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Abstract 

Germinated brown rice (GBR) has been suggested as an approach to mitigate highly 

prevalent diseases providing nutrients and biologically active compounds. In this study, 

the content of γ-oryzanol, γ-aminobutyric acid (GABA), total phenolic compounds 

(TPC) and antioxidant activity of soaked BR (for 24 h at 28°C) and GBR (for 48 and 96 

h at 28°C and 34°C) were determined and the effect of sun-drying as an economically 

affordable process was assessed. Germination improved the content of GABA, TPC and 

antioxidant activity in a time-dependent manner. Sun-drying increased γ-oryzanol, TPC 

and antioxidant activity, whereas GABA content fluctuated depending on the previous 

germination conditions. The main finding of this study indicates that sun-drying is an 

effective process promoting the accumulation of bioactive compound of GBR. Sun-

dried GBR can be consumed as ready-to-eat food after rehydration or included in 

bakery products to fight non-communicable diseases. 

 

Keywords: Brown rice, sun-drying, germination, γ-aminobutyric acid, γ-oryzanol, 

phenolic compounds, antioxidant activity. 

 

 

 

 

1. Introduction 

 

Rice (Oryza sativa L.) is one of the main cereals produced in the world and the 

major staple food for almost half of the world population that currently eat rice as staple 

food. There has been postulated a positive association between white rice intake and 

risk factors of CVD including metabolic syndrome and type 2 diabetes in low and 



 3 

middle-income countries (Izadi and Azadbakht, 2015). In recent years, much attention 

has been paid on the health benefits of brown rice (BR). BR contains health promoting 

compounds, including dietary fibre, γ-aminobutyric acid (GABA), vitamins, phenolic 

compounds and γ-oryzanol, that are mainly located in the germ and bran layers which 

are removed during rice polishing and milling (Monks et al., 2013).  

Despite its nutritional value and beneficial physiological effects, BR is not widely 

consumed because it has poor cooking properties, low organoleptic quality and harsh 

texture (Burlando and Cornara, 2014). Numerous studies have demonstrated that 

germination improves texture and acceptability of BR and also enhances nutrient and 

phytochemical bioavailability (Komatsuzaki et al., 2005). During germination, 

significant changes in biochemical, nutritional and sensory characteristics occur 

resulting in the degradation of storage proteins and carbohydrates and promoting the 

synthesis and accumulation of biofunctional compounds. Germination process generally 

results in improved levels of vitamins, minerals, fibres and phytochemicals such as 

ferulic acid, GABA, γ-oryzanol and antioxidant activity (Cho and Lim, 2016).  

Consumption of GBR is receiving increasing attention supported by scientific 

evidence on its beneficial health effects reducing the risk of diseases such as obesity 

(Lim et al., 2014), cardiovascular diseases (Imam et al., 2014; Mohd. Esa et al., 2011), 

type 2 diabetes (Imam and Ismail, 2013; Shen et al., 2015), neurodegenerative diseases 

(Azmi et al., 2013) and osteoporosis (Muhammad et al., 2013). In this context, GBR has 

been identified as a natural and inexpensive substitute of conventional white rice to 

improve nutritive and health status of a large world population (Wu et al., 2013). 

Several studies have been carried out to optimize the germination conditions and 

maximize the beneficial attributes of GBR since the chemical composition of the grains 

change dramatically during germination (Cho and Lim, 2016). Lesser efforts, however, 
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have been dedicated to evaluate the effect of drying processes to preserve the quality 

and composition of the obtained GBR grains. Most of the research studies focused on 

the production and characterization of GBR use freeze-drying, process in which water is 

removed by sublimation producing high-value dried products with extended shelf-life 

(Karam et al., 2016). This technique maintains the color, shape, aroma and nutritional 

quality of the product and its relevance to preserve nutraceutical compounds has been 

highlighted (Argyropoulos et al., 2011). However, the process is slow and requires 

expensive equipment and, thus, it is rarely used for the preservation of foods on the 

industrial scale (Vega-Mercado et al., 2001). Drying operations as convective drying, 

hot-air oven, vacuum, osmotic, fluidized bed and superheated steam dehydration 

techniques are conventionally used to achieve water evaporation in shorter times. In 

GBR, drying procedure system and operation conditions affect the drying rate and 

quality attributes, whilst starch digestibility, GABA and dietary fiber content depend on 

the applied temperature (Chungcharoen et al., 2014; Srisang et al., 2011). These drying 

methods are still expensive and not always affordable in low and middle-income 

countries where rice production and transformation is performed with few economic 

resources.  
Solar drying is the oldest preservation procedure for agri-food products and it is 

the most common method to dehydrate rice grains in those producers´ countries located 

in tropical areas of the world (Imoudu and Olufayo, 2000). Taking in mind its low 

energy cost, the aim of the present work was to evaluate for the first time the effect of 

sun-drying on the content of bioactive compounds in GBR. In this context, Ecuador is a 

tropical country which experiences little variation in daylight hours during the course of 

a year and temperatures oscillate between 30 and 40º C. These climate conditions could 

be favourable for the stabilization of GBR by sun-drying.   
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Our group has recently addressed different germination conditions to maximize 

the phytochemical content, antioxidant activity and nutritional features of three certified 

BR varieties and one experimental cultivar grown in Ecuador features (Cáceres et al., 

2014a, b). In an effort to make an additional step towards sustainable and cost-effective 

production of Ecuadorian GBR, the present work was designed to assess the effect of 

different germination conditions on γ-oryzanol, GABA, total phenolic compounds and 

antioxidant activity in a highly produced rice variety, SLF09, and how sun-drying 

influence the content of those biologically active compounds. Dried GBR under sun 

might assure the intake of health-promoting compounds in that population where rice is 

the main food as ready-to-eat meals or soups after rehydration or to supplement 

functional foods as strategy for combating highly prevalent chronic diseases.     

