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Abstract

Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability
zone (LLGHSZ; ~400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas
hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role
of gas hydrate in the supply of methane to the shallow subsurface sediments, and the role of anaerobic oxidation in regulating
methane fluxes across the sediment-seawater interface, we have characterised the chemical and isotopic compositions of the
gases and sediment pore waters. The molecular and isotopic signatures of gas in the bubble plumes (C/Csy = 1 x 10% §'3C-
CH4 = —55 to —51%0; D-CH,4 = —187 to —184%o0) are similar to gas hydrate recovered from within sediments ~30 km away
from the LLGHSZ. Modelling of pore water sulphate profiles indicates that subsurface methane fluxes are largely at steady
state in the vicinity of the LLGHSZ, providing no evidence for any recent change in methane supply due to gas hydrate dis-
sociation. However, at greater water depths, within the GHSZ, there is some evidence that the supply of methane to the shal-
low sediments has recently increased, which is consistent with downslope retreat of the GHSZ due to bottom water warming
although other explanations are possible. We estimate that the upward diffusive methane flux into shallow subsurface sedi-
ments close to the LLGHSZ is 30,550 mmol m—2 yr™!, but it is <20 mmol m~2 yr~! in sediments further away from the sea-
floor bubble plumes. While anaerobic oxidation within the sediments prevents significant transport of dissolved methane into
ocean bottom waters this amounts to less than 10% of the total methane flux (dissolved + gas) into the shallow subsurface
sediments, most of which escapes AOM as it is transported in the gas phase.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

Methane (CHy) is a potent greenhouse gas, and its atmo-
spheric concentration has increased by more than 10% over
the past three decades (Nisbet et al., 2014). Atmospheric
methane concentrations are closely correlated with temper-
ature over glacial-interglacial cycles (e.g., Moller et al.,
2013), and methane emissions may have played a key role
in major climate excursions in the past, including the
Paleocene-Eocene thermal maximum (e.g., Dickens, 2011;
Bowen et al., 2014). Many natural sources of methane are
sensitive to climatic changes including wetlands, per-
mafrost, and methane hydrate in terrestrial and marine
environments (Ciais et al., 2013). Characterization of emis-
sions from these sources is paramount to the assessment of
how levels of atmospheric methane will evolve in the con-
text of future global climate.

Methane in marine sediments is produced by microbial
and thermal degradation of organic carbon. If sediment pore
waters become methane saturated, and temperature is low
and pressure relatively high, then methane hydrate, an ice-
like solid in which gas molecules are trapped in cages of
water molecules, may form (e.g., Kvenvolden, 1993; Hester
and Brewer, 2009). Methane hydrate is stable on the conti-
nental margin at water depths >200 m at high latitudes (or
shallower in some permafrost settings; Krey et al., 2009)
and on a global scale may contain >500 Gt carbon, although
this reservoir remains poorly quantified (e.g., Milkov, 2004;
Archer, 2007; Wallmann et al., 2012; Pinero et al., 2013).

A key uncertainty for climate models is the proportion
of methane produced in deep marine sediments that escapes
to reach the sediment—seawater interface and potentially the
atmosphere. Methane rises from depth through permeable
sediment strata, faults, fractures and cracks in solution,
and as gas if sediment pore waters are supersaturated
(Judd and Hovland, 2007). In near-surface sediments where
sulphate is present, dissolved methane can be oxidised by a
consortium of archaea and sulphate-reducing bacteria. This
process is known as anaerobic oxidation of methane
(AOM; Eq. (1); Boetius et al., 2000):

CH, +SO; — HCO; +HS™ + H,0 (1)

The sub-seafloor depth interval in which methane and
sulphate are consumed by AOM and concentrations of
both species are nearly depleted is known as the sulphate-
methane transition zone (SMTZ). The depth of the SMTZ
is a qualitative proxy for the upwards methane flux into
shallow sediments, as the availability of sulphate is limited
by its rate of diffusion from seawater such that rapid sul-
phate consumption pushes the SMTZ closer to the seafloor
in regions of high methane supply (e.g., Borowski et al.,
1996). Hydrogen carbonate (HCO3) ions produced by
AOM react with calcium ions present in sediment pore
waters to form calcium carbonate (Sun and Turchyn,
2014) (Eq. (2)):

Ca** +2HCO; — CaCO; + CO, + H,0 (2)

However, if the methane flux is sufficient to overwhelm
the oxidising capacity of the microbial consortia (Archer

et al., 2009), or the re-supply of sulphate from seawater
by diffusion (Knittel and Boetius, 2009), methane is released
into the water column and potentially into the atmosphere.
Methane in the gas phase is not available to microbes and
therefore escapes oxidation.

As the Earth and its oceans warm, there is concern that
gas hydrate in marine sediments will be destabilized, releas-
ing methane that will reinforce the greenhouse effect (e.g.,
Krey et al., 2009). This is supported by observations of
methane bubble plumes in the water column near the land-
ward limit of the gas hydrate stability zone (LLGHSZ), ris-
ing from sediments in which gas hydrate may have recently
destabilized (e.g., Westbrook et al., 2009 (Arctic); Hautala
et al.,, 2014 (North Pacific); Skarke et al., 2014 (North
Atlantic)). Arctic regions, where climate warming is ampli-
fied (e.g. Parmentier et al., 2013), and cold bottom waters
allow hydrate to form in shallow sediments where it is more
susceptible to warming (e.g. Kretschmer et al., 2015), are of
particular interest.

More than 200 methane bubble plumes were discovered
rising from the seabed at water depths close to the LLGHZ
offshore western Svalbard (Westbrook et al., 2009). In this
study, we characterise the chemical composition of gases in
sediments from the vicinity of the LLGHSZ offshore Sval-
bard, and assess the spatial distribution and temporal vari-
ability of methane fluxes into the shallow subsurface, and
across the sediment-seawater interface. We examine the
geochemical evidence that hydrate dissociation fuels high
methane fluxes into shallow sediments, and the role of
AOM in regulating methane release from the seafloor.

2. STUDY AREA AND SAMPLING

The continental margin offshore western Svalbard
(Fig. 1) was shaped by the Pleistocene-Pliocene advance
and retreat of the Svalbard-Barents Sea ice sheet (Sarkar
et al., 2012). Glacial ice withdrew from the continental shelf
about 13 thousand years ago (Elverhoi et al., 1995; Jessen
et al., 2010). On the shelf and upper slope, patchy glacial
sediments overlie a sequence of seaward-dipping marine
sediments (Rajan et al., 2012; Sarkar et al., 2012). At water
depths of more than 700 m, sediments are underlain by
extensive gas hydrate deposits (Eiken and Hinz, 1993;
Vogt et al., 1999; Carcione et al., 2005; Vanneste et al.,
2005; Fisher et al., 2011; Sarkar et al., 2011; Biinz et al.,
2012; Smith et al., 2014; Plaza-Faverola et al., 2015) that
likely extend upslope to the limit of hydrate stability,
although at lower hydrate concentrations (e.g., Chabert
et al., 2011).

The present-day landward limit (LL) of the GHSZ
(LLGHSZ) at the seabed, i.e. the shallowest water depth
beneath which hydrate is stable, is defined by water depth
(pressure) and the temperature of overlying bottom water
of the West Spitsbergen Current (WSC) which flows north-
ward along the upper slope. Seasonal variations in bottom
water temperature are ~1.5 °C, which results in seasonal
shifts in the LLGHSZ between ~360 m water depth and
~410 m water depth (Berndt et al., 2014). Critically, the
WSC appears to have warmed over the last ~60 years
(Westbrook et al., 2009; Ferr¢ et al., 2012), and the present
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Fig. 1. Location of the West Svalbard continental margin and the study area. (a) Regional map indicating the locations of hydrate samples
(blue symbols) and the main study site (LLGHSZ, yellow rectangle), bathymetry data from GEBCO (The GEBCO_08 Grid, version
20100927, http://www.gebco.net) with 1,000 m depth contours. (b) Main study site at the LLGHSZ, showing shipboard bathymetry (cruise
JR253), 100 m depth contours (white lines) with 400 m in bold, seafloor gas bubble plumes mapped during JR253 (black crosses), sediment
core locations (red circles), and bubble plume sampling sites (grey symbols). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

rate of warming appears to be unprecedented in the last
2,000 years (Spiclhagen et al., 2011). Warming of bottom
waters results in migration of the LLGHSZ downslope to
deeper waters, and release of methane from gas hydrate.
Some of this methane may subsequently escape from the
sediments into the overlying water column and atmosphere
(e.g. Reagan and Moridis, 2007, 2009; Thatcher et al., 2013;
Marin-Moreno et al., 2013, 2015).

