BEHEERSEENHEID VAN HET MATHEMATISCH MODEL VAN DE NOORDZEE

GROEP MODELLEN

Bepaling van de Sedimentbalans voor de Belgische Kustwateren (SEBAB-III)

Activiteitsrapport 1: Dynamica van het gesuspendeerd particulair materiaal (SPM) op het Belgisch Continentaal Plat

Michael Fettweis, Bouchra Nechad, Frederic Francken & Dries Van den Eynde

SEBAB/3/MF/200212/NL/AR/1

Voorbereid voor Afdeling Waterwegen Kust, Administratie Waterwegen en Zeewezen, Ministerie van de Vlaamse Gemeenschap, contract SEBAB-III

> BMM 100 Gulledelle B–1200 Brussel België

Inhoudstafel

1.	Inleiding	2
1.1.	Achtergrond van het project	2
1.2.	Doel van het SEBAB-III project	3
1.3.	Overzicht van dit rapport	3
1.4.	Publicaties binnen het SEBAB-III project	4
2.	Numeriek model	5
2.1.	Het MU-BCZ model	5
2.2.	Het MU–STM model	5
2.3.	Het MU-BCP model	6
3.	Variatie van het particulair suspensiemateriaal ged	urende
	een getij	7
3.1.	De meetplaatsen	7
3.2.	Getijgebonden variaties	9
3.3.	Verticale SPM-variaties	11
4.	Effect van baggerspeciestortingen op het par suspensiemateriaal	ticulair 13
4.1.	Hoelang blijft het gestorte materiaal in suspensie?	13
4.2.	Hoe groot is de invloedszone van de stortingen?	14
5. 5 1	Gesuspendeerd particulair materiaal en SeaWiFS beelde Kartering van gesuspendeerd particulair materiaal uit SeaW	2 n 20 Vies
5.1.	heelden	20
52	Kwalitatieve analyse van de SPM kaarten	20
5.3.	Discussie	22
6.	Conclusies	25
7.	Referenties	27
8.	Lijst met afkortingen en definities	29
Append ti	dix 1: Variatie van SPM concentratie in de waterkolom ien 13-uursmetingen	tijdens
Appeno to	dix 2: Tabel met opnametijdstippen van beschikbare SeaV ellietbeelden en getijomstandigheden te Oostende	Vifs sa-
Append	dix 3: SeaWIFS satellietbeelden	
Append w ti	dix 4: Getijamplitude te Oostende, golfhoogte te Bol van vindsnelheid en –richting te Wandelaar omstreeks het op ijdstip van SeaWifs satellietbeelden en van 13-uursmetinge	Heist, pname- en
Appeno B	dix 5: Storttijdstippen en hoeveelheden (in TDS) te B/1, 3/6 13 uur vóór de satellietopname	B/2 en

Appendix 6: Gestorte hoveelheden op de baggerplaatsen B/1, B/2, B/6 en B/9 april 1997 – maart 2000

I. Inleiding

I.I. Achtergrond van het project

De Belgisch/Nederlandse kustzone tussen Oostende en de Westerschelde (Zuidelijke Noordzee) is gekarakteriseerd door slibvelden en een hoge slibconcentratie in het water. De wateren zijn gekenmerkt door een geringe diepte, een goede menging en een hoge hydrodynamische energie. Het voorkomen van slibvelden geassocieerd met een turbiditeitsmaximum in een gebied met hoge hydrodynamische energie is in het verleden reeds het onderwerp geweest van enkele studies. De verklaringen die in deze studies worden gegeven zijn allen gebaseerd op een hydrodynamische valluik theorie, zoals een neer of divergerende of convergerende residuele stroming- of transportpatronen (Bastin, 1973; Nihoul, 1975; Gullentops et al., 1976). De tracerproeven en de STAberekeningen (Sediment Trend Analyse) die in opdracht van Afdeling Waterwegen Kust (WWK) door HAECON NV (1994a, 1994b) werden uitgevoerd, suggereren dat de slibfractie van het gebaggerde materiaal, dat in een zone dicht bij de kust wordt gedumpt, zeer snel en volledig recirculeert en dus door de stromingen en golven als het ware ter plaatse 'gevangen' wordt. Malherbe (1991) besluit hieruit dat de sedimentbalans in een turbiditeitsmaximum best vergeleken kan worden met een nagenoeg gesloten systeem dat heel weinig uitwisseling kent met naburige systemen. Het is opmerkelijk dat theorieën van bijna gesloten sedimentsystemen ter hoogte van de Belgisch/Nederlandse kust nog steeds gebruikt worden om het voorkomen van turbiditeitsmaxima te verklaren.

In het kader van het SEBAB-I project werd door de BMM, in opdracht van het Bestuur, literatuuronderzoek gedaan en langdurige simulaties uitgevoerd met als doel het sedimenttransport voor de Belgische kust te kwantificeren. De vraag waarop getracht werd een antwoord te geven was: wat is de verhouding tussen de hoeveelheid materiaal dat jaarlijks gebaggerd en gedumpt wordt en de hoeveelheid materiaal dat het Belgisch Continentaal Plat binnenkomt via het Kanaal? Wanneer deze verhouding groot is, betekent dit dat het baggeren van de vaargeulen en de havens een belangrijk proces is in de Belgische kustwateren en dat door de keuze van goede dumpingsites de hoeveelheid gebaggerd materiaal zal kunnen verminderd worden. Is deze verhouding evenwel klein dan is het dumpen van het slib een onbelangrijk effect ten opzichte van de natuurlijke opvulling van de vaargeulen door materiaal dat via de Franse grens het Belgisch Continentaal Plat bereikt of dat lokaal door erosie van holocene sliblagen in het systeem komt. In dit laatste geval is de plaats van de dumpsites niet van zeer groot belang aangezien het baggeren van het natuurlijk aangevoerde slib toch de belangrijkste hoeveelheid blijft uitmaken.

De resultaten die verkregen werden tijdens het SEBAB-I project (Fettweis & Van den Eynde, 2001) waren zodanig dat geen nauwkeurig antwoord op deze vraag kon gegeven worden. In tegenstelling met de bagger- en stortgegevens, die nauwkeurig gekend zijn, is de onzekerheid of variabiliteit van de litera-

tuur- en meetgegevens van het natuurlijk slibtransport groot. Uit de studie bleek verder dat het natuurlijk sedimenttransport voor een belangrijk deel bepaald wordt door de voortdurende afwisseling van erosie en sedimentatie tijdens een getij en tijdens een doodtij-springtijcyclus. Dit heeft uiteraard belangrijke consequenties naar de modelsimulaties toe, omdat de rand- en beginvoorwaarden en de parameterwaarden van het sedimentmodel voor een groot deel hierop berusten.

I.2. Doel van het SEBAB-III project

De boven vermelde vraag die de doelstelling van het SEBAB-I en –II project vormde, blijft daarom grotendeels ongewijzigd: hoe groot is de verhouding tussen de hoeveelheid materiaal dat jaarlijks gebaggerd en gedumpt wordt en de hoeveelheid materiaal dat het Belgisch Continentaal Plat binnenkomt via het Kanaal plus het reeds aanwezige slib in de slibvelden langsheen de Oostkust? Een conclusie uit het SEBAB-I project indachtig, werd de doelstelling aangevuld met de vraag hoe groot de natuurlijke variabiliteit van het sedimenttransport is en wat de invloed van de dagzomende Holocene of Tertiaire slib- en kleilagen langsheen de Belgische kustzone op het sedimenttransport zijn.

Dit project probeert de kennis van de sedimentverplaatsingen, meer bepaald de fijnkorrelige fractie (silt en slib) op het Belgisch Continentaal Plat te vergroten. Een beter inzicht in de sedimentbewegingen is van groot belang om de effecten van veranderingen van b.v. locaties van stortplaatsen of hoeveelheid gestorte specie te voorspellen en te simuleren.

1.3. Overzicht van dit rapport

In dit rapport worden SPM-concentratie kaarten afgeleid uit SeaWiFS satellietbeelden voorgesteld. Het grote voordeel van deze kaarten is dat de distributie van het suspensiemateriaal in een groot gebied getoond wordt. Deze beelden kunnen daarom ook gebruikt worden om enerzijds de resultaten van het sedimenttransportmodel te valideren en anderzijds om meer te begrijpen van de sedimentdynamica in de Belgische kustzone. Een betere kennis van de dynamica van het slib zal ook naar betere randvoorwaarden voor het sedimenttransportmodel kunnen leiden.

De SeaWiFS satelliet neemt 1 á 2 beelden per dag over de zuidelijke Noordzee. Enkel bij optimale meteorologische omstandigheden (geen bewolking) zijn de beelden bruikbaar voor verdere analyse, wat een 20-tal opnamen per jaar geeft. Wegens dit gering aantal kunnen de beelden enkel een indicatie van de variabiliteit van het suspensiegehalte in het water geven. Het is nodig om de gekende oorzaken van variatie, zoals getij, doodtij-springtij cyclus, seizoenen of stormen in rekening te brengen bij interpretatie. In dit rapport gaan we de beschikbare gegevens (satellietbeelden, getij-, golf-, windgegevens, waterstanden, storthoeveelheden) verzamelen en trachten een verklaring te vinden voor de in het satellietbeeld gevonden distributie van het suspensiegehalte.

I.4. Publicaties binnen het SEBAB-III project

Er werden volgende rapporten opgesteld en voordrachten gegeven:

- BMM-Oostende. 2002. RV Belgica Meetcampagnes SEBAB-II 2001-2002, Monitoring Sediment Transport. BMM-MDO/BELGICA/SEBAB-II/Rapport 2002. 75pp.
- Fettweis, M., Van den Eynde, D. & Francken F., 2002. Slibbronnen vanuit actueel perspectief, inzichten via metingen en modellering. Workshop Effectketen Noordzee: Slibgedrag en effecten op biotisch systeem. WL|Delft Hydraulics, 7 november 2002.
- Francken, F. & Fettweis, M., 2002. Mapping of muddy surface sediments using the multibeam echo sounder EM1002. Workshop on the multibeam echosounder Kongsberg Simrad EM1002 installed on board of the RV Belgica. Ministerie van Economische Zaken, Brussel, 2 oktober 2002.
- Vandenbrande R., 2002. Installing the EM1002(S) multibeam system aboard the Belgica and keeping it operational. Workshop on the multibeam echosounder Kongsberg Simrad EM1002 installed on board of the RV Belgica. Ministry of Economic Affairs, Brussel, 2 oktober 2002.

2. Numeriek model

Hieronder volgt een korte beschrijving van de modellen die gebruikt werden voor de simulaties. De simulaties voorgesteld in hoofdstuk 4 werden nog uitgevoerd met het mu-BCZ model, terwijl de hydrodynamische condities tijdens de opnamen van de satellietbeelden berekend werden met het mu-BCP model.

2.1. Het MU-BCZ model

De simulaties in hoofdstuk 4 (invloed van baggerspeciestortingen op SPMconcentratie) werden met het mu-BCZ model uitgevoerd. Dit tweedimensionale hydrodynamische model berekent de dieptegeïntegreerde stroomsnelheid en de waterstanden op een modelrooster onder de invloed van de getijden en de meteorologische effecten. Het model lost de klassieke ondiep watergolfvergelijkingen op tezamen met de vergelijking voor het behoud van massa. De vergelijkingen worden met een volledig expliciete eindige differentiemethode opgelost op een Arakawa-C modelrooster. De bodemspanning wordt berekend met een kwadratische wrijvingswet.

Het model is geïmplementeerd op een modelrooster, dat het Belgische Continentale Plat en de Vlaamse Banken omvat, met een resolutie van $25" \times 40"$, wat ongeveer gelijk is aan 750 m op 750 m. Aan de open randvoorwaarden is het model gekoppeld met het hydrodynamische model mu-STORM voor de gehele Noordzee en het Kanaal (Adam, 1979; Adam & Sterling, 1984). Vier halfdagelijkse (M₂, S₂, N₂, K₂) en vier dagelijkse (O₁, K₁, P₁, Q₄) componenten worden gebruikt om de waterhoogten aan de open randen van dit model te berekenen waarbij het omgekeerd barometrisch effect wordt opgelegd om rekening te houden met meteorologische omstandigheden. Aan de uitstroming van de Schelde is het model gekoppeld met een ééndimensionaal model voor het Schelde-estuarium.