 

2. Material and methods 

2.1. Rice samples  

Commercial certified brown rice (BR) variety indica SLF09 was supplied by the 

company INDIA-PRONACA Co, Ecuador. This variety was selected based on its high 

harvest yield (6 Tm/Ha) and the consumer acceptability characterized by its translucent 

white center and extra-long shape grain. 

2.2. Germination  process 

Fifty grams of BR were washed with distilled water and soaked in 0.1% sodium 

hypochloride (1:5; w/v) at 28 ºC for 30 min. After draining, BR grains were rinsed with 

distilled water to neutral pH. BR grains were then soaked in distilled water (1:5; w/v) at 

28 ºC for 24 h. Afterwards, soaking solution was removed and the soaked BR grains 

were obtained. 
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Soaked BR were extended on drilled grilles over a moist laboratory paper and 

they were then covered with the same paper. The grille was placed in plastic 

germination trays containing distilled water in order to maintain the paper always wet 

by capillarity. Germination trays containing the soaked grains were introduced in a 

germination cabinet (model EC00-065, Snijders Scientific, Netherlands) provided with 

a circulating water system to keep the humidity > 90%. GBR were produced at 28 and 

34 ºC in darkness for 48 and 96 h. Soaked and GBR grains were dehydrated in a freeze-

drier (Freeze Mobile G, Virtis Company, INC Gardiner, NY, USA). Freeze-dried grains 

were finely ground in a ball mill (Glen Creston Ltd., Stanmore, UK), passed through a 

sieve of 0.5 mm and the obtained flour was stored under vacuum conditions in sealed 

plastic bags in darkness at 4 ºC until further analysis. Each germination process was 

carried out in triplicate.  

2.3. Sun-drying proccess 

Fresh soaked and GBR samples produced as explained above were lied out plastic 

cloths under sunlight in Guayaquil (Ecuador), at a latitude of 2º 12’ 21’’ S and a 

longitude of 79º 54’ 28’’ W,  an elevation of 6 m above the sea level with temperatures 

between 30-40ºC (EXA, 2008) until GBR grains reached ∼10% of moisture (Imoudu 

and Olufayo, 2000). Sun-dried soaked and GBR were finely ground in a ball mill (Glen 

Creston Ltd., Stanmore, UK), passed through a sieve of 0.5 mm and the flour obtained 

was stored under vacuum conditions in sealed plastic bags in darkness at 4 ºC until 

further analysis. Each drying process was conducted in triplicate.  

2.4. Determination of moisture content 

The content of moisture in dried soaked and GBR was determined by keeking the 

samples at 105 ºC to a constant weight according to AOAC 925.09 (AOAC, 2000). 
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2.5. Determination of γ-oryzanol. 

The analysis of γ-oryzanol in rice samples was performed as previously reported 

(Cho et al., 2012) with some modifications. Briefly, 1 g of sample was mixed with 10 

mL of 100% methanol and further sonicated for 10 min. The mixture was centrifuged at 

15,000 rpm for 10 min at room temperature and then concentrated to dryness. Samples 

were then diluted in 1 mL of 100% methanol, filtered through a 0.45µm membrane and 

then analysed by HPLC. The HPLC system consisted of an Alliance Separation Module 

2695 (Waters, Milford, USA), a photodiode array detector 2996 (Waters) setted at 325 

nm wavelengh and Empower II software (Waters). Twenty microliters were injected 

onto a C18 column (150 x 3.9 mm i.d., 5 μm size, Waters). A gradient mobile phase 

was pumped  at a flow of 1.0 mL/min to separate the γ-oryzanol components consisting 

in solvent A (acetonitrile), solvent B (methanol) and solvent C (bi-distilled water) for 50 

min as follows: initial isocratic flow 60% solvent A, 35% solvent B and 5% solvent C 

for 5 min, gradient flow 60% solvent A and 40% solvent B for 3 min keeping it at 

isocratic flow for 2 min, then gradient flow 22% solvent A and 78% solvent B for 10 

min, to be maintained isocratically for 15 min, and changing to initial conditions for 10 

min and, finaly, isocratic conditions to equilibrate column for 10 min. γ-Oryzanol 

derivatives in rice samples were identified by retention time and spiking the sample 

with a commercial γ-oryzanol standard solution (Cymit, Spain) (Figure 1) and the purity 

of peaks was confirmed by spectra comparison and by MS analysis (Cho et al., 2012). 

