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Abstract. Accurately deciphering periodic variations in pa-
leoclimate proxy signals is essential for cyclostratigraphy.
Classical spectral analysis often relies on methods based on
(fast) Fourier transformation. This technique has no unique
solution separating variations in amplitude and frequency.
This characteristic can make it difficult to correctly inter-
pret a proxy’s power spectrum or to accurately evaluate
simultaneous changes in amplitude and frequency in evo-
lutionary analyses. This drawback is circumvented by us-
ing a polynomial approach to estimate instantaneous am-
plitude and frequency in orbital components. This approach
was proven useful to characterize audio signals (music and
speech), which are non-stationary in nature. Paleoclimate
proxy signals and audio signals share similar dynamics; the
only difference is the frequency relationship between the dif-
ferent components. A harmonic-frequency relationship exists
in audio signals, whereas this relation is non-harmonic in pa-
leoclimate signals. However, this difference is irrelevant for
the problem of separating simultaneous changes in amplitude
and frequency.

Using an approach with overlapping analysis frames,
the model (Astronomical Component Estimation, version 1:
ACE v.1) captures time variations of an orbital component
by modulating a stationary sinusoid centered at its mean fre-
quency, with a single polynomial. Hence, the parameters that
determine the model are the mean frequency of the orbital
component and the polynomial coefficients. The first param-
eter depends on geologic interpretations, whereas the latter
are estimated by means of linear least-squares. As output,
the model provides the orbital component waveform, either

in the depth or time domain. Uncertainty analyses of the
model estimates are performed using Monte Carlo simula-
tions. Furthermore, it allows for a unique decomposition of
the signal into its instantaneous amplitude and frequency.
Frequency modulation patterns reconstruct changes in ac-
cumulation rate, whereas amplitude modulation identifies
eccentricity-modulated precession. The functioning of the
time-variant sinusoidal model is illustrated and validated us-
ing a synthetic insolation signal. The new modeling approach
is tested on two case studies: (1) a Pliocene–Pleistocene ben-
thic δ18O record from Ocean Drilling Program (ODP) Site
846 and (2) a Danian magnetic susceptibility record from the
Contessa Highway section, Gubbio, Italy.

1 Introduction

Variations in solar radiation received by the Earth are
caused by quasi-periodic changes in its astronomical param-
eters: precession, obliquity and eccentricity. These quasi-
periodic oscillations induce climate variations, which are of-
ten recorded in sedimentological archives (Hinnov, 2013).
The periodicities of the different orbital cycles are reason-
ably well-constrained for the last 50 Myr (Berger et al.,
1992; Laskar et al., 2004; 2011a, b; Westerhold et al., 2012;
Waltham, 2015) and over the last 20 years, the application of
astrochronology and cyclostratigraphy to numerous records
throughout the Cenozoic led to significant improvements of
the geological timescale (both in precision and accuracy;
Hinnov and Hilgen, 2012). Moreover, the detection of an as-
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tronomical imprint in sedimentological archives sheds light
on the relative contribution of orbital parameters to climate
variability, and provides hints to which parts of the globe
(tropical vs. high latitudes) dominantly drive global climate
change.

The identification and extraction of the orbital compo-
nents is essential in studies applying the astronomical theory
(Muller and MacDonald, 2000). The interpretation of those
components converts distance series into time series. Various
techniques for distance- and time-series analysis allow for
this quantitative assessment in a sedimentological archive.
Spectral analysis constitutes the foundation of this process
(Hinnov, 2013). A broad range of spectral analysis tech-
niques exists. A periodogram depicts the spectral power of
a signal using discrete (fast) Fourier transformations (FFT).
Thomson (1982) introduced the multi-taper method (MTM)
to overcome some of the limitations of conventional Fourier
transformations. The MTM harmonic analyses are also ap-
plied on moving analysis frames (i.e., moving window ap-
proach) with the aim to localize principal orbital compo-
nents jointly in the time and frequency domain, e.g., through
evolutive harmonic analysis (Meyers et al., 2001; Pälike et
al., 2006; Meyers and Hinnov, 2010). In this study the term
analysis frame is preferred over the term (moving window)
to avoid confusion with the window (or tapering) function
terminology, which is often encountered in signal process-
ing too. Different astrochronological studies rather use mov-
ing analysis frame FFT (e.g., Lourens and Hilgen, 1997;
Martinez et al., 2012, 2015; Yao et al., 2015) or continu-
ous wavelet transform, describing the signal through a scalo-
gram – a bank of user-defined filters with time-varying non-
uniform resolution (e.g., Torrence and Campo, 1998; De
Vleeschouwer et al., 2013).

The aforementioned methods and most other commonly
used in cyclostratigraphy are non-parametric in nature, which
means that no assumption about the origin of the data is
taken into account. Accordingly, they cannot ensure unique
instantaneous amplitude–frequency description of a signal
(Boashash, 1992) and therefore can hamper a correct inter-
pretation of a proxy series, as discussed, e.g., in Meyers et
al. (2001) or Laurin et al. (2016). Hiatuses, noise and changes
in sedimentation rate are additional sources of uncertainty
(e.g., Meyers and Sagemann, 2004; Meyers et al., 2008).

Recently, a parametric method, a.k.a. TimeOpt model, has
been introduced (Meyers, 2015) that combines band-pass fil-
tering, the Hilbert transform and specific signal modeling
to describe the precession-band envelope from stratigraphic
data. The signal model consists of a set of sinusoids with
constant amplitudes plus noise. The model parameter (am-
plitudes) estimates are obtained by linear least-squares re-
gression across a fine grid of sedimentation rates and the one
providing the largest goodness-of-fit is retained. A constraint
of this approach is related to the assumption that sedimenta-
tion rate is constant within the analysis frame – stratigraphic
interval analyzed. For certain cases this might be approxi-

mately true; in a more general scenario, however, such an
assumption will give rise to a model–data mismatch.