The distribution of seafloor bubble plumes offshore
western Svalbard observed during research cruise JR253
(see below) is shown in Fig. Ib. The plumes are aligned
approximately along the ~400 m bathymetric contour,
which coincides with the present-day LLGHSZ
(Westbrook et al., 2009; Berndt et al., 2014; Sahling et al.,
2014). Earlier evidence for methane emissions in this area
includes observations of pockmarks (Forwick et al.,
2009), and of high methane concentrations both in shallow
sediments (Knies et al., 2004) and in parts of the water col-
umn (Knies et al., 2004; Damm et al., 2005). Dating of
authigenic carbonates that form as a result of methane oxi-
dation (Eq. (2)) indicates that these seafloor methane seeps
have been active for more than 500 years (Berndt et al.,
2014).

Sediment samples for this study were collected from the
continental slope offshore Svalbard at water depths of
between 320 and 460 m during RRS James Clark Ross
cruise 253 in July and August 2011 (Table 1). Locations
of methane seeps were determined using the ship’s hull-
mounted sonar systems (Simrad EK60 and Simrad

EM122, Fig. 1b). A series of gravity and piston cores were
collected, aligned roughly along two transects from water
depths shallower than the LLGHSZ through the region
of the seafloor bubble plumes to greater water depths
within the GHSZ. Samples of gas bubbles emanating from
the seafloor at the LLGHSZ were collected in a pressurized
gas sampler using the manned submersible JAGO during
RV Maria S. Merian cruise 21/4 in August and September
2012. Locations of the sediment cores and bubble plume
samples are shown in Fig. 1b. Hydrate samples were col-
lected during RRS James Clark Ross cruise 211 in August
and September 2008 from two sites; a pockmark at 890 m
water depth located ~30 km northwest of our study site
(“the pockmark site”), and the Vestnesa Ridge at 1,210 m
water depth (Fisher et al., 2011). Locations are shown in
Fig. 1a and listed in Table 1.

3. ANALYTICAL PROCEDURES AND MODELLING
3.1. Geochemical analyses

Once retrieved to the ship, sediment cores were immedi-
ately sectioned, split, and subsampled under a nitrogen
atmosphere. For gas analysis, ~3 mL of sediment was with-
drawn using a cut-off plastic syringe and placed in a 20 mL
glass vial containing 5 mL of 1 M sodium hydroxide to pre-
vent microbial activity (Hoehler et al., 2000). The vials were
crimp sealed and shaken vigorously to release adsorbed
gases from sediment. A subsample of sediment (~3 g) was
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Table 1
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Locations of sampling sites. GC: gravity core, PC: piston core. MSM21/4: RV Maria S. Merian cruise 21/4, JR211: RRS James Clark Ross
cruise 211, JR253: RRS James Clark Ross cruise 253. Distance from bubble plume estimated from shipboard mapping of bubbles by
echosounder during JR253.

Cruise Station  Latitude Longitude Sample location Water Date Core Distance from
1D N (°) E (°) depth (m)  sampled length  bubble plume

(cm) (km)

Sediment cores

JR253 PCO1 78:32.76  9:21.40 South transect — shallow 458 03/08/2011 379 2.6

JR253 PC02 78:33.29  9:28.57 South transect — on seep 384 04/08/2011 92 0.03

JR253 GCo1 78:33.54  9:32.09 South transect — shallow 340 06/08/2011 209 1.0

JR253 GC02 78:34.58  9:17.45 North transect — deep 454 07/08/2011 360 2.5

JR253 PC04 78:35.50  9:23.00 North transect — deep seep 407 09/08/2011 343 0.02

JR253 PCO05 78:35.92  9:26.63 North transect — near seep 374 10/08/2011 351 0.3

JR253 PCO06 78:36.66  9:25.53 North transect — on seep 374 11/08/2011 224 0.02

JR253 PCO07 78:3591  9:29.10 North transect — shallow 323 13/08/2011 137 1.0

JR253 GC03 78:33.30  9:28.64 South transect — on seep 386 15/08/2011 162 0.01

Bubble plumes

MSM21/4 577 78:33.34  9:28.404 South transect 394 23/08/2012  — -

MSM21/4 585 78:33.34  9:28.411 South transect 394 24/08/2012 — -

MSM21/4 597 78:36.68  9:25.497 HyBIS 384 25/08/2012  — -

MSM21/4 599 78:36.68  9:25.507 HyBIS 385 25/08/2025 - -

MSM21/4 611 78:33.17  9:29.438 South transect — eastern edge 395 28/08/2012  — -

of flares

MSM21/4 620 78:39.30  9:26.056 Northern seep region 246 29/08/2012  — -

MSM21/4 647 78:33.34  9:28.406 South transect 394 02/09/2012 — -

Hydrate

JR211 33GC 78:41.07  8:16.36 Pockmark, >126 cm sediment 890 18/09/2008  — -

depth
JR211 26GC 79:00.39  6:54.26 Vestnesa Ridge, >193 cm sediment 1210 16/09/2008 — -

depth

placed in a pre-weighed plastic pot and stored at 4 °C for
porosity analysis onshore. Pore waters were extracted from
the remaining sediment at ~3 cm depth intervals by cen-
trifugation under a nitrogen atmosphere, and filtered
through 0.2 um cellulose acetate filters. Subsamples for
analysis of cations were stored in acid-cleaned LDPE bot-
tles and acidified to pH 2 with thermally distilled nitric acid.
Subsamples for analysis of anions were diluted by a factor
of 200 with Milli-Q water, and subsamples for sulphide
determination were preserved in a gelatine-zinc acetate
solution. In some sampling intervals, the volume of pore
water was insufficient for all analyses. Where present, gas
hydrate was quickly removed from the spilt sediment core,
wrapped in cotton, and stored in liquid nitrogen.
Concentrations of methane, ethane, propane, butane,
isobutane, pentane, isopentane, and hexane (C;-Cy) in sed-
iment headspace gases were determined onboard the ship
by gas chromatography with flame ionization detection
(Agilent 7890, 6 Ft HayeSep Q 80/100 stainless steel col-
umn with elution of alkanes methane through hexane in
37 min achieved with a temperature program of 60 °C for
1 min., 10 °C/min. ramp to 200 °C held for 22 min.). Ana-
lytical reproducibility, based on replicate analysis of stan-
dards (20 and 100 ppm, Air Products, UK), is better than
+2%, and the detection limits are 2 ppm for Cg and Cs,
1.5ppm for C4 1ppm for C;, 0.6 ppm for C,, and
0.5 ppm for C;, which correspond to pore water concentra-
tions of between ~0.2 pM for methane and ~0.7 pM for

hexane. Reported concentrations are considered to repre-
sent minimum values because the sediments may have
partly degassed during recovery. Hydrocarbon concentra-
tions in gas bubble and hydrate samples were measured
using the same method back onshore at the National
Oceanography Centre (NOC) in Southampton.

The stable carbon isotope composition of methane was
determined by trace gas isotope ratio mass spectrometry
(IRMS, Isoprime Ltd.) at the Natural Environment
Research Council Life Science Mass Spectrometry Facility
at the Centre for Hydrology and Ecology in Lancaster,
UK. The instrument was calibrated throughout analyses
with working CH, standards cross calibrated with a CO,
Ref. gas, calibrated to NIST REF-Heavy Palacomarine
Origin (CO,) (RM 8562) and NIST REF-Biogenic Modern
Biomass Origin (CO,) (RM 8564). The reproducibility of
3'3C-CH,4 was better than 40.2%o. The hydrogen isotopic
composition of methane was measured by Continuous
Flow-Isotope Ratio Mass Spectrometry (CF-IRMS,
Thermo, Delta XL) at the Institute for Marine and Atmo-
spheric Research Utrecht, Utrecht University, following the
method described in Brass and Roéckmann (2010) and
Sapart et al. (2011). Standardised reference air was mea-
sured before and after each set of 4 samples to correct for
potential scale shifts and to calibrate the data to interna-
tional standards VPDB and VSMOW. For 8D, the analyt-
ical error is better than 4+3.9%c. Isotope data are given in
313C and 8D notation relative to, respectively, the Vienna
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Pee Dee Belemnite (VPDB) and Vienna Standard Mean
Seawater (VSMOW) standards.

The porosity of the sediments (¢p) was calculated from
the difference between the mass of wet sediment, and the
mass of sediment after drying in an oven at ~60 °C over-
night. The densities of the sediment and fluid were assumed
to be 2.65 and 1.00 g cm >, respectively. For determination
of total inorganic carbon and total carbon (TIC, TC), sed-
iment subsamples were oven dried at >70 °C for >24 h,
ground to a homogenous fine powder, and measured using
a carbon dioxide coulometer (model CM5012, UIC Inc.)
equipped with an acidification module (model CM5130),
and a furnace module (model CM5120). The concentration
of total organic carbon (TOC) was determined by subtract-
ing TIC from TC. The reproducibility of these analyses is
better than +10%.

