
Legal Markup Generation in the Large:
An Experience Report

Nicolas Sannier, Morayo Adedjouma,
Mehrdad Sabetzadeh, Lionel C. Briand

SnT Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg
{firstname.lastname}@uni.lu

John Dann, Marc Hisette, Pascal Thill
Central Legislation Department

State Ministry of the Government of Luxembourg
43, Boulevard Roosevelt, Luxembourg, Luxembourg

{firstname.lastname}@scl.etat.lu

Abstract—Legal markup (metadata) is an important prerequi-
site for the elaboration of legal requirements. Manually encoding
legal texts into a markup representation is laborious, specially
for large legal corpora amassed over decades and centuries. At
the same time, automating the generation of markup in a fully
accurate manner presents a challenge due to the flexibility of
the natural-language content in legal texts and variations in how
these texts are organized. Following an action research method,
we successfully collaborated with the Government of Luxem-
bourg in transitioning five major legislative codes from plain-
text to a legal markup format. Our work focused on generating
markup for the structural elements of the underlying codes. The
technical basis for our work is an adaptation and enhancement
of an academic markup generation tool developed in our prior
research [1]. We reflect on the experience gained from applying
automated markup generation at large scales. In particular, we
elaborate the decisions we made in order to strike a cost-effective
balance between automation and manual work for legal markup
generation. We evaluate the quality of automatically-generated
structural markup in real-world conditions and subject to the
practical considerations of our collaborating partner.

Index Terms—Legal Requirements, Legal Markup, Natural
Language Processing (NLP).

I. INTRODUCTION

Legal markup (metadata) is concerned with providing ex-
plicit information about the structure and semantics of legal
texts. While traditionally studied under the umbrella of legal
informatics [2], legal markup has in recent years attracted
considerable attention in the Requirements Engineering (RE)
community as an enabler for the systematic elaboration of
legal requirements and legal compliance analysis. Examples of
RE work that relies on or produces legal markup include work
by Breaux [3] on legal requirements acquisition, by Massey [4]
on legal requirements triage and prioritization, and by Zeni et
al. [5] on rights and obligations extraction.

One of the most basic and yet important types of legal
markup has to do with the structure of legal texts. The
structural markup notably covers the hierarchical organization
of these texts as well as the cross references (citations) that link
the provisions in these texts. We show in Fig. 1 an example of
structural markup over a small snippet of Luxembourg’s Code
of Criminal Procedure (partial and unofficial translation from
French). The markup has been expressed using a combination
of Akoma Ntoso [6] –a legal XML schema– and the European
Legislation Identifier (ELI) [7] –a specialized URI template for

(b)

(a)

Section IV.- On civil servants and officers in charge of certain judicial police functions
Subsection 1. - The mayors
Art. 13-1. (L. 16 June 1989) The mayors are in charge of enforcing […].
Subsection 2. - Rural guards and rangers
Art. 14. (L. 16 June 1989) The rural guards are in charge of investigating […].
Art. 14-1. (1) They are in charge of looking after removed goods from the place of removal to the
place where the goods are put under administrative custody.
(2) They cannot enter houses […], unless […].
 …
<section><num>Section IV</num>
<heading>.- On civil servants and officers in charge of certain judicial police functions</heading>
<subsection><num>Subsection 1</num><heading>. - The mayors</heading>
<article scl:uri="http://eli.legilux.public.lu/eli/etat/leg/code/instruction/art_13-1">
<num>13-1</num><alinea><content><p>(<ref href="http://eli.legilux.public.lu/eli/etat/
leg/loi/1989/06/16/n1">L. 16 June 1989</ref>) The mayors are in charge of enforcing […].
</p></content></alinea>
</article>
</subsection>
<subsection><num>Subsection 2</num><heading>. - Rural guards and rangers</heading>
<article scl:uri="http://eli.legilux.public.lu/eli/etat/leg/code/instruction/art_14">
<num>14</num><alinea><content><p>(<ref href="http://eli.legilux.public.lu/eli/etat/leg/
loi/1989/06/16/n1">L. 16 June 1989</ref>) The rural guards are in charge of investigating
[…].</p></content></alinea>
</article>
<article scl:uri="http://eli.legilux.public.lu/eli/etat/leg/code/instruction/art_14-1">
<num>14-1</num>
<paragraph><num>(1)</num><alinea><content><p>They are in charge of looking after
removed goods from the place of removal to the place where the goods are put under
administrative custody.</p></content></alinea></paragraph>
<paragraph><num>(2)</num><alinea><content><p>They cannot enter houses […], unless
[...].</p></content></alinea> [...] </paragraph>
[...]
</article>
[...]
</subsection>
[...]
</section>

Fig. 1. Snippet of a Legal Text (a) in Plain-text and (b) in XML Format

identifying and accessing national and European legislation.
We introduce Akoma Ntoso and ELI in Section III.

Several legal portals exist, aimed at offering structural
markup for legal texts. Examples include LegiFrance in France
(http://legifrance.gouv.fr), e-laws in Ontario (http://ontario.ca/
laws), BelgiumLex in Belgium (http://www.belgielex.be/en/),
Overheid in the Netherlands (http://overheid.nl/english/), and
the Eur-Lex portal for the European Union (http://eur-lex.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84743033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

europa.eu). An important challenge when creating markup
for a corpus of legal texts in a given country or jurisdic-
tion is the very large volume of legacy texts that need to
be enhanced with markup. Manually adding the markup is
extremely time-consuming. Despite this, our interactions with
several governmental authorities indicate that this task is still
done largely manually. Consequently, important compromises
have had to be made in all the legal portals mentioned above in
order to reduce the cost of building markup representations.
Notably, the depth of the markup in the existing portals is
shallow. For example, the markup would typically go down
only to the level of articles without distinguishing the articles’
subdivisions, e.g., paragraphs, numbers and sentences. Another
major limitation in the portals is that the cross references
are not systematically resolved, and hence the dependencies
between different provisions not captured in the markup.

Recent initiatives on building visual markup editors for legal
texts, e.g., LIME [8] and AT4AM [9], are likely to reduce
the manual effort incurred over adding structural markup to
new or existing texts. Nevertheless, due to the sheer scale of
the existing non-markup legal corpora and also the inherent
difficulty of manually manipulating certain markup elements
such as cross references, it is essential to provide automated
support for the generation of detailed structural markup.

Existing work in the area of legal informatics primarily
targets semantic markup, while assuming a-priori presence of
basic structural markup. However, the problem of scale and
how to add such basic structural markup to large corpora of
legal texts amassed over decades and centuries has received
little attention. The RE literature acknowledges the importance
of automation for creating structural markup. For example,
Breaux [3] and Zeni et al. [5] develop automated structural
markup generators as part of broader frameworks for metadata
extraction. Similarly, our previous work on cross reference
analysis [10] incorporates a structural markup generator [1].