Steryl ferulates components of γ-oryzanol were quantified by external calibration curves 

using γ-oryzanol standard solutions. Replicates samples were independently analyzed 

and results were expressed in mg γ-oryzanol/100 g of dry weight (d.w.).  
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2.6. Determination of γ-aminobutyric acid (GABA)  

γ-Aminobutyric acid (GABA) content was determined by HPLC as described 

previously (Cáceres et al., 2014b). Briefly, 50 µL aliquot of concentrated water-soluble 

extract and 10µL allyl-L-glycine solution (Sigma-Aldrich) used as internal standard 

were derivatized with 30 µL phenyl isothiocyanate (PITC 99%, Sigma-Aldrich) and 

dissolved in mobile phase A for GABA analysis. An Alliance Separation Module 2695 

(Waters, Milford, USA), a photodiode array detector 2996 (Waters) setted at 242 nm 

wavelenth and an Empower II chromatographic software (Waters) were used as 

chromatographic system. A volume of 20µL of sample were injected onto a C18 

Alltima 250 x 4.6 mm i.d., 5 μm size (Alltech, Spain) column thermostatted at 30 ºC. 

The chromatogram was developed at a flow rate of 1.0 mL/min by eluting the sample 

with mobile phase A (0.1 M ammonium acetate pH 6.5) and mobile phase B (0.1 M 

ammonium acetate, acetonitrile, methanol, 44/46/10, v/v/v, pH 6.5). Replicates samples 

were independently analyzed and results were expressed as mg GABA/100 g d.w.  

2.7. Determination of total phenolic content  

The Folin-Ciocalteu’s method was used for the quantification of total phenolic 

content (TPC), as previously reported (Cáceres et al., 2014b). The absorbance was 

measured at 739 nm using a microplate reader (Synergy HT, BioTek Instruments) and 

TPC were quantified by external calibration using gallic acid (Sigma-Aldrich) as 

standard. Sample replicates were independently analyzed and results were expressed as 

mg of gallic acid equivalents (GAE)/100 g d.w. 

2.8. Determination of antioxidant activity  

Antioxidant activity was determined by the method of oxygen radical absorbance 

capacity (ORAC) by fluorescence detection (λexc 485 nm and λem 520 nm) using an 

automatic plate reader (BioTek Instruments), previously described (Cáceres et al., 
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2014b). Sample replicates were independently analyzed and results were expressed as 

mg of Trolox equivalents (TE)/100g of sample d.w. 

2.9. Statistical analysis 

Each germination experiment and subsequent drying process were conducted in 

triplicate. Two extractions were performed for each replicate and the analytical 

determinations were carried out in triplicate. Data were expressed as mean ± standard 

deviation. The data obtained from each experimental condition were subjected to one-

way analysis of variance (ANOVA) using Duncan test to determine the significant 

differences at P ≤ 0.05 level using Statgraphics Centurion XVI Program, version 

16.1.17 (Statistical Graphics Corporation, Rockville, Md) for Windows. This 

programme was also used for correlation analysis. 

 

3. Results  

In order to study the effect of germination on biologically active compounds of 

BR, soaked and GBR were freeze-dried as this drying process minimize its degradation 

and deterioration In parallel, fresh soaked and GBR were dried under the sun and the 

moisture content ranged between 9.5-12.5 

 

3.1. Effect of germination on γ-oryzanol content in brown rice variety SLF09 

BR variety SLF09 exhibited four main chromatographic peaks that 

unambiguously were identified as cycloartenyl ferulate (peak 1), 24-methylene 

cycloartanyl ferulate (peak 2), campestryl ferulate (peak 3) and sitosteryl ferulate (peak 

4) (Figure 1), confirmed by spicking with commercial standard γ-oryzanol by HPLC 

and mass espectrometry analysis. The quantitative results revealed that 24-methylene 

cycloartanyl ferulate (peak 2) was present in the larger amount (4.98 mg/100g d.w.), 
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followed by cycloartenyl ferulate (peak 1) and campestryl ferulate (peak 3) (2.6 and 

2.24 mg/100g d.w., respectively) and, finally, sitosteryl ferulate (peak 4) (1.34 mg/100g 

d.w.), accounting for a total amount of 11.17 mg γ-oryzanol/100g d.w. (Table 1). Total 

content of γ-oryzanol underwent a significantly decrease (P≤0.05) during the initial 

soaking treatment (from 11.17 to 9.23 mg/100g d.w.) and a 17% reduction was 

observed. This effect was due to drops exhibited by the individual derivatives: 

Campestryl ferulate suffered the largest decrease (25%), followed by sitosteryl ferulate 

(20%) and, in less amount, cycloartenyl and 24-methylene cycloartanyl ferulates (15%) 

(Table 1). Germination process did not bring about further γ-oryzanol losses, since most 

of the steryl derivative concentrations kept almost unchanged (P≥0.05), and 

concentrations ranged from 9.2 to 9.64 mg/100g d.w. in GBR grains (Table 1).  