Voor de berekening van de golven op het Belgisch Continentale Plat wordt het mu-WAVE model (Van den Eynde, 1992) gebruikt. De kern van het model bestaat uit het tweede generatie golfmodel HYPAS (Günther & Rosenthal, 1985), dat de onafhankelijke berekening van de deiningenergie voor verschillende frequenties en richtingen met behulp van een straalmethode combineert met een parametrisch zeegangsmodel, dat de JONSWAP parameters en de gemiddelde zeegangsrichting als prognostische variabelen gebruikt. Een Lax-Wendrof schema wordt gebruikt om de gekoppelde vergelijkingen op te lossen. Het model is geïmplementeerd op twee gekoppelde roosters. In de gehele Noordzee wordt een model met een resolutie van 50 km x 50 km gebruikt, terwijl in de Zuidelijke Bocht van de Noordzee een fijner modelrooster met een resolutie van 5 km x 5 km wordt gebruikt.

2.2. Het MU-STM model

Het tweedimensionale sedimenttransportmodel mu-STM is een Lagrangiaans model, dat is gebaseerd op de Second-Moment methode (de Kok, 1994). In de-

ze methode wordt al het materiaal in een roostercel voorgesteld door één rechthoekige massa, met zijden parallel aan het modelrooster, dat wordt gekarakteriseerd door zijn nulde moment (de totale massa), zijn eerste momenten (het massacentrum) en zijn tweede momenten (de uitgebreidheid van de rechthoek). De advectie in het modelrooster kan nu worden uitgevoerd door het advecteren van elk van de zijden van de rechthoek. Na elke tijdstap wordt alle massa in een roostercel terug samengenomen tot één rechthoekige massa. Door het gebruik van deze methode wordt er minder numerieke diffusie geïntroduceerd in de modelresultaten dan bij klassieke Euleriaanse modellen. Het model kan rekening houden met verschillende sedimentklassen. In de hier besproken toepassingen wordt enkel met de fractie <63 µm (slib) rekening gehouden.

2.3. Het MU-BCP model

Het mu-BCP model omvat het volledige continentale plat van België. Het is gebaseerd op de code van het tweedimensionale OMNECS model en lost de klassieke tweedimensionale en verticaal geïntegreerde ondiepwater golfvergelijkingen op. Het mu-BCP model werd beschreven in het Sebab-II eindrapport (Fettweis et al., 2002).

3. Variatie van het particulair suspensiemateriaal gedurende een getij

Kennis over de resuspensie, het transport en de afzetting van gesuspendeerd particulair materiaal (SPM) is belangrijke bij de interpretatie van de satellietbeelden. Vele van de satellietbeelden (zie hoofdstuk 5 en appendix 3) vertonen onderling grote variaties in SPM-concentratie in de oppervlaktelaag, op sommige beelden is een duidelijk turbiditeitsmaximum te zien terwijl op andere beelden de SPM-concentratie over heel het gebied laag is. Steunend op de resultaten van 13-uursmetingen wordt een verklaring voor deze verschillen gezocht in:

- de natuurlijk optredende getij-gebonden variatie?
- en/of de verticale gradiënt in SPM-concentratie gedurende een getij?

3.1. De meetplaatsen

De hier aangehaalde 13-uursmetingen werden voorgesteld in BMM-Oostende (1999, 2000, 2001, 2002). De metingen uit SEBAB-I werden reeds geanalyseerd in Fettweis (2001). Er wordt naar deze rapporten verwezen voor o.a. een beschrijving van de gebruikte meetinstrumenten. We willen hier de verticale variatie van de SPM-concentratie, een aspect dat toen niet werd behandeld, bespreken. Verticale profielen zijn om het uur beschikbaar en werden opgemeten tijdens het bovenhalen van de rosette (sbe09) voor het ledigen van de Niskin-flessen. De profielen omvatten ongeveer de waterkolom vanaf 3 m boven de bodem tot 1 m onder de oppervlakte. De onderste 3 m, waar de hoogste sediment concentraties voorkomen, werden dus niet opgemeten. Een overzicht van de metingen (begin, einde, coördinaten) wordt in tabel 3.1 gegeven. De ligging van de meetpunten is bovendien te zien in figuur 3.1.

Cmp.	Begin datum + tijd	End datum + tijd	Latitude	Longitude	Seizoen
99/07	08/03/99 15h47	09/03/99 05h03	51°17.69'	2°56.87'	Winter
99/17	13/07/99 06h20	13/07/99 19h20	51°26.0'	2°48.5'	Zomer
00/08	21/03/00 10h14	21/03/00 23h07	51°23.24'	3°15.70'	Lente
00/14	29/05/00 08h53	29/05/00 22h01	51°23.12'	3°13.48'	Lente
00/19	10/07/00 09h15	10/07/00 22h22	51°27.5'	3°03.07'	Zomer
00/26	23/10/00 20h10	24/10/00 08h53	51°23.4"	3°15'	Herfst
00/31	07/12/00 10h00	08/12/00 05h16	51°25.27'	3°16.14'	Herfst
01/01	25/01/01 11h45	26/01/01 00h26	51°28.15'	3°13.08'	Winter
01/06a	07/03/01 16h07	08/03/01 09h38	51°22.51'	3°07.96'	Winter
01/06b	08/03/01 10h41	09/03/01 06h29	51°20.97'	3°01.23'	Winter
01/17a	18/06/01 18h30	19/06/01 07h15	51°25.99'	3°23.61'	Lente
01/17b	19/06/01 19h45	20/06/02 08h20	51°30.51'	3°09.03'	Lente
01/29	12/11/01 17h00	13/11/01 07h15	51°22.93'	3°00.42'	Herfst
02/01	30/01/02 11h30	31/01/02 01h00	51°24.18'	3°17.61'	Winter
02/06a	11/03/02 17h00	12/03/02 06h15	51°25.25'	3°17.02'	Winter
02/06b	12/03/02 15h25	13/03/02 04h20	51°23.38'	2°57.06	Winter

Tabel 3.1: 13-uursmetingen, Cmp = Belgica-campagne (jaar/nummer), begin en eind datum + tijd (GMT) en latitude, longitude, zie ook figuur 3.1.

Figuur 3.1: Ligging van de 13-uursmetingen en uurlijkse SPM-transportvectoren. (figuur uit Fettweis, 2001).

Uit de Getijtafels (1999, 2000, 2001, 2002) werden de hoog- en laagwaterstanden afgelezen en ook de getijcoëfficiënten op de meetdagen bepaald, deze zijn weergegeven in tabel 3.2.

Cmp.	HW/LW-1	HW/LW–2	HW/LW-3	tijversch	tijcoëf	Tijversch	tijcoëf.	Tij
				1-2		2-3		
99/07	15h57 4.12m	22h15 0.62m	04h12 4.11m	3.50 (eb)	0.8997	3.29 (vl)	0.8458	DT
99/17	06h22 0.10m	10h05 4.61m	18h50 0.01m	4.51 (vl)	1.1594	4.60 (eb)	1.1825	ST
00/08	13h26 4.66m	19h46 0.31m	01h42 4.61m	4.35 (eb)	1.1853	4.30 (vl)	1.1717	ST
00/14	09h12 3.93m	15h25 0.83m	21h33 3.85m	3.10 (eb)	0.8447	3.02 (vl)	0.8229	DT
00/19	07h35 3.92m	13h47 0.99m	19h59 3.81m	2.93 (eb)	0.7984	2.82 (vl)	0.7684	DT
00/26	21h45 4.25m	04h02 0.84m	10h10 4.13m	3.41, (eb)	0.9292	3.29 (vl)	0.8965	GT
00/31	09h14 3.81m	15h36 0.70m	21h45 4.11m	3.11 (eb)	0.8474	3.41 (vl)	0.9292	GT
01/01	13h28 4.32m	19h36 0.64m	01h45 4.26m	3.68 (eb)	1.0027	3.62 (vl)	0.9864	GT
01/06a	17h05 0.59m	23h13 4.09m	05h38 0.31m	3.50 (vl)	0.9537	3.78 (eb)	1.0300	GT
01/06b	11h37 4.44m	17h57 0.46m	23h59 4.32m	3.98 (eb)	1.1080	3.86 (vl)	1.0518	ST
01/17a	16h20 0.73m	22h26 4.02m	4h44 0.43m	3.29 (vl)	0.8965	3.59 (eb)	0.9782	GT
01/17b	17h06 0.55m	23h10 4.24m	05h29 0.31m	3.69 (vl)	1.0054	3.93 (eb)	1.0708	GT
01/29	16h24 0.37m	22h31 4.49m	04h40 0.72m	4.12 (vl)	1.1226	3.77 (eb)	1.0272	ST
02/01	13h39 4.71m	19h58 0.35m	02h00 4.50m	4.36 (eb)	1.1880	4.15 (vl)	1.1308	ST
02/06a	17h53 0.67m	23h51 4.11m	06h15 0.27m	3.44 (vl)	0.9373	3.84 (eb)	1.0463	GT
02/06b	12h11 4.30m	18h29 0.60m	00h25 4.22m	3.70 (eb)	1.0082	3.62 (vl)	0.9864	GT

Tablel 3.2: 13-uursmetingen, Cmp = Belgica-campagne (jaar/nummer), HW/LW tijd (GMT) en HW- of LW-stand (m TAW), zie Getijtafels (Getijtafels 1998-2002). Tijverschil (HW-LW) en getijcoëfficiënt (vl = vloed), zie tabel 2.3. Het dichtbijzijnde tijstation voor de 99/07 en 99/17 campagnes is Oostende, voor de anderen is dit Zeebrugge. DT=doodtij, ST=springtij, GT=gemiddeld tij.

3.2. Getijgebonden variaties

Het suspensiemateriaal kent een typische distributie in de Belgische kustzone die terug te brengen is naar de hydrodynamische condities, de aanvoer van suspensiemateriaal en naar resuspensie en/of erosie van (recente of oude) fijnkorrelige sedimenten (zie Fettweis & Van den Eynde, 2001). Het belang van erosie neemt toe bij meer wind en golven. Al deze processen maken dat er een variatie in SPM concentratie optreedt tijdens een tijcyclus.

Uit de metingen blijkt (zie appendix 1) dat de SPM concentraties sterk variëren tijdens een getij, minimale waarden liggen tussen 20-70 mg/l, maximale waarden tussen 100-600 mg/l. Tijdens drie metingen was de SPM concentratie bijzonder laag gedurende heel het getij (8-25 mg/l). Twee van de metingen lagen buiten het gebied met verhoogde turbiditeit dat zich in de Belgisch/Nederlandse kustzone bevindt, wat deze lage waarden verklaard. In de directe omgeving van de derde meting (00/31) met lage SPM concentratie werd 6 weken eerder (00/26) en later (01/01) wel hoge SPM concentraties gemeten. Dit wijst vermoedelijk op variaties in aanvoer van gesuspendeerd materiaal via Frankrijk ten gevolge van meteorologische invloeden, zoals blijkt uit de figuren in appendix 4. Voorafgaand meting 00/31 blies de wind gedurende enkele weken bijna continue uit het SW met een sterkte van 5-6 Bf, waardoor het suspensiemateriaal vermoedelijk naar zee werd 'geblazen'.

Uit de metingen blijkt verder (zie figuren in appendix 1 en tabel 3.3) dat er over het algemeen tijdens een getijcyclus twee keer een korte periode met verhoogde SPM concentraties optreedt. De rest van de getijcyclus komt de SPM concentratie overeen met een achtergrondwaarde, die in het turbiditeitsmaximumgebied (ter hoogte van Zeebrugge) reeds hoog is (± 50 mg/l). De SPM concentratiepiek duurt ongeveer 2 uren per eb en vloed. Dit maakt dat gedurende ongeveer 1/3 van een getijcyclus de SPM concentraties dus significant hoger zijn dan tijdens de rest van de tijcyclus.