Despite the above-mentioned work, and to the best of our
knowledge, there are no reports in the literature on structural
markup generation at large scales. In this paper, following
an action research method [11], we report on the experience
gained from a case study in which we transformed five of
Luxembourg’s major legislative codes from plain-text into an
XML format based on Akoma Ntoso [6] and ELI [7]. Our
case study was prompted by an initiative of the Government
of Luxembourg to provide a harmonized encoding of the
country’s legislative texts. Ultimately, the initiative aims to
foster open access to legal information, and to offer a more
systematic basis for demonstrating legal compliance. Our
participation in the initiative came about on the basis of our
previous work on automated markup generation [1]. Specifi-
cally, our engagement was meant at assisting the Government
in improving the efficiency of markup generation. During the
case study, we enhanced and adapted our existing markup
generation tool [1] to account for the markup requirements
of the Government. Simultaneously, we took advantage of the
context provided by the case study to evaluate our structural
markup generation approach in fully realistic conditions.

The five legislative codes in our case study constitute over
5,000 provisions (articles) and contain a total of over 20,000
structural elements, e.g., articles, paragraphs and cross ref-
erences, that require markup. The XML documents resulting
from the study have since been adopted by the Government
and now feature on Luxembourg’s official legal portal.1

Contributions. The contributions of this paper are two-fold:
(1) Lessons learned: We reflect on the lessons learned from our
case study. Considering the tedious nature of manually creating
structural markup and also the significant compromises ob-
served in the (manually-created) markup available on existing
legal portals, it is logical to surmise that building high-quality
legal markup at large scales would be prohibitively expen-
sive without automation. At the same time, such automation
cannot be entirely thorough and accurate, mainly due to the
flexibility of the natural-language content of legal texts and
variations in how these texts are organized. This means that
manual work during markup generation remains inevitable.
Our lessons learned examine the tradeoffs between manual
work and automation for structural markup generation, with an
eye towards striking a cost-effective balance between the two.
To this end, we describe the challenges that we faced during
structural markup automation and the decisions we made to
tackle the challenges in the most efficient way we could.
(2) Evaluation of markup quality: We evaluate the quality of
the automatically-generated markup. The main characteristic
of our evaluation is that it is done in light of the practical
considerations made in our study, including the decisions
about what to automate and what to do manually (see (1)
above), the choice of XML markup representation, and the
specific details required for the markup in our context. Taking
these considerations into account is important for obtaining a
conclusive picture of markup quality.

We note that structural markup is a necessary but not
sufficient step toward legal requirements analysis and com-
pliance. One would further need semantic markup, e.g., for
legal conditions and modalities such as permissions and obli-
gations, in order to support legal requirements engineering
tasks [5]. We do not address semantic markup in this paper,
nor do we elaborate the relationship between legal markup
and compliance. This relationship is already well-established
in the literature: both structural and semantic markup are con-
sidered essential for compliance analysis through such means
as Natural Language Processing, Information Retrieval and
ontologies [12]. Our goal in this paper is instead to shed light
on some key challenges caused by scale, which necessarily
need to be dealt with on the path to compliance automation.
Structure. The remainder of the paper is organized as follows.
Section II describes the main criteria that one needs to con-
sider when devising a structural markup generation solution.
Section III outlines our proposed solution and tool support.
Section IV presents our case study. Section V reports on the

1All the country’s legal codes are at: http://legilux.public.lu/editorial/codes.
The codes in our study are at http://legilux.public.lu/editorial/codes/〈C〉, where
〈C〉 is “civil”, “commerce”, “penal”, “instruction criminelle”, or “procedure civile”.

lessons learned, and on the accuracy of our markup generation
approach. Section VI discusses threats to validity. Section VII
compares with related work. Section VIII concludes the paper.

II. LEGAL MARKUP GENERATION

Given a legal corpus, whether automation is useful for
markup generation and what nature this automation should
assume are influenced by two key factors. The first factor is
the size of the corpus, i.e., the cumulative length of the texts
in the corpus. The second factor is the heterogeneity of the
corpus, covering both intra-text and inter-text heterogeneity.
Intra-text heterogeneity has to do with individual legal texts
not always being entirely consistent in how they are written.
Inter-text heterogeneity has to do with different legal texts in
the corpus being organized differently from one another.

In Table I, we show, as a function of size and heterogeneity,
what we believe to be the most reasonable strategy for
markup generation. As shown in the table, we distinguish three
different strategies: (1) Manual processing, (2) Automated
processing using a generic (one-size-fits-all) approach, and (3)
Automated processing using a customizable approach.

TABLE I
STRATEGIES FOR MARKUP GENERATION

Low High
Large Generic	automation Custom	automation
Small Manual	processing Manual	processing

Heterogeneity

Size

Manual processing would be reasonable when the corpus,
and consequently the number of markup elements to create,
is small. Generic automation works best when the corpus
is homogeneous and adheres uniformly to pre-defined legal
writing guidelines. A corpus written over a short span of time
and revised only infrequently may indeed be homogeneous.
When this is the case, one can develop a cost-effective solution
by merely providing hard-coded markup generation rules for
the corpus at hand, without much thought given to how these
rules can be generalized to other corpora. Custom automation
adds a tailorability dimension to automation, enabling the
definition of meta-rules that can be instantiated differently
for different legal texts and even different fractions of the
same text. Custom automation acknowledges that adherence
to legal writing guidelines is a moving target, since guidelines
(and how stringently they are enforced) may evolve over time.
This evolution leads to both intra-text heterogeneity, when
legal texts are amended frequently, and inter-text heterogeneity
when a corpus is expanded with new texts over time.

In most practical settings, e.g., when considering markup
generation for an entire legal jurisdiction, we are faced with
corpora that are both large and heterogeneous. Developing
custom automation therefore presents the most viable choice.
At the same time, pursuing this choice would require making
several decisions, e.g., about the level of granularity of the
markup to generate, and how far to go with automation before
the cost of the endeavor would exceed any tangible benefits
obtained in return. These are indeed the types of decisions that
we elaborate in Section V-A based on our experience.

3. Resolve
cross

references

Legal text
(Non-Markup) Text with

organization
annotations

Text with full
structural annotations

Text
organization
metamodel

Legal text
in markup

format XML

2. Detect
text

organization

 4. Generate
XML

1. Define
conceptual
model for

text structure

Fig. 2. Approach Overview

III. APPROACH

In this section, we outline our automated structural markup
generation approach and its tool support. Further technical
details are available in our earlier work [1]. As we already
stated in Section I, our focus in this paper is on structural
markup exclusively. In the remainder of the paper, we take
“markup” to mean “structural markup”.

