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Abstract 

 
 In the present work SG iron specimens with carbon equivalent (%CE) ranging 

from 4.12 - 4.36, has been subjected to annealing, normalizing, quench & tempering, 

austempering and DMS treatment to obtain different matrix microstructure and 

microconstituent. Optical microscopy is observed for microstructure, phase volume 

fraction, nodularity, and nodule count for each of the as-cast and heat treat specimens. 

XRD analysis is done to validate the phases present in each specimen as well as to 

determine the amount of carbon dissolution in respective phases. Mechanical properties 

such as tensile strength, % elongation, Vicker’s hardness, and impact strength are 

measured by conducting necessary test following ASTM standards. Failure mechanisms 

involved in static and dynamic loading are investigated observing the fracture surfaces 

after tensile and impact test respectively, under Scanning Electron Microscope. The 

corrosion behavior of as-cast and heat treated specimens, (in sea water) is also studied. 

Specimens are immersed completely in sea water at room temperature and pressure, and 

the weight difference is recorded at regular intervals, for twelve weeks.  

 The mechanical properties showed a quite good relationship with 

microconstituents for respective as-cast and heat treated specimens. The as-cast specimens 

show graphite spheroids within ferritic matrix resulted in increased ductility and impact 

strength (with increasing ferrite volume fraction) caused by increasing Si content.  

Annealing treatment led to the presence of completely ferritic matrix for every alloy 

consequently increasing ductility and impact toughness as compared to as-cast matrices. 

On the other hand specimens which underwent quenching & tempering treatment show 

the highest strength and hardness due to the tempered martensitic matrix, among all other 

heat treatment processes. Strength and ductility values of normalized austempered and 

DMS-treated specimens are intermediate to those of lowest strength value for annealed 

specimen and higher elongation value and that of highest strength and lowest elongation 

value for the quenched & tempered specimens.  It is observed that the elongation 



 
 

increases with increased nodularity can be attributed to increases amount of Mg and Ce, 

whereas nodule count increases the hardness of respective as-cast and heat treated 

specimens. The increase of hardness may be due to increase of Ni and Cr content which 

provides strength to ferrite via solid solution strengthening (for ferritic specimens). 

Normalizing treatment produced a ferritic/pearlitic matrix and showed increased UTS and 

hardness with increased pearlite content. Austempered heat treatment resulted in coarse 

upper bainitic matrix leading to suitable combination of strength and ductility, whereas 

matrix consists of martensite and ferrite are obtained by DMS treatment. The failure mode 

for the soft ferritic matrix is observed to be ductile in nature caused by microvoid 

coalescence, and that of other matrices are mostly brittle signified by the presence of low 

energy stress paths (River marking) and cleavage facets. Mechanical properties of SG iron 

alloys studied in current research, found to be well above the recommended properties for 

fabrication of nuclear fuel cask, (in as-cast as well as heat treated conditions) and hence 

can successfully be used for the desired purpose.  

 

Keywords: DUCTILE CAST IRON; ALLOYING; HEAT TREATMENT; 

MECHANICAL PROPERTIES; MICROCONSTITUENT; CORROSION.
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1. INTRODUCTION 

1.1. Background 

 Spheroidal graphite cast iron (SGCI)/ Ductile Iron (DI) as the name suggests, has 

graphite in a spherical form embedded in the matrix. The spherical shape is achieved by 

the addition of Magnesium (Mg) and/or Cerium (Ce) as inoculants, to the grey cast iron 

melt during the casting process. The graphite spheroids do not interfere with matrix 

continuity and eliminate the stress concentration effect that generates due to the presence 

of flaky graphite in case of grey cast iron, leading to improved ductility and impact 

toughness without affecting the strength and hardness. In addition, to these advantages, it 

possesses ease of castability, machinability and less cost of production. Because of these 

enhanced properties over the other cast irons, during the last five decades,the production 

and commercialization of SGCI have grown immensely. According to number of sources 

production of SGCI is increased and will keep growing compared to other cast iron [1]–

[5]. The reason behind this growth of production is quite clear. SGCI offers a broad range 

of properties which is achieved and controlled by addition of alloying elements and/or 

heat treatment processes. Alloying of SGCI or application of heat treatment processes 

leads to a change in microconstituents of the material resulting in desired properties of the 

component. This is why SGCI is itself regarded as a family consisting ferritic, pearlitic, 

martensitic, ausferritic, ferritic + martensitic and austenitic spheroidal graphite cast iron 

rather than a single material [6]–[10]. Ferrite matrix induces a high ductility around 25-

30% with low strength value of 250-400 MPa, whereas the pearlitic matrix show strength 

in the range of 500-700 MPa with maximum elongation about 18% and that of the 

martensitic matrix provides maximum strength around 1100MPa with 10-12% elongation. 

A strength value of 1600 MPa and elongation about 6-8% can be achieved in thin walled 

ductile iron with an ausferritic matrix with a uniform distribution of nodules and higher 

nodule count. The austempering treatment produces a matrix of lower acicular bainite or 

coarse upper bainite depending on the transformation temperature and time. Austempering 

involves isothermal transformation of primary austenite (γ0) into acicular ferrite (α) and 

carbon enriched stable austenite (γc), resulting in an ausferritic matrix structure [11]–[17]. 

