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The search for biological causes of mental disorders has up to 
now met with limited success, leading to growing dissatisfac-
tion with diagnostic classifications. However, it is question-
able whether most clinical syndromes should be expected to 
correspond to specific microscale brain alterations, as multiple 
low-level causes could lead to similar symptoms in different 
individuals. In order to evaluate the potential multifactorial-
ity of alterations related to psychiatric illness, we performed 
a parametric exploration of published computational models 
of schizophrenia. By varying multiple parameters simultane-
ously, such as receptor conductances, connectivity patterns, 
and background excitation, we generated 5625 different ver-
sions of an attractor-based network model of schizophrenia 
symptoms. Among networks presenting activity within valid 
ranges, 154 parameter combinations out of 3002 (5.1%) 
presented a phenotype reminiscent of schizophrenia symp-
toms as defined in the original publication. We repeated this 
analysis in a model of schizophrenia-related deficits in spa-
tial working memory, building 3125 different networks, and 
found that 41 (4.9%) out of 834 networks with valid activity 
presented schizophrenia-like alterations. In isolation, none of 
the parameters in either model showed adequate sensitivity 
or specificity to identify schizophrenia-like networks. Thus, 
in computational models of schizophrenia, even simple net-
work phenotypes related to the disorder can be produced by 
a myriad of causes at the molecular and circuit levels. This 
suggests that unified explanations for either the full syndrome 
or its behavioral and network endophenotypes are unlikely to 
be expected at the genetic and molecular levels.
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Introduction

Diagnostic classifications as described in the Diagnostic and 
Statistical Manual of Mental Disorders and International 

Classification of Diseases have become a dominant con-
cept in psychiatry over the last decades, and much effort 
has been spent to understand their underlying neurobiol-
ogy.1,2 However, the search for biological causes of mental 
illness has up to now met with limited success: susceptibil-
ity genes described for most disorders have little individual 
impact on phenotypic variation within populations,3–6 and 
proposed biomarkers are still far from attaining diagnostic 
accuracy.7–9 This has led some to believe that such categori-
cal systems might not be ideal for studying the pathophysi-
ology of mental illness, as symptom-based classifications 
might not necessarily map to clear-cut neurobiological 
alterations.10,11

Many have argued that research in psychiatry should 
move away from these categories and that disorders 
should be broken down into endophenotypes,12,13 cogni-
tive domains,14 or, in the more recent National Institute 
of Mental Health proposal, Research Domain Criteria.15 
The expectation is that simpler phenotypes (eg, fear, 
reward learning, or laboratory measures such as prepulse 
inhibition) might correlate more clearly with genetic vari-
ants or biomarkers, allowing nature to be “carved at its 
joints” and leading the way to effective diagnosis based 
on genetic, molecular, or imaging studies.7,10

There is no guarantee, however, that simpler behavioral 
phenotypes will consistently map to unique molecular 
alterations in the general population. For instance, the 
few genome-wide association studies (GWAS) involving 
specific cognitive tests or phenotypes have fared no better 
than those trying to detect genetic associations for psy-
chiatric disorders.16–18 Thus, an alternate view is that most 
disturbances in behavior have a large number of possi-
ble causes at the molecular level and that any complex 
behavior or clinical syndrome is likely to be multifactorial 
by default. In this case, the hope for specific genetic or 
molecular biomarkers for psychiatric disorders7,19 might 
be somewhat of an oxymoron, irrespectively of the clas-
sification adopted at the psychological level.
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Such a view is supported by in silico models of simple 
neural systems, such as the lobster pyloric circuit, which 
have shown that very similar network phenotypes can be 
derived from disparate synaptic and molecular param-
eters.20 Moreover, evidence suggests that similar patterns 
of network behavior can be produced through different 
combinations of molecules and synapses in different neu-
rons and circuits.21 Thus, one would expect that a com-
plex behavioral alteration such as a psychiatric syndrome 
might similarly be caused by distinct molecular and cel-
lular alterations in different individuals.

The use of computational models of psychiatric dis-
orders is an alternative to integrate basic neurobiological 
data with brain functions and symptoms. These mod-
els typically aim to reproduce dysfunctions associated 
with brain disorders in simplified in silico neurons or 
networks.22–24 Most of them, however, have ultimately 
relied on the assumption that psychiatric disorders can 
be linked to specific microscale causes. Thus, the usual 
process involves (a) generating a computational model 
of a network phenotype related to a disorder and (b) 
studying whether one or a few specific alterations (eg, 
in neurotransmitter receptors, channel conductances, or 
brain connectivity) can account for this phenotype.25–29 
However, the possibility that other combinations of 
molecular and network features might produce the same 
effect is rarely investigated (but see Siekmeier and van-
Maanen30 for a significant exception).