A. Overview

Our approach, depicted in Fig. 2, has four steps. At a
high level, Model-Driven Engineering (MDE) provides the
necessary customization facilities for defining the hierarchical
organization of legal texts; whereas Natural Language Process-
ing (NLP) provides the ability for automated detection of the
text elements and for parsing the cross references.

Step 1 is manual and concerned with defining a conceptual
model for a given legal text. In addition to describing the
hierarchical organization of the given text in terms of its
constituent parts, e.g., chapters, sections and articles, the
conceptual model captures (a) the multiplicity constraints that
apply to elements and (b) information necessary for element
detection. This information notably includes the labels of
different element types, e.g., “Art.” for articles, and the specific
delimiters (spacing and punctuation) appearing before and
after different elements.

In Step 2, we leverage the conceptual model of Step 1 for
automated construction and subsequent execution of the NLP
scripts that annotate the text under analysis with information
about the text’s hierarchical organization. In Step 3, again
using the conceptual model of Step 1, we instantiate and exe-
cute NLP scripts that detect and resolve the cross references.
The scripts in both Steps 2 and 3 are regular expressions for
detecting natural-language patterns, enhanced with actions that
annotate the text in response to pattern matches. With regard
to cross references, the annotations provide information across
three main dimensions: (a) explicit versus implicit, denoting
whether a cross reference is defined in terms of alphanumeric
labels (explicit) or through some adjective, adverb, or anaphor
(implicit); (b) complex versus simple, denoting whether a
cross reference contains enumerations, ranges and navigation
(complex) or not (simple); and, (c) internal versus external,
denoting whether the target of a cross reference is inside
the text being analyzed (internal) or outside it (external). For
(b), our annotations further distinguish cross references that
target multiple provisions (multivalued) and those that present
information at multiple levels (multilayered). We exemplify

TABLE II
CROSS REFERENCE TYPES AND EXAMPLES

Example
Internal the$next$article
External N/A
Internal the$three$previous$articles
External N/A
Internal the$first$alineaofthe$same$article
External N/A
Internal article$1481
External article5oftheLawof<date>
Internal articles5to$10;$articles3or$4
External articles5to10oftheLawof<date>
Internal article$5,$paragraph$2a,$alinea$3
External article$5,$alinea2oftheLawof<date>

Cross/reference/dimension

Implicit
Complex

Complex
Explicit

Simple

Simple

Multivalued

Multilayered

Multivalued

Multilayered

cross references in Table II. For further details, see [1].
From Steps 2 and 3, we obtain a legal text with structural
annotations. In Step 4, these annotations are transformed in a
straightforward manner into the desired markup format.

B. Tool Support

We have implemented the approach in a tool, named Legal
Cross reference Analyzer (LeCA). LeCA builds on the Eclipse
Modeling Framework and the GATE NLP Workbench [13].
Specifically, Eclipse is used for defining conceptual models
for legal texts and for instantiating, based on the defined
conceptual models, the NLP scripts that extract the texts’
structural metadata. LeCA has been described in our earlier
work [1]. As part of our current work, we customize LeCA
according to the markup requirements of the Government of
Luxembourg. The most important of these requirements are
the following: (1) The markup format shall be compliant with
Akoma Ntoso; and (2) Element resource names shall follow
the European Legislation Identifier (ELI) template.

Below, we briefly present Akoma Ntoso and ELI:
Akoma Ntoso [6] is an XML schema for legal documents.
This schema was chosen because of its flexible nature for
capturing structural elements. We note that Akoma Ntoso is
one among several existing and equally-expressive legal XML
schemas. Some alternatives which too have gained traction
in practice are Formex [14], MetaLex [15] and LexML [16].
In the example of Fig. 1, the text hierarchy has as root a
〈section〉. This section contains a 〈num〉 (number), a 〈heading〉
(title), and two 〈subsection〉s. The subsections each have their
own 〈num〉 and 〈heading〉 and further contain one or more
〈article〉s. Each article has a resource name attribute (scl:uri),
which is expressed using the ELI naming convention, and a
〈num〉. The articles are decomposed into either of the follow-
ing: (1) 〈paragraph〉s with a 〈num〉 and containing 〈alinea〉s,
e.g., as in article 14-1, (2) direct alineas (i.e., without a parent
paragraph), e.g., as in articles 13-1 and 14. In our example,
alineas contain the actual textual provision, expressed as a
〈content〉 and using traditional HTML elements such as 〈p〉.
ELI [7] is a European-Union-endorsed initiative aimed at
providing a unified legal referencing mechanism. The ultimate
goal of ELI is to facilitate access, exchange and reuse of legal
knowledge across borders. In particular, ELI defines an intu-
itive labeling framework based on a generic customizable tem-

plate to enable the definition of universal resource names inde-
pendently of countries and legal jurisdictions. ELI is currently
used by several European countries including Luxembourg,
France, Denmark, Ireland, Italy and also by the EU Publication
Office. In the example of Fig. 1, resource identifiers, e.g. the
one for article 13-1, and cross references, e.g. “(L. 16 June
1989)”, are both specified using ELI. For this example cross
reference, the ELI name, eli/etat/leg/loi/1989/06/16/n1, has the
following interpretation:
• “eli” is the root of the ELI name;
• “etat” provides information on the source, here a docu-

ment from the government;
• “leg” describes the nature of the document, here a leg-

islative document;
• “loi” is the type of document, here a law;
• “1989/06/16” is the date when the text was signed; and
• “n1” is a special number to distinguish texts signed on

the same day.
The special number above cannot be retrieved without addi-

tional information about the law titles and their ELI names. To
retrieve the special numbers, we were provided with an index
of law titles and their ELI names. We augmented LeCA with
a TF-IDF scoring mechanism [17] for identifying, for a given
cross reference, the most likely ELI match from this index. In
Section V, we examine the accuracy of automated retrieval of
these special numbers.

IV. CASE STUDY

Context. The Central Legislation Department (French: Service
Central de Législation), abbreviated SCL, is responsible for
the publication of Luxembourg’s legislation and administra-
tive procedures. SCL further maintains the Legilux portal
(http://legilux.public.lu), through which it disseminates the
national legal texts. Traditionally, the majority of the texts have
been provided only in PDF. SCL has already developed semi-
automated solutions for the transformation of small legal texts,
typically < 10 pages in length, to HTML and XML. However,
the existing solutions were not meant to work on complex legal
texts, notably the legislative codes, where the organization
hierarchy is deep, and where numerous amendments have been
made to the texts over decades. The existing solutions further
do not automatically handle cross references.
Objective. Our case study attempts, in close collaboration
with SCL, to enhance selected laws with markup information.
The case study provides a context in which to examine the
feasibility and usefulness of our automated legal markup gen-
eration approach from the perspective of an organization that
has to process very large volumes of legal texts. Specifically,
we worked with SCL on transitioning five major legislative
codes in Luxembourg from plain-text to an Akoma Ntoso-
and ELI-compliant XML format (see Section III-B for brief
descriptions of Akoma Ntoso and ELI).
Research Method. Our case study, which was initiated to
solve an immediate problem in a practical setting, falls in
line with the principles of action research. According to

Denscombe [11], the main characteristics of action research
are: (1) having a practical nature, (2) inducing change as
an integral part of the research, (3) reflection and iterative
improvement, and (4) participation from both researchers and
practitioners. Our case study possesses all these characteristics.