Cmp	Tijdstip (t.o.v. HW/LW)	Duur van SPM	Top/Aver	Top/Bott.	Comentaar
	van max SPM conc.	conc. piek			
99/07	LW	2 u	0.82	0.72	Relatief goed gemengd
	HW-2u	3 u	0.81	0.67	Relatief goed gemengd
99/17	Geen piek, achtergr	ondwaarde	0.92	0.83	Goed gemengd
00/08	Hw+Iu	2u	0.77	0.62	Relatief goed gemengd,
	LW+Iu	2.5u	0.67	0.58	Relatief goed gemengd
00/14	Lw-Iu	2u	0.42	0.37	Relatief sterke gradient
	Hw	2u	0.63	0.37	Relatief sterke gradient
00/19	Geen piek, achtergr	ondwaarde	0.91	0.74	Relatief goed gemengd
00/26	Hw+1u	2u	1.00	1.00	Goed gemengd
	Lw	2.5u	0.68	0.51	Relatief goed gemengd
00/31	Geen piek, achtergr	ondwaarde	0.98	0.98	Goed gemengd
01/01	Lw-2.3u	lu	0.88	0.87	Goed gemengd
	Hw-2.3u	2u	0.39	0.26	Sterke gradient
01/06a	lw	2u	0.34	0.25	Sterke gradient
	Hw+Iu	2u	0.43	0.34	Sterke gradient
01/06b	Hw+2.5	lu	0.45	0.30	Sterke gradient
	lw	4u	0.45	0.14	Sterke gradient

Tabel 3.3: Benaderend tijdstip van maximale concentratie t.o.v. hoogwater en laagwater, duur van de piek in SPM concentratie en verhouding tussen de SPM concentratie aan de oppervlakte (Top) en de gemiddelde SPM concentratie over de waterkolom (Aver) en de ± 3 m van de bodem (Bott).

Uit de figuren in appendix 1 blijkt ook dat de pieken in SPM concentratie gekoppeld zijn aan pieken in stroomsnelheid. Meestal treden de maximale SPM concentraties na de maximale stroomsnelheden op. Dit kan verklaard worden door het feit dat de meetinstrumenten enkele meters (ongeveer 3 m) van de bodem hangen en dat het enige tijd neemt vooraleer het geresuspendeerde particulair materiaal verdeeld is over de waterkolom. Wat de OBSsensoren opmeten is dus deels het resultaat van transport en deels van resuspensie. Het optreden van een faseverschuiving tussen de snelheidspieken en de concentratie- en transportpieken is karakteristiek in getijdegebieden. Volgende mechanismen verklaren deze tijdsverschuiving:

- Uitzakken: nadat de snelheid verminderd is tot onder een kritische drempel voor sedimentatie worden de slibdeeltjes nog verder getransporteerd over een zekere afstand voordat ze zich vasthechten aan de bodem. De tijd hiervoor nodig is omgekeerd evenredig met de valsnelheid.
- Erosie: de kritische snelheid nodig om slibdeeltjes in suspensie te brengen is groter dan de kritische snelheid voor sedimentatie.
- Verticale menging: de slibdeeltjes die in suspensie gebracht werden, hebben een zekere tijd nodig om over de waterkolom verdeeld te worden. Dit werd ook waargenomen door Van Parys & Pieters (2001) ter hoogte van de stortplaats B/6. Zij berichten dat de slibdeeltjes reeds vanaf lage snelheden (0.15 m/s) geresuspendeerd worden, maar dat deze verhoogde concentratie enkel later, vanaf hogere snelheden (>0.5 m/s) boven in de waterkolom zichtbaar wordt.

Figuur 3.2. Correlatie tussen de SPM concentratie aan de oppervlakte en (a) de SPM concentratie op ongeveer 3 m van de bodem en (b) de gemiddelde SPM concentratie. Bovendien is de lineaire regressiecurve getekend.

3.3. Verticale SPM-variaties

Figuur 3.2 toont de correlatie tussen de SPM concentratie 1 m onder de oppervlakte en de SPM concentratie onderaan de waterkolom (ongeveer 3 m van de bodem) en de gemiddelde SPM concentratie respectievelijk. Over het algemeen is er een goede correlatie tussen de oppervlakte en de gemiddelde concentratie. De correlatiecoëfficiënt is groter bij de gemiddelde SPM concentratie (0.86 t.o.v. 0.68).

Uit de figuren in appendix 1 blijkt dat er een verticale gradiënt in SPM concentratie optreedt. We kunnen een getijcyclus opdelen in een periode met

achtergrondconcentratie (2/3 van de cyclus) en een periode met verhoogde concentratie (1/3 van de cyclus), zie tabel 3.3.

Gedurende de periode met achtergrondconcentratie is de verticale gradiënt klein en is de waterkolom dus vrij goed gemengd. Een satellietbeeld genomen tijdens zo'n periode geeft dus een goed beeld (mits een kleine correctie, zie figuur 3.2) van de SPM concentratie in de waterkolom.

Tijdens de perioden met verhoogde SPM concentratie (pieken) werd bij de metingen 00/14, 01/01, 01/06a en 01/6b sterke gradiënten waargenomen, de verhouding tussen de oppervlakteconcentratie en de bodemconcentratie is kleiner dan 0.4. Het is op dit moment niet duidelijk waarom er bij deze metingen sterke gradiënten optraden, terwijl bij de andere metingen de waterkolom vrij goed gemengd was. Enkel een analyse van een groot aantal metingen zou hier een verklaring kunnen aanbieden. Een satellietbeeld genomen tijdens een periode met sterke gradiënt kan een verkeerd beeld (onderschatting) geven van de SPM concentratie in de waterkolom.

Effect van baggerspeciestortingen op het particulair suspensiemateriaal

Jaarlijks worden ongeveer 10x10⁶ ton droge stof (TDS) gebaggerd voor onderhoud van de vaargeulen (46%) en de havens (54%). 90% van het gebaggerd materiaal bestaat uit fijnkorrelig sediment (slib). In de havens wordt bijna uitsluitend slib gebaggerd, terwijl de specie afkomstig uit de vaargeulen ongeveer 25% zand bevat. Het gebaggerde materiaal wordt op vier plaatsen in zee gestort (zie figuur 4.1), waarvan 50% op B/1 en 30% op B/6. In appendix 6 worden de beschikbare bagger- en stortgegevens verzameld, deze gegevens vormen een belangrijk onderdeel van de bestaande meetdata. De beschikbare (digitale) bagger- en stortdata werden opgesplitst in zand- en slibfractie en er werden jaaroverzichten opgesteld. De baggerdata kunnen een indicatie geven van de hoeveelheid aanslibbing in de vaargeulen.

De baggerwerken en het storten van het gebaggerde materiaal in zee verstoort het suspensietransport. Voor de interpretatie van satellietopnamen is het belangrijk het effect van de stortingen op de suspensieconcentratie te weten:

- Hoelang blijft het gestorte materiaal in suspensie en hoelang na een storting kan het dus zichtbaar zijn op satellietbeelden?
- Hoe groot is de invloedszone van de stortingen?

Zoals reeds in hoofdstuk 3 aangehaald wordt het turbiditeitsmaximum in de Belgische kustzone gevormd doordat het slibtransport vertraagd wordt waardoor als het ware een slibopstopping ontstaat. Het effect van baggerspeciestortingen op het globale sedimenttransport langs de kust is daarom beperkt, lokaal is het effect echter wel voelbaar.

4.1. Hoelang blijft het gestorte materiaal in suspensie?

Aan de hand van waarnemingen op de losplaats B/6 (zie Figuur 4.1) werd door Van Parys & Pieters (2001) het suspensiegehalte bij het lossen van baggerspecie gemeten. Zij omschrijven het suspensiegedrag bij het lossen als een verticale densiteitsstroom die achteraf als een densiteitswolk op maximaal 1.5 m boven de bodem beweegt en een invloedsfeer heeft van ongeveer 1.5 km, waarbuiten de turbiditeit lager is dan 5%. Nabij het oppervlak en op 5.6 m van de bodem werd enkel een verhoging van de turbiditeit gedurende 3 minuten gemeten. Vlak boven de bodem duurt het 25 to 30 minuten alvorens de turbiditeit terug tot achtergrondwaarden is gedaald.

Uit deze metingen kunnen we opmerken dat een stortpluim enkel vlak na het lossen opgemerkt zal kunnen worden op een satellietfoto. In appendix 5 wordt voor 1999 de tijdstippen van lossen en de hoeveelheid gelost materiaal op de losplaatsen B/1, B/2 en B/6 gegeven ongeveer 13 uur voor de opname van de satellietbeelden.

Figuur 4.1: Belgisch Continentaal Plat, ligging van de stortplaatsen B/I (B&W S1), B/2 (B&W S2), B/6 (B&W Zeebrugge Oost) en B/9 (B&W Oostende). Eveneens aangeduid zijn de randen van het numerieke model.

4.2. Hoe groot is de invloedszone van de stortingen?

Simulaties met opeenvolgende dumpingen van baggerspecie op drie stortplaatsen (B/1, B/2 en B/6) werden uitgevoerd voor het jaar 1999 (Fettweis & Van den Eynde, 2002). De data van de dumpingen werden gerangschikt per storttijdstip en per stortplaats en gecorrigeerd om enkel rekening te houden met de slibfractie. De baggerspeciestortingen worden in het model gesimuleerd door op het gegeven tijdstip de hoeveelheid slib op de stortplaats in suspensie in het model te brengen. Voor de simulaties werden waarden voor de kritische erosieschuifspanning van 0,5 Pa (vers slib) en 0,79 Pa (na 48 uren) gekozen. De schuifsterkte van de bodemlaag (vast slib) bedroeg 1,5 Pa en de erosieconstante 0,00012 kg/m²/s. In sedimenten met een lager slibgehalte (enkel in de bodemlaag) werd de erosieconstante vermenigvuldigd met de slibfractie. De valsnelheid was constant en bedroeg 1 mm/s. De kritische schuifspanning voor depositie bedroeg 0.5 Pa. Resultaten van validatieberekeningen waarin de modelresultaten vergeleken worden met in situ metingen worden besproken in Van den Eynde (1999a).

De uitgevoerde simulaties kunnen enkel een indicatie geven van de processen die zich werkelijk afspelen, omdat in het model nieuw materiaal ingebracht wordt en dus de massabalans verstoord wordt, zie Tabel 4.1. Tijdens het storten van specie uit onderhoudsbaggerwerken wordt geen nieuw materiaal ingebracht, het sediment wordt verplaatst over een zekere afstand. Ondanks deze verschillen kunnen de simulaties gebruikt worden om de lokale fysische effecten van het storten van baggerspecie te bekijken, *i.e.* de verhoogde turbiditeit en de grotere aanslibbing rond de stortplaatsen, in de vaargeulen en in de kustzone ten westen en ten oosten van Zeebrugge.

Nr	invoer		uitvoer			storten	Susp
	W-rand	erosie	N-rand	Schelde	sedim.		
1	+8.09	+10.62	-10.66	-0.39	-6.43	-	1.23
2	+8.09	+10.53	-15.40	-0.40	-7.98	+6.47	1.31

Tabel 4.1: Massabalans (in 10^6 ton droge stof) voor een simulatie van de 'natuurlijke' toestand (i.e. zonder storten, nr 1) en een simulatie met storten van slib (nr 2) op B/1, B/2 en B/6 voor het jaar 1999. +: invoer; -: uitvoer of immobilisatie; erosie: erosie van de bodemlaag; sedim: sedimentatie in de actieve modellagen; susp.: hoeveelheid slib in suspensie (netto).

Uit de simulatieresultaten blijkt dat ongeveer 75% van het gestorte slib het model weer verlaat langs de randen, 25% van dit slib wordt afgezet in het model of bevindt zich in suspensie (1.73 miljoen ton). De verhoogde slibafzetting ten gevolge van dit extra slib is gesitueerd in de nabijheid van de stortplaatsen en op de 'klassieke' sedimentatiegebieden, zie figuur 4.2.

