 

Chitin flakes purified from crab shell were obtained from BioLog Hepp Gmbh (lot: 90200705). 

An amount of 2% (2 g chitin / 100 g potting soil) was used in each experiment. 

Pelletized butterhead lettuce seeds (Lactuca sativa L. var. capitate “Alexandria”) obtained 

from Rijk Zwaan Distribution B.V. (De Lier, The Netherlands), were germinated on moist filter 

papers (Whatman filters 2) in petri dishes. The seedlings were either transplanted into a 100% 

peat based-potting soil or 2% chitin amended potting soil, both with a pH of 5.5-6.0 (Universal 

Substrate LP2B, Peltracom, Belgium). Per 1.5 L pot, one seedling was planted and placed in a 

growth chamber with conditions set at 19 °C during day and 12 °C at night, a relative humidity 

of 70-80 %, and a photoperiod of 14 h. After 55 days, five plants per treatment were sampled 

for PLFA analysis, five plants per treatment were sampled for high-throughput sequencing 

(HTS) and seven plants per treatment were inoculated with S. enterica sv. Thompson 

RM1987N or E. coli O157:H7 (see 3.1.2). At the end of the experiment (8 days after pathogen 

inoculation, see 3.1.2), the lettuce heads were harvested and weighed. 

 4.1.2 Bacterial strains, inoculation and detection on lettuce leaves 

Two bacterial strains were used: Salmonella enterica sv. Thompson RM1987N and Escherichia 

coli O157:H7 MB3885 (Van der Linden et al., 2013). Both strains were streaked from a glycerol 

frozen stock maintained at -70 °C onto tryptone soya agar (TSA; Oxoid, Basingstoke, UK) and 

incubated at 37 °C for 24 h. One colony was transferred to 10 mL of tryptone soya broth 

(Oxoid) and incubated at 37 °C for 18 h while shaken at 200 rpm. Cells of each strain were 

washed twice by centrifugation (6000xg, 15 min) in 50 mM phosphate buffered saline (PBS, 

pH 7.4). The optical density (OD) was measured at 595 nm using a microplate reader and 

concentrations were estimated based on an OD-colony-forming-unit (CFU) mL-1 standard 

curve. The appropriate amount of cells was resuspended in PBS to a concentration of 1x104 

CFU mL-1.  
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The plants were inoculated at a concentration of 104 CFU mL-1 of PBS with a hand sprayer as 

described by Van der Linden et al. (2013). To count the pathogen concentrations on the lettuce 

leaves, individual leaves were placed in extraction bags with membrane filter (Bioreba) and 

weighed. PBS with 0.05% Tween 20 was added at a 1/1 (wt/vol) ratio and the samples were 

ground for ± 15 s at maximum speed (Homex 6, Bioreba) until a homogenous mixture was 

obtained. Tenfold dilutions of the resulting suspension were made in 0.1% peptone and 100 

µL aliquots were spread-plated in duplicate on xylose lysine desoxycholate agar (Lab M, Bury, 

UK) overlaid with TSA for S. enterica and on cefixime–tellurite sorbitol Mac Conkey agar (Lab 

M, Bury, UK) overlaid with TSA for E. coli O157:H7 (Van der Linden et al., 2013). All plates were 

incubated at 37 °C for 24 h. Three randomly chosen plants from each treatment were sampled 

at 4 and 8 days after inoculation (dai), while one plant per treatment was sampled at day 0 (= 

immediately after inoculation). From each plant, three middle-aged leaves were collected in 

a single extraction bag and analysed for E. coli O157:H7 and S. enterica as described above. 

For mature lettuce, the 12th to 14th leaves in the head are considered as middle-aged. Leaf age 

is an important factor influencing the survival of both pathogens on the leaves. Middle-aged 

leaves were selected because Van der linden et al. (2013) found that the middle-aged leaves 

yielded the most consistent results for both pathogens, with the smallest standard deviations 

and smallest effect of environmental factors (which are difficult to control in the growth 

chamber). This was especially the case for S. enterica. The experiment was done twice for each 

pathogen. So, in total 6 leaves for 0 dai, 18 leaves for 4 dai and 18 leaves for 8 dai were 

analysed. 

 4.1.3 PLFA analysis 

PLFA analysis was done on soil samples (approximately 50 g) taken from five pots per 

treatment from S. enterica inoculated plants and stored at -20 °C until they were freeze-dried. 

PLFA analysis was done as described in Chapter 2, section 2.1.7. 

 4.1.4 Rhizosphere sampling and DNA extraction  

The lettuce rhizosphere was sampled according to Lundberg et al. (2012) of the same five pots 

for PLFA analysis (S. enterica inoculated plants). Loose soil was manually removed from the 

roots by kneading and shaking. We followed the established definition of rhizosphere soil as 

extending up to 1 mm from the root surface. Subsequently, roots with the remaining soil 

aggregates were placed in a sterile 50 mL tube containing 25 mL phosphate buffer. Tubes were 



Rhizosphere microbiome in response to chitin 

101 
 

vortexed at maximum speed for 15 s, which released most of the rhizosphere soil from the 

roots and turned the water turbid. The turbid solution was then filtered through a 100 µm 

nylon mesh cell strainer to remove broken plant parts and large sediment. The turbid filtrate 

was centrifuged for 15 min at 3,200 g to form a pellet containing fine sediment and micro-

organisms. Most of the supernatant was removed and the pellets were stored at -20 °C until 

DNA extraction. DNA was extracted from 250 mg of the pellet with the PowerSoil DNA 

isolation kit (Mo Bio, USA) according to the manufacturer's instructions. This DNA was used 

for bacterial 16S (V3-V4) and fungal ITS2 rRNA gene amplicon sequencing and shotgun 

metagenomics as described in sections 3.1.5 and 3.1.6 respectively. 

 4.1.5 Rhizosphere microbiology: amplicon sequencing 

In total, five samples were used for amplicon sequencing. The bacterial and fungal rhizosphere 

populations were identified by sequencing the V3-V4 fragment of the 16S rRNA gene and the 

ITS2 gene fragment respectively, using Illumina technology (Illumina, San Diego, CA, USA). 

Using an amplification and dual-index PCR successively, fragments were amplified and 

extended with Illumina specific adaptors, which is described in detail in Chapter 2 section 

2.1.8. Each PCR step was followed by a PCR product clean-up using the CleanPCR reagent kit 

(MAGBIO, Gaithersburg, MD, USA).  

Final libraries were quality controlled using the Qiaxcel Advanced, with the Qiaxcel DNA High 

Resolution kit (QIAGEN, Germantown, MD, USA), and concentrations were measured using 

the Quantus double-stranded DNA assay (Promega, Madison, WI, USA). The final barcoded 

libraries of each sample were diluted to 10 nM and pooled in a 2:1 ratio for bacterial and 

fungal libraries respectively. Resulting libraries were sequenced using Illumina MiSeq v3 

technology (2 x 300 bp) by Macrogen, South-Korea, using 30% PhiX DNA as spike-in.  

Additionally, two technical replicates for each treatment (one control and one chitin 

rhizosphere, so 4 samples in total) were included in the library to study the reproducibility of 

sequencing, with a separate DNA extraction and sequencing done on the same rhizosphere of 

a single plant.  

Demultiplexing of the amplicon dataset and removal of the barcodes was performed by the 

sequencing provider. The raw sequence data is available in the NCBI Sequence Read Archive 

under the accession number PRJNA294362. A detailed description of the sequence read 

processing can be found in Chapter 2 section 2.1.8. Briefly, Trimmomatic v0.32 was used for 
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removing the primers (Bolger et al., 2014). Raw Illumina forward and reverse reads were 

merged using the program PEAR (Zhang et al., 2014). To extract the ITS2 sequences from the 

complete amplicon sequence, which includes parts of the neighboring, highly conserved, 

ribosomal genes, the ITSx program was used (Bengtsson-Palme et al. 2013). In the following 

steps, different programs of the Usearch software v7.0.1090 were used (Edgar, 2014). Merged 

sequences were quality filtered. Next, sequences of all samples that needed to be compared 

to each other were merged, dereplicated and sorted by size. Clustering the reads into 

Operational Taxonomic Units (OTUs) was done using Uparse, with an identity level of 97% for 

bacterial sequences and 98.5% for fungal sequences (Edgar, 2014). Chimeras were removed 

from the V3-V4 fragments using Uchime with the RDP Gold database as a reference (Edgar et 

al., 2011). Finally, sequences of individual samples were mapped back to the representative 

OTUs using the “usearch_global” algorithm at 97% identity, and then converted into an OTU 

table (McDonald et al., 2012).  

 4.1.6 Rhizosphere microbiology: shotgun metagenomics 

In total, four samples were selected from each treatment (no chitin addition, 2% chitin 

addition) for shotgun metagenomics. 1 µg DNA was sheared by ultrasonication using the 

covaris M220 at NxtGnt (Ghent, Belgium). Further preparation of the shotgun libraries was 

done by the Floodlight Genomics LLC lab (Knoxville, USA) under supervision of dr. Kurt Lamour 

and were sequenced on one Illumina HiSeq 2500 lane (2 x 250 bp) by Macrogen, South-Korea. 

Demultiplexing of the shotgun dataset and removal of the barcodes was performed by the 

sequencing provider. The raw sequence data is available on the EBI metagenomics web portal 

under the project “ERP017180”. Before sequence read processing, data quality has been 

checked using fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Truseq 

sequencing adaptors were present in 10% of the reads and were removed using the program 

cutadapt on the paired sequences (Martin, 2011).  

Further on, reads were processed using EBI-metagenomics v3.0 (Mitchel et al., 2015). Briefly, 

SeqPrep v1.1 (https://github.com/jstjohn/SeqPrep) was used to merge the paired end 

Illumina reads. Low quality data (low quality ends and sequences with > 10% undetermined 

nucleotides) was trimmed using Trimmomatic (Bolger et al., 2014). Only sequences with a 

minimal length of 100 bp were retained. For the identification and masking of non-coding 

RNAs, HMMER v3.1b1 was used (Finn et al., 2011). 16S rRNA genes and mRNA genes were 

https://github.com/jstjohn/SeqPrep
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filtered from the set and used for taxonomic and functional analysis respectively. To cluster 

the reads in OTUs and assign taxonomy, QIIME (v1.9.1) was used with greengenes (v13.8) as 

the reference database (DeSantis et al., 2006; Caporaso et al., 2010a). This limits the 

taxonomical identification to bacterial sequences. For functional gene annotation, first 

Fraggenescan (v1.20) was used to identify (fragmented) genes in short reads (Rho et al., 2010). 

Further on, InterProScan (v5.19-58.0) matches the mRNA reads toward predicted coding 

sequences using a subset of databases (Jones et al., 2014). As output, a list of Gene Ontology 

(GO) Terms is created.   

4.1.7 Downstream data analysis and statistics 

Lettuce growth, zoonotic pathogens enumeration and absolute PLFA concentrations were 

analysed with Statistica 12 (Statsoft) using a multi-factor analysis of variance with p<0.05. Full 

factorial design was performed first. If all interaction terms were not significant, a t-test was 

done to compare the mean of the chitin treatment with the control treatment. The factors 

studied for the lettuce growth were: treatment (with or without chitin) and experiment (1 and 

2), with fresh weight per plant as dependent variable. For the enumeration of the zoonotic 

pathogens on lettuce leaves, treatment (with or without chitin), sampling time (days 4 and 8) 

and experiment (1 and 2) were the factors with CFU g-1 lettuce leaf as dependent variable.  

Statistical differences in the absolute values of the PLFA’s between the different treatments 

were determined using a MANOVA analysis.  

Statistical differences of the relative abundances in PLFA were determined using ANOVA by 

the Statistical Analysis of Metagenomic Profiles (STAMP) program (Parks and Beiko, 2010). 

Correction of multiple testing was done using the Benjamini-Hochberg False Discovery Rate 

(FDR) method. Principal Coordinate Analysis (PCoA), in which the dissimilarity matrices were 

based on the Bray-Curtis index, on the PLFA data was done using the R vegan package (version 

2.0-10) (Oksanen et al., 2010) with dissimilarity matrices calculated using the Bray-Curtis 

index. 

OTU tables of the V3-V4 and ITS2 amplicon sequencing were analysed using the QIIME 

software package (v1.9.0) (Caporaso et al., 2010a). Representative bacterial OTU sequences 

were aligned to the SILVA v119 97% core set (version 119) using QIIME (Caporaso et al., 2010b; 

Quast et al., 2012). Taxonomy assignment was done using the uclust assignment method, 
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accepting maximum 3 hits for each query sequence and then assigning the most specific 

taxonomic label that is associated with at least 51% of the hits. Similarly, taxon assignments 

of fungal OTU sequences were done using the UNITE database (version 7.0) (Kõljalg et al. 

2013).  

Rarefaction analysis was done using the “alpha_rarefaction.py” script of QIIME. Rarefaction 

curves were estimated for both bacterial and fungal OTUs. Convergence was reached at 

70,000 sequences for the bacterial OTUs (Figure 4.1A) and at 10,000 sequences for the fungal 

OTUs. Those rarefaction depths were used to determine the number of observed OTUs 

representing the bacterial and fungal richness. Shannon-Wiener diversity indices were 

calculated using the “alpha_diversity.py” script (QIIME) and used to estimate the within 

sample diversity. To find significant differences among mean richness and diversity indices, 

ANOVA analysis was done. Tukey HSD tests were used to find the mean richness and diversity 

indices that are significantly different from each other. Both analysis were done using the R 

program (version 3.1.0) (R core team, 2015). 

 

Figure 4.1 Rarefaction curves of the 16S rRNA gene data retrieved from (A) amplicon sequencing data (V3-V4), 

and (B) shotgun metagenomics data. For the amplicon sequencing data, saturation is reached around 70,000 

sequences. For the shotgun data, saturation was not reached and compared to amplicon sequencing data, 

community complexity was low. 

Multivariate analysis was done using the specific R package vegan (version 2.0-10) (Oksanen 

et al., 2010). Dissimilarity matrices (based on the Bray-Curtis dissimilarity index) were 

calculated from the OTU tables of the fungal and bacterial sequences obtained from amplicon 

sequencing and from the taxonomy OTU tables obtained from EBI metagenomics of the 
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shotgun metagenomics data, which did not reach saturation based on rarefaction analysis 

(Figure 4.1B). The OTU tables were normalized by removing those OTUs with an abundance 

lower than 0.01% in at least one sample. Homogeneity of the dataset was first tested using 

the betadisper functions. If variances were equal, effect of chitin addition on the bacterial and 

fungal communities was studied by doing a PERMANOVA analysis on these dissimilarity 

indices. To visualise the observed differences in bacterial community composition, PCoA on 

the dissimilarity matrices was done.  

The STAMP analysis software was used to study individual differences in the bacterial or fungal 

taxonomic groups, both for the amplicon sequencing and shotgun sequencing data (Parks and 

Beiko 2010). For each experiment, ANOVA analyses were done on an OTU table clustered until 

genus level to determine the effect of chitin addition on the individual groups (phyla, genera). 

To correct for multiple testing, we used the Benjamini-Hochberg FDR. The clustering of the 

table until genus level was done using the QIIME software 

(“summarize_taxa_through_plots.py”) and these tables were normalized by only keeping 

those genera which were present with a minimal abundance of 0.01% in minimum one 

sample.  

For the analysis of the functional data retrieved from EBI metagenomics, R statistical software 

was used (R core team, 2015). First dissimilarity matrices (based on the Bray-Curtis 

dissimilarity index) were calculated from the GO terms tables. Homogeneity of variances was 

tested using the ‘betadisper’ function. If variances were equal, effect of chitin on the microbial 

functions was studied by PERMANOVA analysis on the dissimilarity indices. To study 

differences in functional genes (biological, cellular & molecular) a read table clustered on GO 

terms was used. In a filtering step GO terms with low count number in most samples were 

removed. GO terms with a read count less than 3 counts per million for at least four samples 

were removed from the dataset. Normalization is based on the trimmed mean of M-values in 

which we correct for effective library size of the count tables (Robinson and Oshlack, 2010). 

This normalization takes the sequencing depth into account and corrects for the presence of 

highly abundant families. The counts are modelled OTU by OTU using a negative binomial 

model with main effect chitin addition. The effective library size was used as an offset in the 

model for normalization purposes, hence, all model parameters have an interpretation in 

terms of changes in relative abundance. Empirical Bayes estimation of the overdispersion 
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parameters of the negative binomial model was adopted using the quantile-adjusted 

conditional maximum likelihood method by shrinking the GO term overdispersion towards the 

common dispersion across all GO terms. Statistical tests were adopted on the appropriate 

contrasts of the model parameters to assess the research questions of interest. We adopted 

the Benjamini-Hochberg FDR procedure to correct for multiple testing. All of these analyses 

were done using the edgeR package, version 3.12.0 (Robinson et al., 2010).
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4.2 RESULTS 

The results are divided in three parts, either describing the effect of chitin on lettuce plant 

growth and the survival of zoonotic pathogens (section 4.2.1) or the rhizosphere microbiome 

(section 4.2.2 – 4.2.3). For the rhizosphere microbiome, both the bacterial and fungal 

taxonomy was studied by either PLFA, amplicon sequencing and shotgun metagenomics 

(section 4.2.2). In addition, shotgun metagenomics also gave insight in changes in the 

functional genes of the microbiome by chitin addition, for which we were especially interested 

in chitinase activity in function of plant growth and survival of zoonotic pathogens (section 

4.2.3). 

4.2.1 Effect of chitin soil amendment on lettuce growth and survival of zoonotic    

pathogens on the leaves 

Two independent experiments were performed to study the effect of chitin addition on 

lettuce growth and survival of the zoonotic pathogens E. coli O157:H7 and S. enterica. In terms 

of lettuce growth there was no interaction between the chitin treatment and the experiment, 

and therefore data of the two independent experiments was pooled. Addition of chitin 

significantly (p <0.01) increased the fresh weight of the lettuce plants from 172.1 ± 17.8 g per 

plant grown in potting soil to 213.0 ± 18.8 g per plant grown in chitin amended potting soil.  

For plants grown in potting soil without chitin, the dynamics of E. coli O157:H7 concentrations 

on the leaves were highly similar to those reported by Van der Linden et al. (2013) who grew 

lettuce plants in the same conditions and used the same E. coli isolate. No interaction effect 

between the three factors (treatment, experiment and sampling day) was observed, but an 

interaction effect between the sampling days (0, 4 and 8 dai) and the two experiments was 

noted. Therefore the survival of E. coli on the lettuce leaves was analysed for each day 

separately. For day 4, no significant effect of chitin addition on the survival of E. coli O157:H7 

was observed in the experiments, for which the data could be pooled as there was no 

interaction effect between the factors treatment and experiments. On day 8 a significant 

reduction of E. coli survival in experiment 2 (p = 0.009) was observed, but not in experiment 1 

(interaction effect treatment-experiment) (Figure 4.2A). 

Also for the dynamics of S. enterica on the leaves in our control, we reported highly similar 

results as the ones obtained by Van der Linden et al. (2013). Data could be pooled for the two 
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experiments as there was no general interaction effect between the three factors (treatment, 

experiment, sampling day) and no interaction was observed between the factors treatment 

and experiment. The effect of chitin on the survival of S. enterica was however analysed for 

the sampling days separately, because an interaction between the factors treatment and 

sampling days was observed. At sampling day 4, no significant difference between the two 

treatments was found, whereas 8 days after inoculation, a significant lower survival rate of S. 

enterica on the leaves in the chitin treatment compared to the control was observed (Figure 

4.2B).  

 

Figure 4.2 Dynamics of Escherichia coli O157:H7 (A) and Salmonella enterica sv. Thompson RM1987N (B) on 

middle-aged lettuce leaves at 0,4 and 8 days after spray inoculation analysed by plating as described by Van 

der Linden et al. (2013). Full lines and dashed lines represent control (=non-chitin treatment) and chitin treated 

plants respectively. The data are calculated from the log-transformed values of the pathogen per gram tissue 

from two independent experiments (n=2 plants or 6 leaves for day 0 and n=6 plants or 18 leaves for day 4 and 

8). Asterisk means significant differences between the chitin and control treatment. Bars represent standard 

errors. 

4.2.2 The rhizosphere microbiome: taxonomical shifts by chitin addition 

For PLFA analysis, the soil from five individual pots of the control treatment (= without chitin) 

and from five individual pots of the chitin treatment was analysed from non-inoculated plants. 

Both the absolute (nmol g-1 dry soil) and the relative abundance (%) of each biomarker was 

assessed per treatment. All individual PLFA biomarkers and all microbial groups were 

significantly increased after chitin amendment (absolute abundances), resulting in a double 

amount of total biomass as compared to the control (Additional Information (AI) Table AI4.1). 

For the relative abundance, 13 of the 20 biomarkers were significantly different from the 

control, with a significant decrease in relative abundance for bacteria (non-specific) and Gram 

positive bacteria and a significant increase for the Gram negative bacteria (Table AI4.2).  
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To illustrate these dissimilarities in the microbial communities of the chitin supplemented soil 

and the control, a PCoA on the PLFA data was done (Figure 4.3). The first principal coordinate 

(PCo1), which represents the major variance of the dataset (94.9%) confirmed that the 

rhizosphere microbiome differed between potting soil with and without chitin. The second 

principal coordinate describes the variation between the samples in each treatment (with and 

without chitin). This is only a minor source of variability (2.5%), indicating a high 

reproducibility of the data of the 5 pots per treatment.  

 

Figure 4.3 Principal Coordinates Analysis (PCoA) plot of the PLFA data. The x-axis represent 94.9 % of the 

variance of the dataset, the y-axis represent 2.5 % of the total variance of the dataset. 

The bacterial community composition of the lettuce rhizosphere was analysed in first 

instance by sequencing the V3-V4 region of the 16S rRNA gene, both for plants grown in 

potting soil with and without chitin. The rhizospheres of five individual plants from each 

treatment (with and without chitin) were prepared and analysed separately. After merging of 

the forward and reverse reads and quality filtering, 83.8% of the sequences were retained, 

resulting in an average of 92,549 sequences per sample. No differences were observed 

between the two technical replicates per treatment, indicating reproducibility of the 

sequencing.  

Second, shotgun metagenomics on four rhizosphere samples of plants grown in potting soil 

with and without chitin was done. Samples were analysed using the online webtool EBI-

metagenomics (Mitchel et al., 2015). After quality filtering, 75.5% of the sequences were 
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retained with an average length of 232 bp, resulting in an average of 17,115,710 reads per 

sample. On average, 5,238 and 3,875 reads could be assigned to a bacterial 16S rRNA gene for 

unamended and 2% chitin amended potting soil rhizosphere samples respectively.   

Differences in bacterial communities between treatments were analysed in two ways. First, 

the richness and diversity were studied in the amplicon data set, by estimating the number of 

observed OTUs and Shannon-Wiener diversity indices between the control and the chitin 

treatment (1436±35 vs. 1370±12 and 8.15±0.03 vs 8.17±0.08, respectively). Both did not differ 

significantly, indicating that the chitin amendment did not increase the bacterial biodiversity 

in the rhizosphere.  

Second, the bacterial community composition was studied. PERMANOVA analysis of the 

amplicon sequencing data showed that chitin addition induced significant shifts in bacterial 

composition (taxonomic groups) (p= 0.01). This was confirmed by the shotgun metagenomics 

data, where the relative abundances of the reads assigned to bacterial taxonomy were 

significantly different due to chitin treatment (p=0.037). This is illustrated by a PCoA plot of 

both datasets (Figure 4.4).  

 

Figure 4.4 Principal Coordinates Analysis (PCoA) plot of the bacterial community. Plots are either based on 

amplicon sequencing of the V3-V4 16S rRNA gene (A) or on the 16S rRNA genes retrieved from a shotgun 

metagenomics dataset (B).   

In the amplicon sequencing data, thirteen of the twenty-eight bacterial phyla showed a 

significant difference between the control and the chitin treatment, of which ten phyla and 

two candidate divisions each represented more than 1% of the community (Table 4.1). Most 



Rhizosphere microbiome in response to chitin 

111 
 

importantly, the relative abundances of the Acidobacteria and the Verrucomicrobia were 

significantly decreased in the chitin treatment as compared to the control, whereas the 

relative abundance of the Actinobacteria, Bacteroidetes, and the Proteobacteria was 

significantly increased in the chitin treatment as compared to the control (Table 4.1). 

Analysing these 5 phyla together, it was shown that the relative abundance of the Gram 

negative bacteria was significantly increased in the chitin treatment. In contrast, the relative 

abundance of the Gram positive bacteria was not significantly different from the control 

(Table 4.1). 

Shotgun metagenomics showed a statistically significant reduction in relative abundance of 

the Verrucomicrobia, Acidobacteria and Gemmatimonadetes and a significant increase in the 

relative abundance of Bacteroidetes and Actinobacteria due to the addition of chitin. With the 

exception of the Proteobacteria, the same trends in increase or decrease due to chitin addition 

are observed as with amplicon sequencing (Table 4.1).  

Table 4.1 Bacterial composition of the lettuce rhizosphere in unamended and chitin amended potting soil. 

Relative abundances (%) (average±standard error) of the twelve most dominating phyla (relative abundance > 1 

%) in the strawberry rhizosphere, comprising more than 95 % of the total bacterial community in the lettuce 

rhizosphere. Phyla that are statistically significant (p<0.05) in abundance for the chitin treatment compared to 

the control group (0% chitin) are indicated with an asterisk. Phyla that were statistically different and known to 

contain gram negative bacteria are indicated in bold, phyla containing gram positive bacterial members are 

underlined.   

Phylum V3-V4 Amplicon 

sequencing 

 Shotgun 

metagenomics 

 

 Control 2% chitin  control 2% chitin  

Proteobacteria (%) 47.0±0.4 49.8±0.8 * 57.1±1.0 57.2±1.8  

Bacteroidetes (%) 10.8±0.3 15.6±0.4 * 9.1±0.4 12.3±0.3 * 

Verrucomicrobia (%) 10.8±0.4 7.7±0.6 * 8.9±0.5 5.9±0.9 * 

Acidobacteria (%) 7.1±0.3 5.4±0.3 * 7.3±0.4 4.8±0.3 * 

Actinobacteria (%) 3.8±0.1 4.8±0.2 * 5.2±0.1 6.3±0.3 * 

Cyanobacteria (%) 3.2±0.5 3.0±0.6 * 3.2±0.6 3.1±1.7  

Gemmatimonadetes (%) 3.7±0.2 3.2±0.2 * 4.3±0.2 3.5±0.1 * 

Planctomycetes (%) 5.9±0.4 3.2±0.2 * 1.6±0.3 1.2±0.1  

Armatimonadetes (%) 1.3±0.1 1.5±0.1 * 0.5±0.1 0.6±0.1  

Candidate divison TM7 (%) 1.0±0.2 1.7±0.1 * 0.6±0.1 0.8±0.1  

Chloroflexi (%) 1.4±0.1 1.2±0.1 * 0.8±0.1 0.5±0.1  

Candidate division OD1 (%) 1.5±0.2 

 

 

1.1±0.1 * 0.6±0.1 0.4±0.1  

Gram negative bacteria 68.67 73.04 * 75.1 75.4  

Gram positive bacteria 10.98 10.19  12.5 11.1  

 

Amplicon sequencing revealed that chitin altered the relative abundance of 40 bacterial 

families, in particular 11 families of the Proteobacteria, 8 of the Actinobacteria, 6 of the 
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Bacteroidetes, 6 of the Firmicutes, 2 of the Verrucomicrobia, 1 of the Acidobacteria (unknown 

family of subgroup 6) and 1 of the phylum Chlamydiae (Simkaniaceae) (Figure 4.5). Next to 

these families, which belonged to significantly altered phyla by chitin addition, 2 families of 

the Chloroflexi (Anaerolineaceae and an unknown family of the Thermomicrobia), 2 unknown 

families of the Planctomycetes and the Spirochaetaceae (Phylum: Spirochaetes) were 

significantly changed in relative abundance due to chitin addition (data not shown).  

The relative abundance of 38 bacterial genera was significantly different between the 

rhizospheres of the two treatments, of which 18 genera represented more than 0.05% of the 

OTUs in at least one of the two treatments. These 18 genera are reported in Table 4.2. Thirteen 

genera were significantly increased in the chitin treatment, including genera containing 

species that are reported to be involved in plant growth promotion, chitin degradation and 

biological control. Five genera, Pseudolabrys, Alcanivorax, Candidatus solibacter, 

Nitrosococcus and Aquicella were significantly decreased.  

In the shotgun metagenomics data, eleven of these 18 genera were also identified, of which  

nine were also significantly increased or decreased in relative abundance due to the addition 

of chitin .  

The fungal microbiomes present in rhizospheres of five plants that were grown in potting soil 

with or without chitin (ten rhizospheres of individual plants in total) were compared by ITS2 

sequencing. After merging of the forward and reverse reads and quality filtering, 83.6% of the 

sequences were retained, resulting in an average of 50,045 sequences per sample. In total, 

around 21% of the sequences of the control and 17% of the sequences of the chitin 

amendment could not be assigned to a fungal phylum.  
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Figure 4.5 Major bacterial taxonomical changes on family level in the rhizosphere community after 2% chitin amendment to the potting soil. The graphics represent the 

significant differences (%) (average ± standard error) of representative families belonging to five major bacterial phyla in the lettuce rhizosphere due to the addition of chitin 

to the potting soil 

 



Chapter 4 

114 
 

Table 4.2 Significant differences in the relative abundance of bacterial genera (%) ± standard error between lettuce rhizospheres in potting soil with and without 2% chitin 

(n = 5) and the possible functions of species belonging to this genera reported in literature. PGP = Plant Growth Promotion.  Bold means a significantly higher relative 

abundance in the chitin treatment as compared to the control. Underlined means a significant decrease in the relative abundance in the chitin treatment as compared to the 

control.   