In an attempt to stablish the proportion of each individual derivative within the 

total γ-oryzanol content before and after germination, the contribution of each steryl 

ferulate to the total γ-oryzanol content was calculated (Figure 2). In crude BR, 24-

methylene cycloartanyl ferulate was the predominant one (45%), followed by 

cycloartenyl ferulate (23%), then campestryl ferulate (20%) and, finaly, sitosteryl 

ferulate (12%). These proportions were mainteined almost invaried after soaking and 

slight modifications were appreciated in GBR samples. While the contributions of 

cycloartenyl and sitosteryl ferulates did not change during germination, those for 24-

methylene cycloartanyl and campestryl ferulates were modified to aproximately 48 and 

17%, respectively (Figure 2).   

 

3.2. Effect of germination on GABA content in brown rice variety SLF09 

Table 2 reports the GABA content in ungerminated, soaked and GBR. Variety 

SLF09 showed a concentration of 1.07 mg GABA/100g d.w. that increased 7-fold after 
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soaking process carried out at 28 ºC for 24 h. During germination, a gradual and time-

dependent accumulation of GABA was achieved and 28 ºC produced larger amounts of 

this compound (34.8 mg/100 g d.w. and 99 mg/100g d.w. for 48 and 96 h, respectively) 

than 34 ºC (24.3 mg/100g d.w and 83.6 mg/100g d.w. for 48 and 96 h, respectively).  

 

3.3. Effect of germination on the content of total phenolic compounds in brown rice 

variety SLF09 

Changes in total phenolic compounds (TPC) of BR at different germination 

conditions are presented in Table 2. The TPC in crude samples corresponded to 132.53 

mg GAE/100g d.w. and this content underwent a significantly (P ≤ 0.05) decrease after 

steeping process (113.23 mg GAE/100g d.w.). Germination, however, led to a sharp 

increment in the concentration of these compounds with time, reaching values of 187.17 

and 176.48 mg GAE/100g d.w. for 48h-GBR and of 298.23 and 382.99 mg GAE/100g 

d.w. for 96h-GBR, at 28 and 34 ºC, respectively.  

 

3.4. Effect of germination on the antioxidant activity in brown rice variety SLF09 

The total antioxidant activity of crude, soaked and GBR grains determined by the 

ORAC-FL method is also collected in Table 2. The antioxidant activity of non-

germinated SLF09 grains was 494.81 mg TE/100g d.w. and soaking did not cause 

significant (P≥0.05) changes. During germination process, the antioxidant activity 

increased gradually following a time-dependent pattern and higher temperature led to 

higher levels. Thus 48h-GBR samples exhibited 554.85 and 662.8 mg TE/100g d.w. at 

28 and 34 ºC, respectively, whilst 96h-GBR grains showed larger activity (977.47 and 

1079.35 mg TE/100g d.w. for those respective temperatures). However, there was not 
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found a significant correlation between antioxidant activity and γ-oryzanol content of 

GBR (freeze-dried) samples (Figure 6C).  

 

3.5. Effect of sun-drying on the content of γ-oryzanol, GABA, TPC and antioxidant 

activity of germinated brown rice variety SLF09 

Tables 1 and 2 include the content of γ-oryzanol, GABA, TPC and antioxidant 

activity in sundried soaked and GBR. This drying process increased the content of γ-

oryzanol in GBR from 14.1 mg/100g d.w. in soaked and 28 ºC/48h-GBR samples to 

18.2 mg/100g d.w. in 28 ºC/96h-GBR ones, representing a 34 and 48 % increment, 

respectively. Sundried 34 ºC/48h-GBR and 34 ºC/96h-GBR showed γ-oryzanol 

concentrations of 16.7 mg/100g d.w., accounting for an increment of 42% (Figure 3). 

These amounts are the result of the accumulation of the individual steryl ferulates 

during sun-drying that reached values in the range of 2.6-3.56 mg/100g d.w. for 

cycloartenyl ferulate, 6.07-7.7 mg/100g d.w. for 24-methylene cycloartanyl ferulate, 

3.56-4.64 mg/100g d.w. for campestryl ferulate and 1.78- 2.30 mg/100g d.w. for 

sitosteryl ferulate (Table 1). Figure 2 illustrates the contributions of individual steryl 

ferulates to the total γ-oryzanol content. Sun-drying increased the proportion of 

campestryl ferulate to approximately 25-26%, whilst cycloartenyl ferulate and 24-

methylene cycloartanyl ferulate decreased to 18-19% and 42-43%, respectively, whilst 

sitosteryl ferulate was not modified.  

The content of GABA in sundried GBR grains is found in Table 2. The largest 

GABA accumulation was achieved for those samples previously germinated for 96 h 

(49.8 and 66.4 mg/100g d.w. at 28 and 34 ºC, respectively), whilst temperature did not 

modified GABA content in GBR for 48 h (~36.5 mg/100g d.w.) and soaked BR 

provided the lowest GABA content. Sun-drying only increased GABA content in 
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soaked and 34 ºC/48h GBR (41 and 33%, respectively), did not cause significant GABA 

modification in 28 ºC/48h GBR, while for those BR grains germinated for 96h, sun-

drying led to unexpected GABA losses (99 and 24% at 28 and 34ºC, respectively) 

(Figure 3).  

