
 

 

 

 

 

DOCUMENTATION OF A UI-LIBRARY USED 

IN WEB DEVELOPMENT 

Lauri Annala 

 

 

 

 

 

 

 

 

 

 

 

 

Bachelor’s thesis 

January 2017 

Tietotekniikan ko 

Ohjelmistotekniikka 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/84793199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

TIIVISTELMÄ 

Tampereen ammattikorkeakoulu 

Tietotekniikan ko 

Ohjelmistotekniikka 

 

Opinnäytetyö 31 sivua, joista liitteitä 0 sivua 

Toukokuu 2017 

LAURI ANNALA: 

Web-sovelluskehityksessä käytettävän käyttöliittymäkirjaston dokumentaatio 

 

Opinnäytetyö käsittelee tekijän toteuttamaa käyttöliittymäkirjaston 

dokumentaatiosivustoa. Työn aiheena oli toteuttaa Web-sovellus, jonka tehtävä on 

dokumentoida käyttöliittymäkirjastoa. Työn tuloksena syntyi sovellus, jota päivitetään 

käyttöliittymäkirjaston kehityksen yhteydessä. Sovellus esittelee kirjaston 

komponentteja, tyylejä ja muita ominaisuuksia, sekä kirjaston käyttöön liittyviä seikkoja. 

Tämä opinnäytetyöraportti esittelee sovellusta, sen kehittämisprosessia ja eri 

teknologioita joita sovelluksessa ja käyttöliittymäkirjastossa on käytetty. 

 

Opinnäytetyöraportissa esitellään käyttöliittymäkirjastossa ja dokumentaatiosivustossa  

käytetyt teknologiat. Raportti esittelee dokumentaatiosivuston rakenteen ja 

arkkitehtuurin, sekä selittää kehitystyöhön liittyvät prosessit, työkalut ja työskentelytavat. 

Raportti myös käsittelee työn aikana hyväksi todettuja ohjelmiston kehittämismenetelmiä 

ja työkaluja. 

Avainsanat: dokumentaatio, web-kehitys, käyttöliittymäkirjasto 



 

 

ABSTRACT 

Tampere University of Applied Sciences 

Degree Programme in ICT Engineering 

Software technology 

 

Bachelor's thesis 31 pages, appendices 0 pages 

August 2015 

 

Lauri Annala: 

Documentation of a UI-library used in web development 

 

The thesis deals with documentation site developed by the author. The subject of the study 

was to implement a Web application which provides documentation for a UI-library. The 

work resulted in the application, which will be updated in parallel with the continuous 

development of the user interface library. The application presents the library’s compo-

nents, styles, and other features, as well as aspects of the operation of the UI-library. This 

thesis report presents the application and the different technologies that have been used 

in the application and the UI-library. 

 

This thesis report describes the different technologies used in the library and the docu-

mentation web application. It goes through the design and architecture of the application 

and also explains the development process, tools and best practices in web development. 

Thesis also describes good software development practices and tools that were used dur-

ing this work.  

Key words: documentation, web development, user-interface library 



4 

 