Phylum Family Genus V3-V4 amplicon 

sequencing 

Increase or 

decrease 

Shotgun metagenomics Increase or  

decrease 

Possible functions 

(references) 

   control  2% chitin  control 2% chitin  

Proteobacteria Pseudomonadaceae Cellvibrio 0.09±0.05 1.34±0.26 15x 0.08±0.04 1.08±0.36 13x PGPR, chitin degradation and N-

cycle (Suarez et al. 2014; Anderson 

and Habiger, 2012)  

Sphingomonadaceae 

 

 

Sphingobacteriaceae 

Sphingomonas 0.45±0.06 1.02±0.07 2x 0.38±0.02 0.49±0.07  PGP, chitin degradation and 

biocontrol (Wachowska et al. 2013; 

van Bruggen et al 2014, Zhu et al., 

2007)  

Pedobacter 0.02±0.01 0.38±0.09 19x 0.03±0.01 0.33±0.07 11x PGPR and biocontrol (De Boer et al. 

2007) 

Rhodospirillaceae 

 

Azospirillum 0.03±0.01 0.19±0.04 6x 0.09±0.03 0.38±0.13 4x PGPR and N-cycle (Saharan & Nehra, 

2011) 

Dongia 0.72±0.05 1.29±0.06 2x / /  / 

Phyllobacteriaceae Nitratireductor 0.16±0.02 0.42±0.05 3x / /  N-cycle (Penton et al., 2013)  

 Bradyrhizobiaceae Afipia 0.38±0.02 0.58±0.04 2x / /  /  

 Coxiellaceae Aquicella 0.10±0.01 0.04±0.01 0.4x 0.03±0.01 0.01±0.01 0.3x / 

 Xanthobacteraceae Pseudolabrys 1.53±0.07 1.13±0.03 0.7x / /  / 

 Alcanivoracaceae Alcanivorax 0.14±0.02 0.01±0.00 0.1x 0.25±0.07 0.08±0.02 0.3x / 

 Chromatiaceae Nitrosococcus 0.46±0.03 0.18±0.02 0.4x / /  N-cycle (Juretschko et al., 1998) 

Bacteroidetes Cytophagaceae Dyadobacter 0.02±0.0 0.33±0.07 16x 0.02±0.01 0.22±0.11 11x / 

Chitinophagaceae Taibaiella 0.30±0.07 2.14±0.42 7x / /  N-cycle (Zhang et al., 2013) 

Nitrospirae Nitrospiraceae Nitrospira 0.24±0.05 0.90±0.10 4x / /  N-cycle (Kox & Jetten, 2015)  

Actinobacteria 

 

Streptomycetaceae Streptomyces 0.05±0.01 0.53±0.06 10x 0.10±0.03 0.62±0.11 6x PGP, chitin degradation and 

biocontrol (Saharan & Nehra, 2011; 

Hjort et al., 2010) 

Nocardioidaceae Nocardioides 0.11±0.02 0.28±0.04 3x 0.08±0.02 0.18±0.03  Biocontrol (Carrer et al. 2008)  

Firmicutes Anaeroplasmataceae Asteroleplasma 0.00±0.00 0.08±0.01 - 0.00±0.00 0.01±0.01 - / 

Acidobacteria Solibacteraceae Candidatus  0.52±0.03 0.17±0.01 0.3x 0.52±0.07 0.25±0.02 0.5x / 
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There were no significant differences in number of observed OTUs and Shannon-Wiener 

diversity indices between the control and the chitin amendment (298±15 vs. 271±11 and 

4.81±0.40 vs 4.65±0.10, respectively), indicating that the chitin treatment did not increase the 

fungal biodiversity. However, significant shifts in fungal composition (taxonomic groups) 

between the two treatments were observed (PERMANOVA, p=0.008). In total five fungal phyla 

were found across all samples, of which three phyla were significantly different between the 

two treatments: the Ascomycota, Basidiomycota, and the Zygomycota (P< 0.05, Table 4.3).  

Table 4.3 Fungal composition of the lettuce rhizosphere in unamended and chitin amended potting soil.  

Relative abundances (%) (average±standard error) of the five fungal phyla (relative abundance > 1 %) in the 

strawberry rhizosphere. Phyla that are statistically significant (p<0.05) in abundance for the chitin treatment 

compared to the control group (0% chitin) are indicated with an asterisk. 

Phylum Treatment  

 Control 2% chitin  

Ascomycota 53.0±13.7 15.2±1.6 * 

Chytridiomycota 35.2±15.0 12.3±3.6  

Basidiomycota 6.7±1.6 1.7±0.5 * 

Zygomycota 4.3±2.0 70.2±0.6 * 

Cercozoa 0.1±0.1 0.004±0.1  

 

The Zygomycota were significantly increased in the chitin treatment, whereas the 

Basidiomycota and Ascomycota were significantly decreased. The standard errors of the 

relative abundances of phyla over five replicates in the control treatment are quite large 

compared to the 2 % chitin treatment. It indicates that the chitin directs the fungal 

composition in a focused and consistent way. This is probably due to a high increase of the 

relative abundance of Mortierella species in the chitin treatment, compared to the control 

treatment (58.1% vs. 3.2%).  

On family level, chitin addition altered the relative abundance of eleven fungal families 

significantly, in particular seven families of the Ascomycota, two families of the Zygomycota 

and two families of the Basidiomycota (Figure 4.6). Especially the Morteriellaceae showed a 

high increase, due to the genus Morteriella that was strongly represented and is clearly 

promoted by the presence of chitin in the potting soil.  
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Figure 4.6 Major fungal taxonomical changes on family level in the rhizosphere community after 2% chitin 

amendment to the potting soil. The graphics represent the significant differences (%) (average ± standard error) 

of representative families belonging to three major fungal phyla in the lettuce rhizosphere due to the addition 

of chitin to the potting soil. 

Two other fungal genera of the phylum Ascomycota increased in relative abundance due to 

the chitin treatment: Lecanicillium and Pseudogymnoascus. Additionally, only one genus  

decreased significantly in relative abundance: Pseudeurotium. All fungal genera in the 

rhizosphere induced by the addition of chitin to the potting soil include species reported in 

literature to be involved in biocontrol and/or chitin degradation (Table 4.4).  

Table 4.4 Significant differences in the relative abundance of fungal species (average relative 

abundance(%)±standard error)  between potting soil with and without 2% chitin (n = 5) and their possible 

functions reported in literature. PGP = Plant Growth Promotion. Species in bold mean a significant increase in 

the relative abundance in the chitin treatment as compared to the control treatment. Species underlined mean 

a significant decrease in the relative abundance in the chitin treatment as compared to the control treatment.   

Phylum                      Family Genus Treatment  Increase or 

decrease 

Functions (references) 

   Control 2% chitin  

Ascomycota Cordycipitaceae Lecanicillium 0.09±0.05 1.85±0.33 20x PGP, chitin degradation, 

biocontrol and induced 

resistance (Goettel et al. 

2008; Van Nam et al. 2014; 

Nguyen et al. 2015).  

 Pseudorotiaceae Pseudogymnoascus 0.96±0.30 3.46±0.26 4x Biocontrol (Tagawa et al. 

2010) 

 Pseudorotiaceae Pseudeurotium 1.81±0.42 0.12±0.02 0.07x / 

Zygomycota Mortierellaceae Mortierella 3.21±1.73 58.13±2.55 18x Chitin degradation (Kim et 

al., 2008) and biocontrol 

(Tagawa et al., 2010) 
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4.2.3 The rhizosphere microbiome: functional shifts after chitin addition  

Functions encoded in the metagenome were studied by clustering putative protein coding 

DNA fragments to GO terms. In total, around 15 % of the reads could be mapped to a 

functional trait. First of all, differences in microbial functional potential were studied. 

PERMANOVA analysis could be used on the GO term count table as there was homogeneity in 

the variances between microbial genes of the lettuce rhizosphere grown in potting soil and 

chitin amended potting soil. No significant differences in relative abundance of GO terms due 

to the addition of chitin could be detected (p = 0.055).  

Nonetheless no general effect of chitin on the microbial functional genes was observed, 

several molecular and biological processes of the microbiome were influenced by the addition 

of chitin. In total, 305 of the 2611 GO terms increased or decreased in relative abundance due 

to the chitin amendment. From these 305 GO terms, 78 were at least doubled or reduced by 

half in relative abundance due to the addition of chitin (Table AI4.3). Several of these functions 

are involved in multiple processes, which makes it difficult to link them to chitin-related shifts. 

Some of the functions that increase in relative abundance due to chitin addition could be 

linked with e.g. microbial growth or photosynthesis. Most interesting is that several GO terms 

were linked with chitin-metabolic biological and molecular functions. First of all, GO terms 

directly linked to chitin metabolism are significantly altered due to the addition of chitin, with 

the exception of the chitin metabolic processes (Table 4.5). In this table, the GO term 

“chitinase activity” is a collective term for chitinases, 1,4-beta-poly-N-acetylglucosaminidase, 

chitodextrinase and poly-beta-glucosaminidases. Second, also an increase in GO terms linked 

with the enzymes to degrade chitin-deacetylated forms (chitosan, cellulose) is observed: 

chitosanase activity and cellulose catabolic process. 

Table 4.5 Chitin synthase and degrading related functions. The relative abundance of reads (average ± standard 
error) related to chitin addition are indicated for the control (no chitin) and 2% chitin amendment potting soil, 
rhizosphere samples.   

 Category Description 

 

GO term Treatment   
    control 2% chitin   

CHITIN Biological 

functions 

Chitin biosynthetic process GO:0006031 3.5E-7±0.5E-7 28.4E-7±1.4E-7 * 8x 

  Chitin catabolic process GO:0006032 137.4E-7 ±4.8E-7 283.4E-7±4.0E-7 * 2x 

  Chitin metabolic process GO:0006030 3.0E-7±0.8E-7 13.5±2.2E-7   

 Molecular 

functions 

Chitin binding GO:0008061 7.3E-7±0.8E-7 24.1E-7±2.3E-7 * 3x 

  Chitin synthase activity GO:0004568 5.0E-7±0.8E-7 34.2E-7±3.8E-7 * 7x 

  Chitinase activity GO:0016977 137.2E-7±28.5E-7 280.2E-7±28.5E-7 * 2.5x 

CHITOSAN Molecular Chitosanase activity GO:0008811 19.6E-7±3.6E-7 35.6E-7±3.6E-7 * 2x 

CELLULOSE Biological Cellulose catabolic process GO:0030245 145.8E-7±17.2E-7 295.0E-7±32.8E-7 * 2x 
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4.3 DISCUSSION AND CONCLUSIONS 

Since farmers, consumers and policy makers have become more aware of the impact of the 

use of chemical pesticides and fertilizers on human health and the environment, there is a 

renewed interest in the use of organic soil amendments, such as chitin, to improve crop yield 

and plant resilience. Several studies have linked these beneficial chitin amendment effects on 

an influence of the soil and plant rhizosphere microbiome, such as an increase in the 

abundance of PGPR and PGPF in the soil and/or rhizosphere of the plant (Sarathchandra et al., 

1996; Radwan et al., 2012; Cretoiu et al., 2013). Although chitin addition seems to control soil-

borne pathogens and enhances plant disease resistance, it was not known whether chitin 

addition also affects the survival of human pathogens on the plant.  

In the current study, lettuce plants were grown in peat based-potting soil with and without 

chitin. Leafy vegetables are known to have the potential to carry human pathogens such as E. 

coli O157:H7 and S. enterica on their leaves (Van der Linden et al., 2013) and are thus 

considered high risk food. We assessed the effect of chitin addition on (i) lettuce growth; (ii) 

the survival of zoonotic pathogens on the lettuce leaves; and (iii) rhizosphere microbial 

community. 

First, chitin addition to potting soil significantly increased the fresh weight of lettuce leaves by 

approximately 20% which is in accordance to the study of Muymas et al. (2015). This confirms 

the results of previous studies, showing the ability of chitin to promote the growth of several 

crops, e.g. daikon radishes, cabbage, soybean sprouts, sweet basil, grapevine (Sharp, 2013). 

This plant growth promotion can first be due to an enrichment in nutrients. The addition of 

chitin increased the number of previously reported bacterial and fungal chitin-degraders and 

functional genes related to the chitin metabolism. The degradation of chitin releases a 

substantial amount of carbon and nitrogen in the soil or substrate, which leads to an 

enrichment of nutrients (Hamid et al., 2013; Jacquiod et al., 2013). Second, also the increase 

in bacterial genera linked with the N cycle and PGPR, which can ease the uptake of nutrients 

for the plants and enhance the plant availability of nitrogen and phosphorus (Egamberdiyeva, 

2007; Krey et al., 2013), in the rhizosphere microbiome could be related to the increased plant 

growth. Third, chitin can partly be deacetylated to chitosan (Beier & Bertilsson, 2013). 

Chitosan is known as a natural biocontrol agents with antibacterial characteristics and an 

enhancer of plant growth (Linden, 2000).   
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Second, chitin addition significantly reduced the survival of S. enterica on the leaves. Also the 

survival of E. coli O157:H7 seemed to be negatively affected by the chitin amendment, 

although this effect was not significant. To the best of our knowledge, this is the first study to 

show that a soil amendment can affect the survival of a zoonotic pathogen on plant leaves. It 

remains unclear what the exact mechanism is behind the decreased survival of S. enterica on 

the lettuce leaves. In terms of plant health, several mechanisms that occur due to chitin 

addition to soil have already been suggested (Sharp, 2013): (1) direct antibiosis against pests 

and pathogens of crops; (2) enhancement of beneficial microbes; (3) direct stimulation of 

plant defense responses against biotic stress; and (4) up-regulation of plant growth, 

development, nutrition and tolerance to abiotic stress. The three latter responses may not 

only explain our observed plant growth promotion effect, but could also be related to the 

reduced survival of S. enterica on the leaves. In this study, only the microbial community of 

the rhizosphere (2) has been studied using PLFA and HTS. The effect of chitin on the survival 

of zoonotic bacteria on lettuce leaves through a change in the rhizosphere microbiome can be 

twofold. First, the absolute and relative abundance of several fungal and bacterial groups 

involved in biological control increased due to the addition of chitin. Second, chitin can act as 

a PAMP, directly triggering the immune system of the plant (de Jonge et al., 2010). In this 

study not only the chitin-degrading organisms were higher abundant in relative abundance, 

but we also showed an increase in relative abundance of chitinase-linked genes. Chitinase 

activity and the production of chito-oligosaccharides will lead to a cascade reaction in the 

plant, triggering plant-defense genes (Langner & Göhre, 2016). This may also explain the 

reduced colonization of S. enterica on the lettuce leaves.  

Several bacterial genera containing PGPR and PGPF were upregulated. However with the 

techniques used, it is not possible to identify the underlying mechanism of the observed plant 

growth promotion and reduced survival of S. enterica. In accordance, a recent study showed 

that a PGPR (Bacillus subtilis UD1022) applied to the roots was able to influence the survival 

of human pathogens (Listeria and Salmonella) on leafy greens. This was correlated with an 

induction of the stomata closure by the Bacillus strain (Markland et al., 2015). Bacillus subtilis 

well known PGPR effect is at least partly based on the production of surfactines, which induce 

plant immune system in a priming-like manner (Cawoy et al., 2014). In our study, no increase 

in the relative abundance of Bacillus species was seen, but other PGPR and PGPF were more 
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than 10-fold increased after chitin addition, including bacterial species belonging to the 

genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and fungal species belonging 

to the genera Lecanicillium and Mortierella. This confirms previous observations of De Boer et 

al. (1999), who showed that the rapid degradation of chitin in dune soils was most likely due 

to fast-growing Mortierella spp., whereas Streptomyces spp. and slow-growing fungal species 

(such as Verticillium spp., now partially re-classified as Lecanicillium spp.) were shown to be 

more involved in the degradation of chitin after prolonged incubation.  

Our study addresses some limitations of previous studies and extends our knowledge about 

the effect of chitin on belowground microbiology. First, rhizosphere samples were studied 

instead of bulk field soil; second, both the fungal and bacterial community were assessed using 

Illumina sequencing; and third, PLFA was used as an additional technique which allows 

quantification of microbial biomass. In our study, amplicon sequencing showed that chitin 

addition to peat-based potting soil increased the relative abundance of the Proteobacteria, 

Bacteroidetes and Actinobacteria in the rhizosphere, while those of the Verrucomicrobia and 

the Acidobacteria were significantly decreased. This confirms previous results that describe 

an increase in the relative abundance of Proteobacteria (Jacquiod et al., 2013; Cretoiu et al., 

2014), Actinobacteria (Jacquiod et al., 2013) and Bacteroidetes (Cretoiu et al., 2014) due to 

chitin amendment in field soil. Shotgun metagenomics showed the same trends with the 

exception of the Proteobacteria, which were not affected by chitin treatment. Other studies 

comparing amplicon sequencing and shotgun metagenomics data already showed that 

relative abundances of the phyla can differ between the two methods. Amplicon sequencing 

is PCR based and both primer mismatches and the presence of multiple 16S rRNA gene copies 

in a bacterium can lead to false estimations (Galtier & Steel, 2007; Vetrovský & Baldrian, 

2013). In a previous study, the number of Proteobacteria in the amplicon sequencing dataset 

is higher compared to the shotgun metagenomics in the Barley rhizosphere, probably due to 

multiple copies of the 16S rRNA gene in beta- and gammaproteobacteria (Bulgarelli et al., 

2015). In contrast, in our study the Proteobacteria were higher abundant in the shotgun 

metagenomics dataset. This can probably be due to the reference database used. In the 

amplicon sequencing data, Silva was used compared to Greengenes which is used in the EBI 

metagenomics pipeline for taxonomic classification of shotgun metagenome data. Several 

databases are biased in their compositions and for Greengenes ~30% of the database are 
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Proteobacteria, which comprise ~5% of the database of complete microbial genomes used to 

assign taxonomic affiliations to metagenomics contigs (Poretsky et al., 2014). In addition, only 

4,000 sequences were used of the shotgun dataset for taxonomic classification compared to 

50,000 sequences in the amplicon dataset. Therefore, it could be that the sequencing depth 

of the shotgun set was not sufficient to cover the complete community complexity. 

PLFA analyses showed a twofold increase in both fungal and bacterial biomass in the 

rhizosphere due to chitin amendment. Cretoiu et al. (2013) however showed a tenfold 

increase in bacterial abundance, but a tenfold decrease in fungal abundance in chitin-

amended field soil compared to unamended field soil using qPCR. This increase in microbial 

biomass is also supported by the shotgun metagenomics data. Some functional genes which 

could be related to microbial growth were higher abundant when chitin was added, e. g. 

calcium-dependent phospholipid binding and iron ion transmembrane transport. Iron and 

calcium are both elements necessary for microbial growth and cell division. Therefore, 

increase in transport-regulated elements can be correlated with an increases uptake of the 

elements and a higher microbial cell division and thus biomass (Michiels et al., 2002; 

Symeonidis & Marangos, 2012).  

Based on our results and others, chitin addition thus gives reproducible shifts in microbial 

community even in very different soil systems. At lower taxonomic levels, differences are 

more common due to the specific niche of the rhizosphere, which is expected to be different 

from bulk soil (e.g.., Lundberg et al., 2012; Peiffer et al., 2013). To the best of our knowledge, 

the presented study is the first study to use amplicon sequencing of the fungal ITS2 gene 

region to assess the effect of chitin soil amendment on the fungal rhizosphere microbiome. 

We showed that the relative abundance of the fungal genera Lecanicillium and Mortierella 

was highly increased, both containing species involved in plant growth promotion, chitin 

degradation and biological control. Additionally, Mortierella spp. belonging to a the complex 

group of the Mortierellales (Wagner et al., 2013) might play an important component in the 

phosphorus cycling of the plant (Curlevski et al., 2010). 

To conclude, in this chapter we demonstrated that chitin addition to potting soil is able to 

increase lettuce crop growth and decrease the survival of Salmonella on leafy greens. Both 

effects were related with changes in the rhizosphere microbiome, with increases in PGPR, 

PGPF and previous identified chitin-degraders and chitin-related functions.  
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Table AI4.1. Absolute concentrations (nmol g-1 dry soil) ± standard error of PLFA biomarkers specific for 
different microbial groups  in potting soil with and without 2% chitin, after 55 days of lettuce cultivation in the 
growth chamber. Asterisks indicate a significant increase as compared to the control (p<0.05) by analysis of 
variance with n = 5.  
 

Microbial group PLFA biomarker Treatment  

 Control 2% chitin  

Gram positive bacteria i-C15:0 20.22±0.43 31.39±2.22 * 

 a-C15:0 12.71±0.35 19.27±1.49 * 

 i-C16:0 7.13±0.23 11.19±0.77 * 

 i-C17:0 8.08±0.20 14.91±1.11 * 

     Actinomycetales 10Me-C16:0 4.20±0.20 5.83±0.34 * 

 10Me-C17:0 4.96±0.19 8.74±0.56 * 

 10Me-C18:0 0.50±0.03 3.34±1.07 * 

     

     

Bacteria (non-specific) C14:0 2.72±0.10 3.70±0.28 * 

 C15:0 2.05±0.05 3.34±0.23 * 

 C16:0 41.41±1.64 71.72±5.56 * 

 C17:0 1.17±0.04 2.27±0.16 * 

 C18:0 9.77±0.26 16.36±0.94 * 

     

Gram negative bacteria C16:1c9 11.14±0.74 25.18±2.72 * 

 C16:1t9 4.15±0.63 8.98±0.65 * 

 C17:0cy 9.48±0.53 22.56±2.27 * 

 C18:1c11 9.77±0.26 16.36±0.94 * 

 C19:0cy 23.56±0.78 49.23±4.32 * 

     

     

     

     

Fungi C18:1c9 15.26±0.68 38.37±4.62 * 

 C18:2n9,12 22.32±3.28 31.50±1.69 * 

     

        Arbuscular mycorrhiza C16:1c11 4.22±0.37 8.17±0.54 * 

Total biomass  221.82±8.28 402.20±29.38 * 
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Table AI4.2. Relative abundance (%) ± standard error of biomarker PLFAs and PLFA groups in potting soil with 

and without 2% chitin after  55 days of lettuce cultivation in the growth chamber. Asterisk indicates a significant 

difference to the control (p<0.05) by analysis of variance with n = 5. Microbial groups and biomarkers marked in 

bold are significantly more abundant in the chitin treatment as compared to the control. Underlined microbial 

groups and biomarkers are significant less abundant in the chitin treatment as compared to the control.  

 

Microbial group PLFA biomarker Treatment  

  Control 2% chitin  

Gram positive bacteria i-C15:0 9.12±0.19 7.77±0.27 * 

 a-C15:0 5.73±0.17 4.76±0.11 * 

 i-C16:0 3.21±0.06 2.78±0.13 * 

 i-C17:0 3.64±0.08 3.68±0.05  

     Actinomycetales 10Me-C16:0  1.89±0.05 1.45±0.04 * 

 10Me-C17:0 2.23±0.04 2.16±0.06  

 10Me-C18:0 0.22±0.02 0.82±0.25 * 

     

     

Non-specific bacteria C14:0 1.22±0.05 0.91±0.02 * 

 C15:0 0.93±0.03 0.83±0.02 * 

 C16:0 18.6±0.21 17.66±0.12 * 

 C17:0 0.53±0.02 0.56±0.02  

 C18:0 4.40±0.07 4.05±0.09 * 

     

Gram negative bacteria C16:1c9 5.00±0.21 6.15±0.23 * 

 C16:1t9 1.85±0.24 2.22±0.07  

 C17:0cy 4.26±0.15 5.53±0.17 * 

 C18:1c11 7.77±0.23 7.30±0.27  

 C19:0cy 10.61±0.24 12.11±0.39 * 

     

  10Me-C16:0  1.89±0.05 1.45±0.04 * 

 10Me-C17:0 2.23±0.04 2.16±0.06  

 10Me-C18:0 0.22±0.02 0.82±0.25 * 

 

Fungi 

  

C18:1c9 6.88±0.27 9.39±0.66 

* 

 C18:2n9,12 9.95±1.32 7.83±0.35  

     Arbuscular mycorrhiza C16:1c11 1.91±0.19 2.02±0.08  

 

 

 

 

 

 

 

 



Chapter 4 

124 
 

Table AI4.3 Functional GO terms that significantly increased or decreased in relative abundance due to the 
addition of chitin to the potting soil. Only those GO terms which were at least doubled or reduced by half due to 
chitin addition are represented. For several GO terms, the relation with a particular pathway or process the 
function is related to is given. The remark is made that these GO terms can also be related to several other 
processes.  

Category GO term Description Increase/ 

decrease 

Function  

related to 
Biological 

process 

GO:0006816 calcium-dependent cysteine-type endopeptidase 

activity                                                                                                                         

8.6  

 GO:0006816 calcium-dependent phospholipid binding                                                                                                                                         8.6 Microbial growth 

 GO:0006031 chitin biosynthetic process                                                                                                                                                    8.0 Chitin degradation 

 GO:0006030 chitin synthase activity                                                                                                                                                       4.5 Chitin degradation 

 GO:0006030 chitinase activity                                                                                                                                                             4.5 Chitin degradation 

 GO:0006030 chitosanase activity                                                                                                                                                           4.5 Chitin degradation 

 GO:0034229 eukaryotic translation initiation factor 3 complex                                                                                                                             4.0  

 GO:0006338 chromatin remodeling                                                                                                                                                           3.7  

 GO:0016255 attachment of GPI anchor to protein                                                                                                                                            3.5  

 GO:0051016 barbed-end actin filament capping                                                                                                                                              3.0  

 GO:0006820 anion transport                                                                                                                                                                2.9  

 GO:0006887 exocytosis                                                                                                                                                                     2.9  

 GO:0006887 exodeoxyribonuclease I activity                                                                                                                                                2.9  

 GO:0007059 chromosome segregation                                                                                                                                                         2.7  

 GO:0015743 malate transport                                                                                                                                                               2.7  

 GO:0016573 histone acetyltransferase activity                                                                                                                                             2.7  

 GO:0016573 histone binding                                                                                                                                                                2.7  

 GO:0000077 DNA helicase activity                                                                                                                                                          2.6  

 GO:0006691 L-fucose isomerase activity                                                                                                                                                    2.6  

 GO:0034755 iron ion transmembrane transport                                                                                                                                               2.5 Microbial growth 

 GO:0006888 ER to Golgi vesicle-mediated transport                                                                                                                                         2.5  

 GO:0006075 (1->3)-beta-D-glucan biosynthetic process                                                                                                                                      2.5 Cell wall / microbial growth 

 GO:0030261 chromosome condensation                                                                                                                                                        2.3  

 GO:0007016 cytoskeleton                                                                                                                                                                   2.3  

 GO:0006488 dolichol-linked oligosaccharide biosynthetic process                                                                                                                           2.2  

 GO:0034314 Arp2/3 complex-mediated actin nucleation                                                                                                                                       2.1  

 GO:0006032 chitin catabolic process                                                                                                                                                       2.1 Chitin degradation 

 GO:0034314 Arp2/3 protein complex                                                                                                                                                         2.1  

 GO:0006914 autophagy                                                                                                                                                                      2.0  

 GO:0030245 cellulose catabolic process                                                                                                                                                    2.0 Chitin degradation 

 GO:0006869 lipid transport                                                                                                                                                                2.0  

 GO:0006869 lipid transporter activity                                                                                                                                                     2.0  

 GO:0006869 lipid-A-disaccharide synthase activity                                                                                                                                         2.0  

Molecular 

function 

GO:0017022 myosin complex                                                                                                                                                                 15.8  

 GO:0003721 telomere maintenance                                                                                                                                                           7.1  

 GO:0016286 small GTPase mediated signal transduction                                                                                                                                      6.3  

 GO:0030570 pectate lyase activity                                                                                                                                                         4.3  

 GO:0030570 pectin catabolic process                                                                                                                                                       4.3  

 GO:0030247 polysaccharide binding                                                                                                                                                         3.8  
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 GO:0030247 polysaccharide biosynthetic process                                                                                                                                            3.8  

 GO:0016296 p-aminobenzoyl-glutamate transmembrane transport                                                                                                                               3.8  

 GO:0019904 protein domain specific binding                                                                                                                                                3.6  

 GO:0019904 protein glycosylation                                                                                                                                                          3.6  

 GO:0000981 RNA polymerase II transcription factor activity, 

sequence-specific DNA binding                                                                                                 

3.2  

 GO:0019887 protein kinase regulator activity                                                                                                                                              3.1  

 GO:0019799 type II protein secretion system complex                                                                                                                                       3.0  

 GO:0031369 translation initiation factor binding                                                                                                                                          2.8  

 GO:0019901 protein kinase binding                                                                                                                                                         2.6  

 GO:0019901 protein kinase CK2 complex                                                                                                                                                     2.6  

 GO:0004864 protein phosphatase type 2A complex                                                                                                                                            2.6  

 GO:0004652 polynucleotide adenylyltransferase activity                                                                                                                                    2.5  

 GO:0015558 p-aminobenzoyl-glutamate uptake transmembrane 

transporter activity                                                                                                             

2.4  

 GO:0001104 RNA polymerase II transcription cofactor activity                                                                                                                              2.4  

 GO:0004843 thiol-dependent ubiquitin-specific protease activity                                                                                                                           2.4  

 GO:0035091 phosphatidylinositol binding                                                                                                                                                   2.3  

 GO:0008536 Ran GTPase binding                                                                                                                                                             2.3  

 GO:0003980 UDP-glucose:glycoprotein glucosyltransferase activity                                                                                                                          2.3  

 GO:0035091 phosphatidylinositol metabolic process                                                                                                                                         2.3  

 GO:0009881 photosynthesis                                                                                                                                                                 2.3 Photosynthesis 

 GO:0009881 photosynthetic electron transport chain                                                                                                                                        2.3 Photosynthesis 

 GO:0009881 photosynthetic electron transport in photosystem II                                                                                                                            2.3 Photosynthesis 

 GO:0009881 phytochelatin biosynthetic process                                                                                                                                             2.3  

 GO:0009881 photosystem                                                                                                                                                                    2.3 Photosynthesis 

 GO:0009881 photosystem I                                                                                                                                                                  2.3 Photosyntheis 

 GO:0008017 microtubule binding                                                                                                                                                            2.2  

 GO:0016730 oxidoreductase activity, acting on iron-sulfur proteins 

as donors                                                                                                              

2.2  

 GO:0008017 microtubule cytoskeleton organization                                                                                                                                          2.2  

 GO:0003777 microtubule motor activity                                                                                                                                                     2.1  

 GO:0005200 structural constituent of cytoskeleton                                                                                                                                         2.1  

 GO:0043130 ubiquitin binding                                                                                                                                                              2.1  

 GO:0003777 microtubule nucleation                                                                                                                                                         2.1  

 GO:0003777 microtubule-based movement                                                                                                                                                     2.1  

 GO:0003777 microtubule-based process                                                                                                                                                      2.1  

 GO:0003777 microtubule organizing center                                                                                                                                                  2.1  

 GO:0043130 ubiquitin ligase complex                                                                                                                                                       2.1  

 GO:0016307 phosphatidylinositol phosphate kinase activity                                                                                                                                 2.0  

 GO:0034450 ubiquitin-ubiquitin ligase activity                                                                                                                                            2.0  

 GO:0047487 oligogalacturonide lyase activity                                                                                                                                              0.5  

 GO:0047487 oligopeptide transport                                                                                                                                                         0.5  

 GO:0004846 urea transmembrane transport                                                                                                                                                   0.3  
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Plastic debris, an inevitable consequence of living the ‘Plastic Age’, is dominating our oceans 

and seas and poses a worldwide threat to aquatic wildlife (Thompson et al., 2009). It provides 

novel aquatic vehicles for a wide range of rafting species, such as microalgae, Bryozoa, insects 

and even macrobenthos, posing a threat to introduce invasive species (Aliani & Molcard, 2003; 

Barnes & Miller, 2005; Gregory, 2009). However, not only rafting species are able to colonise 

plastic as a transport vehicle, but also bacteria live the ‘Plastic Age’. The presence of micro-

organisms on plastic debris in the marine environment was first documented in 1972, when 

diatoms of the Sargasso Sea were identified on plastic fragments and rod shaped Gram-

negative bacteria were isolated of polystyrene spherules (Carpenter & Smith, 1972; Carpenter 

et al., 1972). Microbial colonization of these plastic particles in a marine environment occurs 

relatively fast, varies with substrate type and is influenced by the season and geographical 

location (Lobelle & Cunliffe, 2011; Zettler et al., 2013; Harrison et al., 2014; Oberbeckmann et 

al., 2014).  

