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ABSTRACT

Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom
water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal
hypoxia on the chemolithoautotrophic community that catalyze these reoxidation reactions, is rarely studied.
Here we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial
community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions.
Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid derived fatty acids indicated a
major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria (Thiotrichales)
and Epsilonproteobacteria (Campylobacterales) were prevalent during spring, whereas Deltaproteobacteria
(Desulfobacterales) related to sulfate reducing bacteria prevailed during summer hypoxia.
Chemolithoautotrophy rates in the surface sediment were three times higher in spring compared to summer.
The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms
identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by
cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae. The metabolic diversity
of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment
probably driven by the availability of reduced sulfur compounds (H.S, S° S,032) and electron acceptors
(O2, NO3") regulated by seasonal hypoxia.
IMPORTANCE

Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors like oxygen and
nitrate that diffuse from the overlying water. Seasonal hypoxia however drastically changes the availability
of these electron acceptors in the bottom water, and hence, one expects a strong impact of seasonal hypoxia
on sedimentary chemolithoautotrophy. A multidisciplinary investigation of the sediments in a seasonally
hypoxic coastal basin confirms this hypothesis. Our data show that bacterial community structure and the
chemolithoautotrophic activity varied with the seasonal depletion of oxygen. Unexpectedly, the dark carbon
fixation was also dependent on the dominant microbial pathway of sulfur oxidation occurring in the
sediment (i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide
oxidation coupled to nitrate reduction by Beggiatoaceae). These results suggest that a complex niche
partitioning within the sulfur-oxidizing bacterial community additionally affects the chemolithoautotrophic

community of seasonally hypoxic sediments.



INTRODUCTION

The reoxidation of reduced intermediates formed during anaerobic mineralization of organic matter is a
key process in the biogeochemistry of coastal sediments (1, 2). Many of the microorganisms involved in the
reoxidation of reduced compounds are chemolithoautotrophs, which fix inorganic carbon using the chemical
energy derived from reoxidation reactions (dark CO- fixation). In coastal sediments, sulfate reduction forms
the main respiration pathway, accounting for 50% to 90% of the organic matter mineralization (1). The
reoxidation of the pool of reduced sulfur compounds produced during anaerobic mineralization (dissolved
free sulfide, thiosulfate, elemental sulfur, iron monosulfides and pyrite) hence forms the most important
pathway sustaining chemolithoautotrophy in coastal sediments (2, 3).

Various lineages from the Alpha-, Gamma-, Delta- and Epsilonproteobacteria, including recently
identified groups, such as particle-associated Gammaproteobacteria and large sulfur bacteria, couple dark
CO: fixation to the oxidation of reduced sulfur compounds in oxygen deficient marine waters and sediments,
in coastal marine sediments and in lake sediments (4—9). Both chemolithoautotrophic sulfur-oxidizing
Gammaproteobacteria and sulfur disproportionating Deltaproteobacteria have been identified to play a major
role in the sulfur and carbon cycling in diverse intertidal sediments (10—12). Hence, chemolithoautotrophic
sulfur-oxidizing communities vary between sediment environments, but it is presently not clear as to which
environmental factors are actually determining the chemolithoautotrophic community composition at a
given site.

Seasonal hypoxia is a natural phenomenon that occurs in coastal areas around the world (13) and
provides an opportunity to study the environmental factors controlling sedimentary chemolithoautotrophy.
Hypoxia occurs when bottom waters become depleted of oxygen (< 63 pmol Oz L1), and has a large impact
on the biogeochemical cycling and ecological functioning of the underlying sediments (13). The reduced
availability or even absence of suitable soluble electron acceptors (O2, NO3") in the bottom water during part
of the year should in principle result in a reduction or complete inhibition of sedimentary sulfur reoxidation,
and hence, limit chemolithoautotrophy. At present, the prevalence and temporal variations of
chemolithoautotrophy have not been investigated in coastal sediments of seasonal hypoxic basins.

Likely, the availability of soluble electron acceptors (O2, NOz") in the bottom water is not the only
determining factor of chemolithoautotrophy. A recent study conducted in a seasonally hypoxic saline basin
(Lake Grevelingen, The Netherlands) indicated that the intrinsic structure and composition of the sulfur
oxidizing microbial community also determined the biogeochemistry of the sediment (14). In this study,
three distinct microbial sulfur oxidation mechanisms were observed throughout a seasonal cycle: (1)
electrogenic sulfur oxidation by heterotrophic cable bacteria (Desulfobulbaceae); (2) canonical aerobic
oxidation of free sulfide at the oxygen-sulfide interface and, (3) sulfide oxidation coupled to nitrate
reduction by filamentous members of the Beggiatoaceae family that store nitrate intracellularly. The
consequences of these three mechanisms on the chemolithoautotrophic community have however not been

studied. The first sulfur oxidizing mechanism has been shown to affect the chemolithoautotrophic



community in sediments only under laboratory conditions (15) while the third mechanisms may directly
involve chemolithoautotrophic Beggiatoaceae as some species are known to grow autotrophically (16).
Accordingly, we hypothesize that the presence of these sulfur oxidation regimes as well as the depletion of
Oz and NOs™ will result in a strong seasonality in both the chemolithoautotrophic activity and community

structure under natural conditions.

To examine the above hypothesis, we conducted a multidisciplinary study with intact sediments of Lake
Grevelingen, involving both geochemistry and microbiology. Field sampling was conducted during spring
(oxygenated bottom waters) and summer (oxygen depleted bottom waters). The dominant sulfur oxidation
mechanism was geochemically characterized by sediment microsensor profiling (O2, H2S, pH) whereas the
abundance of cable bacteria and Beggiatoaceae was performed with fluorescence in situ hybridization
(FISH). General bacterial diversity was assessed by 16S rRNA gene amplicon sequencing and the analysis
of phospholipid derived fatty acids (PLFA). PLFA analysis combined with 13C stable isotope probing
(PLFA-SIP) provided the activity and community composition of chemolithoautotrophs in the sediment.
This approach was complemented by the analysis of genes involved in dark CO; fixation, i.e., characterizing
diversity and the abundance of the genes cbbL and aclB that code for key enzymes in Calvin-Benson
Bassham (CBB) and reductive tricarboxylic acid (rTCA) carbon fixation pathways. This multidisciplinary
research showed strong temporal and spatial shifts of the chemolithoautotrophic composition and activity in
relation to the seasonal hypoxia and the main sulfur oxidation mechanisms present in the sediments of the

marine Lake Grevelingen.

MATERIAL AND METHODS

Study site and sediment sampling

Lake Grevelingen is a former estuary located within the Rhine-Meuse-Scheldt delta area of the
Netherlands, which became a closed saline reservoir (salinity ~30) by dam construction at both the land side
and sea side in the early 1970s. Due to an absence of tides and strong currents, Lake Grevelingen
experiences a seasonal stratification of the water column, which in turn, leads to a gradual depletion of the
oxygen in the bottom waters (17). Bottom water oxygen at the deepest stations typically starts to decline in
April, reaches hypoxic conditions by end of May (O2 < 63 uM), further decreasing to anoxia in August (O2
<0.1 uM), while the re-oxygenation of the bottom water takes place in September (14).

To study the effects of the bottom water oxygenation on the benthic chemolithoautotrophic community
we performed a field sampling campaign on March 13", 2012 (before the start of the annual O, depletion)
and August 20", 2012 (at the height of the annual O depletion). Detailed water column, pore water and
solid sediment chemistry of Lake Grevelingen over the year 2012 have been previously reported (14; 17,

18). Sediments were recovered at three stations along a depth gradient within the Den Osse basin, one of the



deeper basins in Marine Lake Grevelingen: Station 1 (S1) was located in the deepest point (34 m) of the
basin (51.747°N, 3.890°E), Station 2 (S2) at 23 m depth (51.749°N, 3.897°E) and Station 3 (S3) at 17 m
depth (51.747°N, 3.898°E). Intact sediment cores were retrieved with a single core gravity corer (UWITEC)
using PVC core liners (6 cm inner diameter, 60 cm length). All cores were inspected upon retrieval and only
cores with a visually undisturbed surface were used for further analysis.

Thirteen sediment cores for microbial analysis were collected per station and per time point: two cores
for phospholipid-derived fatty acid analysis combined with stable isotope probing (PLFA-SIP), two cores
for nucleic acid analysis, four cores for *C-bicarbonate labeling, three cores for microelectrode profiling,
one core for quantification of cable bacteria (see supplement), and one core for quantification of
Beggiatoaceae (see supplement). Sediment cores for PLFA extractions were sliced manually on board the
ship (5 sediment layers; sectioning at 0.5, 1, 2, 4, and 6 cm depth). Sediment slices were collected in Petri
dishes, and replicate depths were pooled and thoroughly mixed. Homogenized sediments were immediately
transferred to centrifuge tubes (50 ml) and placed in dry ice until further analysis. Surface sediments in
August consisted of a highly porous “fluffy” layer that was first left to settle after core retrieval. Afterwards,
the top 1 cm thick layer was recovered through suction (rather than slicing). Sediment for nucleic acid
analysis was collected by slicing manually at a resolution of 1 cm up to 5 cm depth. Sediment samples were
frozen in dry ice, transported to the laboratory within a few hour and placed at —80°C until further analysis.
Microsensor profiling

Oxygen depth profiles were recorded with commercial microelectrodes (Unisense, Denmark; tip size:
50 um) at 25—50 um resolution. For H>S and pH (tip size: 50 and 200 um), depth profiles were recorded at
200 um resolution in the oxic zone, and at 400 or 600 um depth resolution below. Calibrations for Oz, pH
and HzS were performed as previously described (14; 19). ZH2S was calculated from H.S based on pH
measured at the same depth using the R package AquaEnv (20). The oxygen penetration depth (OPD) is
operationally defined as the depth below which [O2] < 1 uM, while the sulfide appearance depth (SAD) is
operationally defined as the depth below which [H2S] > 1 uM. The diffusive oxygen uptake (DOU) was
calculated from the oxygen depth profiles as previously described in detail (15).

DNA extraction and 16S rRNA gene amplicon sequencing

DNA from 0 cm to 5 cm sediment depth (in 1 cm resolution) was extracted using the DNA PowerSoil®
Total Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA). Nucleic acid concentrations were quantified
spectrophotometrically (Nanodrop, Thermo Scientific, Wilmington, DE) and checked by agarose gel
electrophoresis for integrity. DNA extracts were kept frozen at —80°C.

Sequencing of 16S rRNA gene amplicons was performed on the first cm of the sediment (0—1 cm depth)
in all stations in March and August as described before (21). Further details are provided in the SI. The 16S
rRNA gene amplicon reads (raw data) have been deposited in the NCBI Sequence Read Archive (SRA)
under BioProject number PRINA293286. The phylogenetic affiliation of the 16S rRNA gene sequences was

compared to release 119 of the SILVA NR SSU Ref database (http://www. arb-silva.de/; 22) using the ARB
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software package (23). Sequences were added to a reference tree generated from the Silva database using the
ARB Parsimony tool.
Sediment incubations and PLFA-SIP analysis

Sediment cores were labeled with *3C-bicarbonate to determine the chemolithoautotrophic activity and
associated bacterial community by tracing the incorporation of 3C into bacterial PLFA. To this end, four
intact cores were sub-cored with smaller core liners (4.5 cm inner diameter; 20 cm height). In situ bottom
water was kept over the sediment and no gas headspace was present. Cores were kept inside a closed cooling
box during transport to the laboratory.

Stock solutions of 80 mM of *C-bicarbonate (99% 3C; Cambridge Isotope Laboratories, Andover, Ma,
USA) were prepared as previously described (11). **C-bicarbonate was added to the sediment from 3 cm
above the surface to 8 cm deep in the sediment cores in aliquots of 100 ul through vertically aligned side
ports (0.5 cm apart) with the line injection method (24). March sediments were incubated at 17+1°C in the
dark for 24 h and continuously aerated with *C-saturated air to maintain 100% saturated O, conditions as
those found in situ, but avoiding the stripping of labeled CO> from the overlying water (15). In August,
sediments were incubated at 17+1°C in the dark for 40 h to ensure sufficient labeling as a lower activity was
expected under low oxygen concentrations. In August, oxygen concentrations in the overlying water were
maintained near in situ Oz levels measured in the bottom water (S1: 0—4% saturation, S2: 20—26%, S3:
35-80%). A detailed description of aeriation procedures can be found in the SI.

At the end of the incubation period, sediment cores were sliced in five depth intervals (as described for
PLFA sediment cores sliced on board) thus obtaining two replicate slices per sediment depth and per station.
Sediment layers were collected in centrifuge tubes (50 ml) and wet volume and weight were noted. Pore
water was obtained by centrifugation (4500 rpm for 5 min) for dissolved inorganic carbon (DIC) analysis,
and sediments were lyophilized for PLFA analysis. Biomarker extractions were performed on freeze dried
sediment as described before (25) and 3C-incorporation into PLFA was analyzed as previously reported
(11). Nomenclature of PLFA can be found in the Sl. Detailed description of the PLFA calculations can be
found in the literature (15; 26). Total dark CO; fixation rates (mmol C m* d!) are the depth-integrated rates
obtained from the 0—6 cm sediment interval.