De hoeveelheid materiaal dat gebaggerd en gestort wordt (zie appendix 4) is van dezelfde grootteorde als het natuurlijk residueel sedimenttransport op het Belgisch Continentaal Plat. Het is belangrijk erop te wijzen dat het storten van deze baggerspecie geen oorzakelijk verband heeft met het voorkomen van een turbiditeitsmaximum voor de kust. De verhoogde concentratie aan suspensiemateriaal ter hoogte van de Belgische Oostkust is een natuurlijk fenomeen dat o.a. reeds beschreven werd door Van Mierlo (1899) en dat het onderwerp vormde van tal van studies nadien, o.a. Fettweis & Van den Eynde (1999, 2001). Het storten voor de kust op B/1, B/2 en B/6 heeft wel een invloed op de lokale concentratie aan suspensiemateriaal, zoals ook blijkt uit modelresultaten. Deze laten zien dat het storten op B/1 de slibconcentratie doet toenemen in een cirkel met straal van ±10-20 km rond de stortplaats, zie figuur 4.3. De tijgemiddelde slibconcentratie stijgt met ongeveer 50 tot 100 mg/l afhankelijk van de stortfrequentie en -hoeveelheid. Ter hoogte van de stortplaats B/6 zijn de verschillen in turbiditeit met en zonder storting geringer. De resultaten laten ook zien dat de slibafzetting ten noorden van de Vlakte van de Raan toeneemt. Een deel van dit afgezette slib wordt terug in suspensie gebracht tijdens een springtij wat verantwoordelijk is voor de toename in turbiditeit en de uitgestrektheid van deze 'slibvlek' op de bodem. Ondanks de grote hoeveelheden aan slib die gestort werden, neemt de slibafzetting in de vaargeulen nauwelijks toe t.o.v. een simulatie zonder storten. Dit resultaat is in overeenstemming met de resultaten uit het VESTRAM project (Van den Eynde, 1999b) en ondersteunt het besluit dat het gestorte materiaal elders word afgezet of het domein heeft verlaten.

Figuur 4.2: Getij-gemiddeld slibafzetting (kg/m²) (a) doodtij (14/03/99) en (b) springtij (20/03/99). Per figuur: linksonder is de 'natuurlijke' toestand, linksboven de toestand met stortingen op B/1, B/2, B/6 en rechts is het verschil tussen beiden

Figuur 4.3: Getij-gemiddelde slibconcentratie (mg/l). (a) doodtij (14/03/99) en (b) springtij (20/03/99). Per figuur: linksonder is de 'natuurlijke' toestand, linksboven de toestand met stortingen op B/1, B/2, B/6 en rechts is het verschil tussen beiden.

Figuur 4.4: Stortplaats B/1, 11-27/03/1999. (a) Waterstand en Stroomsnelheid (b) Slibconcentratie (SPM) met en zonder stortingen van baggerspecie.

In Figuren 4.4 en 4.5 wordt gedurende een periode van 16 dagen (tussen doodtij en springtij) het verloop van de stroomsnelheid, de waterstand en de slibconcentratie met en zonder stortingen getoond op de stortplaatsen B/1 en B/6. Ook het tijdstip van storten en de hoeveelheid materiaal dat gestort werd, wordt weergegeven. Het betreft hier uiteraard 'roostercel'-gemiddelde waarden: de hoeveelheid gestort materiaal na storten wordt verspreid over een hele roostercel en dus over een volume van 750 x 750 x waterdiepte [m³].

Figuur 4.5: Stortplaats B/6, 11-27/03/1999. (a) Waterstand en Stroomsnelheid (b) Slibconcentratie (SPM) met en zonder stortingen van baggerspecie.

Bij een waterdiepte van 15 m komt een storting van 1000 ton slib dus overeen met een plotse toename van de slibconcentratie in de roostercel met ongeveer 120 mg/l. Uit de figuren blijkt dat gedurende perioden met veel stortingen de slibconcentratie lokaal in het water sterk toeneemt (zie bijvoorbeeld dag 70-71 in Figuur 4.4, dag 82 in Figuur 4.5).

5. Gesuspendeerd particulair materiaal en SeaWiFS beelden

5.1. Kartering van gesuspendeerd particulair materiaal uit SeaWiFS beelden

Het gebruik van optische remote sensing methoden om SPM-concentratie kaarten te maken, berust op de het feit dat de satelliet een groot gebied tegelijkertijd kan opmeten. Bij een voldoende groot aantal beelden kunnen de aldus aangemaakte kaarten een indicatie geven van de temporele variatie van de SPM concentratie in de oppervlaktelaag.

Voor deze studie werden SeaWiFS beelden gebruikt, een lijst met de gebruikte beelden kan in appendix 2 gevonden worden, de beelden worden in appendix 3 getoond. Vooraleer over het eindproduct, zijnde de SPMconcentratie kaart te kunnen beschikken, dienen een aantal correcties uitgevoerd te worden. Eerst wordt een atmosferische correctie toegepast op de straling gemeten ter hoogte van de sensor, zodat de straling die het water verlaat berekend kan worden. Hiervoor wordt het voor troebele wateren uitgebreide SeaDAS algoritme (Ruddick et al., 2000) gebruikt. Een lucht-water interface model haalt uit de 5^{de} band, gecentreerd rond 555 nm, de 'subsurface irradiance reflectance' (SSIR). Uiteindelijk wordt een hydro-optisch model, dat aangepast is voor de Belgische kustwateren, gebruikt om de SSIR om te zetten naar SPM-concentratie. In figuur 5.1 worden enkele stappen uit dit beeldverwerkingproces getoond voor het SeaWiFS-beeld van 9 juli 1999 12:00:10 UTC:

- a) vals kleuren beeld van de straling ter hoogte van de sensor;
- b) de genormaliseerde straling juist boven het wateroppervlak (mW cm⁻² μ m⁻¹ sr⁻¹). Merk op dat de wolken langs de NL- en UK-kusten vervangen werden, door het atmosferische correctie algoritme, door witte pixel; en
- c) de 'sub-surface irradiance reflectance' (%).

Het uiteindelijke product is in figuur 5.2 te zien. De SPM concentratie bedraagt 10-20 mg/l in de Belgische kustzone en bereikt ± 60 mg/l in het westelijk deel (Theems monding).

Het hydro-optisch model dat toegepast werd op de SSIR werd geïmplementeerd in het verwerkingsproces met behulp van de 'Environment for Visualising Images' (ENVI) software. Deze steunt op het 'reflectance'-model van Gordon & Brown *et al.* (1988):

$$R_{-} = 0.33 \frac{b_{b}}{a + b_{b}} \tag{5.1}$$

waarbij *a* de totale absorptie coëfficiënt is en b_b de totale backscatter coëfficiënt, verbonden met de SPM concentratie (afgekort als *S*) via de uitdrukking $b_b = S^* * b_{b_s}^*$, met $b_{b_s}^*$ de specifieke 'backscatter' coëfficiënt. Omkering van (5.1) levert:

$$S = \frac{a}{b_{b_{c}}^{*}} \frac{R_{-}}{0.33 - R_{-}}$$
(5.2)

Door een regressieanalyse toe te passen op de metingen die vanuit een schip werden genomen en de SeaWiFS data in een 12 tal plaatsen in de Belgi-

sche kustzone kon de parameter $B = \frac{a}{b_{b_s}^*}$ geschat worden op B=41.22.

Figuur 5.1: De zuidelijke Noordzee in the SeaWiFS beeld van 9 juli 1999 om 12:00:10 UTC. (a) Vals kleuren beeld van straling ter hoogte van de sensor, (b) genormaliseerd uit het water komende straling (mW cm⁻² μ m⁻¹ sr⁻¹) en (c) 'sub-surface irradiance reflectance' (%).

Figuur 5.2: Kaart van SPM concentratie (mg/l) van 9 juli 1999 om 12:00:10 UTC, in mg/l. Links is de oorspronkelijke kaart te zien, vooraleer een geo-referentie werd toegepast. Rechts de SPM-concentratie kaart met geo-referentie.

5.2. Kwalitatieve analyse van de SPM kaarten

Uit de 62 satellietbeelden (zie appendix 3) kan een duidelijk ruimtelijk variatie in de concentratie aan suspensiemateriaal waargenomen worden met een afname van de concentratie vanaf de Belgische kust naar zee toe. Een voorafgaande analyse bestond erin om de ruimtelijke correlatie van de SPM concentratie te bepalen uit deze temporele serie van SeaWiFS beelden. In figuur 5.3 tonen we de correlatie tussen de SPM concentratie uit de 62 SeaWiFS beelden in 3 stations en de SPM concentratie in elk pixel van het BCP. De 3 kaarten worden over elkaar gelegd in figuur 5.4, waaruit duidelijk drie verschillende gebieden onderscheiden kunnen worden:

- a) Een gebied A gelegen in de monding van de Westerschelde, tussen Zeebrugge en Vlissingen. Het wordt gekenmerkt door zijn hoge turbiditeit, zijn hoge hydrodynamische energie en zijn goede menging. Belangrijk om te vermelden zijn de bijna continue stortingen van slib op B/1 en B/6.
- b) Een gebied B ten zuiden van Zeebrugge, dat relatief zelden door hoge SPM concentraties wordt gekarakteriseerd (enkel 10 van de 62 beelden vertonen hoge SPM concentraties in dit gebied)
- c) Een gebied C gelegen buiten de kustzone, waar de SPM concentraties bijna altijd laag zijn.

De SPM concentratie gekarteerd uit de SeaWiFS beelden varieert tussen de 10 mg/l en 80 mg/l in de Belgische kustwateren (zie beelden in appendix 3). Het gemiddelde over alle beelden is weergegeven in figuur 5.5 en bedraagt ongeveer 50 mg/l in de Belgische kustzone. Maximale SPM waarden liggen rond de 80 mg/l (figuur 5.5).

5.3. Discussie

De resultaten bevestigen de resultaten uit de studie van de verticale profielen van SPM concentratie (zie hoofdstuk 3): ongeveer 1 m onder de oppervlakte variëren de concentraties rond de 50 mg/l. Bij hoge stromingen of veel wind, werden waarden tot 150-200 mg/l gemeten. De studie toont ook aan dat er een significant hoge correlatie is tussen de SPM concentratie dicht tegen de oppervlakte en de SPM concentratie gemiddeld over de 'totale' waterkolom (van 1 m onder de oppervlakte tot 3 m boven de bodem), zie figuur 3.2. De verticale menging is hoog, omdat de SPM concentratieverschillen in een verticale vrij gering zijn. Er zijn echter twee beperkingen die een strikte kwantitatieve vergelijking in de weg staan tussen de optische SPM concentratie data en de 'in situ' gemeten data:

1. De remote sensing methode geeft schattingen van SPM concentratie in de waterlaag juist onder de oppervlakte, terwijl bij de SPM concentratie metingen vanaf 1 m onder de oppervlakte uitgevoerd worden. In de bespreking en interpretatie van de metingen wordt de bovenste waterlaag niet in rekening gebracht en weten we dus niet hoe de SPM concentratie zich daar gedraagt.

Figuur 5.3: Correlatie tussen SPM concentratie gesitueerd te B/I (B&W SI) (links), te Westhinder (midden) en te B/9 (B&W Zeebrugge Oost) (rechts) en de SPM concentratie in elk pixel van het beeld.

Figuur 5.4: Vals kleuren beeld waarin de drie gebieden getoond worden door de correlaties tussen 70%-100% in rood ter hoogte van Zeebrugge (gebied A), in groen ter hoogte van B/1 (gebied B) en in blauw ter hoogte van Westhinder (gebied C) weer te geven.

Figuur 5.5: Gemiddelde SPM concentratie uit de 62 SeaWiFS beelden voor de periode 1997-2002 (links). Hoogste SPM concentratie opgemeten tijdens dezelfde periode (rechts)

2. Het is moeilijk om een goede overeenkomst te verkrijgen tussen de Sea-WiFS beelden en de in situ metingen. Uit de SPM concentratie profielen kunnen we zien dat de concentratie aan suspensiemateriaal ongeveer gedurende 2 uur per eb/vloed hoog is in de bovenste waterlagen, nadien bezinkt het materiaal. Indien de SeaWiFS sensor juist deze periode mist, zal hij lage SPM concentraties fotograferen.

Om de SPM concentratie kaarten samen met b.v. de resultaten van het sediment transport model en de in situ metingen te kunnen gebruiken, zal het echter nodig zijn om een tijdsextrapolaties van de SPM concentratie in het satellietbeeld uit te voeren. We denken hier b.v. aan het opstellen van tabellen met coëfficiënten specifiek voor een aantal gebieden (b.v. de boven gedefinieerde 3 zones) en naar gelang de datum en de tijd van het beeld t.o.v. de getijcyclus.