It has been shown that the bacterial community composition of marine plastic litter (MPL) is 

significant different from the surrounding seawater, which suggests that plastic debris is a 

distinct microbial habitat, further referred to as “the plastisphere” (Zettler et al., 2013). Still, 

the microbial community may reflect its direct environment (seawater, sediment) and 

research is needed to define the origin and preferences of bacterial families. The 

characterization of the microbial communities on plastic is essential for several reasons. First, 

comparison of the microbial community and its surrounding environment (seawater, 

sediment) is needed to define the origin of bacterial colonization. Second, the response of a 

bacterial community to environmental factors may help elucidate the drivers of colonization. 

Third, the capacity to metabolize plastic or plastic-associated chemical compounds as a 

nutritional source could give certain species adaptive advantages, thus selecting for specific 

bacterial communities (Harrison et al., 2011). Fourth, plastic may serve as a transport vehicle 

for bacteria, including pathogens, that become associated with the biofilm and can be 

transported to novel environments where they do not normally occur (Osborn & Stojkovic, 

2014).  

Previous studies of the bacterial community on MPL focused predominantly on particles 

floating near the sea surface. However, the vast majority of plastic debris accumulates in the 

sediment, particularly in coastal areas (Moore, 2008; Claessens et al., 2011; Harrison et al., 
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2014). For instance, it is estimated that the vast majority of debris entering the North Sea area 

will eventually sink to the seafloor (70%) while only a minor part keeps floating (15%) or is 

deposited on beaches (15%) (UNEP, 2005). Moreover the major part of the sunken debris in 

the Belgian part of the North Sea (95%) is comprised of plastic (Van Cauwenberghe et al., 

2013). 

In this chapter, we studied the bacterial diversity and community composition of plastic debris 

samples at the seafloor at five locations across the Belgian part of the North Sea. These plastics 

are further referred to as Marine Plastic Litter (MPL). The bacterial diversity was investigated 

using 16S rRNA gene amplicon sequencing and compared with those of resin pellets found on 

the beach (here called beach pellets) and bacterial communities of the surrounding (sediment, 

seawater) and broad (seawater) environment. In addition, we compared the bacterial 

communities of MPL of the North Sea with those sampled in the North Atlantic (Zettler et al., 

2013; Amaral-Zettler, 2015) and the Pacific (Amaral-Zettler et al., 2015) making use of the 

Visual Analysis of Microbial Population Structure (VAMPS) website (Huse et al., 2014).  
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5.1 MATERIALS AND METHODS 

Within this section, an overview is given of the collection and characterisation of plastic, 

sediment and seawater in the Belgian part of the North Sea (5.1.1-5.1.2), the bacterial 

community profiling of the samples (5.1.3), the statistical analysis of the amplicon sequencing 

data (5.1.4), and the usage of the VAMPS website (5.1.5).  

   5.1.1 Sample collection 

 All samples were collected in 2014 at the Belgian part of the North Sea. In March, three sites 

(NP (51.16°N; 2.71°E), OO (51.22°N; 2.85°E), ZB (51.33°N; 3.13°E)) near the mouths of the 

Belgian coastal harbours were selected for plastic, sediment and seawater sampling. In 

August, sampling at these locations was repeated for plastic and sediment collection, and two 

additional locations were added for plastic collection (OObis (51.45°N; 3.23°E), ZBbis (51.45°N; 

2.61°E)). Seasonal variation will not be studied here, because only two sampling dates were 

used for sampling, and the samples can thus be seen as independent. Additionally, seawater 

was sampled in June at fourteen different locations to create a broader environmental context 

(Figure 5.1).  

 

Figure 5.1 Sample collection sites at the Belgian part of the North Sea. A) Inset overview of Europe and the 

European waters. The Belgian Part of the North Sea (BPNS) is indicated by a square box. B) Map of the Belgian 

coastline and the Belgian part of the North Sea. Plastic, sediment and seawater were sampled at the coastal areas 

near Nieuwpoort (NP), Oostende (OO) and Zeebrugge (ZB). Plastics were sampled at two, more off-shore, 

additional locations (OObis, ZBbis). Beach pellets were sampled at the Spinoladijk (SD). Sample sites for 

community profiling of the Belgian seawater in June are numbered 1 to 14. 
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Plastic fragments located on top of the sediment were collected using a beam trawl equipped 

with a fine-meshed shrimp net with mesh size of 12 mm and a width of 3 m.  Individual plastic 

pieces (> 25 mm) were sorted with sterile forceps, individually placed in a sterile 15 mL falcon 

tube and immediately frozen at -20 °C.  

Per location, sediment samples were collected using three replicate Van Veen grabs. The 

upper (0 to 5 cm) layer of the Van Veen grab content was collected and 40 mL of this sediment 

was sampled in a sterile 50 mL falcon tube.  

Water samples were taken 1 m below the water surface and on the seafloor using a carrousel 

of six 4 L Niskin bottles. Per replicate, 1 L seawater was filtered through a 0.22 µm Millipore 

membrane filter (Merck Millipore, Billerica, MA, USA; samples March), or through a sterivex 

filter (Merck Millipore, Billerica, MA, USA; samples June). Per location two surface water and 

two seafloor water samples were collected. When samples were not immediately used for 

DNA extraction, sediment samples and membrane filters were stored at -20 °C.  

Resin pellets (< 5 mm) found on the beach (here called beach pellets) were collected at the 

Spinoladijk (SD) in Oostende (Figure 5.1). The beach pellets were picked up with sterile forceps 

and stored per two (based on colour) in a sterile 15 mL falcon tube at -20 °C until further use. 

Pellets stored together were combined as one sample for further processing.  

5.1.2 Sample characteristics 

Physicochemical characteristics for sediment and seawater samples were recorded per 

location (Additional Information (AI) Table AI5.1). Sediment samples were categorised per 

sampling location and date. Sediment organic matter or total organic carbon (TOC) on the 

upper sediment layer (0-5 cm) was measured using the ‘dichromate method’ (Mebius et al., 

1960). Carbonate content was measured on the same sediment fraction as ‘loss on ignition’ 

(Dean, 1974). Grain size distribution was estimated using laser diffraction particle sizing and 

expressed as median grain size. All samples were analysed using a Malvern Mastersizer 2000G 

hydro version 5.40 (Malvern, Operators guide MAN0247, issue 2.0. 1999). Grain size fractions 

were determined as volume percentages according to the Wentworth scale (Wentworth, 

1922). Throughout this study, the clay and silt fractions have been combined as clay/silt (<63 

µm) (Table AI5.1).  

Water samples were categorized per sampling location and date. Environmental properties 

were measured using the CTD SBE-19plus (Table AI5.1). 
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Plastic properties were categorized based on sampling location or date, plastic shape 

(monofilament, sheets or beach pellets) and colour (Table 5.1). Raman spectra for polymer 

identification were recorded using a Bruker Optics ‘Senterra’ dispersive Raman spectrometer 

with a BX51 microscope by the Raman Spectroscopy Research Group (UGent, Belgium). 

Measurements were performed using a red diode laser (785 nm), an aperture of 50 µm and 

the 20x objective lens with a spot size of approximately 10 µm on the sample. The system uses 

a thermoelectrically cooled CCD detector, operating at -65 °C. The instrument is controlled by 

OPUS® software, version 7.2. The power of the laser can be set up to 37 mW at the sample for 

the 785 nm laser. Number of accumulations, measuring time and laser power were set at 60 

times, 30 seconds and 15.4 mW, respectively, to obtain good signal to noise ratio.  

In addition, the bacterial communities of the MPL samples sampled at the North Sea were 

compared with those of the North Atlantic and the Pacific, sampled by the group of Amaral-

Zettler (Zetller et al., 2013; Amaral-Zettler et al., 2015) (section 5.1.5). An overview of the 

metadata of plastic debris of all projects is given in Table AI5.2.  

Table 5.1 Plastic properties of samples collected at different locations across the Belgian part of the North 

Sea. Macroplastic particles are indicated as marine plastic litter (MPL), microplastics as beach pellets (BP). 

Location Number Sampling 

Date  

Polymer 

type 

Litter type Colour Detected 

pigment 

Depth 

(m) 

SD BP 1 10/03/’14 PE Beach pellet Blue / 0.0 

 BP 2 10/03/’14 PE Beach pellet Yellow / 0.0 

 BP 3 10/03/’14 PE Beach pellet White / 0.0 

 BP 4 10/03/’14 PE Beach pellet Black  / 0.0 

OO MPL 1 05/03/’14 PE Monofilament Blue  PB15 8.5 

 MPL 2* 05/03/’14 PE Sheet  Blue  / 8.5 

 MPL 3 05/03/‘14 PE Monofilament Orange  / 8.5 

 MPL 4 01/09/’14 PE Monofilament Blue  PB15 8.5 

 MPL 5* 01/09/’14 PE Monofilament Blue  / 8.5 

 MPL 6* 01/09/’14 / Monofilament White  / 8.5 

 MPL 7* 01/09/’14 / Monofilament Black  / 8.5 

NP  MPL 8 05/03/’14 PE Monofilament  Blue  PB15 6.5 

 MPL 9 05/03/’14 PE Monofilament  Orange  / 6.5 

 MPL 10 05/03/’14 PE Sheet  Transparant  / 6.5 

 MPL 11 28/08/’14 PE Monofilament Blue  PB15 7.2 

 MPL 12* 28/08/’14 PE Monofilament Blue  PB15 7.2 

ZB  MPL 13 06/03/’14 PE Monofilament Blue  PB15 6.5 

 MOL 14 29/08’14 PE Monofilament Blue  PB15 6.7 

 MPL 15 29/08/’14 PE Monofilament Blue  PB15 6.7 

 MPL 16 29/08/’14 PE Monofilament  Orange  / 6.7 

 MPL 17 29/08/’14 PE Monofilament Orange  / 6.7 

 MPL 18 29/08/’14 PE Sheet  Transparant  / 6.7 

ZBbis MPL 19 29/08/’14 PE Monofilament Blue  / 6.5 

 MPL 20 29/08/’14 PE Monofilament Orange  / 6.5 

OObis MPL 21 01/09/’14 PP Monofilament Blue  / 31.3 

 MPL 22 01/09/’14 PE Monofilament Orange  / 31.3 

*Samples excluded from analysis due to too low sequencing depth; 

 “/” indicates “no information was available for this piece of plastic” 
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5.1.3 “Plastisphere” microbiology: high throughput sequencing 

DNA of sediment and plastic samples was extracted using the Powersoil DNA Isolation Kit 

(MOBIO Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions. Due to 

a relatively low yield (< 5 ng/µL), DNA retrieved from the plastic samples was eluted in 50 µL 

elution buffer instead of 100 µl. If plastic particles were large, a piece of 15 cm (monofilament) 

or with a surface of 16 cm2 (sheet) was cut off and used for DNA extraction. Otherwise the 

total sample was used and only a small fragment was kept for polymer type determination. 

250 mg sediment was used for DNA extraction.  

DNA extraction of the Millipore filters (containing the microbial community of seawater) was 

done according to the protocol of Amaral-Zettler (2015a). The Gentra Puregene kit (QIAGEN, 

Germantown, MD, USA), lytic enzyme (QIAGEN, Germantown, MD, USA) and proteinase K 

(QIAGEN, Germantown, MD, USA) were used for DNA extraction, comprising two incubation 

steps of 37 °C for 30 minutes and 65 °C for one hour.   

16S rRNA gene amplicon sequencing 

Illumina amplicon sequencing of the bacterial “plastisphere” communities was done on the 

V3-V4 fragment of the 16S rRNA gene using Illumina technology (Illumina, San Diego, CA, USA). 

Using an amplification and dual-index PCR successively, fragments were amplified and 

extended with Illumina specific adaptors, which is described in detail in Chapter 2 section 

2.1.8. Each PCR step was followed by a PCR product clean-up using the CleanPCR reagent kit 

(MAGBIO, Gaithersburg, MD, USA).  

Quality control of the final library samples was done using the Qiaxcel Advanced using the 

Qiaxcel DNA High Resolution kit (QIAGEN, Germantown, MD, USA). Concentration was 

measured using the Quantus double-stranded DNA assay (Promega, Madison, WI, USA). The 

final barcoded libraries of each sample were diluted to 10 nM and pooled in equal amounts. 

The resulting libraries were sequenced using Illumina MiSeq v3 technology (2 x 300bp, paired-

end) by the Nucleomics Core, Leuven, Belgium using 30% PhiX DNA as spike-in. 

Sequence reads processing 

The dataset was demultiplexed by the sequencing provider and barcodes were clipped off the 

reads. The raw sequence data is available in NCBI’s Sequence Read Archive under the 

accession number PRJNA272679. Primers were removed using Trimmomatic v0.32 (Bolger et 

al., 2014). Different programs of the USEARCH software v7.0.1090 were used for the following 
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steps (Edgar, 2010). Forward and reverse reads were merged using a minimum overlap length 

of 40 bp (with a maximum of 15 bp differences) and a minimum resulting length of 350 bp 

using the “fastq_mergepairs” program. The resulting sequences were quality filtered using 

“fastq_filter” with a maximum expected error of 3. Next, sequences of all samples that needed 

to be compared to each other were merged, dereplicated (“derep_fulllength”) and sorted by 

size (“sortbysize”). UPARSE (“cluster_otus”) was used for clustering the reads into Operational 

Taxonomic Units (OTUs) at 97% identity level (Edgar, 2013). Chimeras were removed using 

UCHIME (“uchime_ref”) with the RDP Gold database as a reference (Edgar et al., 2011). Finally, 

sequences of individual samples were mapped back to the representative OTUs using the 

“usearch_global” algorithm (97% identity) and converted to an OTU table using “biom 

convert” (McDonald et al., 2012). This procedure resulted in an average of 59,962 sequences 

per sample with an average length of 420 bp (112 samples in total).   

5.1.4 Downstream data analysis and statistics 

OTU tables were analysed with the QIIME software package (v1.8.0) (Caporaso et al., 2010a). 

Representative OTU sequences were aligned to the Greengenes (DeSantis et al., 2006) 97 % 

core OTU set (v13_8) with a minimum percent identity of 97 % using the PyNast algorithm 

(Caporaso et al., 2010b) with QIIME default parameters. Rarefaction analyses were done using 

an upper rarefaction depth of 20,000 sequences, indicating that only samples with a minimal 

sequence count of 10,000 were retained for further analyses (Figure 5.2). Based on this 

criterion, data of five seawater samples (location 7 and 10; Figure 5.1) and five plastic samples 

(MPL2, MPL5, MPL6, MPL7, MPL12, Table 5.1) were not used in the downstream analyses.   

Throughout this study, only OTUs representing at least 0.01% of the total community in at 

least one sample were used for the downstream analysis.   

The number of observed OTUs and the Shannon-Wiener indices, which represents the 

bacterial richness and diversity, were determined on the rarefaction depth of 20,000 

sequences. ANOVA analyses of the Chao1 richness and Shannon-Wiener diversity indices were 

done and differences between sampling groups were analysed using the Tukey HSD test. 

These analyses and the construction of segmented bar charts were done with the basic R 

program version 3.1.0 (R core team, 2015). 

The multivariate analysis of the data was done using the R package vegan (version 2.0-10). To 

study multivariate spread, the betadisper function was used (Oksanen et al., 2010). If 
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multivariate homogeneity of group dispersions was fulfilled, differences between community 

types were analysed using PERMANOVA analysis on 4 a priori defined groups according to the 

sample origin: beach pellets, MPL, seawater and sediment. These significances were further 

visualized by constructing non-Metric Multidimensional Scaling (nMDS) plots, using the Bray-

Curtis index as dissimilarity index. The vegan package was also used to fit environmental 

variables to the ordination plot (function envfit). P-values of the environmental variables were 

calculated by permutation and only the variables with a significant difference (p<0.05) were 

fitted on the plot.  

 

Figure 5.2 Rarefaction curves of microbial communities on beach pellets (indicated as BP) (red), seawater 

(surface and seafloor; blue), plastics (green) and sediment (purple) (mean ± standard error). Analysis was done 

using an upper rarefaction depth of 20,000 sequences. 

To measure similarity in OTU presence between the MPL samples, the Jaccard similarity index 

was calculated. These Jaccard overlaps in pairwise comparisons were displayed as a heatmap 

(Jaccard, 1912). 

To search for core sets of OTUs that are shared across a number of plastic samples we used 

Corbata (Li et al., 2013). Core members are identified as the OTUs needed to be present in at 

least 95% of the samples. In parallel, QIIME was used to define a core microbiome and the 

OTUs present in each sample, where we varied the minimum abundance. Results of both 

methods were similar.  
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5.1.5 The VAMPS Plastisphere Portal 

To compare the bacterial communities of MPL sampled in the Belgian part of the North Sea 

with those of other regions, samples were uploaded at the VAMPS website. VAMPS provides 

an intuitive and interactive platform for the study of microbial communities and relationships 

between communities. Over 16,915 open-access datasets are already available on VAMPS, 

including sequences retrieved from marine (micro)plastic debris. Here we compared our 

dataset with two recently uploaded datasets of the North Atlantic and Pacific Ocean (Zettler 

et al., 2013; Amaral-Zettler et al., 2015b). These data were differentially sequenced targeting 

either V3-V4 (see section 4.1.3) or the V6 (Zettler et al., 2013; Amaral-Zettler et al., 2015) 

hypervariable regions of the 16S rRNA gene. In addition, either high-throughput Illumina 

(section 4.1.3; Amaral-Zettler et al., 2015) or amplicon pyrotag sequencing (Zettler et al., 2013) 

on the Roche 454 platform was used. Since the projects differed in many methodological 

repects, the comparison between bacterial communities was restricted to taxonomy based 

comparisons and community membership alone.  

The uploaded sequences are first quality checked and then run through Global Alignment for 

Sequence Taxonomy (GAST) (Huse et al., 2014) to assign taxonomy basd on a curated database 

of rRNA sequences drawing primarily from the SILVA SSU rRNA database (Quast et al., 2013) 

and associated taxonomy (Yilmaz et al., 2014) prior to availability on the VAMPS platform. 

Using VAMPS, the microbial communities were analysed at multiple taxonomic and 

abundance levels. For each selected taxon, VAMPS also returned the underlying sequence 

data. For visualisation and comparison, the different taxa of each sample were normalized by 

percent in relation to the entire community abundance. The data on the VAMPS portal is 

located under the project code “LAZ_DET_Bv3v4”.  



Chapter 5 

140 
 

5.2 RESULTS 

In this section, first the bacterial community of MPL sampled at the Belgian part of the North 

Sea, compared to seawater and sediment communities, is studied (5.2.1). This study revealed 

a high diversity in bacterial community composition between plastics, by which we proposed 

that three factors possibly influence the colonization: environmental properties (5.2.2), 

plastic-related properties (5.2.3) and biofilm formation stages (5.2.4). In a last part, these 

bacterial communities of MPL of the North Sea were compared with those of the North 

Atlantic and Pacific Ocean sampled by the Amaral-Zettler group (5.2.5).  

5.2.1 Bacterial community structure  

Both the bacterial community complexity and composition of the plastics (beach pellets and 

MPL), seawater and sediment were analysed. Bacterial community complexity was studied by 

estimating the total number of observed species and by estimating the Chao1 and Shannon-

Wiener indices, representing the bacterial richness and diversity. At 10,000 sequence counts, 

rarefaction curves showed an average of 295, 535, 1,031 and 1,688 different OTUs of beach 

pellets, seawater, MPL and sediment, respectively (Figure 5.2; Table 5.2), indicating variance 

in the number of unique species between sample types. Significant differences in the Chao1 

richness (ANOVA, p-value: 1.22e-06) and Shannon-Wiener diversity (ANOVA, p-value: 2.47e-

08) indices, proved community complexity differences between the four sample types. 

Bacterial richness and diversity were significantly different between all sample types, with the 

exception of seawater communities, which showed similar diversity as those of MPL (Tukey 

range test, p-value: 0.92) and beach pellets (Tukey range test, p-value: 0.08) and similar 

richness values (p-value: 0.98) as sediment communities. The highest community richness and 

diversity was measured in the sediment, after which MPL contained the second most diverse 

community (Table 5.2).   

Table 5.2 Estimation of the Chao1 richness and Shannon-Wiener diversity indices for the different sample types. 

Sample Type Observed OTUs Chao 1 Richness 

index 

Shannon-Wiener 

Diversity Index 

Beach pellet  295±48 (a) 572±156 (a) 5.24±1.06 (a) 

MPL  1031±370 (b) 2535±853 (b) 6.99±1.56 (b) 

Sediment 1688±421 (c) 3952±990 (c) 8.87±0.51 (c) 

Seawater  535±321 (ab) 3819±1621 (c) 6.74±0.73 (ab) 
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Significant differences in Bray-Curtis dissimilarity indices (PERMANOVA, p<0.001) showed 

differences in bacterial community composition between the different sample types, although 

these differences in dissimilarity could partly be caused by a considerable difference in 

multivariate spread (permutation based, p<0.001). This was confirmed in a nMDS plot, where 

beach pellets, MPL, seawater and sediment bacterial communities showed a separate 

clustering, with no observed overlap between the sample types (Figure 5.3). In addition, the 

cluster width of the bacterial communities of MPL was large compared to other sample types, 

indicating a high variability between MPL bacterial communities. In comparison, the bacterial 

communities of seawater sampled in June, representing the ‘broad’ environmental scan 

across the Belgian part of the North Sea, clustered together with bacterial communities of 

seawater sampled at the time and location of plastic sampling (surrounding environment). 

 

 

Figure 5.3 Non-Metric Multidimensional Scaling (nMDS) profile of pairwise community dissimilarity (Bray–

Curtis) indices of 16S rRNA gene sequencing data of samples collected across the Belgian part of the North Sea 

(Dimensions: 4; Stress: 0.095). 95% confidence ellipses were constructed for each sample type. Shape represents 

different sampling locations. Seawater samples are indicated in light (sampled in March) and dark blue (sampled 

in June). Sediment samples are indicated in yellow (light: March, dark: August). MPL sampled in March and 

August are coloured in red and purple, respectively. BP: Beach pellets. 

To define which bacterial groups determine these differences in MPL bacterial profiles 

compared to the environment (sediment, seawater), the taxonomic profiles on phylum and 
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family level between the sample types were studied (Figure 5.4 and Figure 5.5). A high 

variability between plastic bacterial communities of MPL and beach pellets was observed 

(Figure 5.3), by which we decided to visualize the taxonomic profiles of individual MPL and 

beach pellets. Community profiles of seawater and sediment samples were grouped per 

sampling location and date. MPL, seawater and sediment samples mainly consist of 

Proteobacteria and Bacteroidetes. Beach pellets on the other hand had a quite different 

composition compared to MPL, seawater and sediment. This is mainly caused by a high 

abundance of Actinobacteria on beach pellets, whereas Proteobacteria dominated the other 

sample types (Figure 5.4).  

 

Figure 5.4 Bacterial and archaeal phyla of the plastic samples compared to the bacterial profiles of water, 

sediment and beach pellets. Phyla that represent at least 1% in at least one sample are shown. OTUs that could 

not be assigned to a specific taxon were bundled in the group “Unassigned”. 

On family level, especially a high abundance of Flavobacteriaceae was noticed on MPL, which 

was less prominent for sediment and seawater communities. Strikingly, most of the bacterial 

families found on MPL were also found in seawater and/or sediment, but with clear 

differences in relative abundances (Figure 5.5), causing accordingly part of the separation in 

sample types in the nMDS plot. Besides those shared bacterial families between MPL and their 

surrounding environment, certain bacterial groups, e.g. Vibrionaceae or Pseudo-
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alteromonadaceae, were commonly detected on MPL but barely observed in seawater and 

sediment communities (Figure 5.5).  

 
Figure 5.5 Bacterial families of the plastic samples compared to the profiles of seawater, sediment and beach 

pellets. Only the 25 most dominant families are included by selecting the families having a relative abundance 

of at least 1 % in at least one sample. OTUs that could not be assigned to a specific taxon were bundled in the 

group “Unassigned”. 

Based on the community composition on family level, similarities between MPL bacterial 

communities seemed to be present. Therefore, we tried to establish a core microbiome based 

on the OTU table. However, to obtain core members, minimum OTU abundances need to be 

set at a very low percentage (0.01%), resulting in thirty-six OTUs that could be defined as “core 

organisms” (Table 5.3). Most of these OTUs could not be classified until genus level and 

remained unclassified. Conversely, together these only represent approximately 18 percent 

of the relative abundance of all OTUs, showing that the vast majority of the OTU`s is not 

common.  

 5.2.2 Correlation of environmental properties and MPL bacterial communities 

To study if any spatio-temporal structure is correlated with bacterial community composition, 

relatedness between the taxonomic profiles of the 17 MPL samples was visualized in a 

heatmap, using the Jaccard similarity index for pairwise comparisons. Samples were ordered 
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according to sampling location to visualize whether samples with a high fraction of shared 

OTUs were derived from the same location (Figure 5.6).  

Table 5.3 “Core” organisms of MPL samples sampled in the Belgian part of the North Sea. In total, 36 OTUs 

could be defined as “core” organisms, with a minimum cut-off value of 0.01% in which the OTUs should be 

present in at least 95% of the samples. For each OTU the miniman and maximum relative abundance (%) it was 

present on one plastic sample is given.  

OTU Phylum Class Family Genus Minimum 

(%) 

Maximum 

(%) 

28 Actinobacteria Acidimicrobiia C111 Unassigned 0.02 0.32 

178 Bacteroidetes Flavobacteriia Flavobacteriaceae Unassigned 0.03 0.86 

250    Lutimonas 0.05 3.02 

33    Unassigned 0.02 2.44 

388    Gramella 0.02 15.6 

440    Polaribacter 0.02 5.30 

559    Unassigned 0.02 3.90 

5760    Lutimonas 0.03 0.69 

7892    Unassigned 0.03 3.33 

92    Robiginitalea 0.01 1.41 

6385 Cyanobacteria Chloroplast Unknown Unassigned 0.02 0.82 

64    Unassigned 0.03 1.54 

109 Proteobacteria Alphaproteobacteria Rhodobacteraceae Unassigned 0.06 3.01 

12    Unassigned 0.02 2.78 

1503    Phaeobacter 0.04 1.54 

35    Unassinged 0.02 0.35 

3551    unassigned 0.03 4.09 

113   Phyllobacteriaceae unassigned 0.01 1.52 

500  Deltaproteobacteria Desulfobulbaceae Unassigned 0.01 0.21 

37   Desulfuromonadaceae Unassigned 0.03 1.02 

570   Unknown Unassigned 0.03 0.35 

306  Epsilonproteobacteria Helicobacteraceae Unassigned 0.03 22.68 

282  Gammaproteobacteria OM60 Unassigned 0.01 1.46 

95    Unassigned 0.02 0.31 

1782   Unknown Unassinged 0.01 0.85 

2399   Unknown Unassigned 0.06 1.94 

56   Unknown Unassigned 0.01 0.23 

228   Marinicellaceae Unassigned 0.01 1.55 

543    Unassigned 0.02 1.40 

100   Piscirickettsiaceae Unassigned 0.06 2.78 

166    Unassigned 0.05 2.58 

3907    Unassigned 0.02 0.81 

1147 Verrucomicrobia Verrucomicrobiae Verrucomicrobiaceae Persicirhabdus 0.03 2.40 

3175    Persicirhabdus 0.01 1.07 

50    Persicirhabdus 0.05 1.36 

829    Rubritalea 0.02 4.51 

 

The highest number of OTUs per sample and the highest number of shared OTUs between 

samples were mainly detected in the samples of ZB, indicating that location-related properties 

influence the bacterial composition of MPL. However, for the other locations, similarities 

between samples was limited, except for OObis (Figure 5.6).  
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Figure 5.6 Heatmap construction of MPL samples (Table 5.1). Jaccard similarity indices were calculated for all 

plastic pairs, representing the fraction of shared OTUs between MPL samples. Similarity in OTUs between 

samples is indicated by a colour scheme (blue: low amount of shared OTUs, red: high amount of shared OTUs). 