Quantitative PCR

To determine the abundance of chemolithoautotrophs we quantified the genes coding for two enzymes
involved in dark CO; fixation pathways: the large subunit of the RubisCO enzyme (ribulose 1,5-
bisphosphate carboxylase/oxygenase) cbbL gene, and the ATP citrate lyase aclB gene. Abundance of the
RubisCO cbbL gene was estimated by using primers K2f/\V2r, specific for the forms 1A and IC of the
RuBisCO form I large subunit gene cbbL which is present in obligately and facultatively lithotrophic
bacteria (27, 28). The abundance of ATP citrate lyase aclB gene was quantified by using the primer set
aclB_F/aclB_R, which is based on the primers 892F/1204R (29), specific for the ATP citrate lyase B gene of
chemoautotrophic bacteria using the rTCA pathway, with several nucleotide differences introduced after



aligning n = 100 sequences of aclB gene fragments affiliated to Epsilonproteobacteria (See Table S1 for
details).

The quantification of cbbL and aclB genes via quantitative PCR (qPCR) was performed in 1 cm
resolution for the sediment interval between 0-5 cm depth in all stations in both March and August. gPCR
analyses were performed on a Biorad CFX96 ™ Real-Time System/C1000 Thermal cycler equipped with
CFX Manager™ Software. All gPCR reactions were performed in triplicate with standard curves from 10°
to 107 molecules per microliter. Standard curves and qPCR reactions were performed as previously
described (30). Melting temperatures (Tm) are listed in Table S1, qPCR efficiencies (E) for acIB gene and
cbbL gene amplifications were 70 and 82%, respectively. Correlation coefficients for standard curves were >
0.994 for aclB gene and >0.988 for chbL gene amplification.

PCR amplification and cloning

Amplifications of the RubisCO cbbL gene and the ATP citrate lyase aclB gene were performed with the
primer pairs specified in Table S1. The PCR reaction mixture was the following (final concentration): Q-
solution (PCR additive, Qiagen, Valencia, CA) 1x; PCR buffer 1x; BSA (200 ug mI); dNTPs (20 pM);
primers (0.2 pmol pl't); MgCl, (1.5 mM); 1.25 U Taq polymerase (Qiagen, Valencia, CA). PCR conditions
for these amplifications were the following: 95°C, 5 min; 35 x [95°C, 1 min; Tm, 1 min; 72°C, 1 min]; final
extension 72°C, 5 min. PCR products were gel purified (QIAquick gel purification kit, Qiagen, Valencia,
CA) and cloned in the TOPO-TA cloning® kit (Life Technologies, Carlsbad, CA) and transformed in E. coli
TOP10 cells following the manufacturer’s recommendations. Recombinant plasmid DNA was sequenced
using M13R primer by BASECLEAR (Leiden, The Netherlands).

Sequences were aligned with MEGAGS software (31) by using the alignment method ClustalW. The
phylogenetic trees of the cbbL and aclB genes were computed with the Neighbour-Joining method (32). The
evolutionary distances were estimated using the Jukes-Cantor method (33) for DNA sequences and with the
Poisson correction method for protein sequences (34) with a bootstrap test of 1,000 replicates. Sequences
were deposited in NCBI with the following accession numbers: KT328918-KT328956 for cbbL gene
sequences and KT328957-KT329097 for aclB gene sequences.

Further details on experimental procedures and methods are found in the Supplementary Information.

RESULTS
Geochemical characterization

The seasonal variation of the bottom water oxygen concentration in Lake Grevelingen strongly
influenced the porewater concentrations of O2 and HS. In March, bottom waters were fully oxygenated at
all stations (299-307 umol L), oxygen penetrated 1.8-2.6 mm deep in the sediment, and no free sulfide
was recorded in the first few centimeters (Table 1). The width of the suboxic zone, operationally defined as
the sediment layer located between the oxygen penetration depth (OPD) and the sulfide appearance depth
(SAD), varied between 16-39 mm across the three stations in March 2012. In contrast, in August, oxygen



was strongly depleted in the bottom waters at S1 (<0.1 pmol L) and S2 (11 umol L), and no Oz could be
confidently detected by microsensor profiling in the surface sediment at these two stations. At station S3, the
bottom water O, remained higher (88 umol L), and oxygen penetrated down to 1.1 mm. In August, free
sulfide was present near the sediment-water interface at all three stations, and the accumulation of sulfide in
the pore water increased with water depth (Fig. 1a). Depth pH profiles showed much larger variation
between stations in March compared to August (Fig. 1a). The pH profiles in S1 and S3 in March were
similarly characterized by highest values in the oxic zone and low pH values (pH < 6.5) in the suboxic zone.
The pH depth profile in S2 showed an inverse pH profile with a pH minimum in the oxic layer and a
subsurface maximum below. The pH profiles at S1 and S3 in August 2012 showed a gradual decline of pH
with depth, while the pH profile at S2 in August was more or less constant with depth.

Bacterial diversity by 16S rRNA gene amplicon sequencing

The general diversity of bacteria was assessed by 16S rRNA gene amplicon sequencing analysis, which
was applied to the surface sediments (0—1 cm) of all stations in both March and August. Approximately
50% of the reads were assigned to three main clades: Gamma-, Delta-, and Epsilonproteobacteria (Fig. 2).
The remaining reads were distributed amongst the orders Bacteroidetes (14%), Planctomycetes (6%),
Alphaproteobacteria (3%), other orders (20%), the candidate phylum WS3 (2%) and unassigned (5%) (given
as the average of the three stations and both seasons).

Reads classified within the Gammaproteobacteria were more abundant in March during oxygenated
bottom water conditions than in August (Fig. 2). The majority of these reads were assigned to the orders
Alteromonadales, Chromatiales and Thiotrichales. The first order includes chemoheterotrophic bacteria that
are either strict aerobes or facultative anaerobes (35). Phylogenetic comparison revealed that the reads
assigned to the Chromatiales group were closely related to the Granulosicoccaceae, Ectothiorhodospiraceae,
and Chromatiaceae families (Fig. S1). Reads falling in the Thiotrichales group were closely related to sulfur-
oxidizing bacteria from the Thiotrichaceae family with 30% of the sequences related to the genera
‘Candidatus Isobeggiatoa’, ‘Ca. Parabeggiatoa’ and Thiomargarita (Fig. S2). It has been recently proposed
that the genera Beggiatoa, Thiomargarita and Thioploca should be reclassified into the originally published
monophyletic family of Beggiatoaceae (36, 37), and so here, these genera will be further referred to as
Beggiatoaceae. Most of the reads assigned to the Beggiatoaceae came from station S2 in spring, whereas the
percentage of reads assigned to sulfur oxidizers from the order Thiotrichales decreased in August when
oxygen concentrations in the bottom water were low.

Within the Deltaproteobacteria, reads were assigned to the orders Desulfarculales and Desulfobacterales
(Fig. S3). Reads within the order of Desulfobacterales were mainly assigned to the families
Desulfobacteraceae (between 10—20%) and Desulfobulbaceae (~5%) (Fig. 2). Additional phylogenetic
comparison revealed that within the Desulfobulbaceae, 60% of reads, obtained from the three stations in
both seasons, clustered within the genus Desulfobulbus, of which 30% were related to the electrogenic
sulfur-oxidizing cable bacteria (Fig. S4). Overall, the relative abundance of reads assigned to the



Desulfobulbaceae family was similar between the two seasons in S2 and S3, whereas in S1 the percentage of
reads was approximately 4.5-fold higher in March compared to August (Fig. 2). In contrast, the relative
abundance of reads assigned to the Desulfarculales and Desulfobacteraceae increased in August during
hypoxia (Fig. 2), and phylogenetic comparison revealed typical sulfate reducer genera Desulfococcus,
Desulfosarcina, and Desulfobacterium, indicative of anaerobic metabolism (Fig. S5a—c).

All Epsilonproteobacteria reads were assigned to the order Campylobacterales, such as the
Campylobacteraceae and Helicobacteraceae families. Phylogenetic comparison showed that the reads were
closely related to the genera Sulfurovum, Sulfurimonas, Sulfurospirillum, Arcobacter (Fig. S6a—d), all
capable of sulfur oxidation with oxygen or nitrate (38). The percentage of reads assigned to the
Epsilonproteobacteria in August was lower than those in March, with highest numbers present in S2 in
March (~6%), (Fig. 2).

Bacterial community structure by phospholipid derived fatty acid analysis

The relative concentrations of phospholipid derived fatty acid (PLFA) were determined to a depth of 6
cm and were analyzed by principal component analysis (PCA) to determine differences in bacterial
community structure (Fig. 3). A total of 22 individual PLFA, each contributing more than 0.1% to the total
PLFA biomass, were included in this analysis. Samples with low total PLFA biomass (less than one standard
deviation below the mean of all samples) were excluded. The PCA analysis indicated that 73% of the
variation within the dataset was explained by the first two principal components (PC). While PC1 correlated
with sediment depth (particularly for the March samples), PC2 clearly exposed differences in the bacterial
community structure between seasons (Fig. 3a). Surface sediments (0—1 cm) were characterized by high
relative concentrations of C16 and C18 monounsaturated PLFA. In contrast, ail15:0, i17:1®7c, and
10Me16:0 were more abundant in deeper sediments (Fig. S7a). The surface sediment showed an increased
contribution of iso, anteiso and branched PLFAs in August relative to March, and this was more similar to
the deeper sediments from March (Fig. 3a). Nonetheless, August sediments also showed a higher abundance
of 16:0, 14:0, and 18:1m9c compared to the deeper sediment layers in March (Fig. S7a).
Chemolithoautotrophic activity and community by *C-phospholipid fatty acids analysis

Incorporation of 3C-labeled dissolved inorganic carbon was found in bacterial PLFAs after 24 to 40
hours of incubation (Fig. S7b). Depth integrated dark CO fixation rates based on *3C-incorporation (Table
1) showed a significant difference between seasons and stations (p=0.0005). In March,
chemolithoautotrophy increased with water depth, while in August, the opposite trend was observed. The
dark CO: fixation rate in March for S1 was the highest across all seasons and stations, but dropped by one
order of magnitude in August. In contrast, at the intermediate station (S2), the dark CO- fixation rate was
only two times higher in March compared to August, while in the shallowest station (S3) the depth
integrated rates were not significantly different between seasons (p=0.56).

The depth distribution of the chemolithoautotrophic activity also differed between seasons (p=0.02; Fig.
1b). In August, the chemolithoautotrophic activity was restricted to the upper cm of the sediment at all



stations while in March, chemolithoautotrophic activity was measured deep into the sediment (up to 4 cm).
In stations S1 and S3 during March, the activity depth profile showed high activities down to 4 cm, whereas
at S2 chemolithoautotrophy only extended down to 2 cm with highest activity in the top 1 cm. This
distinction between the depth distributions of chemolithoautotrophy at S2 versus S1/S3 in March correlated
with the distinct pH profiles observed for S2 versus S1/S3 (Fig. 1c).

The PLFA C-fingerprints were analyzed by PCA to identify differences in chemolithoautotrophic
community. Only PLFA that contributed more than 0.1% to the total *C-incorporation and sediment layers
that showed chemolithoautotrophy rates higher than 0.01 umol C cm™ d were taken into account in this
analysis. Because chemolithoautotrophy rates were low in August, the PCA analysis mainly analyzed the
chemolithoautotrophic communities in March (Fig. 3b). Within the dataset, 64% of the variation was
explained by two principal components. PC1 revealed a clear differentiation between station S2, and stations
S1 and S3 (Fig. 3b) in agreement with the distinct pH profiles described for March (Fig. 1a). S2 sediment
horizons showed a higher contribution of monounsaturated C16 and C18 fatty acids, whereas sediments
from S1 and S3 revealed an increased *3C-incorporation into fatty acids with iso and anteiso C15 and
saturated C14 PLFA (Fig. S7c), together these results indicate distinct chemolithoautotrophic microbial
assemblages between S2 and S1/S3. On the contrary, the three sediment samples from August (that had
sufficient **C-incorporation for the analysis) did not cluster in the PCA analysis and exhibited divergent
PLFA profiles, thus the chemolithoautotrophic bacterial community for August could not be characterized
further based on PLFA analysis.

Chemolithoautotrophic carbon fixation pathways

Various CO- fixation pathways are used by autotrophic bacteria (for detailed reviews see 39, 40). The
CBB pathway is utilized by cyanobacteria and many aerobic or facultative aerobic proteobacteria of the
alpha, beta and gamma subgroups whereas the rTCA pathway operates in anaerobic or microaerobic
members of phyla such as Chlorobi, Aquificae, proteobacteria of the delta and epsilon subgroups and
Nitrospirae (39). The spatial and temporal distribution of bacteria possessing these two autotrophic carbon
fixation pathways was studied by quantifying the abundance of cbbL gene (CBB pathway) (28) and aclB
gene (rTCA pathway) (38, modified in this study) by quantitative PCR down to 5 cm sediment depth (Fig.
4).The diversity of cbbL and aclB gene sequences obtained from the surface sediments (0—1cm) was
analyzed (Fig. 5).