The total alkalinity of the pore waters was determined
onboard ship by titration with 0.02 M hydrochloric acid,
using a mixture of methyl red and methylene blue as an
indicator while bubbling nitrogen through the solution.
Analyses were calibrated against a seawater standard
(IAPSO), and the reproducibility of the analyses is better
than +1.5%. Onshore, cation concentrations in the pore
waters were determined by inductively coupled plasma
optical emission spectrometry (ICP-OES, Perkin Elmer
Optima 4300DV) at the NOC. The accuracy and repro-
ducibility of this technique was assessed by multiple
(n = 3) analyses of a seawater certified reference material
(High Purity Standards™). Measured concentrations agree
with certified values to within £3%, and the reproducibility
of the analyses was better than +1% for all analytes. Anion
concentrations were determined at the NOC by ion chro-
matography (Dionex ICS250). Reproducibility of replicate
analyses is better than 40.2% for chloride, +2.5% for bro-
mide, and +1% for sulphate. Hydrogen sulphide was deter-
mined spectrophotometrically by absorbance at 670 nm
following addition of N,N-dimethyl-1,4-phenylenediamine
dihydrochloride and an iron(III) chloride catalyst. The
working hydrogen sulphide standard was calibrated daily
by titration with sodium thiosulphate against a potassium
iodate standard (1.667 mM, OSIL environmental instru-
ments and systems, UK). Reproducibility of the sulphide
analyses was better than +10%, and the limit of detection
is 10 pM.

3.2. Modelling

Steady-state models of upward methane fluxes and
AOM rates were applied in order to quantify the efficiency
of the AOM filter, and to evaluate the validity of a steady
state assumption in this setting where gas hydrate destabi-
lization may be fuelling recent increases in methane fluxes.
If sulphate is principally removed by AOM, then its pore
water concentration will decrease from seawater values at
the sediment-seawater interface to zero at the depth of
the SMTZ (e.g., Borowski et al., 1996). At steady state,
the upward diffusive flux of methane (Jcpy) is balanced
by the downward diffusive flux of sulphate (Jso,), which
can be calculated using Fick’s First Law (Eq. (3)):

s =ut1 = () o5 ®)

where D, is the diffusion coefficient of sulphate in water
(1.7 x 107 m? s~ at 3°C and a salinity of 35), the term
1 — In(¢®) is the tortuosity correction, @ is the porosity,
and J8C/6x is the sulphate concentration gradient
(Boudreau, 1997, Mazumdar et al., 2012). Upward methane
fluxes were estimated by linear least squares fitting of sul-
phate profiles from beneath the depth of the irrigated sur-
face layer to the SMTZ. Profiles were linearly
extrapolated to the depth of the SMTZ where this was dee-
per than the length of the sediment core.

Even in regions of high methane flux, oxidation of
organic matter (OM) using sulphate as the terminal electron
acceptor contributes to sulphate removal above the SMTZ.
As a result, the simple model described above can only pro-
vide an upper limit on diffusive methane fluxes (Hoehler
et al., 2000). In many cold seep environments, methane is
transported by advection in upwelling fluids in addition
to diffusion (e.g., Haese et al., 2003; Vanneste et al.,
2011). If concentrations of methane in pore waters exceed
saturation, methane will be transported in the gas phase
until it reaches undersaturated pore waters. The steady-
state distributions of methane and sulphate are therefore
better described by partial differential equations that
account for transport by diffusion, advection, and irriga-
tion, and for reactions including sulphate reduction,
methanogenesis, and AOM (Eq. (4)):

09C _ ) 0 ¢ 9C\  [(d¢uC
(& )_ "ox"\1—1In(¢?)" ox *( ox )

— ¢o) (Ciy — Cio)) + @ ZRi 4)
where
Uy = a/e*(xbfxmlx)’
C Cyor-
Rso, = —kgo—2,———2____ _R
Z S04 ) Kso, + Csgr AOM 5
Co Ki
> Rew, = kge—2% S — — Ruow,

2 .Ki504 + CSO%’

and
Riom = KaomCeu,»
K 10m

C; is the concentration of dissolved species i (i = CHy,
SO37), u is the advective flow velocity, o) is the depth
(x) dependent irrigation exchange coefficient, o is the pore
water mixing coefficient, x, is a depth exceeding the
irrigation zone, X, is the depth of the mixed layer,
(Cirx) — Cip)) is the difference between concentrations of
species i at depth x and in overlying seawater (x =0), XR;
are the reaction terms relevant for species i (Treude et al.,
2003; Vanneste et al., 2011). Reactions considered are: (i)
remineralisation of particulate organic matter coupled to
sulphate reduction, described by the kinetic constant (kg),
organic matter concentration (C,,), and the half saturation
constant (Kgsoy); (i) methanogenesis, described by kg and
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C,r; and the inhibition constant for initiation (Kiso,); and
(iii) AOM, described by the rate constant K, p,, and the
Monod inhibition constant K 4oas. Information on all of
these parameters is given in Table 2. The rate law formula-
tion for AOM follows Vanneste et al. (2011), and it
accounts for inhibition of methane oxidation at low sul-
phate concentrations. Transport of methane in the gas
phase is not included in this model. Bubble formation only
occurs in saturated pore waters (~76 mM CH, in shallow
sediments at ~400 m water depth (Dale et al., 2008a;
Meister et al., 2013), assuming a geothermal gradient of
0.87 °C/m (Reagan and Moridis, 2009)).

The one-dimensional transport model was solved numer-
ically using the ordinary differential equation solver
ODE15s in MATLAB®, using code described in Vanneste
(2010) and Vanneste et al. (2011). The irrigation parameters

C.A. Graves et al./ Geochimica et Cosmochimica Acta 198 (2017) 419-438

o’ and Xx,,, were determined by fitting the model to the
upper part of the pore water sulphate profiles. The methane
concentration at the lower limit of the model domain (the
length of the core) was determined by fitting the depth of
the modelled SMTZ to the pore water sulphate and methane
profiles. The rate of AOM was determined by fitting the
shape and slope of the modelled sulphate and methane pro-
files near the SMTZ to the measured concentrations. The fit
of the model was assessed by calculating the residuals
between the measured and modelled sulphate data. This
model was applied only to cores where the SMTZ was sam-
pled to allow fitting of modelled profiles to measured data in
this critical interval. Steady state was reached within 103
years from arbitrary initial conditions using a depth step
of 0.5 cm. The uncertainty of model results was assessed
by sensitivity analysis of input parameters (Section 4.3).

Table 2

Transport-reaction model parameters.

Parameter Symbol Units Value Source

Diffusion coefficient for sulphate in Dso4 em? yr! 167 Calculated for temperature, pressure, and salinity (T,P,S)

pore water conditions after Boudreau (1997), following Vanneste et al.
(2011)

Diffusion coefficient for methane in Dcuy cm? yr’1 273 Calculated for T,P,S conditions after Hayduk and Laudie

pore water (1974), following Vanneste et al. (2011)

Concentration of species i (i = CHy, Cirx) mM - Depth profiles, fit to measured data (see Fig. 5)

SO37) at depth x

Bottom seawater methane Ccnao) mM 0.00 Measured concentration in near-surface sediments

concentration

Bottom seawater sulphate Csoa(0) mM 28 Measured concentration in near-surface sediments

concentration

Core-bottom sulphate concentration Csoa mM 0 Measured core-bottom concentration

bottom
Core-bottom methane concentration Ceng mM - Used as fitting parameter for methane concentration
bottom profiles (see Table 4)

Porosity 0} - 0.5 Average measured value (see Supplemental Fig. 1 and
discussion in Section 4.3)

Pore water advection u cm yr’l 0.03 Sedimentation rate from Jessen et al. (2010); see discussion
in Section 4.3 and Supplemental Figs. 4 and 5, and
Supplemental Tables 2 and 3.