Case Selection. The selection of legal texts for our case study
was based on the priorities of SCL. For the first phase of the
transition to markup, SCL chose the following five codes in
Luxembourg: the Civil Code, the Commercial Code, the Penal
Code, the Code of Criminal Procedure, and the New Code for
Civil Procedure. A code consolidates multiple thematically-
related legal texts into a single document. Overall, the five
codes that we processed contain 5099 articles (see Table III).

Data Collection. Our data collection was targeted at eval-
uating the effectiveness of our automated markup generation
approach and how we could improve it. We processed the
selected legislative codes sequentially and in the order listed
above. As we analyzed the codes, we kept track of all the
issues that we faced during markup generation as well as
the decisions we made to address the issues in the way we
deemed most cost-effective. For the purposes of this paper,
we are obviously not interested in issues that have to do
with implementation bugs or refactoring. Our synthesis of the
issues (Section V) is thus naturally focused on the inherent
difficulties that we observed in our case study context.

Results. In Table III, we summarize the results of our case
study. Specifically, the table presents the number of elements
of different types that were subject to markup generation as
well as the manual effort that was spent by the first two authors
over each code.

The elements for which markup was generated are: (1) high-
level divisions (part, book, title, chapter, section, subsection),
(2) articles, which are the principal content elements of legal
texts in most European countries, including Luxembourg, (3)
sub-article divisions (paragraphs, alineas, letters (L), numbers
(N), and dashes (D)), and (4) cross references. In total, we
produced markup for 21111 elements, including 854 high-
level divisions, 5099 articles, 11131 sub-article divisions and
4027 cross references. We note that sub-article divisions and
cross references collectively represent nearly three quarters
(72%) of the elements that are subject to markup. The existing
portals that we mentioned in Section I provide no or only
sporadic markup for these elements due to the expensive cost
of handling these elements manually.

The last column of Table III shows the full-time equivalent
(FTE) effort incurred over manual work. This effort is mea-
sured in workdays, with each workday being 8 person-hours.
The following tasks represent the significant majority of the
manual work spent: (1) analyzing the code to understand and
specify its conceptual model, (2) preprocessing and cleanup,
e.g., removing page numbers, running headers, and erroneous
line breaks, (3) fine-tuning the instantiated NLP scripts and
the generated Java container classes for the legal text under
analysis, (4) manual inspection of the generated XML to verify
the correctness of the generated markup, including the markup

for cross references, and correcting any issues identified during
the inspection, and (5) issue tracking and resolution. Among
these, tasks (1) and (3) are specific to our technical approach.

As noted earlier, we analyzed the texts sequentially. When
we started working on the first code, i.e., the Civil Code,
the researchers, i.e., the first four authors, had no a-priori
knowledge of Akoma Ntoso and ELI. In addition to the effort
associated with the five tasks above, what we report for the
Civil Code includes the time spent on learning Akoma Ntoso
and ELI, eliciting SCL’s markup requirements, and developing
an appropriate XML output generator. This effort is a one-off
investment and should ideally be factored out of the effort
spent over the Civil Code. However, we are unable to do so
in a clear-cut manner: the process we followed was highly
exploratory, and the one-off activities were mixed with the
tasks performed per legal text. The effort for the Civil Code
is therefore not representative.

The learning and reflection process continued well into our
analysis of the four remaining codes. Nevertheless, with each
new code analyzed, we became more efficient and knowledge-
able about how far to go with automation and what issues to
anticipate in the next codes. Consequently, as we progressed,
our manual activities became more sharply focused on the
regular tasks that one has to do for a given code. In this sense,
the final three texts in Table III are better indicators for normal
productivity when our approach is applied.

We observe from Table III though that the amount of effort
is still large, even for the last three texts processed. To this
end, we make the following remarks: Between 50% to 60% of
the reported effort went into inspecting the legal texts, either
during the preprocessing and cleanup of the (plain-text) input,
or during the inspection of the generated (markup) output.
Even if we had foregone automation completely and not used
our approach, this fraction of the effort would still have been
incurred. In other words, only 40% to 50% of the reported
effort is related directly to markup creation.

The question we need to answer then is how this 40% to
50% of the effort would fare against the situation where one
would insert all the markup elements manually into the texts.
We cannot answer this question conclusively because we do
not have a control case where the markup was created without
our tool support. Nevertheless, doing a ballpark analysis over
the last three texts in Table III, we can state the following: If
we consider the effort spent on markup creation to represent
50% of the reported effort, i.e., (7 + 10 + 7)/2 = 12 days,
and divide this by the total number of elements processed,
i.e., 3357+ 3870+ 5201 = 12428, we obtain an average of
≈28 seconds per element. A trained expert even with ideal
text editing tools would be unlikely to outperform this pace,
given the information requirements mandated by Akoma
Ntoso and ELI, and also the inherently-difficult task of cross
reference resolution. Based on this analysis, and additional
considerations, notably the tedious and repetitive nature of
manual markup creation, we believe that automated markup
generation for large legal texts is beneficial.

TABLE III
LEGAL CODES PROCESSED IN OUR CASE STUDY

Part Book Title Chapter Section Subsection Paragraph Alinea L/N/D
Civil	Code 3 3 36 131 154 43 2316 33 3474 361 997 7551 24
Commercial	Code 0 4 21 14 12 0 261 14 489 85 232 1132 12
Penal	Code 0 2 11 86 46 0 671 64 1094 471 912 3357 7
Code	of	Criminal	Procedure 0 3 15 33 36 7 529 542 1315 325 1065 3870 10
New	Code	for	Civil	Procedure 2 11 90 19 42 30 1322 206 2316 342 821 5201 7
Total 5 23 173 283 290 80 5099 859 8688 1584 4027 21111 60

Effort	(FTE	
workdays)

High-level	divisions
Article

Sub-article	divisions
CRs Total

TABLE IV
IMPORTANT FACTORS INFLUENCING THE COST-EFFECTIVENESS OF (STRUCTURAL) MARKUP AUTOMATION

Category Factor	 Decision	
Depth	of	text	organization	markup Go	as	deep	as	possible,	i.e.,	build	finest-grained	metamodel	possible

URI		strategy Keep	URIs	at	the	level	of	legal	texts	and	articles

Cross	references	outside	their	container	element Choose	between	rule-based	(automated)	processing,	or	manually	moving	the	cross	reference	in	
question	into	the	right	container,	whichever	is	most	appropriate

Under-specified	external	cross	references Manually	resolve	the	cross	references	in	question	(expert	judgement	required)
Cross	references	using	rare	patterns Manually	resolve	the	cross	references	in	question

Unlabeled	divisions	 Manually	add	(dummy)	labels	during	preprocessing

Variations	in	division	labels	 Fix	during	preprocessing	if	variation	is	an	anomaly;	adapt	the	metamodel	/	scripts	otherwise	to	
account	for	the	variation

Physical	lines	not	aligned	with	logical	lines Manually	remove	unnecessary	line	breaks	during	preprocessing	

Granularity	of	Automation

Labeling	and	Line-break	Issues

Exceptional	Cross	References

V. DISCUSSION

Below, we first present the lessons from our case study,
focusing on aspects that we observed to be most pertinent
to reducing manual effort in legal markup creation. We then
evaluate the quality of the markup generated via automated
support, subject to the considerations made in the case study.

