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Abstract—Chronaxie, a historically introduced excitability

time parameter for electrical stimulation, has been assumed

to be closely related to the time constant of the cell mem-

brane. Therefore, it is perplexing that significantly larger

chronaxies have been found for intracellular than for extra-

cellular stimulation. Using compartmental model analysis,

this controversy is explained on the basis that extracellular

stimulation also generates hyperpolarized regions of the

cell membrane hindering a steady excitation as seen in the

intracellular case. The largest inside/outside chronaxie ratio

for microelectrode stimulation is found in close vicinity of

the cell. In the case of monophasic cathodic stimulation,

the length of the primarily excited zone which is situated

between the hyperpolarized regions increases with

electrode–cell distance. For distant electrodes this results

in an excitation process comparable to the temporal behav-

ior of intracellular stimulation. Chronaxie also varies along

the neural axis, being small for electrode positions at the

nodes of Ranvier and axon initial segment and larger at

the soma and dendrites. As spike initiation site can change

for short and long pulses, in some cases strength–duration

curves have a bimodal shape, and thus, they deviate from a

classical monotonic curve as described by the formulas of

Lapicque or Weiss. � 2012 Published by Elsevier Ltd on

behalf of IBRO.

Key words: chronaxie, strength–duration curve, electrical

stimulation, microelectrode, activating function.
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INTRODUCTION

Selective neural stimulation is a great challenge in the

development of neural prostheses. As an example, active

contacts of an electrode array implanted at the retina or

other structures along the visual pathway should stimulate

elements that elicit visual sensations corresponding to the

place in the array (Brindley, 1955; Zrenner, 2002; Dowling,

2005; Fernández et al., 2005; Fried et al., 2006; Cohen,
68
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2007; Sekirnjak et al., 2008; Horsager et al., 2009; Pezaris

and Reid, 2009; Tehovnik et al., 2009) while avoiding side

effects like co-stimulation of bypassing axons arising from

distant locations (Greenberg et al., 1999; Rattay and Re-

satz, 2004). Considering the fact that neural substructures

have different strength–duration characteristics may give

an opportunity formore selective stimulation. For example,

in the treatment of chronic pain during spinal cord stimula-

tion smaller dorsal column fibers can only be activated

when pulse width is sufficiently large (Holsheimer et al.,

2011).

Recently, the strength–duration relationship for extra-

cellular neural stimulation was analyzed under the

assumption of a constant electrical field in flat, spherical

and cylindrical cells (Boinagrov et al., 2010). These inves-

tigations provided a biophysical basis for the stimulation

with large electrodes and also explained effects of stimula-

tion with ultrashort pulses (<5 ls). In accordance with ret-

inal ganglion cell experiments (Jensen et al., 2005), for

pulse durations <2 ms, it was found that a 500 lm diam-

eter electrode placed above the soma caused excitation

with significantly lower thresholds compared to a position

above the axon. This result is unexpected given the

assumption that the axon is the most excitable part of a

neuron externally stimulated (Nowak and Bullier, 1998;

Rattay, 1999). Differences in experimental setups are the

reason for the controversy about such observations. Stim-

ulation of the retina with large electrodes generates a

rather constant field and consequently transverse currents

depolarize the cell membrane at one side and hyperpolar-

ize the cell at the opposite side. On the other hand, external

excitation with small electrodes is mainly based on stimu-

lating effects resulting from extracellular potential varia-

tions along the neural structure (Rushton, 1927; Ranck,

1975; Rattay, 1986, 1987, 1999). These facts vary the ex-

pected excitation paradigm and should be carried in mind.

Voltage sensitive ion channel types and densities are

other important elements for neuron excitability. In rela-

tion to retinal implant, electrode positions applied at a

dense two-dimensional grid around the soma region of

rabbit ganglion cells showed the lowest thresholds along

a small section of the axon, about 40 lm from the soma.

At this axonal section, immunochemical staining revealed

a dense band of voltage-gated sodium channels (Fried et

al., 2009). Similarly, high sodium channel densities at the

axon initial segments (AIS) of cortical cells define sites for

action potential initiation under natural conditions (Stuart

et al., 1997; Yu et al., 2008; Hu et al., 2009) as well as

spike initiation candidates for external stimulation with

microelectrodes (Rattay and Wenger, 2010).
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A strength–duration curve describes electrode thresh-

old current as function of stimulus pulse duration. Chron-

axie is defined as the time on such a strength–duration

curve for twice the minimum (rheobase) current needed

for very long pulses. Established by experimental find-

ings, this excitability parameter was assumed to be rather

independent from the distance between the current

source and the excited cell (Weiss, 1901; Lapicque,

1907, 1929; Blair, 1932).

As different neural structures have different chronax-

ies, stimulus pulse duration is an important element for

selective stimulation as well as for electrophysiological

classification. For example, the shorter chronaxie of mye-

linated motorneurons compared to that of unmyelinated

fibers of the myocardium allows safe stimulation with

short pulses during artificial respiration. Motoneurons

then become activated with little disturbance of the

myocardial function (Voorhees et al., 1992). In electro-

physiological studies, extracellular gray matter stimulation

shows larger chronaxies for somas than for axons, sup-

porting the idea that spike initiation occurs in the axon
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Fig. 1. Strength–duration curves of the investigated pyramidal cell. (A) Neur

Strength–duration curves with chronaxie values for electrode positions as

positions for Neuron 1 and Neuron 2, respectively. Color coding of lines in B c

extracellular strength–duration curves are shown as broken lines. Colors of b

pulses for intra- and extracellular stimulation, respectively.
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(Nowak and Bullier, 1998). Additionally, in cochlear im-

plants, significantly shorter chronaxies have been de-

scribed in long-term (compared to acute) deafened

cochleae, indicating the loss of peripheral processes in

many spiral ganglion cells (Shepherd et al., 2001).