TABLE OF CONTENTS 

1 PREFACE ......................................................................................................... 7 

2 DESIGN GOALS & AUDIENCE .................................................................... 8 

2.1 Design ........................................................................................................ 8 

2.2 Goals .......................................................................................................... 8 

2.3 Audience .................................................................................................... 8 

3 TECHNOLOGIES ........................................................................................... 10 

3.1 JAVASCRIPT & ES6 .............................................................................. 10 

3.1.1 Javascript ....................................................................................... 10 

3.1.2 ECMAScript6 ................................................................................ 12 

3.2 HTML ...................................................................................................... 12 

3.3 CSS & LESS ............................................................................................ 12 

3.3.1 CSS ................................................................................................ 12 

3.4 LESS ........................................................................................................ 13 

3.5 ANGULARJS .......................................................................................... 13 

3.6 TYPESCRIPT .......................................................................................... 14 

4 TECHNOLOGIES USED IN THE DEVELOPMENT ................................... 15 

4.1 NodeJS & NPM ....................................................................................... 15 

4.2 GULP ....................................................................................................... 15 

4.3 LODASH ................................................................................................. 15 

5 DESCRIPTION OF THE DOCUMENTED UI-LIBRARY ........................... 17 

6 BRIEF EXPLANATION OF THE DEVELOPMENT PROCESS OF THE 

DOCUMENTATION APPLICATION ........................................................... 18 

7 ARCHITECTURE ........................................................................................... 19 

8 DEVELOPMENT TOOLS .............................................................................. 22 

8.1 Gulp & TSLint ......................................................................................... 22 

8.2 Version control & Semantic Versioning .................................................. 22 

8.3 Source mapping ....................................................................................... 23 

9 IMPLEMENTATION OF THE APPLICATION ........................................... 24 

9.1 Concept, inspiration & requirements ....................................................... 24 

9.2 Developing the build system .................................................................... 24 

9.3 Developing the documentation page: layout, html & css ........................ 25 

9.4 Developing the documentation page: Angular, Javascript, Lodash & 

Templates ................................................................................................. 25 

9.5 Developing the documentation page: examples and making the 

documentation .......................................................................................... 25 

10 DEVELOPMENT PROCESS, DEPLOYMENT & BEST PRACTICES ....... 26 

10.1 Agile & Scrum ......................................................................................... 26 



5 

 

10.2 Development & Deployment ................................................................... 26 

10.3 Perspective & Insights ............................................................................. 27 

11 PRODUCTION ............................................................................................... 28 

11.1 Minifying & concatenating ...................................................................... 28 

11.2 Continuous Integration ............................................................................ 29 

12 CONCLUSION ............................................................................................... 30 

SOURCES ............................................................................................................. 31 

 



6 

 

ABBREVIATIONS AND TERMS 

 

 

UI-library User interface library 

MVC Model-View-Controller paradigm 

Web development Development of websites or web applications 

Framework Provides functionalities and solutions for particular area 

API Application Programming Interface 

- Set of functions and procedures that allow access to  

a set of services, data or systems 

IDE Integrated Development Environment 

- Software application that provides comprehensive solu-

tion for writing, maintaining and debugging software 

Intellisense Visual feature in text editors and IDE’s that help you learn 

 about the code, used frameworks and libraries 

IIS Internet Information Services  

– Microsoft’s web server software 

Lint, linting Various toolsets that flag suspicious and possible bugs in 

source code 

TSLint Specific linting tool for Typescript programming language  

Route, routing Web-page structure is based on routing, a specific route is  

defined in the page’s URL 

  

 



7 

 

1 PREFACE 

 

 

Thesis describes the creation process and resulting product of the documentation created 

for a UI-library used in web-development. The documentation is implemented as a web-

application that is also using the UI-library that it provides documentation for. Documen-

tation application uses several 3rd party libraries and frameworks, most of them already 

included in the UI-library. This thesis aims to describe and explain the usage of these 

frameworks, libraries and technologies. Thesis also provides an insight on how this doc-

umentation application was designed and developed and how it is aimed to be used as a 

tool for developers, designers and product owners that are using or are interested in the 

UI-library. 



8 

 

2 DESIGN GOALS & AUDIENCE 

 

 

2.1 Design 

 

The documentation application is aimed for developers, designers and product owners. It 

should be easy and fast to use by providing code examples of the correct usage of the UI-

library’s components, styles and other features. This goal is achieved by providing a live 

style guide, showcasing example usage of the library and providing source code to im-

plement similar use-cases. The provided code example is also the source code that is used 

in the demonstration of the component. With this approach it is very convenient for the 

user to see the actual result of the code in a web-application. Documentation for the style 

library is also included in the application. All variables and custom overrides are show-

cased in the style-section of the documentation application. Style library uses a custom 

Bootstrap library that has modified values and definitions. 

 

2.2 Goals 

 

The documentation application should help the users of the UI-library to use it correctly. 

It should provide examples of the correct usage of the components and be a quick refer-

ence of the styles and variables provided by the UI-library. Documentation also provides 

brief description, guidelines and other resources for the people and organizations inter-

ested in using the UI-library. The documentation should be easy to approach, having all 

the basic information the user needs to set up a specific component or style. It should also 

provide all the detailed information for the user. All this is achieved by providing descrip-

tions and API-documentation for the components of the UI-library, and by having a 

demonstrations and source codes available for the user to inspect. 

 

2.3 Audience 

 

Audience, the users of this documentation are developers, designers and product owners 

that are using or are interested in the UI-library. They should have basic knowledge of 

the languages, main frameworks and tools the UI-library depends on. Main frameworks 

are the libraries that are utilized in the UI-library to provide layouts, styles and function-

alities. AngularJS framework, Typescript language and Bootstrap library. Users should 



9 

 

have basic skills in HTML, CSS and Javascript. The technologies, frameworks and librar-

ies used in the UI-library, as well as the documentation application, are briefly introduced 

and described in the corresponding technologies- sections of this thesis report. 