A. Lessons Learned from the Case Study

Table IV lists the most important factors that we believe,
based on the experience from our case study, one should take
into account when devising a (structural) markup generation
approach for large and complex legal texts. We classify the
factors into three categories: (1) granularity of automation,
(2) exceptional cross references, and (3) labeling and line-
break issues. Among these, the first category addresses some
fundamental considerations regarding the scope of automation.
The other two categories address more specific practical issues
that arise during text processing. For each factor, we provide
in the table the decision that we made. Our decisions were all
aimed at minimizing the cost of markup generation, while at
the same time, not making major compromises over the quality
of the resulting markup. In the remainder of this section, we
elaborate on the factors in Table IV and our decisions.
Depth of markup for text organization. As noted in Section I,
the shallow depth of the markup available on existing portals
presents a limitation. This limitation has two consequences:
First, without deep markup, one cannot narrow down analytical
tasks, e.g., the extraction of semantic knowledge from provi-
sions, to the finest-grained elements of legal texts. Second, the
text organization markup is often used for creating an HTML
representation of legal texts over web portals. Naturally, the
shallower the markup, the more the manual work that needs
to be done to manage the HTML representation layout. These

observations were confirmed by SCL, who expressed interest
in making the text organization markup as deep as possible.

While the advantages of deep markup are clear, generating
such markup automatically is not without costs. Particularly,
deep markup necessitates that a precise conceptual model
should be available for each legal text. In the (theoretical)
worst case, each legal text can have a unique conceptual model
of its own. Building a detailed conceptual model from scratch
for each text in a very large corpus would be too expensive.

In practice, we have observed, both in our previous work
over smaller legal texts [1] and in our current case study, that
despite the inherent heterogeneity that exists across different
texts and no texts having exactly the same structure, the
conceptual models for the texts share many commonalities
that can be reused across texts. The differences (variabilities)
between the conceptual models are typically in the labels,
delimiters, and the containment hierarchy relationships. We
observed that, once a conceptual model has been built for
a particular category of legal texts, e.g., legislation, in a
given country or jurisdiction, the conceptual model is easily
adjustable to other texts in the same category. In light of this
finding and the advantages of generating deep markup, we
recommend that the text conceptual models should be made
as precise as possible.
URI strategy. The key question that we need to answer here
is: Which division types (see Table III) need to be assigned
URIs? In our previous tool [1], where we did not use ELI, we
created URIs for all division types via unique ids generated
by a global counter. For example, the URI for “Section IV”
in Fig. 1 would simply be a number, as in <section
uri="504">...</section>. This scheme is however
not compliant with ELI. An ELI-compliant URI for the
mentioned section would look like eli/etat/leg/code/instruction/
livre 1/titre 1/chap 1/sect 4/, where the section is captured

together with all its context (containing parents). The verbosity
of this URI stems from the fact that the numbering of both
high-level and sub-article divisions (see Table III) is reset when
the containing parent changes. For example, the numbering of
sections is reset when a new chapter appears. The conclusion
reached after consulting SCL was that an across-the-board
assignment of URIs to all division types would create a large
number of URIs that would be difficult to verify and maintain.
This difficulty would further be exacerbated by the fact that
one cannot have a harmonized ELI structure for URIs in an
entire corpus, because the conceptual models of the texts in
the corpus would invariably differ.

Due to the above, the strategy that we chose was to provide
URIs only for legal texts and articles. These are the only
elements common across all texts. With respect to articles,
since their numbering is not reset in a given text, providing
the full containment hierarchy in the URIs is unnecessary.
For example, for “Art. 14-1” in Fig. 1, the URI can simply
be eli/etat/leg/code/instruction/art 14-1 rather than eli/etat/leg/
code/instruction/livre 1/titre 1/chap 1/sect 4/art 14-1.

Our URI strategy has implications on how precisely cross
references can be resolved. In particular, the strategy would
restrict citations to high-level divisions to be linked to the en-
compassing legal text, and citations to sub-article divisions to
be linked to the encompassing article. These implications were
indeed desirable for SCL, again considering the associated
manual verification and maintenance costs, and the fact that,
despite the loss of some precision, the resulting cross reference
links would still allow users to easily navigate to the target
provisions. This presents a major improvement over the current
situation, where cross reference navigation is unsupported.
Cross references outside their container elements. Legal texts
are amended regularly. When a provision P in a legal text is
revised according to a set of amendments, the amendments are
cited as part of P for traceability. For example, consider “Art.
14. (L. 16 June 1989)” in Fig. 1. Here, the cross reference
“(L. 16 June 1989)” indicates that the article incorporates into
it the amendments proposed in the cited (amendment) law. In
our case study, we came across many amendment citations
where the citation appears before and not within the amended
provision. For instance, instead of the above, one could have
“(L. 19 June 1989) 〈line break〉 Art. 14.”. Had this been the
case, it would have been unclear, without expert judgment,
whether “(L. 19 June 1989)” is attached to the preceding
subsection (“Subsection 2. - ...”) or to “Art. 14.” While
automation is feasible for handling such exceptional cross
references, one has to weigh the benefits, as the automation
could also erroneously attach to the next provision a cross
reference that is well-placed (i.e., contained in the element
to which the cross reference truly belongs). If automation is
found not to be worthwhile, such cross references would need
to be manually moved into the right container elements.
Under-specified external cross references. As mentioned in
Section III-B, provided with an index of law titles, we attempt
to resolve external cross references via applying the TF-IDF
similarity metric and finding the closest matching title for

a given cross reference. On many occasions, external cross
references are under-specified and do not contain adequate
information to support such similarity matching. In particular,
if the cross reference mentions only the date when the law was
signed, e.g., “L. 19 June 1989”, but not the title of the law, one
has no precise way of determining the special number part of
the ELI name (see Section III-B), unless there is only one law
signed on that specific date. Due to this factor, automated reso-
lution of external cross references is only a best-effort attempt;
a human expert needs to manually resolve any external cross
reference that has not been successfully mapped to its ELI
name via automation. The quality of resolution for external
cross references is quantitatively assessed in Section V-B.