This study circumvents this drawback by using a poly-
nomial modeling approach to estimate and extract instanta-
neous amplitude and frequency in orbital components. The
approach has been proven useful to characterize audio sig-
nals (music and speech), which are non-stationary in nature
(Zivanovic and Schoukens, 2011, 2012). Paleoclimate proxy
signals and audio signals share similar dynamics; the only
difference is the frequency relationship between the signal
components. A harmonic-frequency relationship exists in au-
dio signals, whereas this relation is non-harmonic in paleo-
climate signals. By dropping the harmonicity constraint in
the model for audio signals, a proxy signal is conceived as
a collection of non-harmonic sinusoids, whose instantaneous
amplitude and frequency vary over the record. Those vari-
ations are captured by polynomials, whose coefficients de-
scribe the relationship between varying amplitude and fre-
quency of the sinusoids in an analysis frame. The main ben-
efit of this approach is that short-term variations in sedimen-
tation rate can be captured by the proposed method, as the
signal model allows for instantaneous frequency change in
the analysis frame. Moreover, for each data sample the sed-
imentation rate can be estimated leading to the concept of
instantaneous sedimentation rate. The signal model identifi-
cation (parameter estimation) boils down to solving a system
of linear equations. Additionally, a measure for the uncer-
tainty of the model estimates is given by means of Monte
Carlo simulations.

After introducing the reader to the ACE v.1 model,
distance-series analysis on a modified insolation data for
the last 6 Myr as modeled by Laskar et al. (2004) is car-
ried out. Thereafter, a first case study using an un-tuned
Pliocene–Pleistocene benthic oxygen isotope (δ18O) record
from Ocean Drilling Program (ODP) Site 846 (Mix et al.,
1995; Shackleton et al., 1995) is tested. A second case study
deals with a Danian magnetic susceptibility record from the
pelagic carbonate Contessa Highway section in Gubbio, Italy
(Sinnesael et al., 2016).

2 Methods

2.1 Extraction of orbital waveforms

Let us consider a geologic succession that is sampled uni-
formly in the spatial domain at depths z1, z2 . . . with z0 be-
ing the sampling interval. In an N -point measurement anal-
ysis frame, the stratigraphic record y(zn) can be represented
analytically as a sum of K sinusoids – principal astronomi-
cal forcing components sk(zn) embedded in the stratigraphic
data – plus stochastic perturbation e(zn):

y (zn)=
∑K

k=1
sk (zn)+ e (zn) . (1)
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The components responsible for astronomically forced inso-
lation are Earth’s orbital eccentricity, obliquity and preces-
sion, whilst the perturbation accounts for climatic and strati-
graphic noise (e.g., Meyers et al., 2008). The sinusoids sk(zn)
are typically non-stationary, exhibiting some variations in the
instantaneous amplitude and phase within the analysis frame:

y (zn)=
∑K

k=1
Ak (zn)cos

[
2πfkzn+φk (zn)

]
+ e (zn) , (2)

where fk are the average spatial frequencies in cycle m−1.
The instantaneous amplitude (envelope) Ak(zn) originates in
the solar system dynamics. The instantaneous phase has two
components: (i) the linear phase term 2πfkzn determined
by the corresponding orbital cycle, and (ii) phase fluctuation
term φk (zn), chiefly due to climate-sensitive sedimentation.
The goal is to estimate sk(zn), k = 1 . . . K from the noisy
record y(zn).

Strictly speaking, the model as described in Eq. (2) cannot
be solved because more parameters are present (unknowns,
i.e., Ak(zn) and φk (zn)) than there are measurement points:
assuming the frequencies fk a priori known, there are 2KN
parameters for N measurements. Although this constraint is
too restrictive for the purpose of the present study, it turns
out that it can be relaxed by using a concept formalized in
the following assumption:

Assumption 1: in absence of unconformities, Ak(z) and
φk (z) are differentiable functions of z throughout the record.

Differentiability implies continuity and this holds true for
records generated by the time-continuous forcing and depo-
sition patterns in undisturbed areas. The principal advantage
of this assumption is that Eq. (2) can be reformulated such
to make the signal model identifiable. By using the identity
cos(γ+δ)= cos γ cos δ−sinγ sin δ, Eq. (2) can be rewritten
as follows:

y (zn)=
∑K

k=1
ak (zn)sin(2πfkzn)

+ bk (zn)cos(2πfkzn)+ e (zn) , (3)

with

ak (zn)=−Ak (zn)sin(φk (zn)) , (4)
bk (zn)= Ak (zn)cos(φk (zn)) . (5)

Although Eqs. (2) and (3)–(5) are formally identical, they de-
scribe the dynamics of the orbital components in a very dif-
ferent way. The model (Eq. 2) is highly nonlinear in the sense
that the cosine is non-stationary in both amplitude and fre-
quency. The model Eqs. (3)–(5), however, is non-stationary
only in amplitude (i.e., ak(zn) and bk(zn)), with linear argu-
ment in the sine and cosine terms. According to Assump-
tion 1 ak(z) and bk(z) are continuous functions in z. Accord-
ingly, they can be approximated by spatial polynomials of

order P evaluated at zn:

αk (zn)= ak,0+ ak,1zn+ ·· ·+ ak,P z
P
n ≈ ak (zn) , (6)

βk (zn)= bk,0+ bk,1zn+ ·· ·+ bk,P z
P
n ≈ bk (zn) . (7)

The “approximately equal” symbol in the last expressions ac-
counts for possible errors in the polynomial approximation –
modeling errors. By inserting Eqs. (6)–(7) into Eq. (3) the
following equation is obtained:

y (zn)=

K∑
k=1

(
ak,0+ ·· ·+ ak,P z

P
n

)
sin(2πfkzn)

+

(
bk,0+ ·· ·+ bk,P z

P
n

)
cos(2πfkzn)+ ε (zn) . (8)

According to the last expression, orbital components can be
modeled as a stationary sine–cosine fk – basis modulated
by polynomials. The benefits of such a model for analyzing
stratigraphic data are

1. Both instantaneous amplitude and frequency are simul-
taneously and compactly characterized by a small num-
ber of polynomial coefficients.

2. The number of parameters to estimate is 2K(P + 1),
which can be kept smaller than N by either increasing
the number of measurements or reducing the number of
components to be estimated.

3. The model is linear-in-parameters and can easily be es-
timated by means of the linear least-squares procedure,
outlined in the Appendix to this paper.