To evaluate the hypothesis that similar network altera-
tions can be produced by a myriad of low-level causes, we 
performed a large-scale parametric exploration of 2 pub-
lished network models of schizophrenia.25,31 We found 
that numerous combinations of molecular and microcir-
cuit alterations could give rise to similar schizophrenia-
like network dysfunctions in both models. These results 
highlight the complexity of mapping between the molec-
ular and network levels and put into question whether 
unified reductionist explanations for mental disorders 
should be expected in the general population.

Methods

Network Model

For most of our simulations, we used a previously pub-
lished computational model of schizophrenia-related 
network alterations.22,25 It is based on a widely used corti-
cal network model, consisting of biophysically realistic 
integrate-and-fire spiking neurons that receive excitatory 
and inhibitory inputs through α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), N-methyl-
D-aspartate (NMDA), and type-A γ-aminobutyric acid 
(GABA-A) receptors.32 Background excitation to the 
network is delivered as a 2400-Hz Poisson process that 
excites AMPA receptors, representing the input of 800 
excitatory neurons at a 3-Hz firing rate (FR), compatible 
with experimental observations.33,34

The network possesses pools of strongly connected 
excitatory neurons, which represent established memories 
or activity patterns (figure 1a). These pools, through their 
recurrent connections, function as attractors that lead net-
work activity toward specific patterns of activation, thought 
to underlie specific mental representations in the brain.35,36 
Thus, when the network enters an attractor state, FR in the 
corresponding neuronal pool increases sharply, as shown 
by electrophysiology data during working memory tasks in 
animals.37 Slow NMDA-mediated currents are particularly 
important for this kind of dynamics, in agreement with the 
effects of NMDA antagonists on working memory.38,39

In the original model, simultaneous reductions in 
GABA-A and NMDA conductances were shown to cause 
2 network phenotypes reminiscent of schizophrenia. The 
first is the frequent emergence of spontaneous patterns 
of activity (figure  1b), related by the authors to positive 
symptoms such as delusions and/or hallucinations caused 
by unwarranted cortical network activity.40 The second is a 
difficulty in maintaining induced patterns of network activ-
ity as attractors (figure 1c), which was related to negative 
and cognitive symptoms such as working memory deficits, 
as electrophysiology studies strongly suggest that attractor 
dynamics in the prefrontal cortex mediates this function.41 
Details of the model are similar to those in the original 
publication and are described in supplementary methods.

Simulations

For replication purposes (figures 1e and 1f), we ran 
1000 simulations in the 4 conditions used in the origi-
nal report25: normal conductances, reduced GABA con-
ductance (9% decrease), reduced NMDA conductance 
(4.5% decrease), and reduced GABA and NMDA con-
ductances (combining both alterations). Networks in 
each condition were tested in 3 simulation protocols: (a) 
spontaneous activity, in which the network received only 
background stimulus; (b) persistent activity, in which an 
additional 120-Hz stimulus (representing input from neu-
rons carrying sensory information) was applied selectively 
to a pool of strongly connected neurons (S1) for 500 ms, 
leading to a persistently high FR in these neurons after 
this period due to attractor dynamics; and (c) distraction 
simulations, in which persistent activity was induced as in 
(b), followed by a distractor input of variable frequency 
applied to a separate pool of strongly connected neurons 
(S2) between 1000 and 1500 ms. To evaluate network per-
formance, we used the same measure used by the original 
article: the percentage of simulations in which FR in S1 
neurons was higher than 10 Hz during the last second of 
simulation, reflecting maintenance of the S1 attractor. As 
baseline activity was around 3 Hz, while attractor states 
led to frequencies above 20 Hz, this cutoff  point was opti-
mal in discriminating between them (figure 1d).