Location of sampling and total number of OTUs that represents more than 0.01% of the sample are indicated 

next to the heatmap. 

For each location, several environmental parameters were measured and considered as 

possible factors influencing the bacterial colonization of plastic (Table AI5.1). We constructed 

a nMDS plot of the MPL samples, to which the correlation with significant (p-value <0.05) 

environmental data of seawater and sediment was fitted (Figure 5.7; Table AI5.1). Differences 

in salinity, temperature, oxidation reduction potential, turbidity, oxygen content and density 

of the seawater, and the total organic carbon and inorganic carbon content of sediment 

appear to be correlated to the diversity in MPL bacterial communities. In this plot, it seems 

that a higher salinity is negatively correlated with the MPL samples of ZB (13-18; Figure 5.7). 

In addition, bacterial communities of MPL sampled in March were negatively correlated with 

temperature.  
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Figure 5.7 Correlation of environmental variables and the nMDS profile of pairwise community dissimilarity 

(Bray–Curtis) indices of 16S sequencing data of the MPL samples (Dimensions: 4; Stress: 0.053). Only those 

environmental parameters of seawater and sediment that were significantly different (p-value <0.05) between 

samples were fitted to the plot, where the length of the arrow is proportional to the correlation (ORP: oxidation 

reduction potential, TOC: total organic carbon content, IC: inorganic carbon content). 

5.2.3 Correlation of plastic-related factors and MPL bacterial communities  

We investigated whether factors inherent to the plastic, such as polymer type (e.g. 

polyethylene (PE) or polypropylene (PP)), plastic shape (monofilament, sheet) and presence 

of pigment dyes could explain part of the diversity of microbial colonization of plastic particles 

(Table 5.1). Because sixteen PE samples but only one PP sample were obtained, the influence 

of polymer type on the bacterial community profile could not be separated from the other 

factors (Table 5.1; Figure AI5.1; Figure AI5.2). No clear difference in bacterial profile was 

observed between the PP sample and the PE samples and even a high number of shared OTUs 

between the PP sample (MPL21) and the most closely related PE sample (MPL22) was 

observed (Figure 5.4; Figure 5.6). Next, the other plastic properties (shape, pigment dyes) 

were fitted to the nMDS plot as been done for the environmental factors in 5.2.2. No 

correlation of any of these parameters was found with the variation in MPL bacterial 

communities. 

In contrast, on beach pellets, colour could be correlated with bacterial community 

composition. A different taxonomic profile was observed on coloured beach pellets (blue, 

yellow) compared to uncoloured (black, white) (Figure 5.5). This is at least in part due to a high 

relative abundance of one species on the coloured resin pellets: Mycobacterium 
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frederiksbergense (21-29%), whereas this genus was rather absent on white and black beach 

pellets and could not be found on MPL.  

 5.2.4 Correlation of biofilm formation stages and MPL bacterial communities 

MPL community profiles showed a dominance of Proteobacteria and Bacteroidetes (Figure 

5.4). Previous studies have shown that Alpha- or Gammaproteobacteria are characteristic for 

primary biofilm colonization in the marine environment and Bacteroidetes act as secondary 

colonizers, as their abundance increases over time (Hörsch et al., 2005; Lee et al., 2008; 

Elifantz et al., 2013). It is important to note that the actual age of the biofilm on our plastic 

samples could not be established, due to the unknown history of randomly sampled free-

floating plastics. Instead, we estimated the relative abundances of Alpha- and 

Gammaproteobacteria and Bacteroidetes for each sample, and used these as putative 

signatures of biofilm formation stages (Figure 5.8).  

 

Figure 5.8 Representation of the primary (Alpha- and Gammaproteobacteria) and secondary (Bacteroidetes) 

biofilm colonizers in a marine environment. MPL were ordered according the relative abundance of the 

Proteobacteria and Bacteroidetes classes. (A) Dominance of Proteobacteria classes, (B) Similar amounts of 

Proteobacteria classes and Bacteroidetes, and (C) Dominance of Bacteroidetes (Time: A = August, M =  March). 

Three different groups could be discriminated in the sample set: MPL samples where 

Proteobacteria classes dominated, samples where the abundance of Proteobacteria classes 

and Bacteroidetes were similar and samples where Bacteroidetes dominated (Figure 5.8). With 

the exception of MPL1, the plastics with a low number of OTUs (MPL3, MPL4, MPL9) had the 
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highest number of Proteobacteria classes (Figure 5.6; Figure 5.8), suggesting that these 

plastics display characteristics of early stages of biofilm formation, whereas the others could 

represent later stages of biofilm formation. 

5.2.5 Comparative analysis using the Plastisphere portal on the VAMPS platform 

The bacterial community of MPL sampled in the Belgian part of the North Sea was compared 

with those sampled in the North Atlantic (Zettler et al., 2013; Amaral-Zettler et al., 2015) and 

the Pacific Ocean (Amaral-Zettler et al., 2015). In total, the bacterial communities of 98 

samples of plastic debris were compared. Across all datasets, Proteobacteria, Bacteroidetes 

and Cyanobacteria dominated the plastic litter samples. Proteobacteria constituted the most 

common phylum in each dataset and usually dominated the datasets with an abundance 

range between 23 to 88% (with an average of 52%) (Figure 5.9; Figure 5.10). Bacteroidetes 

were less abundant (2 to 58%, average 13%) but also occurred in each sample. Cyanobacteria 

were observed on 85% of the analysed PD and constituted 1 to 60% (18% on average) of the 

community. 

 

Figure 5.9 An overview of the five most abundant taxa on PE samples in the different marine regions at 
different taxonomic levels. Numbers adjacent to the bars represent the numbers of samples of the 98 examined 
that included these taxa. Of the 98 datasets, 19 were from the North Sea, 14 from the coastal Atlantic, 39 from 
the Atlantic open ocean and 26 from the Pacific open ocean. The following abbreviations apply:  Phylum: Ac 
Actinobacteria; Ve Verrucomicrobia; Ba Bacteroidetes; Cy Cyanobacteria; Pr Proteobacteria; Pl Planctomycetes; 
De Deferribacteres. Class: Del Deltaproteobacteria; Sp Sphingobacteria; Fl Flavobacteria; Ga 
Gammaproteobacteria; Al Alphaproteobacteria; Ver Verrucomicrobiae; Cyt Cytophagia. Family: Hy 
Hyphomonadaceae; Alt Alteromonadaceae; Sa Saprospiraceae; Fla Flavobacteriaceae; Rh Rhodobacteraceae; 
Verr Verrucomicrobiaceae; Ph Phylobacteriaceae; Fv Flammeovirgaceae. 
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The most common class in our datasets was the Alphaproteobacteria representing 5 to 67% 

(40% on average) of the relative abundance of the entire community, followed by 

Gammaproteobacteria (range 1.6 to 80%; on average 13%) and Flavobacteria (range 1 to 52%; 

on average 6%) (Figure 5.9; Figure 5.10). 

 

Figure 5.10 Overview of the relative abundance and taxonomic breakdown of bacterial phyla (left) and classes 

(right) on plastic debris sampled in different marine regions. Only phyla or classes that contributed ≥1% relative 

abundance are shown. The sample order in the figure is the same as provided in Table AI5.2, numbers above bar 

charts helps for orientation. 

In our VAMPS meta-analysis, the most common bacterial family was the Rhodobacteraceae 

occurring at 20% relative abundance on average in each sample (Figure 5.11). Within our 

datasets, Flavobacteriaceae and Saprospiraceae were the second most abundant families 

occurring on 90 and 86 samples, respectively, but were low in relative abundance (both 

around 4% on average) on PE. 

To identify possible "core" plastisphere microbiome members for different marine regimes, 

we compared the five most abundant and common taxa of four different marine regions 

(Figure 5.9) against each other: offshore versus coastal regions and Atlantic versus Pacific 

Ocean versus North Sea. Clear differences could be observed between the North Sea and all 

other regions. For the Atlantic and Pacific Oceans, all datasets exhibited similar dominance 

structures with Proteobacteria, Bacteroidetes and Cyanobacteria as the most abundant taxa 
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(representing >80% of the relative abundance), without showing differences between the 

coastal versus open ocean. In comparison to these regions, the North Sea samples varied in 

composition. Cyanobacteria were observed in only one quarter of the samples, and next to 

Proteobacteria and Bacteroidetes, the Verrucomicrobia were the third most dominant 

fraction.  

 

Figure 5.11 Overview of the relative abundance and taxonomic breakdown of bacterial families on plastic 
debris sampled in different marine regions. Only families that contributed ≥1% relative abundance are shown. 
The sample order in the figure is the same as provided in Table AI 5.2, numbers above bar charts helps for 
orientation. 

At the class level, Alphaproteobacteria was the most abundant class in the Atlantic and Pacific 

Oceans, whereas Flavobacteria and Gammaproteobacteria were the most abundant classes 

in the North Sea (Figure 5.10). The same trend was also observed at the family level, where 

Rhodobacteraceae were most abundant in all regions except for the North Sea where 

Flavobacteriaceae dominated on average (Figure 5.11).
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5.3 DISCUSSION AND CONCLUSIONS 

To investigate the diversity in microbial communities on plastic and to identify drivers of 

bacterial colonization, we sampled plastic (MPL and beach pellets) at the seafloor at five 

locations at the Belgian part of the North Sea. Initially, we aimed to compare them to the 

bacterial communities of their surrounding environment, i.e. seawater and sediment sampled 

at the same location and time, which could be in contact with the plastic during the period of 

sampling and could serve as potential sources of bacteria. However, plastic is mobile and can 

be transported through ocean currents over longer distances, but also over smaller areas, like 

the North Sea (Galgani et al., 2013; Neumann et al., 2014; UNEP, 2014). Therefore, the 

surrounding environment could be of limited relevance, or even inappropriate, as reference, 

and we expanded the comparison of plastic and environment communities by sampling 

seawater at fourteen different locations across the Belgium part of the North Sea.  

Differences in observed number of species and community composition show a clear 

distinction between bacterial communities of MPL, beach pellets, sediment and seawater. This 

indicates that bacterial communities colonizing plastic substrates are markedly different from 

the bacterial communities of seawater and sediment, both in the surrounding as ‘broad’ 

environment, and irrespective of the time of sampling. The substantial variation observed 

within sample types may still be caused by spatio-temporal dependent factors, such as 

environmental parameters, as discussed further below. Taken together, our results denote 

MPL as a distinct microbial niche in the marine environment, called the “plastisphere”, and 

further confirm previous results of Zettler et al. (2013) who showed a difference in community 

composition between floating plastic debris and the surrounding seawater. 

Most of the bacterial families found on MPL were also found in seawater and/or sediment, 

indicating the role of the marine environment serving as a bacterial source for plastic 

colonization. Besides those shared bacterial families certain bacterial groups, e.g. 

Vibrionaceae or Pseudoalteromonadaceae, are commonly detected on MPL but barely 

observed in seawater and sediment communities.  It is expected that foreign bacteria well-

adapted to MPL properties could attach to the surface and travel with the plastic particle 

(Osborn & Stojkovic, 2014). In addition, plastic can originate from different land- and sea-

based sources (Galgani et al., 2013; Neumann et al., 2014; UNEP, 2014), each with their natural 

occurring bacterial communities. We expect that if the affinity for the plastic material is high 
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enough, micro-organisms could stay attached on MPL despite changing environments. In that 

way not only the marine or aquatic environment (and changes thereof) can shape the 

community, but also the plastic’s transportation history is important in the bacterial 

colonization process. This role is further illustrated by the distinct bacterial profile found on 

beach pellets. Bacterial community assemblage of beach pellets was mainly different from the 

MPL samples due to a relatively high abundance of Actinobacteria on beach pellets, compared 

to a dominance of Proteobacteria on the other sample types. Contrary to MPL, beach pellets 

were sampled on the beach, i.e. an intertidal environment with influences of both aquatic and 

terrestrial environments, which could explain the high abundance of Actinobacteria (Elifantz 

et al., 2013). 

Because we found similar families on the different MPL samples, we tried to establish a core 

microbiome, hypothesizing that these species play a major role in the plastic colonization 

process and/ or in plastic degradation. On phylum, class and family level, similarities between 

plastic sample microbial communities were observed, however this seems to be correlated to 

location. Plastics samples in the North Sea region seemed to posses a different microbial 

community composition compared to those of Atlantic and Pacific Oceans. Strikingly, the high 

diversity in community profiles across the set of plastics sampled in the Belgian part of the 

North Sea precludes the identification of core microbiomes on OTU level, in contrast to 

previous studies on fewer samples (Zettler et al., 2013). Therefore, we investigated three 

aspects that potentially drive bacterial colonization and may explain the observed microbial 

diversity on MPL: (i) environmental parameters such as physicochemical properties 

(temperature, oxygen, salinity); (ii) physicochemical properties of plastic; and (iii) stages of 

biofilm formation, as biofilm formation is a dynamic process. 

First we established whether any spatio-temporal structure could explain the diversity in 

bacterial communities, and whether this structure overlaps with variance in environmental 

parameters at the location and time of sampling. The plastic bacterial community composition 

was correlated with variation in salinity, temperature, oxidation reduction potential, turbidity, 

oxygen content and density of the seawater, and the total organic carbon and inorganic 

carbon content of sediment to MPL bacterial communities. Temperature, oxygen content and 

ORP are correlated with sampling date, because higher temperature and ORP and a lower 

oxygen content were measured in August compared to March. To be sure that a seasonal 
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effect on MPL bacterial communities is present, multiple sampling times should be tested. In 

addition, we observed a difference in profile of samples taken at ZB, a sampling point near the 

harbour of Zeebrugge, compared to other regions. This could be explained in two ways. First, 

the influx of freshwater from the Rhine/Meuse and the Scheldt Estuary by horizontal 

dispersion, lowers the seawater salinity in the Zeebrugge region, which could explain the 

observed correlation of salinity to the bacterial structure, and the discrimination between 

locations (Lacroix et al., 2004). Second, in marine environments, the median grain size of the 

sediment, together with other factors such as phytoplankton blooms, amount of suspended 

organic material and marine snow, determine the turbidity. A smaller median grain size and a 

high rate of dredged material deposition will lead to more cloudy water. Turbidity was 

therefore highest in coastal areas, especially ZB, which contains a lot of sludge and dredged 

material. In addition, the small median grain size and high organic content measured in ZB, 

makes these sediments more susceptible to environmental pollution (De Witte et al., 2014; 

Gauquie et al., 2015), which could have a complimentary effect on the bacterial profile and 

provide an alternative explanation of the clustering of the ZB samples.  

The correlation of bacterial colonization and physicochemical properties of plastic was studied 

second. In this study, no effect of polymer type was observed as no clear difference in bacterial 

profile was observed between the PP sample and the PE samples. This is in contrast with 

previous observations of Zettler et al. (2013), who showed differences in microbial 

communities between three PE and three PP samples, which could be due to our small 

sampling size of PP items. No other correlations with bacterial community profile and plastic 

physicochemical properties were observed for samples obtained from the North Sea. 

Third, differences in biofilm formation stages could indicate differences in MPL bacterial 

community composition. The hydrophobic surface of plastics promotes microbial colonization 

and biofilm formation. Biofilm formation is a dynamic process and the taxonomic composition 

changes over time (Zettler et al., 2013; Harrison et al., 2014). Therefore, variation in biofilm 

formation stages may explain at least part of the variation in MPL bacterial composition. We 

showed that the MPL could be classified in groups containing a large amount of previously 

identified primary biofilm colonizers and groups colonised by a higher abundance of 

previously identified secondary colonizers (Lee et al., 2008; Elifantz et al., 2013). This implies 

that at least part of the large variation in bacterial composition across our plastic samples 

could be explained by differences in stages of biofilm formation, possibly due to varying 
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exposure times of the plastic to the marine environment. To confirm this observation, and to 

be able to ‘map’ bacterial profiles onto a microbial biofilm developmental timescale, a 

controlled exposure experiment using long-term time series at a fixed location to study 

formation and maintenance of microbial biofilms should be performed (Chapter 6). 

On the beach pellets, one species of the Mycobacteriaceae, Mycobacterium 

frederiksbergense, caught our attention, because its high abundance on the yellow and blue 

coloured beach pellets, compared to other pellets and plastics. Notably, M. frederiksbergense 

is known for its degrading capacity of diverse polycyclic aromatic hydrocarbons like 

anthracene (Willumsen et al., 2001; Wick et al., 2003), a building block for the production of 

anthraquinone (a precursor for dye synthesis) (Bien et al., 2000). Several patents describe the 

use of anthraquinone derivatives for colouring resin pellets (US patent 3441536, 6593483, 

6635350), which suggests the presence of anthracene derivates on the blue and yellow beach 

pellets. While black and white pellets were abundant at the time and location of sampling at 

the Spinoladijk, blue and yellow pellets were rather rare and the material collected was 

sufficient for bacterial taxonomic profiling, but not for chemical profiling. White and black 

pellets however, were also used for chemical profiling, revealing very low levels of anthracene 

on these beach pellets, as expected for uncoloured resins (Hörsch et al., 2005). For now, the 

observation of M. frederiksbergense on blue and yellow beach pellets, the documented use of 

anthraquinone derivatives as pigments for blue and yellow resin pellets, taken together with 

the putative capacity of M. frederiksbergense to metabolize anthracene derivates as carbon 

source, indeed suggest that presence of dyes and adsorbed chemicals, or perhaps pollutants, 

could influence MPL bacterial colonization. Parallel studies in our laboratory identified more 

than 250 different chemical compounds on plastic debris (synthetic rope and sheets) of the 

Belgian part of the North Sea (Gauquie et al., 2015), indicating that the relationship between 

chemical profile and bacterial colonization may be quite complex and requires large numbers 

of samples to capture both the chemical and taxonomic diversity.  

When comparing the bacterial communities of the North Sea region with those of the North 

Atlantic and Pacific Ocean, distinct profiles were noticed. Nonetheless striking patterns do 

emerge in the data (e.g. similarities Atlantic and Pacific Ocean) that suggest there may in fact 

be a Plastisphere "core microbiome" within given marine regions. The North Sea region 

showed a high abundance of Flavobacteriaceae (Oberbeckmann et al., 2016) which was also 
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the dominant group in our study. We advocate that a more powerful approach would employ 

a standardized protocol, used by all research groups studying Plastisphere communities.  

To this end, agreeing upon the following aspects of a standard operating procedure would 

facilitate comparisons of Plastisphere communities. Therefore, we propose to set-up a 

standardized procedure based on the following recommendations:   

(1) Standardised sample preservation. We recommend storing plastic samples in lysis buffer 

at -20 °C to preserve DNA. We tested several options for storing plastics (in seawater, in 

seawater at -20°C, at -80 °C, at -20°C and at -20°C in lysis buffer) in the laboratory. We 

determined that storage at -20°C in lysis buffer yielded the highest DNA concentration after 

extraction (De Tender et al., unpublished results).  

(2) Standardised DNA extractions. A recent study of Debeljak et al. (2017) tested different DNA 

extraction methods used in the literature for plastisphere communities. The Qiagen Puregene 

Tissue kit yielded the highest DNA concentrations for most sizes and amounts of plastics at 

relatively low cost and short processing time.  

(3) Standardized 16S rRNA gene hypervariable target region for amplification. Since most 

studies have employed part of or the entire V6 hypervariable region, continuing to include this 

region would provide the highest comparative potential. Although the VAMPS plastisphere 

portal shows that comparison between datasets comprising sequences from different 

hypervariable targets is possible, the comparison is limited to taxonomic information. 

One could also recommend using the same sequencing platform across studies, however since 

sequencing technology evolves so rapidly, this may not be a feasible recommendation.  

To conclude, in this chapter we showed that bacterial communities on MPL are different in 

composition compared to seawater and sediment. The surrounding environment can thereby 

serve as a bacterial source, but also distinct bacterial groups were found on MPL of the North 

Sea, indicating that plastic can act as a transport vehicle. In addition, the diversity in bacterial 

communities between plastic items can be explained by at least three factors: differences in 

environmental parameters, plastic-related factors and stages in biofilm formation. More 

research however is needed to disentangle all separate influences on the microbial population 

of plastic. In addition, we showed that compared to other regions, the plastisphere community 

of MPL sampled in the North Sea is more or less distinct. To make comparison possible 

between datasets however, there is a need for a standard operating procedure. 
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ADDITIONAL INFORMATION CHAPTER 5 

 

Table AI5.1: Physicochemical characteristics of water and sediment sampled at different locations across the Belgian part of the North Sea. 
 

Seawater  Sampling 

Date 

Depth 

(m) 

Temperature 

(°C) 

Salinity 

(PSU) 

Oxygen 

(%saturation) 

Pressure 

(db) 

Conductivity 

(µS/cm) 

Turbidity 

(NTU) 

Oxidation 

reduction 

potential (ORP) 

(mV) 

Density 

(kg/m3) 

Sound 

Velocity (m/s) 

OO 05/03/’14 8.5 7.8 33.5 84.0 8.07 34 704 204.0 218.70 1026.18 1480.20 

NP 05/03/’14 6.5 8.0 33.5 78.0 6.05 34 756 154.0 218.47 1025.86 1480.34 

ZB 06/03/’14 6.5 7.5 30.5 82.0 6.05 31 012 379.0 188.43 1023.37 1474.31 

1  25/06/’14 9.0 18.6 30.8 106.9 9.08 42 835 43.9 / 1023.25 1513.13 

2  25/06/’14 11.0 18.3 32.8 129.2 / / / / / / 

3  25/06/’14 7.0 18.5 32.3 123.0 / / / / / / 

4 24/06/’14 21.0 17.8 31.7 104.9 22.19 44 052 44.2 133.57 1024.17 1514.33 

5 24/06/’14 22.0 17.3 30.0 103.9 22.19 44 055 32.9 130.54 1024.71 1513.09 

6 24/06/’14 6.6 17.2 34.3 78.4 / / / / / / 

7 25/06/’14 10.0 18.3 30.9 108.9 10.09 43 475 36.6 143.03 1023.50 1514.18 

8 24/06/’14 27.0 17.9 33.6 88.5 27.24 44 136 35.3 142.80 1024.37 1514.22 

9 24/06/’14 13.0 18.7 33.0 124.7 13.11 43 860 51.8 134.20 1023.65 1514.83 

10 24/06/’14 38.0 15.4 35.0 99.9 38.34 43 358 35.9 124.40 1026.08 1508.58 

11 24/06/’14 36.0 15.8 35.0 97.5 / / / / / / 

12 24/06/’14 36.0 15.8 35.0 100.0 / / / / / / 

13 24/06/’14 32.0 15.9 34.9 101.2 32.28 43 720 36.7 157.50 1025.84 1509.93 

14 24/06/’14 33.0 16.8 34.5 99.4 33.29 44 121 32.9 145.20 1025.36 1512.08 

            

Sediment Sampling 

date 

TOC (%) Inorganic 

Carbon (%) 

Median 

grain size 

(µm) 

       

OO 05/03/’14 0.34 1.72 180.39        
 01/09/’14 1.18 2.04 108.65        
NP 05/03/’14 0.22 2.10 186.95        
 28/08/’14 1.02 1.76 199.15        
ZB 06/03/’14 2.15 3.80 33.41        
 29/08/’14 8.97 15.47 29.06        
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Table AI 5.2 Metadata of the 98 plastic debris samples collected in the North Sea, coastal and open Atlantic Ocean, and open Pacific Ocean. The order of the metadata 

corresponds to the order of the samples shown in Figures 4.9 Untill 4.11 . The sample ID’s listed below correspond to the sample ID’s in the VAMPS “Plastiphere” portal. PE = 

Polyethylene, PP = Polypropylene, HDPE = High Density Polyethylene. 

Sample     Sample ID 

order 

sampling 

date 

Lati-

tude 

Longi-

tude 

Poly-

mer 

Type 

experimental factor Samp-

ling 

depth 

Salinity Tem-

pera-

ture 

Sequencing method Target gene 

(year-

month-day) 

    [m]  [°C]   

North Sea           

1 LAZ_DET_Bv3v4_MPL1 2014-3-5 51.16 2.71 PE free floating plastic 8.5 33.5 8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

2 LAZ_DET_Bv3v4_MPL11 2014-8-28 51.16 2.71 PE free floating plastic 7.2 33.6 17.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

3 LAZ_DET_Bv3v4_MPL8 2014-3-5 51.16 2.71 PE free floating plastic 6.5 33.5 8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

4 LAZ_DET_Bv342_MPL9 2014-3-5 51.16 2.71 PE free floating plastic 6.5 33.5 8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

5 LAZ_DET_Bv3v4_MPL13 2014-3-6 51.33 3.13 PE free floating plastic 6.5 30.5 7.5 Illumina Miseq 2x 300bp 16S rRNA v3v4 

6 LAZ_DET_Bv3v4_MPL14 2014-8-29 51.33 3.13 PE free floating plastic 6.7 31.2 17.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

7 LAZ_DET_Bv3v4_MPL15 2014-8-29 51.33 3.13 PE free floating plastic 6.7 31.2 17.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

8 LAZ_DET_Bv3v4_MPL16 2014-8-29 51.33 3.13 PE free floating plastic 6.7 31.2 17.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

9 LAZ_DET_Bv3v4_MPL17 2014-8-29 51.33 3.13 PE free floating plastic 6.7 31.2 17.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

10 LAZ_DET_Bv3v4_MPL18 2014-8-29 51.33 3.13 PE free floating plastic 6.7 31.2 17.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

11 LAZ_DET_Bv3v4_MPL19 2014-8-29 51.45 3.24 PE free floating plastic 6.5 31.2 18.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

12 LAZ_DET_Bv3v4_MPL20 2014-8-29 51.45 3.24 PE free floating plastic 6.5 31.2 18.7 Illumina Miseq 2x 300bp 16S rRNA v3v4 

13 LAZ_DET_Bv3v4_MPL21 2014-9-1 51.45 2.61 PP free floating plastic 31.3 34.6 18.1 Illumina Miseq 2x 300bp 16S rRNA v3v4 

14 LAZ_DET_Bv3v4_MPL22 2014-9-1 51.45 2.61 PE free floating plastic 31.3 34.6 18.1 Illumina Miseq 2x 300bp 16S rRNA v3v4 

15 LAZ_DET_Bv3v4_MPL3 2014-3-5 51.22 2.86 PE free floating plastic 8.5 33.5 7.8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

16 LAZ_DET_Bv3v4_MPL4 2014-9-1 51.22 2.86 PE free floating plastic 8.5 33.8 17.8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

17 LAZ_DET_Bv3v4_MPL5 2014-9-1 51.22 2.86 PE free floating plastic 8.5 33.8 17.8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

18 LAZ_DET_Bv3v4_MPL6 2014-9-1 51.22 2.86 PE free floating plastic 8.5 33.8 17.8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

19 LAZ_DET_Bv3v4_MPL7 2014-9-1 51.22 2.86 PE free floating plastic 8.5 33.8 17.8 Illumina Miseq 2x 300bp 16S rRNA v3v4 

Coastal Atlantic Ocean           

20 LAZ_SEA_Bv6-

WHD_0016_2013_07_17_Bv6 

2013-7-17 41.53 -70.67 HDPE incubation 0.5 30 23.8 Illumina HiSeq 16S rRNA v6 

21 LAZ_SEA_Bv6-

WHD_0017_2013_07_17_Bv7 

2013-7-17 41.53 -70.67 HDPE incubation 0.5 30 23.8 Illumina HiSeq 16S rRNA v6 

22 LAZ_SEA_Bv6-

WHD_0018_2013_07_17_Bv8 

2013-7-17 41.53 -70.67 HDPE incubation 0.5 30 23.8 Illumina HiSeq 16S rRNA v6 

            

23 LAZ_SEA_Bv6-

WHD_0028_2013_07_24_Bv9 

2013-7-24 41.53 -70.67 HDPE incubation 0.5 30 24 Illumina HiSeq 16S rRNA v6 

24 LAZ_SEA_Bv6-

WHD_0029_2013_07_24_Bv10 

2013-7-24 41.53 -70.67 HDPE incubation 0.5 30 24 Illumina HiSeq 16S rRNA v6 
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25 LAZ_SEA_Bv6-