Once the model parameters (polynomial coefficients in
Eq. 8) are estimated, the orbital component waveforms can
be extracted from the stratigraphic data in the following way:

ŝ (zn)=
∑K

k=1

(
âk,0+ ·· ·+ âk,P z

P
n

)
sin(2πfkzn)

+

(
b̂k,0+ ·· ·+ b̂k,P z

P
n

)
cos(2πfkzn) , (9)

where the symbol ŝtands for estimate. The principal blocks
of the present algorithm are shown in Fig. 1.

2.2 Sedimentation rate estimation and time axis tuning

Once the estimate of the instantaneous frequency is provided,
the sedimentation rate is obtained in a straightforward man-
ner. In what follows, a two-step algorithm is described based
on the concept of amplitude-phase decomposition in non-
stationary signals (Picinbono, 1997).
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Figure 1. (a) Major steps in cyclostratigraphic signal processing.
(b) The estimation step – a focus of the present study.

2.2.1 Step 1 – instantaneous phase estimation

By combining Eqs. (3)–(5) we obtain

Ak (zn)=

√
a2
k (zn)+ b

2
k (zn), (10)

φk (zn)=−a tan
(
ak (zn)

bk (zn)

)
,k = 1· · ·K. (11)

The former (Ak(z)) is the true instantaneous amplitude whilst
the latter φk (zn) is the true instantaneous phase fluctuation of
the orbital components. The estimated instantaneous phase is
readily obtained by means of the previously estimated signal
model:

φ̂k (zn)=−a tan
(
α̂k (zn)

β̂k (zn)

)
,k = 1· · ·K. (12)

2.2.2 Step 2 – instantaneous frequency estimation

By definition, the instantaneous frequency is the time deriva-
tive of the instantaneous phase (Cohen, 1995):

f̂k (zn)= fk +
1

2π
dφ̂k (z)

dz

∣∣∣∣∣
z=zn

= fk +

dα̂k(z)
dz β̂k (z)−

dβ̂k(z)
dz α̂k (z)

Â2
k (z)

∣∣∣∣∣∣
z=zn

,

k = 1· · ·K. (13)

Assuming that the sinusoids in the stratigraphic signal model
are correctly associated with the astronomical forcing com-
ponents, the sedimentation rate rk (zn) can be estimated for
each component:

rk (zn)=
Fk
(
kyr−1)

f̂k
(
cm−1

) ,k = 1· · ·K, (14)

with Fk
(
kyr−1) being the known nominal astronomical forc-

ing temporal frequencies. The mean sedimentation rate is ob-
tained by averaging rk (zn) over k:

r (zn)=
1
K

∑K

k=1
rk (zn) . (15)

Recalling the definition of sedimentation rate:

r (z)=
dz
dt

(16)

the spatial–temporal conversion is carried out by reformulat-
ing Eq. (16) as a function of space and then integrating it
over space. Finally, the integrals are approximated by means
of partial sums:

tn =

∫ z

0

dz
r (z)
≈ z0

∑n

j=1

(
r
(
zj
))−1

,n= 1· · ·N. (17)

The last expression gives the time points that mitigate the dis-
tortion of the spatial axis due to varying sedimentation rate.

2.3 Practical considerations

In the present section, the choice of analysis parameters
involved with stratigraphic signal model estimation is dis-
cussed.

2.3.1 Size of the analysis frame – N

This data-dependent issue is dealt with in numerous areas of
signal processing and, to the best of our knowledge, there is
no analytical solution. Most approaches are heuristic; how-
ever, they are usually quite effective as long as there is some
a priori knowledge about the problem at hand. Depending on
the data record, a larger or shorter frame size might be ap-
propriate but no frame size is adequate for all data.

Basically, two constraints must be considered when choos-
ing the number of measurement points for analysis. The
lower bound on N is settled by the frequency resolution (i.e.,
z0
N
) needed either to resolve closely spaced sinusoidal com-

ponents (e.g., the different precession components) or to cap-
ture at least one period of the slowest signal component, e.g.,
long-term eccentricity (i.e., Rayleigh frequency). This piece
of information is usually available beforehand.

The upper bound on N depends on the speed of fluctua-
tions of the instantaneous amplitude and frequency along the
record. Excepting for some special cases, this is something
that we do not know a priori. Accordingly, a reasonable de-
cision is to restrict the choice of N to the lower bound.

2.3.2 Selection of the components frequencies – fk

According to Eq. (2) fk are defined as the mean sinusoidal
frequencies in the analysis frame, i.e., the instantaneous fre-
quency fluctuates around fk . In other words, an orbital com-
ponent behaves as a narrow-band signal, whose bandwidth is
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much smaller than the Nyquist frequency and most of the
spectral energy is clustered around fk . Assuming that the
range of the overall frequency variation is known for a given
orbital component – which is user defined in the present ap-
proach – the mean frequency is associated with the strongest
peak in the FFT of the signal in the frame. Although such
a simple FFT-based peak-picking algorithm approach might
introduce certain bias in the fk estimate, it is readily com-
pensated by the flexibility of the proposed signal model (Fer-
nando et al., 2004).

2.3.3 Degree of polynomials – P

This parameter is responsible for capturing variations in
the terms Ak (zn)sin(φk (zn)) and Ak (zn)cos(φk (zn)) in
Eqs. (4) and (5), respectively. For certain proxy records (up
to approximately 50 Ma) variations in the instantaneous am-
plitude might be inferred from the theoretical model of an
orbital component (e.g., numerical models of Laskar et al.,
2004, 2011a). However, the instantaneous phase fluctuations
are in general unknown beforehand – at best the total band-
width of an orbital component might be known (Laurin et al.,
2016). Accordingly, there is not an analytical way to deter-
mine P and once again it is necessary to resort to heuristics.

What is known is that the relationship N–P is not ar-
bitrary; broadly speaking, there is a direct dependence in
the sense that larger N requires larger P and vice versa
(McAulay and Quatieri, 1986). The reason is that smaller
N imposes a quasi-stationarity constraint on the signal – an
orbital component behaves almost as a stationary sinusoid
with only slightly changing instantaneous amplitude and fre-
quency. In accordance, first-order polynomial approximation
P = 1 is usually enough to properly address the modeling
requirements in Eq. (9). Larger N implies possibly stronger
variations of the underlying sinusoids – the quasi-stationarity
assumption has to be dropped and thus larger P is needed.
Bearing in mind the aforementioned discussion on the size
of analysis frame, Pε [1–3] is a reasonable choice for most
proxy signals.