For evaluation of changes in network activity caused 
by individual parameter variations (figure 2), we ran 100 
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simulations for each parameter value in both the spon-
taneous and persistent activity protocols (see above). 
Standard parameters were used, except for the indi-
vidual variation of AMPA, GABA, and NMDA con-
ductances, inhibitory and excitatory connectivity, and 
background excitation. As the magnitude of reported 
molecular changes in schizophrenia patients can vary 
widely in the literature (ranging from 80% decreases42 to 
2-fold increases43 in the case of NMDA GluN1 subunit 
mRNA levels, for example), we initially explored a wide 
range of variations from −80% to +80% (with 5% steps). 
Variations of other parameters were also explored and 
are shown in supplementary figures S1–S3.

To evaluate the effect of combined variations of mul-
tiple parameters20,30 (figure 3), we ran 100 simulations for 
each of 5625 parameter combinations in the spontane-
ous and persistent activity protocols, setting background 
excitation and conductances for AMPA, GABA, and 
NMDA at 1 of 5 different levels (90%–110% of normal, 
with 5% steps) and excitatory and inhibitory connectivity 
at 1 of 3 different levels (90%, 95%, or 100%). We selected 
as “valid networks” those in which the median FR during 
the last second in nonselective excitatory (ie, not pertain-
ing to the S1 or S2 pools) and inhibitory neurons was 
within the observed range of 2000 simulations of spon-
taneous activity using the original model parameters for 

Fig. 1. Model description and validation. (a) Schematic depiction of the model. Excitatory neurons are divided into 3 groups: 2 selective 
pools (S1 and S2), with strong recurrent connections within pools (w+) and weak interpool connections (w−), and a nonselective pool 
(NS), with standard connections to other pools. Inhibitory neurons (IH) connect equally to all excitatory neurons and among themselves. 
There are also connections from 800 external neurons firing at 3 Hz, simulated as a 2400-Hz background excitatory input to each neuron. 
(b) Examples of simulations with stable (top) and unstable (bottom) spontaneous activity in the S1 pool, observed in the normal and 
schizophrenia-like (−9% GABA, −4.5% NMDA) networks, respectively. Left panels show spike times of 20 neurons in each pool, while 
right panels show the mean firing rate of the pool (200-ms sliding window). Notice spontaneous emergence of the S1 attractor in the 
schizophrenia-like network, characterized by increased firing rate in this pool after ~1 s. (c) Examples of simulations with stable (top) 
and unstable (bottom) persistent activity, observed in the normal and schizophrenia-like networks, respectively. A 120-Hz stimulus is 
applied to S1 neurons from 0 to 0.5 s, leading to a persistent increase in their firing in the normal network. In the schizophrenia-like 
network, they return to baseline activity shortly after the stimulation, indicating impaired attractor maintenance. (d) Histogram depicting 
S1 firing rates in the normal network during the last second of simulation in the spontaneous (top) and persistent (bottom) protocols. 
Notice peaks at 2–4 Hz during baseline and 20–30 Hz in the attractor state, with an optimal cutoff  at 10 Hz (dashed line). (e) Effect of 
conductance variations on the stability of persistent activity after a distractor. A 120-Hz stimulus is applied to S1 neurons from 0 to 0.5 
s, followed by stimulation of S2 neurons from 1 to 1.5 s (distractor stimulus). The percentage (±SEM) of 100 simulations with stable S1 
firing rate (defined as >10 Hz) during the last second is shown for various distractor frequencies in the different conductance regimes. 
(f) Effect of conductance variations on network stability. Bars show changes from baseline in the percentage of simulations with stable 
activity in the spontaneous and persistent protocols for each conductance regime (1000 simulations each). NMDA reduction leads to 
decreased stability of persistent activity, while GABA reduction leads to decreased stability of spontaneous activity; reduction in both 
(the schizophrenia-like phenotype) causes instability in both protocols.
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normal and schizophrenia-like phenotypes (1.2–5.88 Hz 
for excitatory neurons and 5.74–15.24 Hz for inhibitory 
neurons). This was a way to select simulations in which 
network activity was within plausible ranges and did not 
present major abnormalities that might be incompat-
ible with a functioning cortical circuit. However, we also 
present an analysis of all simulated networks in supple-
mentary figure S4 and analyses using other definitions of 
valid activity in supplementary table S1.

A network was defined as schizophrenia-like whenever 
it presented alterations in the stability of spontaneous and 
persistent network activity that were equal to or greater 
than those observed in the 1000 simulations with the orig-
inal schizophrenia-like phenotype.25 More specifically, this 
meant (a) >16% of simulations with S1 FR > 10 Hz dur-
ing the last second in spontaneous activity simulations—
corresponding to a high frequency of spontaneously 
emerging attractors and correlating with positive symp-
toms—and (b) <81.2% of simulations with S1 FR>10 Hz 
during the last second in persistent activity simulations, 
corresponding to difficulty in maintaining an established 
attractor and corresponding to negative symptoms.