Significant differences were found in the abundance of cbbL and aclB genes (p =5.7 x 107) and
between season (p=0.002), but not between stations (Fig. 4). The abundance of the cbbL gene copies was at
least 2-fold higher than that of the aclB gene in March and August in all stations (p = 5x107°). In March, the
depth profiles of cbbL gene showed a similar trend in stations S1 and S3 with a decreasing gene abundance
from the surface towards deeper layers, but depth integrated abundance of the cbbL gene was more than
two-fold higher in S1 than in S3 (Fig. 4a). The depth distribution of the cbbL gene in the deepest station (S1)

differed between seasons (p=0.004), with lower gene copy abundances in the top 4 cm in August (Fig. 4a).
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In contrast, in the shallow station (S3), which experiences less seasonal fluctuations in bottom water O, the
cbbL gene copy number did not differ significantly between seasons (p=0.4), except for a sharp decrease in
the top cm of the sediment. In station S2, abundance and depth distribution of cbbL gene copies was similar
between the two seasons (p=0.3). All detected cbbL gene sequences clustered with uncultured
Gammaproteobacteria clones, assigned to the orders Chromatiales and Thiotrichales (both cbbL1 and cbbL?2
clusters) reported in intertidal sediment from Lowes Cove, Maine (28).

The abundance of the aclB gene significantly differed between months (p=0.0004) and stations
(p=0.04). Similar depth profiles of the aclB gene were detected in stations S1 and S3, with subsurface
maxima in deeper sediments (at 3-4 cm and 2-3 cm deep for S1 and S3 respectively, Fig. 4b). Station S2
showed the highest aclB gene abundance in March, which remained constant with sediment depth (p=0.86).
In August, aclB gene abundance decreased substantially in S2 (p<0.001). All stations showed a uniform
distribution of the aclB gene abundance with depth in August. Bacterial aclB gene sequences in surface
sediments (0—1 cm) of all stations were predominantly related to aclB sequences of Epsilonproteobacteria
(Fig. 5b). Within the Epsilonproteobacteria, sequences clustered in six different subclusters and were mainly
affiliated to bacteria in the order of Campylobacterales, i.e., to the genera Sulfuricurvum, Sulfurimonas,
Thiovulum, Arcobacter, and macrofaunal endosymbionts. As observed for the cbbL gene, no clustering of
sequences was observed according to station or season (Fig. 5b).

Quantification of cable bacteria and filamentous Beggiatoaceae

We performed a detailed microscopy-based quantification of the biovolume of sulfur oxidizing cable
bacteria and filamentous Beggiatoaceae because both groups have been reported to govern the sediment
geochemistry and sulfur cycling in sediments of Lake Grevelingen (14), and thus are likely to influence the
chemolithoautotrophic community. Biovolume data of both filamentous bacteria for S1 have been reported
before (14) whereas data for S2 and S3 are novel results from the 2012 campaign. In March, high
biovolumes of cable bacteria were detected in S1 and S3 (Table 1) with filaments present throughout the
suboxic zone until a maximum depth of 4 cm (Fig. 1c¢). At the same time, cable bacteria were absent in S2
(Fig. 1c). In August, cable bacteria were only detected between 1 and 2 cm deep at the deepest station (S1),
albeit at abundances that were close to the detection limit of the technique. Beggiatoaceae were found in all
three stations in March, although the biovolume at S2 was one order of magnitude higher than in the other
two stations (Table 1). In station S2, Beggiatoaceae were uniformly distributed up to the sulfide appearance
depth (Fig. 1c). In August, Beggiatoaceae were no longer detectable in stations S1 and S3 (Table 1), while at
S2, filaments were no longer found in deeper sediment, but formed a thick mat at the sediment-water
interface (Fig. 1c).
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DISCUSSION

Temporal shifts of chemolithoautotrophy and the associated bacterial assemblages

Together, our geochemical and microbiological characterization of the sediments of Lake Grevelingen
indicates that the availability of electron acceptors (O2, NO3") constitutes the main environmental factor
controlling the activity of the chemolithoautotrophic bacterial community. In the deeper basins of Lake
Grevelingen (below water depth of 15 m), the electron acceptor availability changes on a seasonal basis due
to the establishment of summer hypoxia (14; 18). In March, when high oxygen levels are found in the
bottom waters, the chemolithoautotrophy rates were substantially higher than in August when oxygen in the
bottom water was depleted to low levels (Fig. 1b; Table 1). Moreover in August, the chemolithoautotrophy
rates showed a clear decrease with water depth (from S3 to S1) in line with the decrease of the bottom water
oxygen concentration over depth.

The 16S rRNA gene amplicon sequencing analysis in our study reveals that the response of the
chemolithoautotrophic bacterial community in the surface sediments of Lake Grevelingen is associated with
the seasonal changes in bottom water oxygen (Fig. 2). Generally, Lake Grevelingen surface sediments
harbor a distinct microbial community compared to other surface sediments such as coastal marine (North
Sea), estuarine and Black Sea sediments (8, 9; 12) studied by 16S rRNA gene amplicon sequencing analysis.

In March, with oxic bottom waters, the microbial community in the top centimeter of the sediment at all
three stations was characterized by high abundances of Epsilon- and Gammaproteobacteria, which are
known chemolithoautotrophic sulfur-oxidizers (e.g. capable of oxidizing sulfide, thiosulfate, elemental
sulfur and polythionates) using oxygen or nitrate as electron acceptor (38; 41—43). In August, the lack of
electron acceptors (O2, NO3) in the bottom water was accompanied by a decrease in the relative abundance
of these Gammaproteobacteria and Epsilonproteobacteria. At the same time, the numbers of reads related to
the Desulfobacteraceae family increased in the top centimeter of the sediment, and a shift in the microbial
community structure towards sulfate reducing bacteria related to the genera Desulfococcus and
Desulfosarcina was evident. In coastal sediments, these genera are characteristic in deeper sediment layers
experiencing anaerobic mineralization (44—46), and thus, they are not unexpected in surface sediments
during strongly hypoxic (S2) and anoxic (S1) conditions encountered in August. Shifts in PLFA patterns are
in agreement with the temporal difference in the bacterial community (Fig. 3a), with more PLFAs found in
Gammaproteobacteria and Epsilonproteobacteria in March (i.e., 16:1o7¢ and 18:1 w7c; 47) as opposed to
more PLFAs found in sulfate reducing bacteria in the Deltaproteobacteria in August (i.e., ai15:0, i17:1w7c,
10Mel6:0; 26; 48, 49). However, sediments below the OPD in March have PLFA patterns that are more
similar to those of surface sediments in August, in agreement with the observation that anaerobic
metabolism such as sulfate reduction prevail in deeper anoxic sediments also in March.

Spring: Activity and diversity of chemolithoautotrophic bacteria
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Although the availability of soluble electron acceptors (O2, NOz") in the bottom water is important, our
data show that it cannot be the only structuring factor of the chemolithoautotrophic communities. In March
2012, all the three stations examined experienced similar bottom water O and NOz™ concentrations (Table
1), but still substantial differences were observed in the composition of the chemolithoautotrophic
communities as determined by PLFA-SIP (Fig. 3b), as well as in the depth distribution of the
chemolithoautotrophy rates in the sediment (Fig. 1b). We attribute these differences to the presence of
specific sulfur oxidation mechanisms that are active in the sediments of Lake Grevelingen (14). In March
2012, based on FISH counts and microsensor profiles two separate sulfur oxidation regimes were active at
the sites investigated: sites S1 and S3 were impacted by electrogenic sulfur oxidation by cable bacteria,
while site S2 was dominated by sulfur oxidation via nitrate-storing, filamentous Beggiatoaceae. Each of
these two regimes is characterized by a specific sulfur-oxidizing microbial community and a particular depth
distribution of the chemolithoautotrophy. We now discuss these two regimes separately in more detail.

Electrogenic sulfur oxidation

In March, stations S1 and S3 (Fig. 1a) showed the geochemical fingerprint of electrogenic sulfur
oxidation (e-SOx) consisting of a centimeter-wide suboxic zone that is characterized by acidic pore waters
(pH < 7) (50, 51). Electrogenic sulfur oxidation is attributed to the metabolic activity of cable bacteria (52),
which are long filamentous bacteria related to the sulfate reducing genus Desulfobulbus that extend
centimeters deep into the sediment (53). The observed depth-distribution of cable bacteria at S1 and S3 (Fig.
1c) was congruent with the geochemical fingerprint of e-SOx. Cable bacteria couple the oxidation of sulfide
in deeper layers to the reduction of oxygen near the sediment-water interface, by channeling electron along
their longitudinal axis (long-distance electron transport). Note that stations S1 and S3 also contained some
Beggiatoaceae. However, they attained low biovolumes and were only found at certain depths, suggesting
that they did not play a significant role in sulfur oxidation.

When e-SOx was present in the sediment (sites S1 and S3 in March), the chemolithoautotrophic activity
penetrated deeply into the sediment and was evenly distributed throughout the suboxic zone (Fig. 1b). These
field observations confirm previous laboratory incubations in which cable bacteria were induced under oxic
conditions in homogenized sediments, and a highly similar depth pattern of deep chemolithoautotrophy was
noted (15). This deep dark CO- fixation is unexpected in two ways. Firstly, cable bacteria are likely not
responsible for the deep CO- fixation although they do perform sulfur oxidation, as cable bacteria from Lake
Grevelingen have been shown to incorporate organic carbon rather than inorganic carbon (15). Secondly,
chemolithoautotrophy is generally dependent on reoxidation reactions, but there is no transport of oxygen or
nitrate to centimeters depth in these cohesive sediments, and so the question is: how can
chemolithoautotrophic reoxidation occur in the absence of suitable electron acceptors?

To reconcile these observations, it was proposed that in incubated electro-active sediments from Lake
Grevelingen, heterotrophic cable bacteria can form a sulfur-oxidizing consortium with

chemolithoautotrophic Gamma- and Epsilonproteobacteria throughout the suboxic zone (15). The results
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obtained in our study provide various lines of evidence that support the existence of such a consortium in
intact sediment cores. The PLFA-SIP patterns in S1 and S3 (Fig. 3b) showed major *3*C-incorporation in
PLFA which are present in sulfur-oxidizing Gamma- and Epsilonproteobacteria (42; 54, 55, 56), and this
occurred throughout the top 5 cm of the sediment corresponding to the zone of e-SOx activity. In addition,
the depth profiles of genes involved in dark CO fixation (Fig. 4) revealed chemolithoautotrophic
Gammaproteobacteria using the CBB cycle as well as Epsilonproteobacteria using the rTCA cycle, which
confirms the potential dark CO; fixation by both bacterial groups deep in the sediment. The higher
abundance of cbbL genes in S1 compared to S3 indicates a greater chemolithoautotrophic potential of
Gammaproteobacteria, which may explain the two-fold higher total chemolithoautotrophy rate encountered
in S1. Moreover, the peak in aclB gene abundance found in deeper sediment suggests that
Epsilonproteobacteria could play an important role in sulfur oxidation in the deeper suboxic zone in both
stations. Clearly, a consortium could sustain the high rates of chemolithoautotrophy throughout the suboxic
zone. It has been speculated that chemolithoautotrophs use the cable bacteria as an electron sink in the
absence of an electron acceptor like Oz or NOs™ in centimeter deep sediments (15). However the question
still remains as to how the Gamma- and Epsilonproteobacteria are metabolically linked to the cable bacteria
(Fig. 6).

In March, stations S1 and S3 also showed a higher contribution of fatty acids occurring in the sulfate
reducing Deltaproteobacteria (11; 48; 57) compared to the PLFA-SIP profiles in station S2 (Fig. 3b).
Deltaproteobacteria such as Desulfobacterium autotrophicum and Desulfocapsa sp., as identified by 16S
rRNA gene sequencing, are known to grow as chemolithoautotrophs by performing H, oxidation or S°-
disproportionation (58, 59; Fig. 6), and are important contributors to the chemolithoautotrophic activity in
coastal sediments (11; 60). However, a further identification of the chemolithoautotrophic
Deltaproteobacteria through the functional genes related to carbon fixation pathways was not performed in
this study. Although it is known that autotrophic Deltaproteobacteria mainly use the reverse TCA cycle or
the reductive acetyl-CoA pathway (40), further development of the functional gene approach, by designing
specific primers is necessary to determine and clarify the diversity of Deltaproteobacteria involved in the
chemolithoautotrophic activity.

Overall, we hypothesize that such a diverse assemblage of chemolithoautotrophic bacteria in the
presence of cable bacteria is indicative of a complex niche partitioning between these sulfur-oxidizers
(Gamma-, Epsilon-, and Deltaproteobacteria). In sulfidic marine sediments found in tidal and deep sea
habitats, complex S° niche partitioning have been proposed where uncultured sulfur-oxidizing
Gammaproteobacteria mainly thrive on free sulfide, the epsilonproteobacterial Sulfurimonas/Sulfurovum
group oxidizes elemental sulfur, and members of the deltaproteobacterial Desulfobulbaceae family may
perform SP-disproportionation (61).

Nitrate-storing filamentous Beggiatoaceae
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Nitrate-storing filamentous Beggiatoaceae glide through the sediment transporting their electron
acceptor (intracellular vacuoles filled with high concentrations of NO3’) into deeper sediment and electron
donor (intracellular granules of elemental sulfur) up to the surface, and in doing so, they oxidize free sulfide
to sulfate in a two-step process that creates a wide suboxic zone (14; 62, 63; Fig. 6). In March, the
microsensor depth profiles at S2 (Fig. 1a) revealed a cm-thick suboxic zone with a subsurface pH minimum
at the OPD followed by a pH maximum at SAD, which is the characteristic geochemical fingerprint of sulfur
oxidation by nitrate-storing Beggiatoaceae (14; 63). At the same time, microscopy revealed high biovolumes
of Beggiatoaceae that were uniformly distributed throughout the suboxic zone (Fig. 1c), and more than half
the filaments found were thicker than 15 um indicating potential nitrate storage. Together these results
corroborate the indications of the dominant sulfur-oxidation mechanism suggested by the geochemical
fingerprint.