Sun-drying brought about slight changes in TPC content of GBR and only in those 

germinated for 96 h, sun-drying led to significant (P≤0.05) enhancement of TPC (Table 

2, Figure 3). However, the antioxidant activity underwent a gradual and significant 

(P≤0.05) increase in sundried GBR that was higher for those GBR produced at 28 ºC 

(978.6 and 1283.25 mg TE/100 g d.w. for 48 and 96 h, respectively), althought those 

germinated at 34 ºC also provided a large ORAC value (826.8 and 1174.9 mg TE/100 g 

d.w. for 48 and 96 h, respectively). In all the samples, sun-drying caused a sharp 

increment in antioxidant activity compared with the GBR counterparts (Figure 3).  

In an attempt to elucidate the potential compounds responsible for antioxidant 

activity, Figure 4shows the correlation between ORAC values and TPC and γ-oryzanol 

content in GBR and sundried GBR. A significant positive correlation (P≤0.05) was 

found between ORAC and γ-oryzanol (Figure 4A) (r=0.82) and TPC (Figure 4B) 

(r=0.86) of sundried GBR, and between antioxidant activity and TPC content of GBR 

(Figure 4D) (r=0.96).  

 

4. Discussion  

BR variety SLF09 is largely produced in Eduador by INDIA-PRONACA and 

exported to other Latin American countries. It is one of the long grain rice indica 

varieties highly consumed due to this varity of rice remains loose after cooking. In 

Ecuador, this rice is produced at local farmlands that currently reach overproduction 

(Cáceres et al., 2014a), mainly used for animal feeding and, hence, undervaluaded. 
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Therefore, germination of BR emerges as a simple cost-effective strategy for enhancing 

the content of bioactive compounds. In addition, economic, effective and sustainable 

sun-drying provided by Ecuadorian climatology provided moisture content lower than 

15 %, in acordance to Imoudu and Olufayo (2000), contributing to the preservation of 

GBR for further storage, comercialization and consumption as ready-to-eat staple food 

or to be incorporated in demanded functional foods with added-value (Cornejo et al., 

2015). In this context, GBR can contribute to reduce the risk of cardiometabolic 

diseases in those populations where rice constitute the main energy and nutrient food 

without altering the existing consumption habits (Ochoa-Avilés et al., 2014).  

The composition of GBR depends on many factors such as genotype diversity, 

soaking conditions, germination time and temperature, as well as drying process. It is 

well known that germination process generally improves the nutritional quality, by 

augmenting the protein digestibility, vitamins, minerals and inducing the formation of 

bioactive components  (Cho and Lim, 2016).  

In our study, BR variery SLF09 provides γ-oryzanol in the form of four main 

derivatives. A wide range of variation for total γ-oryzanol has been reported previously 

in varieties of BR from different geographical origin (Cho et al., 2012; Khatoon and 

Gopalakrishna, 2004; Kiing et al., 2009; Miller and Engel, 2006; Ohtsubo et al., 2005; 

Pereira-Caro et al., 2013). Values ranging from 1.2 mg/100g in BR varieties from the 

Camargue region of France (Pereira-Caro et al., 2013) to 313 mg/100g in a BR cultivar 

cultivated in Taiwan (Huang and Ng, 2012) have been reported. The amounts of γ-

oryzanol found in BR variety SLF09 is comparable to those previously reported in three 

indica cultivars grown in Brazil (Pascual et al., 2013), and in eight cultivars from South 

Sarawak, Malaysia (Kiing et al., 2009). The contribution of each steryl ferulate to total 

γ-oryzanol content lies within the range previously reported in different French rice 



 15 

varieties (Pereira-Caro et al., 2013) and differ to those observed in long BR grain 

cultivars (Miller and Engel, 2006), in which the largest proportion was accounted by 

cycloartenyl ferulate (43-48%), followed by 24-methylene cycloartanyl ferulate (26-

29%) and, in minor proportions, campestryl ferulate (17-21%) and sitosteryl ferulate (7-

8%). The different proportions of individual γ-oryzanol constituents have been 

attributed to the variability among genotypes.  

During germination process, γ-oryzanol underwent a significant decrease (15 %) 

that occurred mainly during the initial hydration process and not further changes during 

germination were found. Results from the literature about the effect of germination on 

the content of total γ-oryzanol in BR are not coincident possibly due to the different 

germination conditions used. Our results are in accordance with those previously 

reported in several BR cultivars from Malaysia (Kiing et al., 2009) where a decrease of 

γ-oryzanol after germination at 25 ºC for 24 h was observed, and differ to Thai cultivar 

RD-6 that underwent an increase after 12 h-soaking and further 24 h-germination at 28-

30 ºC (Moongngarm and Saetung, 2010), or to those Indian varieties IR 64 and BPT 

that did not show changes in γ-oryzanol content after 16 h of soaking followed by120 h 

of germination at room temperature (Jayadeep and Malleshi, 2011). During the 

germination process hydrolytic enzymes are activated and the effect observed on γ-

oryzanol could be due to the induction of feruloyl esterases activity during the initial 

soaking process (Sancho et al., 1999). In addition, steryl ferulate degradation was also 

attributed to dynamic ferulic acid metabolism during BR hydration (Tian et al., 2004). 