Cross references using rare patterns. Our cross reference
detection mechanism is pattern-based. As we have also noted
in our previous work [1], we can never be entirely sure that
such a set of patterns is complete. In our case study, we
came across a small number of cross references (< 1% of the
total number of cross references in the five analyzed codes)
that our tool could detect only partially. These cases arose
due to incompleteness in our patterns. However, the patterns
underlying the problematic cross references were highly ir-
regular and too complex to be captured and interpreted in a
straightforward manner. Given the small proportion of cross
references missed by our current pattern catalog, we did not
find it cost-effective to develop complex pattern matching rules
for rare cases. Instead, we recommend that cross references
with rare patterns should be resolved manually.

Unlabeled divisions. On occasion, high-level divisions had no
explicit labels. To illustrate, consider “Subsection 1. - The
mayors” in Fig. 1. This division could well have appeared as
“The mayors”, i.e., without “Subsection 1. -”. In the absence
of explicit labeling, high-level divisions are distinguishable
by humans via such information as a legal text’s table of
contents and visual cues such as the font shape and size
used for the division titles. We found this information difficult
to salvage automatically. In particular, detecting unlabeled
divisions would have required parsing tables of contents and
considering rich-text metadata (e.g., fonts). This information,
while available, varies from one text to another. We therefore
found automation not to be worthwhile for dealing with unla-
beled divisions. Instead, we recommend that a manual analysis
of the table of contents of a given text should be performed
during preprocessing for identifying any unlabeled divisions
and assigning them dummy (but explicit) labels. These labels
allow the markup generator to process these divisions in a
standard way, rather than as exceptions. The dummy labels
can then be automatically removed during postprocessing.

Variations in division labels. We observed two main sources
of variation in division labels. The first are incorrect characters
that visually look the same as or similar to the intended charac-
ters. Notable examples include using the letter ‘l’ (ell) instead
of the roman number I or the arabic number 1, and the letter
‘O’ instead of number 0 (zero). The second source of variation
are changes in the numbering scheme. For example, a legal text

could start with arabic numbering (1, 2, 3, . . .) for the chapters,
and then half way through the text, switch to alphabetical
numbering (A, B, C, . . .) for the remaining chapters. Although
incorrect use of characters is trivial to fix, detecting such
issues is difficult and time-consuming, unless one has a-priori
awareness about such potential problems. We recommend that
one should look specifically for incorrectly-used characters
in headers and fix them during preprocessing to avoid latent
problems in the markup generation scripts. As for changes
in the numbering scheme, we recommend that all the used
schemes (e.g., arabic, alphabetical, and alphanumeric) for a
given division type (e.g., chapters) should be made explicit in
the text conceptual model so that the markup scripts that are
automatically instantiated based on the conceptual model will
function correctly when encountering different schemes.
Physical lines not aligned with logical lines. Before the ad-
vent of markup, laws were written primarily with the intention
of being read by humans and not necessarily being machine-
analyzable. Incorrectly-used characters (e.g., using the letter
‘O’ instead of number 0), discussed above, was already a
manifestation of this fact. A similar issue arises with line
breaks. A physical line break placed in the content to improve
the formatting of the print output poses serious problems for
automation, due to the difficulty of distinguishing between line
breaks that are for layout purposes (and thus should be treated
as space characters) and the logical line breaks that indicate
the completion of divisions. We used sentence splitting –a
commonly available technology in NLP toolkits– to assist
in identifying and removing layout line breaks. However, we
observed that this technology was not very effective over legal
texts. Notably, the technology could not accurately delineate
unlabeled lists and alineas that start with lower-case letters and
end without a period at the end; such lists and alineas were
common in some of the codes in our case study. An even more
difficult case is when layout line breaks are inserted at the
beginning of new (and unlabeled) sentences. Without carefully
analyzing the content and the flow, even an expert may be
unable to readily determine the right container for a text
segment. Despite its seemingly trivial nature, removing line
breaks inserted for layout was the most time-consuming part of
preprocessing. The issue was further exacerbated when we had
to extract the text of laws from PDFs, rather than from editable
formats such as MS Word. Our recommendation for dealing
with unwanted line breaks is to manually remove as many as
possible during preprocessing, and subsequently, inspect the
generated XML markup (e.g., via an HTML presentation of
it) to detect other potentially-undesirable line breaks.

B. Quality of Automatically-generated Markup

The practical considerations outlined in Section V-A have
an impact on quality. For example, our decisions about the
depth of text organization markup and the URIs (see Table IV)
directly influence the amount of information captured in
the markup, and hence the overall accuracy of the markup
generation process. Similarly, our choices about what issues
to address during preprocessing and what exceptional circum-

stances to leave to manual corrections in order to increase
cost-effectiveness would naturally have accuracy implications.

In this section, we report on the quality of automated
markup generation in the specific context of our case study,
i.e., in light of the decisions presented in Section V-A. To
measure quality, we need a gold standard (ground truth). Since
our case study took place in a production environment, build-
ing the ground truth manually would have been prohibitively
expensive. In fact, had we been able to do this task manually,
our automation would have been useless. The procedure
that we followed for quality analysis is as follows: Let D
be an automatically-generated markup document before the
document undergoes any manual corrections. Let G denote the
same document after D has been inspected and the necessary
manual corrections have been applied to it. In our analysis,
we take G to be the gold standard. Specifically, for each of
the five legal codes in our case study, G was the version
used for publication on the Legilux portal (see the footnote
on page 2), i.e., after internal validation by SCL. To calculate
quality statistics, we analyzed for each code the differences
between D and G using text differencing.

Table V presents the results for the five legal codes. Each
row in the table represents one markup type, e.g., Book or
Article. Like in Table III, statistics for letters (L), numbers
(N), and dashes (D) have been combined. Furthermore, for
the purpose of quality analysis, we distinguish internal and
external cross references as ELI necessitates different handling
of these markup types, due to the special number that is needed
for most external cross references (see Section III-B). FC, PC,
and M in Table V are defined as follows: A markup element
is fully correct (FC) if it occurs in both D and G and the
occurrences match in terms of the markup attributes and the
text span. An element is partially correct (PC) if it occurs
in both D and G, but modifications were observed either to
the attributes or to the text span in G. An element is deemed
missing (M) if it only exists in G but not D.

We make two remarks about the above definitions. First, a
discrepancy identified between D and G over a nested element,
e.g., an Article, would not propagate to its parent (container)
element, e.g., Chapter, as long as the parent element has the
correct attributes and text span in D. Second, cases where
markup is present in D but not in G always manifest as PC
elements in G. We did not thus count such cases separately.