The chemolithoautotrophy depth profile at S2 in March (Fig. 1b) recorded higher activities in the top 1
cm and chemolithoautotrophic activity penetrated down only to 2 cm (at the sulfide appearance depth). The
similar depth distribution of Beggiatoaceae and chemolithoautotrophic activity suggests that dark CO>
fixation was primarily carried out by the nitrate-storing Beggiatoaceae. Beggiatoaceae can indeed grow as
obligate or facultative chemolithoautotrophs depending on the strain (64). The PLFA-SIP analysis further
supported chemolithoautotrophy by Beggiatoaceae as the PLFA patterns obtained at S2 resembled those of
Beggiatoa mats encountered in sediments associated with gas hydrates (56).

However, the CO- fixation by Beggiatoaceae could be complemented by the activity of other
chemolithoautotrophs. Beggiatoaceae have previously been reported to co-occur with chemolithoautotrophic
nitrate-reducing and sulfur-oxidizing Epsilonproteobacteria (Sulfurovum and Sulfurimonas) in the deep sea
Guyamas basin (65). Interestingly, station S2 in March showed the highest abundance of aclB gene copies of
all stations and seasons (Fig. 4b), and in addition, had the highest relative percentage of 16S rRNA gene
read sequences assigned to the Epsilonproteobacteria (Fig. 2). Therefore, the dark CO- fixation at station S2
is likely caused by both the motile, vacuolated Beggiatoaceae as well as the sulfur-oxidizing
Epsilonproteobacteria. Yet, as was the case of the cable bacteria above, the metabolic link between
Beggiatoaceae and the Epsilonproteobacteria remains currently unknown. However, it seems possible that
internally stored NOs™ is released into the sediment once Beggiatoa filaments lyse, allowing sulfur-oxidation
with NOz™ by Epsilonproteobacteria.

Summer: Activity and diversity of chemolithoautotrophic bacteria

In August, when the Oz levels in the bottom water decreased substantially, a third geochemical regime
was observed at all stations, which was different from the regimes associated with cable bacteria or nitrate-
storing Beggiatoaceae. The microsensor profiling revealed an upward diffusive transport of free sulfide to
the top millimeters of the sediment, which was produced in deeper sediment horizons through sulfate
reduction (Fig. 1a). The uniform decrease in pH with depth is consistent with sediments dominated by

sulfate reduction (51). As noted above, the chemolithoautotrophy rates strongly decreased compared to
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March and were restricted to the very top of the sediment. Chemolithoautotrophic activity showed a close
relation with the bottom water oxygen concentration. The number of gene copies of the two carbon fixation
pathways investigated (CBB and rTCA) also decreased under hypoxic conditions (Fig. 4), suggesting a
strong dependence of subsurface chemolithoautotrophy on the availability of oxygen in bottom waters.

The highest chemolithoautotrophy rate was recorded at the shallower station (S3), which was the only
station in August where O2 was found to diffusive into the sediment (Table 1), thus supporting aerobic sulfur
oxidation at a shallow oxic-sulfidic interface in the sediment (51). Several studies have shown that
chemolithoautotrophy ceases in the absence of oxygen in the overlying water column (15; 45; 60). Such full
anoxia occurred in the deepest station (S1), but still limited chemolithoautotrophic activity was recorded in
the top layer of the sediment. A possible explanation is that some residual aerobic sulfur oxidizing bacteria
were supported by the very low oxygen levels. Alternatively, cable bacteria activity at S1 in spring leads to a
buildup of iron (hydr)oxides (FeOOH) in the top of the sediments, which prevents sulfide diffusion to the
bottom water during summer anoxia (3H2S + 2FeOOH = 2FeS + S° + 4H,0) (14). The elemental sulfur
formed in this reaction may support chemolithoautotrophic sulfur disproportionating bacteria (58). At station
S2, Beggiatoaceae were found forming a mat at the sediment surface in S2 (Fig. 1b) and
chemolithoautotrophy rates were limited to this mat (Fig. 6). Beggiatoaceae can survive hypoxic periods by
using stored nitrate as electron acceptor (66), which is thought to be a competitive advantage that leads to
their proliferation in autumn in S1 (14). Such survival strategies may be used to produce energy for
maintenance rather than growth under hypoxic conditions which would in combination with the low oxygen
concentrations explain the low chemolithoautotrophy to biovolume ratio observed in S2 in August compared
to March.

CONCLUSION

Coastal sediments harbor a great potential for chemolithoautotrophic activity given the high anaerobic
mineralization, which produce a large pool of reduced sulfur in these organic rich sediments. In this study,
two environmental factors were identified to regulate the chemolithoautotrophic activity in coastal
sediments: seasonal hypoxia and the dominant sulfur oxidation mechanism. In sediments where oxygen, the
main electron acceptor for chemolithoautotrophs, is depleted because of seasonal hypoxia,
chemolithoautotrophy was strongly inhibited. In addition, it is clear that the different sulfur oxidation
mechanism (e.g. canonical sulfur oxidation, electrogenic sulfur oxidation, or sulfur oxidation mediated by
vacuolated Beggiatoaceae) observed in the sediment also determine the magnitude and depth distribution of
the dark COz fixation, as well as the chemolithoautotrophic bacterial community structure. The seasonal
variations in electron acceptors and potentially reduced sulfur species suggest complex niche partitioning in
the sediment by the sulfur-oxidizing bacterial community. An in depth study on the availability of different
sulfur species in the sediment could shed light on the sulfur preferences by the different bacterial groups.

Likewise, the potential mechanism used to metabolically link filamentous sulfur-oxidizers and
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chemolithoautotrophic bacteria remains presently unresolved and requires further study. These tight
metabolic relationships may ultimately regulate the cycling of sulfur, carbon and even nitrogen in coastal

sediments, including (but not limited to) sediments affected by seasonal hypoxia.
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Table 1: Geochemical characterization, chemoautotrophy rates, and quantification of cable bacteria and Beggiatoaceae in the three stations in Lake Grevelingen
for spring (March) and summer (August).

Suboxic :
2, Bottom water* DOU OPD SAD Zone** Chemolitho- Cablg Beggiatoaceae
2 oo pH autotrophy bacteria L=
=) ) oo signature*** rate biovolume
S pM O2  pM NO3z mmol Oz m=d mm mm mm | C m?2 d-
mmol & m mm3cm?  mm?cm?2

1 5 299 (oxic) 28.2 18.2+1.7 1.8£0.04 17.5%0.7 16 e-SOx 3.1£0.5 2.55 0.02
Z - _ -
2 2 5 301 (oxic) 27.9 158431  26+065 21.3+25 19  Nwatestoring g4, ND 0.11
S Beggiatoaceae

3 5 307 (oxic) 27.7 17.145.7 24+04 41.8+8.6 39 e-SOx 1.4+0.3 2.08 0.05

117 0 (anoxic) 1.7 0 0 0.9+1.1 0.9 Sulfate 0.2+0.1 0.11 0.001
> reduction/
g 2 17 12 (hypoxic) 11.6 0 0 0.6x0 0.6 canonical 0.8+0.3 ND 3.24
a sulfur

3 19 88 (hypoxic) 10.6 139421 11#01  4.2427 3 oxidation 1.1+0.5 0.003 0.004

DOU: dissolved O9 uptake; OPD: O» penetration depth; SAD: Y H»S appearance depth; e-SOx: electrogenic sulfur oxidation; ND: not determined

*Bottom water is classified as anoxic with O concentration below 1 uM and hypoxic below 63 uM.

**The thickness of the suboxic zone is defined as the average SAD minus the average OPD.
***pH signature serves to indicate the sulfur oxidizing mechanism that dominates the porewater chemistry as described by Seitaj et al. (2015)
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Figure 1: Geochemical fingerprint, (b) chemoautotrophy depth profiles, (c) biovolume of filamentous Beggiatoaceae (black) and cable bacteria (blue) in

sediment of Lake Grevelingen for March and August in all three stations (note change in scale for Beggiatoaceae between March and
August). S1: station 1 (34 m), S2: station 2 (23 m), S3: station 3 (17 m).
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Figure 2: Percentages of total bacterial 16S rRNA gene reads in stations S1 (yellow), S2 (blue) and S3 (red)
in March (filled) and August (hatched). Classified bacterial phyla, classes and orders > 3% of the total
bacteria reads (in March or August) are reported (exception: family Thiotrichaceae < 3%), *including cable
bacteria, **including Beggiatoaceae.
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Figure 3: Principal component analysis (PCA) of relative PLFA concentrations (a) and of *C-incorporation into PLFA (b) in sediments from the three stations
in March (no border) and August (black border). The percentage of variability explained by the first two principal components (PC) is indicated on each axis.
Red: station S1, Yellow: S2, Blue S3. Symbols indicate sediment depth as seen in plot.
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Figure 5A: Phylogenetic tree (amino acid-based) of cbbL gene sequences retrieved in this study and closest
relatives. Bold: sequences of stations S1, S2 and S3 in March and August and closest known relatives. The
scale bar indicates 2% (a) and 5% (b) sequence divergence.
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Figure 5B: Phylogenetic tree (amino acid-based) of aclB gene sequences retrieved in this study and closest
relatives. Bold: sequences of stations S1, S2 and S3 in March and August and closest known relatives. The
scale bar indicates 2% (a) and 5% (b) sequence divergence.
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Figure 6: Schematic representation of the main sulfur oxidation mechanisms by chemoautotrophic bacteria under oxic conditions in spring (left) and hypoxic
conditions in summer (right) in marine Lake Grevelingen (single-celled and filamentous sulfur-oxidizing bacteria are shown as follows, Epsilonproteobacteria
(yellow), Gammaproteobacteria (green), Deltaproteobacteria (red), grey arrows represent possible reoxidation processes by chemoautotrophic bacteria and the

color of the reaction indicates the bacterial group involved, blue arrow: trajectory of filamentous Beggiatoaceae (thick green lines) from the surface to the
sulfide horizon and back up to the surface, black arrow: long-distance electron transport by cable bacteria (red broken lines).
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Supplementary information

Experimental procedures

Aeration of *C- incubations

To maintain the low oxygen levels found in August at S2 and S3, 30 ml of in situ overlying water was removed
and cores were closed with rubber stoppers. Headspace was then flushed with N through a needle inserted between the
core liner and the rubber stopper without disturbing the water surface. After several minutes, N> flushing was stopped
and 10 and 35% of the headspace was replaced with air using a syringe for S2 and S3, respectively. No air was added
to S1 cores. All cores were gently mixed (0.2 rpm) on a shacking plate to homogenize oxygen concentration in headspace
with those in overlying water. At the end of the experiment oxygen saturation in overlying water were verified with
oxygen optodes (PreSens Fibox 3 LCD) obtaining anoxic conditions for S1 (0—4% air saturation), hypoxic for S2
(20—26%) and S3 (35—80%).

PLFA nomenclature

The shorthand nomenclature used for phospholipid derived fatty acids is as follows. The number before the colon
indicates the number of carbon atoms, while the number after represents the number of double carbon bonds in the fatty
acids chain. The position of the initial double bond is then indicated by the last number after the number of carbons from
the methyl end (). The double bond geometry is designated by cis (c) or trans (t). Methyl branching is described as
being in the second carbon iso (i), third carbon anteiso (a) or a number followed by Me is used to indicate the position
relative to the carboxyl end (e.g. 10Mel6:0). Further details can be found in the literature (Vestal and White, 1989).

PCR 16S rRNA gene amplicon library preparation and analysis

PCR reactions were performed with the universal (Bacteria and Archaea) primers S-D-Arch-0519-a-S-15 (5’-CAG
CMG CCG CGG TAA-3’) and S-D-Bact-0785-a-A-21 (5°-GAC TAC HVG GGT ATC TAA TCC-3") (Klindworth et
al., 2013) adapted for pyrosequencing by the addition of sequencing adapters and multiplex identifier (MID) sequences.
To minimize bias three independent PCR reactions were performed containing: 16.3 uL H,O, 6 uL HF Phusion buffer,
2.4 UL dNTP (25 mM), 1.5 pL forward and reverse primer (10 pM; each containing an unique MID tail), 0.5 pL Phusion
Taq and 2 uL DNA (6 ng/uL). The PCR conditions were following: 98°C, 30 s; 25 x [98°C, 10 s; 53 °C, 20's; 72°C,
30 s]; 72 °C, 7 min and 4°C, 5 min.

The PCR products were loaded on a 1% agarose gel and stained with SYBR® Safe (Life technologies,
Netherlands). Bands were excised with a sterile scalpel and purified with Qiaquick Gel Extraction Kit (QIAGEN,
Valencia, CA) following the manufacturer’s instructions. PCR purified products were quantified with Quant-iT™
PicoGreen® dsDNA Assay Kit (Life Technologies, Netherlands). Equimolar concentrations of the barcoded PCR
products were pooled and sequenced on GS FLX Titanium platform (454 Life Sciences) by Macrogen Inc. Korea.