Based on theoretical considerations, chronaxie has

been suggested to be about 0.7 times the time constant

of the cell membrane (Blair, 1932; Ranck, 1975; Reilly,

1992). Therefore, some authors assume chronaxie as

independent of in- or outside stimulation of the cell

(Nowak and Bullier, 1998). This hypothesis contrasts with

reports of considerably larger chronaxies for intracellular

than for extracellular stimulation (Ranck, 1975).

Discrepancy among different works prompts specula-

tions that experimental differences could be caused by

artifacts like sampling errors or neuronal damage during

recordings (Ranck, 1975). To address this controversy,

we systematically reproduced experimental findings using

computer simulations of a pyramidal cell and its simplified

rectified version for electrode positions at the dendrite, the

soma, the lateral ending of the AIS and the myelinated
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axon (Fig. 1). In all cases shown in Fig. 1B, the intracellu-

lar/extracellular chronaxie ratio is two or higher. It is

important to note that these ratios depend on cell proper-

ties as well as on the distance and type of electrodes.

Such variants could be the reason for the diversity in

chronaxie data.

Here, we demonstrate that (i) hyperpolarized regions

are responsible for the shorter extracellular chronaxies,

(ii) for short electrode distances, excitability and chronaxie

differ essentially along a selected neuron and conse-

quently (iii) strength duration curves are expected to devi-

ate from the classical form when short and long pulses

cause action potential initiation at sites with different elec-

trical membrane properties.
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EXPERIMENTAL PROCEDURES

An analysis of two model neurons is presented. In both models

excitation is based on recently measured densities of high thresh-

old sodium channels Nav1.2 in dendrites and the soma and low

threshold sodium channels Nav1.6 in the axon (Hu et al.,

2009). The phenomenon of short chronaxies for extracellular

stimulation was also tested in simulations with other neural struc-

tures (not shown) and did not depend on the specific examples.

Model Neuron 1 (Fig. 1A left, Rattay and Wenger, 2010), a

simplification of Neuron 2 concerning geometry and ion channel

types, is straightforward to analyze and with less computational

cost. It has a straight axis and consists of a single non-branching

dendrite (500 lm, d= 5 lm), spherical soma (d= 20 lm), axon

hillock (10 lm, d= 3.1 lm), AIS (50 lm, d= 1.22 lm), naked

axon (unmyelinated, 200 lm, d= 1 lm), myelinated axon

(500 lm, d= 1 lm) and unmyelinated terminal (50 lm,

d= 1 lm). Assumptions for ion channel distribution and ion cur-

rent computations are quite similar as in Hu et al. (2009): the

same constant Nav1.2 channel density for the dendrite and soma

(gna = 8 mS/cm2), but 40 times higher sodium channel density

in hillock and AIS with a change to the low threshold type

Nav1.6 in the axon. Intracellular resistivity is 150 X cm, mem-

brane capacity c= 1 lF/cm2. Using ACSL (Advanced Continu-

ous Simulation Language) software, Neuron 1 is simulated by

evaluating the compartment model equations (1)–(3) as de-

scribed below.

Model Neuron 2 (Fig. 1A right) is based on geometrical

parameters of a traced cortical layer 5 pyramidal cell with ion

channel assumptions as available in the NEURON (Carnevale

and Hines, 2006) Model DB (Hines et al., 2004; Hu et al.,

2009). In contrast to Neuron 1, soma diameter is increased to

30 lm, naked axon diameter is reduced to 0.4 lm and the capac-

ity of the cell membrane of all compartments with exception of the

soma and internodes is reduced to 0.5 lF/cm2. Moreover,

Neuron 2 incorporates branching dendrites, tapering diameters,

uneven ion channel distribution within compartments of a single

type and a membrane capacity of 0.02 lF/cm2 in the axonal inter-

nodes. High threshold sodium Nav1.2, low threshold Nav1.6 and

fast voltage-gated K+ of Neuron 1 are complemented by slow

non-inactivating potassium current, high-voltage activated Ca2+

and calcium dependent K+ in dendritic and somatic compart-

ments. All parameters are used as in Hu et al. (2009). However,

in order to demonstrate current–distance relations in a clear way,

the axial 3d structure of the cell was compressed into the x–y
plane. Neuron 2 is simulated with NEURON.