2.4 Uncertainty analysis

Providing reliable uncertainty bounds in this estimation ap-
proach is challenging. Our model is obtained by a weighted
least-squares procedure, resulting at the same time in the
estimated parameter values and an estimate of the covari-
ance matrix. However, the covariance matrix is only valid
if (i) there are no model errors or (ii) there is no exogenous
noise in the system that is also passing through a nonlinear
operation. Both elements are shortly discussed below.

Model errors: it is hard to avoid model errors on geologi-
cal data. These model errors come from the polynomial ap-
proximations Eqs. (6)–(7). Accordingly, larger uncertainties
(in this study expressed as standard deviations) are due to
a low signal-to-noise ratio and/or fast instantaneous ampli-

tude/frequency changes in the analysis frame. It turns out that
model errors will increase the uncertainty on the estimates.
There are two reasons for that: the model errors will increase
the level of the residuals, and the residuals are no longer in-
dependent of the input (actually, they are uncorrelated).

Noise passing through the nonlinearity: if the disturbing
noise is passing through the nonlinearity, the observed noise
disturbances at the output of the system are no longer inde-
pendent of the input. In that case all the classical methods
to generate uncertainty bounds fail because these assume ex-
plicitly that the disturbing noise is independent of the input.
In that case alternatives need to be developed to provide re-
liable uncertainty bounds, but to the best knowledge of the
authors, such methods are not available yet. For that reason,
the covariance matrix obtained from the estimation can be
used as a first indication, but it should be used with care.

To provide a measure of uncertainty in this study, we use
Monte Carlo simulations (using the covariance matrix) on the
instantaneous frequency and sedimentation rate estimates.
This was done through the following steps. Primary, it is as-
sumed that the model parameters (polynomial coefficients)
are normally distributed correlated random variables charac-
terized by a 2K(P + 1) multivariate normal distribution.

Together with the model parameter estimates θ̂ in an anal-
ysis frame Eq. (A5), the MATLAB® least-squares routine
“lscov” also returns the 2K(P + 1)× 2K(P + 1) symmetric
positive semi-definite covariance matrix S. This matrix con-
tains the parameter variances on its diagonal; the rest of the
elements are parameter covariance’s, which accounts for the
correlation between the parameters.

By means of the MATLAB® routine “normrnd”, a set of
random parameters entries were generated by sampling the
multivariate normal distribution characterized by θ̂ and S.

With these entries the procedure (Eqs. 10–15) was carried
out and the instantaneous frequency and sedimentation rate
estimates in the analysis frame were obtained.

Steps (1)–(3) were run for all the analysis frames along the
data record and the estimates were recombined by means of
the overlap–add strategy.

Steps (1)–(4) were run 100 times and the depth-variant
standard deviations on the instantaneous frequency and sedi-
mentation rate were obtained. The figures in this manuscript
and the provided MATLAB® routines in the Supplement re-
port by default 1 standard deviation (1σ).

The outcome of this process provides a hint on the size of
the estimate uncertainties and equally on the spatial distribu-
tion of the uncertainty. As explained above, attention has to
be payed to the absolute size of the uncertainties. Intervals
in the analyzed record where the estimations are less reliable
will be visible as peaks in the uncertainties, which is valuable
information for interpreting and comparing the results of the
analysis as a whole. Also the loss in power of an orbital pe-
riod compared to the noise level causes peaks in uncertainty.
This is because the ACE v.1 model always estimates a signal

www.geosci-model-dev.net/9/3517/2016/ Geosci. Model Dev., 9, 3517–3531, 2016
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in every analysis frame, even though the power of a signal
does not stand out from the noise level.

3 Results and discussion

3.1 Synthetic insolation signal

To illustrate the proposed ACE v.1 model, a case study is
presented on a modified insolation signal. As we are dealing
with a synthetic case study aiming to introduce the mech-
anisms of the ACE v.1 model, we do not yet implement
the uncertainty analysis. The basis of the analyzed signal is
the classical 65◦ N summer (21 June) insolation curve (Mi-
lankovitch, 1941) for the last 6 Myr, as modeled by Laskar
et al. (2004) (Fig. 2a). The periodogram shows the different
obliquity and precession-related frequencies, which are the
components determining the changes in insolation (Fig. 2b).
Subsequently, white and red noise are added to the original
signal and made the conversion from the time domain to-
wards the distance domain mimicking a changing sedimen-
tation rate (SR) (Fig. 1c). The white noise is normally dis-
tributed (Gaussian) with the standard deviation providing the
signal-to-noise ratio of 0.09. The red noise is generated as a
first-order autoregressive process with the correlation factor
equal to 0.999 giving rise to the signal-to-noise ratio of 0.003.
To mimic a changing sedimentation rate, the time series is
converted into distance series. The original time series has
one sample 1 kyr−1. Initially, a constant SR of 2 cm kyr−1 is
assumed to make a first conversion to the depth domain. The
artificial changing SR is constructed by using the second de-
gree polynomial shown in Fig. 2h–i. In practice, the input sig-
nal is interpolated, which increases the sampling rate much
above the Nyquist frequency; next, the signal is resampled
over the grid established by the SR.

The periodogram of the detrended signal is given in
Fig. 2d, while its spectrogram is depicted in Fig. 2e. The
level of white noise in combination with the changing SR
has made the identification of the main ∼ 41 kyr obliquity
(∼ 1.2 cycle m−1) peak less obvious. The precession-related
frequencies (∼ 2–2.8 cycle m−1) are still clearly present;
however, the merging of the ∼ 22 and ∼ 24 kyr periods into
a single ∼ 23 kyr precession component and the resulting
amplitude modulation must be noticed (Fig. 2e). The high-
power peak around the 0.2 cycle m−1 frequency is the result
of the introduced red noise.