 



10 

 

3 TECHNOLOGIES 

 

This section describes the technologies that are used in the UI-library. The basic web 

technologies: Javascript, CSS and HTML are described in detail. UI-library also uses 

more advanced technologies like AngularJS and Typescript which are all also discussed 

in this section. 

 

3.1 JAVASCRIPT & ES6 

 

3.1.1 Javascript 

 

Javascript has grown to be one of the most widely used programming language of the 

world. The web has grown to be enormous and the language of the web is Javascript. 

Every browser can interpret Javascript is one of the main reasons the language is used so 

widely. As a programming-language it is a high-level, dynamic, untyped and interpreted 

language. 

 

High-level means that the language aims to abstract the deep functionality of the com-

puter, like memory management of the machine. Reason for this is to provide language 

features that are easier and faster to use in applications where managing the low-level 

functionality of a computer doesn’t matter that much. 

 

Dynamic means that the language executes some of its features and behaviors at runtime, 

when code is executed at the browser. In contrast to static languages that would execute 

it’s features and behaviors when the source code is being compiled, when the code is 

transpiled into machine code or to some other lower-level language. 

 

Untyped means that in the language there are no type declarations. Typed languages like 

C use keywords for typing, like int for integer numbers and string for text. Note that 

there are a few definitions for an untyped language. One definition of untyped is that the 

language doesn’t tag values and treats everything as bits. Javascript doesn’t suit for this 

definition. Low-level languages like Assembly are considered untyped in this sense. The 

other definition is from Programming Language Theory: “In this domain, untyped just 

means everything belongs to a single type. Why? Because a language will only generate 

a program when it can prove that the types align.  



11 

 

This means in an untyped language: 

 A program is always generated 

 Therefore types always match up 

 Therefore there must only be one type 

 

In contrast to a typed language: 

 A program might not be generated 

 Because types might not match up 

 Because a program can contain multiple types 

 

…in PLT, untyped just means dynamically typed and typed just means statically typed. 

JavaScript is definitely untyped in this category.” – Brian McKenna, Stack Overflow.  

 

Interpreted means that the language doesn’t need to compiled before executing. The 

browser interpreter that executes the code translates each statement into subroutines that 

are already compiled into machine code. 

 

Javascript is a multi-paradigm language supporting object-oriented programming with its 

prototype-based first-class-functions. Javascipt also supports scripting, imperative, func-

tional and event-driven programming styles. Scripting is a programming style where a 

common task in specified environment is executed automatically. One example of a 

scripted application would be a program that installs an application to a server machine. 

Imperative programming style is common in low-level language and machine code. Code 

is focusing on how the program executes and it is based on statements and functions. In 

functional programming style code is built on functions that avoid changing the state and 

mutable data. It is a declarative paradigm that uses expressions or declarations instead of 

statements. Event-driven programming focuses on the behavior and flow of the program 

determined by events. In Javascript, this style is commonly used when the program han-

dles user input. 

 

Javascipt’s API provides support for text, arrays, dates and regular expressions. API 

doesn’t support I/O, networking or storage or graphics. Host system, commonly the 

browser is responsible of these unsupported features. 

 



12 

 

3.1.2 ECMAScript6 

 

ES6, ECMAScript6 or ECMAScript 2015 is the latest version of ECMAScript standard. 

It is not yet supported by modern browsers, but tools like BabelJS and Typescript can 

compile ES6 to ES5, which is supported by browsers. ES6 is very large update to the 

language overall. Notable features are arrow and lambda functions, template strings, mod-

ules, module loaders, promises and new classes that are easier to use than classic Javas-

cript prototypes. 

 

 

3.2 HTML 

 

Hyper Text Markup Language is the standard markup language used in web pages and 

applications. Browsers can render a multimedia web page by interpreting this markup 

content. HTML describes the webpage semantically and provides its structure. HTML 

can also be embedded in Javascript-files that define the behavior and content of the 

webpage. HTML can also include CSS stylesheets that define the look and layout of the 

webpage. 

