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Abstract—The quality of a software system is mostly defined
by its source code. Software evolves continuously, it gets
modified, enhanced, and new requirements always arise. If
we do not spend time periodically on improving our source
code, it becomes messy and its quality will decrease inevitably.
Literature tells us that we can improve the quality of our
software product by regularly refactoring it. But does refac-
toring really increase software quality? Can it happen that a
refactoring decreases the quality? Is it possible to recognize the
change in quality caused by a single refactoring operation?
In our paper, we seek answers to these questions in a case
study of refactoring large-scale proprietary software systems.
We analyzed the source code of 5 systems, and measured the
quality of several revisions for a period of time. We analyzed
2 million lines of code and identified nearly 200 refactoring
commits which fixed over 500 coding issues. We found that
one single refactoring only makes a small change (sometimes
even decreases quality), but when we do them in blocks, we
can significantly increase quality, which can result not only in
the local, but also in the global improvement of the code.

Keywords-refactoring; software quality; maintainability;
coding issues; antipatterns; ISO/IEC 25010

I. INTRODUCTION

It is a typical nature of software systems that they evolve
over time, and while they evolve, they get enhanced, modi-
fied, and adapted to new requirements. As an effect of this
evolution, the code usually becomes more complex and drifts
away from its original design, thereby the quality of the
software erodes as time passes. This is one reason why the
major part of the total software development cost (about
80%) is spent on software maintenance tasks [1].

To prevent software erosion, refactoring is used to im-
prove the quality of a system (e.g. extensibility, modularity,
reusability, maintainability, and efficiency). Fowler defines
refactoring as “a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behavior” [2]. The
refactoring approach of Fowler et al. was proposed mainly
for improving understandability and changeability. However,
further research work show that the idea can also be applied
to other purposes [3], such as improving performance,
security, and reliability. In fact, as our previous research [4]
indicates, developers often tend to do refactorings to fix
coding issues that clearly affect the quality of the system,
instead of refactoring code smells or antipatterns.

Many researchers study the relation between refactoring
and software quality, and they usually investigate different

refactoring methods (mostly defined by Fowler et al. [2])
and their effects on metrics, such as complexity or coupling
[5], [6], [7]. However, most of the published studies were
performed in a controlled, in vitro environment and we have
only brief knowledge on how these methods are used by
developers in the real world.

Our goal is to fill this gap at least partially and investigate
refactorings in an in vivo environment. In order to achieve
this, we study the developers of software development
companies actively working on proprietary, large-scale, real-
world software systems. In a project, we had a chance to
work together with five companies from the ICT sector
who faced maintenance problems every day and wanted to
improve the quality of their products. These companies have
over 5 million lines of code altogether, and by taking part
in this project they got extra budget for refactoring their
own code. In the end, they committed around 1,600 fixes
where they used manual refactoring techniques to do the
modifications.

In an earlier research work [4] we investigated ques-
tionnaires that the developers filled before and after they
manually refactored the code. Now, we investigate how
developers decided to improve the quality of their source
code and what was the real effect of the manual refactorings
on the quality. For this study, we analyzed the quality of
five selected systems of 2 companies who participated in
the project – the revisions before and after the developers
applied refactoring operations – using a quality model based
on the ISO/IEC 25010 standard. We show which code
smells developers decided to fix and how each refactoring
changed the quality of the systems.

The primary contribution of this paper is the experience
report that we learned from a large-scale experiment which
was carried out in an in vivo industrial environment on
refactoring. We show how developers behave when they get
time to improve the quality of their code and that it is not
always true that a refactoring actually improves the quality.

In the following, we present the background of the moti-
vating refactoring project and we briefly introduce the main
concepts of the ColumbusQM probabilistic quality model
that we used for analysis. Then, we present the evaluation
of the results of the analysis including the discussion of
threats to validity and some lessons that we learned during
the experiments. Finally, we conclude our paper and show
plans for future work.

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-5304-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.18

95

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-1-4799-6148-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.18

95

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/84774246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. OVERVIEW

A. Motivating Project
This research work was part of an R&D project supported

by the EU and the Hungarian Government. The goal of the
2-year project was to develop a software refactoring frame-
work, methodology and software tools to support the ‘con-
tinuous reengineering’ methodology, hence provide support
to identify problematic code parts in a system and to refactor
them to enhance quality. During the project, we developed an
automatic/semi-automatic refactoring framework and tested
it on the source code of industrial partners, having an in vivo
environment and live feedback on the tools. So partners not
only participated in this project to develop the refactoring
tools, but they also tested the toolset on the source code of
their own product. This provided a good chance for them to
refactor their own code and improve its quality.