With the user’s a priori knowledge, certain frequen-
cies ranges – bandwidths – in the distance domain
are interpreted as to correspond with the astronomi-
cal frequencies of obliquity and precession: ∼ 41 kyr
obliquity [0.62–1.38] cycle m−1, ∼ 22 and 24 kyr preces-
sion [1.49–2.35] cycle m−1 and ∼ 19 kyr precession [1.75–
2.75] cycle m−1. It must be pointed out that the model does
not deal with the identification of the (orbital) components
but that the components waveforms are simulated. The or-

bital component identification remains with the operator. In
this particular case, the precession bandwidths overlap as a
consequence of the distortion introduced by the artificial SR.
As the characterization of this specific distortion is known
by the users, the overlap for this case study could be dealt
with separately by letting the bandwidths evolve along the
record in function of the defined polynomial related to the
SR change. However, in case a similar argumentation cannot
be ensured for a case study, the use of the model in its current
form is not recommended.

Providing these frequency ranges for this case study and
a frame size of 5 m, the model estimates the three given
components (Fig. 2f). As described in previous section, the
choice of the frame size is a heuristic trade-off between (1)
having at least some periods of your lowest frequency com-
ponent in one frame and (2) being long enough to be able to
separate closely spaced components. In this case, the obliq-
uity period of 41 kyr [∼ 1.15 cycle m−1] is considered as the
lowest frequency to be taken into account. The aim is not to
separate the ∼ 22 and ∼ 24 kyr precession components, but
distinguish the merged ∼ 23 and the single ∼ 19 kyr periods.

From the modeled waveforms, the estimated instantaneous
frequencies are extracted (Fig. 2g). To avoid potential dis-
continuities at the frame edges, the well-known overlap–add
method is used (e.g., Verhelst, 2000). Essentially, overlap-
ping data are summed and afterwards normalized again by
a given weight, which is a function of the number of frame
overlaps for a data point.

Using the a priori knowledge, the frequencies can be con-
verted into SR estimates (Fig. 2h). Taking the average SR
of all three modeled components (Fig. 2i), the distance se-
ries can be transposed into a time series. The periodogram of
the new time series still contains traces of the white and red
noise but is much cleaner than the modified insolation signal
(Fig. 2j).

In summary, it is the user who needs to identify and pro-
vide a bandwidth for each component that is to be modeled
and the size of the analysis frame. The selected bandwidths
are typically based on other available geological constraints,
such as bio- or magnetostratigraphy. This artificial case study
illustrates the good performance of the model in estimating
components, extracting the instantaneous frequencies and
making a successful conversion towards the time domain.
This conversion has been done autonomously by the algo-
rithm for given frequencies that have to be traced. No band-
pass-filtering or tuning to another form of model has been
used. Here, the test started from a time series of insolation
with very well-constrained orbital components. The follow-
ing two case-studies deal with real geological case-studies.

3.2 ODP 846 benthic δ18O record

The stratigraphy and chronology of the Pliocene–Pleistocene
has benefited largely from benthic oxygen isotope records
and its stacks (Lisiecki and Raymo, 2005; Huybers, 2007;
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Figure 2. ACE v.1 analysis for a synthetic insolation signal. (a) 6 Ma insolation for 65◦ N 21 June (W m−2) (Laskar et al., 2004). (b) The
periodogram of the clean insolation signal as plotted in Fig. 2a. (c) To make the conversion from the distance towards the time domain a
constant sedimentation rate of 2 cm kyr−1 is used. Using linear interpolation a non-constant sedimentation rate is mimicked. The changing
sedimentation rates are plotted in Fig. 2h–i. Additional white and red noise are added to the signal as discussed in the text. (d) The peri-
odogram of the modified insolation signal as plotted in Fig. 2c, which is noisier than the original periodogram (Fig. 2b) because of the added
perturbations. (e) The spectrogram of the modified insolation signal. (f) The spectrogram of the three modeled components (41 kyr obliq-
uity, 23 kyr precession and 19 kyr precession) using ACE v.1. (g) Estimated instantaneous frequencies for the three modeled components.
(h) Using the associated astronomical periods of the modeled frequencies, the corresponding sedimentation rate is calculated and compared
with the initial input change in sedimentation rate. (i) Comparison between the initial input change in sedimentation rate and the mean of the
modeled components. (j) Periodogram of time series of the signal where the mean sedimentation rate estimate is used to make the conversion
to the time domain.
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Hilgen et al., 2012). One of the longest and most detailed
records of this sort comes from ODP Site 846 from the
tropical Pacific Ocean (3◦06′ S, 90◦49′W; Mix et al., 1995;
Shackleton et al., 1995). The length of the core is ∼ 206 m,
spanning the last 5.3 Myr and is sampled for benthic δ18O
with an average resolution of 10 cm (∼ 2.5 kyr; Mix et al.,
1995; Shackleton et al., 1995). Spectral analysis has identi-
fied strong ∼ 100 and ∼ 41 kyr periodicities. While the ori-
gin of the 100 kyr cycle in the Pleistocene glacial is the
subject of debate (Imbrie et al., 1993; Muller and MacDon-
ald, 1997; Lisiecki, 2010), the 41 kyr periodicity can be at-
tributed to obliquity. Other studies on ODP 846 alkenone-
derived sea surface temperatures have shed light on the rela-
tive importance of obliquity and precession (high and low lat-
itude) on the climatology of the tropical ocean system (Liu
et al., 2004; Cleaveland and Herbert, 2007; Herbert et al.,
2010). The ODP 846 benthic δ18O record is used in the refer-
ence LR04 Pliocene–Pleistocene benthic stack (Lisiecki and
Raymo, 2005).