Nevertheless, our results indicate that individual steryl ferulate contribution remained 

almost constant throughtout germination process showing that these compounds seems 

to be stable after 96 h at 28 and 34 ºC, effect that has not been reported previously.    
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GBR were sundried and γ-oryzanol increased between 34 and 48%, results 

reported for the first time in this work. These outcomes evidence the accumulation of γ-

oryzanol derivatives during drying under solar exposition that can be attributed to the 

sunlight effect on ferulic acid metabolism and further synthesis of individual γ-oryzanol 

components. It has been reported that sunlight has a profound effect on the biosynthesis 

of ferulic acid esters by affecting the metabolic activation of enzymes involved in the 

defence mechanism to radiation (Wang et al., 2014), and also in the development of  

new plant structural tissues (Hoson and Wakabayashi, 2015). To our knowledge, this is 

the first report describing the effect of sun-drying on γ-oryzanol content and 

composition evidencing GBR as a rich source of γ-oryzanol.  

It is widely recognized that γ-oryzanol and its individual components are  natural 

antioxidant. Among them, 24-methylene cycloartenyl ferulate exhibited the greatest 

antioxidant potential (Xu et al., 2001) and, together with cycloartenyl ferulate, showed 

anti-inflammatory properties (Akihisa et al., 2000). In addition, γ-oryzanol has shown 

anti-atherogenic, anti-cholesterolemic, hypolipidemic and anti-cancer effects in vivo 

(Wilson et al., 2007). γ-Oryzanol is administrated to the treatment of diabetes, 

menopause, allergies and gastrointestinal inflammatory diseases (Lemus et al., 2014). 

These properties make γ-oryzanol one of the most demanding compounds for 

nutraceutical, pharmaceutical and cosmeceutical preparations (Ghatak and Panchal, 

2011). Our results show that sun-drying may improveeven more γ-oryzanol content in 

GBR, and can be considered as a sustainable bio-efficient process to develop γ-oryzanol 

enriched GBR. 

GABA is usually present as a minor compound in crude grains, however, 

germination boosts its accumulation in rice sprouts (Cáceres et al., 2014b; Ohtsubo et 

al., 2005). GABA synthesis is usually initiated as consequence of the activation of 
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glutamate decarboxylase (GAD) enzyme during soaking process, activity that increases 

with germination time whilst temperature seems to exert a minor impact (Cáceres et al., 

2014b; Roohinejad et al., 2011). GAD catalyses the decarboxylation of glutamic acid to 

GABA and CO2 and it has been established a range between 20 and 40 ºC as optimal 

temperature for enzyme activity (Yang et al., 2013). Additionally, GABA can also be 

synthetized from putrescine as a response to abiotic stress during germination (Shelp et 

al., 2012) contributing to the overall account of GABA in GBR. Our results are 

consistent with those published recently for GBR, with values ranging from 34.5 to 140 

mg GABA/100g d.w. (Cáceres et al., 2014b; Hayat et al., 2015; Roohinejad et al., 2011; 

Yang et al., 2013; Zhang et al., 2014).  

The drying process of GBR under sunlight had a different effect on GABA 

depending on germination conditions and higher amounts were only found in soaked 

BR and 34 ºC/48h GBR. These results can be partly attributable to some remaining 

GAD activity after germination due to the activity of this enzyme at temperatures below 

40 °C (Kim et al., 2014). GABA diminution was observed in those dried samples 

previously germinated for 96h, results that could be attributed to sunlight exposure 

activation of GABA shunt pathway. These metabolic pathway uses GABA as precursor 

for the synthesis of succinic acid required in the Krebs cycle (Fait et al., 2008). 

Nevertheless, the content of GABA in sundried GBR has been described for the first 

time in the present work, ranging from 12 mg/100g in soaked grains to 67 mg/100g in 

34 ºC/96h GBR. GABA has a well-known antihypertensive and it has been reported that 

a daily GABA intake of 20 mg caused a reduction of blood pressure in individuals with 

pre-hypertension (Inoue et al., 2003). Furthermore, a daily dose of 26.4 mg of GABA 

seems to be effective in the treatment of neurological disorders (Diana et al., 2014). 
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Taking into account that 100 g of sun-dried GBR provide between 1.5 to 3-fold these 

required amounts, its consumption would provide health beneficial effects.   

BR is considered a good source of phenolic compounds and the content in the 

variety SLF09 is within the range previously reported (Ti et al., 2014). TPC content 

increased sharply as consequence of germination time while temperature had a minor 

influence (Cáceres et al., 2014b). This increment was partially explained by the 

production of enzymes that hydrolyse fiber components during GBR germination (Tian 

et al., 2004). In addition, the action of endogenous esterases can release free phenolics 

required for the synthesis of more complex compounds (Hatfield et al., 1999) providing, 

at the same time, defence against environmental agents (Lemus et al., 2014). Moreover, 

germination induces the expression of phenylalanine ammonia-lyase producing 

cinnamic acid from phenylanine which is, then, metabolized into other free phenolic 

acids (Shih et al., 2008). GBR obtained at 34ºC for 96 h in the present work exhibited 

greater TPC content than those reported previously (Cáceres et al., 2014b; Moongngarm 

and Saetung, 2010; Ti et al., 2014). Ti et al., (2014) identified protocatechuic, 

chorogenic, caffeic and ferulic acids as the main phenolic acids and the later was the 

most abundant (357 µg/g d.w. after 5 day-germination). 