Pore water mixing coefficient o’ yr! 10 Fit to measured sulphate concentration depth profiles, and
kept constant between cores

Depth of irrigation mixing Xomix cm 5-30 Fit to measured sulphate concentration depth profiles (see
Table 4)

Depths exceeding mixing zone Xp cm - Model domain beneath irrigation mixing zone

Rate constant for organic matter kg yr! 1x107®  Asin Vanneste et al. (2011)see discussion in Section 4.3

remineralisation

Organic carbon content Corg mM 1300 Average measured value (0.6 & 0.3 wt.%) expressed as
mmol per L of dry sediment for sediment density of
2.65gmL™". (see Supplemental Fig. 2 and discussion in
Section 4.3)

Half saturation constant for sulphate Kso4 mM 1 as in Vanneste et al. (2011), value is assumed due to absence

reduction coupled to organic matter of constrains available for natural systems

remineralisation

Inhibition constant for initiation of Kisoq mM 1 As in Vanneste et al. (2011), value is assumed due to absence

methanogenesis of constrains available for natural systems

Rate constant for anaerobic oxidation Kiom yr! - Fit to measured sulphate and methane concentration depth

of methane profiles within the SMTZ (see Table 4 and Supplemental
Table 3)

Monod inhibition constant for AOM Ks q0m mM 1 As in Vanneste et al. (2011), based on data from Nauhaus

et al. (2002)
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4. RESULTS

4.1. Chemical and isotopic composition of gas bubble plumes
and hydrate

The molecular composition (C;/C,+) and methane
stable carbon (5'*C-CHy4) and hydrogen (8D-CH,) isotope
compositions of the gas bubble plumes at the LLGHSZ,
and samples of gas hydrate from sites closest to the bubble
plumes (Vestnesa Ridge and the ‘pockmark’ site) are given
in Table 3, along with previously reported data (C;/C,+
and 3'*C-CHy only). Note that no hydrate was recovered
in any of our sediment cores from the LLGHSZ sites,
including those located within the GHSZ (cores PCOI1,
GCO02 and PC04). The absence of hydrate in the cores out-
side the GHSZ is not surprising. The observed methane
concentrations in the three within-GHSZ cores additionally
rule out hydrate occurrence in those sediments: hydrate is
only stable very close to the sediment-seawater interface
at these water depths (estimated for geothermal gradients
of 0.87 to 0.7°C/m (Reagan and Moridis, 2009;

Table 3

Westbrook et al., 2009) and bottom water temperature of
3 °C using the gas hydrate stability curve of Dickens and
Quinby-Hunt (1994)). This interval of hydrate stability is
above the SMTZ so methane concentrations are low and
hydrate formation is prohibited.

4.2. Chemical composition of sediment pore waters

The SMTZ was sampled in 5 of the 9 sediment cores
recovered near the LLGHSZ (pore water data shown in
Fig. 2, core locations in Fig. 1). The depth of the SMTZ
is relatively shallow (<300 cm below the seafloor) in the
vicinity (within 30 m) of the methane seeps. Cores recov-
ered from 1 to 3 km away from the LLGHSZ, at both shal-
lower and deeper water depths, did not sample the SMTZ.

Sulphate profiles are nearly linear above the SMTZ,
decreasing from seawater values (28 mM) to <1 mM
(Fig. 2). Below the SMTZ, methane concentrations are
above 1.8 mM (methane saturation under surface condi-
tions of ~4 °C and 1 bar), and sediment degassing follow-
ing core recovery is expected. Methane concentrations are

Molecular and isotopic composition of bubble plume and hydrate gas. Sample locations are listed in Table | and shown in Fig. 1. Bubble
plume samples for this study are from cruise MSM21/4: RV Maria S. Merian cruise 21/4 (2012), and hydrate samples from cruise JR211: RRS
James Clark Ross cruise 211 (2008). Hydrate 8'>C-CH, data from Fisher et al. (2011). Uncertainty of 8'*C-CH, and 8D-CH, measurements of
bubble plume samples is reported as the standard deviation of three subsamples; uncertainty of 8'3C-CH, measurements of hydrate is
reported as the standard deviation of analyses of three separate pieces of hydrate from an individual core.

Station ID Station location C,/C54 (mol/mol) 313C-CHy (%o) SD-CHy (%o)
Bubble plumes

577 South transect 9.8 x 10° —54.6 +0.3 —187+1
585 South transect 9.6 x 10° —54+1 ~179+3
597 HyBIS 1.1 x 10* —51.14+0.8 -

599 HyBIS 1.2 x 10* —51.34+0.1 —178 +2
611 South transect, east 1.2 x 10* —51.6 0.1 -

620 Northern 1.1 x 10* —5554+04 187.0 £ 0.1
647 South transect 9.7 x 10° —55.0+0.5 -

Sahling et al. (2014) Northern” 1.5 x 10* —55.8 -

Sahling et al. (2014) South transect 9.7 x 10° —56.0 -

Hydrate

33GC Pockmark site 500 —54.6 -2 —174 +4
26GC Vestnesa Ridge 60 —457+3 —180+2
Smith et al. (2014) Vestnesa Ridge 26 —47.7 -

“ Sahling et al. (2014) data for the northern sampling site is the average of two samples reported for this location.
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Fig. 2. Profiles of pore water methane, sulphate, alkalinity, sulphide and calcium. Cores collected from less than ~0.01 to 0.3 km away from
bubble plumes are shown by the coloured symbols. Dashed horizontal lines indicate the depth of the SMTZ, where sampled. Sulphide was not
determined in cores GCO1 and PCO7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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generally less than 20 uM in the presence of more than
1 mM sulphate, with the exception of core PC04 where
methane concentrations are >1.8 mM up to 40 cm below
the seabed, even in the presence of >20 mM sulphate
(Fig. 2). The concentration of dissolved sulphate is close
to bottom seawater in the uppermost 20 to 30 cm of the sed-
iment column in cores PC02 and PCO04, which is indicative
of seawater drawdown into the sediments (irrigation;
Fig. 2).

Depth profiles of pore water alkalinity and sulphide con-
firm that AOM occurs in sediments at the depth of the
SMTZ (Fig. 2; Egs. (1) and (2)). Total alkalinity increases
with depth from a seawater value of ~2.3mM to 12—
25 mM at the SMTZ due to production of HCOj3 and, to
a lesser extent, HS™ (Fig. 2, Eq. (1)). Hydrogen sulphide
(Fig. 2) was only detected in pore waters from cores that
sampled the SMTZ (GCO03, PC02, PC04, PCO5 and
PC06), reaching ~4 mM in cores with the shallowest SMTZ
(PC0O2 and PCO04). Sulphide was not measured in cores
GCO01 and PCO07. Calcium concentrations decrease abruptly
at the SMTZ (Fig. 2), likely due to the formation of authi-
genic calcium carbonate (Eq. (2)). Carbonate nodules were
recovered in the five cores where the SMTZ was sampled.

At all but one site (PC04) where the SMTZ was sam-
pled, lowest 5'3C-CH, values (—84 to —97%o) occur within
the depth interval where AOM rates are highest (Fig. 3). By
contrast, core PC04 is characterised by relatively high 8'*C-

GCo03
8'°C~CH,, (%)

PC04
8'°C-CH, (%)

PC02
5'%C-CH, (%)
-400 -80 -60 -40 -20 -100 -80 -60 -40 -20

-100 -80 -60 -40 -20 -100 -80 -60 -40 -20 -100 -80 -60 -40 -20
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C.A. Graves et al./ Geochimica et Cosmochimica Acta 198 (2017) 419-438

CHj, values (up to —20%0) immediately above the depth of
the SMTZ (Fig. 3). Above the SMTZ, 3'*C-CH, values are
~—45 4+ 2.5%o (average and standard deviation of 36 sam-
ples from cores PC01 and GCO1). Below the SMTZ, where
methane concentrations increase, '°C-CH; values
approach those measured in bubble plume gases sampled
at the seafloor (Fig. 3; Table 3).

Concentrations of species that are not produced or con-
sumed during shallow diagenetic reactions (chloride: CI™,
bromide: Br~, and sodium: Na™) show little variation with
depth at all sampling sites, whether close to or distant from
seafloor bubble plumes (Fig. 4). The average and standard
deviation of all of CI~ measurements is 537 &+ 14 mM. In
core PC04, 7 of the 16 pore water samples from close to
the sediment-seawater interface, which have high methane
concentrations, have slightly lower than average CI~ con-
centrations (i.e. by more than two standard deviations).
Three of these 16 pore water samples are also slightly
enriched in Br™ (940-1010 uM, compared to the average
of 850 + 24 uM for all other pore water samples). Two of
these samples also have low CI™, and one has a seawater
sulphate concentration.

4.3. Methane flux modelling

Results of methane flux modelling for both the diffusion-
only and the transport-reaction (TR) models are shown in
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Fig. 3. Profiles of sediment methane carbon isotopic ratio (5'*C-CHy). Profiles of methane (blue) and sulphate (red) concentrations, and
modelled rates of anaerobic oxidation of methane (grey shaded areas, see Section 4.3) are also shown. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Pore water profiles of chloride, bromide and sodium. Cores collected from less than ~0.01 to 0.3 km away from active bubble seeps are
shown by the coloured symbols. Dashed horizontal lines indicate the depth of the SMTZ, where sampled.