This record is selected for a case study as it is well stud-
ied and has an astronomically calibrated age model (LR04),
which allows for the evaluation of the proposed approach.
The raw data are the benthic δ18O depth series (Fig. 3a).
After detrending, the periodogram and spectrogram reveal
elevated spectral power around ∼ 0.3 and ∼ 0.6 cycle m−1

(Fig. 3b, 3c). Using the a priori knowledge of the core, the
first dominant frequency is identified as corresponding with
a 100 kyr periodicity, while the ∼ 0.6 cycle m−1 corresponds
with the 41 kyr obliquity. Figure 3d shows the spectrogram
of the two modeled components. Following a similar reason-
ing as in the previous case study, an analysis frame size of
10 m is utilized. Using the instantaneous frequency estimates
(Fig. 3e), the corresponding evolution of the sedimentation
rate can be estimated (Fig. 3f). As the origin of the 100 kyr
cycle is debatable (Imbrie et al., 1993; Muller and MacDon-
ald, 1997; Lisiecki, 2010), the 41 kyr derived sedimentation
rate is selected and compared with the SR as derived from the
LR04 age model for the ODP 846 core (Fig. 3i). To do so, the
stratigraphic levels are subtracted of subsequent samples and
divided by their age (LR04) difference (Fig. 3i). This sim-
ple operation results in abrupt changes in sedimentation rate,
which cannot be captured by the ACE v.1 model approach.
These abrupt changes originate from the principle that the
LR04 age model is based on a stack, which enhances the
signal-to-noise ratio compared to an analysis on a single core.
Moreover, it is tuned to an ice model that is driven by the
21 June insolation at 65◦ N. Therefore, in this study a 500-
point running average is taken to smooth the results (Fig. 3i).
Only the long-term-averaged trends are captured by our ACE
v.1 estimation approach and not the fine-scaled sedimenta-
tion rates of the original LR04 age model. This is because
(i) the ACE v.1 model in its current form cannot deal with
fast changes in sedimentation rate, (ii) the signal-to-noise ra-
tio of the stacked LR04 age model is superior to the ratio of
a single record and (iii) no other a priori information, other

than that the obliquity band should be in a certain frequency
range, is used in the ACE v.1 analysis, contrary to the LR04
age model where other geological constraints are included. In
the described approach, a frequency range is selected, which
with the user’s a priori knowledge could be associated with
the 41 kyr obliquity [0.47–0.71] cycle m−1 and let the algo-
rithms extract its waveform. The corresponding age model is
then created by using the estimated instantaneous frequency
changes and the association with the 41 kyr obliquity period.

Except for a small difference between 60 and 90 m the
match between the results of the ACE v.1 model and the aver-
aged LR04 age model is close. Remarkably, the interval has
a pronounced elevated uncertainty on its estimation (Fig. 3g
and h). The origin of the mismatch is the lower signal am-
plitude in this interval. Note the elevated signal amplitude
is 70–80 m around the frequency of 0.5 cycle m−1, whereas
the 41 kyr component is mainly around the 0.6 cycle m−1

(Fig. 3c). This feature in the ACE v.1 model suggests a small
drop in sedimentation rate between 70 and 80 m (Fig. 3i),
whereas the LR04 age model suggests a gradual rise in sed-
imentation rate in this interval. This mismatch could be re-
duced by increasing the lower boundary of the selected fre-
quency range for the obliquity component estimation. A sim-
ilar feature on a smaller scale is detectable around level 40–
50 m (Fig. 3g). Between 140 m and the bottom of the core,
there is low power in the 41 kyr frequency range. However,
in contrast to the 60–90 m interval, there are no neighboring
(in the frequency domain) elevated signal amplitudes. The
loss of power in this frequency range at this position trans-
lates into an elevation of the uncertainty on the estimations
for this interval (Fig. 3g and 3h). In general, the compari-
son between the ACE v.1 modeled sedimentation rates and
LR04 sedimentation rates yields satisfactory results, as strati-
graphic intervals where a mismatch exists are red-flagged by
increased uncertainty on the ACE v.1 model. The sign of the
mismatch in sedimentation rates is not consistent throughout
the core, which means that over- and underestimates of sedi-
mentation rates cancel each other out. In this particular case
study, there seems to be an overestimation in total duration
(compared to the LR04 age model) of ∼ 5 %, which is sig-
nificant but not so bad, considering that we simply used the
tracking of the obliquity-related frequency. The periodogram
of the tuned record, based on the 41 kyr derived SR, reveals a
much cleaner signal (Fig. 3j). Using the comparison between
the SR derived in this novel approach and deduced from the
LR04 age model for the ODP 846 record (Fig. 3i), the con-
clusion is that again the algorithm performs well in capturing
the main-averaged trend.

3.3 Danian magnetic susceptibility record

This second case study is related to a Danian magnetic sus-
ceptibility (MS) record from the pelagic carbonate Con-
tessa Highway section, Gubbio, Italy. The Gubbio sections
are well-known for their pioneering studies including plank-
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Figure 3. ACE v.1 analysis for a Pliocene–Pleistocene benthic oxygen isotope record. (a) ODP Site 846 δ18O record (W m−2) (Mix et al.,
1995; Shackleton et al., 1995). (b) The periodogram of the ODP Site 846 δ18O record as plotted in Fig. 2a. (c) The spectrogram of the
ODP Site 846 δ18O record. (d) The spectrogram of the two modeled components (100 kyr periodicity and 41 kyr obliquity) using ACE v.1.
(e) Estimated instantaneous frequencies for the two modeled components. (f) Using the associated (astronomical) periods of the modeled
frequencies, the corresponding sedimentation rate is calculated. (g) The uncertainties on the estimated instantaneous frequencies (1σ). (h) The
uncertainties on the sedimentation rate estimates (1σ). (i) Comparison between the ACE v.1 estimated sedimentation rate and the derived
non-averaged and 500-point-averaged sedimentation rates for ODP Site 846 according to the age model of the LR04 stack (Lisiecki and
Raymo, 2005) and the estimated change in sedimentation rate based on the modeled obliquity component. (j) Periodogram of time series of
the signal where the mean sedimentation rate estimate is used to make the conversion to the time domain.
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tonic biostratigraphy (Luterbacher and Premoli Silva, 1964),
magnetostratigraphy (Arthur and Fischer, 1977) and the
Cretaceous–Palaeogene boundary (Alvarez et al., 1980). The
MS record consists of a total of 1049 samples with a sam-
ple spacing of 1 cm for the lower half of the record and a
sample spacing of 2 cm for the upper half (Sinnesael et al.,
2016). The total length is 14 m and includes a large por-
tion of the Danian including magnetochrons C29r (Paleogene
part) to the top of C27n (Lowrie at al., 1982; Coccioni et
al., 2012a, b). Sinnesael et al. (2016) presented a cyclostrati-
grahic framework for this section, reporting the orbital im-
print in this data set.