Samples were analyzed using the QIIME pipeline (Caporaso et al., 2010). Raw sequences were demultiplexed
and then quality-filtered with a minimum quality score of 25, length between 250—350, and allowing maximum two
errors in the barcode sequence. Sequences were then clustered into operational taxonomic units (OTUs, 97% similarity)
with UCLUST (Edgar, 2010). Reads were aligned to the Greengenes Core reference alignment (DeSantis et al., 2006)
using the PyNAST algorithm (Caporaso et al., 2010). Taxonomy was assigned based on the Greengenes taxonomy
and a Greengenes reference database (version 12_10) (McDonald et al., 2012; Werner et al., 2012). Representative
OTU sequences assigned to the specific taxonomic groups were extracted through classify.seqs and get.lineage in
Mothur (Schloss et al., 2009) by using the greengenes reference and taxonomy files.

In order to determine a more accurate taxonomic classification of the bacterial groups with high percentage of reads
and known to contain members with chemolithoautotrophic metabolism, sequence reads of the order Chromatiales and
Thiotrichales (Fig. S1, S2), reads of the order Desulfarculales (Fig. S3), the family of Desulfobulbaceae (Fig. S4a) and
the genus Desulfubulbus (Fig. S4b), reads of the family Desulfobacteraceae (Fig. S5a—c), and additionally reads of the
order Campylobacterales (Fig. S6a—d) were extracted from the dataset and added to a phylogenetic tree as described in
the Experimental procedures.

Quantification of cable bacteria and Beggiatoaceae

Microscopic identification of cable bacteria was achieved by fluorescence in situ hybridization (FISH), using a
Desulfobulbaceae-specific oligonucleotide probe (DSB706; 5-ACC CGT ATT CCT CCC GAT-3'), according to
(Schauer et al., 2014). Cable bacteria biovolume per unit of sediment volume (mm3 cm) was calculated based on
measured filament length and diameter. The areal biovolume of cable bacteria (mm?® cm™) was obtained by depth
integration over all sediment layers analyzed.

The minimum limits of quantification via FISH for single cells were 1.5 x 106 cells cm™, taken as the FISH count
with the negative control probe NON338; a minimum of 1000 DAPI (4,6-diamidino-2-phenylindole) stained cells was
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evaluated for this count. The FISH detection limit for cable bacteria was lower than for single cells, and was calculated
to be 10 cm filament cm (corresponding to <1 filament in 0.1 ml of sediment).

Filamentous Beggiatoaceae were identified via inverted light microscopy (Olympus IM) within 24 h of sediment
retrieval. Intact sediment cores were sectioned at 5 mm intervals over the top 4 cm from which subsamples (20—30 mg)
were used to count living Beggiatoaceae (Seitaj et al., 2015). The biovolume was determined by measuring length and
width of all filaments found in the subsample, following the counting procedure described in (Jergensen et al., 2010).

Statistical analysis

All statistical analyses were performed using the CRAN: stats package in the open source software R. A two-way
ANOVA (aov) was used to test the effect of station, season, and sediment depth on bacterial biomass,
chemolithoautotrophic activity, and gene abundances. PLFA concentrations and *C-incorporation values were
expressed as a fraction of the total bacterial biomass and *C-incorporation (respectively) per sediment sample. These
relative PLFA values were first log-transformed (log (x+1)) and subsequently analyzed with Principal Component
Analysis (PCA: prcomp) to distinguish different bacterial and chemolithoautotrophic communities in the sediment.
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Figure S1-S6: Phylogenetic comparison of bacterial 16S rRNA gene amplicon sequences retrieved in this
study, added to a reference tree generated from the SILVA database using the ARB parsimony tool. (red:
sequences obtained from stations S1, S2 and S3 in March and August, bold: closest known relatives).
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Figure S1: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Gammaproteobacteria,

order: Chromatiales.
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[ Fr6 8 uncultured gamma proleobactenum microbial mat from Eiffel Tower Lucky Strike vent area
Ef687244 uncultured bacterium, iron— oxidizing mat, Chefren mud volcano
— KC682859, uncultured bacterium, surface of a basait collected from Kilo Moana vent field, Lau Basin
AB476269, uncultured bacterium, ventral setae of Shinkaia crosnieri
Hq153952 uncultured bacterium, white filamentous microbial mat in the photic zone of a shallow hydrothermal vent
‘ FJ787300, uncultured bacterium, gas hydrate sediments of the Kazan Mud Volcano, East Mediterranean Sea
KF624162, uncultured bacterium, oxic pyrite—particle colonization experiment, Janssand tidal flat, Wadden Sea
HQ191073 uncultured sediment baclenum Janssand intertidal sediment; German Wadden Sea
ARB_9F2BCD1A, denovo2124 GI1.1_1929
AB 615250 uncuitured gamma goteobacterium deepest cold-seep area of the Japan Trench
— ARB_27D9B048, denovo3381 4329
Fn553471 uncultured sediment bacferium, Logatchev hydrothermal vent field,oceanic sediment
B476207, uncultured bacterium, ventral setae of Shinkaia crosnieri
AB476206 uncultured bacterium, ventral setae of Shinkaia crosnieri
L ABS30202 uncultured bacterium, marine sediment
2, Uncultured sediment bacterium, Janssand intertidal sediment; German Wadden Sea
= AM uncultured gamma proleobactenum sediment from oil polluted water from petrochemlcal treatment plant
- KFGZA 59, uncultured bacterium, oxnc J)yrlle particle colonization experiment, Janssand tidal flat, Wadden Sea
5009 denovo2929 Gli1
DD9, denovo1483 GI1 1
- R' 624231 uncultured bacterium, suboxm p'_y{nte particle colonization experiment, Janssand tidal flat, Wadden Sea
JQ287244, uncultured bacterium, East Pacific
l JQ287289, uncultured bacterium, East Pacific Rise
== ARB 585E8CC4, denovo2756 GI3.1_2429
J905708, uncultured bacterium, iron oXide sediments, Volcano 1, Tonga A
KF624156 uncultured bacterium, oxnc pyrite—particle colonization expenmenl Janssand tidal flat, Wadden Sea
ARB_83A 18EC denovo2486 GI1.1
ARB_83A518EC, denovo1329 GII3. f629
= FJ205286 uncultured amma protéobacterium, active hydrothermal field sediments, depth:1922m
Ef6. 2, uncultured bacterium, sediment underneath an iron-oxidizing mat, Chefren mud volcano
" ARB BFG 2 (AE, denovo413 GI1.1_285
AMB82574, uncultured gamma proteobacterium, sediment from oil polluted water from petrochemical treatment plant
FJ712538, uncultured bacterium, Kazan Mud Volcano, Anaximander Mountains, East Mediterranean Sea
Fn397820, uncultured gamma proteobaclenum GeoB 9072-1 anoxic sub-surface mud volcano
= AJ535246 uncultured gamma proteobactenum manne sed|ment above hydrate ridge
’— 5138, uncultured
Fn553607 uncultured sediment bacterlum Logatchev h drolhermal vent sediment at 3224 m
F154089 uncultured hydrocarbon seep bacterium BPC036
712588, uncultured bacterium, Kazan Mud Volcano, Anaximander Mountains, East Mediterranean Sea
' ARB 71c0FE2 denovo2398 GlI3.1_2072
DFAE6D84, denovo669 GI2
| |— FJ264668, uncultured bacterium, ‘methane seep sediment
| JN977166, uncultured bacterium, Jiaozhao Bay sediment
EU652548, uncultured bacterium, Yellow Sea sediment
‘ — ARB, 1103BE8F denovo1699 GI2.1_3700

o
®

»»
A2
WW

az

uncultured

IR B_2C6B48A0, denovo576 Gl 1.1_851
L 40FFFC75, denovod72 G 16
l 153917'uncu|tured bacterium, white mscroblal film shallow hydrothermal vent
1 3955, uncultured bacterium, white filamentous microbial mat shallow hydrothermal vent
T 97098AEA denovo2230 GI2.1_1696
HQT91071 uncultured sediment bacterium, Janssand intertidal sediment; German Wadden Sea
EF644802, uncultured bacterium, MAR Logatchev hydrothermal vent system 3000m water depth, sulfide sample
f344197 uncultured gammaé)roteobactenum petroleum spot over marine sediments
[ ARB _6C6887C4, denovo1420 61
K 268708 uncultured bacterium, marine sediment
| Jf344186, uncultured gamma proteobactenum petroleum spot over marine sediments
Iy ABZ71125 0I|gobrach|a mashikoi endosymbiont G
AB271122, Oligobrachia mashikoi endosymbiont D
= ABZ71124 C)Ilgo rachia mashikoi endosymbiont F
— AB271120, Ollgobracma mashikoi endosymbiont B
A3252051 Ollgo rachia mashikoi endosymbiont A
91817, uncultured bacterium, seafloor lavas from the East Pacific Rise
_l— JF344283 uncultured gamma proteobacterlum hydrocarbon ?olluted marine sediments from figueiras beach
— JQ 4, uncultured gamma proteobacterium, sediments from Rodas Beach polluted wnh crude oil
Fn397817, Uncultured gamma proteobacterium, GeoB 9072-1 anoxic sub-surface mud volcano
~ DQY25898, uncultured bacterium, hydrothermal vent chimneys of Guaymas Basin
[ AB476202, uncultured bacterium, ventral setae of Shinkaia crosnieri
n uncultured gamma proteobacterium, Geo anoxic sub-surface mud volcano
Fn397818, Itured b: GeoB 9072-1 b-surf: d vol
= FJ497 576, uncultured gamma proteobactenum Vailulu'u Seamount
FJ497611 uncultured gamma proteobacterium, Vailulu'u Seamount
FJ497565, uncultured gamma proteobacterium, Vailulu’u Seamount
FJ497622, uncultured gamma proteobactenum Vailulu'u Seamount
| ARB_F1 FBGO11 denovo1531 Gl2.1_1865
| 'ARE_BF291963, denovo1853 GII2. ‘I' 888
KF62423% uncultured bactenum suboxrc pyrite—particle colonization experiment, Janssand tidal flat, Wadden Sea

Thiotrichales_Thiotrichaceae

ARB_2B841FB1, denovo642 GI3.
FJ712548, uncultured bacterium, Kazan Mud Volcano, Anaximander Mountains, East Mediterranean Sea
FJ264584 uncultured bacterium, methane seep sediment
JF344299, uncultured gamma roteobacterium, hydrocarbon polluted marine sediments from figueiras beach
FJ905702, uncultured bacterium, iron oxide sediments, Volcano 1, Tonga Arc
_| ARB_D102CB76, denovo2637 GI1.1 1578
L[ ARB_8C35E7C7, denovo309 GIi3 _11763
EU491119, uncultured bacterium, seafloor lavas from the Loi'hi Seamount Pisces Peak X2
Fn553445, uncultured sediment bacterlum Logatchev hydrothermal vent field,oceanic sediment
JQ579946, uncultured g ts from Figueiras Beach d
JX55;252 uncultured bactenum antarctic aerosol 1
_| ARB_| D18874D7 denovo1457 GI2.1_998
[" ARB_D18874D7, denovo3229 GlI2.1_12387
JX570601, endosymblont of Ridgeia piscesae
KC682827, uncultured bacterium, surface of a basalt collected from Kilo Moana vent field, Lau Basin
Fr670405, uncultured gamma proteobacterium, microbial mat from Eiffel Tower Lucky Strike
I JQ200201, uncultured bacterium, seawater; next to dolphin Y
AB495251, Cocleimonas flava, marine mollusk
n662081, uncultured gamma proteobacterium, particulate detritus

| Eu107481 uncultured Leucothrix sp., Okinawa Trough at depth of 1309 meters
l AB476220, uncultured bacterium, ventral setae of Shinkaia crosnieri 0.05

EUS555124, uncultured bacterium, Dudley hydrothermal vent L 4

Cocleimonas

— AF532775, Candidatus Isobeggiatoa divolgata, marine sediment
4 AF532769 Candidatus Isobe%glatoa divol agala Wadden Sea sediment
6E1, denovo30.
ARB BUSTEEL, enovests oiz1 daoat siment
andidatus Isobe gle oa |vo gata, marine sedimen i i
ARB D764416C. danovor “g Candidatus Isobeggiatoa
FJ875195, uncultured Beggiatoa sp manne sediment underl{mg a salmon farm
= FN561862, Candidatus Isobegglaloa dlvolgata marine sedimen
[ AF532771, uncultured Beggiatoa g manne sediment
ARB_6BD95FAD, denovo116 1 4524
|- ARB_9D6DFEEE, denovo3057 Gli2.1 5949’
AF532773, Candidatus Parabeggiatoa communis, marine sediment
AF532772, Candidatus Parabeggla l0a communis, marine sediment
' ARB_C437! 616 denovo1726 G
— JN793555, uncultured Beggiatoa sp., hydrolhen'nal seep at Guaymas Basin
FJ875199, uncultured Beggiatoa sp., marine sediment underlying a salmon farm
—— FR847872, Candidatus Halobe?glatoa s& HMW-W562, white microbial mat
=, 75 Fr847873 Candidatus Halobeggiatoa sp. HMW-W572, white microbial mat
R847870, Candidatus Halobeggiatoa sp. HMW-W520, white microbial mat
f FR847871 Candidatus Halobeggw oa s; HMW-S2528, white microbial mat
ARB_9D825299, denovo57.
FN811663, Th:omargarlta namtblens:s sedlment surface
r690927 Candidatus Thlomarganta nelsonii, sediment
FR690929 Cand:datus Thiomargarita nelsonli, sediment
FR690966, Candidatus Thiomargarita nelsonii, sediment
—— FR690953, Candldalus Thiomargarita nelsonii, sediment
ARB_4BFED579, denovo1545 GlI2.1_7825
FR690945, Candidatus Thiomargarita nelsonii, sediment
FR690946 Candidatus Thiomargarita nelsonii, sediment
FRG , Candidatus Thlomargama nelsonii, sediment
3 uun , denovo283 GlI2.1_1879
ARB_J 0D7B34, denovo347 GI2. 1 475
f F ,_Thiomargarita namibiensis, sediment
Ji78385a, It ug/;n, Thlomargardltatgamm]lensm tméertlda\l mn.éd flat
uncultured Beggiatoa s rothermal seep at Guaymas Basin
‘— ARB, 9FCD4774 denog%819 GI3.1 y 565 P Y P