In more detail, Neuron 1 soma and dendrite were imple-

mented with the same constant maximum conductances (in mS/

cm2) gNav1.2 = 8, gNav1.6 = 0 and gKv = 10, the axon hillock with

gNav1.2 = 320, gNav1.6 = 0, gKv== 100, the AIS with gNav1.2 =
100, gNav1.6 = 320, gKv = 100, the unmyelinated axon with

gNav1.2 = 0, gNav1.6 = 300, gKv = 150 and the nodes of Ranvier

with gNav1.2 = 0, gNav1.6 = 160, gKv = 20. Sodium current kinetics
Please cite this article in press as: Rattay F et al. Strength–duration relationsh
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are calculated by INav1.j = gNav1.jm
3h (V � ENa) with j equals to

either 2 or 6 andENa =60 mV.Details on the differential equations

of the different variables are shown in Mainen et al. (1995). The

values for the half (in)activation voltages V1/2, the slopes k and

the coefficientsAwere obtained from a previously published mod-

el in the NEURONModel DB (Hu et al., 2009) after subtracting the

corresponding value for the shift of voltage dependence of the

kinetics. Consequently, the currents INav1.j have the same values

for A, i.e., A(am) = 0.182, A(bm) = 0.124, A(ah) = 0.024, A(bh

) = 0.0091, and the slope of inactivation, i.e., k(sh ) = 5 and

k(h1 ) = 6.2, in contrast to altered slope of activation, i.e.,

k(sm ) = k(m1 ) = 7 for Nav1.2 but k(sm ) = k(m1 ) = 6 for

Nav1.6. To account for the reduced threshold of Nav1.6 channels

V1/2(m) is decreased to�41 mV compared to the calculated value

of �28 mV for activation of Nav1.2 channels. The corresponding

values in mV for the inactivation of Nav1.2/Nav1.6 channels are

V1/2(ah) = �35/�41, V1/2(bh) = �60/�73, V1/2(h1) = �57/�70.
The potassium currents are determined by IK = gKn(V � EK) with

EK = �90 mV. To be consistent the corresponding values of

A(a) = 0.02, A(b) = 0.002, V1/2(a) = V1/2 (b) = 25 mV and

k(a) = k(b) = 9 were also obtained from the NEURON Model

DB (Hu et al., 2009). Internodes are simulated with 17 sheets of

membrane with a conductance of 1 mS/cm2 and C= 1 lF/cm2

per sheet (Rattay, 1999). The presented results are simulated

for 37 �C.
In the first modeling step, the extracellular potential Ve gener-

ated by an electrode tip is approximated considering a monopolar

spherical electrode in an infinite homogeneous extracellular med-

ium with resistivity qe = 300 X cm. This is equivalent to a point

source stimulation resulting in spherical isopotentials with Ve =
qeIel/4pr when a current pulse with amplitude Iel is applied; r is
the distance from a point of interest to the point source.

In the second step, the response of a neuron is simulated by

a compartment model. That is a network of resistances and

capacitances, where the current to the centre of compartment n
consists of the following components: a capacitive current, ion

currents across the membrane and intracellular currents to neigh-

bored compartments. Applying Kirchhoff’s law for compartment n
results in

dðVi;n � Ve;nÞ
dt

� Cn þ Iion;n þ
Vi;n � Vi;n�1

Rn=2þ Rn�1=2

þ Vi;n � Vi;n þ 1

Rn=2þ Rnþ1=2
¼ 0 ð1Þ

with intracellular potential Vi, axial resistance R and membrane

capacityC. The following system of differential equations is deduced

by introducing the transmembrane voltage V ¼ Vi � Ve to compute

the time courses of Vn in every compartment (Rattay, 1999):

dVn

dt
¼ �Iion;n þ

Vn�1 � Vn

Rn�1=2þ Rn=2
þ Vnþ1 � Vn

Rnþ1=2þ Rn=2

�

þ Ve;n�1 � Ve;n

Rn�1=2þ Rn=2
þ Ve;nþ1 � Ve;n

Rnþ1=2þ Rn=2

��
Cn: ð2Þ

The direct stimulating influence of the extracellular potential on

compartment n is defined by the activating function (Rattay, 1999)

fn ¼
Ve;n�1 � Ve;n

Rn�1=2þ Rn=2
þ Ve;nþ1 � Ve;n

Rnþ1=2þ Rn=2

� ��
Cn: ð3Þ

For a fiber with constant diameter d, constant compartment length

Dx, intracellular resistivity qi and specific capacity c, (3) appears
in a simpler form

fn ¼
d

4c � qi

� Ve;nþ1 � 2Ve;n þ Ve;nþ1

Dx2
: ð3aÞ

The value within the brackets of (3) corresponds to a virtual in-

jected current applied to compartment n. In regions where this cur-

rent is positive, the membrane depolarizes and where it is

negative, it tends to hyperpolarize.
ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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VOLTAGE SENSITIVE DYE IMAGING

Transverse hippocampal slices were obtained from P21

C57B6 mice as previously described (Leao et al., 2009)

and according to the rules of Animal Experimentation of

the Uppsala University. Slices were maintained in artificial

ACSF (in mM: 124 NaCl, 3.5 KCl, 1.25 NaH2PO4, 1.5

MgCl2, 1.5 CaCl2, 30 NaHCO3, 10 glucose), constantly

bubbled with 95% O2 and 5% CO2. Recordings/imaging

were obtained at 25 �C, in the presence of 10 lM CNQX,

30 lM dAP5 and 10 lM bicuculline methochloride to min-

imize the effect of synaptic currents (Leao et al., 2005).