Before the actual analysis, anomalous peaks in MS, which
are typically related to volcanic ashes (Fig. 4a), are removed.
Also, the first 1.3 m of the record was excluded from analy-
sis because the MS record is heavily disrupted by the Dan-
C2 hyperthermal event (Coccioni et al., 2010). The peri-
odogram of the detrended signal shows elevated power at
frequencies of 2.3 and 6.0 cycle m−1 (Fig. 4b). With a sedi-
mentation rate estimate derived from bio- and magnetostrati-
graphic constraints from the Danian in Gubbio of 4 m Myr−1

(Coccioni et al., 2012b), these frequencies respectively cor-
respond with the periods of short eccentricity and obliquity.
Because of tidal dissipation, the periodicity of obliquity cy-
cles during the Danian was shorter than today’s ∼ 41 kyr
value. Here, a duration of 39.6 kyr per obliquity cycle is
used as calculated by Berger et al. (1992). Accordingly,
three frequency ranges are traced, which respectively seem
to correspond with an orbital period: short eccentricity [1.78–
2.57] cycle m−1, obliquity [5.13–6.58] cycle m−1 and preces-
sion [8.98–10.98] cycle m−1 (Fig. 4d, e). Except for two in-
tervals (102–104 and 108–110 m), the precessional compo-
nent does not exceed the noise level (Fig. 4c). Nevertheless,
SR is derived using all three astronomical components, all
showing a similar pattern of a more or less stable SR around
4.4 m Myr−1 in the lower part of the section. From 111 m to
the end of the section at 114 m, a transition towards higher
SR (4.9 m Myr−1) occurs. Notice an increase in uncertainty
at this transition (Fig. 4g and h). The final uncertainties on
the SR in this case study (1 standard deviation) stay how-
ever very small, several orders of magnitudes smaller than
in the ODP846 case study. The sedimentation rate estimate
that is based on precession shows a somewhat deviating pat-
tern between 104 and 108 m, corresponding to the interval
where this component only has a minor imprint (Fig. 4c and
e). The average SR is used to transform the distance series
into a time series. The periodogram of the tuned time series
shows a clear obliquity peak and elevated power in the range
of the 100 kyr eccentricity (Fig. 4i). Interestingly, the largest
peak of the new spectrum is close to 405 kyr eccentricity pe-
riod. Moreover, the lower-frequency domain of the spectrum
contains fewer peaks that are unrelated to astronomical forc-
ing. Frequencies in the domain of the precession stay hardly
distinguishable from the noise levels.

In the original publication, Sinnesael et al. (2016) used
a band-pass filter to extract the long eccentricity compo-
nent, assuming a constant average sedimentation rate of
4.3 m Myr−1. Subsequently, this filtered signal was used to
tune the record to the eccentricity solution (Laskar et al.,
2011a). The results reported in this study are thus in agree-
ment with the original interpretation for the part of the sec-
tion before the jump in SR towards a value of∼ 4.9 m Myr−1

(Fig. 4j). However, this slight increase in SR was not reported
by Sinnesael et al. (2016). Interestingly, a similar increase
in sedimentation rate has been described in a cyclostrati-
graphical study of a nearby coeval section in the Bottac-
cione Gorge, also in Gubbio, Italy (Galeotti et al., 2015).
Galeotti et al. (2015) attribute this change to the recov-
ery of the carbonate productivity, which had dropped after
the Cretaceous–Boundary boundary (K–PgB) environmental
changes. Differently, Galeotti et al. (2015) obtain SR lower
than 4 m Myr−1 (up to 2 m Myr−1) for the interval between 1
and 4 m above the K–PgB (Fig. 4j). The first 1.3 m of the
Danian was not taken into account in the analysis on the
Contessa section, because of the perturbation of the DAN-C2
event on the MS signal. However, for the overlapping strati-
graphic levels, using this new modeling approach, there are
no indications for such a significant drop in SR. Also, Sin-
nesael et al. (2016) do not observe a drop in SR in this strati-
graphic interval. The possible presence of slump structures
in the stratigraphic interval above 3–4 m above the K–PgB
in the Bottaccione section could be an explanation for this
different interpretation.

The constraint of the use constant band-pass filter ranges
for a (sub-)record disappears with the ACE v.1 modeling ap-
proach. This reduces the risk of missing potential delicate
changes in SR as, e.g., the small increase towards the end of
this particular section.

4 Conclusions and prospects

This study introduces a new approach to time-series anal-
ysis in the field of cyclostratigraphy. The main focus is on
the estimation of already identified components in a signal.
The identification (or detection) of the components is based
on the a priori knowledge of the user, given available geo-
logical constraints. Those components are given a frequency
range, which is determined by the user and can correspond
with astronomical periods of, e.g., eccentricity, precession
and obliquity. Once this first step has been taken, the selected
components are simulated by making use of a model that
is not based on FFT-derived methods, band-pass filtering or
other commonly used methods in cyclostratigraphy but one
that relies on polynomial modeling. Basic uncertainty analy-
sis is provided too in order to be able to assess the size and
distribution of the model estimate uncertainties.

The ACE v.1 model in its current version should be used
under the following constraints: (1) significant sinusoidal-
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Figure 4. ACE v.1 analysis for a Danian magnetic susceptibility record. (a) Contessa Highway Danian magnetic susceptibility record
(m3 kg−1) (Sinnesael et al., 2016). (b) The periodogram of the Danian magnetic susceptibility as plotted in Fig. 2a. (c) The spectrogram of
the Danian magnetic susceptibility record. (d) The spectrogram of the three modeled components (100 kyr eccentricity, 39.6 kyr obliquity
and 22.5 kyr precession) using ACE v.1 (Berger et al., 1992). (e) Estimated instantaneous frequencies for the three modeled components.
(f) Using the associated (astronomical) periods of the modeled frequencies, the corresponding sedimentation rate is calculated. (g) The un-
certainties on the estimated instantaneous frequencies (1σ). (h) The uncertainties on the sedimentation rate estimates (1σ). (i) Periodogram
of time series of the signal where the mean sedimentation rate estimate is used to make the conversion to the time domain. (j) Comparison
between the ACE v.1 estimated sedimentation rates and the derived sedimentation rates in the studies by Galeotti et al. (2015) and Sinnesael
et al. (2016).
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like variations can be detected and identified in a proxy
record, (2) the frequency ranges of the components cannot
overlap for a given analysis, (3) the user makes an appropri-
ate tradeoff between the analysis frame size and the degree
of the used polynomials and (4) no fast changes in sedimen-
tation rate can be detected.