WHD_0040_2013_07_31_Bv11 

2013-7-31 41.53 -70.67 HDPE incubation 0.5 30.4 23.5 Illumina HiSeq 16S rRNA v6 

26 LAZ_SEA_Bv6-

WHD_0041_2013_07_31_Bv12 

2013-7-31 41.53 -70.67 HDPE incubation 0.5 30.4 23.5 Illumina HiSeq 16S rRNA v6 

27 LAZ_SEA_Bv6-

WHD_0052_2013_08_07_Bv13 

2013-8-7 41.53 -70.67 HDPE incubation 0.5 29.3 22.9 Illumina HiSeq 16S rRNA v6 

28 LAZ_SEA_Bv6-

WHD_0053_2013_08_07_Bv16 

2013-8-7 41.53 -70.67 HDPE incubation 0.5 29.3 22.9 Illumina HiSeq 16S rRNA v6 

29 LAZ_SEA_Bv6-

WHD_0054_2013_08_07_Bv14 

2013-8-7 41.53 -70.67 HDPE incubation 0.5 29.3 22.9 Illumina HiSeq 16S rRNA v6 

30 LAZ_SEA_Bv6-

WHD_0065_2013_09_06_Bv16 

2013-9-6 41.53 -70.67 HDPE incubation 0.5 29.6 21.5 Illumina HiSeq 16S rRNA v6 

31 LAZ_SEA_Bv6-

WHD_0066_2013_09_06_Bv15 

2013-9-6 41.53 -70.67 HDPE incubation 0.5 29.6 21.5 Illumina HiSeq 16S rRNA v6 

32 LAZ_SEA_Bv6-

WHD_0076_2013_10_02_Bv16 

2013-10-2 41.53 -70.67 HDPE incubation 0.5 29 18.7 Illumina HiSeq 16S rRNA v6 

33 LAZ_SEA_Bv6-

WHD_0088_2013_11_06_Bv17 

2013-11-6 41.53 -70.67 HDPE incubation 0.5 29.7 12.9 Illumina HiSeq 16S rRNA v6 

Open Atlantic Ocean           

34 LAZ_SEA_Bv6-

SEA_0029_20120518_Bv6 

2012-5-18 21.52 -64.89 HDPE free floating 

microplastic 

0 36.4 25.8 Illumina HiSeq 16S rRNA v6 

35 LAZ_SEA_Bv6-

SEA_0035_20120519_Bv6 

2012-5-19 22 -65.18 HDPE free floating 

microplastic 

0 36 25.9 Illumina HiSeq 16S rRNA v6 

36 LAZ_SEA_Bv6-

SEA_0036_20120519_Bv6 

2012-5-19 22 -65.18 HDPE free floating 

microplastic 

0 36 25.9 Illumina HiSeq 16S rRNA v6 

37 LAZ_SEA_Bv6-

SEA_0042_20120520_Bv6 

2012-5-20 23 -65.08 HDPE free floating 

microplastic 

0 36 26 Illumina HiSeq 16S rRNA v6 

38 LAZ_SEA_Bv6-

SEA_0049_20120521_Bv6 

2012-5-21 25 -64.58 HDPE free floating 

microplastic 

0 36.07 26.2 Illumina HiSeq 16S rRNA v6 

39 LAZ_SEA_Bv6-

SEA_0063_20120523_Bv6 

2012-5-23 27 -63.57 HDPE free floating 

microplastic 

0 36.5 24.5 Illumina HiSeq 16S rRNA v6 

40 LAZ_SEA_Bv6-

SEA_0064_20120523_Bv6 

2012-5-23 27 -63.57 HDPE free floating 

microplastic 

0 36.5 24.5 Illumina HiSeq 16S rRNA v6 

41 LAZ_SEA_Bv6-

SEA_0094_20120527_Bv6 

2012-5-27 31.65 -64.26 HDPE free floating 

microplastic 

0 36.4 22.7 Illumina HiSeq 16S rRNA v6 

42 LAZ_SEA_Bv6-

SEA_0095_20120527_Bv6 

2012-5-27 31.65 -64.26 HDPE free floating 

microplastic 

0 36.4 22.7 Illumina HiSeq 16S rRNA v6 

43 LAZ_SEA_Bv6-

SEA_0107_20120607_Bv6 

2012-6-7 35.55 -65.66 HDPE free floating 

microplastic 

0 36.52 22.4 Illumina HiSeq 16S rRNA v6 

44 LAZ_SEA_Bv6-

SEA_0108_20120607_Bv6 

2012-6-7 35.55 -65.66 HDPE free floating 

microplastic 

0 36.52 22.4 Illumina HiSeq 16S rRNA v6 
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45 LAZ_SEA_Bv6-

SEA_0122_20120608_Bv6 

2012-6-8 36.34 -68.01 HDPE free floating 

microplastic 

0 36.46 22.7 Illumina HiSeq 16S rRNA v6 

46 LAZ_SEA_Bv6-

SEA_0128_20120609_Bv6 

2012-6-9 37.43 -68.01 HDPE free floating 

microplastic 

0 36.34 23.2 Illumina HiSeq 16S rRNA v6 

47 LAZ_SEA_Bv6-

SEA_0136_20120610_Bv6 

2012-6-10 39.14 -67.83 HDPE free floating 

microplastic 

0 34.18 18.9 Illumina HiSeq 16S rRNA v6 

48 LAZ_SEA_Bv6-

SEA_0137_20120610_Bv6 

2012-6-10 39.14 -67.83 HDPE free floating 

microplastic 

0 34.18 18.9 Illumina HiSeq 16S rRNA v6 

49 LAZ_SEA_Bv6-

SEA_0142_20120611_Bv6 

2012-6-11 39.98 -68.88 HDPE free floating 

microplastic 

0 33.76 16.6 Illumina HiSeq 16S rRNA v6 

50 LAZ_SEA_Bv6-

SEA_0358_5_14_2013_Bv6 

2013-5-14 17.75 -64.70 PE free floating plastic 0 36.2 29.6 Illumina HiSeq 16S rRNA v6 

51 LAZ_SEA_Bv6-

SEA_0365_2013516_Bv6 

2013-5-16 17.98 -64.57 PE free floating 

microplastic 

0 36.43 27.8 Illumina HiSeq 16S rRNA v6 

52 LAZ_SEA_Bv6-

SEA_0380_5_19_2013_Bv6 

2013-5-19 22.87 -64.47 PE free floating 

microplastic 

0 36.25 26.8 Illumina HiSeq 16S rRNA v6 

53 LAZ_SEA_Bv6-

SEA_0435_5_26_2013_Bv6 

2013-5-26 32.11 -64.36 PE free floating 

microplastic 

0 36.73 22.6 Illumina HiSeq 16S rRNA v6 

54 LAZ_SEA_Bv6-

SEA_0439_5_26_2013_Bv6 

2013-5-26 32.09 -64.46 PE incubation 0 36.73 22.8 Illumina HiSeq 16S rRNA v6 

55 LAZ_SEA_Bv6-

SEA_0440_5_26_2013_Bv6 

2013-5-26 32.09 -64.46 PE incubation 0 36.73 22.8 Illumina HiSeq 16S rRNA v6 

56 LAZ_SEA_Bv6-

SEA_0449_6_02_2013_Bv6 

2013-6-2 32.38 -64.68 PE free floating 

macroplastic 

0 NAN NAN Illumina HiSeq 16S rRNA v6 

57 LAZ_SEA_Bv6-

SEA_0450_6_02_2013_Bv6 

2013-6-2 32.38 -64.68 PE free floating 

macroplastic 

0 NAN NAN Illumina HiSeq 16S rRNA v6 

58 LAZ_SEA_Bv6-

SEA_0462_6_05_2013_Bv6 

2013-6-5 33.87 -65.94 PE free floating 

microplastic 

0 36.69 23.3 Illumina HiSeq 16S rRNA v6 

59 LAZ_SEA_Bv6-

SEA_0477_6_07_2013_Bv6 

2013-6-7 35.70 -65.91 PE incubation 0 36.3 23.5 Illumina HiSeq 16S rRNA v6 

60 LAZ_SEA_Bv6-

SEA_0478_6_07_2013_Bv6 

2013-6-7 35.70 -65.91 PE incubation 0 36.3 23.5 Illumina HiSeq 16S rRNA v6 

61 LAZ_SEA_Bv6-

SEA_0485_6_07_2013_Bv6 

2013-6-16 41.38 -70.88 HDPE incubation 0 31.86 16.7 Illumina HiSeq 16S rRNA v6 

62 LAZ_SEA_Bv6-

SEA_0486_6_07_2013_Bv6 

2013-6-16 41.38 -70.88 HDPE incubation 0 31.86 16.7 Illumina HiSeq 16S rRNA v6 

63 LAZ_SEA_Bv6-

SEA_0487_6_07_2013_Bv6 

2013-6-16 41.38 -70.88 PS incubation 0 31.86 16.7 Illumina HiSeq 16S rRNA v6 

64 LAZ_SEA_Bv6-

SEA_0528_201367_Bv6 

2013-6-7 35.58 -66.13 HDPE incubation 0 36.5 22.3 Illumina HiSeq 16S rRNA v6 

65 LAZ_SEA_Bv6-

SEA_0529_201367_Bv6 

2013-6-7 35.58 -66.13 LDPE incubation 0 36.5 22.3 Illumina HiSeq 16S rRNA v6 
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66 LAZ_SEA_Bv6-

SEA_0530_201367_Bv6 

2013-6-7 35.58 -66.13 LDPE incubation 0 36.5 22.3 Illumina HiSeq 16S rRNA v6 

67 LAZ_SEA_Bv6-

SEA_0537_2013527_Bv6 

2013-5-27 32.04 -64.48 HDPE incubation 0 36.3 22.7 Illumina HiSeq 16S rRNA v6 

68 LAZ_SEA_Bv6-

SEA_0539_2013521_Bv6 

2013-5-21 25.26 -64.46 HDPE incubation 0 36 25.7 Illumina HiSeq 16S rRNA v6 

69 LAZ_SEA_Bv6-

SEA_0540_2013521_Bv6 

2013-5-21 25.26 -64.46 HDPE incubation 0 36 25.7 Illumina HiSeq 16S rRNA v6 

70 LAZ_SEA_Bv6v4--

SEA_0002_2010_07_07_Bv6v4 

2010-6-21 31.63 -41.42 PE free floating 

microplastic 

0 36.91 24.6 Illumina HiSeq 16S rRNA V6-V4 

71 LAZ_SEA_Bv6v4--

SEA_0008_2012_05_20_Bv6v5 

2012-5-20 23.29 -65.08 PE free floating 

microplastic 

0 36.01 26 Illumina HiSeq 16S rRNA V6-V4 

72 LAZ_SEA_Bv6v4--

SEA_0011_2012_05_22_Bv6v5 

2012-5-22 26.08 -64.20 PE free floating 

microplastic 

0 36.07 26 Illumina HiSeq 16S rRNA V6-V4 

Open Pacific Ocean           

73 LAZ_SEA_Bv6-

SEA_0173_20121006_Bv6 

2012-10-6 31.81 -121.57 PE free floating 

microplastic 

0 33.19 18.3 Illumina HiSeq 16S rRNA v6 

74 LAZ_SEA_Bv6-

SEA_0178_20121008_Bv6 

2012-10-9 33.02 -125.58 PE free floating 

microplastic 

0 33.17 18.9 Illumina HiSeq 16S rRNA v6 

75 LAZ_SEA_Bv6-

SEA_0208_20121013_Bv6 

2012-10-13 33.48 -132.45 PE free floating 

microplastic 

0 33.5 21.2 Illumina HiSeq 16S rRNA v6 

76 LAZ_SEA_Bv6-

SEA_0209_20121013_Bv6 

2012-10-13 33.48 -132.45 PE free floating 

microplastic 

0 33.5 21.2 Illumina HiSeq 16S rRNA v6 

77 LAZ_SEA_Bv6-

SEA_0219_20121014_Bv6 

2012-10-14 33.70 -133.46 PE free floating 

microplastic 

0 33.32 20.9 Illumina HiSeq 16S rRNA v6 

78 LAZ_SEA_Bv6-

SEA_0236_20121016_Bv6 

2012-10-16 33.56 -135.43 PE free floating 

microplastic 

0 33.74 21.7 Illumina HiSeq 16S rRNA v6 

79 LAZ_SEA_Bv6-

SEA_0239_20121017_Bv6 

2012-10-17 33.26 -136.21 PE free floating 

microplastic 

0 34.39 22.1 Illumina HiSeq 16S rRNA v6 

80 LAZ_SEA_Bv6-

SEA_0243_20121018_Bv6 

2012-10-18 32.90 -137.23 PE free floating 

microplastic 

0 34.67 22.2 Illumina HiSeq 16S rRNA v6 

81 LAZ_SEA_Bv6-

SEA_0244_20121018_Bv6 

2012-10-18 32.90 -137.23 PE free floating 

microplastic 

0 34.67 22.2 Illumina HiSeq 16S rRNA v6 

82 LAZ_SEA_Bv6-

SEA_0249_20121019_Bv6 

2012-10-19 32.26 -138.57 PE free floating 

microplastic 

0 34.9 23 Illumina HiSeq 16S rRNA v6 

83 LAZ_SEA_Bv6-

SEA_0253_20121020_Bv6 

2012-10-20 32.05 -139.10 PE free floating 

microplastic 

0 34.87 23.2 Illumina HiSeq 16S rRNA v6 

84 LAZ_SEA_Bv6-

SEA_0254_20121020_Bv6 

2012-10-20 32.05 -139.10 PE free floating 

microplastic 

0 34.87 23.2 Illumina HiSeq 16S rRNA v6 

85 LAZ_SEA_Bv6-

SEA_0268_20121022_Bv6 

2012-10-22 31.91 -139.58 PE free floating 

microplastic 

0 34.8 23.1 Illumina HiSeq 16S rRNA v6 
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86 LAZ_SEA_Bv6-

SEA_0273_20121023_Bv6 

2012-10-23 30.26 -140.68 PE free floating 

microplastic 

0 35.04 23.2 Illumina HiSeq 16S rRNA v6 

87 LAZ_SEA_Bv6-

SEA_0291_2012_10_25_Bv6 

2012-10-25 30.02 -142.31 PE free floating 

microplastic 

0 35 23.3 Illumina HiSeq 16S rRNA v6 

88 LAZ_SEA_Bv6-

SEA_0292_2012_10_25_Bv6 

2012-10-25 30.02 -142.31 PE free floating 

microplastic 

0 35 23.3 Illumina HiSeq 16S rRNA v6 

89 LAZ_SEA_Bv6-

SEA_0295_20121026_Bv6 

2012-10-26 30.03 -143.97 PE free floating 

microplastic 

0 35.4 23.7 Illumina HiSeq 16S rRNA v6 

90 LAZ_SEA_Bv6-

SEA_0296_20121026_Bv6 

2012-10-26 30.03 -143.97 PE free floating 

microplastic 

0 35.4 23.7 Illumina HiSeq 16S rRNA v6 

91 LAZ_SEA_Bv6-

SEA_0302_2012_10_27_Bv6 

2012-10-27 30.07 -145.06 PE free floating 

microplastic 

0 35.41 24.1 Illumina HiSeq 16S rRNA v6 

92 LAZ_SEA_Bv6-

SEA_0306_20121028_Bv6 

2012-10-28 30.42 -145.75 PE free floating 

microplastic 

0 35.4 24.2 Illumina HiSeq 16S rRNA v6 

93 LAZ_SEA_Bv6-

SEA_0307_2012_10_28_Bv6 

2012-10-28 30.42 -145.75 PE free floating 

microplastic 

0 35.4 24.2 Illumina HiSeq 16S rRNA v6 

94 LAZ_SEA_Bv6-

SEA_0318_2012_10_29_Bv6 

2012-10-29 29.89 -145.79 PE free floating 

microplastic 

0 35.4 24.2 Illumina HiSeq 16S rRNA v6 

95 LAZ_SEA_Bv6-

SEA_0334_2012_11_01_Bv6 

2012-11-1 25.30 -147.62 PE free floating 

microplastic 

0 35.57 25 Illumina HiSeq 16S rRNA v6 

96 LAZ_SEA_Bv6-

SEA_0341_20121102_Bv6 

2012-11-2 23.91 -149.11 PE free floating 

microplastic 

0 35.32 25.6 Illumina HiSeq 16S rRNA v6 

97 LAZ_SEA_Bv6-

SEA_0345_20121103_Bv6 

2012-11-3 22.52 -150.02 PE free floating 

microplastic 

0 35.34 25.2 Illumina HiSeq 16S rRNA v6 

98 LAZ_SEA_Bv6-

SEA_0350_20121104_Bv6 

2012-11-4 21.39 -152.02 PE free floating 

microplastic 

0 35.09 25.7 Illumina HiSeq 16S rRNA v6 
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Figure AI5.1: Raman spectra of a plastic sampled at OO (MPL1) and identified as polyethylene (PE). One pigment of the Phthalo Blue family (PB) was detected.   
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Figure AI5.2: Raman spectra of a plastic sampled at OObis (MPL21) and identified as polypropylene (PP).  
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In Chapter 5 we showed that the hard, hydrophobic surface of plastic debris is an ideal 

environment for colonization by bacteria. Previous studies have shown that merely one 

week`s exposure to the marine environment is sufficient for microbial biofilm formation on 

plastic debris (Lobelle & Cunfliffe, 2011), which is influenced by polymer type, environmental 

conditions and season (Oberbeckmann et al, 2014; Mincer et al, 2016).  

As for most thermoplastics, degradation of PE is extremely slow, and it is therefore expected 

to persist in the marine ecosystem (Gewert et al., 2015). Micro-organisms may contribute to 

the degradation of PD in the marine environment. So far, only a few marine bacterial strains 

have been identified as potential PE degraders. Arthrobacter sp. and Pseudomonas sp. were 

isolated from high-density PE (HDPE) debris from the Gulf of Mannar, a marine coastal area 

(Balasubramanian et al., 2010). Furthermore, Kocuria palustris, Bacillus pumilis and Bacillus 

subtilis strains were isolated from low-density PE debris originating from the Arabian Sea 

(Harshvardhan & Bhavanath, 2013). Recently it was shown that also a marine fungus, Zalerion 

maritimum, has the potential to actively degrade PE (Paço et al., 2017). Furthermore, several 

microbial strains, including bacteria and fungi, were isolated from PD in different types of soil 

environment, and described as potential PE degraders (Restrepo-Flórez et al., 2014). Most 

studies on PE degradation are based on growth on medium with plastic polymers as the sole 

carbon source, PE mass loss and size reduction, and the screening of changes in functional 

groups by FT-IR. Only few studies described the actual degradation, e.g. based on enzyme 

production by the bacterial strain (Yoshida et al., 2016).  

The formation of a biofilm, a structured system which facilitates metabolic interaction 

between cells (Davey & O’Toole, 2000), can be important in terms of biodegradation. Biofilm 

formation can increase degradation efficiency of pollutants such as diesel oil, and destruction 

of the biofilm architecture can disrupt interspecies cooperation and interfere with 

degradation efficiency (Laniczak et al., 2010; Verhagen et al., 2011). To date, little is known 

both about the temporal dynamics of colonization and biofilm formation on PD and about the 

microbial interactions underlying the resulting biodegradation process. Previous studies on 

biofilm formation on plastics under controlled conditions focused on short-term processes 

only (< 8 weeks) (Lobelle & Cunliffe, 2011; Harrison et al., 2014; Oberbeckmann et al., 2014; 

Eich et al., 2015; Oberbeckmann et al., 2016) or did not include taxonomic classification of the 

bacterial communities (Sudhakar et al., 2007; Artham et al., 2009; Webb et al., 2009; O’Brine 

& Thompson, 2010; Nauendorf et al., 2016). Most of those studies focused on floating plastic 
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litter, whereas the predominant part of PD is located on the seafloor (Barnes et al., 2009; 

Sherrington, 2016). Reconstructing the temporal dynamics of microbial colonization based on 

randomly sampled PD proved difficult by comparing independent pieces of plastic with 

unknown history, travel pattern, and duration of exposure to the marine environment to each 

other (see Chapter 5). 

We established a long-term exposure time-series experiment in which two types of PE were 

exposed to the Belgian part of the North Sea at two different locations. First, plastics were 

exposed and sampled at the harbour of Ostend, a semi-enclosed environment, with low 

influence of currents. The presence of anthropogenic activity, e.g. waste-pipes, land run-off 

and oil discharges, and the small median grain size of the sediment makes this environment 

more susceptible to environmental pollution (Gauquie et al., 2015). Second, plastics were 

exposed and sampled at the Thornton windmill park, which we will further refer to as the 

“offshore” environment. In this area, currents are stronger, but pollution is less pronounced.  

The aims of this chapter are fourfold. First, an in-depth study of the biofilm formed on plastic 

exposed to the marine environment on fixed locations was done. Previous research focused 

on bacterial communities (Chapter 5; Zettler et al., 2013; Harisson et al., 2014; Oberbeckmann 

et al., 2014; Oberbeckman et al., 2016), whereas the fungal community has been less 

intensively studied (Oberbeckman et al., 2016). Therefore, we used 16S rRNA gene and ITS2 

metabarcoding in parallel to study the taxonomic composition of bacterial and fungal 

communities, respectively. To study possible factors that affect biofilm formation, we 

compared two types of plastic (sheet or dolly rope) in two different environments (harbour or 

offshore). Second, the temporal dynamics of bacterial and fungal colonization of PD are 

reconstructed, and we identified signature species for early, intermediate or late phases of 

long-term exposure in the harbour environment. This series of microbial colonization in the 

harbour was used to evaluate biofilm formation stages in the offshore samples of the 

exposure series. In addition, these were compared to bacterial communities of previously 

described4 randomly collected samples exposed to similar offshore conditions. Third, possible 

sources of microorganisms were studied by comparing taxonomic profiles of plastic to those 

of sediment and seawater. Fourth, we investigated if bacterial and fungal species previously 

identified as potential PE degraders were also present in the biofilm to thus assess whether 

microbial biodegradation in the marine environment may take place.  
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6.1 MATERIALS AND METHODS 

Within this section, an overview is given of the experimental design of the plastic exposure 

experiment and sample collection (6.1.1), the assay used to measure biofilm formation (6.1.2), 

the bacterial and fungal community profiling of the samples (6.1.3) and the statistical analysis 

of the amplicon sequencing data (6.1.4). 

6.1.1 Experimental design and sample collection 

From September 2015 until July 2016, PE fragments were exposed to the marine environment 

at two different locations in the Belgian part of the North Sea: at the harbour of Ostend 

(51°13’N, 2°56’E) and offshore, at the Thornton windmill park (51° 34’N, 2° 58’ E) (Figure 6.1). 

These locations are characterised by different features (Additional Information (AI) Table 

AI6.1). Environmental properties (seawater temperature, conductivity, pH, oxygen, salinity 

and density) were measured using the CTD SBE-19plus on each sampling date. Sediment 

organic matter or total organic carbon (TOC) of the upper sediment layer (0-5 cm) was 

measured at the first sampling date for both locations, using the “dichromate method” (see 

Chapter 5). In addition, concentrations of pollutants in the sediment were compiled from 

previous studies and are listed in Table AI6.1 (De Witte, 2013; VLIZ, 2015).  

 

Figure 6.1 Map of the Belgian coastline and the Belgian part of the North Sea. The two experimental sites 

Harbour and Offshore are located at the harbour of Ostend and the Thornton windmill park. 
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Two types of PE, with different colours and shapes, were exposed to the two environments: 

transparent plastic sheets (A4 size) (RKW Hyplast, Hoogstraten, Belgium) and orange-coloured 

dolly ropes (ø 1 cm, length 20 cm; ø single monofilament 1 mm). Three pieces of each type of 

plastic, representing three biological replicates, were attached to a wooden block, which was 

secured in a construction (total length: +/- 60 m, weight +/- 75 kg) comprising a buoy, ropes 

(ø 16 mm), chains and an anchor and concrete weights (Figure AI6.1). At the start of the 

experiment, sets of thirteen and five identical constructions, respectively, were placed on the 

seafloor in the harbour and offshore. Handling of these constructions was always done with 

plastic gloves to avoid contamination. In addition, from three randomly chosen constructions 

a piece of PE sheet and dolly rope were cut with sterilized scissors to study the microbial load 

of plastics at the onset of the experiment, using metabarcoding. This was done for both 

locations.  

At the harbour, one construction per week was pulled up and removed during the first month, 

and from then on one construction per month. This led to thirteen collection dates: 1 

(September 2015), 2, 3, 4, 9, 14, 18, 22, 27, 31, 35, 40 and 44 (July 2016) weeks after placing 

the constructions. Offshore, the constructions were brought up and removed on four 

collection dates: 4 (October 2015), 14, 18 and 22 (February 2016) weeks after placing them. 

Upon collection of a construction, which was done with sterile forceps, scissors and gloves, 

half of the plastic was immediately stored at -20 °C for DNA extraction and the other half was 

air-dried and stored at room temperature for the biofilm assay. Offshore, three replicate 

seawater and sediment samples were collected on the same date as the constructions were 

sampled, as described in Chapter 5. Per replicate, 1 L seawater was filtered through a 0.22 μm 

Millipore membrane filter (Merck Millipore, Billerica, MA). After collection, sediment samples 

and the membrane filters were stored at -20 °C until further use. 

6.1.2 Biofilm assay  

The quantitative biofilm assay developed by Lobelle and Cunliffe (2011) was used to measure 

biofilm formation on the plastic sheets. Briefly, plastic samples (4x5 cm, n=2 per time point x 

location x replicate, resulting in n=6 per time point x location) were rinsed three times with 

sterile water and air-dried for at least 45 min in sterile Petri dishes.  These plastics were stained 

with crystal violet (1% w/v) for 45 min and washed three times with sterile seawater. Stained 

samples were air-dried for another 45 min, cut into four pieces of similar size and placed into 
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a 2 mL Eppendorf tube to which 1 mL ethanol (95% v/v) was added. The ethanol was then 

diluted 100-fold in ethanol and transferred to a cuvette to measure the optical density at 595 

nm using an UV-VIS spectrophotometer (UV-1700 Pharmaspec, Shimadzu, Brussel, Belgium). 

The optical density is directly proportional to the amount of biofilm per surface area on the 

plastic. 

6.1.3 “Plastisphere” microbiology: high-throughput sequencing 

DNA was extracted from the sediment and plastic samples using the Powersoil DNA isolation 

kit (MOBIO Laboratories, Carlsbad, CA) according to the manufacturer’s instructions. In total, 

250 mg of sediment, a piece of 2 cm by 2.5 cm (total surface area of ± 10 cm2) of the plastic 

sheet, or 10 individual monofilaments with a length of 2.5 cm of the dolly rope (surface area 

of ± 10 cm2) were used for DNA extraction. Before extraction, plastic was rinsed three times 

with sterile water to remove sediment particles and loosely attached organisms. DNA was 

extracted from the Millipore filters containing the micro-organisms of seawater as described 

in Chapter 5 section 5.1.3. The DNA extracts of all samples were stored at -20 °C until further 

use for amplicon sequencing. 

16S rRNA gene and ITS2 amplicon sequencing  

Amplicon sequencing of the V3-V4 fragment of the 16S rRNA gene and the ITS2 gene fragment 

using Illumina technology (Illumina, San Diego, CA, USA) was done to study both the bacterial 

and fungal communities on plastic debris. DNA fragments were amplified and extended with 

Illumina specific index adaptors using an amplification PCR followed by a dual-index PCR, as 

described in detail in Chapter 2 section 2.1.8. Each PCR reaction product was purified using 

the CleanPCR reagent kit (MAGBIO, Gaithersburg, MD, USA). Libraries were quality-controlled 

using the Qiaxcel Advanced, with the Qiaxcel DNA High Resolution kit (QIAGEN, Germantown, 

MD, USA), and concentrations were measured using the Quantus double-stranded DNA assay 

(Promega, Madison, WI, USA). The indexed libraries of each sample were diluted to 10 nM and 

pooled in a 2:1 ratio for bacterial and fungal libraries, respectively. Resulting libraries were 

sequenced using Illumina MiSeq v3 technology (2 x 300 bp) by Macrogen, South-Korea, using 

30% PhiX DNA as spike-in.  
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Sequence reads processing 

Demultiplexing of the amplicon dataset and removal of the barcodes was performed by the 

sequencing provider. The raw sequence data is available in the NCBI Sequence Read Archive 

under the accession number Bioproject ID PRJNA360358 for the bacterial sequences and 

PRJNA356487 for the fungal sequences. Processing the sequence reads to Operational 

Taxonomic Unit (OTU) tables was done as described in detail in Chapter 2 section 2.1.8.  

The bacterial load of three PE sheets and three ropes was checked at the onset of the 

experiment before exposure to the marine environment. Samples were analysed by 

metabarcoding in parallel to all other samples. Because the PCR product concentration was 

low, all DNA was used for sequencing. For each sample, the number of reads was < 100.  

6.1.4 Downstream data analysis and statistics 

 OTU tables of the 16S V3-V4 rRNA gene region and ITS2 amplicon sequencing of the samples 

of the exposure experiment and the 16S V3-V4 rRNA gene region amplicon sequences of 

plastic samples of Chapter 5 were analysed using the QIIME software package (v1.9.0) 

(Caporaso et al, 2010a). Taxonomy was assigned with the script “assign_taxonomy.py” using 

the uclust method considering maximum 3 database hits, with the Silva v119 97% rep set (as 

provided by QIIME) as reference for the bacterial sequences and UNITE v7 (dynamic) for fungal 

sequences (Caporaso et al, 2010b; Quast et al, 2012; Kõljalg et al, 2013).  

A part of the fungal sequences could not be classified using the UNITE database. These 

sequences were extracted from the total data set and their taxonomy was assigned using Basic 

Local Alignment Search Tool (BLAST) for sequence comparison with the non-redundant 

nucleotide database of NCBI (Altschul et al, 1990). We kept the best hit per query using an e-

value cut-off of 1e-5 and a minimal percent identity of 98.5%. 

Rarefaction analysis was done using the “alpha_rarefaction.py” script of QIIME. A plateau was 

reached at 10,000 sequences for the bacterial and fungal OTUs. Richness of the bacteria and 

fungi was determined on rarefied data, for which the number of sequences was set on the 

reached plateau.  

A core microbiome was calculated separately for the bacterial and fungal communities. Only 

plastics exposed for at least four weeks were considered to calculate a core microbiome to 

account for some lag-time for biofilm build-up. This core microbiome was calculated 

separately for the two environments. OTUs were denoted as core organisms if their relative 
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abundance contributed at least 0.1% to the total community of a sample in at least 90% of the 

plastic items per environment. Calculations for the core microbiome were done in R (R core 

team, 2015). In addition, the genera that were most abundant at the last time point of 

sampling were calculated by selecting those genera with a minimal mean abundance of 1% 

over the replicates for sheets or dolly ropes.  