 

 

3.3 CSS & LESS 

 

3.3.1 CSS 

 

Cascading Style Sheets is a style sheet language that defines the presentation of a markup 

language document such as an HTML document. CSS is commonly used in describing 

styles and layout of a web page. CSS rulesets can define for example the color, paddings 

and margins of an element with style properties. The elements that specific rulesets are 

applied are defined with selectors like classes or id:s. In larger projects using the plain 

old CSS can become increasingly cluttered and hard to maintain. CSS preprocessor lan-

guages like SASS and LESS have been designed to achieve better maintainability and 

add new language features like mixins and nesting of rules. Latest technologies have in-

troduced new ways to achieve maintainability and separation of components. For exam-

ple, with Vue.js library you can define isolated CSS rules for each component. The doc-

umented UI-library uses LESS as a CSS preprocessor. 



13 

 

 

3.3.2 LESS 

 

LESS is a dynamic superset of CSS that can be compiled into CSS which then can be 

interpreted by browsers. LESS provides several new features to style sheets: variables, 

nesting, operators, functions and mixins which can contain several property definitions 

as a ruleset. Variables are a simple but important update to CSS that can increase main-

tainability greatly when specific values can be reused in several components. If it is de-

cided to alter the values later, the refactoring can be done to a single variable instead of 

changing the values separately in several places. Nested rulesets offer convenience for 

writing structured style rules, but deep nesting can also reduce readability. Operations 

and functions are also available to stylesheets when using LESS. 

 

 

3.4 ANGULARJS 

 

AngularJS is a Javascript framework for building single page applications and dynamic 

web pages. By using Angular the developers can extend HTML vocabulary to build dy-

namic view content which HTML originally was not designed for. AngularJS makes de-

veloping dynamic web applications easier and faster.  

 

In the moment of writing, Angular has already released their new version of Angular 2. 

However, the documented UI-library and the web application still use Angular 1. Angular 

2 simplified and improved Angular and it is entirely separate new framework.  

 

Transition from Angular 1 to Angular 2 is a high priority, since Angular 1 is much older 

and inferior compared to newest Javascript frameworks like Angular 2, ReactJS or VueJS. 

Angular 2 introduces many improvements and provides a fully-fleshed, modern JS frame-

work. It is tempting to compare Angular 2 with other popular Javascript libraries like 

VueJS or ReactJS. Angular 2 is fundamentally different in a sense that it provides a full 

MVC-framework as opposed to Vue.JS or React which both provide only a View-library. 

These other libraries, VueJS and React, can be extended with additional libraries to 

achieve the same sort of full MVC solution similar to Angular 2. This difference might 

be one important aspect when choosing the best framework for specific purpose, Angular 

2 provides a full solution with pre-defined conventions and best-practices. In the other 



14 

 

hand, VueJS and ReactJS can provide a flexible View-layer solution for your existing 

project, or you can more freely develop a custom solution using these libraries. In short, 

Angular 2 provides full, instantly ready-to-use MVC framework with less freedom, 

VueJS and ReactJS provide flexible View-layer libraries which can be integrated to ex-

isting projects and solutions with specific custom needs. 

 

 

3.5 TYPESCRIPT 

 

Typescript is a superset language to ECMAScript 6 that compiles to Javascript which 

then can be executed in browsers. Typescript introduces types to Javascript which can 

enhance the workflow in larger projects and provide IDE features such as advanced au-

tocompletion and refactoring in Javascript. Typescript is a viable choice to neglect time-

consuming issues that arise from dynamic languages. Types can prevent the application 

to end up in faulty behavior. Features and architecture can be described, documented and 

shared to other developers better with types. Typescript’s tooling can save a lot of time 

by preventing common mistakes caused by human error. For example the Typescript 

compiler can be very helpful when you define your types, classes and interfaces. Devel-

opers can get error reports before running the code and tools like intellisense present the 

APIs for you conveniently. When using Typescript you can interactively inspect library 

interfaces from your editor and take benefit from auto-completion. 

 

 



15 

 

4 TECHNOLOGIES USED IN THE DEVELOPMENT 

 

This section describes the technologies that are used in the development of the UI-library. 

These technologies are included in the UI-library’s source code. The distributed UI-li-

brary package includes the libraries, documentation application and their dependencies. 

 

4.1 NodeJS & NPM 

 

NodeJS is a Javascript runtime environment used widely in web applications. NodeJS 

also includes its package-manager, npm (node package manager) which is the largest 

ecosystem of open source libraries and packages. NodeJS is designed for scalable net-

work applications. It’s asynchronous, event-driven and has non-blocking I/O model. In 

our application, NodeJS is used to build the application and manage its packages and 

dependencies. NodeJS is also used as a platform of the development server. NodeJS also 

supports ES6 features. 