6. Conclusies

Het voorliggende rapport is het eerste activiteitsrapport van de derde fase van het SEBAB-project. In dit rapport worden de beschikbare data verzameld die gebruikt kunnen worden bij de interpretatie van SeaWiFS SPM-concentratie beelden. Deze data omvatten modelgegevens, bagger- en stortdata, 13uursmetingen op het BCP en satellietbeelden van het BCP. Hieronder worden de belangrijkste conclusies kort aangehaald:

1. Analyse van satellietbeelden

De satellietbeelden moeten geanalyseerd worden vooraleer een kaart van de totale SPM concentratie kan verkregen worden, deze analyse omvat drie stappen:

- a) Het toepassen van een atmosferische correctie en een hydro-optisch model om de SPM concentratie in de oppervlaktewateren van het BCP te berekenen.
- b) Het bepalen van de getijdata (waterstand, stromingen) en de meteorologische informatie (wind, golven) tijdens het tijdstip van de satellietopname.
- c) Het extrapoleren van de oppervlakteconcentratie naar een totale concentratie over de waterkolom. Hiervoor zal gebruik gemaakt worden van enerzijds de informatie die verkregen werd van de verdere analyse van de 13-uursmetingen, meer specifiek de variatie in de waterkolom van de sedimentconcentratie tijdens een getijcyclus. Anderzijds zullen de resultaten van de modelsimulaties van de Belgische kustzone waardevolle informatie hiervoor leveren.

2. Temporele variabiliteit van het suspensiegehalte: 13-uursmetingen

Er treden duidelijke variaties in SPM concentratie op gedurende een getij. Ongeveer 2/3 van een getijcyclus is de waterkolom vrij goed gemengd. De SPM concentratie kan dan als een soort achtergrondwaarde beschreven worden. Deze achtergrondconcentratie bedraagt ongeveer 50 mg/l in het turbiditeitsmaximum ter hoogte van Zeebrugge. Een satellietfoto genomen tijdens deze periode geeft dus een goed beeld van de totale SPM concentratie.

Gedurende het andere 1/3 van een tijcyclus, en dit zowel tijdens eb en vloed, treedt er in het turbiditeitsmaximum een verhoogde SPM concentratie op (>500 mg/l). Tijdens deze piek is de waterkolom minder goed tot slecht gemengd. Een satellietfoto genomen tijdens deze periode zal dus de totale SPM concentratie onderschatten.

3. Invloed van het storten van baggerslib

De verhoogde concentratie aan suspensiemateriaal ter hoogte van de Belgische Oostkust is een natuurlijk fenomeen. Het storten voor de kust op B/1, B/2 en B/6 heeft wel een invloed op de lokale concentratie aan suspensiemateriaal. De modelresultaten laten zien dat het storten op B/1 de slibconcentratie doet toenemen in een cirkel met straal van ± 10 -20 km rond de stortplaats. De tijgemiddelde slibconcentratie stijgt met ongeveer 50 tot 100 mg/l afhankelijk van de stortfrequentie en -hoeveelheid. Ter hoogte van de stortplaats B/6 zijn de verschillen in turbiditeit met en zonder storting geringer. De modelresultaten laten ook zien dat de slibafzetting ten noorden van de Vlakte van de Raan toeneemt. Een deel van dit afgezette slib wordt terug in suspensie gebracht tijdens een springtij dit is verantwoordelijk voor de toename in turbiditeit en de uitgestrektheid van deze 'slibvlek' op de bodem. Ondanks de grote hoeveelheden aan slib die gestort werden, neemt de slibafzetting in de vaargeulen nauwelijks toe t.o.v. een simulatie zonder storten.

Metingen hebben aangetoond dat een stortpluim enkel vlak na het lossen opgemerkt kan worden in de oppervlaktelaag en dus ook op een satellietfoto.

4. Gebruik van satellietbeelden voor de bepaling van de SPM concentratie in de waterkolom

Satellietbeelden geven informatie over de SPM concentratie in de oppervlaktewateren. Het voordeel van satellietopnames is dat ze een hoge resolutie (ongeveer 1x1 km²) hebben en dat ze een grote oppervlakte kunnen bestrijken, die de dimensies van het BCP ver overschrijden. Het nadeel is de geringe frequentie omdat enkel wolkenvrije opnames bruikbaar zijn.

De studie van de verticale profielen (hoofdstuk 3) toont aan dat er een significant hoge correlatie is tussen de SPM concentratie dicht tegen de oppervlakte en de SPM concentratie in de waterkolom (van 1 m onder de oppervlakte tot 3 m boven de bodem). Hieruit kunnen we besluiten dat over het algemeen de satellietbeelden een goede benadering geven van de SPM concentratie in de waterkolom.

Om de SPM concentratie kaarten samen met b.v. de resultaten van het sediment transport model en de in situ metingen te kunnen gebruiken, zal het nodig zijn om een tijdsextrapolaties van de SPM concentratie in het satellietbeeld uit te voeren. We denken hier b.v. aan het opstellen van tabellen met coëfficiënten specifiek voor een aantal gebieden (b.v. de boven gedefinieerde 3 zones) en naar gelang de datum en de tijd van het beeld t.o.v. de getijcyclus.

7. Referenties

- Adam, Y., 1979. Belgian real-time system for the forecasting of currents and elevations in the North Sea. In J.C.J. Nihoul (Ed.): Marine forecasting: predictability and modelling in ocean hydrodynamics. Elsevier Oceanography Series 25, 411-425.
- Adam, Y. & A. Sterling, 1987. La prévision des marées-tempêtes le long de la Côte Belge. Extrait des Annales des Travaux Publics de Belgique, 2, 105-115.
- Bastin, A., 1973. Natural radioactive tracers and their use in Belgium. Tracer Techniques in Sediment Transport. Technical Report Nr. 145, IAEA, Vienna.
- BMM-Oostende. 1999. RV Belgica Meetcampagnes SEBAB-I 1999, Monitoring Sediment Transport. BMM-MDO/BELGICA/SEBAB-II/Rapport1999. 28pp.
- BMM-Oostende. 2000. RV Belgica Meetcampagnes SEBAB-I 2000, Monitoring Sediment Transport. BMM-MDO/BELGICA/SEBAB-I/Rapport2000. 60pp.
- BMM-Oostende. 2001. RV Belgica Meetcampagnes SEBAB-I 2001, Monitoring Sediment Transport. BMM-MDO/BELGICA/SEBAB-I/Rapport2001. 36pp.
- BMM-Oostende. 2002. RV Belgica Meetcampagnes SEBAB-II 2001-2002, Monitoring Sediment Transport. BMM-MDO/BELGICA/SEBAB-II/Rapport 2002. 75pp.
- de Kok, J.M., 1994. Numerical modelling of transport processes in coastal waters. Ph.D. Thesis, Universiteit Utrecht, 158 pp.
- Fettweis, M. & Van den Eynde, D., 1999. Bepaling van de Sedimentbalans voor de Belgische Kustwateren (SEBAB I), Activiteitsrapport 1: Literatuurstudie. SEBAB/1MF/199912/NL/AR/1, BMM, Brussel. 35pp.
- Fettweis, M. & Van den Eynde, D., 2001. Bepaling van de Sedimentbalans voor de Belgische Kustwateren (SEBAB I), Eindrapport. SEBAB/1/MF/ 200103/NL/ER/1, BMM, Brussel.
- Fettweis, M., 2001. Bepaling van de Sedimentbalans voor de Belgische Kustwateren (SEBAB II), Activiteitsrapport 1: Metingen van gesuspendeerd particulair materiaal in de Belgische kustwateren. SEBAB/2/MF/200112/ NL/AR/1, BMM, Brussel. 26pp.
- Fettweis, M. & D. Van den Eynde. 2002. Modellering van het fijnkorrelige sedimenttransport en de baggerspeciestortingen op het Belgisch continentaal plat. In: Van Lancker V, De Turck K., Mees, J., Mostaert, F., Seys J., Vandevelde D. Van Rooij, D. (Eds.), Colloquium 'Kustzonebeheer vanuit geoecologische en economische invalshoek', Oostende, 16-17 mei 2002. VLIZ Special Publication, 10. Genootschap van Geologen van de Universiteit Gent (GGG) en VLIZ.
- Fettweis, M., Van den Eynde, D. & Francken, F., 2002. Bepaling van de Sedimentbalans voor de Belgische Kustwateren (SEBAB II), Eindrapport: Een 2D fijnmazig hydrodynamisch en sedimenttransportmodel van het Begisch Continentaal. SEBAB/2/MF/200207/NL/ER/1, BMM, Brussel, 38 p.
- Gordon, H.R., Brown, O.B. et al., 1988. A semianalytical radiance model of

ocean color. Journal of Geophysical Research, 93(D9), 10909-10924.

- Getijtafels voor Oostende, Zeebrugge, Vlissingen, Prosperpolder en Antwerpen, 1999, 2000, 2001. Ministerie van de Vlaamse Gemeenschap, Administratie Waterwegen en Zeewezen, Afdelingen Waterwegen Kust en Maritieme Schelde.
- Gullentops, F., Moens, M., Ringelé, A. & Sengier, R., 1976. Geologische kenmerken van de suspensie en de sedimenten. In: J.C.J. Nihoul & F. Gullentops (Editors), Project Zee – Projet Mer, Volume 4: Sedimentologie. Science Policy Office, Brussels, pp. 1–137.
- Günther, H. & Rosenthal, W., 1985. The hybrid parametrical (HYPAS) wave model. In: Ocean wave modelling, Swamp group. Plenum Press, New York, 211-214.
- HAECON, 1994a. Stortplaatsonderzoek, Bijacte 1: Beproeving van de sedimenttrendanalyse voor het bepalen van het globaal residueel sedimenttransportpatroon. ISS1165, 00091.
- HAECON, 1994b. Stortplaatsonderzoek, Eindrapport sedimenttrendanalyse: interpretatie van de STA-resultaten. ISS1165, 00085.
- Malherbe, B., 1991. A case study of dumping of dredged material in open areas. Terra et Aqua, 45, 5-32.
- Nihoul, J.C.J., 1975. Effect of tidal stress on residual circulation and mud deposition in the Southern Bight of the North Sea. Review of Pure and Applied Geophysics, 113: 577-591.
- Ruddick, K.G., Ovidio, F. & Rijkeboer, M., 2000. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied Optics. 39(6), 897-912.
- Van den Eynde, D., 1992. mu-WAVE: an operational wave forecasting system for the Belgian coast. In: Proc. 3rd Int. Workshop on Wave Hindcasting and Forecasting, May 19-22, 1992, Montréal, Canada, 313-324.
- Van den Eynde, D., 1999a. Calibratie en validatie van de sedimenttransportmodellen mu-STM en mu-STM3. BMM-rapport VESTRAM/1/199903/ TR/1, 68 pp.
- Van den Eynde, D., 1999b. Toepassing van het sedimenttransportmodel mu-STM voor het beheer van baggerspeciestortingen (VESTRAM). BMMrapport VESTRAM/1/DVDE/199912/NL/TR/2, 61 pp.
- Van Mierlo, C.-J., 1899. La carte lithologique de la partie méridionale de la mer du Nord. Bulletin de la Société Belge de Géologie, Paléontolgie, et Hydologie, XII, 2nde série (tome III), 219-265.
- Van Parys, M. & Pieters, A., 2001. Turbiditeit op de loswal B&W Zeebrugge Oost, stationaire metingen. Bijakte 14: Mobag 2000 – Ecologische impact. Rapport TV Noordzee en Kust TVNK/Z/04/2001/MVP, 26 pp.

Lijst met afkortingen en definities 8.