The first case study on a controlled modified insolation
signal documents the ability of this proposed new approach
to successfully model components of a signal. Furthermore,
it shows that the estimated instantaneous frequencies derived
from the modeling can easily be converted to sedimentation
rates, which can be used to convert distance series into time
series. A more robust result is obtained by taking the av-
erage sedimentation rate of the different estimated compo-
nents. New spectral analysis shows strongly reduced levels
of both white and red noise.

Also the second case study concerning the benthic δ18O
record of ODP Site 846 illustrated key features of the pro-
posed ACE v.1 model. The tracking of the obliquity com-
ponent is successful and the derived sedimentation rates on
the basis of this modeled component are in close agreement
with the average age model for ODP846 as constructed by
LR04. However, only the long-term-averaged trends are cap-
tured and not the fine-scaled sedimentation rates of the orig-
inal LR04 age model. This is because (a) the ACE v.1 model
in its current form cannot deal with fast changes in sedimen-
tation rate (b) the signal-to-noise ratio of the LR04 is superior
to the ratio of a single record and (c) no other a priori infor-
mation coming from other geological constraints is included
as that the obliquity band should be in a certain frequency
range. Moreover, the practical use of the uncertainty analy-
sis on the size and distribution of the model estimates is well
exemplified. This case study illustrates too that the suggested
approach is an additional instrument in time-series analysis
to automatically extract waveforms and derive time. As such
one can exclude the human influence in the tuning process
(often heuristically determining relative minima and maxima
in a proxy record). However, the verification with available
geological constraints remains essential in the validation of
the model.

The third case study dealt with a Danian magnetic suscep-
tibility record from the Contessa Highway section Gubbio,
Italy. It forms a good illustration of how a priori knowledge
is used to select certain components to model, but also how
the results of the model can be coupled back to existing in-
terpretations. Moreover, it demonstrates the disadvantages of
using the classical band-pass-filtering approach in the tuning
process, which is circumvented with this new modeling ap-
proach. The approach sheds new light on the astrochronolog-
ical age model and derived sedimentation rates of the Danian
in Gubbio. Following the model, there is probably no sig-
nificant drop in SR in the oldest half of the Danian section
in Gubbio, but there is a suggested increase in SR from the
middle of magnetochron C27r. Again the crucial role of the
verification of the model results with other available geologi-

cal constraints must be emphasized, in this case as discussed
in Galeotti et al. (2015) and Sinnesael et al. (2016).

This paper convincingly introduces the principles and il-
lustrates the functioning of the concept of time-series analy-
ses by polynomial modeling of sinusoidal behavior in Earth
science proxy series. Further work will concentrate on (i) au-
tomated identification of significant components, (ii) the re-
lease of the constraint of non-overlapping of the compo-
nent’s frequency ranges and (iii) allowing for the tracking
of faster sedimentation rate changes. Note, that this model-
ing approach is designed to be used in a cyclostratigraphical
framework. However, it can easily be adapted for all kind of
time-series analyses on data, which contain significant cyclic
(sinusoidal) variation. The reader is invited to make use of
the ACE v.1 model and provide feedback on its functioning
and further development.

5 Code availability

The ACE v.1 model is designed in MATLAB® and
all scripts are available in the Supplement. These in-
clude a main script that enables the user to load data,
define model parameters, use the functions and pro-
duce basic graphical output. Also the separate scripts
of the three functions “OrbitalComponentEstimation”,
“SedimentationRateEstimation” and “UncertaintyAnalysis”
are included as well as an instructive manual “Man-
ual_ACEv1_Model_Sinnesael_etal_2016_GMD.txt”.

6 Data availability

Data used for the ODP Site 846 case study are available
on doi:10.1594/PANGAEA.696444 (Mix et al., 1995). Data
used for the Danian magnetic susceptibility record are avail-
able on doi:10.1594/PANGAEA.864450 (Sinnesael et al.,
2016).
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Appendix A: Estimation of the model parameters

The model parameters in Eq. (8) are estimated by minimizing
the following cost function in the matrix form in the least-
squares sense:

min(y−Hθ)T (y−Hθ) , (A1)

where the symbol T denotes the matrix transpose operator.
The elements in Eq. (A1) are defined as follows:

– Vector containing the stratigraphic data

y = (y (z1) ,y (z2) , · · ·,y (zN ))
T, (A2)

– Vector containing the model parameters

θ =
(
a1,0, · · ·a1,P ,b1,0, · · ·b1,P · · ·aK,0, · · ·aK,P ,bK,0, · · ·bK,P

)T, (A3)

– Matrix containing the signal model

H=
(
H1,sH1,cH2,sH2,c· · ·HK,sHK,c

)
, (A4)

with

Hk,s =


sin(2πfkz1) z1 sin(2πfkz1) · · ·z

P
1 sin(2πfkz1)

sin(2πfkz2) z2 sin(2πfkz2) · · ·z
P
2 sin(2πfkz2)

...
...

...

sin(2πfkzN ) zN sin(2πfkzN ) · · ·zPN sin(2πfkzN )



Hk,c =


cos(2πfkz1) z1 cos(2πfkz1) · · ·z

P
1 cos(2πfkz1)

cos(2πfkz2) z2 cos(2πfkz2) · · ·z
P
2 cos(2πfkz2)

...
...

...

cos(2πfkzN ) zN cos(2πfkzN ) · · ·zPN cos(2πfkzN )

.
The solution to the least-squares problem Eq. (A1) is the

vector of sought model parameters:

θ̂ =H†y, (A5)

where H† is the pseudo inverse of H.

www.geosci-model-dev.net/9/3517/2016/ Geosci. Model Dev., 9, 3517–3531, 2016



3530 M. Sinnesael et al.: Astronomical component estimation

The Supplement related to this article is available online
at doi:10.5194/gmd-9-3517-2016-supplement.
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