Figure S2: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Gammaproteobacteria,
order: Thiotrichales, family: Thiotrichaceae.
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| J
~—— ARB_E828CF31, denovoGSd

EU592480, uncultured bactenum hypersaline sediment
"~ ARB_7060483C, denovo2020 5100
GQS5007! 08 uncultured bactenum Charon's Cascade, sandy clastic sediments
"~ Fq658834, uncultured soil bacterium, PAH-contaminated soil
[ DQ137968, uncultured bacterium, wetland
———————— ARB_10DE197D, denovod0 GI2.1_3162 )
— = FJ51'698 uncultured Desulfobactéraceae bacterium, u eé)per sediment
| GU208294, uncultured prokaryote, Don Plng Lake sediment
[ HM243855, uncultured bacterium, middle sediment from Honghu Lake
HQ003578, uncultured delta proteobactenum Carrizo shallow lake
KF268888, uncultured bacterium, marine sediment
ARB 70045897 denovo93 Gli2.1_1855
AR 04B897, denovo1972 Gi3A_386
3'0221 uncultured bacterium, marine sediment
ABGQ4469 uncultured bacterium, Deep—sea sediment at a depth 7111m.
— Jn5118 uncultured organism, Guerrero Ne’\?ro Hypersaline Mat
n537626, uncultured organism, Guerrero Negro Hypersaline Mat
GQZ46439 uncultured bacterium, Nonh Yellow Sea sediments
| ARB_6181BEOB, denovo348 GI1.1_2389
FJ716464 uncultured bacterium, Frasassi cave system, anoxic lake water
ARB_8D6EAOF6, ‘denovo3241 GlI3.1_2770
JQ925081, uncultured bacterium, cold seep sediment from oxygen mimimum zone in Pakistan Margin
Q580439, uncultured delta proteobactenum sediments fro as Beach polluted with crude oil
JN207182 uncultured delta proteobacterium, Namako- ke surface sediment (0-1 cm)
64, uncultured bacterium, Eel River Basin sediment 2688
Gu302479 uncultured bacterium, marine sediments Mississippi Canyon
HQ691991, uncultured delta proteobaclenum stratified lagoon
AFO: , benzene mineralizing consortium clone SB-21
Q394937, uncultured Desulfobacterium sp., harbor sediment
GQ246425, uncultured bacterium, North Yellow Sea ‘sediments
EF125430, uncultured bacterium, mangrove soil
DQ811822, uncultured delta roteobacterlum mangrove soil
ARB_5BA65306, denovo2937 GI3.1_931
ARB_7BD0700F, donovo191)2 GII1 1 5946
——————— FN396676, uncultured marine bacterium, Arctic marine surface sediment
- ARB_666D9846 denovo1315621 3389
ARB_D6FD159, denovo3965 GlI2.1 _3i
F£J485073, uncultured delta protéobacterium, biomat in El Zacaton at 114m depth
Gu127072, uncultured delta proteobacterium, sediment; anoxic zone
Q 31550, uncultured delta proteobacterium, marine sediment
‘ ARB_D788D99F, denov02296 GlI3.1_7171
' ARB_3535E826, denovo1384 Gi2.1_300
HQ178897 uncultured bactenum sediment treated with Mr. Frosty slow freeze method
G 302445 uncultured bacterium, marine sediments MISSISSI?D] Canyon

708, uncultured delta proteobacterlum hydrocarbon polluted manne sediments
362957 uncultured bacterium, manne sedlment rom the South China Sea
ARB ED2D, denovo1051 GlI3.1
J?J816986 uncultured bacterium, subsealloor sediment at the Good Weather Ridge
DQ811813, uncultured delta E;roleobactenum mangrove soil
ARB 8F5D807B, denovo60
| L 'KC470953, uncultured bactenum marine sediment at Yonaguni KnoII in the Okinawa Trough
Jn518898, uncultured organism, Guerrero Negro Hypersaline M:
- DQ811811, uncultured delta proteobacterium, mangrove soil
L EU385682, uncultured bacterium, subseafloor sediment of the South China Sea
0628273, uncultured bacterium, brackish water from anoxrc fjord Nitinat Lake at depth 50
L AJ241002, uncultured delta proteobacterium Sva051
Jf344210, 'uncultured delta Proteobactenum petroleum spot over marine sediments
|' ARB EzuDscéo denovo188 GI1.1_278
FJ437826, uncultured bacterium; Green Lake chemocline at 20.5 m water depth
AY216442, uncultured bacterium, temperate estuarine mud
- JQ580448, uncuiltured delta proteobacterium, sediments from Rodas Beach polluted with crude oil
. 'ARB 4EAG6FD94, denovo1367 Gli1.1_529
| ——— AJ430774, delta proteobactenum EbS7 sediment
ARB A61B:! 58E9 denovo3408 Gli2.1_14147
—— FJ437866, Uncultured baclenum Green Lake at 25 m water depth
ARB_A26C8AD9, denovo3152 Gli2.1_5152
HQ003580, uncultured delta rotec?bactenum Carrizo shallow lake
“— HQ691995, uncultured delta proteobacterium, stratified | lagoon
JQ580482, uncultured delta é)roleobactenum sediments from Rodas Beach polluted with crude oil
ARB 39E47D34, denovo2286 3
m538151, uncultured bacterium, 1400 m de Spth surface sediment Xisha Trough, China Sea
—ARB_F317CBCO0, denovo1489 Gll
ARB_B01 DOB7D, denovo988 GI3.1. 3020
JF495321, uncultured bacterium, sediment from anoxic fjord
AF154102, uncultured hydrocarbon seep bacterium GCAO017
L] 0580472 uncultured delta froleobactenum sediments from Rodas Beach polluted with crude oil
ARB_5B4D5DA9, denovo2879 Gl 108
AY542227, uncultured delta roleo'Eactenum Gulf of Mexico seafloor sediments
JQ! 6, uncultured delta proteobacterium, sediments from Rodas Beach polluted with crude oil
| ARB 56A14516 denovo843 Gli2.1_2149
ARB_ 56A14516 denovo558 Gl2.1_1507
—— Jn534265, Uncultured orﬂanrsm Guerrero Negro Hypersaline Mat
Jf344192, uncultured delta proleobactenum petroleum spot over marine sediments
i ARB_85297555, denovo2583
Jn515007, uncultured orgamsm Guerrero Ne%ro Hypersaline Mat
——— FJ484510, uncultured delta proteobacterium, wall bioma sample in El Zacaton at 53m depth
ARB_| EA0946DA, denovo2630 Gli2.1_2303
JQs1 357 uncultured bacterium, subseafloor sediment at the Formosa Ridge
JQ925098, uncultured bacterium, cold seep sediment from oxygen mimimum zone in Pakistan Margin
ARB_170270B2, denovo244 GlI1.1_3i
8, uncultured bacterium, Kmsterdam mud volcano sediment
71 1, uncultured bacterium, Jiaozhao Bay sediment
M231166, uncultured bacterium, coconut husk remng soil
EU~ 92498, uncultured bacterium, hypersallne sediment
HQ174924, uncultured bacterium, Cherokee Road Extension Blue Hole
L J0816148 uncultured bacterium, subseafloor sediment at the Deep Basrn
| , uncultured delta proteobacterium, marine sedimen
‘ — J0580310 uncultured delta ro(eobactenum sediments from Rodas Beach polluted with crude oil
ARB_68DB4272, denovo228 Gll2.1_2567
Jn518931, unculfured or anism, Guerrero Negro Hypersaline Mat
[F FJ437756, uncultured bacterium, Green Lake chemocline at 20.5 m water depth

{2
&2
N3

X

AB630766, uncultured bacterium, aquatlc moss pillars
FJ716322, uncultured bacterium, Sawmlll Srnk water column, at 10.3 m water depth
ARB 9AE7ADAE, denovo2234 GI1
B _364C0C47, denovo3678 G 1 1 '6861
K ARB “5D22E99, denovo730 GI1.1_3588
~ T AJ237601, Desulfobaaenum anilini
- 00394914 uncultured Desulfobacterium sp., harbor sediment
AF121886, bacterium 2BP-6
— Ab763347 Desulfobacterium sp. DS, a river sediment contaminated chlorinated volatile organic compounds
966, uncultured delta proleobactenum spring
~ FJ517129, uncultured Desulfobacteraceae bacterium, water
""" "FJ516988, uncultured Desulfobacteraceae bacterium, ugper sediment
HMO066266, uncultured bacterium, Texas state well #DX 68-23-616A
JQ245553, uncultured bacterium, mud volcano
EU245563 uncullured or?amsm hypersallne microbial mat
7298, uncultured organlsm Guerrero Negro Hypersaline Mat
ARB_ 1537c093 denovo32 Gl 46
Jn529954 uncultured organlsm Guerrero Negro Hypersaline Mat
ARB_9B500F68, denovo614 GII3
RB82646, uncultured delta protedbaclerlum hydrothermal sediments
— FJ485020, uncultured delta pro!eobactenum biomat in El Zacaton at 114m depth
l FJ485340 uncultured delta proteobacterium, wall biomat sample in El Zacaton at 273m depth
unculturegeo anism, Guerrero Negro Hypersaline Mat

FM164951, uncultured Desulfobacterium s Op hot spring
AF026998 unidentified delta ?roteobactenum
EF205578, uncultured delta prot eobactenur;geothermal spring mat
FR682638, uncultured delta proteobacterium, hydrothermal iments
DQ415831, uncultured bacterium, Frasassi sulfidic cave stream biofilm
——— JN397733, uncultured bacterium, river bank

[ ARB_9F80COF0, denovo460 Gil2.1_61 Desulfarculus

45
3, uncultured bacterium, hindgut homogenate of Pachnoda ephippiata larva

AJ57634
ARB_2EB6DECF, denovo3036 Gli2.1_284 1

' ARB_ ZEBGDECF denovo38 GI2.1 21'4

ARB_986F247C, denovo2054 Gil3.1_5!
uncullured'baclenum siliciclastic sedment from Thalassia sea grass bed

l 487879
- - ARB_783FDF21, denovo1F5'a 1_1060 uncultured

242399 uncultured delta proteobacterium, sediment
113.1_1182

ARB_FA468FAA, denovo730 G
L kreors

Figure S3: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Deltaproteobacteria,

33, uncultured baCXenum activated slidge from inclined plate membrane bioreactor 0.05

uncultured

ARB_740BDBE3, denovo1219 GI1.1 1259 P

order: Desulfarculales.

Desulfarculales Desulfarculaceae
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133 sequences (seq), uncultured bacteria,

including 8 seq obtained by Pfeffer et al., 2012,

and Lake Grevelingen surface sediments, August, station 3 (3 seq),
Lake Grevelingen surface sediments, August, station 1 (1 seq)

85 seq, uncultured bacteria related to Desulforhopalus sp.,

Lake Grevelingen surface sediments, March and August, station 1 (2 seq),
Lake Grevelingen surface sediments, March and August, station 2 (2 seq)
Lake Grevelingen surface sediments, August, station 3 (4 seq)

|/ 9 seq, uncultured bacteria, including Lake Grevelingen surface sediments, August, station 3 (2 seq)

{7 12 seq, uncultured bacteria, including Lake Grevelingen surface sediments, August, station 3 (2 seq)

— AM176855, uncultured bacterium, mangrove sediment

131 seq, uncultured Desulfopila sp.,

including Lake Grevelingen surface sediments, March, station 1 (1 seq),
Lake Grevelingen surface sediments, August, station 2 (1 seq),

Lake Grevelingen surface sediments, August, station 3 (2 seq),

30 seq, uncultured bacteria related to Desulfotalea sp.,
including Lake Grevelingen surface sediments, March, station 1 (1 seq),
Lake Grevelingen surface sediments, August, station 3 (1 seq),

43 seq, uncultured bacteria (SEEP-SRB4),
including Lake Grevelingen surface sediments, March and August, station 2 (2 seq),

2 seq, uncultured bacteria, sediments from Gulf of Mexico and Peru Margin

59 seq, uncultured bacteria,
7including Lake Grevelingen surface sediments, March, station 1 (1 seq) and 3 (2 seq),
Lake Grevelingen surface sediments, August, station 2 (5 seq)

U’:S seq, uncultured bacteria related to Desulfofustis sp.