Voltage sensitive dye (VSD) loading (JPW3027 obtained

from Prof Leslie Loew, University of Connecticut, USA)

was performed exactly as described in Palmer and Stuart

(2006). Images were acquired using a EM-CCD camera

(Luca, Andor, Ireland). Excitation was produced by a

200W metal-halide lamp through a bypass filter centered

at 535 nm (�510 to 560 nm pass) and emission was low-

pass filtered at 590 nm. Image acquisition and extracellular

stimulation were synchronized by a National Instruments

digital device and to guarantee time precision, we recorded

the stimulator and the camera ‘fire’ outputs (that flags im-

age acquisition) using a National Instruments DAQ card.

Current clamp recordings were also obtained from the im-

aged cell using winWCP (Dr John Dempster, Strathclyde

University, UK). The stimulating electrode (tungsten,

10lm tip) was placed 50 and 75 lm above axons. Pulses

had 100 ls durations and extracellular current intensities

were adjusted to 75% of the minimum threshold current.

Images were taken 100 ls after the stimulus using

100 ls exposure. Pixel intensity was measured in 4 � 2

pixel region of interest and averaged from 10 images ac-

quired with 1s delay between each other.
I =50pAel

0.63*Vstationary
1ms

1mV

STIMULUS CURRENT
RESULTS

In the following several computer experiments are

proposed to analyze step by step characteristics of

strength–duration curves and related historical formulas.
300
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Fig. 2. Transmembrane voltage V of Neuron 1 for intracellular

stimulation at the soma. (A) Space clamp condition with no axial

current flow. The top graph demonstrates the coincidence of the

passive and active membrane response in the subthreshold regime.

Linear extrapolation of V at stimulus onset up to the steady state

value of the single RC circuit (gray arrow) defines the time constant of

the passive membrane response as s = R � C (lower graph of A).

With the same electrode current Iel = 50 pA, the steady state value of

V is reduced by a factor �5 when axial current flows into the dendritic

branch (B) and by a factor �10 for conductance into dendrite and

axon (C). In comparison with the space clamp condition, intracellular

current flow into dendrite and axon results in shorter times t1 but

longer times to reach the steady state of the subthreshold membrane.
Intracellular stimulation: space clamp versus cable
model

In order to describe the neural excitation process inde-

pendently from the intracellular current needed for spike

conduction, Hodgkin et al. (1952) used the space clamp

technique. They stimulated with a long inserted wire that

clamped the squid axon uniformly along its entire length.

An equivalent model situation is created by current injec-

tion into the soma of Neuron 1 by cutting all soma pro-

cesses. Stimulation of the resting soma with a rather

long weak pulse results in a transmembrane voltage

curve V(t) with an asymptotic exponential increase during

the subthreshold response (Fig. 2A). The time constant

for the exponential voltage of the passive membrane is

the product of the ohmic resistance and the capacity of

the cell membrane (s = R � C). The time constant s of

such an exponential increase can be found graphically

by linear extrapolation at stimulus onset as the intersec-

tion of the tangent in V at pulse onset with the steady state

indicated by the horizontal dashed line in Fig. 2A. At the
Please cite this article in press as: Rattay F et al. Strength–duration relationsh
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end of the 8 ms pulse, the subthreshold approach of V
is very close to its stationary value.

The shape of the subthreshold membrane voltage V(t)
changes considerably when the stimulus current is

allowed to flow not only across the membrane but also

intracellularly from the stimulated soma into the dendrite

and the axon. Finding s by the graphical method of

Fig. 2A becomes contradictory when applied in Fig. 2B

and C as it results in shorter time values t1 while needing
ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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Fig. 3. Strength–duration curves of the somatic membrane of Neuron

1 for stimulation with square pulses. Chronaxie defined as the pulse

duration needed for twice the rheobase I0 (horizontal arrows) is

different for the space clamp condition (central group of three curves)

and the case of current flowing into dendrites and the axon (upper

curves). Injected anodic current amplitudes (upper and central

groups) are shown as current densities for 1 cm2 membrane.

Extracellular stimulation (lower curves) is with cathodic currents for

a point source 50 lm above soma center. Approximation of the

strength–duration curves according to the classical formulas of

Lapicque (1907): Iel = I0/(1 � 2�k) (dashed lines) and Weiss (1901):

Iel = I0(1 + 1/k) (dotted lines) where k is pulse duration/chronaxie.

1 Eq. (1) is a current balance where the last two terms describe the intracellular

current flow to the left and right neighboring compartments. Shifting to the next

compartment (n? n+ 1) includes the ‘old’ right neighbor as new left neighbor, but

the current flow has changed signs. Thus, the sum of these two currents is 0 and

consequently the sum of all axial currents is 0. Applying this principle in Eq. (2) one

find that the sum of all virtual stimulating currents is 0. For details see Rattay

(1990).
2 For interpretation of color in Figs. 1, 4 and 10, the reader is referred to the web

version of this article.
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longer times for reaching the steady state (pulse dura-

tions >20 ms). Obviously, the fit by a single exponential

function corresponding to a single RC element (as in case

A, where 63% of Vstationary is determined by s) cannot

describe the subthreshold response of the cable model

in an acceptable way. We have to change the method

and define the time constant as the time t2 when the cable

model reaches 63% (1 � 1/e) of the stationary membrane

voltage V (Fig. 2B and C). Note that the time constant of

the cable model is not an average value of the time con-

stants of the compartments. This is demonstrated by

Fig. 2B where both the dendrite and the soma of Neuron1

have quite the same electric membrane properties. The

main difference between s and its replacing values t1

and t2 in Fig. 2A and B is a consequence of a distinctly

reduced steady state membrane voltage when the greater

part of the stimulus current flows into the dendrite. The dif-

ferent temporal excitation profiles shown in Fig. 2 have

consequences on the corresponding strength–duration

curves.