To quantify the overall quality of automated markup gen-
eration for a given markup type, we define a metric, Q,
computed as the proportion of FC over the total number of
elements of the given type (i.e, FC+PC+M). Because of
the stringent accuracy requirements for legal documents, any
automatically-generated markup for these documents has to be
thoroughly reviewed to ensure correctness. What Q, or more
precisely (100%−Q), represents is the additional effort that
one incurs during the review process over fixing problems in
the generated markup. We note that Q is a conservative metric
for quality: it treats PC and M the same way although fixing
a partially correct markup element is, in general, much easier
than providing markup from scratch for a missing element.

TABLE V
STATISTICS FOR AUTOMATED MARKUP GENERATION

Collective	statistics	for	the	five	legal	codes	
in	the	case	study

FC PC M Q FC PC M Q FC PC M Q FC PC M Q FC PC M Q
Part 0 0 3 0,00% 0 0 0 NA 0 0 0 NA 0 0 0 NA 2 0 0 100,00% FC	ratio	(Q)	across	all	element	types:	90,69%
Book 2 1 0 66,67% 4 0 0 100,00% 2 0 0 100,00% 3 0 0 100,00% 11 0 0 100,00% PC	ratio	across	all	element	types:		7,96%
Title 36 0 0 100,00% 17 4 0 80,95% 10 1 0 90,91% 15 0 0 100,00% 90 0 0 100,00% M	ratio	across	all	element	types:		1,35%
Chapter 129 0 2 98,47% 14 0 0 100,00% 70 12 4 81,40% 33 0 0 100,00% 19 0 0 100,00%
Section 154 0 0 100,00% 9 3 0 75,00% 38 1 7 82,61% 34 2 0 94,44% 42 0 0 100,00% FC	ratio	for	Internal	CRs	only:	95,21%
Subsection 39 4 0 90,70% 0 0 0 NA 0 0 0 NA 7 0 0 100,00% 30 0 0 100,00% FC	ratio	for	External	CRs	only:	35,55%
Article 2305 10 1 99,53% 258 3 0 98,85% 655 15 1 97,62% 529 0 0 100,00% 1321 1 0 99,92%
Paragraph 33 0 0 100,00% 14 0 0 100,00% 64 0 0 100,00% 541 0 1 99,82% 206 0 0 100,00% Legend
Alinea 3358 53 63 96,66% 461 10 18 94,27% 1075 17 2 98,26% 1278 23 14 97,19% 2297 12 7 99,18% FC:	Fully	Correct
L/N/D 318 12 31 88,09% 50 0 35 58,82% 467 1 3 99,15% 320 4 1 98,46% 307 3 32 89,77% PC:	Partially	Correct
Internal	CR 436 10 0 97,76% 109 1 0 99,09% 422 33 6 91,54% 336 12 0 96,55% 367 21 1 94,34% M:	Missing
External	CR 245 297 9 44,46% 65 47 10 53,28% 106 317 28 23,50% 318 396 3 44,35% 74 355 3 17,13% Q:	Quality	(FC	/	Total)

Code	of	Criminal	ProcedurePenal	CodeCommerce	CodeCivil	Code New	Code	of	Civil	Procedure

When considering all the 21111 markup elements in the
five codes (see Table III), we observe that: 90,69% of the
markup elements are fully correct, 7,96% of the elements
are partially correct, and the remaining 1,35% are missed.

Problems in the text organization markup elements (i.e., all
elements except cross references) originated primarily from
the labeling and line-break issues which we had not handled
properly at the preprocessing stage. These issues were elabo-
rated in SectionV-A. As indicated by Table V, the majority of
the problems in the text organization markup have to do with
alineas, letters, numbers, and dashes. The challenge here is that
letters, numbers and dashes do not have a fixed hierarchical
order, and further, are sometimes left implicit, meaning that
they are separated only by line breaks and without explicit
delimiters. Consequently, letters, numbers, and dashes may
erroneously get classified as alineas and thus not correctly be
nested into the alinea where they belong. In each such case,
the text span for the parent alinea would be incomplete. The
markup generated would thus be only partially correct.

As for cross references, we observe that automation is
highly effective for internal ones, with 95.21% of them being
annotated with fully correct markup across the five legal codes.
Nevertheless, only 35.55% of external cross references are
annotated with fully correct markup. The main reason for this
low performance is the under-specification of cross references,
in turn complicating the identification of the ELI special num-
ber that needs to be assigned. This issue was already discussed
in Section V-A. The issue is often exacerbated by the fact
that the same under-specified cross reference can be repeated
dozens of times. To improve the quality of markup automation
for external cross references, one necessarily has to take into
account additional information, e.g., the context in which these
cross references appear. We leave this to future work. However,
we need to emphasize that the markup we generate for external
cross references is still highly usable: virtually all problems
in the markup for external cross references are localized to
the (typically two-character) special number at the end of the
ELI resource name. This number, once known, is very easy to
insert manually into the markup.

In summary, the results of Table V provide confidence that
the amount of manual effort required for fixing problems in
the automatically-generated markup is low, suggesting that
automation is effective for structural markup generation.

VI. THREATS TO VALIDITY

As stated earlier, the case study that we reported on in
this paper falls under action research. Kock [18] points out
three main validity threats for action research: uncontrolability,
contingency, and subjectivity.

Uncontrolability has to do with the researcher’s degree
of control over the case study’s environment and having
unexpected internal or external factors impacting the case
study. Our case study spanned five legislative codes, rather
than just one. This to a large extent mitigates the risk of
external factors affecting the case study.

Contingency is synonymous with the standard external
validity threat, and has to do with the generalizability of action
research findings. With regard to contingency, we note that our
approach has also been applied, albeit at much smaller scales,
to Canadian legal texts [1], [10]. While mitigating contingency
requires additional large case studies, in our limited analysis
of Canadian legal texts, we observed the main characteristic
that has motivated our current automated solution, namely the
existence of large volumes of heterogeneous legal texts without
precise markup. We therefore anticipate our solution to offer
value in contexts beyond that of our case study.

Subjectivity has to do with the direct involvement of the re-
searchers as agents of change. This may lead to biased results.
In our case study, we were driven by the specific needs of our
partner, e.g., regarding the choice of legal texts to analyze and
the type of markup to generate. Our limited influence on these
key decisions helped mitigate subjectivity. Another dimension
of subjectivity has to do with the environment. In a change-
averse environment, any change, beneficial or not, may be
(subjectively) perceived as negative and met with resistance;
whereas in a change-friendly environment, the attitude towards
change is generally positive. In our case study, our partner was
very forthcoming and provided us with constant support and
commitment. This was an important factor in the success of
our case study; the results could have been different had we
not received such level of support from our partner.