Table I
SYSTEMS THAT WE EXAMINED

Company LOC Domain

Comp. I. 200k Specific Business Solutions
Comp. II. 4,300k Enterprise Resource Planning (ERP)
Comp. III. 170k Integrated Business Management
Comp. IV. 128k Integrated Collection Management
Comp. V. 100k Web-based PDF Generation

Five experienced software companies were involved in
this project. These companies were founded in the last two
decades and some of their projects were initiated before
the millennium. Their projects consisted of about 5 million
lines of code altogether, written mostly in Java, and covered
different ICT areas like ERPs, ICMS and online PDF
Generation. An overview of these can be seen in Table I.

In the initial steps of the project we asked the companies
to manually refactor their code, and provide a detailed
documentation of each refactoring, explaining what they
did and why to improve the targeted code fragment. We
gave them support by using static code analyzers to help
them identifying code parts that should be refactored in their
code (antipatterns or coding issues, for instance). Developers
had to fill out a survey with questions targeting the initial
identification steps and explaining why, how and what did
they refactor for each refactoring commit to their code.
There were around 40 developers involved in this step of
the project (5-10 on average from each company) who were
asked to fill out the survey and carry out the modifications
in the code. (After this manual refactoring phase and the
development of the refactoring framework, the developers
performed also lots of automatic refactorings; however, the
study of those activities lays outside the scope of this paper.)

In previous work we investigated which attributes drove
the developers to select coding issues for refactorings, and
which of these refactorings performed best. We also found
that when developers get the extra time and budget to

refactor their own code they really optimize the refactoring
process to improve the quality of these systems.

Here, we study the impact of refactorings on the quality of
the source code of these systems. We selected 5 systems with
548 refactorings in 198 commits. We analyzed the quality of
the revisions where developers committed refactorings and
the revisions before these commits. For the quality analysis
we used the SourceAudit tool, which is a member of the
QualityGate1 product family of FrontEndART Ltd. This tool
measures the source code quality based on the ColumbusQM
probabilistic quality model [8] where the quality of the
system is determined by several lower level characteristics
(e.g. metrics or number of coding issues). SourceAudit is a
software quality management tool, which allows automatic
and objective assessment of the quality of a system.

B. Quality Model
In this section, we briefly introduce the ColumbusQM

quality model [8]. The computation of the ISO/IEC
25010 [9] high level quality characteristics is based on a
directed acyclic graph, whose nodes (sensors) correspond to
quality properties that can be considered low-level or high-
level attributes (see Figure 1).

The nodes that have no input edges are low level nodes
(sensor nodes). These nodes characterize a software product
from the developers’ view, which means they are usually
estimated by using source code metrics, or other source
code properties (e.g. violating coding conventions). These
properties can be calculated by static source code analysis.
For this analysis QualityGate uses the free SourceMeter2 tool
(by FrontEndART Ltd.), which builds an Abstract Semantic
Graph (ASG) from the source code, and uses this graph
to calculate metrics, find code clones and check for coding
issues such as unused code and empty catch blocks.

High level nodes (called aggregate nodes) characterize a
software product from the end user’s view, and they are
aggregated from the low level and other high level nodes.
These aggregated nodes have input and output edges as well.
The edges of the graph show the dependencies between
sensor nodes and aggregated nodes. Evaluating all the high
level nodes is made by an aggregation along the edges of the
graph, which is called Attribute Dependency Graph (ADG).

Typically, we want to know how good or bad an attribute
is, but this is not a trivial question. In the model, we use the
term goodness to express how good or bad an attribute is.
The value of goodness is not known precisely, because it is
represented by a random variable with a probability density
function, which is called goodness function. To create a
goodness function, we use the metric histogram over the
code elements, as it characterizes the system from the aspect
of only one metric (from one aspect). As goodness is a
relative term, it is expected to be measured by means of