The middle solid line in Fig. 3 shows the strength–

duration relation under the space clamp condition where

chronaxie is independent from the soma area. Allowing

part of the injected current to flow into dendrites and the

axon demands for stronger threshold currents for all pulse

durations (Fig. 3, upper solid line). The intracellular

strength–duration curves for Neuron 1 and its space

clamped version deviate in their shapes for long pulses.

With the same electrical cell properties, the calculated

intracellular chronaxie ratio 2.5/1.79 = 1.4 (Fig. 3)

becomes smaller by enlargement of the soma surface

or by reducing the number or diameters of processes.

The variable chronaxie ratio decreases to 1 if the diame-

ters of the soma processes converge to zero, which is the

space clamp condition.

This dependence of chronaxie on diameter disproves

the often applied rule mentioned in the introduction,

namely chronaxie �0.7s with s = R � C, where the prod-

uct R � C is independent of membrane size. However,

even more surprising is the huge deviation from this for-

mula for extracellular stimulation. With the time constant

of the soma membrane (Fig. 2A) we obtain chronaxie

�0.7 � 3.4 ms = 2.38 ms instead of 0.38 ms for the case

presented in Fig. 3.

In contrast to intracellular stimulation, in most applica-

tions extracellular stimulations are optimally achieved with

cathodic currents (Ranck, 1975; Rattay, 1986, 1999).

Hence, we compare anodic inside with cathodic outside

stimulation in order to explain in the next subsections

the large chronaxie differences between intra- and extra-

cellular stimulation shown in Figs. 1B and 3.

Extracellularly activated region increases with
electrode distance

A straight fiber with the properties of the naked axon of

Neuron 1 is shown in Fig. 4A–C for external stimulation

with a cathodic 100 ls pulse at threshold intensity. In con-

trast to intracellular stimulation, the externally positioned

microelectrode causes in every compartment an injected

virtual current. As second important effect, outside

stimulation with a monophasic pulse produces virtual
Please cite this article in press as: Rattay F et al. Strength–duration relationsh
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currents of both polarities where the sum of all the virtual

currents is zero.1 The driving forces of excitation are the

currents in the region with positive activating function val-

ues (red arrows2 in Fig. 4C).

The length of the region where a cathodic point source

causes positive activating function is
ffiffiffi
2
p
� zel, where zel is

the electrode distance. This formula is correct for a

straight nonmyelinated fiber with constant diameter in a

homogeneous medium and the relation can be described

by a 70-degree angle (Fig. 4A, tan(35�) =
ffiffiffi
2
p

=2 � zel=zel),
(Rattay, 1986). According to the activating function

concept, this angle is independent of fiber diameter and

electrical membrane properties and can also be used as

an approach for myelinated axons (Rattay, 1986). Large

positive and negative isolated activating functions’ values

appear at locations with considerable diameter changes,

in branching or in fiber endings. As axial intracellular cur-

rents level such local effects, the 70� rule is a rough ap-

proach even for these cases. A specific chronaxie value

of a region can be expected as long as the zone defined

by the 70� seen from the point source is concentrated in a

cell region with common electrical properties.

The length of the activated portion flanked by the hyper-

polarized regions increases with electrode–neuron dis-

tance, and consequently, the influence of the

hyperpolarized region on the excitation process is gradu-

ally reduced when moving the current source away. This
ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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Fig. 4. Extracellular stimulation. (A) Geometry and isopotentials for a

point source 50 lm above a fiber positioned at the x-axis. (B)

Extracellular potential Ve = qeIel/4pr with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xelÞ2 þ z2el

q
is

used to calculate the activating function. (C) A fiber with d= 1lm
and compartment length Dx= 10 lm results in a peak activating

function value of 740 mV/ms. According to (2) this is the slope of the

membrane voltage in the compartment below the electrode at the

beginning of the �25 lA pulse. According to (3), the virtual currents

are fn � Cn. With Cn = d � p � Dx � c= 3.14159 * 10�7 lF and specific

membrane capacity c = 1 lF/cm2, the maximum injected current is

232 pA at the center of the activated region. As the length of the

activated region is defined by an angle of 70�, this region increases

with electrode distance. (D) VSD imaging of a pyramidal cell axon at

rest (upper photomicrograph), 100 ls after the stimulus for electrode

distance zel = 50 lm (middle photomicrograph) and zel = 75lm
(lower photomicrograph) (scale bar=10 lm; ⁄ electrode position in

the horizontal axis). Fluorescent traces for zel = 50 and 75 lm
versus axon position is shown below the photomicrographs and are

aligned to the region in the axon activated by the extracellular

stimulus. Each point in the traces represents average fluorescence of

an axon region of approx. 10 lm length in five images.
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effect could be also demonstrated using VSD imaging. The

length of the depolarization detected by the intracellular

VSD increases with electrode distance (Fig. 4D). The area

under the curve in fluorescence (normalized by the maxi-

mum) versus length graph was used as a measurement

of depolarization ‘spread’ caused by the extracellular stim-

ulus. When the stimulating electrode was placed 50 lm
(zel = 50 lm) above the axon, the fluorescence (DF/F0,

normalized) versus length integral was equal to 0.038 ±

0.002 lm�1 and 0.058 ± 0.004 lm�1 for zel = 75 lm
(n= 5 cells, p= 0.008, paired t test).