Fig. 5, and values of the input and output parameters are
given in Table 4.

The average porosity of the sediments is 0.47 4 0.09,
and the average TOC content is 0.6 £ 0.3wt%. Neither vari-
able shows systematic variation with depth, or core location
(Supplemental Figs. 1 and 2). For this reason, these average
values were applied in the methane flux models.

The relatively low TOC content of the sediments sup-
ports the use of the diffusion-only model, which assumes
that OM remineralisation is not a significant sulphate sink.
Moreover, low rates of OM remineralisation are obtained
with the TR model (see Table 4), and are in agreement with
the results of Pohlman et al. (2013) who showed that the
absence of significant sulphate removal by OM-
remineralisation can enhance methane oxidation in OM-
poor glaciogenic sediments. Sulphate and methane profiles
and flux estimates are insensitive to halving or doubling
either kg or TOC in the TR model. Increasing ks by an
order of magnitude or more leads to concave up sulphate
profiles that are not consistent with observations, as well
as depletion of sulphate above the depth of the observed
SMTZ, even if the methane concentration at the bottom
of the core (CHupos0m) is reduced to zero.

For the TR model, sediment porosity has a significant
effect on the modelled methane flux into the SMTZ: if
porosity is increased by 0.09 (the standard deviation of
the measured values), then both the flux of methane into
the sediment column and the rate of AOM increase by
~40%, while decreasing porosity by the same amount
reduces the methane flux and rate of AOM by ~20% (Sup-
plemental Table 1). Modelled pore water profiles and AOM
efficiency are not significantly affected by porosity, but irri-
gation fluxes can change by as much as +70 to —50% for
PCO02. However, the irrigation flux is small compared to
the rate of AOM and the total methane flux across the sed-
iment-seawater interface in this area (Section 5.3).

We could not determine the pore water advection term
(u) by curve fitting to conservative species such as CI™
and Na* (e.g. Vanneste et al., 2011) as these show no defini-
tive evidence for upward advective flow of pore waters with
a different chemical composition (Fig. 4). If we assume that
advective flow is not important, u is simply equal to the sed-

imentation rate (~0.03 cm/year; Jessen et al., 2010) because
porosity is assumed to be constant and compaction can
therefore be neglected (Malinverno and Pohlman, 2011).
Doubling or halving u changes the modelled methane flux
by <1%. If u is increased by more than an order of magni-
tude, modelled sulphate profiles have a slight concave up
shape, and the methane concentration at the bottom of
the core (CHyporo) must be significantly decreased to
maintain the depth of the SMTZ.

With the exception of the two cores with the shallowest
SMTZ (PC02 and PC04), the measured sulphate profiles
show no curvature, which supports our interpretation that
advective flow is insignificant. For PC04, a good fit is
obtained by increasing the advective flux by an order of
magnitude (to 0.3 cm yr™!) and simultaneously decreasing
CHyporrom by one third, the combined effect of this on all
of the model output parameters of interest is negligible
(Supplemental Fig. 3; Supplemental Table 2). It is impor-
tant to note, however, that even the reduced modelled
CHyport0m value for PCO04 is higher than the in situ methane
solubility (~80 mM, calculated for in situ S, T, P conditions
following Dale et al., 2008a). This implies a contribution
from methane in the gas phase that is not described by
the TR model (Vanneste, 2010). We consider the effects of
adding a gas phase term (following Meister et al., 2013)
in Supplemental Fig. 4 and Supplemental Table 3. Again,
we are able to conclude that this has only a small effect
on both the methane flux across the sediment-seawater
interface (increase from 70 to 110 mmol m~2yr™!), and
the rate of AOM at the SMTZ (increase from 240 to
280 mmol m~2 yr~'). For core PC02, a good fit to the mea-
sured sulphate data can be achieved by increasing the
advective fluid flow more than 100-fold (to 5cmyr ),
and reducing CHyposr0m to 1.5 mM (Supplemental Fig. 5;
Supplemental Table 4). Although such high advective flows
have been observed in mud volcano settings (e.g., Vanneste
et al., 2011), all of the other sites sampled in this study are
consistent with low rates of pore water advection, including
core GCO3 which is only ~30 m from PC02. Additionally, a
value of 1.5 mM for CHyupp/10m 1S less than the methane sat-
uration concentration, which is usually achieved in sedi-
ments below the SMTZ, suggesting that the bottom
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Fig. 5. Modelled pore water profiles: methane (blue), sulphate (red) and anaerobic methane oxidation rate (Raom, grey shading). Measured
data are shown by the coloured circles. Results of the diffusion-only model are shown by the solid grey lines (sulphate only, R* values given in
Table 4). Results for the transport-reaction model for sulphate and methane are shown, respectively, by the red and blue lines. Black dashed
lines for PCO2 show the results of transport-reaction modelling with high advective flow (see Table 4). The maximum rate of AOM rate
modelled in core PC02 is 9.9 mM yr~! (30 nmol cm > day ™). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

boundary is within the interval affected by AOM. The rate
constant of AOM (K ,p,,) only has a significant effect on
the modelled methane concentration profile when a high
advective flow is imposed (Supplemental Fig. 6; Supple-
mental Table 4). It is difficult to compare K40, values from
different modelling studies, because the models differ and
the rate constants incorporate a range of site-specific phys-
ical parameters (e.g., Regnier et al., 2011). The K40, values
obtained by fitting to the methane profile at the SMTZ
(0.2-5 yr~!; Table 4) are slightly lower than values obtained
with the same model for the Carlos Ribeiro mud volcano
(7-25 yr~'; Vanneste et al., 2011), which likely reflects the
different seafloor seepage environments. Modelled rates of
AOM at the STMZ are 0.3-30 nmol cm > day~! (Fig. 5),
within the range of those measured elsewhere in coastal
and margin sediments (0.1-50 nmol cm ™ day™!; Knittel
and Boetius, 2009).

There is good agreement between methane flux results
from the diffusion only and TR models for cores with mod-
erate rates of methane seepage (GCO03, PCO05, PCO06;
Table 4). The absence of significant OM remineralisation
and low values of u in the TR model supports the use of

the diffusion-only model to estimate methane fluxes by
extrapolation of the linear sulphate profiles in cores GC01
and PC07. However, the two cores recovered at deeper
water depths (~450m) within the GHSZ (PCO1 and
GC02) have kinked sulphate profiles that cannot be repro-
duced by the diffusion-only model, so methane fluxes have
been estimated by applying separate linear fits to the upper
and lower segments (Fig. 5). The direction of the shift in the
sulphate gradient is different for the two cores, with a stee-
per sulphate profile (shallower inferred SMTZ) in the
uppermost sediments of PCO1 and a steeper profile in the
deeper sediments in GC02. In PCO1, the sulphate gradient
observed in the uppermost sediments implies that the
SMTZ should be located within the sampled core, and
demonstrates how the methane flux would have been over-
estimated by the diffusion-only model if the recovery depth
of this core was shorter and the sulphate profile assumed
linear.

Agreement between the two models is poor for the two
cores with the shallowest SMTZ (PC02 and PC04, Table 4).
Both models provide a good fit to the sulphate profile for
core PC04, but the methane fluxes into the base of the
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Values of input and output parameters for the diffusion and transport-reaction models. Depth of SMTZ and sulphate/methane fluxes
estimated using the diffusion model for cores GC02 and PCO1 are provided by considering the fit of the model both above, and below, the kink
in the sulphate profile. Values in bold highlight the calculated methane flux to the shallow subsurface sediments for each model.

Parameter Units PC02 PC02° PC04 GCO03 PC06 PCO5 GCOl PC0O7 GCO2 PCO1
Diffusion model

SMTZ m 0.5 0.7 1.0 1.9 3.1 4.0 5.5 9.5;58 24;64
Fit (R?) - 0.86 099 099 1.00 0.99 0.99 095 098 0.99
Downward diffusive sulphate mmol m~2 yr~! 250 190 100 50 30 20 15 10; 20 40; 10
flux (Jso4) = upward

methane flux to SMTZ

Transport-reaction model

inputs

[CH4] at bottom of core mM 50 1.5 150 12 24 3 - - - -
Irrigation depth (x,,;y) cm 22 22 30 15 15 5 - - - -
AOM rate constant (K4on)  yr ! 5 5 0.2 2 3 0.5 - - - -
Transport-reaction model - - - -
outputs

Methane flux to shallow mmol m 2 yr~' 550 50 310 120 50 30 - - - -
subsurface sediments

Methanogenesis mmol m 2 yr~ ! 0.2 0.1 0.9 0.2 0.1 0.3 - - - -
AOM rate mmol m2 yr~! 540 50 240 120 50 30 - - - -
SO, reduction rate for OM  mmol m2yr~! 0.1 0.2 0.2 0.3 0.6 0.9 - - - -
remineralisation

Methane flux to seawater by mmolm 2 yr~! 10 0.09 70 0 0 0 - - - -
irrigation

Methane flux to seawater by mmol m~2yr~!  0.01 0.0004 0.02 0.0004 0.0003 0.0009 - - - -
diffusion

Ratio of modelled methane - 2.2 0.2 1.7 1.2 1.0 1.1 - - - -

flux to linear diffusion model
result

“ Pore water advection (u) increased from 0.03 cm yr~! to 5 cm yr~ L.