1http://quality-gate.com/
2http://sourcemeter.com/
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Figure 1. An overview of the attribute dependency graph of the Columbus Quality Model

comparison with other histograms. After applying the dis-
tance function between two histograms, we get one goodness
value for the subject histogram. This is relative to the other
histogram, however the goal is to get proper, independent
goodness. It can be reached by repeating the comparison
with lots of other, different histograms. With every com-
parison, we get a goodness value which can be basically
regarded as a sample of a random variable from the range
[−∞,∞]. Interpolation of the empirical density function
leads us to the goodness function of the low level node.
There is a way to aggregate the sensor nodes along the edges
of the ADG. We held an online survey, where we asked many
academic and industrial experts for their opinion about the
weights between the quality attributes. The number assigned
to an edge is considered to be the amount of contribution
of source goodness to target goodness. Taking into account
every possible combination of goodness values and weights,
and the probabilities of their result, we defined a formula
for computing goodness function for every aggregate node.

As we mentioned, every histogram gets compared with
lots of other histograms. In order to do this, it is necessary
to have a reference database (benchmark), which contains
source code properties and histograms of numerous software
systems. This benchmark is the basis for comparison of
the software system to be evaluated. By using the same
benchmark, quality becomes comparable among different
software systems, or different versions of one system.

This qualification method is general and independent of
the attribute dependency graph and the votes of experts. An
attribute dependency graph for qualifying Java systems was
developed by industrial and academic people. This is shown
in Figure 1. More than 50 experts voted for the weights
of the graph. After that, the reference database was built,
containing the analysis results of more than a 100 industrial
and open source Java systems. Now, objective qualifications
for Java systems can be performed with this qualification
method. In this paper when we refer to source code quality,
we always mean maintainability.

Figure 2. Overview of the refactoring process

III. EVALUATION

A. Methodology

Figure 2 shows a brief overview of the manual refac-
toring phase of the project. In this phase developers of
participating companies were asked to manually refactor
their systems. For this manual refactoring we gave them
support by analyzing their systems using a static source
code analyzer, namely the SourceMeter tool (which is based
on the Columbus technology [10]). Developers were aware
of the results of these analyses and they had a thorough
list of problematic code fragments. This list pointed out
concrete coding issues, antipatterns (e.g. duplicated code,
long functions) and source code elements with problematic
metrics at different levels (e.g. classes/methods with too
high complexity and classes with bad coupling or cohesion
metrics). It was a project requirement to refactor their own
code, hence improve its quality, but they were free to select
how they go through that. So it was the developers’ choice
whether they fixed coding issues or improved the metrics
of classes, for instance. However, the project expected that
they fill out a survey in a ticketing system (Trac) and give a
thorough explanation on what, why and how they refactored
during their work. Besides filling out the survey, we asked
them to provide the revision information so we could relate
one refactoring to a Trac ticket and a revision in the version
control system.

After the manual refactoring phase, we analyzed the
marked revisions and investigated the change in the quality
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Figure 3. Overview of the analysis

of the systems caused by refactoring commits. Figure 3
gives an overview of this analysis. It was not a requirement
from the developers that they can commit only refactor-
ings to the version control system, or that they create a
separate branch for this purpose. It was more realistic,
and developers particularly asked us that they can commit
these changes to the trunk or development branches, so
they can develop their system in parallel with the refac-
toring process. Hence, for each system we identified the
revisions (rt1 , ..., rti , ..., rtn ) reported in the Trac system
as refactoring commits and analyzed all these revisions with
the revisions prior to each refactoring commit. As a result,
the analyzed set of revisions for a system contained the
revisions rt1−1, rt1 , ..., rti−1, rti , ..., rtn−1, rtn where rti is
a refactoring commit and rti−1 is the revision prior to this
commit, which is actually not a reported refactoring commit.
Besides analyzing the quality of these revisions, we gathered
data from the version control system as well, such as the
patch of the commit and log messages.

We demonstrate the use of a simple refactoring through
a sample coding issue that was actually fixed by the devel-
opers. In this example, we use the coding issue: Position
Literals First In Comparisons. In Listing 1 there is a Java
code sample, with a simple String comparison. This code is
perfectly working, until we call the “printTest” method with
a null reference. When we try to do this, according to the
code, we would try to call a method of a null object. Of
course, it is impossible, so we get a NullPointerException.