Y/ 2 seq, uncultured bacteria

273 seq, uncultured bacteria related to Desulfocapsa sp.
including Lake Grevelingen surface sediments, March, station 1 (1 seq) and 2 (2 seq),
Lake Grevelingen surface sediments, August, station 2 (2 seq) and 3 (1 seq),

—U 2 seq, uncultured bacteria, microbial mat and muddy salt marsh sediment

70 seq, uncultured bacteria related to Desulfocapsa sp.,
including Lake Grevelingen surface sediments, March, station 1 (1 seq) and 2 (1 seq),
Lake Grevelingen surface sediments, August, station 1 (1 seq)

{14 seq, uncultured bacteria, including Lake Grevelingen surface sediments, August, station 2 (1 seq)

16 seq, uncultured bacteria, subsurface aquifer sediment and volcanic soil
— JX223964, uncultured bacterium, subsurface aquifer sediment

‘_/ 30 seq, uncultured bacteria, including 1 seq obtained by Pfeffer et al., 2012,
Lake Grevelingen surface sediments, August, station 2 (1 seq) and station 3 (4 seq)

Y~ 5 seq, uncultured bacteria, including Lake Grevelingen surface sediments, March and August, station 1 (2 seq)

“{ "/ 2 seq, uncultured bacteria, subsurface aquifer sediments

6 seq, uncultured bacteria,
including Lake Grevelingen surface sediments, March, station 1 (1 seq) and station 2 (1 seq), and August, station 2 (1 seq)

478 seq, uncultured bacteria related to Desulfobulbus sp.
(see Desulfobulbus tree; following figure)

7 44 seq, uncultured bacteria related to Desulfurivibrio sp.

42 seq, uncultured bacteria, including 2 seq obtained by Malkin et al., 2014, 1 seq by Pfeffer et al., 2012,
Lake Grevelingen surface sediments, March, station 1 (2 seq) and station 3 (2 seq),
and August, station 2 (2 seq) and station 3 (2 seq)

[ __—" 7 seq, uncultured bacteria, including 5 seq obtained by Pfeffer et al., 2012

72 seq, uncultured bacterium, marine sediment (1 seq) and Lake Grevelingen surface sediments, August, station 3 (1 seq)
0.10

Desulfobacterales Desulfobulbaceae

Figure S4a: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Deltaproteobacteria, (a)

order: Desulfobacterales, family: Desulfobulbaceae.
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A~ group 1: 18 sequences uncultured bacteria
L{7 group 2: 7 sequences uncultured bactera
{7 group 3: 3 sequences uncultured bacteria

7 group 4: 24 sequences uncultured bacteria

nos7azaa -pond sediment
esulfobulbus pmpmnlws DSM 2032, reshwater mud

tus
DQB31531, uncultured Desulfobuibus sp., brackish sediment
L JQB15615, uncuitured Tinto River sediment
" KF020725, Desulfomicrobium sp. enrichment culture clone LDC-, soil
[ GQ133652, uncultured bacterium, ASBR reactor treating swine waste
EU104773, reactor
GQ138460, uncultured bndanum ASER reactor treating swine waste
GQ138956, uncuitured bacterium, ASSR reactor treating swine waste.
|| KC260892. uncuilured baclerium, homancse dolphin mouth
E(1488160, uncullured bacteriu. fom bed
HM0G062, Uncultured bacterium, sediment of Rupa Lak
|4 Bsdcar, Decuobubus mavdofomis.sudge sample ofcrude-oll storage tank

HMT50316, Desutfobulbus alkel
1 3 mocktananous, il fat sediment
Euuzuss uncultured bsqenum memne seep sediment

ACNOI000075, Dosuabulbes metonanos DS 13871
EU528183, uncultured bacterium, sediment
psychrophilic sullate~reducing bacterium LSV55

4 AMA04380, uncutured defta cterium, marine sediment
FJ716980, uncultured ba United Kingdom
AMBE62S, unculured deta protoabaciarium. sedimant o of noIM.ad ‘water from petrochemical treatment plant

AB110550, Desulfobulbus Japonicus, harbor sedimel
f AB110549, Dosulopuibus japonicus, haror sediment in Japen
BG25

UBEAT3 Dosuooutbus s,
uncultured bacterium, bottienose dolphin mouth
[ J0B9738, ncaured becienum. dolphin mouth
10215032, unmllmed bacterium, bottlenose dolphin mouth
— Gq134058, uncuftured bacterium, ASER reactor treating swine waste
[ nsd 31, uncared bocierim, Nigaia S wel
FJ752164, uncuured bcierum, carbonas chirny i LostCiy Hydrohermsl Fied
FRAS3023, uncukured bacerum, acthve hydrothermal cinine, Juan de Fuca Ridge
AJ96450. unculured deia prteobaclerum, ock ragenets, Renba. deap sea hydrotheril vent fed
852065, unculured bacionum, act vo hydrthormal himnoy. Dudoy. Juan do Fuca Ridge

FR853007 uncultured bacterium, active hydrother imney, Dudley, Juan de Fuca Ridge
AYET: iltured bacterium. hydrothermal vent, Easi Pal:lﬂc Rise, Pac\flc Ocean
AY672503, uncufured bacterom, ent, East Pacific Rise,

AF420336, unculured proteobacterium
AV592579 uncultured bauenum Napoli mud volcano, Easlom Meonﬂlanean sediment layer 0~8 cm
ured bact merkns ryckocarbon seap seck
Jozﬂmﬁn " ancalured bacierium, East
Fis748, uncutured beclerum, kon oxde Socimorts, Tong Are

vent

ingen s X
— AM268767, uncultured prokaryote, hot fluid ookt lna
group 5 6 sequences uncultured bacteria

JNB74112, uncultured bacterium, TrapR1, East Pacific Rise
'AY327886, uncultured delia proteobacterium, surface of vent snail foot

JNB73947. uncultured bacterium, Yrap?‘ Easl Pacific
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Figure S4b: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Deltaproteobacteria,
order: Desulfobacterales, family: Desulfubulbaceae.
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Figure S5a: Bacterial 16S rRNA gene amplicon sequences assigned to in the class of Deltaproteobacteria,
order: Desulfobacterales, family: Desulfobacteraceae.
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Figure S5b: Bacterial 16S rRNA gene amplicon sequences assigned to in the class of Deltaproteobacteria,
order: Desulfobacterales, family: Desulfobacteraceae.

Desulfatirhabdium

Desulfosarcina

[ AY222313, uncultured delia proteobacterium, host hindgut caecum

DQOD4ETY, uncultured bacterium, marine 6 hydrocarbon seap sediment
ARB TFED19F4, denovoS7 Gli1.1_2044
0867138, ncuired della proteohactenu n(\; lubeworn Ridgelapscesae i low-flow enironment
organism, Guerrero Negro Hypersaiine
" dénovos
L ARB_DGDE1887, denovozs91 Giiz1 5313
Jn51747, uncultured organism, Guerrero Negro Hypersaline Mat
Jnd56653, unculured organism, Gumm Negro Hypersaline Mat

ARB_67DDF75D, denovot.

Y™ Gilt A
[ 04384, uncuréd oganism, Guerars N'dgm Hypersaline Mat
——————————————————— IN511301, unculturs janism, Guerrero N%Nynlﬁdne Mat
J Jra22159, unoutred oganis, uerrero Nogro Ay

125,
g — e m}g‘%ﬂn Guerrero Negro Rypersaiine bt
uertero Nogro Hypersaling Mat

uerrero Negro
Jnscmao nmmnmed dg o Negio Hypersaine Mal
- s _1CAETS42 Gt 19283
TSty Mgnmam ‘Guerrero Negro Hypersaline Mat
o — ARB_3AEA0OSF, donovo2475 GIlS1
ARG, FEASSIAD. donova34E GIS1 2479
ARB. SUBIFDD, de d-nmzus iz {3007
0459735, Gnculured o hégro Hypersan Mat
S4sti32 unoiured mgnnbm Gumm Negro Hyy
0510800, uncuured arganisn, Guareo Negro Hypersaine lfal
n o b baciakan: Kacan W Vet are, Arasimarder Mourlana
Aqu{czonBA denovo1511 GI3. L gt
22209, janism, Guerrero ro Hypersaline Mat
205 incufured ogenism, S vaaro Nearo Hypersalne Mat
'ARB, 2EBSFARS, denovo2138 GIE1 6817
" Jn458684, uncultured organism, Guerrero Nngm Hyg:;sum Mat
" dndsaté1 ncusesd crgri, Cosners Nepro Hypr
< orgamsm, Cuarer Negro Hyparsalne Vat
Inss2ssd, i organism, Guerrero r‘gm Hy 2l Mt
Intshrz’, uneuured argansin, Gueres Negro 3
a

U4s991, Desulfanama shimot
U45992, Desulfonema ishir mm
ARB_ATOFOEBA, denovo340s GI3.1_t11577
ﬁ 036268, uncultured bacterium, Ee! River Basin sediment 2688
'ARB_1DFDEBEC, donovodss il 2275
INO38818, uncullured delta proleobacterium, Chongxi wetland soll
7‘1 0228 i JEHGﬁn WMNG lbd}?npil:sr:lum terrestrial sulfidic spring
 — unculured organism, Guerrero Negro ine Mat
- ARB_D6FCA9F0, dirlovo'mgl 8II!1 1_2524 aibis
AR $58A30CD. denovoz2s G
IS!AMCD. denovod00 GII2. 1 ‘mn

145990, Desulfonema limicola
ARB nmm denovo3920 Gil2.1_7847
—JQ215065. unculiured bacleriuri, bottlenose dolphin mouth
' ARB_14DEQEB! ﬂonnvn184 GIi31_1091
A IB14T wred DesulfGbacterales bacterium, Carmel Canyon
ARB_EBTF7EBY, anoved] Qi 1_11048
/45989, Desulfonema mﬁz
~— ARB_138FIACC, denovo158 Gll2.1_13064
ARB_360FBI3E, denovoBdd GII'.H 3379

485046,
ARB_CDGIDAED, donovol168 GIll-1 241"
ARB_CDEIDIED, denova2r 18 GI'.1 256
RB_82AE8832, denovo3766 Gil31_7
- 0432947, incutured organism, Tuertero Negro Hypersaine Mat
Ind36445, d organism, Guerrero Negro Hypersaine M
5 36¢3039D, domovoiss2 GIs 305
ABEeE3 il ot proteobaclerium, sediment from ofl polluted water
070593, uncullured organism, Guerraro Negro Hypersaline Mal
ARB_3G4TEEBS, denovo1986 Gi1.1 4326
ARB_385A98C2, denovod44 Gli21_698 ——
T S, il bocarum. sobsuace squor sdimert
' ARB_FGEFB277, denovo1388 Gii3.1
ARB_1BESCESA, defiovof016 GII1 S361
AMBB2627, uncn\mmddcl mlseoamnum ‘sediment from oil polluted water
ARB TBOFSESE danoveisss

, Guerero Negro

9

ARB_BATOEE!
[ ARB_61518FF, denovo3305 Gl3.
[\ ARG 4€1sace3 mmim Gl2.4 837
uncultured bacterium, subSuriace aqmlsv sediment
| LA STab, s o, daon Suauace rourdatr o sedimeniaryrock e
| Jxmass gnculrad bacterum, subsuface aquler sedinent
1] 5750, uncultur ‘subsurface aquifer sediment

AR SDABFIES, mwma frxe
acterium, sediment, Manzallah Lake

EMESG uncultured bacterium, Pearl River Estuary sediments.
52, unctured bacterium, Frasassi sulfdic cave stream biofim
ARB_TE558345, dﬂnovnm GII3A, 3115
ARB_BC245D35, denovo1031 GHI3.1_2710
———————Fqe59033, uncultured soi bacterium, PAH-contaminated soi
B_EAM4EQCS, denovo1195 GI1.1_2747
ARe 610680 dansworsdr G 107
[~ ARB FOFCGI49, denovo1840 GIl31 9728
ARB, JSOD“M denovoB01 GIf-1_257:
| ————————— FJ516891, uncultured Desulfobacteracéae bacterium, upper sediment
~ ARB DﬂEJsIIBE denovo1637 Gll2.1_5707
Sm ncuuzed baclem.m deep-se methane saep sedimen o Joetsu, Japan Sea

54071, ur ism, Guerrero Negro Hypersaiine Mat

[ ARB_76B39837. dencvossTo it 1 5347

" Jnd8305, unoutred organis, Guorero Negro Hipersaln Mat

443588, uncultured organism, Guarrero Negro Hypersali

Caz554, R baclopm. mescpI anaesonE: cigree wasiowater Sudge
ARB_A049BE09, denovo1909 GII3.1_1493

— ARB_E0A335A9, denovo2058 Gi2.1 96

AF\WS&

DQ4157:
246080, Unulied okanis, porsaing oAl

ARB_8F55C3F4, dmovuhsl Gll
~ DGH13620, unculured bacteru, Frasass sulici cav sream bigfim
rium, limest uodmg ‘stream biofilm

225
sifeam biofiim

—————Dat. tone-cor
: 5397%5‘ 5847, uncutured b;cugum Fmassl nﬂhﬂ\c cave n’-;-m biofim
n’ uncilured organism, Guertero Negto Hypersalne Mal
1 Jn512533. Unculturad ’srgalm:m IGumam ” }'& aline Mat
rofundal sedim
DQ133936. uncultured bmanum hmeslnne-curmdl ihulm biofilm
Q13391 unculured bacerum, imostony—corroding iofim
0Q133934, uncultured ium, it corroding stream biofim
0522187 ancuured QAN CuBEro Nagt Hypersaine Mt
'ARB_9B4C1618, denovo3179 Gil3.1_ 3208
Desulfofrigus fragi