The multivariate analysis was done using the specific R package vegan (version 2.0-10) 

(Oksanen et al, 2010). The OTU tables of bacterial and fungal sequences, as generated by 

Usearch, were normalized by calculating relative abundances. Next, OTUs with a low count 

number were removed by only retaining the OTUs which had a minimal relative abundance of 

0.01 % in at least three samples. The dissimilarity matrix, based on the Bray-Curtis dissimilarity 

index, was calculated from this normalized and filtered OTU table, for both the bacterial and 

fungal sequences. The homogeneity of the variances was checked on this dissimilarity matrix 

using the betadisper function. The significance of the factors environment, type of plastic and 

time, and their various interaction effects were analysed using PERMANOVA analysis (number 

of permutations = 1,000) using the Bray-Curtis dissimilarity index matrix as input. Factors were 

considered significantly different if p-value < 0.05.
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6.2 RESULTS 

In this section, the biofilm formation is discussed first by looking at the bacterial and fungal 

community of plastics exposed at the harbour (6.2.1) and offshore environment (6.2.2) 

Further on, factors which influence the colonization of plastic and the bacterial and fungal 

sources of colonization are investigated (6.1.3). In addition, we set out to investigate if 

previously identified bacterial and fungal species can potentially act as biodegraders (6.1.4). 

6.2.1 Bacterial and fungal colonization in the harbour environment 

From the first week of exposure onwards, a coating comprising a microbial biofilm, sediment 

particles, algae and macro-fouling (e.g. mussels) was formed on the plastic sheets at the 

harbour (Figure 6.2). Using a quantitative biofilm formation assay (Lobelle & Cunliffe, 2011), 

at least part of the coating on the plastic sheets could be attributed to a microbial biofilm 

(Figure 6.3). This biofilm was already detected after one week of exposure, and increased 

slightly until week 27, followed by a period of stronger growth until week 40. 

The taxonomic composition of the bacterial and fungal community on plastic at the harbour 

was analyzed in detail by 16S and ITS2 metabarcoding. Richness of the samples was studied 

by estimating the number of observed OTUs and the Chao1 index. Both measures showed that 

the richness of sheets is similar to that of dolly ropes; both for bacterial OTUs (Figure AI6.2 

and AI6.3 - Harbour) and for fungal OTUs (Figure AI6.2 and AI6.3 - Harbour). The number of 

bacterial OTUs is only slightly higher on dolly ropes compared to sheets in the first few weeks 

of exposure to the harbour environment. At each time point, the bacterial richness of plastic 

(mean around 1500 OTUs) was markedly higher than fungal richness (mean around 500 OTUs). 

The bacterial community of plastic sheets and dolly ropes at the harbour displayed a gradual 

change in taxonomic composition during the period of exposure (Figure 6.4A and Figure 6.4B). 

This temporal gradient, more evident on the plastic sheets, is, at least in part, caused by shifts 

in abundance of particular bacterial classes: an increase in the relative abundance of alpha- 

and betaproteobacteria and flavobacteria, and a decrease in the relative abundance of 

gammaproteobacteria (Figure 6.4A and Figure 6.4B). Alpha- and gammaproteobacteria are 

characteristic for primary biofilm colonization, while bacteroidetes are known secondary 

biofilm colonizers in the marine environment (Hörsch et al., 2005; Lee et al., 2008; Elifantz et 

al., 2013). 
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Figure 6.2 Biofilm formation on plastic after exposure at two locations in the Belgian part of the North Sea. Offshore, plastics were exposed for 5 months (22 weeks), while 
at the harbour exposre time was 10 months (44 weeks). Both macroscopic (top) and microscopic (bottom) images are given for both environments. Fouling of the plastic 
sheets consists of a small fraction of sediment particles, macrofouling and the formation of a microbial biofilm. 



 
 

 
 

 

Figure 6.3 Boxplots of the optical density of crystal violet staining representing biofilm formation on plastic 

sheets. A) Plastic exposed at the harbour of Ostend, B) Plastic exposed offshore. The amount of biofilm is 

measured as optical density after crystal violet staining according to the methods described in Lobelle & Cunliffe 

(2011), (n=6). 

 

Figure 6.4 Bacterial community composition of plastics exposed to the marine environment, sediment, and 

seawater over time. Mean relative abundances of the different bacterial classes (16S V3-V4 region) on plastic 

items (n=3), sediment (n=3) and seawater (n=3) in the North Sea region. Only classes representing at least 1% 

of the community are shown. 
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On the plastic sheets, a gradual decrease in the relative abundance of these primary colonizers 

and an increase in secondary colonizers was observed (Figure 6.5A), suggesting that 

subsequent time points reflect progressive stages of biofilm formation. This shift from primary 

to secondary colonizers, however, was not as clearly discernible for the dolly ropes (Figure 

6.5B). 

 

Figure 6.5 Representation of the primary (alpha-and gammaproteobacteria) and secondary (bacteroidetes) 

colonizers on plastics during the exposure period. A) plastic sheets exposed at the harbour (44 weeks), B) dolly 

ropes exposed at the harbour (44 weeks), C) plastic sheets exposed offshore (22 weeks), D) dolly ropes exposed 

offshore (22 weeks).  

Next, we defined a core bacteriome of plastic samples (see 6.1.4). In total, 25 bacterial core 

OTUs were identified both on plastic sheets and dolly ropes (Table 6.1). Based on their 

temporal profile, these core members were classified into four groups: (1) OTUs without a 

clear period of high relative abundance (neutral), e.g. Arenicella, Methylotenera; (2) OTUs with 

higher abundance in the beginning (early stage; week 1-14) of the exposure period, e.g. 

Sulfurovum, Maritimimonas; (3) OTUs with higher abundance in the middle (intermediate; 

week 14-35) of the exposure period, e.g. Robiginitomaculum, and (4) OTUs with highest 

abundance at the end (late stage; week 35-44) of the exposure period, e.g. Sulfitobacter, 

Psychroserpens (Table 6.1). 

Next, the fungal community on the plastic sheets and dolly ropes in the harbour was studied. 

Strikingly, the majority of the fungal sequences (28% to 97% of the reads per sample) could 

not be assigned using the UNITE database (Figure 6.6A and Figure 6.6B). Using NCBI Blast, 
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some of those reads could be assigned to fungi, others to other members of the eukaryotes, 

e.g. Paramoeba permaquidensis, Paramoeba aestuarina, Pleurobrachia pileus, Sugiura 

chengshanense, Sagartia elegans, and Rhizostoma pulmo, but the vast majority remained 

unassigned.  

Table 6.1 Core OTUs of plastics sampled at the harbour or offshore. OTUs are defined as a core member if they 

represent at least 0.1% of the sample in at least 95% of all samples per environment. 

HARBOUR         

OTU Phylum Family Genus Peak 
moment 
(weeks) 

Colonizer 

27  Proteobacteria  Helicobacteraceae  Sulfurovum 1-14 Early  
15  Proteobacteria Ectothiorhodospiraceae 

  
 

 Acidiferrobacter 1-14 Early  
57  Proteobacteria  JTB255 marine benthic 

group 
 uncultured  1-14 Early  

87  Proteobacteria  JTB255 marine benthic 
group 

 uncultured  1-14 Early  

28  Proteobacteria  JTB255 marine benthic 
group 

  1-14 Early  

62  Bacteroidetes  Flavobacteriaceae  Eudoraea 1-14 Early  
19  Bacteroidetes  Flavobacteriaceae  Maritimimonas 1-14 Early  
1508  Bacteroidetes  Flavobacteriaceae   1-14 Early  
51  Bacteroidetes  Flavobacteriaceae   1-14 Early  

9  Proteobacteria  Hyphomonadaceae Robiginitomaculum 14-35 Intermediary 

591  Proteobacteria  Rhodobacteraceae   14-35 Intermediary 
567  Proteobacteria  Rhodobacteraceae   14-35 Intermediary 
35  Proteobacteria  Erythrobacteraceae   14-35 Intermediary 
16  Proteobacteria  IheB2-23  uncultured  14-35 Intermediary 
43  Proteobacteria  Unkown Thiotrichales   14-35 Intermediary 
5  Bacteroidetes  Flavobacteriaceae  Maritimimonas 14-35 Intermediary 

84  Proteobacteria  Rhodobacteraceae  Profundibacterium 31-45 Late 
335  Proteobacteria  Rhodobacteraceae  Sulfitobacter 31-45 Late 
11149  Proteobacteria  Rhodobacteraceae  uncultured 31-45 Late 
63  Bacteroidetes  Flavobacteriaceae  Psychroserpens 31-45 Late 
10  

Verrucomicrobia 
 Verrucomicrobiaceae  Persicirhabdus 31-45 Late 

107 Proteobacteria Rhodobiaceae Anderseniella None Neutral 
2  Proteobacteria  Methylophilaceae  Methylotenera None Neutral 
74 Proteobacteria  Unknown Family  Arenicella None Neutral 
3  Proteobacteria  Unkown 

Methylococcales 
  None Neutral 

OFFSHORE         

OTU Phylum Family Genus Peak 
moment 

Colonizer 

14  Bacteroidetes  Flavobacteriaceae  Lacinutrix None Neutral 
1508  Bacteroidetes  Flavobacteriaceae   None Neutral 
30  Bacteroidetes  Flavobacteriaceae  Tenacibaculum None Neutral 
54  Bacteroidetes  Flavobacteriaceae  Polaribacter None Neutral 
12  Bacteroidetes  Flavobacteriaceae  uncultured 

Lutibacter sp. 
None Neutral 

63  Bacteroidetes  Flavobacteriaceae  Psychroserpens None Neutral 
59  Proteobacteria  Unknown  

Caulobacterales 
  None Neutral 

442  Proteobacteria  Hyphomonadaceae  Hellea None Neutral 
11149  Proteobacteria  Rhodobacteraceae  uncultured None Neutral 
189  Proteobacteria  Alcanivoracaceae  Kangiella None Neutral 

 

Within the share of the fungal sequences that were assigned to a certain taxonomy, the 

Ascomycota were highly abundant, followed by a smaller fraction of Basidiomycota (Figure 
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6.6A and 6.6B). Zygomycota were also identified, but only represented a minor fraction. In 

addition, genera that were highly abundant on sheets or dolly ropes ( > 1%) sampled at the 

last time point (44 weeks) were studied (Table 6.2). Especially members of the 

Lecanoromycetes, e.g. Physconia, Candelariella, and Caloplaca were abundant. No clear 

temporal profile characterised by early, intermediate, and late stage abundance peaks could 

be identified, essentially because the fungal community profile varied considerably, even 

between successive time points (Figure 6.6A and Figure 6.6B). In addition, no core group of 

fungal organisms could be identified, illustrating the variability of the fungal community 

through time. 

 

 
Figure 6.6 Fungal community composition of plastic during exposure to the marine environment, sediment, 

and seawater. Mean relative abundances of the different fungal classes (ITS2 region) on plastic items (n=3), 

sediment (n=3) and seawater (n=3) in the North Sea region. Only classes representing at least 1% of the 

community are shown.  
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Table 6.2 Fungal genera present on plastic sampled at the harbour at the end of the exposure experiment (t=44 

weeks). Only genera with abundance of at least 1% on at least 1 type of plastic (sheet or dolly rope) are given 

(mean relative abundance (%) ± standard error).  

Phylum Class Family Genus Sheet Dolly rope 

Ascomycota Dothideomycetes Davidiellaceae Cladosporium 3.44±0.38 5.59±2.45 

  Incertae sedis Unidentified 2.61±1.06 2.85±1.26 

   Other 4.20±2.73 5.00±2.13 

  Pleosporaceae Alternaria 1.28±0.69 2.82±2.45 

   Other 1.03±0.45 12.93±7.03 

  Unidentified Unidentified 1.20±0.85 1.06±0.54 

  Other Other 1.79±0.17 0.51±0.13 

  Other Other 6.38±3.74 16.34±9.03 

 Lecanoromycetes Candelariaceae Candelariella 14.34±8.44 1.91±1.26 

  Physciaceae Physconia 6.54±2.63 5.87±4.44 

  Teloschistaceae Caloplaca 18.64±7.02 18.72±8.86 

   Unidentified 9.76±8.67 2.37±1.23 

   Other 5.12±2.22 5.35±1.91 

 Sordariomycetes Nectriaceae Fusarium 2.18±0.29 3.74±1.90 

   Other 1.20±0.56 0.47±0.13 

Basidiomycota Tremellomycetes Incertae sedis Cryptococcus 1.62±0.49 1.48±0.65 

 

6.2.2 Bacterial and fungal colonization in the offshore environment  

Biofilm formation occurred on plastic exposed to offshore conditions, but was much less 

pronounced compared to the harbour environment as described above. For instance, the 

biofilm layer was hardly visible by the naked eye even after 22 weeks of exposure (Figure 6.2), 

and the amount of biofilm that had accumulated after 22 weeks of exposure offshore was 

similar to the amount that had already accumulated at the harbour after 1 week of exposure 

(Figure 6.3). Until week 18 of the exposure period, the number of unique bacterial OTUs and 

the Chao1 index, both representing the richness of the samples, on the plastic sheets sampled 

offshore remained low ( < 1000 OTUs; Chao1: <1200 OTUs) compared to plastic sheets and 

dolly ropes exposed to the harbour environment (Figure AI6.2 and AI6.3). In contrast, the 

number of unique fungal OTUs varied between 300 and 500 (Chao1: 400 – 700 OTUs) for most 

points in time, and this was observed for both types of plastic and in both environments 

(Figure AI6.2 and AI6.3). Offshore, the bacterial community on plastic sheets and dolly ropes 

was dominated by flavobacteria and gammaproteobacteria (Figure 6.4C and Figure 6.4D). No 

temporal gradient could be observed (Figure 6.4C and Figure 6.4D), and the proportion of 

primary and secondary colonizers remained fairly stable throughout the time series for both 

types of plastic sampled offshore (Figure 6.5C and Figure 6.5D). A core bacteriome consisting 

of 10 bacterial OTUs was identified for the plastics sampled offshore (Table 6.1). In contrast 
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to the abundance profiles observed in the harbour, the offshore core OTUs did not display a 

clear temporal change in abundance.  

Next, the fungal community on the plastic exposed to offshore conditions was studied. 

Between 81% and 99% of fungal sequences remained unassigned, which is an even higher 

share compared to the fungal communities on plastics from the harbour (Figure 6.6). 

Ascomycota and Basidiomycota were the most prominent of the assigned sequences, which 

was similar to plastic sampled at the harbour and seawater and sediment fungal communities 

(Figure 6.6E and Figure 6.6F). The most common fungal genera on plastic sheets and dolly 

ropes sampled at the last time point (22 weeks) are listed in Table 6.3. Like for the harbour 

environment, no fungal core members could be detected on offshore samples. 

Table 6.3 Fungal genera present on plastic sampled offshore at the end of the exposure experiment (t=44 

weeks). Only genera with abundance of at least 1% on at least 1 type of plastic (sheet or dolly rope) are given 

(mean relative abundance (%) ± standard error).  

Phylum Class Family Genus Sheet Dolly rope 

Ascomycota Dothideomycetes Davidiellaceae Cladosporium 9.59±2.15 0.84±0.38 

  Incertae sedis Other 2.58±2.20 0.00±0.00 

  Phaeosphaeriaceae Phaeosphaeria 0.10±0.10 2.04±2.00 

  Pleosporaceae Alternaria 1.84±1.60 1.47±0.49 

   Other 13.43±10.20 3.96±1.63 

  Other Other 4.80±2.42 2.28±1.18 

  Other Other 2.32±2.18 2.27±1.78 

 Eurotiomycetes Trichocomaceae Penicillium 1.16±1.10 0.08±0.08 

 Lecanoromycetes Candelariaceae Candelariella 1.34±1.12 3.52±1.84 

  Lecanoraceae Lecanora 0.78±0.60 1.21±0.84 

  Physciaceae Physconia 3.77±2.52 5.29±2.66 

  Teloschistaceae Caloplaca 3.36±1.84 8.94±2.61 

   Other 4.70±2.36 15.63±3.45 

 Leotiomycetes Erysiphaceae Blumeria 1.86±1.66 0.00±0.00 

  Sclerotiniaceae Other 5.97±2.32 0.02±0.02 

 Saccharomycetes Incertae sedis Cyberlindnera 1.57±1.50 0.00±0.00 

   Debaryomyces 2.22±2.22 0.02±0.02 

  Saccharomycetaceae Saccharomyces 2.22±2.20 0.12±0.10 

 Sordariomycetes Nectriaceae Other 1.53±1.20 0.00±0.00 

  Lulworthiaceae Lulwoana 0.00±0.00 3.27±1.64 

  Chaetomiaceae Other 2.22±2.20 4.28±4.02 

  Other Other 4.92±2.69 0.83±0.53 

  Incertae sedis Microdochium 2.22±2.20 0.00±0.00 

 Unidentified Unidentified Unidentified 1.47±1.47 3.56±1.16 

 Other Other Other 1.08±0.96 14.84±1.65 

Basidiomycota Agaricostilbomycetes Kondoaceae Kondoa 3.56±1.84 0.71±0.46 

 Incertae sedis Malasseziaceae Malassezia 2.13±2.01 3.50±1.52 

 Microbotryomycetes Incertae sedis Rhodotorula 0.42±0.40 2.38±2.03 

   Sporobolomyces 0.00±0.00 2.69±0.87 

 Tremellomycetes Incertae sedis Dioszegia 5.60±3.99 0.21±0.21 

Zygomycota Incertae sedis Mortierellaceae Mortierella 0.00±0.00 1.26±0.55 
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6.2.3 Factors that affect biofilm formation  

PERMANOVA analysis revealed that the three factors: sample type (plastic sheet, dolly rope, 

seawater or sediment; PERMANOVA, p<0.001); environment (harbour or offshore) 

(PERMANOVA, p <0.001); and time of exposure (PERMANOVA, p<0.001), significantly affect 

the bacterial community composition, with highly significant interaction effects (all interaction 

effects p<0.001) between all three factors. It should be noted that these differences in 

community profiles could partly be caused by a considerable difference in multivariable 

spread (permutation based, p < 0.001), as variances were heterogeneous. 

Next, Principal Coordinate Analysis (PCoA) (Figure 6.7) was used to visualise similarities and 

dissimilarities of the bacterial communities of plastics sampled in the harbour and offshore.  

 

Figure 6.7 PCoA profile of pairwise community dissimilarity indices (Bray-Curtis), calculated from the OTU table 

of the microbial community on plastic, seawater and sediment samples. Samples of the exposure series are 

shown in blue. Colour intensities indicate the time of exposure. The shape represents the different sample types 

(plastic at the harbour, plastic offshore, seawater or sediment). Grey dotted ovals indicate the 95% confidence 

intervals for each sample type. A) bacterial communities. Samples of a broad sampling campaign in 2014 (Chapter 

5) are represented as grey boxes. B) fungal communities. Bottom panel: Macro- and microscopic images of the 

coating formed on plastic sheets during prolonged exposure to harbour (left panel) and offshore (right panel) 

conditions. 
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First, bacterial communities of plastic sampled at the harbour noticeably shifts away from the 

earlier time points (Figure 6.7A; Figure 6.4B; Figure 6.4B), indicating that plastic sampled in 

the harbour displayed a gradual change in bacterial community composition. Together, this 

temporal profile of the harbour plastic was used to evaluate biofilm formation stages in the 

offshore plastic samples. Strikingly, the bacterial community composition on the plastics 

exposed to offshore conditions at any time, resembled those at the earliest time points (first 

two weeks) on plastics from the harbour. Conversely, bacterial signatures of intermediate or 

late stage biofilm as observed in the harbour were not observed on any of the plastics, during 

five months of exposure to offshore conditions. Eight of the 10 OTUs of the offshore core set 

were not identified in the harbour core set. The other two OTUs of the offshore core set, 

classified as Psychroserpens and an uncultured Rhodobacteriaceae bacteria, were also found 

in the harbour core set. Under offshore conditions these OTUs presented 1-1.5% of the 

bacterial community, while they were slightly more abundant in late stage biofilms of the 

harbour (2%).  

Second, we used PCoA to compare samples of our new exposure time series to the previously 

described dataset of Chapter 5, comprising bacterial communities of independently collected, 

randomly sampled pieces of plastic of the North Sea. The bacterial communities of these 

randomly collected pieces of plastic cluster with those of the plastic samples which were 

exposed offshore, even though these plastic samples originate from different locations and 

were sampled in different seasons. Late stage bacterial community profiles as identified in the 

harbour exposure series, were also not observed in any of our previously described, randomly 

collected pieces of plastic (Figure 6.7A). This further shows that the variation in biofilm 

composition observed is similar in ‘free-moving’ plastic and plastic fixed to the seafloor in our 

constructions. 

Third, we compared the taxonomic composition of plastic to that of seawater and sediment 

to investigate if these environments could serve as a bacterial source for plastic biofilm 

organisms. Sediment and seawater were sampled offshore in our new series, and were also 

compared to sediment and seawater samples of our previously published plastic survey 

(Chapter 5). Seawater and sediment bacterial communities were quite similar for both sample 

sets and they consistently clustered separately from all plastic samples (Figure 6.7A). Detailed 

comparison at the bacterial class level revealed that several of the major classes present in 

seawater (alphaproteobacteria and flavobacteria) and sediment (gammaproteobacteria) 
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were also detected on plastic sampled offshore and at the harbour (Figure 6.4E; Figure 6.4F). 

Conversely, all bacterial OTUs observed on the plastics of the exposure series were also 

present in sediment or seawater. This indicates that taxonomic profiles overlap, and that the 

separate clustering in the PCoA resulted from shifts in the relative abundance of the bacteria 

(Figure 6.4; Figure 6.7). 

PERMANOVA analysis on the fungal community composition showed significant effects of 

sample type (p<0.001), environment (p<0.001), and exposure time (p<0.001). In contrast to 

the consistent patterns observed for the bacterial communities, PCoA analysis showed the 

high variability in fungal communities for both types of plastic, even between biological 

replicates (Figure 6.7B). No clear temporal shifts in the fungal community composition could 

be observed across successive sampling points under harbour or offshore conditions, as 

illustrated by a broad clustering of individual samples within the PCoA plots (Figure 6.7B). 

 

 6.2.4 Screening for potential PE degraders 

After three months of exposure to offshore conditions we observed rips at several places on 

the plastic sheets (Figure 6.2). However, due to the experimental setup, we were neither able 

to quantify the physical degradation of the plastic, nor the loss of plastic mass due to biological 

degradation and/or microbial metabolic activity. Instead, we searched for the presence of 

micro-organisms with a previously identified potential for PE biodegradation (Restrepo-Florez 

et al., 2014). Three fungal OTUs identified at species level were detected on plastic samples, 

especially at the harbour, which had previously been identified as potential PE biodegraders 

in a soil environment: Cladosporium cladosporioides, Fusarium redolens and at lower 

abundance Mortierella alpina (Table 6.4) (Restrepo-Florez et al., 2014). The relative 

abundance of C. cladosporioides and F. redolens increased towards the end of the exposure 

period. In contrast, none of the currently known PE biodegrading bacterial genera were 

identified on our plastic samples exposed to the North Sea environment. 
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Table 6.4 Temporal dynamics in relative abundance of three previously identified fungal PE biodegraders: M. alpina, F. redolens and C. cladosporioides. Relative 

abundances are given for A) plastic sheets at the harbour, B) dolly ropes at the harbour, C) plastic sheets offshore and D) dolly ropes offshore. The mean relative abundances 

of other species within the same genera (indicated as “other”), are given for each time point within the exposure period. Time points consisting of less than 3 biological 

replicates were present, due to a low number of sequence reads in one or more of the replicates, are excluded from the table. 

HARBOUR SHEET              
Genus Species t1 t2 t3 t4 t9 t14 t18 t22 t27 t31 t35 t40 t44 

Mortierella alpina 0,00±0,00 0,02±0,02 0,00±0,00 0,09±0,07 0,00±0,00 0,00±0,00 0,00±0,00 / / 0,00±0,00 0,02±0,02 0,00±0,00 0,00±0,00 

 other 0,57±0,57 0,24±0,18 0,02±0,00 0,06±0,04 0,02±0,01 0,20±0,20 0,01±0,01 / / 0,02±0,02 1,16±0,42 1,84±1,75 0,24±0,15 

Fusarium redolens 0,00±0,00 0,14±0,12 0,04±0,01 0,07±0,06 0,00±0,00 0,01±0,00 0,00±0,00 / / 0,00±0,00 0,00±0,00 0,53±0,44 0,99±0,46 

 other 0,15±0,15 0,00±0,00 0,03±0,00 0,00±0,00 0,07±0,05 0,01±0,00 0,00±0,00 / / 0,00±0,00 0,00±0,00 0,27±0,27 0,10±0,09 

Cladosporium cladosporioides 0,14±0,11 0,96±0,73 0,10±0,02 0,16±0,09 0,07±0,01 0,36±0,34 0,02±0,01 / / 0,13±0,23 0,73±0,49 0,16±0,07 0,83±0,74 

 other 2,80±0,97 5,22±0,47 0,11±0,02 1,15±0,26 0,42±0,29 0,41±0,34 1,18±0,10 / / 0,52±0,13 1,25±0,42 3,66±2,00 0,72±0,11 

HARBOUR DOLLY ROPE              
Genus Species t1 t2 t3 t4 t9 t14 t18 t22 t27 t31 t35 t40 t44 

Mortierella alpina 0,00±0,00 0,00±0,00 0,00±0,00 0,00±0,00 / 0,00±0,00 / / / 0,03±0,03 0,00±0,00 0,00±0,00 0,00±0,00 

 other 0,96±0,55 0,00±0,00 2,98±0,15 0,40±0,02 / 0,22±0,00 / / / 2,04v2,02 0,13±0,02 2,40±1,96 0,11±0,07 

Fusarium redolens 0,01±0,01 0,00±0,00 0,00±0,00 0,00±0,00 / 0,00±0,00 / / / 0,05±0,05 0,00±0,00 0,00±0,00 1,33±1,00 

 other 0,00±0,00 0,04±0,04 0,00±0,00 0,00±0,00 / 0,08±0,02 / / / 0,11±0,11 0,00±0,00 0,01±0,01 0,10±0,07 

Cladosporium cladosporioides 0,76±0,40 9,63±1,84 0,89±0,12 0,19±0,05 / 0,08±0,03 / / / 0,27±0,17 0,01±0,01 0,36±0,30 0,10±0,04 

 other 2,21±0,99 9,24±1,15 1,30±0,56 0,80±0,16 / 0,02±0,01 / / / 0,48v0,35 0,15±0,02 1,49±0,73 1,59±0,53 

OFFSHORE SHEET              
Genus Species t1 t2 t3 t4 t9 t14 t18 t22 t27 t31 t35 t40 t44 

Mortierella alpina / / / 0,00±0,00 / 0,00±0,00 0,00±0,00 0,00±0,00 / / / / / 

 other / / / 0,00±0,00 / 0,23±0,16 0,00±0,00 0,00±0,00 / / / / / 

Fusarium redolens / / / 0,00±0,00 / 0,00±0,00 0,00±0,00 0,00±0,00 / / / / / 

 other / / / 0,00±0,00 / 0,00±0,00 0,00±0,00 0,00±0,00 / / / / / 

Cladosporium cladosporioides / / / 0,02±0,02 / 0,09±0,07 0,40±0,04 0,00±0,00 / / / / / 

 other / / / 0,19±0,08 / 0,41±0,14 0,00±0,00 0,11±0,06 / / / / / 

OFFSHORE DOLLY ROPE              
Genus Species t1 t2 t3 t4 t9 t14 t18 t22 t27 t31 t35 t40 t44 

Mortierella alpina / / / 0,00±0,00 / 0,00±0,00 0,00±0,00 0,00±0,00 / / / / / 

 other / / / 0,26±0,13 / 0,26±0,13 0,77±0,67 0,18±0,09 / / / / / 

Fusarium redolens / / / 0,00v0,00 / 0,00±0,00 0,00±0,00 0,00±0,00 / / / / / 

 other / / / 0,00±0,00 / 0,00±0,00 0,00±0,00 0,00±0,00 / / / / / 

Cladosporium cladosporioides / / / 0,55±0,48 / 0,55±0,48 0,03±0,03 0,00±0,00 / / / / / 

 other / / / 0,69±0,48 / 0,69±0,48 0,65±0,36 0,09±0,07 / / / / / 
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6.3 DISCUSSION AND CONCLUSIONS 

This chapter describes the temporal aspects of bacterial and fungal colonization of PD located 

on the seafloor in the harbour of Ostend and offshore in the North Sea. In the semi-enclosed 

environment of the harbour, the formation of a microbial biofilm was observed after merely 

one week, which is in accordance with previous studies (Lobelle & Cunliffe, 2011; Harrison et 

al., 2014). Progressive stages of biofilm formation on plastics sampled at the harbour could be 

discriminated based on the increase of microbial biomass over time, a high bacterial richness 

in the first months, a gradual change in the taxonomic composition, and a shift towards more 

secondary colonizers at later stages in the harbour. A core group of 25 bacterial OTUs were 

detected across all plastic samples from four weeks onwards until the end of the exposure 

period at the harbour. Those core organisms could be divided into four groups depending on 

the timing of their peak abundance. The gradual change in relative abundance of those 

organisms revealed two important features. First, individual pieces of plastic show highly 

reproducible taxonomic compositions, although they are collected in a time-series from 

independent constructions sunk to the seafloor sharing a history of exposure to the same 

environment. This shows that at least part of the biofilm formation process is sufficiently 

stable to reconstruct its temporal dynamics. Second, our strategy can be used to identify 

indicator species for distinct biofilm formation stages in natural environments where PD 

effectively accumulates. We are aware that some indicator species identified in this study may 

be specific for the environment of the harbour of Ostend, e.g. members of the 

flavobacteriaceae family (Chapter 5), and may not be found in other locations. However, we 

suggest that repeating a similar setup in many other locations and conditions will ultimately 

reveal common and unique patterns of biofilm formation on PD. It is also possible that the 

core organisms could be commonly found on other types of hard surfaces and may not be 

uniquely found on plastic surfaces. To identify plastic-specific components of biofilms, these 

should be compared to a range of other substrata, such as ropes, wood, and metal or other 

types of marine debris, as has been done by Oberbeckmann et al. (2016). As we only 

reconstructed one cycle of biofilm formation starting in September, temporal changes in the 

taxonomic composition probably reflect the colonization process itself but are confounded 

with seasonal variation of environmental factors. To delineate the contribution of seasonal 

and environmental effects on the colonization process staggered-start experiments should be 

performed by starting the exposure period at different times during the year, or on different 
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locations. For instance, the composition of the bacterial community of plastics sampled in the 

North Sea environment has been shown to be different compared to other marine 

environments, e.g. the Pacific Ocean (Chapter 5). 