1 public class MyClass{
2 public static void printTest(String a){
3 if(a.equals("Test")) {
4 System.out.println("This is a test!");
5 }
6 }
7 public static void main(String[] args) {
8 String a = "Test";
9 printTest(a);

10 a = null;
11 printTest(a); // What happens?
12 }
13 }

Listing 1. A code with a Position Literals First In Comparisons issue

To avoid this, we have to compare the String literal to
the variable, not the variable to the literal. Fixing it is quite
easy, we only swap the literal and variable, and that is all
(see Listing 2). From now on, one can call the “printTest”
method with a null object and will never get a Null Pointer
Exception, as he or she never tries to call a method of a null
object. This and similar refactorings are simple, but one can
avoid critical or even blocker errors using them properly.

1 public class MyClass{
2 public static void printTest(String a){
3 if("Test".equals(a)) {
4 System.out.println("This is a test!");
5 }
6 }
7 public static void main(String[] args) {
8 String a = "Test";
9 printTest(a);

10 a = null;
11 printTest(a); // What happens?
12 }
13 }

Listing 2. Sample refactoring of the code in Listing 1
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Figure 4. Quality of Project A over the refactoring period and a selected subperiod where we highlighted the changes in quality caused by refactoring
commits with red color

B. Overall Change of Quality of the Systems
Here, we selected five systems that were involved in the

project. The size of the selected systems and the number
of analyzed revisions including the number of refactoring
commits can be seen in Table II. All in all, we analyzed
around 2.1 million lines of code with 450 revisions out
which 198 were refactoring revisions. Developers made 548
refactorings with these commits. (It was allowed to commit
more refactorings together in one patch – if it was really
needed to do so).

Table II
SELECTED PROJECTS

Analyzed Refactoring
Project kLOC Revisions Commits Refactorings

Project A 320 60 33 59
Project B 400 47 24 150
Project C 750 128 62 219
Project D 270 34 17 42
Project E 440 181 62 78

Total 2180 450 198 548

The first diagram in Figure 4 shows the overall change
of the quality of Project A over the refactoring period. The
diagram shows that the tendency of the change in quality
was increasing during the period. However, this increasing
tendency includes the normal development commits as well
and not only the refactoring commits.

The second diagram in Figure 4 shows a sub-period and
highlights with red color those revisions that were marked
as refactoring commits; while the rest of the revisions –
the normal commits of the development – are colored with
green. It can be observed that those commits that were
marked as refactorings noticeably increased the quality of

the system, but in some cases the change does not seem to be
significant and the quality remains unchanged. On the other
hand, commits of normal development, sometimes increase
and sometimes decrease the quality with larger variance. To
further investigate these changes we study the impact of each
type of refactoring one-by-one.

C. Effect of Different Types of Refactorings on the Quality

For each refactoring ticket we asked the developers to
select what they wanted to improve with the commit:

• Did they try to fix a coding issue?
• Did they try to fix an antipattern?
• Did they try to improve a certain metric?

In some commits these may overlap, so it may happen,
that a developer wants to fix a coding issue and he may
improve a metric as well. However, this was not the case,
and developers mostly handled these separately. On the other
hand, there were metrics that they wanted to fix together.

1) Metrics: Table III shows the change in quality caused
by refactoring commits whose purpose was to improve
certain metrics. The first that we notice here is that the
number of these kind of commits is very small compared to
the total number of refactoring commits. It was definitely not
the primary goal of the developers to improve the metrical
values of their systems, although we reported them all
the well-known complexity, coupling, and cohesion metrics
at package, class and method levels. One might question
how well trained were these developers and whether they
were really familiar with the meaning of these metrics. To
eliminate this factor, for each company, we held a training
where we introduced them the main concepts of refactoring,
code smells and gave them advanced introduction to metrics.
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Table III
CHANGE IN QUALITY CAUSED BY COMMITS IMPROVING METRICS

Metrics # Avg. Change

McCC - McCabe’s cyclomatic complexity, NOA - Number of ancestors 3 0.002299
NII - Number of incoming invocations 1 0.001645

NAni - Number of attributes (without inheritance) 1 0.001231
LOC - Lines of code 18 0.000458

NUMPAR - Number of parameters 5 0.000382
NMni - Number of methods (without inheritance) 1 0.000257

McCC - McCabe’s cyclomatic complexity 1 0
NA - Number of attributes 1 0

U - Reuse ratio (for classes) 1 -0.00017

Most of the participating developers attended this training
and not only juniors, but senior developers too.