Intracellular versus extracellular stimulation

The spatio-temporal evolution of transmembrane voltage

profiles is significantly different for a microelectrode posi-

tioned either above or in the soma (Fig. 5A–D). In Fig. 5A

and B, pulse duration is 100 ls and membrane voltages

along the neural axis are compared for threshold intensity.

At the end of the pulse, extracellular stimulation shows a

larger voltage maximum, but a shorter depolarized region.

For 1 ms threshold pulses the same voltage profiles ap-

pear again with smaller amplitudes (due to lower stimula-

tion currents) as the firsts of ten advancing 100 ls time

steps (thick lines in Fig. 5C and D). The rather constant in-

crease of the maximum and spatial extension of the volt-

age profile for the case of intracellular stimulation in the

advancing 100 ls time steps demonstrate that intracellular

stimulation is more effective as the injected current is avail-

able to load the membrane capacity in the vicinity of the

electrode (Fig. 5D). Virtual negative injected currents dur-

ing pulse application (Eq. (3)) cause strong hyperpolariza-

tion (Fig. 5A and C). An essential part of the virtual positive

current, the driving force for excitation, is lost as a result of

the counterbalancing axial current flow between the depo-

larized and the two hyperpolarized regions. Note that half

of the positive voltage profile (its extension and maximum

value) is already reached at approx. 10% of the 1 ms stim-

ulation pulse (thick line in Fig. 5C). This is contrary to the

gradual increase of the voltage profile seen in Fig. 5D.

A second important effect is demonstrated in the

10 ms pulse example (Fig. 6). The subthreshold response

for extracellular stimulation has a maximum at half of the

stimulus pulse time with a decay related to the inactivation

gating variable h (Mainen et al., 1995) that act as a factor

for the sodium current3 (Fig. 6A). The quicker extracellu-

larly elicited voltage increase affects the lower h values.

The maximum appears earlier for extracellular electrode

positions above AIS and node of Ranvier (Fig. 6C). In con-

trast, Fig. 6B and D shows a rather constant increase in

membrane voltages indicating that stimulation is still possi-

ble with longer and weaker pulses.

Chronaxie increases with electrode distance

In the previous section and with Fig. 3, it was demon-

strated that axial current flow from the activated area into
3 Sodium current, the driving component in excitation, is modeled as gNam
3

h(V � ENa), with maximum conductance gNa, gating variables m and h, membrane

voltage V and Nernst potential ENa. In the resting state m has a quite small value in

contrast to the inactivation variable h which starts with a high value that decreases

(with some delay) when V increases.

ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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Fig. 6. Comparison of threshold and subthreshold membrane voltages as functions of time of the compartments closest to the electrode, computed
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at the right side. The dashed lines in A and B show the inactivation gating variable h for subthreshold cases; note its quicker decay and the lower

minimum for extracellular stimulation. During pulse application there is a monotonous voltage increase in all intracellularly stimulated cases,

whereas extracellular stimulation causes a maximum in every of the subthreshold voltage curves, most pronounced in the node of Ranvier example.

As shown in A, the maximum is a consequence of the decreasing inactivation variable h. Pulses loose their stimulating properties as soon as the

maximum is reached. Same scaling in all graphs.
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the hyperpolarized regions causes shorter chronaxies for

cathodic extracellular than for intracellular stimulation. It

was also shown that the activated length is related to an

angle of 70� at the electrode and this activated length in-

creases with microelectrode distance (Fig. 4). Conse-

quently, stimulating current loss along the neural axis

into the side lobes as defined by the activating function
Please cite this article in press as: Rattay F et al. Strength–duration relationsh

roscience (2012), http://dx.doi.org/10.1016/j.neuroscience.2012.04.004
shows a reduction when intracellular resistance between

depolarized and hyperpolarized regions increases by

increasing electrode distance. Comparison of excitation

profiles for electrodes at 50 and 200 lm above the soma

(Fig. 7) emphasizes the trend to longer chronaxies for lar-

ger electrode distances. As seen in the case at 200 lm
above the soma, the larger distance between the primarily
ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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depolarized and hyperpolarized regions results in a more

constant increase of the voltage profile which becomes

comparable to that of the intracellular case.

Strength–duration curves for electrode positions

above the soma and a node of Ranvier underline the

association of increasing chronaxies with increasing elec-

trode distance (Fig. 8). Chronaxie was determined by the

intersection of strength–duration curves with the horizon-

tal line 2⁄ rheobase, with electrode currents normalized to

rheobase (Fig. 8). The lower part of the figure uses the

chronaxie values of the shown strength–duration curves

for electrode distances of 50, 100, 200 and 300 lm to

quantitatively describe chronaxie versus distance rela-

tionships for electrodes above the third node of Ranvier

and the soma. For the extracellular stimulation cases,

when increasing electrode distance, different functional

neural parts become excited. For this reason, and more

remarkably for the soma case, the curves containing the

circles deviate from the direction pointed by the arrows

(Fig. 8, bottom). Note the quite large difference between

intra- and extracellular chronaxies.