 

4.2 GULP 

 

Gulp is a task runner or a build tool used in NodeJS applications. It can help with auto-

mating common tasks like setting up a development server or building production or de-

velopment software from source code. In front-end development, some common tasks for 

gulp would be to automatically reload the browser when there are changes to source code 

during development. Compiling Typescript to Javascript or LESS/SASS to CSS. 

In our application, gulp builds the library, minifies and creates sourcemaps for it, builds 

the documentation and executes tests, it also provides a local development server that 

serves the documentation web application. Development server supports live reload on 

code changes as well. Build system has separate tasks for production like minifying, and 

tasks for development like building source maps for better debugging experience. 

 

4.3 LODASH 

 

Lodash is a utility library that has different methods like forEach, forOwn, debounce, map 

and many more. In our application some of these methods are used in the build system 

and the UI-library typescript source files. While ES6 is increasing its popularity, the rel-

evance of Lodash could be questioned since many of its features are now available in the 



16 

 

newest version of Javascript. However, our documentation application’s Angular appli-

cation doesn’t use ES6 at this point. Some lodash array methods could be replaced by 

their ES6 equivalents in the NodeJS build system because it already has ES6 set up. 

Lodash still has many unique features that are not covered in the ES6 core, like array 

functions working on Javascript objects as well, and having several not so common, but 

very useful utilities, like debounce and throttle. Lodash also has very good optimizations 

in the library that can improve the overall application performance. 

 

 



17 

 

5 DESCRIPTION OF THE DOCUMENTED UI-LIBRARY 

 

The UI-library offers custom bootstrap styles and css variables in its style library. It also 

provides custom UI-components using AngularJS-framework. Style-library includes 

bootstrap custom overrides, css variable definitions like paddings, margins and screen-

width breakpoints used in the stylesheets. Angular-library includes UI-components like 

datepicker, dropdown-panel, list and many more. The UI-library package also includes 

the documentation application. In development, source files include all typescript and less 

files that produce the core library as Javascript and CSS. Source files also include the 

build system, unit tests and source files needed to build the documentation application. 

 

The UI-library greatly increases the efficiency of the development. Using a separate li-

brary in the product supports separation of concerns in the architecture. This will increase 

modularity, maintainability and it will also enhance development workflows in larger 

projects. Components with clear API’s promote coherent usage across the platform which 

will increase code readability and maintainability. The UI-library has a dedicated team 

that maintains the package and continuously adds new features and fixes bugs in the li-

brary. The team is challenged to understand the use cases for the library and the users 

should provide feedback so the team can improve the library based on it. 



18 

 

6 BRIEF EXPLANATION OF THE DEVELOPMENT PROCESS OF THE 

DOCUMENTATION APPLICATION 

 

Important goal during the development of the documentation application was to achieve 

easy maintainability. The software architecture was based on this requirement. Applica-

tion doesn’t use any database and all the data is determined in the build process. The 

benefit of this is that the documentation application is included in the UI-library package. 

The application can be served in server as static files requiring minimal amount of con-

figuration and effort. The application can also be maintained and developed easily along-

side with the UI-library. This application aims to support the developer, so local devel-

opment server with live reload is also included in the software. The main libraries the 

application uses are already included in the UI-library and accessible there. But some 

libraries are specific for the documentation app, like Angular-scroll and HighlightJS. 

 

The build system is implemented using NodeJS and gulp plugins. The build system is 

responsible of making a tar-file that includes the UI-library and the documentation that 

uses that library. Documentation application uses the same external libraries as the UI-

library. 

 



19 

 

7 ARCHITECTURE 

 

Documentation application is a static package that builds its data from source files. This 

data is injected into templates. The UI-library and its dependencies are documented and 

many parts of them are also included in the documentation applications page styles, layout 

and behavior. If certain data from the source is not directly available in the libraries, it is 

initialized to the applications controller through the injected templates. 

 

The documentation application essentially consumes the documented UI-library and de-

scribes the use-cases to the viewer of the web page. The goal of the architecture is to use 

the documented library as simply and efficiently as possible. The application uses very 

few additional libraries and these are mainly used in the view layer based on the special 

needs of the documentation. 