Even with the small amount of commits whose purpose
was to improve metrics, it can be seen, that complexity
metrics (e.g. McCabe’s cyclomatic complexity or Number
of parameters) and size metrics (e.g. Lines of code) were the
most familiar ones that developers intended to improve. The
Avg. Change column of Table III shows the average of the
measured changes in the quality caused by these commits.
There were 3 refactorings where developers wanted to fix
a class with high complexity and bad inheritance hierarchy
at the same time; these commits had the greatest influence
on quality. In 18 cases, developers wanted to decrease the
LOC metric, and five times they fixed methods with too
many parameters. It is also interesting to see that once they
targeted the reuse ratio (e.g. to simplify the inheritance tree),
and this resulted in a decrease in quality. One explanation is
that if they want a better reuse ratio, they probably need to
introduce a new class (inheriting from a superclass), which
might add extra complexity or in the worst case additional
coding issues or code clones to the code.

Table IV
CHANGE IN QUALITY CAUSED BY COMMITS FIXING ANTIPATTERNS

Antipattern # Avg. Change

Long Function, Duplicated Code 3 0.002299
Data Clumps 1 0.001231

Long Function 22 0.000517
Long Parameter List 5 0.000382

Large Class Code 2 0.000128
Duplicated Code 1 -0.00017

2) Antipatterns: Table IV shows the average of changes
in quality when developers fixed antipatterns. Some an-
tipatterns were identified with automatic analyzers (e.g.
Long Function and Long Parameter List), but developers
could spot antipatterns manually as well and report them
to the ticketing system (Data Clumps is an example for an
antipattern identified by a developer).

Like in the case of metrics, fixing antipatterns was not the
primary concern of developers. Typically, they fixed Long

Functions, Large Class Code or Long Parameter List. Most
of these antipatterns could be also picked via metrics. Also,
the resulting change in quality is similar to the corresponding
metrics (see the average change for the LOC metric in
Table III and for the Long Function antipattern in Table IV).
It is interesting to see, that in one case where developers
fixed copy&paste code, they decreased the quality. Another
note is that developers fixed Long Function and Duplicated
Code together three times, and a Data Clumps pattern
once. Fixing these antipatterns might require a larger, global
refactoring of the code (e.g. using Extract Class refactoring).
These global refactorings indicated a significantly larger
change in quality compared to others.

3) Coding Issues: Table V presents the average of mea-
sured quality changes where developers fixed coding issues.
The relatively big number of refactorings shows that this was
what developers really wanted to fix when they refactored
their code base. Although, it is somehow uncertain whether
fixing a coding issue can be considered as a refactoring
or not. Fixing a Null Pointer Exception issue may perhaps
change the execution (in a positive way), but it is question-
able whether this change (fixing an unwanted bug) can be
considered as a change in the observed external functionality
of the program or not. On the other hand, it is clear that the
purpose of fixing coding issues is to improve the quality of
the code and not to modify its functionality. But, does it
really improve the source code quality? Can it happen that
fixing one issue may introduce another one? Is it possible
that while the developer fixes an issue in a class, he ruins
the metrics of the same class or some other classes too?

Table V shows the measured average, minimum, and
maximum changes and the standard deviation. The cod-
ing issues in the rows are those issues which had at
least one patch in the refactoring period of all the sys-
tems that we analyzed. Some of these coding issues are
simple coding style guidelines which can be relatively
easily fixed (e.g. IfStmtsMustUseBraces), while there are
some issues which can indicate serious bugs and need
to be fixed carefully (e.g. MethodReturnsInternalArray or
OverrideBothEqualsAndHashCode). Issues that are eas-
ier to fix were refactored in larger numbers such as
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Table V
CHANGE IN QUALITY CAUSED BY COMMITS FIXING CODING ISSUES