- BCP **Belgisch Continentaal Plat**
- Klei sediment met een korrelgrootte < 2 μ m
- sediment met een korrelgrootte tussen 2 en 63 µm. Silt
- Slib is een cohesief sediment bestaande uit anorganisch en organisch materiaal (korrelgrootte $\leq 63 \mu$ m). Slib komt voor op de bodem (niet of wel geconsolideerd, het zandgehalte van slibbodems is kleiner dan 36%) of in suspensie. Winterwerp (1999) maakt onderscheid tussen volgende vormen van slibsuspensies:
 - Vloeibaar slib is een suspensie met een concentratie van enkele 10 g/l tot enkele 100 g/l.
 - Hooggeconcentreerde slibsuspensie heeft een concentratie van enkele 100 mg/l tot enkele 1000 mg/l, met een meetbare interactie met de turbulente waterbeweging.
 - Laaggeconcentreerde slibsuspensie heeft een concentratie van • enkele 10 mg/l tot enkele 100 mg/l.
- SPM Suspended Particulate Matter. Het particulair suspensiemateriaal bestaat uit fijne, meestal cohesieve deeltjes met een korrelgrootte ≤ 63 µm. Deeltjes met een grotere korrelgrootte worden vooral als bodemmateriaal getransporteerd. De grootte van de mineraaldeeltjes is gelegen tussen < 2 μ m en 15 μ m, terwijl de in situ vlokken een factor 10 tot 100 groter kunnen zijn (10-500 μm).

siliclastisch sediment met een korrelgrootte > 63 µm. Men maakt Zand onderscheid volgens korrelgrootte tussen:

- Zeer fijn zand: • 63-125 µm 125-250 μm
- Fijn zand: •
- Medium zand: 250-500 um
- Grof zand:
- 500-1000 µm
- 1000-2000 µm Zeer grof zand:

COLOPHON

Dit rapport werd voorbereid door de BMM in december 2002 Zijn referentiecode is SEBAB/3/MF/200212/NL/AR/1.

Status

□ draft
⊠ finale versie
□ herziene versie
□ vertrouwelijk

Beschikbaar in het

EngelsNederlandsFrans

Indien u vragen hebt of bijkomende copies van dit document wenst te verkrijgen, gelieve een e-mail te zenden naar *M.Fettweis@mumm.ac.be*, met vermelding van de referentie, of te schrijven naar:

BMM 100 Gulledelle B–1200 Brussel België Tel: +32 2 773 2111 Fax: +32 2 770 6972 http://www.mumm.ac.be/

Beheerseenheid van het Mathematisch model van de Noordzee

GROEP MODELLEN

De lettertypes gebruikt in dit zijn Gudrun Zapf-von Hesse's *Carmina Medium* 10/14 voor de tekst en Frederic Goudy's *Goudy Sans Medium* voor titels en onderschriften.

APPENDIX 1

Variatie van SPM concentratie in de waterkolom tijdens tien 13-uursmetingen

Tijd (uren)

Tijd (uren)

Dieptegemiddelde stroomsnelheid (cm/s)

APPENDIX 2

Tabel met opnametijdstippen van de SeaWifs satellietbeelden en de getijomstandigheden te Oostende

Datum			Tijd UTM Getij-amp.		Getij-coef.	Tijd (h) tov		
(dd	mm	jjjj)	(hh:mm:ss)	Oostende (m)		HW Oostende		
28	10	1997	12:15:35	3.50	0.899 GT	+1.56		
31	10	1997	12:51:35	3.89	0.999 GT	+0.72		
26	01	1998	11:59:18	3.69	0.947 GT	+0.68		
07	02	1998	12:42:04	3.57	0.917 GT	+3.43		
14	02	1998	12:58:41	4.21	1.083 GT	-1.90		
18	02	1998	12:39:52	3.30	0.849 DT	-4.13		
12	05	1998	11:57:30	3.81	0.979 GT	-0.68		
15	05	1998	12:32:34	3.82	0.981 GT	-2.12		
16	05	1998	11:39:35	3.52	0.905 GT	-3.50		
17	05	1998	12:23:42	3.46	0.889 GT	-3.78		
19	05	1998	12:14:15	3.33	0.857 DT	+5.94		
08	08	1998	11:43:46	4.06	1.045 GT	-0.93		
09	08	1998	12:27:49	4.13	1.060 GT	-0.64		
10	08	1998	11:34:21	4.06	1.044 GT	-2.04		
22	09	1998	12:21:46	3.94	1.013 GT	-0.79		
24	09	1998	12:12:35	3.79	0.973 GT	-1.94		
18	10	1998	12:00:53	3.89	1.001 GT	+0.88		
14	03	1999	12:35:12	3.24	0.834 DT	+1.79		
28	03	1999	11:26:03	3.79	0.974 GT	+1.12		
28	03	1999	13:04:20	3.79	0.974 GT	+2.76		
31	03	1999	11:59:52	4.48	1.151 ST	-0.88		
01	04	1999	12:44:21	4.44	1.141 ST	-0.59		
27	04	1999	12:14:56	3.73	0.959 GT	+1.43		
28	04	1999	12:59:04	3.99	1.026 GT	+1.14		
29	04	1999	12:05:15	4.25	1.093 ST	-0.23		
30	04	1999	12:49:19	4.01	1.032 GT	+0.08		
27	05	1999	11:28:03	3.72	0.957 GT	+0.15		
27	05	1999	13:04:33	3.72	0.957 GT	+1.76		
25	06	1999	11:31:24	3.36	0.863 DT	+0.72		
25	06	1999	13:09:13	3.36	0.863 DT	+2.35		
09	07	1999	12:00:10	3.52	0.905 GT	+3.24		
11	07	1999	11:50:45	3.95	1.016 GT	+1.20		
24	07	1999	13:13:07	2.83	0.728 DT	+3.49		
28	07	1999	12:53:03	3.96	1.017 GT	+0.18		
29	07	1999	11:59:12	3.85	0.990 GT	-1.17		
03	09	1999	12:16:03	3.53	0.906 GT	-5.41		
05	09	1999	12:06:17	3.20	0.823 DT	+4.50		
17	10	1999	11:55:17	2.74	0.704 DT	-5.85		
07	06	2000	12:17:39	3.61	0.929 GT	-3.39		
17	06	2000	12:59:04	3.77	0.968 GT	+0.33		
18	06	2000	12:04:31	3.61	0.929 GT	-1.11		

19 06 2000	12:47:46	3.72	0.955 GT	-1.37
23 08 2000	12:18:46	3.30	0.848 DT	-5.90
17 10 2000	12:44:21	4.12	1.059 GT	-1.86
19 10 2000	12:32:35	4.01	1.032 GT	-4.28
16 01 2001	12:34:46	4.08	1.049 GT	-5.28
15 02 2001	12:42:41	3.67	0.943 GT	-5.61
12 03 2001	12:31:05	4.65	1.196 ST	-1.51
03 04 2001	11:48:09	3.39	0.871 DT	+3.51
11 04 2001	12:35:08	4.36	1.121 ST	-2.05
23 05 2001	12:59:17	4.22	1.086 GT	+0.29
04 07 2001	11:40:16	4.02	1.034 GT	+0.02
04 07 2001	13:20:53	4.02	1.034 GT	+1.69
01 08 2001	11:56:25	3.68	0.946 GT	+1.22
28 01 2002	12:47:43	4.09	1.052 GT	+0.49
02 02 2002	13:00:13	4.45	1.143 ST	-2.74
15 02 2002	12:12:40	4.06	1.043 GT	-2.58
16 02 2002	12:54:36	3.90	1.002 GT	-2.36
28 03 2002	12:47:45	4.42	1.137 ST	+0.62
04 04 2002	12:43:18	3.32	0.853 DT	-5.02
06 04 2002	12:28:03	3.06	0.788 DT	+4.67
08 04 2002	12:13:04	3.44	0.884 GT	+1.91
20 04 2002	12:20:10	2.80	0.721 DT	-5.37

Getijcoëfficiënt te Oostende tijdens eengemiddeld springtij (ST)(zie Getijtafels van AWZ)gemiddeld tij (GT)gemiddeld doodtij (DT)

1.185 (>1.093) 1.000 (1.093-0.883) 0.766 (<0.883)

APPENDIX 3

SeaWiFS satellietbeelden

Time: 12:15:35 UTC

Time: 11:59:18 UTC

Time: 12:58:41 UTC

Time: 12:39:52 UTC

Time: 11:57:30 UTC

Time: 11:39:35 UTC

Date: 17- 5-1998 Time: 12:23:42 UTC

Time: 11:43:46 UTC

Time: 12:27:49 UTC

Time: 11:34:21 UTC

Time: 12:21:46 UTC

Time: 12:00:53 UTC

Time: 12:35:12 UTC

Time: 11:26:03 UTC

Time: 13:04:20 UTC

Time: 11:59:52 UTC

Time: 12:44:21 UTC

Time: 12:14:56 UTC

Time: 12:59:04 UTC

Time: 12:05:15 UTC

Time: 13:04:33 UTC

Time: 11:31:24 UTC

Time: 13:09:13 UTC

Time: 12:00:10 UTC

Time: 11:50:45 UTC

Time: 13:13:07 UTC

Time: 12:53:03 UTC

Time: 11:59:12 UTC

Time: 12:06:17 UTC

Time: 11:55:17 UTC

Time: 12:59:04 UTC

Time: 12:04:31 UTC

Time: 12:47:46 UTC

Time: 12:18:46 UTC

Time: 12:32:35 UTC

Time: 12:34:46 UTC

Time: 12:31:05 UTC

Time: 11:48:09 UTC

Time: 12:59:17 UTC

Date: 4- 7-2001 Time: 11:40:16 UTC

Time: 11:56:25 UTC

Time: 13:00:13 UTC

Time: 12:54:36 UTC

Time: 12:47:45 UTC

Time: 12:47:45 UTC

Time: 12:43:18 UTC

Time: 12:28:03 UTC

Time: 12:13:04 UTC

Date: 20- 4-2002 Time: 12:20:10 UTC

Nieuwpoort											
Oostende	0.336255										
Zeebrugge	-0.05058	0.312042									
Cadzand	-0.04132	0.281686	0.792253								
SI	0.053127	0.40114	0.631763	0.703262							
S2	0.058666	0.339798	0.645443	0.742715	0.962697						
Zeebrugge Oost	0.044782	0.251218	0.764008	0.814387	0.806514	0.874666					
Westhinder	0.102544	0.207963	0.351179	0.480443	0.702008	0.72889	0.546782				
Thorntonbank	0.082962	0.400938	0.368655	0.459308	0.847374	0.836331	0.616241	0.744709			
MOW2-Bol van Heist	-0.05058	0.312042	I	0.792253	0.631763	0.645443	0.764008	0.351179	0.368655		
MOW3-Paardenmarkt	0.104714	0.220732	0.726637	0.800184	0.774125	0.829834	0.959346	0.535853	0.578435	0.726637	
B&W Oostende	0.158665	0.498306	0.530245	0.625452	0.720033	0.729621	0.715315	0.533622	0.656865	0.530245	0.685338

APPENDIX 4

Getijamplitude te Oostende (modelresultaat), golfhoogte te Bol van Heist, windsnelheid en – richting te Wandelaar (MPO) omstreeks opnametijdstip van SeaWiFSs satellietbeelden en van 13-uursmetingen

SeaWiFS opnamen: 21/10/1997 11h57 28/10/1997 12h16 31/10/1997 12h52

SeaWiFS opnamen: 26/01/1998 11h59 07/02/1998 12h42 14/02/1998 12h59 18/02/1998 12h40

SeaWiFS opnamen: 12/05/1998 11h57 15/05/1998 12h33 16/05/1998 11h40 17/05/1998 12h24 19/05/1998 12h14

SeaWiFS opnamen: 08/08/1998 11h44 09/08/1998 12h28 10/08/1998 11h34 22/09/1998 12h22 24/09/1998 12h13

SeaWiFS opnamen: 18/10/1998 12h01

13-uursmeting: 99/07: 08/03/1999 15h47 – 09h03/1999 05h03

```
SeaWiFS opnamen:
14/03/1999 12h35
28/03/1999 11h26
28/03/1999 13h04
31/03/1999 12h00
01/04/1999 12h44
27/04/1999 12h15
28/04/1999 13h00
29/04/1999 12h05
30/04/1999 12h49
```


SeaWiFS opnamen: 15/05/1999 12h25 27/05/1999 11h28 27/05/1999 13h04 25/06/1999 11h31 25/06/1999 13h09

13-uursmeting: 99/17: 13/07/1999 06h20 – 13/07/1999 19h20

SeaWiFS opnamen: 09/07/1999 12h00 11/07/1999 11h51 24/07/1999 13h13 28/07/1999 12h53 29/07/1999 12h00