 

The build process is the core part of the architecture because the used data is based on 

static source files that are handled in the build. The application doesn’t have any back end 

that would server the data dynamically. This is because the application does not have any 

interaction with the user outside of the navigation and the documented components. When 

components are required to use some sort of business data it is mocked in the demonstra-

tion source code. 

 

The application is a single-page-application that is served statically from the server. The 

application doesn’t have any specific requirements for the server and it can be served 

straight from the filesystem if it is desired. In practice, the files are either served locally 

from the NodeJS development server or in production from an IIS server. 

  



20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PICTURE 1. Technologies of the documentation application 

  

Libs: 

UI-library’s 3rd party 

dependencies 

Documentation 

data for each 

component  

 

Angular components 

 

Custom styles and Bootstrap 

overrides 

Documentation-applica-

tion 

source-files 

Documentation specific 

styles and bootstrap over-

rides 

Angular application for 

documentation 

Core of the UI-library 

Documentation application 

Build the UI-library 

Build the documentation 

application 

Other tasks: run tests, check 

version to display on docu-

mentation, minifying, 

sourcemapping etc.. 

Build system 

HTML-templates 

Data for style docu-

mentation and exam-

ples 

Build result: NPM package 

Libs: 

Documentation applica-

tion’s 3rd party depen-

decies 

UI-library 
Documentation 

application 



21 

 

 

PICTURE 2. Architecture of the  

documentation application 

AngularJS Bootstrap 

UI-components Custom styles

 

  

 

 

UI-library 

API-

documentation 

Markdown 

Example code 

Typescript 

Example markup 

HTML 

 

 

 

 

 

 

Live demonstration examples 

 

 

  

 

 

 

 

 

 

Build System 

 

 

 

 

 

 

 

 

 

 

 

 

 

Documentation application  

Gulp & other tools 

NodeJS 

Live Style 

Guide 
API docs Examples 

Build, 

Minify 

& Test 

UI-library 

Inject the data from examples and 

API docs to the documentation  

application 

Documentation application 

static files 

UI-

library 

package 

 

 

 

 

 

 

 

 

 

Live Style Guide 

 

 

NPM-package 

UI-library Documentation Application 

Http-server serving static files of the package 

Angular SPA 

Page templates 

Data injected by the build 

System and mapped to the application 

 



22 

 

8 DEVELOPMENT TOOLS 

 

 

8.1 Gulp & TSLint 

 

When writing code in a team, people usually adapt to certain style guides that the team 

should follow. Linting tools help with this by automatically proofing the source code. 

Lint is a software tool that reports any suspicious usage in source code. Linting tools are 

available for different programming languages. Users and teams can define their own 

rulesets that will cause linting to fail. Style Guides often define different coding styles 

that should be followed and a linting tool can help to accommodating to these rules. 

If there are some linting errors in the code, eg. unused variables or empty constructor, 

author should notice and fix the problem before these changes would end up to version 

control. In continuous integration, where the UI-library is automatically built by gulp, 

these linting errors will fail the build. Gulp provides easy tools to run tslint automatically 

each time there are code changes. 

 

8.2 Version control & Semantic Versioning 

 

Git was used as a version control system. As a branching model we adopted widely used 

Vincent Driessen’s model. It uses two main git branches: develop and master. Develop-

branch has new features for the next releases, feature and bugfix branches are usually 

merged to develop branch. Master branch represents the features ready for production. 

Release branches are checked out from master branch with release version tag, eg: 

“1.0.1”. Version numbers are based in semantic versioning. 

  



23 

 

8.3 Source mapping 

 

When the source code is built, Typescript is converted to Javascript and LESS is con-

verted to CSS. The source code is minified and other procedures are executed like con-

catenating the source code. The result might be impossible to read and to track down 

bugs. It is preferable to keep the client-side code readable and debuggable while devel-

oping the software. Source maps help with this as they map the code back to readable and 

debuggable form. Developer tools like Google Chrome dev tools will automatically use 

the generated source maps to map the code. The application uses gulp to make source 

maps and as result, the source code readable again and it is possible to debug the original 

Typescript source code and inspect the LESS stylesheets. 



24 

 

9 IMPLEMENTATION OF THE APPLICATION 

 

9.1 Concept, inspiration & requirements 

 

Documentation application is included in the UI-library source code and build result 

package. Application doesn’t have detailed requirements for the back-end or the server. 