SMTZ disagree by a factor of 1.7 with the TR model yield-
ing the higher value. In core PC02, the sulphate profile is
slightly concave down and therefore poorly modelled by
the diffusion-only model (Table 4). The TR model best
reproduces both the sulphate and methane profiles when
a high upward advective flux of pore water with 1.5 mM
methane is applied but, as described above, these conditions
are unlikely. The best TR model fit to the sulphate data
without high advection (solid line in Fig. 5) disagrees with
the diffusion only model methane flux, yielding more than
double the methane flux to shallow subsurface sediments
(Table 4).

In the TR model, the relatively shallow SMTZ com-
bined with the relatively deep seawater irrigation depth in
PC04 leads to a small flux of methane to the overlying sea-
water by irrigation (Table 4). An irrigation flux is also mod-
elled for core PCO02, if the advection rate is low (Fig. 5,
Table 4).

5. DISCUSSION
5.1. Origin of methane at the landward limit of the GHSZ

Ascertaining the origin of the gas that fuels the seafloor
bubble plumes at the LLGHSZ is challenging. In agreement
with other studies conducted in this area (Sahling et al.,
2014), the gas bubbles have high C;/C,, values and higher
hydrocarbons (Cs4) are absent, which is consistent with a

microbial gas source. However, the 5'3C-CH, signatures
of bubble plume samples are slightly higher than usual
for marine microbial methane (carbonate reduction,
Fig. 6). The combined C,;/C,+ and 3'3C-CH, data do not
indicate simple mixing between gas of microbial and ther-
mogenic sources (Fig 6a). In an effort to provide further
constraints on the origin of the bubble plume methane
gas, we also conducted dD-CH, analyses, but these data
are consistent with both a thermogenic and a microbial
(carbonate reduction) source (Fig. 6b).

It has been proposed that the 8'*C-CH, values of sea-
floor bubble plumes at the LLGHSZ are higher than is
usual for marine microbial methane due to mixing with
methane enriched in '*C such as that which has undergone
oxidation within the sediments (Sahling et al., 2014). We
suggest that oxidation is unlikely, for two reasons. First,
the molecular and isotopic compositions of the gas bubbles
are the same as methane in sediments recovered from below
the SMTZ (core PC04, Fig. 3), where oxidation is not
expected to be significant because sulphate (and oxygen)
are absent. Second, our 613C-CH4 and 6D-CH, data indi-
cate that the carbon and hydrogen isotopic compositions
of methane in the bubble plumes are inconsistent with oxi-
dation of a microbial source (that has typical 5'*C-CH,4 and
8D-CH, values; Fig. 6b).

3'3C-CH, values of headspace gas in sediments on the
shelf have been interpreted as evidence for isotopic fraction-
ation of methane during slow upward gas migration along
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Fig. 6. Molecular and isotopic composition of hydrate and bubble plume gases from this study (coloured symbols) and others (black
symbols). (a) ‘Bernard diagram’ modified after Whiticar (1999), (b) Cross plot of methane carbon and hydrogen isotopic data with
classification according to Whiticar (1999) White open circles indicate typical end member microbial (8'*C-CH,: —70%o, C,/C».: 50,000, 8D-
CHy: —225%0, in A and B) and thermogenic (A only: 8'3C-CHy: —40%0, C1/Cops: 10) source signatures, connected by a black dashed mixing
line (A only). Shaded area between the black arrows shows the effect of oxidation on §'*C-CH4 and 5D-CH, for the range of isotope
fractionation factors (a,c for carbon and ap, for hydrogen) reported from laboratory experiments with aerobic and anaerobic methanotrophic
bacteria (Feisthauer et al., 2011; ac: 1.012-1.036, ap: 1.093-1.320). Red arrows show ac and ap values measured in aerobic sediments from
the northern Baltic Sea (Egger et al., 2015; ac: 1.009, op: 1.098). Vestnesa Ridge hydrate 8'3C-CH, data are from Fisher et al. (2011).
Previously reported Vestnesa Ridge hydrate (Smith et al., 2014), and LLGHSZ bubble plume data (Sahling et al., 2014), as well as hydrate
data from both high gas flow (HGF) and low gas flow (LGF) regions (Milkov et al., 2005), are also shown. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

faults in subsurface sediments (Damm et al., 2005). Faster
migration of lighter species during diffusive transport
through sediments could strip both the heavier hydrocar-
bons and heavier isotopes (:*CH,4 and D-CH,) from ther-
mogenic gas moving from deeper in the sediment column
or through seaward-dipping prograding marine sequences
towards the LLGHSZ (Schoell, 1983). The rate of fraction-
ation depends on the mass difference between molecules
and isotopologues, and the tortuosity of the sediment pores
through which gases travel (Prinzhofer and Pernaton,
1997). Thus, the effect on C;/C,+ may be much more signif-
icant in natural settings than isotopic fractionation, how-
ever it is not clear if migration alone could produce the
observed geochemical signature in this setting (Fuex,
1980; Schoell, 1983; Prinzhofer and Pernaton, 1997;
Zhang and Krooss, 2001; Nuzzo et al., 2009). A contribu-
tion from this mechanism is, however, supported by seismic
reflection data in the study area which shows evidence for
the migration of free gas up the continental slope
(Westbrook et al., 2009; Hustoft et al., 2009; Rajan et al.,
2012; Sarkar et al., 2012; Thatcher et al., 2013).

The overall seaward dip of the sediment strata in the
continental slope favours the landward migration of free
gas which accumulates at the base of the hydrate stability
zone offshore western Svalbard (e.g. Sarkar et al., 2012)
and, at culminations such as the Vestnesa Ridge, thermo-
genic gas escapes through pockmarks into the water col-

umn (Biinz et al., 2012; Smith et al., 2014). In situ
biogenic methanogenesis is likely at the base of the hydrate
stability zone, where temperatures are 5-70 °C, while the
increase in geothermal gradient with increasing distance off-
shore (Vanneste et al., 2005) favours thermogenic gas pro-
duction at comparatively shallow depths near the foot of
the continental slope (Dumke et al., 2016). The proportion
of glaciogenic sediments with very low permeability
increases towards the top of the continental slope, but the
greater part of the well-stratified marine sequence contain-
ing free gas continues beneath these glacigenic sediments
(Rajan et al., 2012; Sarkar et al., 2012; Thatcher et al.,
2013), providing a source of gas under the uppermost con-
tinental slope and shelf.

Consequently, although the actual sources of the gas
cannot, at present, be identified, it is improbable that the
gas is primarily from local in-situ production, although
we acknowledge that a number of other potential methane
sources are possible. These include: microbial methane pro-
duced from a '*C-enriched CO, source (e.g., Claypool
et al., 1985), abiotic methane produced during the serpen-
tinization of ultramafic rocks further offshore western
Svalbard (Johnson et al., 2015), and methane associated
with onshore coal deposits and other hydrocarbon sources
(e.g. Roy et al., 2015). To resolve this issue more compre-
hensive analysis of gases in shallow sediments in this
area is required, such as 813C-C,H, (e.g. Milkov, 2005),
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3'3C-CO, (Pohlman et al., 2009), and methane clumped iso-
topes (Wang et al., 2015).

5.2. Evaluation of evidence for gas hydrate dissociation
offshore western Svalbard

5.2.1. Evidence from the composition of bubble plumes and
pore waters at the LLGHSZ

Recent warming of overlying bottom waters at the
LLGHSZ means that gas hydrate — if present — is unstable
and either currently dissociating or has recently dissociated
(e.g. Berndt et al., 2014). Gas released from methane
hydrate should have lower C,/C, than the gas from which
the hydrate formed, because heavier hydrocarbons are
slightly enriched in the hydrate phase during gas hydrate
formation (e.g. Sloan, 1998). This molecular fractionation
can be used as a tool to determine if seafloor bubble plume
gas is sourced from hydrate dissociation (e.g. Pape et al.,
2010). However, without a sample of methane hydrate from
the immediate vicinity of the LLGHSZ, a direct compar-
ison with the bubble plume molecular composition is not
possible. The bubble plume gasses have a slighter higher
C,/C,+ than hydrate recovered within the GHSZ ~30 km
northwest of the LLGHSZ at the ‘pockmark’ site:
9.6-12 x 10 compared to 5 x 10% (Fig. 6a, Table 3). The
C,/C,+ ratio for the gas from which this hydrate formed
is calculated to be 3.6 x 10° (Sloan, 1998; Smith et al.,
2014), slightly lower than the ratio measured in the bubble
plume gases. If the bubble plume gases are derived from
hydrate, the gases which formed that hydrate would have
C,/Cay >5 x 10*. Considering the range of C;/Cpy in the
bubble plume gases and for hydrate samples from offshore
Svalbard (Table 3), we must therefore conclude that C,/C,4
analyses provide no evidence to support (or refute) escape
of methane from a hydrate source across the sediment-sea-
water interface at this site.