SeaWiFS opnamen: 03/09/1999 12h16 05/09/1999 12h06 17/10/1999 11h55 19/10/1999 11h45

13-uursmeting: 00/08: 21/03/2000 10h14 – 21/03/2000 23h07

00/14:	$29/05/2000\ 08h53 - 29/05/2000\ 22h01$
00/19:	10/07/2000 09h15 - 10/07/2000 22h22

SeaWiFS opnamen: 07/06/2000 12h18 17/06/2000 12h59 18/06/2000 12h05 19/06/2000 12h48

SeaWiFS opnamen: 23/08/2000 12h19

00/26:	$23/10/2000 \ 20h10 - 24/10/2000 \ 08h53$
00/31:	07/12/2000 10h00 - 08/12/2000 05h16

SeaWiFS opnamen: 17/10/2000 12h44 19/10/2000 12h33

13-uursmeting: 01/01: 25/01/2001 11h45 – 26/01/2001 00h26

SeaWiFS opnamen: 16/01/2001 12h35 15/02/2001 12h43

01/06a:	07/03/2001	16h07-08/03/2001	09h38
01/06b:	08/03/2001	10h41 - 09/03/2001	06h29

SeaWiFS opnamen: 12/03/2001 12h31 03/04/2001 11h48 11/04/2001 12h35

01/17a:	18/06/2001	18h30 - 19/06/2001	07h15
01/17b:	19/06/2001	19h45 - 20/06/2001	08h20

SeaWiFS opnamen: 23/05/2001 12h59

SeaWiFS opnamen: 04/07/2001 11h40 04/07/2001 13h21 01/08/2001 11h56

13-uursmeting: 01/29a: 12/11/2001 17h00 – 13/11/2001 07h15

13-uursmeting: 02/01a: 30/01/2002 11h30 – 31/01/2002 01h00

SeaWiFS opnamen: 28/01/2002 12h48 02/02/2002 13h00 14/02/2002 13h10 15/02/2002 12h13 16/02/2002 12h55

02/06a:	11/03/2002 17h00 - 12/03/2002 06h15
02/06b:	12/03/2002 15h25 - 13/03/2002 04h20

SeaWiFS opnamen: 07/03/2002 13h00 28/03/2002 12h48 04/04/2002 12h43 06/04/2002 12h28 08/04/2002 12h13 20/04/2002 12h20

APPENDIX 5

Storttijdstippen en hoeveelheden te B/1, B/2 en B/6 13 uur vóór de satellietopname

Stortingen (tijdstip en hoeveelheden in Ton Droge Stof) op B/6 (B&W Zeebrugge Oost), B/1 (B&W S1), B/2 (B&W S2), De opnametijdstippen en de tijd (in minuten) verstreken na de laatste storting voor de SeaWifs foto's worden geschakeerd weergegeven.

Datum	Tijd	TDS	Datum	Tijd	TDS	Datum	Tijd	TDS
(dd mm <u>J</u> <u>J</u> <u>J</u> <u>J</u>)	hh mm	B/6	(dd mm jjjj)	hh mm	B/1	(dd mm jjjj)	hh mm	B/2
14 03 1999	12	35	14 03 1999	12	. 35	14 03 1999	12	. 35
28 03 1999	11	26	28 03 1999	11	26	28 03 1999	11	26
28 03 1999	13	505	28 03 1999	13	1101	28 03 1999	13	040
31 03 1999	23 33	950	30 03 1999	23 33	1191			
31 03 1999	01 10	548						
31 03 1999	02 10	883						
31 03 1999	03 10	590	31 03 1999	01 25	6779			
31 03 1999	03 50	903	31 03 1999	04 10	6114			
31 03 1999	04 20	1024	31 03 1999	05 55	911			
31 03 1999	05 25	649	31 03 1999	07 15	6768			
31 03 1999	07 10	564	31 03 1999	07 45	1418		-	
31 03 1999	08 40	646 516	31 03 1999	10 20	6596			
31 03 1999	11 25	605	31 03 1999	10.30	1331			
31 03 1999	12.00	(35')	31 03 1999	12.00	(25')	31 03 1999	12	. 00
31 03 1999	23 45	464	31 03 1999	23 55	1260	51 05 1777	12	
01 04 1999	01 05	579	01001,,,,,	_0 00	1200			
01 04 1999	01 25	884						
01 04 1999	02 30	496						
01 04 1999	02 35	904						
01 04 1999	03 30	395	01 04 1999	00 05	6337			
01 04 1999	04 10	979	01 04 1999	02 15	7552			
01 04 1999	04 35	643	01 04 1999	04 55	4/69		-	
01 04 1999	05 35	979 577	01 04 1999	07.00	903 2705			
01 04 1999	08 55	453	01 04 1999	07 55	856			
01 04 1999	10 35	555	01 04 1999	10 45	1209			
01 04 1999	12 05	617	01 04 1999	11 45	7025			
01 04 1999	12 44	4 (39')	01 04 1999	12 44	4 (59')	01 04 1999	12	44
26 04 1999	22 45	515						
27 04 1999	05 30	579	27 04 1999	00 30	3857			
27 04 1999	07 20	533	27 04 1999	03 00	3280			
27 04 1999	08 50	566	27 04 1999	05 35	3483			
27 04 1999	10.50	531	27 04 1999	11 20	2721			
27 04 1999	12.00	5 (15')	27 04 1999	12.1	5(55')	27 04 1999	12	15
27 04 1999	23 00	588	27 04 1999	22 20	2586	1 . 01 1777	1-	10
28 04 1999	00 55	574						
28 04 1999	02 55	595						
28 04 1999	04 50	528	28 04 1999	01 15	2504			
28 04 1999	06 30	592	28 04 1999	03 50	3436			
28 04 1999	08 15	526	28 04 1999	06 30	3249			
28 04 1999	09 40	590	28 04 1999	09.30	3/36			
28 04 1999	12.00	(120')	28 04 1999	12 20	3196	29 04 1000	12	00
28 04 1999	23.35	496	28 04 1999	23.30	3700	20 04 1999	13	00
29 04 1999	00 00	449	20 04 1999	23 30	5199			
29 04 1999	01 15	581						
29 04 1999	03 30	567					1	1
29 04 1999	05 30	595	29 04 1999	02 10	2415			
29 04 1999	07 10	588	29 04 1999	04 35	2916			
29 04 1999	09 00	499	29 04 1999	07 35	2831			
29 04 1999	10 30	556	29 04 1999	11 15	4056	0004 6000	10.0	
29 04 1999	12.05	5 (95')	2904 1999	12.05	(95')	2904 1999	12 05) (95')
29 04 1999	22 25	557	29 04 1999	22 55	2070	l		0
L			30 04 1999	01 13	441/	1		

			30 04 1999	03 45	4486				
30 04 1999	02 15	1697	30 04 1999	06.20	3826				
30.04.1999	03.30	1897	30.04.1999	07.25	2154				
30.04.1999	08 15	583	30.04.1999	09.05	3314	30.04	1999	00.55	2054
30.04.1999	09 50	511	30.04.1999	09.45	1638	30.04	1999	05 15	1856
30 04 1999	11 25	625	30 04 1999	12.05	3801	30.04	1000	11 45	1501
20.04.1000	11 25	(94')	20.04.1000	12 05	(44')	20.04	1000	11 45	0(4')
30 04 1999	12 45	7 (84)	30 04 1999	12 45	9 (44)	50.04	1999	124	9 (4)
			15 05 1999	00 15	4865				
			15 05 1999	02 20	4893				
			15 05 1999	04 40	4610				
			15 05 1999	06 55	5230				
			15 05 1999	09 30	3963				
			15 05 1999	12 10	5243				
15 05 1999	12	25	15 05 1999	12 25	5 (15')	15 05	1999	12	25
			26 05 1999	$22\ 25$	4587				
			27 05 1999	00 30	4033				
			27 05 1999	01 35	4574				
			27 05 1999	03 25	3875				
			27 05 1999	04 15	2768				
			27 05 1999	05 15	4361				
			27 05 1999	06 40	3453				
			27 05 1999	07.05	4707				
		-	27 05 1999	08 55	2695				
			27 05 1999	09.00	4933				
			27 05 1999	10.30	4401				
		-	27 05 1999	10 30	4272				
27.05.1000	10	04	27 05 1999	12 10	4372	27.05	1000	10	04
27 05 1999	13	04	27 05 1999	13 04	£ (54 [°])	27 05	1999	13	04
24 06 1999	22 50	552							
24 06 1999	23 45	1257	24 06 1999	23 30	3129				
25 06 1999	00 15	559	25 06 1999	00 30	3176				
25 06 1999	01 30	1289	25 06 1999	01 50	3409				
25 06 1999	01 40	570	25 06 1999	03 25	1448				
25 06 1999	03 15	486	25 06 1999	04 25	3259				
25 06 1999	04 40	594	25 06 1999	05 45	1318				
25 06 1999	06 05	575	25 06 1999	06 50	3483				
25 06 1999	07 30	564	25 06 1999	08 00	1323				
25 06 1999	09 05	523	25 06 1999	09 20	3252				
25 06 1999	10 25	534	25 06 1999	10 00	1155				
25 06 1999	11.31	(66')	25 06 1999	11.31	1 (91')	25 06	1999	11	31
25.06.1999	11 35	1289			- ()				
25 06 1999	11 50	546							
25 06 1999	13.05	1819	25.06.1999	11 40	3382				
25 06 1999	12.05	0(4')	25.06.1000	11 10	00	25.04	1000	10	00
25 06 1999	13.0	9(4)	25 06 1999	13	509	25 06	1999	13	09
08 07 1999	23 00	1253	08 07 1999	22 35	5060				
09 07 1999	00.30	1334							
09 07 1999	01 40	519	00.07.1111	0.2 5 -	422-				
09 07 1999	03 15	479	09 07 1999	00 30	4937				
09 07 1999	04 45	522	09 07 1999	02 10	1178				
09 07 1999	06 20	486	09 07 1999	02 40	3058				
09 07 1999	07 45	564	09 07 1999	04 25	1976				
09 07 1999	08 40	1685	09 07 1999	04 50	2733				
09 07 1999	09 15	460	09 07 1999	06 50	1664				
09 07 1999	10 00	1470	09 07 1999	07 00	5208				
09 07 1999	10 45	548	09 07 1999	09 00	5039	ľ			
09 07 1999	11 20	1256	09 07 1999	10 55	5097				
09 07 1999	12.00) (40')	09 07 1999	12.00) (65')	09 07	1999	12	00
11 07 1999	11	50	11 07 1999	11	50	11.07	1999	11	50
24 07 1000	11	12	24.07.1000	11	12	24.07	1000	11	12
24 07 1999	13	13	24 07 1999	13	13	24 07	1999	13	15
28 07 1999	12	53	28 07 1999	12	53	28 07	1999	12	53
29 07 1999	11	59	29 07 1999	11	59	29 07	1999	11	59
02 09 1999	23 45	482	02 09 1999	23 10	1423				
03 09 1999	01 20	433							
03 09 1999	02 55	422	03 09 1999	00 05	1706				