We further showed that all bacterial and fungal groups attached to the plastic surface could 

be detected in the surrounding seawater or sediment, thus serving as a source of micro-

organisms to colonize the plastic surface. So, while the species compositions overlap, the 

microbial species abundance profiles between seawater and sediment and the surface 

substrata are different. We further show that large variation exists within the series of 

communities found on the surface of plastic substrata. For instance, different microbial 

communities develop on plastic sheets and dolly ropes, even though the process occurred in 

the same environment and both plastic types were PE. Furthermore, the temporal aspect of 

biofilm formation is an important factor that defines the community found at a given moment. 

The most striking of our observations is that samples taken offshore, either with known history 

at a fixed location or from randomly sampled pieces of ‘free-moving’ plastic in the North Sea 

environment (Chapter 5), are most similar to early phase biofilms observed on plastics 

sampled in the harbour. Taken together, these observations either suggest that biofilm 

formation is stimulated in the nutrient-rich and semi-protected harbour conditions, or that 

under offshore conditions it may be subject to environmental influences that either hamper 

or disturb biofilm formation, or may result in erase-and-restart scenarios. For instance, the 

biofilm formation process can be set back to an early stage due to the seawater-sand emulsion 

moving over the surface of the plastic and scraping off the biofilm. In addition, the ropes and 

sheets were fixed on the same wooden block, and tidal currents may move ropes over the 

sheets, which could result in partly removal of the biofilm. Interestingly, the fungal profiles of 

plastics exposed offshore or at the harbour display rather discontinuous shifts in the 

communities that do not follow the sampling order, and are thus unlikely to reflect successive 

stages of a developmental process. At least in the harbour environment, this does not seem 

to be related to any impact on the biofilm itself, as the bacterial profiles of the same samples 

display clear and well-structured temporal dynamics. This suggests that mechanical forces 

may not be the only factor that affects biofilm formation. If erase-and-restart scenarios would 

occur, this may explain the large variation and the lack of ‘late’ stage taxonomic signatures, 

but it would also have several consequences for future studies. First, understanding long-term 
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processes underlying biofilm formation and metabolic activity, as studied under controlled 

conditions, may be of limited help to understand the processes as they occur offshore. Second, 

previous research on free-moving plastic has identified the presence of certain bacterial 

families (i.e. Pseudoalteromonadaceae and Vibrionaceae) on randomly sampled PD that were 

not detected in the surrounding seawater or sediment at the time and location of sampling 

(Chapter 5). This suggests that free-moving PD can act as a vector and transport micro-

organisms through the marine environment. Our results suggest that the stability of the 

biofilm is a further aspect that needs to be taken into account when assessing the risk of plastic 

as vector for invasive and/or pathogenic species. 

In contrast to the large body of evidence accumulating for bacterial colonization of PD 

(Chapter 5; Zettler et al., 2013; Harisson et al., 2014; Oberbeckmann et al., 2014; 

Oberbeckman et al., 2016), only few studies have been published on fungal colonization of 

PD. For instance, Oberbeckmann and coworkers studied the eukaryotic colonization of PD in 

the North Sea environment through 18S rRNA gene amplicon sequencing, and showed the 

presence of Ascomycota and Basidiomycota on PD (Oberbeckman et al., 2016). We found 

members of the Lecanoromycetes, e.g. Candelariella, Physconia, and Lecanora on plastics 

sampled at the harbour and offshore. These lichens are commonly detected in coastal and 

maritime zones (Clayden et al., 2010). 

While fewer studies focus on the fungal community than on the bacterial community on PD, 

we believe that it is important to study these simultaneously for two main reasons. First, 

several soil-related bacterial and fungal species able to degrade PE have previously been 

described (Restrepo-Florez et al., 2014) and these could also play a role in plastic degradation 

in marine environments, provided that they would occur there. Second, bacterial attachment 

to hyphal surfaces can enhance synergistic action of bacteria and fungi, which is necessary to 

break down highly complex substrates, such as PE polymers (Characklis et al., 1990). A large 

number of fungal OTUs was identified showing the complexity and diversity of the fungal 

community on PD, but little is known about the biological functions that they can perform. 

Our study, as well as future research into the functioning of fungal species in marine biofilms, 

suffer from a prominent gap in current taxonomic reference databases. For instance, the 

UNITE database, which is currently the largest reference database for fungal taxonomic 

profiling, is predominantly based on fruiting bodies, rhizosphere, and soil samples, but 
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contains only a limited number of marine sequences (Kõljalg et al., 2013). Consequently, the 

majority of fungal sequences in our study was assigned to soil organisms, or could not be 

assigned at all. Additionally, marine fungi are not functionally characterised, in contrast to soil 

fungi. Therefore, a comprehensive marine fungal database should be established for future 

studies on the fungal communities that colonize PD. 

One of the main reasons for studying microbial communities on PD in the marine environment 

is to identify plastic biodegrading micro-organisms. As nature’s cleaners, micro-organisms may 

have the potential to degrade plastics accumulating in the marine environment, but so far 

there is no hard evidence for such biodegradation (Osborn & Stojkovic, 2014). In general, the 

substrate degradation efficiency increases when a microbial biofilm is formed on the substrate 

(Davey & O’Toole, 2000). Microbial populations that form biofilms display higher metabolic 

activity than microbes in planktonic mode of growth (Gilan et al., 2004). We did not find any 

bacterial species that had previously been associated with plastic degradation, but did detect 

three fungal OTUs representing previously identified PE degraders in late stage biofilms: 

Cladosporium cladosporioides, Fusarium redolens, and at lower abundance Mortierella alpine. 

Because phylogeny assignment based on rRNA gene sequences is not necessarily linked to 

biodegradation potential, isolated strains should now be tested in PE biodegradation assays 

to further verify biodegradation activity.  
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ADDITIONAL INFORMATION CHAPTER 6 

Table AI6.1: Properties of the harbour and offshore environment. Pollutant concentrations of the harbour are achieved from the “Vlaamse Milieu Maatschappij”, which 

measure the pollutants on a yearly base. Pollutant concentrations offshore is obtained from De Witte et al. (2016). Measured properties are obtained from Flanders Marine 

Institute (VLIZ), Belgium (2015). 

GENERAL FEATURES Harbour 
Sedimenttype Silt, by which it can adsorb organic pollutants (see pollutant concentration, sediment characteristics) 
Pollutants Presence of organic pollutants, POPs 
Sampling depth 6 m 
Anthropogenic activities land run-off 
  ship discharges 
  pollution through waste pipes 
Currents relatively weak 

Tides, currents and waves  

Wave height (cm) 65,0 

Polutant concentrations (mg/ kg 
DM) 

 

Zn (µg g-1) 750 
Cd (µg g-1) 5 
Pb (µg g-1) 230 
Cu (µg g-1) 179 
Cr (µg g-1) 102 
Ni (µg g-1) 30 
Hg (µg g-1) 900 
polyaromatic carbohydrates (PAK) (µg g-1) 6,09 
polychloorbifenyl (PCB)  (ng g-1) 102 

Sediment characteristics  

Total organic carbon (TOC) (% OC) 3,33 
Median grain size (µm) 106,8 
  

MEASURED PROPERTIES sep/’15 oct/’15 nov/’15 dec/’15 jan/’16 feb/’16 mar/’16 apr/’16 may/’16 june/’16 july/’16 

Temperature (°C)  /           
12,3  

         
10,6  

         
10,9  

            
7,7  

            
6,6  

                
6,5  

            
9,9  

             
10,5  

              
14,6  

            
20,6  

Conductivity (µS/cm) /    
37.600  

   
37.000  

   
38.000  

   
34.900  

   
31.600  

       
33.300  

   
37.000  

       
34.500  

        
37.500  

      
47.100  

pH  /              
7,9  

            
8,0  

            
8,2  

            
8,0  

            
7,9  

                
8,1  

            
8,3  

                
8,5  

                 
7,9  

               
8,3  

Oxygen (mg/L)  /              
6,3  

 /              
8,6  

            
7,1  

 /               
12,5  

         
13,3  

                
7,9  

                 
9,2  

            
10,1  

Salinity (PSU)  /           
32,4  

         
33,3  

         
34,1  

         
33,9  

         
31,3  

             
33,4  

         
34,0  

             
30,9  

              
30,4  

            
31,7  
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Density (kg/m^3)  /    
1.024,5  

  
1.025,5  

  
1.026,2  

  
1.026,5  

  
1.024,6  

     
1.026,3  

  
1.026,2  

      
1.023,7  

      
1.022,5  

    
1.023,7              

GENERAL FEATURES Offshore 
Sedimenttype Sand 
Pollutants Sedimentype is almost inert; hard to adsorb pollutants 
Sampling depth 26 m 
Anthropogenic activities Activities covering the wind farm 
  Fisheries 
Currents Strong 

Tides, currents and waves 
 

Wave height (cm) 182,1 

Polutant concentrations (mg/ kg 
DM) 

 

Zn (µg g-1) 124,9 
Cd (µg g-1) 0,4 
Pb (µg g-1) 34,7 
Cu (µg g-1) 16,1 
Cr (µg g-1) 73,5 
Ni (µg g-1) 22,4 
Hg (µg g-1) 173 
polyaromatic carbohydrates (PAK) (µg g-1) 0,6 
polychloorbifenyl (PCB)  (ng g-1) 5,3 

Sediment characteristics 
 

Total organic carbon (TOC) (% OC) 0,09 
Median grain size (µm) 678,4 

 MEASURED PROPERTIES sep/’15 oct/’15 nov/’15 dec/’15 Jan/’16 feb/’16 mar/’16 apr/’16 may/’16 june/’16 july/’16 

Temperature (°C)                   
16,3  

         
13,1  

         
11,3  

         
10,4  

            
6,5  

            
7,7  

 /              
9,4  

             
12,7  

              
15,8  

            
19,8  

Conductivity (µS/cm)             
42.876  

   
38.760  

   
38.274  

   
37.646  

   
32.481  

   
35.463  

 /     
34.968  

       
38.657  

        
39.331  

      
44.847  

pH                      
8,1  

            
7,9  

            
8,0  

            
8,2  

            
7,9  

            
8,0  

 /              
8,4  

                
8,4  

                 
8,1  

               
8,2  

Oxygen (mg/L)                      
7,7  

            
8,0  

            
8,3  

            
8,8  

            
7,3  

            
7,0  

 /   /                  
7,3  

              
10,0  

               
9,0  

Salinity (PSU)                   
33,8  

         
32,8  

         
34,0  

         
34,2  

         
32,4  

         
34,5  

 /           
32,3  

             
33,1  

              
31,1  

            
32,7  

Density (kg/m^3)           
1.024,8  

  
1.024,8  

  
1.026,0  

  
1.026,3  

  
1.025,5  

  
1.027,0  

 /    
1.025,1  

      
1.025,1  

      
1.022,9  

    
1.023,1  
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Figure AI6.1 Technical plan of the construction used to expose plastics in the Belgian part of the North Sea. Three pieces of each type of plastic were attached to a wooden 

block, which was secured in a construction comprising a buoy, ropes (ø 16 mm), chains and an anchor and concrete weights.



 
 

 
 

 

Figure AI6.2. Richness of the bacterial and fungal communities on plastics, seawater, and sediment during 44 

weeks (harbour) or 22 weeks (offshore) of exposure. The richness of plastic sheets and dolly ropes are shown in 

purple and red, respectively. The number of unique OTUs in seawater and sediment are indicated in green and 

blue, respectively. The shaded grey area represents the 95% confidence bands. Top panels: bacterial community 

richness. Bottom panels: fungal community richness. 
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Figure AI6.3. Chao1 indices, a richness estimation of microbial communities, of the bacterial and fungal 

communities on plastics, seawater, and sediment during 44 weeks (harbour) or 22 weeks (offshore) of exposure, 

calculated at a rarefaction depth of 10,000 sequences. The chao1 indices of plastic sheets and dolly ropes are 

shown in purple and red, respectively. The number of unique OTUs in seawater and sediment are indicated in 

green and blue, respectively. The shaded grey area represents the 95% confidence bands. Top panels: bacterial 

community richness. Bottom panels: fungal community richness. 
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In this PhD, high-throughput sequencing (HTS) techniques have been successfully applied in 

either a soil (rhizosphere) or marine (“plastisphere”) context (Figure 7.1).  

 
Figure 7.1 Schematic overview of the four research chapters of this PhD (source DNA strand: 

https://research.medicine.umich.edu). 

 

This chapter discusses the major research findings of this work, its implications, and possible 

future perspectives. For this purpose, the discussion is divided in three main topics:  

1) The possibilities and drawbacks of amplicon sequencing and shotgun metagenomics in 

agricultural and marine environmental contexts.  

2) Evaluation of the effects of two soil/substrate amendments on the rhizosphere 

microbiome. Biochar and chitin addition can change the rhizosphere microbiome, which 

can be related to a positive effect on the plant growth and a negative effect on plant and 

human pathogens on the leaves. Both amendments are therefore good candidates to be 

used in agri- or horticultural practices.  

3) Characterization of the bacterial and fungal community composition and dynamics of 

“the plastisphere”.  Plastics exposed to the North Sea will be colonised by bacteria and 

fungi. This colonization is influenced by environmental and plastic related factors. This 

microbial load on plastics may be a potential threat (pathogens) or provide a solution to 

the plastic pollution problem (degradation). 



Chapter 7 

198 
 

7.1 HIGH THROUGHPUT SEQUENCING 

In this PhD research, amplicon sequencing is mainly used to study the taxonomic composition 

of bacterial (V3-V4 variable region of the 16S rRNA gene) and fungal communities (ITS2 

variable region). The technique has proven to be applicable in both soil and marine 

environments and has been used to characterize microbial communities and their temporal 

dynamics (Figure 7.1Figure ).   

In Part I, the rhizosphere microbiome is studied by using a combination of amplicon 

sequencing and phospholipid fatty acids (PLFA) analysis (Chapter 2, Chapter 3 ,Chapter 4), 

and/or amplicon sequencing and shotgun metagenomics (Chapter 4).  

PLFA analysis and amplicon sequencing have proven to be complementary techniques to 

study biomass, microbial diversity and shifts in relative abundances in microbial 

communities (Table 7.1). After amplicon sequencing, sequences are classified in Operational 

Taxonomic Units (OTUs). The number of unique OTUs gives an estimation of the richness of a 

sample (Chapter 2 and 4). To compare samples, absolute number of OTU are normalised for 

differences in sampling depth by dividing the counts by the total number of sequences in a 

sample. This generates relative abundances for each OTU. In contrast, PLFA analysis provides 

complementary data on the total microbial biomass and the biomass per microbial group, but 

cannot be used to calculate community richness. To make a comparison between both 

techniques, one can calculate the relative abundances of the PLFA biomarkers as done in 

Chapter 4 of this dissertation. It was shown that both amplicon sequencing and PLFA analysis 

indicate an increase in relative abundance of Gram negative-bacteria in the lettuce 

rhizosphere due to chitin addition to potting soil, but the decrease of relative abundance of 

Gram-positive bacteria in the PLFA analysis was not confirmed by amplicon sequencing. It 

needs to be noted, that it is not possible to classify all groups or group members to either 

gram-negative or gram-positive, as some groups contain species of both cell wall types, which 

can bias the comparison. Therefore, comparisons of both techniques based on relative 

abundances is rather difficult, and we conclude that based on taxonomical identification, both 

techniques are rather complementary. PLFA is therefore a good technique for studying the 

biomass of microbial groups, and amplicon sequencing for indicating the richness of the 

sample and shifts in relative abundances in the OTUs, which are generally classified to the 

genus level (Table 7.1). 
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Table 7.1 Comparison of the characteristics of PLFA analysis, amplicon sequencing and shotgun metagenomics 

based on taxonomic and functional information. The microbial groups for PLFA analysis or defined on the 

classification of phospholipids to: Gram positive bacteria, non-specific bacteria, gram negative bacteria, 

actinomycetes, AM Fungi and fungi.  

 PLFA analysis Amplicon sequencing Shotgun metagenomics 

Taxonomic information    

Richness/diversity    

Relative abundances    

Level of classification  Microbial groups Genera Genera/Species 

Microbial biomass    

Functional information    

Amplicon sequencing and shotgun metagenomics are complementary for taxonomic and 

functional microbial characterization (Table 7.1). In Chapter 4, both techniques are used to 

study the rhizosphere microbiome influenced by the addition of chitin. Both amplicon 

sequencing and shotgun metagenomics have proven to be appropriate to study the bacterial 

community composition of the rhizosphere and results are comparable. A relatively higher 

relative abundance of Proteobacteria is observed in the shotgun dataset compared to the 

amplicon sequencing data. This is in contrast to previous research that studied the Barley 

rhizosphere and found a higher amount of Proteobacteria in the amplicon sequencing dataset, 

probably due to the presence of multiple copies of the 16S rRNA gene in beta- and 

gammaproteobacteria (Bulgarelli et al., 2015). To assign taxonomy to the sequence reads, 

several non-redundant rRNA sequence databases are available for which Silva, Greengenes 

and Ribosomal Database Project (RDP) are the most popular. In our study, a different 

reference database is used for the amplicon sequencing data (Silva) and the shotgun 

metagenome data (Greengenes), which was taxonomically classified by EBI metagenomics. 

Several databases are biased in their composition and for Greengenes around 30% of the 

database are Proteobacteria, which comprise around 5% of the database of complete 

microbial genomes and thus could explain the difference (Poretsky et al., 2014). In addition, 

the sequencing depth in the shotgun metagenome data showed to be insufficient to cover the 

complete bacterial diversity in the samples. 

Moreover, it is generally assumed that the PCR amplification in amplicon sequencing 

introduces a bias and that not all sequences are amplified with the same efficiency (Schirmer 

et al., 2015). Based on the results of Chapter 4, this bias seems to be limited as similar 
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conclusions can be made with the amplicon sequencing data compared to shotgun 

metagenomics. Therefore, we can assume that sequencing the V3-V4 variable region of the 

16S rRNA gene after PCR amplification is a robust method to analyse bacterial communities in 

the rhizosphere. 

For the fungal rhizosphere community, a similar comparison cannot be made as EBI-

metagenomics does not provide taxonomic information on the fungal sequences in the 

shotgun metagenomics dataset. Also for other open-source web-applications, the taxonomic 

information of microbial groups other than bacteria is limited. Metagenome abundance 

estimates are based on taxonomic classification using a reference-based method. Therefore, 

database-related biases likely will play a role in the community characterisation in favour of 

bacterial taxa (Bulgarelli et al., 2015). The use of alternative markers, such as the ITS or 18S 

rRNA gene region, to target fungal communities through the application of amplicon 

sequencing is therefore the favoured option so far.  

Shotgun metagenomics is however an important technique as it provides information on the 

functional genes in the metagenome of an environment, e.g. the rhizosphere. In our study 

(Chapter 4), 15 % of the genes are mapped to a functional trait, which is in line with another 

study in the rhizosphere (Yan et al., 2017). Therefore, caution should be taken as more than 

80 percent of reads cannot be annotated. In contrast to the taxonomic classification where 

the number of OTUs that significantly differed due to the addition of chitin are limited 

(Chapter 4), more than 300 functional genes significantly differed in relative abundance in the 

rhizosphere due to chitin addition. Therefore it is extremely important that before performing 

a shotgun metagenomics study, knowledge is available on the specific functional traits and 

pathways one wants to study. In Chapter 4, this was done for the functions involved in chitin 

degradation.   

Despite several benefits of HTS techniques, the analysis of these large volumes of data remains 

challenging. Based on the two research topics in this PhD, the main challenging aspects were 

the biology, bioinformatics and statistics.  

Biology: Amplicon sequencing of the rhizosphere microbiome (Part I) has given a thorough 

understanding of the community composition and the influence of biochar (Chapter 2, 3) and 

chitin (Chapter 4) on the bacterial and fungal communities. In Part II, amplicon sequencing has 

proven to be a good technique to study the bacterial “plastisphere” community. However, the 
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fungal community of marine plastic debris is typified by many OTUs that cannot be assigned 

to a certain known taxon (Chapter 6). This is at least in part due to a lack in current taxonomic 

reference databases. The UNITE database, which is currently the largest reference database 

for fungal taxonomic profiling, is predominantly based on fruiting bodies, rhizosphere and soil 

samples (Kõljalg et al., 2013). In addition, marine fungi are less extensively studied compared 

to soil fungi. Therefore, a comprehensive marine fungal database needs to be established if 

one wants to study fungal communities on marine plastic debris and in the marine 

environment in general.  

In addition, a major limitation of HTS techniques is that it is extremely difficult to learn new 

gene and pathway functions from the pure sequence data. To do so, cultivation of organisms 

is required, nonetheless most organisms are “uncultivable”. Recent advances in growing these 

species include co-culture with other bacteria, recreating the environment in the laboratory, 

and combining these approaches with micro-cultivation technology to increase throughput 

and access rare species. Therefore, whereas HTS techniques have a lot of potential, we need 

to keep in mind that cultivation remains necessary (Zengler, 2009; Stewart, 2012).  

Bioinformatics: In contrast to amplicon sequencing data, which is commonly analysed by using 

the QIIME software (Caporaso et al., 2010a), the analysis of shotgun metagenomics data 

(Chapter 4) remains challenging for bioinformaticians. This is at least in part due to the size of 

the datasets and the lack of non-redundant databases. Several open-source bioinformatics 

tools are available, such as MG-Rast and EBI-metagenomics, which ease the data analysis for 

non-bioinformaticians (Meyer et al., 2008; Mitchell et al., 2015). However web-based analysis 

is often related to a long execution time and the data visualization and output these tools 

provide are limited. As an example, most open-source methods focus on bacterial taxonomic 

classification, whereas we have seen that in certain cases also other groups, e.g. fungi (Chapter 

4, Chapter 6) can be important to study. However, new methods become available each year 

which will overcome these problems. As an example, the Unipept pipeline (Mesuere et al., 

2016), currently used for metaproteome data analysis, is being extended for the analysis of 

metagenomics data. DNA sequences will be translated into a series of peptide and protein 

sequences, solving the latter using existing Unipept functionality and map the results back to 

the metagenomics context. This approach makes Unipept unique compared to existing 

pipelines such as MG-Rast and EBI metagenomics, where DNA sequences are mapped towards 

rRNA databases to retrieve taxonomic information, especially on bacterial sequences 
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(unpublished, Cizar Almalak & Bart Mesuere). This has the advantage that all sequences are 

used for taxonomic classification and not only those of the 16S gene, which proved to be 

insufficient to cover the complete community complexity due to a low sequencing depth for 

16S sequences (Chapter 4).  

Statistics: The statistical analysis of both amplicon sequencing and shotgun metagenomics 

data is notoriously difficult. The reads in meta-‘omics sequencing applications typically exhibit 

a high variability, huge fluctuations in sequencing coverage and contain many zeros as 

compared to transcriptome data, containing mRNA reads. Therefore, the tools that are 

currently used for differential expression analysis in transcriptome studies, e.g. EdgeR 

(Robinson & Oshlack, 2010) and DESeq2 (Love et al., 2014), are currently the best option for 

studying differential differences in amplicon and shotgun sequencing data. However for these 

sequencing techniques the methods are currently suboptimal and should be adapted to fit for 

the data. New pipelines are produced each year, and probably these limitations will be 

overcome in time.  

In conclusion, both amplicon sequencing and shotgun metagenomics are important tools to 

study microbial communities in both an agricultural context and marine environment (plastic 

debris, sediment, seawater). The combination of both techniques is optimal to retrieve as 

many information on the microbial community as possible, and when studying a soil (or 

sediment)–related community, the combination with PLFA analysis can be made to gain 

knowledge on the absolute microbial biomass. The remark should be made however that only 

making use of HTS techniques will not be sufficient and culture-dependent methods will still 

be essential to expand our basic taxonomic and functional knowledge of micro-organisms.  
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7.2 THE RHIZOSPHERE IN RELATION TO PLANT GROWTH, PLANT HEALTH & INTERACTION TO 

HUMAN PATHOGENS 

In Chapters 2, 3 and 4, the addition of two soil or substrate amendments, biochar and chitin, 

is proven to affect the rhizosphere microbiology, plant growth and diseases, but also survival 

of human pathogens on the leaves (chitin). 

Biochar addition changed the physicochemical properties of soil and substrate. It also induced 

major changes in the rhizosphere microbiology of the strawberry plants and in plant 

development and health (Chapter 2, Chapter 3). Based on the results of this thesis, we can 

conclude that biochar works best under nutrient-limiting conditions to improve plant health 

and disease resistance, such as in an unfertilized and unlimed peat growing medium. 

Additional fertilization of peat reduces the effects and when lettuce plants were grown in 

nutrient-rich soil, biochar effects on plant properties, plant health and rhizosphere 

microbiology were even absent.  

In nutrient-poor substrate conditions, biochar increased the strawberry plant and root 

growth, the fruit production and the plant resistance towards Botrytis cinerea infection on 

fruits and leaves. Several hypotheses have been suggested regarding the mode of action of 

biochar in this condition, in which two are the most prominent (Figure 7.2).  

First, biochar can serve as a fertilizer. The higher nutrient stock in the substrate supplemented 

with biochar, supplies necessary nutrients for the plant and the microbial community. Also in 

terms of fruit production, strawberry has a high nutrient demand. In terms of plant health, 

potassium deficiency in plants is amongst other related to less pest resistance. The remark 

should be made however that a higher nutrient stock in the substrate will not directly enhance 

plant growth or disease resistance, as nutrients should also be taken up by the plant. 

Therefore in future experiments, the plant tissue and strawberry fruit nutrient content should 

be analysed in plants grown in biochar-amended and unamended peat. In addition, despite 

the significant increase in nutrient composition due to biochar addition in the substrate, the 

values remain extremely low compared to the reference values for appropriate plant growth.  

Second, plant properties and plant health can be affected through a change in the rhizosphere 

microbiome due to the addition of biochar. Biochar addition to substrate increased the 

relative abundance of bacteria involved in the microbial N cycling, Plant Growth Promoting 

Rhizobacteria (PGPR) and biocontrol agents from week six of plant growth onwards. These 
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organisms can ease the uptake of nutrients for the plants and enhance the plant availability 

of nitrogen and phosphorus (Egamberdiyeva, 2007; Krey et al., 2013). On the other hand, 

PGPR can promote the induced systemic resistance (ISR) of the plant (Mehari et al., 2015).  

This interplay of biochar-mediated processes correlated with a change in nutrient availability 

and bacterial community composition in the rhizosphere, are schematically represented in 

Figure 7.2. 

Previous studies have shown that five factors can influence the rhizosphere microbial 

composition: soil type, plant genotype, addition of fertilizers, crop rotation and application of 

pesticides (Massart et al., 2015). This PhD research has shown that an aboveground fungal 

infection can also alter the rhizosphere community composition (Chapter 3). The presence of 

pathogens can induce a higher production and leakage of root exudates, which provide 

nutrients for micro-organisms and are therefore able to change the rhizosphere microbiology 

(Doornbos et al., 2012). Interestingly, the change in bacterial community composition of the 

rhizosphere induced by the B. cinerea infection of a strawberry leaf was comparable to the 

rhizosphere community composition of biochar-amended substrates. 

 

Figure 7.2 Schematic overview of the biochar-mediated processes in nutrient-poor conditions and the interplay 

between these processes (case study: strawberry, graphical abstract from De Tender et al., 2016). The full grey 

arrows represent the main effects observed due to biochar addition. The dotted lines represent the interactions 

of the several main factors.  
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Chitin addition to potting soil has shown to be able to alter the lettuce rhizosphere 

microbiome, increase lettuce growth and reduce the survival of a zoonotic bacterial pathogen, 

Salmonella enterica, on the leaves (Chapter 4) (Figure 7.3).  

Chitin addition increased the growth of the lettuce plants by 20%. This can be mediated 

through a change in the soil and rhizosphere microbiome. First, chitin degradation by the 

microbial community can release a substantial amount of carbon and nitrogen in the potting 

soil, providing necessary nutrients for the plant (Hamid et al., 2013). The remark should be 

made however that in this study, the nutrient composition of potting soil was not measured 

and thus the observed growth effects by a change in the nutrient stock are hypothetical. 

Second, several bacterial genera linked with the N cycle and PGPR increased in relative 

abundance due to the chitin addition, which can ease the uptake of nutrients for the plant and 

enhance plant availability of nitrogen and phosphorus (Egamberdiyeva, 2007; Krey et al., 

2013). Third, part of the chitin could be deacetylated to chitosan, a component known to serve 

as a natural biocontrol agent and able to enhance plant growth (Linden, 2000).  

To my knowledge, this is the first study to show that chitin addition in potting soil has the 

potential to intervene in the aboveground interaction of the plant with bacteria, and in this 

case with zoonotic bacterial pathogens for which the plant can function as a carrier of human 

disease. The mechanism behind this decreased survival of the zoonotic pathogen is currently 

unknown, however it is co-occurring with a change in the rhizosphere microbiome. Chitin and 

chitosan are both known to be involved in plant health and similar mechanisms could be 

related to the decrease in survival of S. enterica on the lettuce leaves. First, as stated above, 

chitin promotes bacterial and fungal groups involved in plant growth promotion and in 

biological control. Second, chitin is also known as a microbe/pathogen-associated-molecular 

pattern (MAMP/PAMP) which can trigger plant immunity (Langner & Göhre, 2016), which may 

also influence the survival of S. enterica on lettuce leaves.   
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Figure 7.3 Schematic overview of the chitin-mediated processes and the interplay between these processes 
(case study: lettuce). The full grey arrows represent the main effects observed due to biochar addition. The 
dotted lines represent the interactions of the several main factors. Also the effect of chitosan, the deacetylated 
product of chitin, on plant growth has been added.  