ARI ZQFIIM dImoG SGIG
HEB00063; . marine sediment

[ ANOS6154, uncultured

uncumred Gelt (mcmnnm deepest cold-seep area of the Japan Trench
052250 unwlmrm delta proteobacterium, anodé from microbial fuel cell fed with marine plankton
rium, anode from microbial fuel cell fed with marine plankton

EU
237, uncultured de cte
ABS530175, unw\lured bammu'm marine sediment
1EFDFTDA, denovo1912 GI1.1_3304
ARB Fu?ﬁﬂl dlnu:u‘!ll Gli3.1 9848

ARB_B: vo3171 Gll2.1_2892
'~ ARB_C3BF8B7, denovo3566 13654
344495, uncullured ke protoobacerum, hycocarbon paled mare sediments

ARB_972BEFDB, denovo2743 Gi
ARB_972BEFDB, denovodt Gt 1216
ARB_EDDB1177, denovodd1? Gil2.1 4348
ARB_BIAACC 001977 GII31_ 7036
ARB_CEBS14C V0327 GIl3 1 2683
'ARB_5499095F, denovo3967 Gliz1_121

~ ARB_EA25DABY, denovod01 Gi1.1_5383
KCA71130, nculured bactaium, matine sedinent f Yonaguni Knolin the Okinaws Trough
KG471154) uncultured bacterun, marine sediment al Yonaguni Knoli in the Okinawa Trough
ARB_230891CA, denovo2332 GIl11 5560
KC471196 uncilured bacterium, marine sediment at Yonaguni Knoll i the Okinawa Trough
ARB_ESCFSSE2, denorodses GII3.1
"ARB_875F 4162, denovo3943 GI3.1_12311

KCA7105%, uncultured bacterium, marine sediment at Ivosr?.ml Knoll in the Okinawa Trough
HQ703813. uncullured nacte«um Lun‘gnuang marine
ARB_5366F7CC, denovo211.

KC47|d37 uncul!u!ed hal:lenum ‘marine sediment at Yonaguni Knoll in the Okinawa Trough
4 K uncultured bacterium, marine sediment at Yonaguni Knoll in the Okinawa Trough | Desulfofaba_1
Ku?(D‘G uncultured baclerium, muln: sediment at Yonaguni Knoll in the Okinawa Trough
APz 321820, Desulfofaba m
JX222073, uncultured bacter suhmﬂlea aquifer sediment
————ARE Aznnsbs denovotoTe e
ARB_FAFTSBSE, denovo2155 GIll.1 6836
- ARB 10088-802 dﬂmwm! GI2.1_1599

L ARB_BAICCI87, denovod? Gliz1 481~
— Aysssz uncultured bacterium. Nay ﬁwlr‘mun volcano, Eastern Medterranean,
6CB54GAY. denovo3222 Gl
L] Avmm Desulfofaba fas sidioss i
sicicl f
mmss uncultured bacterium, subsunaca aguler sediment
15647, uncutlred bactenum. Frasass sl cave sream bifim

Desulfofaba_2

m acidic coal mining-associated Lake 77
Jeram, ptioleu $p0t ovel marne seciments

. U
DQB826724, Desulfatiferul n:
ARB E1|A1|ss ‘denovo399 G12.1 871 Desulfatiferula

—
szmzz ncalured bacterum,subsuriace acule secimert

actenum, subsurface aquiler sediment
— ARB_ZCD4SADY, 54 denavostid G T3

2458 uncultured bacterum, subsurface aquifr sedment

) snculured bactrur, Subsurface aquler sedim

o ARB. 3A4DZ007, denovoz?db Gl zmi

Desulfonema

39



—_Ind52561, uncultured organism, Gusrrero Negro Hypersaiine Mat
_[lars  sEsaesso, a‘i m"%‘ !

acteraceas bactarium, calcareous sandy sediment
g gociment

bacterium, bottienose dolphin mouth

FHAg og u.m . um, e ‘sediment from Cullercoats, Northumberiand
SaSaz81762, unalured Goita . Jeep sea sedment associated with whale falls
GOSaasRaT oz, uncult prolscbectarum, degp ses at
L GRIS6040. unoduned bacior eheng S0 Ll
DERT33673, Desultobacter. hydrogenophilus

j O Toa: ncultured bacterium, maring sedment from Culerooats. N
— FI 1855, mamumd

Rhimporare
umt
tured delta WW polmod Amarne sedm ummnm i from rodas boach

incultured bacter
' ars,  So208381. a.mwozsszem
s 223079 tncultured bacteriu, subsuriace aquifer sediment
—r ARB TBBGFBTS, der 9. GI3.1_4466
BIESCSB: donovasiTs QI 10T
L3501, shciareds Hacionom, subatize 2quler sedivent
L JX120460, uncultured bacterium,
4X125449, uncultured bacterium, subsurface
L Slies Cneiiured baderom. subsatacs auafer sediment
418160, Desilfobacter posigatel
M tgatel
Roi0000s. e 25c9, anaerobic sediment of brackish water ditch near Jadebusen
, uncultured baclerium, Xiso River
f ELIB64454, i fhewd ek, Xioo P sy romtad euylwlf.yﬂm production wastewater
rium,

=) J
- Jx71977, uncultured bacterum, activated siudge iy
Euzum n-samm M\ilmamdwuw Yang I;Nar receiving o penicillin G pmmwon wastewater

obacter posigale, 23¢9, anserobic: r ditch near Jadebuser
P oo batiera S it 2ol 5 105 m wares o

1
incultured p., Antarctic
FRE Uhcalired 4o proiscbecier i, gas seon sedment
| ured bacierum, sea
_| ARB_691E454A, denovo157 GI2.1_919
r AR’ BCBTDZ7T, Genovo1223 GI31 1648
nuum;n ‘sediment (=2cm depth

X Am-
o i aobnw ﬂ! bnn Santa Cruz Basir
: e bone, nta Cruz Basin
._—"mrawfs oo ,mmm, mm
FREZ3376. uncullored h pesteObacIonun,
L JF344268 uncultured ‘proteobactenum, pwd imarin sediments from figueiras baach
q KCA71161, uncultured bacterium, marine sedi Knoll in Okinawa Tr
KC471246 uncultured bacterium. marine sediment at Vumaw 'Kt I the Oanea T
L KC471078, uncultured bacterium. manine sediment at Yonagun Knoll in the Okinawa Trough
ARB, denovo210 Gli3.1 1506
mmmu"n‘mo‘.‘ *'C‘mﬂ 1 1;513
ARB_ADF 13.1_7275

7 ‘denovo796 Gl
C1JG371244, uncuursd bactedum, maiine sedment o Yonagury i he Okinaw T
KC471084, uncultured bacierum, maring sedimont Knollin the Okinawa Trou
ARB. E3FF, 1772 Gli2.1 879

18 cmt 3476
2949 ~

KCA92863, fobacuia'sp., Balic Sea redoxciine, 110 m depth
— Avﬂg%ggmmm&c cuk Hobacula sp., rct udm-n(
- ARB A3 uminm1 1097
T ARB CSO21056, deriovo1906 Gil3.1_607
ARB_752C5DFE, 090 Gl

mEAD G W
(28185, ncultred bacterum, bracksh waer from anoslc flrd
ARB_CSH6CIC, denovot
l_; 8- Agh23 5-Astiz3248 denoy mnmmm Gt 2919

7.132!265 uncultur , Bz L mrﬁﬂnmfmemﬂLﬂsmd@ﬁﬂ

[ k480, uncured Sactarum, density 15,81

I KG545723. uncultured Bosuopaci $9. gxycline ‘marine waler

[KC545728, uncultured Desulfobacula marine water
‘— ‘AM774314, deita proteobacterium JS /. tidal

‘Desulfobacula a
S o o —
GQ348356, \l\cllmled lelta obactenum, Saanich 200 m depth
GU197424, ur xmm lsdlmenl daslh '0-15 em
DQEH1848, sncumcred Des m— . Sediment
ARB_CB393774, ganovoz285 Gilt.1
ﬁ 025 dendvol1e2 o1 21;,7'4'
548D, Honoeorsi O 12.1_237

surface seawater samples from South China Sea

iment associated with whale falls

Desulfobacula

turé Gone AOM-SR-B24, enrichment mediating the anaerobic oxidation of methane
1570896, uncultured bacterium, Nitinat Lake at a depth of 13m
| ARB_FEAS0044, denovo2673 Gilz 1 270 s
ety uncuitired um, hydromemal vent Guaymas Basin
AB189362, Uncultred Desufobacterium sb. o0 so
. /AT04593, uncultured delta proteodacienm, man mumo S oomont
mnu!luvad delta proteobacterium, marine
[ ARB_TFCBT2A1 aammuut 13343
[ rassnds SopAr m*m""‘"ﬁ““k f s g, Walrarapa - Takaha, staion 309: SO191 3 300
uriu ae, station
374105, uncuiturad bacier St Dy piv scioriesion sz Jarsisang idalflat, Wadden Sea
[ Jraadtal, uncitured dolia Etau S50k ol maring SaBmants rom Raveras poac
incultred baclerum, marine & Sediment

i
uncuitured Sedunonts fiom Rodas Beach poluted with crude ol
‘ |:A" !Esm’:da-mogﬂnmm 2047 = "'; & brendlate
= 5 donovo 1369 GIS 1 343
adasgreT uncunured dela o, Valu Seamount
ARB_4BCB0690, denovo2794 GIl1: ;
5725, uncultired bacterium, subsurface aquifer

ha le mat, Chefren mud voicano

FEFCE91D, Gii
"HGH05610, baciarum anrchmen clure clone AOM=SR-820, envichment medging the angorobic oxidation of methapa
7314, uncultured bacterium, sediment undemeath 8 unde—nxmmg Chefren mud volcano, Nile Deep Sea Fan
FRE23370, uncuiiurad delta ‘Seep sedi
[ AMB3152 unculred bactorum.host o

ke AY177799, ur

im, Antarctic.
S T

ARB_1852A786,
ETTD;

T A
iocaceus mati

Desulfobacterum_2

EF“IM} Des:
RE ‘Dt b""mou" Gli1.1_2385
ARE_3CD31A93, denovo1687 GI3.1-2927
ARB_42406D1, denovo1 GI3.
lﬁB_F%}éﬂ Wmni‘lwl.‘ 53(7“”-1 1
n— 194, Candidatus Désulfam Mmznunnmmlﬁllw -1 Candidatus Desulfamplus
[ EU047537. uncultured sulfate - bacierium, benzene-degrading, sulfate-reducing enrichment culture

ARB scFFs‘nD denovo1362 Gil1.1
i ARBZ6CFF573D, denovo289 GI2.1

‘ARG 7046803, Gonovosss GIb1 BaT
ARB unmop Emuiuigiﬂzi 2087

CO343459, uncuinrsd deta proteobactarium, Saanich Inlet, 200 m depth
— g 18018135, denoy n.mm'smn 842
ARB_AI 8140

im, Gl tract

lo sediment hu Lake
FJ485347, uncultured delta proteobacterium, wal biomat in £l Zacaton at 273m
JQ580417, red delta proteobacterium, sediments from Rodas Beach polluted with crude.

17, uncultur
ARB_6F8CC735, denovo624 GlIZ.1_730
KF548223 unﬂﬁlu!‘d bacterium, aerobic tank of a full-scale produced water treatment plant
ARB_57B38254, denovo617 Gl1.1_920

ABS530187, uncultiired bacterium, marine sediment
ARB_BFBBT707, denovo?38 GII3 1_701

Figure S5c: Bacterial 16S rRNA gene amplicon sequences assigned to in the class of Deltaproteobacteria,
order: Desulfobacterales, family: Desulfobacteraceae.
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Figure S6a: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Epsilonproteobacteria,
order: Campylobacterales, (a) family: Helicobacteraceae, genus: Sulfurovum, (b) family:
Campylobacteraceae, genus: Acrobacter, (c) family: Campylobacteraceae, genus: Sulfurimonas.
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Figure S6b: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Epsilonproteobacteria

order: Campylobacterales, (a) family: Helicobacteraceae, genus: Sulfurovum, (b) family
Campylobacteraceae, genus: Acrobacter, (c) family: Campylobacteraceae, genus: Sulfurimonas
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Figure S6c¢: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Epsilonproteobacteria,
order: Campylobacterales, (a) family: Helicobacteraceae, genus: Sulfurovum, (b) family:
Campylobacteraceae, genus: Acrobacter, (c) family: Campylobacteraceae, genus: Sulfurimonas.
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Figure S6d: Bacterial 16S rRNA gene amplicon sequences assigned to the class of Epsilonproteobacteria,
order: Campylobacterales, (a) family: Helicobacteraceae, genus: Sulfurovum, (b) family:
Campylobacteraceae, genus: Acrobacter, (c) family: Campylobacteraceae, genus: Sulfurospirillum.
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Figure S7: Characteristic PLFA profiles of (a) the average relative concentration of PLFAs for March (0—

13C values and (c) relative *3C incorporation

0.5cm and 2—4 cm) and August (0—1 cm), (b) the average delta

of PLFAs for S2 and S1/S3 March (0-1 cm).
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