Receiver operating characteristic (ROC) curves were 
constructed to analyze the sensitivity and specificity 
of  each parameter in identifying schizophrenia-like 

networks (figure  4b). We also performed an informa-
tion theory–based analysis to discriminate parameters 
(or combinations) with the most information about 
network phenotype (figure 4c; see supplementary meth-
ods). Finally, we constructed ROC curves for excitatory/
inhibitory FR, obtained by dividing the mean FR in 
excitatory neurons by that of  inhibitory neurons dur-
ing the last second of  spontaneous activity simulations 
(figure 4d).

Additionally, we also performed simulations using 
a second published cortical network model31 in which 
schizophrenia-like cognitive deficits were modeled as a 
reduction in precision when encoding a spatial stimulus 
(supplementary figure S5), as shown to occur in patients.44 
Simulations performed with this model followed the same 
approach of those with the first one and are described in 
supplementary results.

Results

Figure 1 shows that our simulations could successfully repro-
duce the results of the original model.25 Figure 1e presents 
the percentage of simulations with stable persistent activity 
of S1 neurons after stimulation with various distractor fre-
quencies. Both isolated reductions in NMDA conductance 

Fig. 2. Effects of isolated parameter variations on network activity. Effect of variations in individual parameters on the stability of 
spontaneous (a) and persistent (b) network activity. Lines on the left panels represent the percentage of 100 simulations exhibiting 
stable activity (S1 firing rate <10 Hz in [a] or >10 Hz in [b]) for different values of the 6 parameters explored (−80% to +80%, 5% 
steps). Percentages obtained for 1000 simulations with the normal (green bars and dashed lines) and original schizophrenia-like (−9% 
GABA, −4.5% NMDA, red bars) networks are shown for reference. Right panels show firing rate of S1 neurons during the last second 
of simulation for 100 simulations (dots) with each parameter value. Black traces indicate the mean, and green shaded area indicates the 
normal value for each parameter.
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and concomitant reductions in NMDA and GABA con-
ductances decreased the stability of persistent activity in the 
network, but only combined reductions decreased stability 
in spontaneous activity as well (figure 1f).

We then investigated the effect of varying individual 
parameters in the model to evaluate whether a similar 
network phenotype could be observed with other altera-
tions. Figure  2 shows the effect of varying conductances, 
background excitation, and network connectivity on the 
percentage of simulations exhibiting stable activity in the 
spontaneous (figure 2a) and persistent (figure 2b) activity 
protocols. The results show that the schizophrenia-like phe-
notype (ie, a reduction in the stability of both types of activ-
ity) can be obtained in other ways besides those originally 
explored, such as by decreasing inhibitory network connec-
tivity or increasing AMPA conductances (see supplemen-
tary figures S1–S3 for variation of additional parameters).

For our large-scale parametric exploration of  the 
model, we used the 6 parameters shown in figure 2, set-
ting conductances and background excitation at 5 dif-
ferent levels and connectivities at 3 different levels, thus 
generating 5625 (54 × 32) combinations. Among these, 
3002 (53.3%) had FRs within valid ranges, of  which 154 
(5.1%) presented schizophrenia-like phenotypes (figures 
3a and 3b). Thus, the same network alterations resem-
bling schizophrenia described in the original model 
could be obtained by a large number of  alternative 
parameter combinations. Without filtering valid net-
works by FR, the number of  schizophrenia-like com-
binations criteria rises to 569 (10.1% of  simulations) 
(supplementary figure S7 and table S1). Data on the sta-
bility of  schizophrenia-like networks in the spontaneous 
and persistent activity protocols are presented in figures 
3c and 3d.