A shift of the spike initiation zone by electrode dis-

tance increase is analyzed in the next example with two

electrode positions at zel = 50 lm and zel = 200 lm
above the center of the naked axon of Neuron 1

(Fig. 9). In contrast to the 50 lm case (A) the depolarized

region predicted by the activating function with the 70-de-

gree angle (Fig. 4) exceeds the 200 lm long naked axon
Please cite this article in press as: Rattay F et al. Strength–duration relationsh
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for zel = 200 lm. There is a change in the sign of the

slopes at the onset of the 200 ls stimulus within

the naked axon region in (A), whereas for zel = 200 lm
the slopes are always positive in the larger region marked

by the gray rectangle indicating the activated region

(Fig. 9B). In case B, the activating function values at the

border between AIS and the naked axon are essentially

smaller than below the electrode. However, the high so-

dium channel density of AIS supports spike initiation at

the naked axon, acting as a favorable neighboring com-

partment. The activating function values for the AIS are

very similar to those values for the naked axon close to

it, but its position next to the soma results unfavorable.

The convenient neighboring compartments together with

axial current flow are crucial components for excitation

during intra- and extracellular stimulation.

In the next section we show that in some cases axial

current flow initiates spikes rather far away from the stim-

ulating electrode when long pulses are applied whereas

for short pulses spike initiation is close to the electrode.

By systematic evaluation and analysis of computer simu-

lations we discovered this phenomenon with remarkable

consequences for strength–duration curves.
Deviations from classical strength–duration curves

In order to smoothen recording errors, strength–duration

curves are usually fitted by one of the classical
ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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approaches, the formulas of Weiss and Lapicque (Fig. 3).

However, for a constant electrode position our computer

simulations demonstrate that deviations from these

curves have to be expected when spikes are initiated at

different functional parts for short and long pulses. Intra-

cellular stimulation of the main dendrite of Neuron 2 re-

sults in a composite strength–duration curve. This curve

consists of two segments of ‘classical curves’ that are

connected with a transition part (thick red curve marked

as DEND in the lower part of Fig. 1B, the case of intracel-

lular stimulation).

The occurring phenomena for this main dendrite and

other neural structures are explained extensively in

Fig. 10. For short pulses, spikes are generated within

the dendrite at the site of current injection (green curve

in Fig. 10A). As expected, but not shown, the spike bifur-

cates there with one part conducted toward the axon and

the other toward peripheral dendritic regions. For a longer

stimulation pulse of 5 ms, during the first part of stimula-

tion spatial transmembrane voltage distributions similar

to the green curve are produced at subthreshold intensity,

but with smaller amplitudes (e.g., the two thick blue lines

in Fig. 10A). During a 5 ms pulse just above threshold

intensity, the peak value at this electrode position is not

strong enough to produce a dendritic spike, but axial cur-

rent flow into the axon causes enough sodium current via

the low threshold sodium channels Nav1.6 in AIS. As a

result a spike initiates at the beginning of the thin part of

the axon (t= 5.7 ms, lower thin blue line in Fig. 10A).
Please cite this article in press as: Rattay F et al. Strength–duration relationsh
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Thereafter, this spike bifurcates in an asymmetric way be-

cause of asymmetric cell properties.

In the presented examples of extracellular stimulation,

the effect of combined strength–duration curves is difficult

to observe for cathodic currents, although the phenome-

non is present in a weak form for the cases SOMA and

DEND (upper part of Fig. 1B). In contrast, combined

strength–duration curves occurs clearly for anodic pulses

(Fig. 10B), especially for an electrode above the soma or

a node of Ranvier. In contrast to cathodic stimulation,

anodic stimulation generates a center of hyperpolarization

at a region of the neuron closest to the electrode, and the

side lobes of the activating function (marked in Fig. 4 by

green arrows) became the driving forces for excitation.
ip for intra- versus extracellular stimulation with microelectrodes. Neu-
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Therefore, the first reaction describing the membrane

voltage after 10 ls of anodic stimulation for an electrode

at 50 lm above the soma has two positive peaks

(Fig. 10C, black line). Short pulses cause spike initiation

at the distal end of the AIS (Fig. 10C, green curves),

whereas spikes arise at the centre of the thin axonal seg-

ment for long pulses (Fig. 10C, blue curves). A similar

shift phenomenon occurs when the electrode is above
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the third node of Ranvier (Fig. 10D): spikes are initiated

at the distal end of the thin segment and at a position clo-

ser to its center by short and long pulses, respectively.
DISCUSSION

The time constant of a patch of cell membrane is defined

as s = R � C, with capacity C and resistance R. Chronaxie
1
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ld the maximum membrane potential occurs close to the electrode

00 lm) at the thin segment of the axon. (B–D) Extracellular anodic

lectrode positions above the soma (black line) and the third node of

iation site depends on pulse duration in these cases. (C) Stimulus

ulses. For better recognition the 10 ls response of the short pulse

.
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is about 0.7s for such a patch (Ranck, 1975; Reilly, 1992)

which is independent of cell geometry as long as intracel-

lular axial current flow is negligible. The large variety in

membrane resistance is the main reason for specific

chronaxie values for different functional unmyelinated cell

regions. In contrast to the variance found in membrane

resistance, membrane capacity is rather uniform with a

value close to 1 lF/cm2 (Cole, 1968). However, myelin-

ated regions have considerably smaller chronaxies as

the total membrane capacity is inversely proportional to

the number of myelin sheets.