03 09 1999	05 50	392	03 09 1999	01 15	1287			
03 09 1999	06 35	1358	03 09 1999	03 05	4839			
03 09 1999	07 30	453	03 09 1999	03 20	1655			
03 09 1999	08 25	1504	03 09 1999	04 55	2124			
03 09 1999	09 00	391	03 09 1999	06 00	7432			
03 09 1999	10 00	1487	03 09 1999	08 25	3294			
03 09 1999	10 40	371	03 09 1999	10 50	4479			
03 09 1999	12 15	503	03 09 1999	11 30	1489			
03 09 1999	12 1	6 (1')	03 09 1999	12 16	6 (46')	03 09 1999	12	16
05 09 1999	12	06	05 09 1999	12	. 06	05 09 1999	12	06
17 10 1999	11	55	17 10 1999	11	55	17 10 1999	11	55
19 10 1999	11	45	19 10 1999	11	45	19 10 1999	11	45
06 06 2000	22 25	660						
07 06 2000	01 15	738						
07 06 2000	02 40	614	07 06 2000	00 55	3878			
07 06 2000	04 05	672	07 06 2000	01 40	1607			
07 06 2000	05 15	1496	07 06 2000	09 30	2972			
07 06 2000	06 30	1377	07 06 2000	11 20	3451	07 06 2000	03 45	1429
07 06 2000	07 45	1464	07 06 2000	11 40	1427	07 06 2000	09 25	1367
07 06 2000	12 17	(272')	07 06 2000	12 12	7 (37')	07 06 2000	12 17	(172')
16 06 2000	23 00	647						
17 06 2000	00 20	785						
17 06 2000	01 35	599						
17 06 2000	02 25	1178						
17 06 2000	03 40	1386						
17 06 2000	04 20	720						
17 06 2000	04 55	1386						
17 06 2000	05 35	544						
17 06 2000	08 20	497	16 06 2000	22 50	1246			
17 06 2000	09 50	777	17 06 2000	01 05	7468			
17 06 2000	11 20	296	17 06 2000	05 20	7455	17 06 2000	00 55	1109
17 06 2000	12 40	736	17 06 2000	12 00	4350	17 06 2000	01 10	4316
17 06 2000	12 59	9 (19')	17 06 2000	12 59	9 (59')	17 06 2000	12 59	(709')
18 06 2000			18 06 2000	08 50	4494			
18 06 2000	12	05	18 06 2000	12 05	(195')	18 06 2000	12	05
19 06 2002	08 20	497	19 06 2002	02 20	4458			
19 06 2002	09 50	777	19 06 2002	08 45	1273			
19 06 2002	11 20	296	19 06 2002	10 10	3359			
19 06 2002	12 40	736	19 06 2002	11 10	1706			
19 06 2000	12 4	8 (8')	19 06 2000	12 48	3 (98')	19 06 2000	12	48
22 08 2000	23 58	535						
23 08 2000	01 28	535						
23 08 2000	02 43	515						
23 08 2000	04 05	509						
23 08 2000	05 27	512						
23 08 2000	06 45	474						
23 08 2000	08 00	505						
23 08 2000	09 23	461						
23 08 2000	10 43	422						
23 08 2000	12 03	504	22.09.2000	10	10	22.09.2000	10	10
23 08 2000	12 19	7 (16')	23 08 2000	12	19	23 08 2000	12	19
					1			

APPENDIX 6

Gestorte hoveelheden op de baggerplaatsen B/1, B/2, B/6 en B/9 april 1997 – maart 2000

	B/1	(B&W SI)		B/2 (B&₩ S2)				
	Totaal	Zand	Slib	Totaal	Zand	Slib		
Januari								
Februari								
Maart								
April	152.1	1.5	150.6	36.5	0.4	36.1		
Mei	282.5	2.8	279.7	59.9	0.6	59.3		
Juni	172.7	1.7	171.0	46.3	0.5	45.8		
Juli	64.2	0.6	63.6	32.6	0.3	32.3		
Augustus	115.3	1.2	114.1	33.7	0.3	33.4		
September	91.6	0.9	90.7	37.7	0.4	37.3		
Oktober	85.5	0.9	84.6	11.6	0.1	11.5		
November	985.9	9.9	976.0	270.9	2.7	268.2		
December	200.4	2.0	198.4	29.1	0.3	28.8		
Totaal	2150.2	21.5	2128.7	558.3	5.6	552.7		

Gestorte hoeveelheden in 1997 (01/04 - 01/12)

Tabel 1a: Gestorte hoeveelheden op B/1 en B/2 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor april-december 1997, slibfractie is 99%

	B/6	(B&W Ze	ebO)	B/9 (B	B/9 (B&W Oostende			
	Totaal	Zand	Slib	Totaal	Zand	Slib		
Januari								
Februari								
Maart								
April	254.3	2.5	251.8	0	0	0		
Mei	1205.9	12.1	1193.8	3.6	0.0	3.6		
Juni	418.1	4.2	413.9	16.6	0.2	16.4		
Juli	227.5	2.3	225.2	18.1	0.2	17.9		
Augustus	369.3	2.7	365.6	35.3	0.4	34.9		
September	557.8	5.6	552.2	45.1	0.5	44.6		
Oktober	232.9	2.3	230.6	28.6	0.3	28.3		
November	2545.3	25.5	2519.8	234.5	2.3	232.2		
December	292.0	3.0	289.0	92.7	0.9	91.8		
Totaal	6103.1	60.2	6041.9	474.5	4.8	469.7		

Tabel 1b: Gestorte hoeveelheden op B/6 en B/9 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor april-december 1997, slibfractie is 99%

	Totaal	Zand	Slib
B/I	2150.2	21.5	2128.7
B/2	558.3	5.6	552.7
B/6	6103.1	60.2	6041.9
B/9	474.5	4.8	469.7
Algemeen Totaal	9286.1	92.1	9193.0

Tabel 1c: Totaal gestorte hoeveelheden in 10³ TDS per stortgebied, voor aprildecember 1997.

		B/I (B&₩ SI)				B/2 (B&W S2)			
-	Totaal	Zand	Slib	%Slib	Totaal	Zand	Slib	%Slib	
Januari	689.3	120.7	568.6	63	69.0	12.5	56.5	56	
Februari	660.9	153.3	507.6	60	207.7	55.4	152.3	69	
Maart	138.0	11.9	126.1	25	10.4	0.1	10.3	0	
April	89.1	1.9	87.2	4	21.6	0.5	21.1	5	
Mei	109.9	2.3	107.6	4	21.4	0.5	20.9	5	
Juni	144.6	2.0	142.6	I	27.0	0.6	26.4	3	
Juli	48.3	0.7	47.6	2	10.8	0.3	10.5	7	
Augustus	140.2	6.8	133.4	19	48.4	5.6	42.8	55	
September	181.5	11.9	169.6	27	49.5	5.6	43.9	37	
Oktober	788.8	132.2	656.6	70	91.5	19.9	71.6	65	
November	1116.1	276.8	839.3	65	13.5	0.4	13.1	8	
December	1065.7	234.1	831.6	57	326.1	90.5	235.6	72	
Totaal	5172.4	954.6	4217.8	55	896.9	191.9	705.0	59	

Gestorte hoeveelheden in 1998

Tabel 2a: Gestorte hoeveelheden op B/1 en B/2 uit onderhouds- en verdiepingsbaggerwerken (10³ TDS), voor 1998.

	B/6	(B&W Ze	ebO)	B/9 (B&W Oostende)			
	Totaal	Zand	Slib	Totaal	Zand	Slib	
Januari	298.8	3.0	295.8	111.1	1.1	110.0	
Februari	262.9	2.6	260.3	121.5	1.2	120.3	
Maart	228.7	2.3	226.4	38.0	0.4	37.6	
April	210.5	2.1	208.4	43.0	0.4	42.6	
Mei	244.8	2.4	242.4	17.2	0.2	17.0	
Juni	374.3	3.7	370.6	46.8	0.5	46.3	
Juli	181.1	1.8	179.3	9.9	0.1	9.8	
Augustus	237.7	2.4	235.3	22.8	0.2	22.6	
September	337.4	3.4	334.0	29.5	0.3	29.2	
Oktober	259.1	2.6	256.5	18.2	0.2	18.0	
November	263.1	2.7	260.4	41.6	0.4	41.2	
December	97.5	1.0	96.5	118.4	1.2	117.2	
Totaal	2995.9	30.0	2965.9	618.0	6.2	611.8	

Tabel 2b: Gestorte hoeveelheden op B/6 en B/9 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor 1998.

	Totaal	Zand	Slib
B/1	5172.4	954.6	4217.8
B/2	896.9	191.9	705.0
B/6	2995.9	30.0	2965.9
B/9	618.0	6.2	611.8
Algemeen Totaal	9683.2	1183.7	8500.5

Tabel 2c: Totaal gestorte hoeveelheden in 10³ TDS per stortgebied (1998).

	B/I (B&₩ SI)				B/2 (B&₩ S2)			
	Totaal	Zand	Slib	%Slib	Totaal	Zand	Slib	%Slib
Januari	1307.3	209.9	1097.4	58	73.5	19.5	54.0	68
Februari	812.8	179.4	633.4	70	23.7	1.7	22.0	20
Maart	1651.0	350.1	1300.9	67	16.4	1.2	15.2	21
April	1063.0	557.0	506.0	11	8.4	0.1	8.3	0
Mei	1253.5	802.8	450.7	31	3.3	0.0	3.3	0
Juni	1328.6	585.3	743.3	18	0	0	0	-
Juli	395.8	198.2	197.6	15	0	0	0	-
Augustus	938.2	609.8	328.4	14	0	0	0	-
September	1117.1	584.I	533.0	11	0	0	0	-
Oktober	195.4	7.4	188.0	1	0	0	0	-
November	141.7	5.3	136.4	3	0	0	0	-
December	720.0	362.9	357.1	12	0	0	0	-
Totaal	10924.4	4452.2	6472.2	33	125.3	22.5	102.8	47

Gestorte hoeveelheden in 1999

Tabel 3a: Gestorte hoeveelheden op B/1 en B/2 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor 1999.

	B/6 ((B&W Ze	ebO)	B/9 (B&W Oostende)			
_	Totaal	Zand	Slib	Totaal	Zand	Slib	
Januari	272.0	2.7	269.3	65.5	0.7	64.8	
Februari	221.1	2.2	218.9	18.2	0.2	18.0	
Maart	278.4	2.8	275.6	36.0	0.4	35.6	
April	294.6	3.0	291.6	31.5	5.4	26.1	
Mei	122.8	1.2	121.6	28.9	4.9	24.0	
Juni	368.6	3.7	364.9	110.2	18.7	91.5	
Juli	137.3	1.4	135.9	82.8	14.1	68.7	
Augustus	354.7	3.5	351.2	95.9	16.3	79.6	
September	345.6	3.5	342.1	0	0	0	
Oktober	114.7	1.2	113.5	59.1	10.0	49.1	
November	187.2	1.9	185.3	29.1	0.3	28.8	
December	259.0	2.6	256.4	58.7	7.2	51.5	
Totaal	2956.0	29.7	2926.3	615.9	78.2	537.7	

Tabel 3b: Gestorte hoeveelheden op B/6 en B/9 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor 1999.

	Totaal	Zand	Slib
B/I	10924.4	4452.2	6472.2
B/2	125.3	22.5	102.8
B/6	2956.0	29.7	2926.3
B/9	615.9	78.2	537.7
Algemeen Totaal	14621.6	4582.7	10038.9

Tabel 3c: Totaal gestorte hoeveelheden in 10³ TDS per stortgebied (1999).

Gestorte hoeveelheden in 2000

		B/I (B&₩ SI)				B/2 (B&W S2)		
	Totaal	Zand	Slib	%Slib	Totaal	Zand	Slib	%Slib
Januari	147.1	1.4	145.7	99	34.1	28.0	6.1	18
Februari	847.0	437.5	409.5	48	7.5	6.I	1.4	19
Maart	971.2	459.8	511.4	53	119.5	34.5	85.0	71
Totaal	1965.3	898.7	1066.6		161.1	68.6	92.5	

Tabel 4a: Gestorte hoeveelheden op B/1 en B/2 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor het eerste trimester van 2000.

	B/6	B/6 (B&W ZeebO)			B/9 (B&W Oostende)			
	Totaal	Zand	Slib	Totaal	Zand	Slib		
Januari	265.2	2.6	262.6	25.5	0.3	25.2		
Februari	265.6	2.7	262.9	34.9	0.3	34.6		
Maart	473.5	4.8	468.7	35.0	0.4	34.6		
Totaal	1004.3	10.1	994.2	95.4	1.0	94.4		

Tabel 4b: Gestorte hoeveelheden op B/6 en B/9 uit onderhouds- en verdiepingsbaggerwerken (10^3 TDS), voor het eerste trimester van 2000.

	Totaal	Zand	Slib
B/I	1965.3	898.7	1066.6
B/2	161.1	68.6	92.5
B/6	1004.3	10.1	994.2
B/9	95.4	1.0	94.4
Algemeen Totaal	3226.1	978.4	2247.7

Tabel 4c: Totaal gestorte hoeveelheden in 10³ TDS per stortgebied (eerste trimester 2000).