Fig. 3. Multiple schizophrenia-like phenotypes revealed by parametric exploration of the model. (a) Color maps representing all 5625 
parameter combinations (top), the 3002 presenting firing rates within the valid range (middle) and the 154 presenting schizophrenia-like 
phenotypes (bottom). Each column corresponds to a particular combination of parameters, as indicated by the color scale. (b) Venn 
diagram representing all 5625 networks, the 4772 with unstable persistent activity, the 1060 with unstable spontaneous activity, and 
the 3002 with firing rates within valid ranges. Valid networks with schizophrenia-like phenotypes lie at the intersection of the 3 circles. 
(c) Histogram showing the stability of the 154 valid schizophrenia-like networks in the spontaneous and persistent activity protocols, 
measured as the percentage of simulations with stable activity in the S1 pool (FR <10 Hz for spontaneous simulations, >10 Hz for 
persistent ones). Green and red dashed lines indicate results for the normal and original schizophrenia-like (−9% GABA, −4.5% NMDA) 
conditions, respectively; schizophrenia-like networks are left of the red line. (d) Color map representing the distribution of parameter 
values among valid schizophrenia-like networks (top). The percentage of simulations with stable activity in the spontaneous (light 
brown) and persistent (blue) protocols for each individual combination is shown in the scatter plot (bottom). Green and red bars show 
results for the normal and original schizophrenia-like networks, respectively.
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To explore which parameters were more important in 
determining network activity, we investigated their dis-
tribution among networks presenting schizophrenia-like 
behavior. Strikingly, we found that there was little correla-
tion between individual parameters and network pheno-
type: with a single exception, schizophrenia-like network 
behavior could be generated with any of the individual 
parameters set at any of the values, at least for some com-
binations of the remaining parameters (figure 4a). And 
although schizophrenia-like behavior was rarer for some 
values, no parameter could reliably predict whether a 
network would be labeled as schizophrenia-like: the best 
diagnostic performance for an individual parameter was 
a sensitivity of 74% and a specificity of 64% for NMDA 
conductance (figure 4b).

We explored how combining parameters could improve 
this classification and found that including more known 
parameters consistently increased the amount of  infor-
mation about network phenotype (figure  4c). Among 
these, combinations of  GABA conductances, NMDA 
conductances, and inhibitory connectivity were the most 
informative. Based on this, we decided to explore higher 
order parameters derived from network activity and 
found that the ratio between excitatory and inhibitory 

FRs was a better predictor of  schizophrenia-like altera-
tions than any of  the individual parameters (figure 4d), 
although it was still far from diagnostic accuracy. This 
suggests that intermediate-level markers of  network 
activity might be more closely correlated to network 
behavior (and presumably to psychiatric symptoms) than 
microscale alterations such as receptor conductances or 
synaptic architecture.

Exploration of  the second network model31 yielded 
a similar picture. Of  3125 networks generated by com-
binations of  5 different parameters, 834 (26.7%) had 
activity within valid ranges and 41 (4.9%) of  these 
exhibited schizophrenia-like alterations in encoding 
precision (supplementary figure S6). Schizophrenia-
like alterations were observed for all values of  every 
parameter, and the highest sensitivity and specificity 
values observed were 78% and 67%, respectively (for 
NMDA conductance in inhibitory neurons) (supple-
mentary figure S7). Once again, the ratio between 
excitatory and inhibitory had better accuracy than any 
parameter in isolation. As in the first model, qualita-
tively similar results were observed with different filters 
for valid ranges of  activity (supplementary figure S8 
and table S1).

Fig. 4. Isolated network parameters do not predict the occurrence of schizophrenia-like phenotypes. (a) Pie graphs showing the 
percentage of valid schizophrenia-like combinations presenting each individual parameter value (eg, 21% of schizophrenia-like 
networks have background excitation at maximum values). (b) Receiver operating characteristic (ROC) curves showing the sensitivity 
and specificity of each individual parameter in identifying schizophrenia-like networks. (c) Percentage of the information on network 
phenotype contained in isolated or combined model parameters. Inset shows mean phenotype information (±SD) for different numbers 
of combined parameters. (d) ROC curve as in (b), but for the ratio between excitatory and inhibitory firing rates. Note that sensitivity 
and specificity values are higher than any of those obtained for individual parameters.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu146/-/DC1
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Discussion

By varying multiple parameters in 2 computational mod-
els of schizophrenia representing different aspects of the 
disorder, we found that many distinct parametric com-
binations could lead to similarly altered network pheno-
types. Our results are akin to what has been shown in a 
simple model of the lobster enteric nervous system20 and 
in a smaller scale study of gamma frequency alterations 
related to schizophrenia in a detailed hippocampal model, 
which varied 3 parameters in combination.30 In this latter 
study, most schizophrenia-like phenotypes were found to 
cluster around reductions in both NMDA receptor func-
tion and pyramidal cell connectivity. However, by using 
more simplified networks that allowed us to vary a larger 
number of parameters, we found that schizophrenia-like 
alterations could occur in a much broader range of para-
metric combinations.