Hydrate formation and dissociation also alters the salin-
ity of surrounding pore waters. Chloride concentrations are
reduced by dilution with relatively fresh water released
from hydrate, as observed in sediment cores where hydrate
was destabilized during recovery (e.g., Egeberg and
Dickens, 1999; Tréhu et al., 2004; Panieri et al., 2014). Pore
water can also become chloride enriched during hydrate
formation (e.g., Haeckel et al., 2004). Of the nine sediment
cores recovered, only one (PC04) has pore water chloride
concentrations that differ from seawater: low chloride con-
centrations were observed both above and below the sul-
phate reduction zone (Fig. 4). Site PC04 is located just
inside the summertime GHSZ, which extended to ~80 cm
sediment depth at the time of sampling; pore waters in this
interval have high sulphate concentrations which precludes
the formation of gas hydrate. However, high methane con-
centrations are found above this depth (up to ~40cm),
which may indicate a non-steady state situation (see Sec-
tion 5.2.2). Interpretation of pore water data from core
PC04 is further complicated by the presence of pore waters
enriched in bromide (Fig. 4), which is not consistent with
pore water dilution, but with input from organic matter
degradation that presumably occurs at depth within these
sediments (e.g., Egeberg and Dickens, 1999; Fehn et al.,

2006). However, the overall shape of the bromide profile
is not indicative of pore water advection from depth. There-
fore, as with the bubble plume gas C,/C,, analyses of
porewater chloride and bromide concentrations to not
unequivocally support (or refute) a hydrate source for
methane in the near-surface of core PC04.

5.2.2. Temporal variability of methane supply to the shallow
subsurface sediments

If seafloor methane bubble plumes at the LLGHSZ are
fuelled by hydrate dissociation, then the methane flux into
shallow subsurface sediments should vary in response to
the movement of the landward limit of the GHSZ due to
changes in ocean bottom water temperatures on both sea-
sonal and multi-decadal timescales (e.g., Marin-Moreno
et al., 2015). In all but one of the sediment cores recovered
from the vicinity of the LLGHSZ (PCO05, PC06 and GC03)
we observed linear pore water sulphate profiles (R> >0.95;
Table 5; Fig. 5). These profiles are consistent with steady-
state sulphate diffusion down to the SMTZ. If
temperature-driven dissociation of localized pockets of
shallow methane hydrate is fueling the seafloor bubble
plumes, then none of the cores from the LLGHSZ record
the variability in methane fluxes expected to be associated
with this process. Furthermore, the two sites at shallower
water depths where bubble plumes are not observed
(GCO1 and PCO07) also show no evidence for a reduction
in supply of methane to the shallow sediments, which
would be expected if the GHSZ had shifted downslope as
a result of recent warming (e.g., Ferré et al., 2012). This
suggests that the supply of methane to the sediments has
been stable, despite local changes in hydrate stability.
Changes in methane flux generate non-linear sulphate pro-
files that persist for up to several thousand years (Hensen
et al., 2003; Henkel et al., 2011).

Core PCO02 is a possible exception. Its pore water sul-
phate profile is poorly approximated by steady-state diffu-
sion (R*=0.86), and achieving a good fit with the
transport reaction model requires imposing a high value
for u (Fig. 5; Table 5). Because the TR model results are
likely influenced by the short model domain (Section 4.3),
the poor fit of the steady-state model could be interpreted
to reflect a decrease in the methane flux, as the sulphate
profile is slightly concave down (Hensen et al., 2003). A
decreasing methane flux is consistent with a setting where
the supply of methane from hydrate dissociation drops as
the hydrate reservoir declines.

Pore water sulphate profiles from the two deeper sites,
where hydrate is expected to be stable year-round, are both
kinked (PCO1 and GCO02; Fig. 5). In GC02 and the lower
portion of PCO1 the sulphate profiles are slightly concave
up, which points to an increase in methane supply
(Hensen et al., 2003; Nothen and Kasten, 2011). This either
implies that the methane flux at these sites has changed —
consistent with thinning of the GHSZ near its landward
limit (e.g., Marin-Moreno et al., 2015), or that the sedi-
ments have been affected by a mass deposition event (e.g.,
Hensen et al., 2003; Henkel et al., 2011). However, there
are no obvious changes in sediment properties at the
depth of the kink in the sulphate profile in these cores
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Table 5

Methane fluxes across the sediment-seawater interface, and methane consumption by anaerobic oxidation of methane beneath the seafloor for
the region of gas bubble plumes at the limit of the GHSZ offshore Western Svalbard (360-415 m water depth). Methane flux from bubble
plumes, bubble plume density, and spatial extent of bubble plumes are from Sahling et al. (2014). Rate of AOM at bubble plume sites is from

Berndt et al. (2014).

Flux per unit area
[mmol m~2 yr 1]

Spatial extent

Total flux [mol yr™'] References

Minimum Maximum Minimum  Maximum

Methane flux across the sediment—seawater interface

Ebullition flux 1.1 x 10* 1.3 x 10* 3.72 km?, containing 384 4 % 10° 5% 107 Sahling et al. (2014)
(min) to 534 (max) bubble
plumes

Irrigation flux 10 70 1.5 km? 30 m radius around 2 x 10* 1 x10° This study
each plume

Diffusive flux 0.004 0.009 ~7 km?: 300 m radius 2 5 This study
around the bubble plume
region (3.72 km?)

Methane consumption by AOM

Gas bubble plumes - 2 x 10° ~10 m*: within 0.01 to 0.Im 30 4 x10* Berndt et al. (2014)
of plumes

Irrigation zone 300 600 1.5 km? 30 m radius around 5% 10° 8 x 10° This study
each plume

Diftusive zone 30 100 ~5.5 km?: diffusive zone, 5% 10* 2 x 10° This study
excluding inner irrigation
zone

Regional background - 20 80 km?: area sampled in this - 2 % 10° This study

study

(Supplemental Figs. 7 and 8) that would be expected to
accompany a mass deposition event.

Recent increases in the supply of methane to the shallow
sediments are also consistent with the pore water data in
core PCO04, which was recovered within the seasonal
hydrate stability zone defined by Berndt et al. (2014). While
the pore water sulphate profile is well described by both the
steady-state diffusion only and TR models, the results of the
two disagree (Table 4). Furthermore, methane concentra-
tions are very high (>1 mM) in the near-surface sulphate-
containing (>20 mM) pore waters, which could indicate
that AOM is unable to keep up with a recent increase in
methane supply. More than 50 years are likely required
for the microbial AOM community to respond to signifi-
cant increases in sediment methane fluxes (Dale et al.,
2008b).

The shape of the pore water 8'>C-CH, profile at site
PC04 is distinctly different from the other cores in which
the SMTZ was sampled (Fig. 3): there is a small, negative
(from ~—56 to —60%o) shift in 3'°C-CH, at the base of
the SMTZ (where SO;~ concentrations begin to increase
towards the sediment surface), and a large positive shift
(from ~—60 to —22%o) at the top of the SMTZ. In all other
cores extremely low 8'*C-CH, values are observed through-
out the SMTZ (—97 to —83%o0). During AOM, Kkinetics
favour the oxidation of '*C-CHy,, producing '*C-depleted
carbonate and a residual methane pool that is '*C-
enriched (e.g., Whiticar, 1999), as observed at the top of
the SMTZ in PC04 (3'>C-CH, values up to —22%o;
Fig. 3). However, low 8'*C-CH, values measured at the
depth of the SMTZ (i.e., 12C rather than '3C enriched, as
in e.g. PC02, Fig. 3), are often observed and attributed to

carbon cycling: AOM immediately above the SMTZ pro-
gressively enriches the local carbonate pool in '>C which
is recycled to methane with additional >C enrichment by
methanogenesis occurring immediately below the SMTZ
(Borowski et al., 1997). Alternatively, if the supply of sul-
phate from overlying seawater is very limited, enzyme-
mediated equilibrium carbon isotope exchange can occur,
producing a '*C-enriched methane pool without coupled
methanogenesis (Yoshinaga et al., 2014). These processes
are summarized in Fig. 7.