Sun-drying kept or, even, increased the content of TPC (Figure 3) although a drop 

due to their susceptibility to oxidation during light exposure should be expected. TPC 

increase after sun-drying of GBR could be explained by activation of the 

phenylpropanoid pathway that occur in response to environmental factors (Reilly et al., 

2014; Shih et al., 2008) and increased exposure to UV-B light (Du et al., 2014). To our 

knowledge, we present here inedited results describing the sun-drying effect on the 

content of TPC of GBR that provide 176 to 383 mg GAE/100g d.w. depending on 

previous germination conditions. Phenolic compounds are considered bioactive 
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compounds with health implications (Roleira et al., 2015). Particularly, ferulic acid 

bound to dietary fiber plays an important role in the prevention of colon cancer and 

attenuates inflammation (Shao and Bao, 2015). Moreover, soluble phenolic acids inhibit 

the oxidation of LDL cholesterol and the cell membrane liposomes enhancing mental 

health, immunity and protecting against diabetes deterioration (Chandrasekara and 

Shahidi, 2011). Therefore, sundried GBR can be considered an important source of 

phenolic compounds with beneficial attributes.  

The antioxidant activity found in BR was higher than those observed in different 

Ecuadorian BR (Cáceres et al., 2014b), ranging between 242.7 and 316.8 mg TE/100g 

d.w., and  differ to those reported by (Ti et al., 2014), who found levels of 38.7 µmol 

TE/g in BR variety Tianyou 998. This variability on antioxidant activity in crude grains 

could be attributed to the phenolic composition in different BR genotypes as well as to 

the contribution of other antioxidant compounds such as γ-oryzanol and vitamin E 

isomers (Cáceres et al., 2014b; Moongngarm and Saetung, 2010). Germination 

enhanced the antioxidant potential of BR variety SLF09, in agreement with previous 

studies (Cáceres et al., 2014b; Ti et al., 2014; Tian et al., 2004). During germination of 

BR, antioxidant activity was time and temperature dependent, as recently reported 

(Cáceres et al., 2014b), most likely caused by the accumulation of compounds with 

peroxyl-scavenging activity such as phenolic compounds (Andriantsitohaina et al., 

2012; Zhou et al., 2014), as it was confirmed by the positive correlation obtained 

between antioxidant activity and TPC (Figure 4D). In addition, it has been suggested 

that soluble phenolic compounds account for 30% of the antioxidant activity (Adom and 

Liu, 2002). Nevertheless, γ-oryzanol can also contribute to the overall antioxidant 

activity (Aguilar-Garcia et al., 2007), however, in the present study, positive correlation 

between them in GBR was not found (Figure 4C). Other antioxidant compounds such as 
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tocopherols, tocotrienols, phytates and vitamin C could also contribute to this biological 

activity (Fardet, 2010; Frias et al., 2005). In sundried GBR samples, antioxidant activity 

was always significantly (P≤0.05) higher than their germinated counterparts, 

phenomenon that can be attributed to the increase observed in bioactive compounds 

such as γ-oryzanol and polyphenols. This hypothesis was confirmed by the positive 

correlations found between them (Figure 4A and 4B, respectively). Recent research 

shows that antioxidant activity of GBR is associated with the prevention of oxidative 

stress-related diseases (Lemus et al., 2014). It has been reported that GBR increases 

antioxidant enzyme activity and reduces lipid peroxidation in hypercholesterolimic 

rabbits (Mohd. Esa et al., 2011). To our knowledge, this is the first study showing 

antioxidant activity of sun-dried GBR  and its consumption could contribute to 

ameliorate oxidative stress-induced diseases.  

 

4. Conclusions 

Germination conditions modify the content of biologically active compounds of 

BR variety SLF09. γ-Oryzanol decreased slightly during germination and sun-drying 

led to an important accumulation. GABA was synthetized during germination in a time-

dependent manner and underwent significant rises after sun-drying only in those 

germinated for 48 h. TPC and antioxidant activity increased during germination that 

were preserved or even enhanced under solar dehydration. These outcomes show 

germination as a simple and sustainable process to preserve BR bioactive compounds 

and reveal, for the first time, the effectiveness of sun-drying for maximizing their 

accumulation. The obtained sun-dried GBR can be consumed directly after rehydatation 

as staple food or, after a milling process, can be incorporated in bakery products and 

pasta (Cornejo et al., 2015). In this context, consumption of sundried GBR can take 



 21 

place as parbolished rice to feed children and adolescents contributing to the control of 

metabolic related disorders (Ochoa-Avilés et al., 2012). 
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Table 1. Content of γ-oryzanol components (mg/100g dw) in crude, soaked and germinated brown rice variety SFL09 and the 
effect of sun-drying. 
 