Build package can be served statically from the server when making sure to allow certain 

mime-types like fonts and animations to be served from the server. Application is very 

easy to be setup as a local development server with node because the build system offers 

an automatic command to set it up: gulp sync. Static files can be served in simple 

NodeJS http-server or IIS-server with minimal configuration. Page layout and general 

architecture of application was originally inspired by UI-Bootstrap’s documentation ap-

plication. There are many differences, one large difference are the tools that are used. UI-

Bootstrap uses grunt in contrary to our project using gulp. Grunt in configuration based 

build-system and gulp is more like a streamed task-runner. Somewhat similar design and 

architecture is used in how the documentation is created and maintained. Documentation 

consists a series of descriptions and guidelines as a readme-file (md), a live example of 

the usage of component that consists of markdown(html) and typescript. These files are 

included in the UI-library’s source code, exactly in the corresponding component’s docs-

folder. The main goal of the application is to provide a living style guide that is constantly 

updated along with the UI-library. 

 

9.2 Developing the build system 

 

Build system consists of several gulp tasks for different purposes. Tasks can build the 

source code as development or production build, run unit tests and build the documenta-

tion application. Documentation build system takes all the sources of the documentation, 

transpiles the Typescript- and LESS- files and builds them into the html-templates using 

Lodash and Angular’s template cache. Angular loads different pages, like components 

and styles pages from template cache depending on the client’s current route. 

  



25 

 

 

9.3 Developing the documentation page: layout, html & css 

 

Documentation application has its own stylesheet but it is not supposed to override or 

alter the behavior of the UI-library. Documentation applications own stylesheet are used 

strictly for defining the presentation of the documentation. AngularJS components have 

markdown, html and typescript source-files and they create the examples and documen-

tation for each component. Build system takes care of any necessary navigation, catego-

rizing and component specific layouts. 

 

9.4 Developing the documentation page: Angular, Javascript, Lodash & Tem-

plates 

 

Documentation application has it’s own Javascript source code using Angular that takes 

care of navigation and routing. Some of the application logic is based on the data that is 

injected to the Angular application through templates. This mechanism relies of the build 

process where the required data is determined and templates are formed based on that 

data. 

 

9.5 Developing the documentation page: examples and making the documenta-

tion 

 

Documentation aims to provide enough information for the user to know how the com-

ponent or style should be used. User should also have clear knowledge of how the com-

ponent looks and how it works. Detailed API-documentation, such as specific attributes 

or optional behavior should be available and demonstrated in live demo. Demonstration’s 

source code should be easy to understand and it should offer all the source code needed, 

typescript, less and markup. 



26 

 

10 DEVELOPMENT PROCESS, DEPLOYMENT & BEST PRACTICES 

 

10.1 Agile & Scrum 

 

The development of the documentation library was done in parallel with the development 

of the UI-library. The most crucial part of any team work is communication. Our team 

had the traditional daily scrum meetings and retrospectives.  

 

Scrum meetings emphasize the importance of continuous communication. In a daily 

scrum meeting each team member explains what they have done yesterday, what they are 

going to do today and if they have any problems. The meeting is supposed to be fast and 

brief, lasting around 15 minutes. This time is not dedicated to solve problems. After a 

scrum daily meeting every member of the team gains good understanding of what work 

has been done and what work remains. When a team member announces their commit-

ment to a certain task the commitment is made for the team and the team will know the 

next day if the task is completed. This creates a certain sense of commitment for each 

member of the team. 

 

In the scrum retrospective the team discusses the recently concluded sprint. Sprint stands 

for a period of time in which the team has agreed to complete certain set of tasks. In scrum 

retrospective team discusses on what went well during the latest spring cycle, what went 

wrong and what could be done differently to improve the efficiency and quality of the 

next sprint. In sprint retrospectives the team can provide feedback and discuss different 

ways to improve efficiency and quality of their work. 

 

10.2 Development & Deployment 

During development of the documentation application and the UI-library there were cer-

tain best practices the team members followed. In addition to scrum daily meetings and 

retrospectives the team members also did code reviews to new features. Before new 

changes were added to the source code, other members reviewed the new code added for 

a new feature. This guaranteed to keep the established code quality and improved the 

common understanding of the source code when members could question and reason 

about the source code. Some small oversights and mistakes could already be caught in 

the code review process. 