Thus, according to Yoshinaga et al. (2014), if the supply
of methane increases the SMTZ moves towards the seafloor
and oxidation of methane occurs in the presence of high
sulphate, resulting in '’C-enriched residual methane.
Conversely, a stable or decreasing methane supply leads
to diffusion controlled methane oxidation and results in
12C-enriched residual methane. For core PC04, the §8'3C-
CH, data are consistent with the occurrence of AOM in
the presence of high sulphate and thus support the inference
that the methane flux has recently increased. The absence of
strongly '*C-depleted methane beneath the SMTZ in core
PC04 is also consistent with a recently increased methane
flux that prevents the development of a well-established
interval of carbon cycling at the SMTZ, in contrast to the
other sites where stable methane fluxes have allowed a
strongly '*C-enriched carbon pool to accumulate over this
sediment depth interval. Both processes may be occurring
simultaneously, and both support the idea that methane
fluxes have recently increased at this site.

It is clear that the supply of methane to shallow sedi-
ments in the vicinity of the LLGHSZ is largely unaffected
by release of gas from hydrate. Geophysical surveys
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Fig. 7. Schematic illustration of the processes driving shifts in
5'3C-CH, near the SMTZ. The interval in which AOM occurs
(grey shaded area, modelled AOM rate as shown in Fig. 3), is
divided into two zones: the upper area (pink, zone D) where AOM
occurs in the presence of high sulphate concentrations favouring
kinetic isotope fractionation, and the lower area in which AOM
occurs in the presence of low sulphate concentrations favouring
enzyme-mediated equilibrium isotope exchange (blue, zone C).
(For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

indicate that focused subsurface methane fluxes lead to
small pockets of hydrate formation (e.g., Thatcher et al.,
2013). Thus, a potential explanation for the absence of evi-
dence for gas hydrate destabilization in this study is that the
sampled sites missed locations where hydrate had been pre-
sent. While the evidence for changes in subsurface methane
supply that we observe in cores PC01, GC02 and PC04 is
consistent with hydrate dissociation, alternative explana-
tions including other processes that act to alter fluid flow
pathways are also possible. These can only be properly
evaluated if the coring density is significantly higher. Unfor-
tunately, the glaciogenic nature of the uppermost sediments
makes coring extremely difficult, so this will be hard to
achieve.

5.3. AOM control on methane release from shallow sediments

The distinctive result from the modelling is that the
fluxes of dissolved methane into the shallow subsurface sed-
iments vary by an order of magnitude in cores taken close
to (within ~0.01 to 0.3 km) the seafloor bubble plumes
(30-550 mmol CHy m 2 yr™!; Table 4). This is interpreted
as the result of focusing of gases in cracks and small frac-
tures in the low-permeability glaciogenic sediments (e.g.,
Thatcher et al., 2013). Dissolved methane fluxes into shal-
low subsurface sediments located at greater distance (~1
to 2.6 km) from the bubble plumes are slightly lower (10—
20 mmol m~2 yr~!; Table 4), but it is clear that methane
pervades sediments across the entire West Svalbard conti-
nental margin. At most sites sampled in this study, only a
tiny fraction of the methane delivered to the subsurface sed-
iments is transferred across the seafloor by molecular diffu-
sion: <0.01 mmol m~2 yr— .

Irrigation of the upper ~30 cm of sediment provides a
mechanism for increasing the dissolved methane flux into
bottom waters. Mixing of near-surface pore water with bot-
tom seawater at methane seeps can be enhanced by bioirri-
gation by chemosynthetic organisms (Boudreau, 1997), and
by the passage of bubble steams (Haeckel et al., 2007).
Transport-reaction model results for PC04, where high
methane concentrations are observed closest to the seafloor,
yield an irrigation flux of 70 mmol CH,m?yr~! into the
overlying water column. Nevertheless, pore waters in sedi-
ment cores taken by submersible directly on top of active
gas bubble plumes in our study area have much higher
methane concentrations (up to 11 mM; Berndt et al.,
2014), and the gas bubble (ebullition) flux of methane
across the sediment-seawater interface is far higher
(~1.1-13 x 10® mmol CH4 m~2yr~!; Sahling et al., 2014;
Table 5) than fluxes of methane delivered to the water col-
umn by diffusion or irrigation.

Our model results indicate that diffusive fluxes of
methane across the sediment-seawater interface persist up
to at least 300 m away from bubble plumes, whereas irriga-
tion fluxes are likely restricted to within ~30 m of plumes.
The spatial distribution of our sediment cores and modelled
methane fluxes inform a rough estimate of the methane
budget for the western Svalbard region (Table 5). Although
the area of the seafloor affected by seepage of methane via
diffusion is far greater than the area of seafloor affected by
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seepage via irrigation or bubble ebullition, the total amount
of methane emitted to the water column by ebullition
(4 x 10° to 5 x 107" mol yr~!; Table 5) is far greater than
that emitted via irrigation (2 x 10* to 1 x 10° mol yr!;
Table 5) or diffusion (2 to 5 mol yr—'; Table 5). Fluxes of
methane delivered to the water column by diffusion or irri-
gation are slightly lower than those estimated for the
Hékon Mosby mud volcano located in the Barents Sea to
the south (~6 x 10°mol yr™'; Milkov et al., 2004). The
total methane flux density (ebullition + irrigation + diffu-
sion; 1.1-13.1 molm~2 yr~!, Table 5) is similar to that
reported for methane ebullition on the East Siberian Arctic
Shelf (0.2 to 14 mol m2 yrfl; Shakhova et al., 2014).

Model results reported in Table 5 indicate that >80% of
the dissolved methane that enters the shallow subsurface
sediments in the irrigation zone (within 30 m of seafloor
bubble plumes), and >99.99% of the dissolved methane that
enters the shallow subsurface sediments between 30 m and
300m away from the bubble plumes is consumed by
AOM. The rate of AOM is much higher at bubble plume
sites (up to 11 pmol ecm™> day~'; Berndt et al., 2014) than
modelled in this study (<0.6 pmol cm™ day™!; Table 4;
Fig. 5), but the proportion of methane oxidised is far lower
(<0.1%; Table 5). Reduced AOM efficiency with increasing
methane flux has been observed in other cold seep environ-
ments (e.g., Vanneste et al., 2011; Felden et al., 2013). Over-
all, we estimate that the proportion of all methane
(dissolved + gas phase) entering the shallow subsurface sed-
iments that is consumed by AOM amounts to ~10 % of the
total flux to the shallow subsurface sediments. Localized
high gas fluxes, likely resulting from the focusing of fluid
flow through cracks within the relatively low permeability
glaciogenic sediments (Thatcher et al., 2013), play a critical
role in effecting the release of methane at the seafloor off-
shore western Svalbard.

6. SUMMARY AND CONCLUSIONS

The chemical compositions of gases in shallow sedi-
ments and bubble plumes and sediment pore water geo-
chemistry provide no clear evidence for dissociation of
hydrate close to the landward limit of the GHSZ offshore
western Svalbard. Methane fluxes into shallow sediments
appear to be at steady-state in all but one core (PC02).
The chemical composition of the bubble plume gases is sim-
ilar to that of a gas hydrate sample from a pockmark site
~30km away from the LLGHSZ, suggesting that they
may have the same gas source, but our data cannot distin-
guish between gas that has been released by dissociating
hydrate and gas that has never been in the hydrate phase.

Pore waters from sediments within the seasonal GHSZ
(PC04), and from deeper sites where hydrate is expected to
be stable year-round (PCO1 and GCO02), provide some evi-
dence for recent changes in the supply of methane from
depth. This would be consistent with hydrate dissociation,
or other processes which alter subsurface gas flow pathways.
A higher sampling density is required to better constrain the
cause of changes in methane supply to the LLGHSZ.

Our analyses show that methane pervades the shallow
subsurface sediments offshore western Svalbard, but

methane fluxes are highly spatially heterogeneous. If the
methane flux to the shallow subsurface sediments is rela-
tively low (30-120 mmol m~2 yr~'), methane is largely con-
sumed by anaerobic oxidation below the seabed, and the
flux of methane across the seafloor is negligible. At higher
methane fluxes (up to >~200 mmol m~2yr™), irrigation
of near-surface sediment pore waters increases transfer of
methane into the water column (up to ~70 mmol m =2 yr™'),
but even this is insignificant compared to the quantity of
methane transferred in the gas bubble plumes (up to
~16,000 mmol m 2 yr~'; Sahling et al., 2014). Overall,
AOM prevents less than 10% of the total methane delivered
to shallow sub-surface sediments from reaching the overly-
ing water column.
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