Strength–duration characteristics for external stimula-

tion of myelinated peripheral axons can be derived with

linear methods from the intracellular relationship

(Warman et al., 1992). In contrast to peripheral nerve

applications, microelectrodes for central nervous system

stimulation operate often in or in the vicinity of the soma,

where additional effects appear as consequences of the

variation of the electrical and geometrical parameters

along the neural axis.

Here, we have demonstrated a radical switch to short

chronaxies when the stimulating electrode position

changes from inside to outside the cell. The inside/outside

chronaxie ratio with a value close to 6.5 was the largest

for the smallest investigated cell–electrode distance of

50 lm (Fig. 8). This ratio depends essentially on the

length of the excited zone positioned between hyperpolar-

ized regions for the cathodic case. These hyperpolarizing

lobes hinder the continuous excitation process seen by

intracellular stimulation. Consequently, the inside/outside

chronaxie ratio becomes smaller for larger electrode–cell

distances. Increasing electrode distance usually will

cause the excitation of other functional cell regions with

other chronaxic properties. This phenomenon is espe-

cially obvious for the electrode position above a soma with

highly excitable neighbored axonal regions showing

shorter chronaxies (upper part of Fig. 1B), and therefore,

the measured chronaxie cannot just reflect the somatic

value, but a value influenced by the excited axonal region.

This chronaxie mix disturbs the original trend toward

chronaxie values for intracellular stimulation as marked

by gray arrows in the lower part of Fig. 8.

The presented theory predicts the experimentally

observed trend to larger chronaxies for increased dis-

tances (West and Wolstencroft, 1983). An analytical ap-

proach is available for non-myelinated nerve and muscle

fibers that predicts different chronaxies for intra- and

extracellular stimulation and the increase of chronaxie

with electrode–fiber distance (Suarez-Antola, 2005).

Examples of combined strength–duration curves have

been presented where short and long pulses cause spike

initiation in different cell regions. Thus, fitting strength–

duration data with a single curve according to the classical

approaches of Weiss or Lapique may be equivocal. Some

combined strength–duration curves resulting from retinal

ganglion cell recordings can be found in Fig. 9 of Gerhardt

et al. (2011).

Our results help explain trends of strength–duration

characteristics. For example, Neuron 1 and Neuron 2

have comparable strength–duration curves with similar

excitability sequences (node-ais-soma-dend) both for
Please cite this article in press as: Rattay F et al. Strength–duration relationsh
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intra- and extracellular stimulation (Fig. 1B). However,

unexpected differences between both neurons occur,

e.g., only Neuron 2 shows a bimodal intracellular

strength–duration curve (red thick curve in the lower part

of Fig. 1B).

It is important to notice that many variables like synap-

tic activity (Spruston, 2008; Sjöström et al., 2008), refrac-

tory behavior (Miocinovic and Grill, 2004), inhomogeneity

in ion channel density (Migliore and Shepherd, 2002;

Keren et al., 2009), branching (Manita and Ross, 2009),

curvature of axons (Rattay et al., 2000; Iles, 2005), pulse

shape (Wongsarnpigoon et al., 2010), electrode configu-

rations (Smith and Finley, 1997), the inhomogeneity and

anisotropy in the tissue (Roth, 1995), pulse trains and

neuromodulation (De Vries et al., 2007; Minassian et al.,

2007) can influence recruitment and strength–duration

relationships. Nevertheless, by applying careful analysis,

the large variance in chronaxie, even within one cell

should be helpful for selective stimulation, especially

when microelectrodes are used to activate a specific

region like the AIS, a part of the dendritic tree or the mye-

linated axon. As an example, short pulse widths selec-

tively activate cells with their somas close to the

electrode in epiretinal stimulation (Behrend et al., 2011).

One should be aware that chronaxie is also the time

where stimulus pulse duration needs a minimum of

energy (Geddes, 2004), an important fact for neural pros-

theses. Moreover, charge injection (electrode current

times pulse duration) from electrode surface limits neural

prosthetic applications. The left (quite) linear part of dou-

ble logarithmic strength–duration curves, e.g. in Fig. 1B,

predicts (nearly) constant charges when thresholds of

very short pulses are compared (half pulse duration

needs double threshold current). Minimum charge occurs

with infinitely short pulse duration. With the approach of

Weiss (Fig. 3) the factor for the additional charge costs

are pulse duration divided by chronaxie.
CONCLUSIONS

A recent review and several often cited articles sustain

the wrong dogma that chronaxie is the same for intra-

and extracelluar stimulation (Borchers et al., 2012; Nowak

and Bullier, 1998; Geddes, 2004). On the contrary, evalu-

ations of our compartment model of a cortical pyramidal

cell demonstrate up to 20 times longer chronaxies for

intracellular stimulation than for extracellular stimulation

(Fig. 1B). This fact as well as the occurrence of combined

strength–duration curves are supported by theoretical

investigations.
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