BR samples 

Cycloartenyl 
ferulate 
(Peak 1) 
 

24-Methylene 
cycloartanyl ferulate 
(Peak 2)                              

Campestryl ferulate  
(Peak 3)                               

Sitosteryl 
ferulate  
(Peak 4)                               

Total γ-
oryzanol                               

Crude 2.60±0.05b 4.98±0.07d 2.24±0.03bA 1.34±0.02b 11.17±0.10b 
Freeze-dried 
Soaked  
28ºC, 24h  2.21±0.04a

 4.27±0.06aA
 1.67±0.05aA

 1.08±0.02aA 9.23±0.08aA 

Germinated      
28ºC, 48h   2.22±0.06aA 4.32±0.12abA 1.61±0.05aA 1.05±0.03aA 9.20±0.20aA 
28ºC, 96h   2.32±0.07aA 4.52±0.10bcA 1.58±0.03aA 1.09±0.02aA 9.52±0.17aA 
34ºC, 48h   2.33±0.13aA 4.56±0.20cA 1.59±0.15aA 1.11±0.08aA 9.59±0.56aA 
34ºC, 96h   2.36±0.11aA 4.58±0.19cA 1.60±0.09aA 1.10±0.05aA 9.64±0.42aA 
Sun-dried      
Soaked  
28ºC, 24h  2.63±0.11b 6.07±0.18eB 3.56±0.13cB 1.82±0.03bB 14.08±0.19bB 

Germinated      
28ºC, 48h   2.60±0.05bB 6.08±0.17eB 3.65±0.09cB 1.78±0.03bB 14.09±0.21bB 
28ºC, 96h   3.56±0.05cB 7.70±0.09fB 4.64±0.09eB 2.30±0.03cB 18.18±0.17dB 
34ºC, 48h   3.24±0.06cB 7.23±0.04fB 4.15±0.04dB 2.11±0.01cB 16.75±0.09cB 
34ºC, 96h   3.09±0.12cB 7.21±0.11fB 4.36±0.15eB 2.07±0.02cB 16.73±0.07cB 

Data are the mean values ± standard deviation of three independent experiments (n=3). Lowercase letters indicate statistical 

differences among germination conditions (P≤0.05 according to Duncan’s test). Uppercase letters indicate statistical 

differences among drying process for a same germination conditions (P≤0.05 according to Duncan’s test). 
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Table 2. Content of γ-aminobutyric acid (GABA), total phenolic compounds (TPC) and 

antioxidant activity (ORAC) of crude, soaked and germinated brown rice and the effect of sun-

drying. 
 

BR samples 
GABA 
(mg/100g) 

TPC                               
(mg GAE/100g dm) 

ORAC                             
(mg TE/100g dm) 

Crude 1.07±0.09a 132.53±2.78b 494.81±19.71a 
 
Freeze-dried 

   

Soaked  
28ºC, 24h  7.46±0.12bA 113.23±7.77aA 508.41±12.49abA 

 
Germinated    

28ºC, 48h   34.84±2.78dA  187.17±3.19dA 554.85±17.59bA 
28ºC, 96h   99.03±4.83fA 298.23±13.48eA 977.47±62.49dA 
34ºC, 48h   24.33±0.44cA 176.48±3.02cA 622.80±18.60cA 
34ºC, 96h   83.60±2.67eA 382.99±10.44gA 1079.35±69.70dA 
 
Sun-dried    

 
Soaked  
28ºC, 24h  

12.75±0.50gB 118.14±5.30fA 547.66±25.22eA 

 
Germinated 

   

28ºC, 48h   36.41±2.67hA 190.29±8.55gA 978.63±30.33fB 
28ºC, 96h   49.85±4.62iB 359.22±12.35hB 1283.25±74.04iB 
34ºC, 48h   36.50±1.36hB 195.13±18.26gA 826.82±54.82gB 
34ºC, 96h   66.94±1.21jB 429.34±17.54iB 1174.88±45.48hA 

 

Data are the mean values ± standard deviation of three independent experiments (n=3). Lowercase 

letters indicate statistical differences among germination conditions (P≤0.05 according to Duncan’s 

test). Uppercase letters indicate statistical differences among drying process for a same germination 

conditions (P≤0.05 according to Duncan’s test). 
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Figure 1. Chromatogram of γ-oryzanol standard. Peak 1, cycloartenyl ferulate; peak 2, 24-
methylenecycloartanyl ferulate; peak 3, campesteryl ferulate; peak 4, sitosteryl ferulate. 
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Figure 2. Contribution of the individual steryl ferulates to total content of γ-oryzanol 
in crude, soaked, and germinated brown rice and effect of sun-drying. 1, cycloartenyl 
ferulate; 2, 24-methylenecycloartanyl ferulate; 3, campesteryl ferulate; 4, sitosteryl 
ferulate. 
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Figure 3. Effect of sun-drying on bioactive compounds and antioxidant activity of soaked and 
germinated brown rice, indicating increase percentages (positive y-axe) or decrease 
percentages (negative y-axe). 
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y=127.759x – 1073.91
r= 0.82            R2=0.68

y=2.0952x – 396.82
r=0.86          R2=0.73

y=353.8x – 2589.36
r=0.47          R2=0.22

y=2.494x + 160.61
r=0.96  R2=0.92

Figure 4. Antioxidant activity correlated (r) Rith the content of γ-oryzanol (A) and TPC (B)
of SD-BR germinated and Rith the content of γ-oryzanol (C) and TPC (D) of FD-BR
germinated. R2 indicates the percentage of variation explained by the model.
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