 7.2.1 Futures studies  

Based on the observations in Part I, biochar and chitin amendment are both able to alter the 

rhizosphere microbiome of plants. Despite different plant-growing media systems were 

studied, it seems that their mode of action is different. Biochar mainly influences the bacterial 

community composition towards higher relative abundances of PGPR and biocontrol agents 

(Chapter 2, Chapter 3). In contrast, chitin influences both the bacterial and fungal community 

composition, in which especially chitin degraders, often related to plant growth promotion, 

are promoted (Chapter 4).  

To unravel the mode of action of biochar and chitin on the rhizosphere microbiology further, 

I suggest to perform following studies (Figure 7.4):  

(1) To gain knowledge regarding the functional genes that are enriched due to the addition of 

chitin or biochar, a combination of shotgun metagenomics and metatranscriptomics can 

be used. For biochar, to our knowledge no information is available regarding enrichment 

of specific functions. Chitin addition is in a first instance linked to chitinases, and chitin 

deacetylases, which can have a broad range of downstream effects. In Chapter 4, we 

already show that chitin addition increases the bacteria and fungi that harbour these 

functions and the abundance of genes linked to chitin-metabolism. To ascertain 

differences in chitinase production by the rhizosphere microbiome, one can also look to 
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the microbial activity. Metatranscriptomics can be used to identify enzymes that are 

differentially expressed in response to chitin treatment. Similar, the use of shotgun 

metagenomics and metatranscriptomics can identify genes and functions influenced by 

the addition of biochar, for which one can focus on disease-related functions (plant disease 

susceptibility) and functions related to the N- and C-cycle (plant growth). 

 

Figure 7.4 Techniques to study the microbial community in a given environment, here typically the substrate 

or the plant rhizosphere. Taxonomic classification of a specific target group (16S, ITS, etc.) can be done using 

amplicon sequencing. To identify the complete metagenome and look into the functions they encode, whole 

genome shotgun (WGS) sequencing (DNA) can be used. The active part of the metagenome can be studied using 

metatranscriptomics (RNA). Finally, a combination of Stable Isotope Probing (SIP) and WGS can identify the 

specific part of the community that actively metabolizes the amendment. 

(2) DNA Stable Isotope Probing (DNA-SIP) can be used to identify those micro-organisms 

capable of metabolizing biochar or chitin. Stable isotope (13C) labelled biochar or chitin can 

be added to the substrate. Subsequently, organisms that actively metabolize the labelled 

biochemical component will incorporate the stable isotope into their DNA, which will be 

referred to as 13C-DNA or “heavy DNA”. By isopycnic ultracentrifugation, this “heavy” DNA 

will be separated from the “light” 12C-DNA (Neufeld et al., 2007). To identify the organisms 

capable of metabolizing biochar or chitin, this technique can be combined with large-scale 

amplicon sequencing. In addition, one could combine the technique with shotgun 
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metagenomics, allowing to identify amendment-related specific functions (Chen & Murrell 

et al., 2010; Bell et al., 2011).  

This thesis mainly focuses on the identification and characterisation of bacterial and fungal 

community members influenced by the application of biochar and chitin, and to a lesser extent 

in the functional genome composition influenced by chitin addition. By expanding the 

research towards shotgun metagenomics, metatranscriptomics and DNA-SIP, one can even 

get a more thorough understanding of the effect of chitin and biochar addition on the 

rhizosphere microbiome activity, the relation with plant growth and create new perspectives 

to enhance plant resistance and resilience towards plant diseases and pests, but also food 

safety by implementing plant growth systems with reduced risk of contamination with 

zoonotic pathogens.  

In this thesis, we focused on the rhizosphere microbiome composition. Complementary, the 

response of the plant on the addition of chitin or biochar has been studied in terms of plant 

growth, yield and disease resistance. Here I propose two more plant analysis that would be 

very interesting to do in order to understand the plant response to biochar and chitin better. 

First, I already proposed to measure also the nutrient content on plant leaves and fruits (see 

above). Second, the  plant defense  should also be monitored. Although we have not studied 

this for chitin in this PhD, chitin is already well known to trigger plant immunity by acting as a 

MAMP/PAMP (Langner & Göhre, 2016). For biochar however, this is largely unknown and was 

subject of only two recent studies. Mehari et al. (2015) showed that the systemic resistance 

of tomato against B.  cinerea induced by biochar amendment was related to priming of 

defense responses particularly in ethylene and jasmonic acid related genes, which are known 

to be crucial in resistance against B. cinerea. Huang et al. (2015) tested the same biochar as 

used in Chapter 2 and 3 of this dissertation and showed that the increased resistance against 

nematode development in rice roots was associated with biochar-primed H2O2 accumulation 

as well as with the transcriptional enhancement of genes involved in the ethylene signalling 

pathway. The increased susceptibility of a rice line deficient in ethylene signalling, further 

confirmed that biochar-induced priming acts at least partly through ethylene signalling. In 

Chapter 2 of this thesis, we have shown that biochar amendment to nutrient-poor growing 

media is able to reduce the infection rate on strawberry plants. To understand the relationship 

between the addition of biochar or chitin and plant defense, the expression of defense genes 
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in the plant can be studied. To reveal differences in plant defense gene expression by the 

addition of biochar (or chitin), quantitative reverse transcription PCR (RT-qPCR) can be used, 

which measures the amount of gene transcript amplified in the sample while the reaction 

occurs. During my PhD dissertation, two master thesis were conducted at ILVO in 

collaboration with UGhent (Prof. Dr. Ir. Tina Kyndt) in order to (1) optimize a protocol for RNA 

extraction from strawberry plants and (2) Identify relevant strawberry defense genes and 

corresponding primers for the RT-qPCR (Van Nuffel, 2015; Shein Lee Diaz, 2016). These 

protocols will be used in future research at ILVO to understand the effect of biochar and chitin 

substrate amendment on the strawberry plant defense response. 

 7.2.2 Economic, ecologic and human health benefits 

Further studies should be undertaken to unravel the mode of action of biochar and chitin on 

the plant-substrate-microbiome interplay because both amendments seem to have promising 

use in agri- and/or horticulture.  Crop cultivation in Europe often relies on high pesticide and 

fertilizer use, especially for soilless cultivation such as in peat based systems. In Belgium, 

strawberry cultivation is economically important with an annual production of about 50 

million kg of fruits and a turnover of € 130 million (VILT, 2013; Appeltans, 2014). Strawberry 

is however almost solely cultivated in peat-based substrates, and peat is in general nutrient-

poor, very conducive to diseases and not easily colonised by biocontrol agents (Hoitink et al., 

2001). In addition, strawberry fruits demand a high nutrient supply as one culture of 

strawberries per ha in soilless cultivation takes up 125 kg N, 18 kg P (or 40 kg P2O5), 160 kg K 

(or 190 kg K2O) and 56 kg Ca (Lieten & Misotten, 1993). The plants are also very susceptible to 

diseases, resulting in 8 to 14 pesticide residues on 500 g of strawberry fruits (2011, veiling 

Haspengouw). The application of biochar or chitin in such cultivation system can thus be a 

good alternative strategy to improve crop productivity and disease resistance of plants. This 

can reduce the application amount of fertilizers and pesticides, whereas the crop productivity 

or crop yield is retained. So far, for this purpose separate biocontrol agents are sometimes 

introduced to soils or substrates for the promotion of plant growth or to increase disease 

resistance. However, many of these microbial strains do not survive in the soil or substrate, or 

cannot establish high densities in the rhizosphere that are necessary to control pathogens 

(Raaijmakers et al., 2009). Therefore it has already been suggested to apply consortia of 

different micro-organism which are complementary or synergistic to have a more effective 
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effect (Bakker et al., 2012). Finding the right micro-organisms in these consortia is however 

difficult and thus chitin and biochar addition can be a good alternative as they change the 

natural rhizosphere community towards plant-beneficial organisms.  

Application of chitin or biochar in substrates can therefore be beneficial in three ways: from 

an economic point of view, an ecological point of view and in terms of human health.  

Economic point of view. The economical benefits of chitin and biochar addition can be 

twofold. First of all, chitin has proven to increase the lettuce yield, while biochar has proven 

to increase the strawberry fruit yield. In case of strawberry this is only seen in nutrient-limiting 

circumstances and effects diminish once fertilizer is added, so in normal strawberry cultivation 

this yield increase may not be seen. Second, both amendments make it possible to reduce the 

amount of fertilizer and pesticides applied in agri- and horticulture, which reduces the 

purchase costs of both products. In return, biochar and chitin need to be bought by the farmer. 

To compare the costs and benefits, we can take the strawberry cultivation as an example. In 

general, around € 4,500 euro per ha of pesticides is bought for strawberry cultivation (VILT, 

2013). Typically, three plants per m2 are planted (GFActueel, 2005), which result in a pesticide 

cost of € 0.15 per strawberry plant. In addition, organic fertilizer for strawberries can be 

bought at a price of € 6.80 per 1.5 kg, which can be applied for 75 plants (www.FransAgro.be). 

This results in a mean cost of  € 0.091 per strawberry plants. Based on these prices, the cost 

of fertilization and pesticide application of a strawberry plant is estimated on € 0.24. This is 

off course a rough estimation and prices can differ by soil/substrate type, weather 

circumstances, purchase amount, etc.  

In comparison, the cost of chitin is dependent on the purity of the product. The purchase cost 

of a relatively pure product obtained by chemical extraction is estimated at € 12 per kg 

(Roberts, 2008). Application of 2% chitin is comparable to a dose of 30 g of chitin per plant 

(based on the bioassay of Chapter 4), which estimates the cost on € 0.366 per plant. In 

contrast, the estimated cost of pig manure biochar is € 394 per ton (Kuppens et al., 2015). For 

a 3% biochar concentration, we added 54 g of biochar, which results in an estimated cost of € 

0.021 per plant. Based on these estimations, application of chitin will be more expensive 

compared to fertilizer and pesticide application, while biochar application will reduce costs. 

This is however only an very rough estimation  towards the economic consequences and these 

estimations are based on only a few prices. Also in terms of chitin production, this is calculated 

for chemical-extracted chitin and costs can be severely reduced if a less-pure form retrieved 
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from crab shells could be used. In addition, different biochars can be applied, each with its 

own purchase cost. Also the optimal application concentration of biochar and chitin can 

change according to soil and plant type, the type of biochar and the purity of the chitin. 

Therefore, several market studies should be done before a general conclusion can be made.  

Ecological point of view: The use of pesticides and fertilizers affects the environment in 

several ways. Several implications of pesticide use have been reported such as loss in species 

diversity, honey bee mortality, reduction of nitrogen fixation in soil and substrates, and even 

bird and fish kills through the spread of pesticides through the food chain and contamination 

of aquatic systems (Zacharia, 2011). Also some fertilizers may contain toxic substances that 

can spread through the environment through erosion and the groundwater (UNEP, 1998). 

Reduction of fertilizers and pesticides in agri- and horticulture through the use of biochar or 

chitin will thus be beneficial for the soil and aquatic environment.  

Human health. In Chapter 4, a direct correlation between the survival of the human pathogen 

S. enterica and chitin application has been shown. Leafy vegetables such as lettuce are 

considered as high risk food, as various E. coli and S. enterica outbreaks have been related to 

the consumption of these vegetables (e.g. Ward et al., 2002; Friesema et al., 2008). 

Considering food safety, chitin can thus be a promising soil or substrate amendment. In 

addition, application of pesticides in agriculture is accompanied with public health effects. On 

strawberry, pesticides are sprayed with a risk for residues on the fruits. Through strawberry 

consumption, these pesticides residues can thus be taken up in the human body (Zacharia, 

2011). These chemicals will bio-accumulate in the body over time and can result in mild skin 

irritation and birth defects to even tumours, genetic changes and blood and nerve disorders 

after a long-term exposure (Miller et al., 2004). Therefore, a reduction in pesticide application 

through the application of biochar can be beneficial regarding human health. Also for chitin, 

several studies have shown beneficial effects in terms of plant defense against plant 

pathogens, (Cretoiu et al., 2013; Postma and Schilder, 2015), which may also results in a 

reduced use of pesticides.
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7.3 THE PLASTISPHERE: PLASTIC AS A SUBSTRATE FOR MICROBIAL ATTACHMENT   

In 2014, Osborn and Stojkovic (2014) reviewed the knowledge concerning microbial 

colonization of plastic debris in the marine environment. They concluded that five major 

research questions and challenges regarding “the plastisphere” should get attention (Figure 

7.5). In this part of the discussion, the research described in Chapters 5 and 6 concerning “the 

plastisphere” will be discussed in relation to these five research questions and how the output 

of this thesis can contribute in providing an answer to these questions. These inquiries can be 

divided in two topics: items influencing the plastic microbial colonization (I, II and III) and 

ecological consequences of plastic microbial colonization (III, IV, V) (Figure 7.5). 

 

Figure 7.5 Five major research questions concerning the microbial community on marine plastic debris 
according to Osborn and Stojkovic (2014). These questions can be divided in two main topics: (1) external 
influences capable of changing the microbial community composition; and (2) consequences on the environment 
and animal and human health of the microbial colonization of plastic debris. 

I. Do plastic surfaces select specifically for particular microbial species and/or 

alternatively, are plastic surfaces just primarily a convenient substrate for colonization? 

In 2013, Zettler et al. have shown differences in bacterial community composition between 

floating plastic litter collected in the North Atlantic and seawater. This conclusion is confirmed 

and strengthened by the results of this thesis. The bacterial community of plastic debris 

collected in the North Sea, both by random sampling (Chapter 5) and during a controlled 

exposure experiment (Chapter 6), is markedly different from seawater and sediment bacterial 
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communities. In addition, the fungal community of plastic debris was studied under controlled 

conditions, which display a significantly different composition compared to sediment and 

seawater communities (Chapter 6).  

Interestingly, a high variation in composition of the microbial communities of randomly 

sampled plastics in the North Sea was observed (Chapter 5). The microbial communities on 

plastic were even so diverse that it was hard to constitute a “core” microbiome could be 

constituted on OTU level, comprising organisms with a high affinity for plastics or substrates 

in general. In this thesis, three aspects have been proposed that potentially drive the bacterial 

colonization and explain the observed microbial variability on marine plastic debris (Chapter 

5): environmental-related physicochemical properties, plastic-related properties and 

differences in microbial biofilm formation stages between plastic items.  

First, differences in physicochemical properties of the environment (seawater, sediment), 

dependent of the location and time of sampling, are correlated with changes in bacterial 

community composition (Chapter 5). An effect of sampling location was especially observed 

for plastic debris sampled near the harbour of Zeebrugge. The bacterial communities of these 

plastic samples were quite similar. In contrast, compared to plastic debris sampled at other 

locations, a high diversity was observed. Based on the physicochemical properties of the 

environments, two explanations can be given. First, the seawater of the Zeebrugge region has 

a lower seawater salinity as a result of the influx of freshwater from the Rhine/Meuse and 

Scheldt Estuary (Lacroix et al., 2004). Second, in marine environments, the median grain size 

of the sediment and factors such as phytoplankton blooms, amount of suspended organic 

material and marine snow, determine the turbidity. In coastal areas, such as the harbour of 

Zeebrugge, turbidity is high due to a small median grain size and a high level of dredged 

material, which makes these sediments more susceptible to environmental pollution (De 

Witte et al., 2014; Gauquie et al., 2015). Both the lower salinity and higher susceptibility of 

environmental pollution, linked with the location the plastic was sampled, is thus probably 

linked to a difference in microbial community composition of plastic debris compared to other 

regions. Other studies confirm that geographical location, is one of the major determinants of 

the bacterial community composition of marine plastic debris (Eich et al., 2015; 

Oberbeckmann et al., 2016). This is also confirmed by the comparison of the plastics sampled 

at the North Sea compared to those of the Pacific and Atlantic, where differences in microbial 
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community composition are seen between plastics sampled at the different locations (Amaral-

Zettler et al., 2015b).  

Second, differences in physicochemical factors of plastic can influence the bacterial 

community (Chapter 5). In our study, we investigated if polymer type, plastic shape and/or 

plastic colour is correlated with a change in bacterial community. Previous studies (Zettler et 

al., 2013; Hoellein et al., 2014) showed that polymer type affect the bacterial profile of plastic 

debris, which could not be studied here due to insufficient sampling. However, we still 

predicted that colour or adsorbed chemicals can affect the bacterial community composition 

of plastic. The relationship of the adsorbed chemicals and bacterial community profiling will 

however be quite complex, as it has been shown previously that in the North Sea, more than 

250 different chemical compounds can be found on plastic debris (Gauquie et al., 2015).  

Third, variation in biofilm formation stages may explain part of the variation in plastic debris 

bacterial communities (Chapter 5). To confirm this observation, a controlled exposure 

experiment was done in which PE samples are exposed to the North Sea for a long-term period 

on two fixed locations: the harbour of Ostend and offshore (Chapter 6). At the harbour, the 

bacterial community of plastics showed progressive stages of biofilm formation. In contrast, 

this was not seen for the plastics sampled offshore, which represent the “natural 

environment” and are thus related to the random sampled plastics collected in Chapter 5. This 

suggests that in an offshore condition, biofilm formation is either repeatedly reset, 

permanently kept at an early stage or occurs much slower compared to the harbour 

environment. This retardation in biofilm formation could be due to an external mechanical 

force such as sand carried by currents. Based on these observations, we assume that 

differences in biofilm formation stages can explain variation in bacterial communities between 

plastic debris in specific environments, e.g. the harbour of Ostend. In offshore environments, 

this temporal profile is however not observed. To be sure this effect is not a retardation of 

biofilm formation, a study should be performed over a longer time frame.  

Based on these observations, the conclusion can be made that the microbial community of 

plastic debris in a marine environment selects for particular microbial species and can be 

described as a new microbial habitat, referred to as “the plastisphere”.  
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II. How does the structure and function of plastisphere microbial communities change 

during transport from terrestrial environments, via freshwater, into marine waters 

and additionally into benthic environments? 

Based on the “transport” history, the plastic debris used for microbial community profiling in 

Part II can be divided in three main groups. First, the resin pellets sampled at the Spinoladijk 

probably travelled from a marine environment (accidental losses by transport; North Sea) to 

an intertidal environment with influences of both aquatic and terrestrial environments 

(beach). Second, the travel history of plastic debris sampled at five locations in the North Sea 

(Chapter 5) in March and August is unknown. These samples can both be derived from a land-

based or ocean-based source, could have travelled through rivers to the ocean and/or could 

be translocated already a long time in the marine environment. Third, the plastics sampled in 

the exposure experiment (Chapter 6) were “sterile” when entering the marine environment 

and thus were only influenced by the marine environment at the specific location (harbour, 

offshore). Therefore, they do not have a travel history.  

After manufacturing, resin pellets are transported to a converting facility where the plastic is 

compounded and processed into useful products. During the transport of these pellets, a 

potential for accidental losses is always present due to mishandling of cargo or accidental spills 

from ships. These losses result in the appearance of resin pellets in freshwater and marine 

habitats, and is one of the major routes of plastic pollution in aquatic environments. 

Eventually, these resin pellets will drift ashore and end up on beaches (GESAMP, 2016). The 

resin pellets sampled at the Spinoladijk (beach in Ostend) have probably followed a similar 

route. The bacterial community assemblage of these resin pellets was particularly different 

from the marine plastic litter samples collected in the North Sea (Chapter 5). The predominant 

groups of marine plastic litter samples, Proteobacteria and Bacteroidetes, were also found on 

the resin pellets, although they were less abundant, indicating marine influences on the 

bacterial community composition. However, a high abundance of Actinobacteria dominated 

the resin pellets, a phylum commonly found in coastal environments (Elifantz et al., 2013) and 

barely detected on the plastic debris samples retrieved from the Belgian part of the North Sea.  

The travel and exposure history of the plastic debris sampled in the North Sea in Chapter 5 is 

not known. The bacterial community of these plastics mainly consisted of bacterial families 
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found in the seawater or sediment. However, some particular groups, e.g. Vibrionaceae and 

Pseudoalteromonadaceae, were detected on plastics and not found in seawater and 

sediment, indicating that the surrounding environment did not serve as a source for these 

bacterial groups. In comparison, in an exposure experiment in the North Sea (Chapter 6) 

microbe-free plastics were brought in the marine environment on a specific location and were 

not moved until collection for microbial biofilm determination. The bacterial community 

members found on these plastics were also detected in either the surrounding seawater or 

sediment. Based on these observations, it seems that the randomly sampled plastics acquired 

bacterial communities originating from a different environment, which could be either land-

based or marine-based. Therefore, we expect that if the affinity for the plastic material is high 

enough, micro-organisms can stay attached on the plastic debris while travelling through the 

marine environment. Given that those “random sampled” plastics are “free-moving”, it is 

possible that they originate from a different region, and that plastic debris can act as a 

transport vector to transfer species through environments. 

To conclude, we hypothesize that based on our observations, part of the microbial 

composition of plastic debris can change during transport. However to know in which extend 

this changes, another experiment should be set up in which microbial communities of plastics 

are studied during transport. A major fraction of plastics is transferred from rivers and 

estuaries to the marine environment (Li et al., 2016). Therefore, in terms of the Belgian part 

of the North Sea it would be interesting to study the microbial communities of plastics from 

the Scheldt estuary travelling to the North Sea.  

III. How does microbial biofilm formation drive reductions in plastic buoyancy leading to 

plastic transport to the deeper ocean and into sediments?  

A recent study in False Bay (South Africa) has shown that biofouling of floating PE samples is 

sufficient to let the plastics sink to the seafloor, within a period of 17 to 66 days (Fazey and 

Ryan, 2016). Ye and Andrady (1991) hypothesized that most plastic materials will foul 

sufficiently to sink in a relatively short period of exposure (7-9 weeks). The sinking rate 

depends on plastic size, with smaller plastics sinking quicker to the seafloor compared to 

bigger pieces (Fazey and Ryan, 2016). In our study, we only determined microbial biofilm 

formation on plastics at the seafloor either in a “natural” environment (Chapter 5) or a 

controlled exposure experiment (Chapter 6). The plastics in the controlled experiment were 
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fixed at the seafloor because they were embedded in a construction. The “randomly” sampled 

plastics (Chapter 5) however, were sampled at the seafloor under “natural” conditions. Most 

of the sampled plastic debris was PE. The density of PE is estimated at 970 kg m-3, whereas 

those of seawater is estimated at 1027 kg m-3 at 10 °C (www.soortgelijkgewicht.com). Under 

normal conditions, the plastics sampled in Chapter 5 should thus be floating and not be found 

on the seafloor. This translocation can be due to the appearance of a microbial biofilm, 

however also other factors such as exposure to sunlight and sorption of organic pollutants to 

the plastic surface are known to reduce plastic buoyancy (Gewert et al., 2015). In addition, we 

showed that the bacterial community of these plastics resembled those of the controlled 

experiment, where biofilm formation seemed to be hampered. It could also be however, that 

an initial biofilm was present on these plastics, but due to external forces such as tides and 

currents, resulting in scraping due to sand emulsion, this biofilm has been removed. More 

research concerning the ability of microbial biofilm in terms of reduction of plastic buoyancy 

is therefore necessary and should be tested for several regions and plastic types to determine 

the relationship between fouling rates and plastic sinking rates (Fazey and Ryan, 2016). 

IV. Does microbial degradation of plastic and of adsorbed co-pollutants occur in marine 

environments and if so over what timescale?  

One of the main reasons to study microbial communities on plastic debris in the marine 

environment is to identify and isolate plastic degrading micro-organisms. The primarily 

studied polymer in this PhD, PE, is hard to degrade and expected to persist for centuries in the 

marine environment (Kiessling et al., 2015). So far, there is no hard evidence for PE 

biodegradation and only a few marine bacterial species have been proposed as potential PE 

degraders: Arthrobacter sp. and Pseudomonas sp. isolated from high-density PE debris in the 

Gulf of Mannar; and Kocuria palustris, Bacillus pumilis and Bacillus subtilis species isolated 

from low-density PE debris originating from the Arabian Sea (Balasubramanian et al., 2010; 

Harshvardhan and Bhavanath, 2013). In addition, several bacterial species in soil are described 

that have potential for PE degradation (Restrepo-Flórez et al., 2014). Although biodegradation 

cannot be proven using amplicon sequencing, a taxonomic screening for these organisms 

based on the V3-V4 16S rRNA gene region can be done. For both studies described in Chapters 

5 and 6 however, none of these previous identified marine bacterial PE degraders can be 

detected.  
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Previously reported studies making use of HTS techniques to characterize the microbial 

community of plastics, mainly focus on the bacterial community composition (Zettler et al., 

2013; Oberbeckmann et al., 2016). In soil environments however, it has been shown that 

several fungal species have potential to degrade PE (Restrep-Flórez et al., 2014). In addition it 

was recently shown that also a marine fungus, Zalerion maritimum, has the potential to 

actively degrade PE (Paço et al., 2017). Therefore, we hypothesized that to maximize the 

chance of identifying PE degrading micro-organisms in a marine environment, the fungal 

community of plastic debris should be studied in parallel with the bacterial community. In this 

PhD study, the fungal community composition of plastic debris in a marine environment is 

studied for the first time by sequencing the ITS2 variable region (Chapter 6). Based on 

taxonomic classification, we identified three fungal OTUs representing previously identified 

PE degraders (Restrepo-Flórez et al., 2014): Cladosporium cladosporioides, Fusarium redolens 

and Mortierella alpine. However it should be considered that phylogeny based on rRNA gene 

sequences is not necessarily linked to biodegradation potentials and strains should be isolated 

and tested in PE biodegradation assays to further verify biodegradation activity (see below).  

Instead of looking to the degradation of the plastic polymer, one could also be interested in 

the degradation of adsorbed co-pollutants as it has already been shown that more than 250 

different chemical compounds can be adsorbed on plastic debris (Gauquie et al., 2015). In 

Chapter 5, one species of the Mycobacteriaceae, Mycobacterium fredriksberegense, is highly 

abundant on yellow and blue coloured resin pellets, whereas it is barely detected on other 

pellets and plastics. M. frederiksbergense is typically known for its degrading capacity of 

diverse polycyclic aromatic hydrocarbons, like anthracene and anthraquinone derivates 

(Willumsen et al., 2001; Wick et al., 2003). Anthraquinone is typically used as precursor for 

dye synthesis and used for colouring resin pellets, which suggests the presence of anthracene 

derivates on the blue and yellow beach pellets (Bien et al., 2000; US patents 3441536, 

6593483, 6635350). This can be an explanation for the high abundance of M. 

frederiksbergense on coloured resin pellets while the taxon is almost absent on other plastic 

debris sampled in the North Sea and uncoloured resin pellets. This not only suggest that 

presence of dyes, or even adsorbed chemicals or pollutants can influence the colonization of 

plastic debris, but also indicates that adsorbed co-pollutants can be degraded by micro-

organisms.  
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To conclude, no biodegradation of plastics nor adsorbed co-pollutants was studied in this PhD 

study, but several assumptions are made indicating that degradation can be possible. To prove 

biodegradation of plastic, one can do several experiments of which two are highlighted here:  

(1) Possible biodegraders, either pure cultures or by studying an entire microbial community, 

can be detected through biodegradation assays. Several techniques are available to study 

biodegradation, however most can be only used in in vitro conditions. ASTM standard test 

methods D6691-09 and D7991-15 can be used to study aerobic biodegradation of plastic 

materials in the seawater column or sediment respectively. For both methods, the amount 

of biogass (CO2) produced during the plastic exposure to the environment will be 

measured and compared with the theoretical amount of CO2 produced in case of total 

conversion of the organic carbon present in the plastic. Another method to actually 

indicate degradation of plastic is by studying enzyme production by microbial strains 

(Yoshida et al., 2016).  

Through the application of Fourier-transformed infrared spectra (FT-IR) the changes in the 

chemical properties of plastic can be measured and formation or disappearance of 

functional groups can be determined (Pometto et al., 1993). In addition, through the use 

of microscopy techniques, such as scanning electron microscopy (SEM), surface changes 

of the polymer can be checked. SEM makes it possible to identify for example microcracks 

made by micro-organisms (Arutchelvi et al., 2007). These techniques however only give an 

indication of the degradation of plastics, while the production of enzymes and CO2 

measurement prove the biodegradation of the plastic.  

(2) Techniques described in (1) are interesting to see if biodegradation occurs. However, if a 

microbial community is used instead of pure cultures, these techniques are not able to 

discriminate between plastic-metabolizing organisms and secondary metabolizers, which 

metabolise compounds provided by the true plastic-consuming organisms. Similar as 

described in 7.2.1, DNA-SIP can be used to detect plastic metabolizers through the 

incorporation of 13C-DNA in their DNA. The major drawback of the technique is however 

that stable isotope labelled material is quite expensive and so far 13C-labelled PE is solely 

available as a powder (http://www.sigmaaldrich.com). Despite these drawbacks, the use 

of this technique can provide information on PE biodegraders and may be used in future 

studies.  
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V. Are plastic surfaces a potential site for accumulation of pathogenic micro-organisms that 

can be ingested by and impact upon marine fauna?  

No specific attention has been paid in this PhD to potential pathogenic micro-organisms on 

plastic debris. However, in accordance to Zettler et al. (2013), we detected several members 

of the Vibrionaceae family, a family known to contain several pathogenic organisms, on plastic 

debris sampled in the North Sea (Chapter 5). In 2016, the presence of potentially pathogenic 

Vibrio sp. on marine microplastics has been confirmed (Kirstein et al., 2016). The large 

quantities of plastic debris released in the marine environment thus provides opportunities 

for the dispersal of pathogens as some species seem to be able to stay attached to the plastic 

debris (see 7.3 section III). This can have several important ecological and animal/human 

health implications. Especially microplastics are easily mistaken as food by animals and taken 

up (Van Cauwenberghe, 2015). Pathogenic organisms adhered on the microplastic can then 

contaminate the marine organism or be transferred to other organisms through the food 

chain. To date, concentrations of these pathogenic agents remain very low at sea and may not 

be relevant in terms of an animal and human risk assessment (GESAMP, 2016). Future studies 

on the presence of pathogenic organisms, the abundance of these organisms and their 

impacts are therefore necessary. 
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