Whether this holds for complex biological systems such 
as the human brain is a wider question, but experimen-
tal evidence suggests that it might be the case. A screen-
ing of 206 gene knockouts in mice, for instance, showed 
that 39 (19%) of them presented fear-related alterations 
in an open field task.45 More significant still is the evi-
dence arising from GWAS, which have failed to find 
genes consistently leading to odds ratios greater than ~1.3 
for developing schizophrenia.4,6,46 Thus, recent views of 
schizophrenia genetics have drifted toward either widely 
polygenic inheritance3,47 or rare high-risk mutations,48 
with little evidence that a common unified genetic expla-
nation can be found for the disorder.49 Our study shows 
that independent alterations at the molecular (eg, recep-
tor conductances) and microcircuit (eg, network con-
nectivity, background excitation) levels can interact in 
determining schizophrenia-like phenotypes, providing a 
plausible explanation for this genetic complexity.

Many authors have argued that diagnostic criteria for 
schizophrenia are too wide and that simpler endopheno-
types might correlate better with molecular alterations.13 
In this sense, the network models we studied constitute 
vastly simplified versions of a cortical circuit, and the 
alterations described in them are far from the full com-
plexity of schizophrenia. Nevertheless, even these sim-
ple network phenotypes correlate poorly with specific 
microscale alterations. These results challenge the view 
that endophenotypes should correlate better with molec-
ular features than complex psychiatric disorders—in fact, 
our model suggests that the opposite could be true, as a 
simpler trait could actually be easier to produce through 
multiple genetic influences than a complex syndrome.18

Our results are also a computational demonstration of 
a general epistemological lesson that has been voiced by 
many authors11,50–52: namely, that different levels of analy-
sis are needed to describe complex phenomena and that 
lower level (eg, molecular) descriptions are not necessar-
ily more accurate than higher level (eg, behavioral) ones. 
On the contrary, the difficult mapping between levels of 

complexity suggests that mental illness will not be under-
stood by reductionist approaches alone and that the best 
descriptions for complex entities such as psychiatric dis-
orders will often lie at higher levels.11 Thus, the frequent 
assumption that psychiatry should aim to replace symp-
toms by molecules and biomarkers as diagnostic tools53 
might be overly optimistic, as low-level markers might 
not be sufficiently informative in terms of their correla-
tion with behavior.

Naturally, this does not mean that one should con-
sider the brain only in psychological or network terms 
due to the understanding that its microscale interactions 
are too complex. In fact, our results show that network 
alterations can result from changes in specific microscale 
parameters, as is known to be the case for disorders 
such as Huntington’s chorea, or for rare mutations that 
strongly cosegregate with psychiatric disorders.54 But 
they do suggest that intermediate levels of complexity are 
needed to provide neurobiological theories with explana-
tory power in psychiatry, as exemplified by the fact that 
a simple measure of excitation/inhibition had better pre-
dictive power than any low-level parameter in our study. 
This view is also supported by other areas of medicine: 
although genetic studies of type 2 diabetes have yielded a 
picture as complex as that of schizophrenia,55 its multiple 
genetic influences converge upon common pathways such 
as insulin secretion, peripheral insulin resistance, and 
glucose levels. Thus, the genetic complexity of a disorder 
does not preclude biological descriptions, but it requires 
diagnostic markers to be sought at a higher level than 
that of isolated molecules.

In summary, our study shows that a large number of 
low-level alterations such as receptor conductances and 
network architecture can account for schizophrenia-like 
network dysfunctions in 2 computational models of this 
disorder. Our results call attention to the complex nature 
of even simple behavioral phenotypes and suggest that 
the frustration in finding consistent genetic associations 
and molecular biomarkers for psychiatric disorders is to 
be expected, not only because current diagnostic clas-
sifications are fallible but also because the gap between 
molecules and behavior is very wide. In this sense, it is pos-
sible that reductionist paradigms have underestimated the 
complexity of describing the working brain at the molecu-
lar level and that a vast middle ground has to be breached 
to generate biological theories for psychiatric disorders.

Supplementary Material

Supplementary material is available at http://schizophre-
niabulletin.oxfordjournals.org.
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