 



27 

 

When code is pushed to the repository the continuous integration system could spot re-

gression bugs and errors when the developer was implementing a new feature. This con-

tinuous integration process guaranteed that these errors could be spotted and addressed 

early. 

 

10.3 Perspective & Insights 

 

The team should be willing to deeply understand what the real customer needs from their 

product. It should be clear to understand who the customer is in the first place. It is a 

common misconception for a developer to solely implement features for their manager or 

product owner. But understanding the needs of the actual users of the product is the most 

crucial and challenging skill to acquire. In the perspective of the documentation applica-

tion the customer is only indirectly the user of the business product, the application that 

uses the library. The primary customer of the documentation application are the develop-

ers and product owners that are using it on their product or are interested in doing so. It 

is crucial to truly understand who is the real customer and what their needs are. 



28 

 

11 PRODUCTION 

 

11.1 Minifying & concatenating  

 

For production there are various tasks to make the resulting package as lightweight as 

possible. These tasks include source code minification which removes all the unnecessary 

characters from the source code. This means that everything that doesn’t change the logic 

or functionality of the program and only exists for human readability, eg. white space 

characters, new line characters and comments will be removed. 

 

PICTURE 3. Javascript code before minification 

 

 

PICTURE 4. Javascript code after minification 

 

Instead of including multiple source files in html, all the different library source files can 

be concatenated in one file. In our application, 3rd party libraries are concatenated to one 

file, eg: libs.js and all application source files to its own concatenated file. 

  



29 

 

11.2 Continuous Integration 

 

When developer start to implement a new feature or a bug fix and pushes new code to the 

version control repository, the continuous integration will trigger certain tasks. Certain 

set of automatic tests are run in the continuous integration system. The benefit is fast 

feedback and early detection of regressions and erroneous behavior of the software. When 

new features are approved and pushed to the main repositories like the main release or 

development branch, a new version of the documentation is also build and copied to the 

official documentation server. This way the documentation is always up to date and 

doesn’t require any manual intervention on procedures unless there are some problems in 

the underlying system. 

 

 



30 

 

12 CONCLUSION 

 

 

In the future, the main challenges are to unify the documentation application with other 

guidelines used in the organization. Also, Angular 2 has recently been released and in the 

future the UI-library will be updated to use that. Same applies when bootstrap is updated 

to version 4. In web-development new attractive technologies are released and updated 

each year and updating the dependencies for the documentation application and the UI-

library is one part of maintaining the software. Switching to new libraries needs to be 

carefully studied first. In the future the documentation application could be extended to 

have live editing features that would enable the user to edit the demonstration examples 

directly in the browser. 



31 

 

SOURCES 

Stack Overflow: Is Javascipt an untyped language. Read 24.10.2016 

http://stackoverflow.com/questions/964910/is-javascript-an-untyped-language 

 

Luke Hoban: ES6 features. Read 24.10.2016 

https://github.com/lukehoban/es6features 

 

Zell Liew: Gulp for Beginners, Read 10.11.2016 

https://css-tricks.com/gulp-for-beginners/ 

 

Ryan Seddon: Introduction to Javascript Source Maps. Read 17.11.2016 

https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/ 

 

Vincent Driessen: A successful git branching model. Read 17.11.2016 

http://nvie.com/posts/a-successful-git-branching-model/ 

 

Kitson Kelly: Typescript, WTF?! Read 17.11.2016 

https://davidwalsh.name/typescript 

 

Derick Bailey: Does ES6 mean the end of Underscore/Lodash? Read 17.11.2016 

https://derickbailey.com/2016/09/12/does-es6-mean-the-end-of-underscore-lodash/ 

 

John Fawcett: Generating Documentation for TypeScript Projects. Read 23.11.2016 

https://blog.cloudflare.com/generating-documentation-for-typescript-projects/ 

 

Mountain Goat Software – Scrum. Read 15.4.2017 

https://www.mountaingoatsoftware.com/agile/scrum/ 

 

 

 

 

 

 

http://stackoverflow.com/questions/964910/is-javascript-an-untyped-language
https://github.com/lukehoban/es6features
https://css-tricks.com/gulp-for-beginners/
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://nvie.com/posts/a-successful-git-branching-model/
https://davidwalsh.name/typescript
https://derickbailey.com/2016/09/12/does-es6-mean-the-end-of-underscore-lodash/
https://blog.cloudflare.com/generating-documentation-for-typescript-projects/
https://www.mountaingoatsoftware.com/agile/scrum/