Coding issue # Average Min Max Deviation

AvoidPrintStackTrace 32 0.00043140 0.00000000 0.00091337 0.00031712
BooleanInstantiation 47 -0.00009058 -0.00109062 0.00047086 0.00032689
BigIntegerInstantiation 21 -0.00015561 -0.00358699 0.00097444 0.00083454
ConsecutiveLiteralAppends 1 0.00000000 0.00000000 0.00000000 0.00000000
IfElseStmtsMustUseBraces 60 -0.00279348 -0.00387477 -0.00046913 0.00074460
IntegerInstantiation 84 -0.00034956 -0.00091754 0.00012738 0.00041582
InefficientStringBuffering 11 -0.00004679 -0.00064248 0.00012781 0.00020125
IfStmtsMustUseBraces 57 -0.00129054 -0.00374880 0.00052036 0.00171725
MethodReturnsInternalArray 8 0.00000000 0.00000000 0.00000000 0.00000000
OverrideBothEqualsAndHashcode 2 0.00000000 0.00000000 0.00000000 0.00000000
SimplifyConditional 39 0.00005174 0.00000000 0.00012700 0.00006285
SignatureDeclareThrowsException 18 0.00024588 0.00018497 0.00036990 0.00048685
UseIndexOfChar 45 0.00000000 0.00000000 0.00000000 0.00000000
UnnecessaryLocalBeforeReturn 43 0.00036712 0.00000000 0.00147897 0.00054782
UnusedModifier 31 0.00000000 0.00000000 0.00000000 0.00000000
UseStringBufferForStringAppends 14 0.00011752 0.00000000 0.00164534 0.00116343

IntegerInstantiation and BooleanInstantiation. It is not that
much surprising that these issues had a relatively low impact
on quality; however, it is interesting to see that some of them
caused negative change in the quality.

In the case of the IfElseStmtsMustUseBraces and
IfStmtsMustUseBraces issues the reason for the negative
change in quality is the increased number of the code lines
in the modified methods. The sensors of the quality model
will change at low level: the number of issues and the
LOC metric. These changes will affect the higher level,
aggregated quality attributes like CodeFaultProneness and
Comprehensibility and finally the Maintainability. A simple
demonstration of this phenomenon is shown in Listings 3
and 4. A simple method with 5 lines could grow to 14 lines,
if we apply all the necessary refactorings.

1 public static int doQuant(int n) {
2 if ( n >= 0 && n < 86) return 0;
3 else if (n > 85 && n < 170) return 128;
4 else return 255;
5 }

Listing 3. Sample code with IfElseStmtsMustUseBraces issue. LOC: 5

1 public static int doQuant(int n) {
2 if ( n >= 0 && n < 86)
3 {
4 return 0;
5 }
6 else if (n > 85 && n < 170)
7 {
8 return 128;
9 }

10 else
11 {
12 return 255;
13 }
14 }

Listing 4. A sample refactoring of the code in Listing 3. LOC: 14

In the case of InefficientStringBuffering the reason for the
negative change in quality is also the modified number of

lines of code. There is an example code in Listing 5, that
needs to be refactored.

1 String toAppend = "blue";
2 StringBuffer sb = new StringBuffer();
3 sb.append("The sky is" + toAppend);

Listing 5. A code with InefficientStringBuffering issue

Some of the developers fixed this issue, like it can be seen
in Listing 6. This way, there are no new lines added to the
code, and the effect of the refactoring is simple: one coding
issue disappears.

1 String toAppend = "blue";
2 StringBuffer sb = new StringBuffer();
3 sb.append("The sky is").append(toAppend);

Listing 6. A sample refactoring of the code in Listing 5

But there were some developers, who preferred to fix the
problem as it can be seen in Listing 7. This way, the issue
disappears also, but there is a side effect: at least one new
code line appears in the code, which affects again the lines
of code metric, hence the quality.

1 String toAppend = "blue";
2 StringBuffer sb = new StringBuffer();
3 sb.append("The sky is");
4 sb.append(toAppend);

Listing 7. Another way of refactoring Listing 5

In some cases, the measured change in quality was 0.
The reason for this lies in a pitfall of the quality model, as
these minor priority issues were not taken into account by
the quality model, hence when these issues were fixed, the
model did not realize the change in the number of issues.
Fixing these issues required only small local changes which
did not influence other quality attributes either, so complex-
ity and lines of code remained untouched, for instance. As
a result, the measured change in quality was 0.
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D. Discussion

After all, based on the results and the analysis, there are
some additional observations that we found and discuss here.

Developers went for the easy refactorings: Although each
participating company could take their time to perform large,
global refactorings on their own code, numbers show that
they did not decide to do so. They went for the easy tasks,
for the small code smells, which they could fix rapidly.
There might be several reasons for it, as fixing these code
smells was relatively easy compared to others. Fixing a small
issue which influences just the readability does not require
thorough understanding of the code so a developer can easily
see the problem and fix it even if it was not written by
himself. In addition, testing is easier in these cases too.
On the other hand, a big refactoring on the code requires
better knowledge and understanding. It must be designed
and applied carefully. It remains as a research question for
future work that which choice is better in the long term in
such a situation: fixing as many small issues as we can, or
perform few, but large, global refactorings and restructure
the code?