VII. RELATED WORK

We distinguish two categories of work on structural legal
markup: editing tools that facilitate the application of manual
markup, and techniques for automated transformation of non-
markup, e.g., plain-text, documents into markup documents.

In the first category, there are a number of authoring tools
with a dedicated focus on legal texts. We outline two of these:
LIME and AT4AM. LIME [19] is an open-source editor for
writing legal texts in a markup format. AT4AM [9], [20] is
a web-based authoring tool developed to assist EU-member
countries in amending EU parliamentary documents that are
already in an XML format. AT4AM provides basic features for
manual insertion of legal markup into texts and has already
been applied with success in practice. When using such tools,
one needs to manually select the text segments to which
markup needs to be added, and then apply the appropriate
markup tags. Although such tools ease the manipulation of
legal markup, specially when new texts are being drafted,
such tools alone are not sufficient for adding markup to large
volumes of legacy (non-markup) texts. Automated assistance
for markup generation therefore remains a necessity.

With regard to the second category of related work, namely,
automated markup generation, Sannier and Baudry [21] de-
velop a customizable structural parser for standards and regu-
lations. Their approach, which is based on NLP and modeling,
helps identify generic divisions and other constructs, such as
requirements and recommendations, in the text of standards
and regulations. Breaux [3] and Massey [4] devise pattern-
based parsers for extracting the structure of the US Health
Insurance Portability and Accountability Act (HIPPA). Naka-
mura and Katuka [22] build a converter tool for transforming
Japanese municipal regulations, already provided in an XML
format, into relational databases and HTML pages. Boer et
al. [23], without providing details, mention a parser they have
built for transforming rich-text documents to the MetaLex
format. Kerrigan et al. [24] describe a tool for transforming
environmental regulations from PDF and HTML into XML.
Finally, Zeni et al. [5] propose a broad markup framework,
GaiusT, for semi-automated parsing and annotation of legal
texts. Among various other metadata items, GaiusT identifies
articles and their subdivisions as an intermediate step for
extracting semantic metadata such as rights and obligations.

Our markup generator, which is the basis for the work we
report here, takes inspiration from several of the above work
strands, as we explain in our previous work [1]. Neverthe-
less, our case study in this paper is focused on something
different: to highlight the issues that arise when automated
markup generation is applied at large scales, and how to cost-
effectively deal with these issues. The above work strands do
not specifically address the scalability challenge for markup
generation and how to increase the industry readiness level of
the existing (mainly academic) markup generation tools.

VIII. CONCLUSION

In this paper, we reported on a case study targeted at
generating structural markup for Luxembourg’s legislative
codes. Structural markup is a prerequisite for performing more
advanced analysis over legal texts and for the systematic
elaboration of legal requirements. An important observation
from our case study is that, despite its conceptually simple
nature, building structural markup for legal texts cannot be

automated with full accuracy. One therefore has to carefully
consider how far it is worthwhile to go with automation,
and what aspects of structural markup would better be done
manually. Drawing on the experience gained from our case
study, we discussed a number of important factors that affect
the cost-effectiveness of automation for structural markup
generation. We then evaluated the quality of automatically-
generated markup when these factors are accounted for.

In the future, we would like to conduct case studies on se-
mantic legal markup, e.g., for modalities, conditions, and rules.
This will enable us to examine the quality of automatically-
generated semantic markup in real conditions, where one has
to handle potentially thousands of provisions. Another aspect
of our future work is to improve the customization facilities
that instantiate our NLP scripts for a given legal text.
Acknowledgements. This work is partially supported by SCL
and FNR under grant FNR/P10/03.

REFERENCES

[1] N. Sannier, M. Adedjouma, M. Sabetzadeh, and L. Briand, “An auto-
mated framework for detection and resolution of cross references in legal
texts,” REJ, vol. 22, no. 2, 2017.

[2] S. Erdelez and S. O’Hare, “Legal informatics: Application of infor-
mation technology in law,” Annual Review of Information Science and
Technology, vol. 32, 1997.

[3] T. Breaux, “Legal requirements acquisition for the specification of
legally compliant information systems,” Ph.D. dissertation, North Car-
olina State University, 2009.

[4] A. Massey, “Legal requirements metrics for compliance analysis,” Ph.D.
dissertation, North Carolina State University, 2012.

[5] N. Zeni, N. Kiyavitskaya, L. Mich, J. R. Cordy, and J. Mylopoulos,
“GaiusT: supporting the extraction of rights and obligations for regula-
tory compliance,” REJ, vol. 20, no. 1, 2015.

[6] “Akoma Ntoso,” http://www.akomantoso.org.
[7] “ELI - the European Legislation Identifier,” http://eur-lex.europa.eu/

eli-register/about.html.
[8] M. Palmirani, L. Cervone, O. Bujor, and M. Chiappetta, “RAWE: an

editor for rule markup of legal texts,” in RuleML’13, 2013.
[9] “AT4AM,” hhttp://www.at4am.org.

[10] N. Sannier, M. Adedjouma, M. Sabetzadeh, and L. C. Briand, “Auto-
mated classification of legal cross references based on semantic intent,”
in REFSQ’16, 2016.

[11] M. Denscombe, The Good Research Guide: for small-scale social
research projects, 4th ed. McGraw-Hill, 2010.

[12] M. Palmirani, R. Brighi, and M. Massini, “Automated extraction of
normative references in legal texts,” in ICAIL’03, 2003.

[13] Cunningham et al, “Developing Language Processing Components with
GATE,” 2016. [Online]. Available: http://gate.ac.uk/sale/tao/tao.pdf

[14] “Formex,” http://formex.publications.europa.eu/formex-4/formex-4.htm.
[15] “MetaLex,” http://www.metalex.eu.
[16] “LexML,” http://projeto.lexml.gov.br/documentacao/resumo-em-ingles.
[17] G. Salton and C. Buckley, “Term-weighting approaches in automatic

text retrieval,” Information Processing and Management, vol. 24, no. 5,
1988.

[18] N. Kock, “The three threats of action research,” Decision Support
Systems, vol. 37, no. 2, 2004.

[19] “LIME - The Language Independent Markup Editor,” http://lime.cirsfid.
unibo.it.

[20] C. Fabiani, “AT4AM: The XML Web Editor Used by Members of
European Parliament,” http://tinyurl.com/hr6s6l2, 2013.

[21] N. Sannier and B. Baudry, “INCREMENT: A mixed MDE-IR approach
for regulatory requirements modeling and analysis,” in REFSQ’14, 2014.

[22] M. Nakamura and T. Kakuta, “Development of the elen regulation
database to support legislation of municipalities,” in JURIX’14, 2014.

[23] A. Boer, R. Hoekstra, and R. Winkels, “METALex: Legislation in XML,”
in JURIX’02, 2002.

[24] S. Kerrigan and K. H. Law, “Logic-based regulation compliance-
assistance,” in ICAIL’03, 2003.