Developers did not refactor just to improve metrics or
avoid antipatterns: Results show that developers did not
really want to improve the metrics or to avoid certain
antipatterns in their code; they simply went for the concrete
problems and fixed coding issues. One reason that we
must consider here is that developers probably did not
really understand metrics and antipatterns. Although we
are sure that they were aware of the meaning of some
metrics and code smells (because we trained them for the
project), they probably had no experience in identifying and
fixing problematic classes with bad cohesion or coupling
values, for instance. They were not quality experts who
were experienced in studying reports of static analyzers.
This somehow relates to the previous finding that developers
chose the easier way and decided to fix concrete coding
issues.

Developers learned to write better code during the refac-
toring period: All the systems that we studied in the
refactoring period showed an improvement in source code
quality even if we only take into account the revisions where
they did not refactor the code, but just committed normal
development patches. Developers admitted that they learned
a lot from the static analysis and from refactoring coding
issues. As an outcome they payed more attention to writing
better code and to avoid these issues. The number of newly
introduced issues in the new code was decreasing and they
committed more simple and shorter classes and methods to
their code.

Refactoring could be avoided if developers payed more
attention to writing better quality code: According to the
patches from the version control systems, one thing is clearly
visible: if the developers pay a little more attention to the
quality of their code (for example, they don’t use double

quotes for character literals), the process of refactoring could
be avoided as these problems would never exist.

It is not guaranteed that one refactoring will improve the
quality of the code: Quality measurements show that one
refactoring might have a negative impact on the quality of
the code, although its purpose is to improve it. It is not easy
to decide how to fix an issue and balance its effects as it
might happen that we want to improve one quality attribute,
but we debase others.

Bulk fixing coding issues has a positive impact on the
overall quality of the code: After the refactoring period,
the overall quality of the system was always improving.
Quality diagrams showed us that those commits which fixed
more coding issues had a relatively higher impact on quality.
Similarly, we saw in the tables that when developers fixed
more metrics or antipatterns together they achieved a bigger
change compared to others. Hence, bulk fixing coding issues
has a positive impact on the quality which is measurable with
static analysis techniques too.

E. Threats to Validity

We made our observations based on some hundreds of
refactoring commits in five large-scale industrial systems.
Like in similar case studies which were not carried out in
a controlled environment, there are many different threats
which should be considered when we discuss the validity of
our observations. Here we give a brief overview of the most
important ones.

Size of the sample set of refactoring commits investigated:
The current sample set is definitely more realistic and larger
than in similar research studies; however, with a larger
sample set of refactorings we might have even a better basis
for conclusions and a more precise view on refactorings.
For future work, we plan to extend the sample set with the
analysis of automatic refactorings too.

Quality analysis relies only on the Columbus Quality
Model: The quality model is an important part of the anal-
ysis as it determines also what we consider as an “effect on
quality” of refactorings. Currently we rely on ColumbusQM
with all of its advantages and disadvantages. On the positive
side this model is published, validated and reflects the
opinion of developers [8]; however, we saw in the evaluation
section that the model might miss some aspects which would
reflect some changes caused by refactorings. Particularly, the
model missed dealing with some low priority coding issues.

Limitations of the project: We claim that our experiment
was carried out in an in vivo industrial context and devel-
opers were free to make their decisions for refactorings. On
the other hand, the experiment was carried out at an initial
phase of a project. This project might had unintentional
effects on the research. E.g. the budget for refactoring was
not “unlimited”.

Limitations of the static analysis: We gave support to the
developers in identifying coding issues with the help of a
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static analyzer. Of course, this was a great help for them in
identifying problematic code fragments, but might have led
the developers to concentrate only on the issues we reported.
There is a risk here, that by using other analyzers or by not
using any at all, we might get different results.

IV. RELATED WORK

Restructuring the source code of an object-oriented pro-
gram without changing its observed external behavior is
called refactoring. Since Opdyke’s PhD dissertation [11] –
where the term was introduced – and Fowler’s book [2]
– where refactoring is used on “bad-smells” – many re-
searchers studied refactoring as a technique to improve the
maintainability of a software system. Mens et al. published a
survey to provide an extensive overview of existing research
in the area of software refactoring [12]. „Refactoring” is
defined as “a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behavior.” That is
to say, if applied well, refactorings improve the design of
software, make it easier to understand, help to find bugs in
it, and help to program faster [2], [13]. Unfortunately, it is
unclear how specific quality factors are affected.

Many researchers studied refactoring but only a few
papers analyze the impact of refactoring on software quality.
Sahraoui et al. [5] use quality estimation models to study
whether some object-oriented metrics can be used for detect-
ing code parts where a refactoring can be applied to improve
the quality of a software system. They do not validate
their findings within an industrial case study or experiment.
Tahvildari and Kontogiannis [14] investigate the use of
metrics for detecting potential design flaws and suggest
transformations for correcting them. Stroulia and Kapoor [6]
investigate how size and coupling metrics behave after refac-
toring. They show that size and coupling metrics of a system
decrease after refactoring; however, they only validate this in
an academic environment. Bois et al. [7] propose refactoring
guidelines for enhancing cohesion and coupling metrics and
obtain promising results by applying them on an open-source
project. Simon et al. [15] follow a similar strategy, they
use a couple of metrics to visualize classes and methods
which help the developers to identify the candidates for
refactoring. Demeyer [13] shows that refactoring can have a
beneficial impact on software performance (e.g. compilers
can optimize better on polymorphism than on simple if-
else statements). Bois and Mens [16] develop a framework
for analyzing the effects of refactoring on internal quality
metrics, but again, they do not provide an experimental
validation in an industrial environment. Yu et al. [17] use a
modeling framework for non-functional requirements and to
study refactorings. They perform a case study, which shows
that refactoring can be measured as a transformation on
the state of the program in the quality space. Kataoka et
al. [18] provide a quantitative evaluation of maintainability

enhancement by refactoring. For the purpose of validation
they analyze a project developed by a single developer,
but do not provide any information on the development
environment. Murphy et al. studied four methods to collect
empirical data on refactorings [19]: mining the commit log,
analyzing code histories, observing programmers and log-
ging refactoring tool use. Stroggylos et al. analyzed source
code version control system logs of popular open source
software systems to detect changes marked as refactorings
and examine how the software metrics are affected by this
process [20]. Finally, Moser et al. [21] observed small teams
working in similar, highly volatile domains and assessed the
impact of refactoring in a close-to industrial environment.
Their results indicate that refactoring not only increases
software quality, but also improves productivity.

In our paper we observed a large number of refactorings
and their effect on quality. These refactorings fixed different
kinds of coding issues so we could investigate the work of
developers applying different types of patches. Our work
was carried out in an in vivo industrial environment which
is an important difference compared to previous studies.

V. CONCLUSIONS AND FUTURE WORK

Bakota et al. claim that the quality of a software product
erodes over the years and if developers do not periodically
and intentionally refactor the source code, then its quality
will not improve [22].

In this paper we studied hundreds of refactoring commits
from the refactoring period of five large-scale industrial
systems developed by two companies, and we investigated
the effects of these commits on source code quality us-
ing quality measurements of the QualityGate product of
FrontEndART Ltd. We found interesting observations based
on what and how developers refactored in the project.
Among these observations we found that developers pre-
ferred to fix concrete coding issues rather than fixing code
smells indicated by metrics or automatic smell detectors. It
somehow reinforces the conclusion of our previous research
[4], where we found that when developers get the extra
time and budget to refactor their code, they really optimize
their process to improve the quality effectively. As a final
conclusion we claim that the effect of one refactoring on the
global quality of the software product is hardly predictable;
moreover, it might sometimes have a negative effect on the
quality. However, when we refactor our code systematically,
it has a significant positive effect on the quality. The reason
for that is not only because we improve the quality of our
software, but also the developers who do the refactorings
will pay more attention on writing better quality code.

These five systems and their manual refactorings rep-
resented only a small portion of the full code base that
we investigated during this research project. We gathered
additional data from the developers and from the automatic
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tool guided refactoring period as well. This information is
from an in vivo environment and we can learn a lot from it.

For future work, we plan to further investigate and seek
answers for more questions that arise when developers start
to work with refactoring. Just a few examples are: What
should I refactor? How should I do this? Can I automate it
somehow? What should I take care of or be afraid of? How
much time will it take? Is it actually worth to do it?
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