Fig. 1.2 illustrates relationships between endurance ratio, tensile strength and matrix 

microstructure for ductile iron.This allows design engineers to choose appropriate kind of 

material for the desired application.  
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 Nuclear power generation contributes about 11% of the world electricity. Though 

the production of nuclear power is safe and pollution free, the post-processing of used 

nuclear fuels is a challenging task. After half-life period, the nuclear fuels are cooled in 

the near reactor pool at least for a year and then transported to a safe disposal site, 

contained in a robust structure called spent nuclear fuel cask. In the early stages of spent 

nuclear fuel cask production in 1980, Steel and Lead were used as the preferred material. 

Lead act as a neutron absorber and was placed in between two steel sheets which provide 

toughness to the structure. In some cases, depleted Uranium was also used as shielding 

material instead of Lead. But this sandwich structure didn’t prove to be the ultimate 

solution. During severe accidental conditions, it has been observed that there is a 

possibility of leakage of Lead from the structure, which no more prevents the radiation 

leakage. Hence, SGCI has been opted due to its versatile mechanical properties. The 

benefit of using DI is that it can be cast to near final cask dimensions that reduce 

machining efforts/costs. The cask can be cast monolithically which eliminate welds in the 

containment boundary & serves both as the structural containment boundary & the gamma 

shield. It also eliminates the needs for the “sandwich” type designs that includes welds & 

are harder to fabricate. Finally, the cheap material & fabrication costs compare favorably 

with the traditional sandwich stainless steel cask cost. In the year 2005, SGCI is included 

in the structural standards for fabrication of spent nuclear fuel cask by American Society 

of Mechanical Engineers (ASME). During the last two decades, SGCI has been tested and 

used for fabrication of spent nuclear fuel cask.   

      

Fig. 1.1: Demand forecast of ductile iron till 2015 [18]. Fig. 1.2: Relationships between endurance 

ratio, tensile strength and matrix 

microstructure for Ductile Iron [19]. 
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1.2. MOTIVATION AND OBJECTIVE OF PRESENT 

RESEARCH 

Our world is on the edge of transformation towards a new era where life without 

electricity will be impossible and hence the requirement for power generation is 

increasing day by day all over the world and especially in developing countries like India, 

where scarcity of energy is a serious problem. On the other hand, it is necessary to save 

the environment from pollution and foreign elements that are generated from the 

conventional power plants and many more sources. Hence, the whole world is moving 

towards safe and green energy production such as nuclear, wind and renewable energy 

sources. However, nuclear power plant also has environmental issues that need to be taken 

care of. Disposal and storage of nuclear waste are a significant factor in the generation of 

nuclear energy as the radiation affect not only human bodies but is also very dangerous 

for our environment. Hence, a small step is taken towards finding a solution to this issue 

in this present work. However, researchers all over the world are still hunting for suitable 

properties for  SGCI casting, and many works have already been reported. Most of the 

works are concentrated on developing the properties of austempered  SG cast iron and 

very less investigation on the properties of  SG cast iron subjected to full annealing, 

normalizing and tempering and intercrtical austenitizing followed by quenching treatment.  

 Present work is focused on solving the above important matters, and the objectives 

are; 

1. To develop properties of different types of spheroidal graphite cast iron material 

subjecting them to different heat treatment processes like annealing,  normalizing, 

tempering, austempering and intercritical austenitizing followed by quenching heat 

treatment processes and also by alloying, for transport application of nuclear fuel 

bundles.   

 

2. To investigate the structure-property correlation and material response in as-cast and 

heat treated conditions, towards the corrosive environment.  

 

3. Investigation of optimum chemical composition and heat treatment condition for 

mechanical properties and corrosion resistance of the material for fabrication of 

nuclear fuel transport cask.  
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2. RESEARCH SO FAR 

2.1. Nuclear Fuel Casks 

 
2.1.1. Background And Objective 

According to International Atomic Energy Association (IAEA) (as on 1st June 

2015), there are 438 nuclear reactors operational, and 67 are under construction 

worldwide, among which in India 21 reactors are operational in 7 nuclear power plants 

(NPP) and 6 are being built. The total capacity of installed reactors is 5780MW producing 

30,292.91GWh of electricity while the six under construction reactors are designed to 

generate additional 4,300 MW [20]–[25]. The reactor plays an important role and treated 

as the heart of NPP. NPP uses isotopes of Uranium (U-235 & U-238) as fuels to generate 

heat through a fission reaction and produces steam that is used to run the turbine and 

hence converts the atomic energy into electricity. A protective shield surrounds the 

nuclear fission results in radioactivity and hence the reactor core. This containment 

absorbs radiation and prevents radioactive material from being released into the 

environment. Also, many reactors are equipped with a dome of concrete to protect the 

reactor against both internal casualties and external impacts such as flight collision or 

terrorist attack.  The nuclear fuel cycle consists of three main stages viz. (i) front end, 

deals with mining, milling, uranium conversion, enrichment and fabrication of fuels, (ii) 

service period, when fuels are put into reactor in operation and (iii) back end, where it is 

necessary to safely manage the spent nuclear fuel (SNF), they are either re-processed or 

desposed of. 

During the early stage of operation, the nuclear fuels, after reaching their service 

life (referred as half-life period) were drawn out of the reactor core and put into the water 

pool (termed as Spent Fuel Pool) built near the reactor. Water acts as a coolant as well as 

prevents the radiation from the SNF into the atmosphere. The SNF after spending 10 to 12 

months inside the pool were again brought out and sent for reprocessing and made ready 

to go into the reactor again. This process was continued for many decades, till the end of 

the 70’s and early 80’s of the twentieth century when the fuel pools near reactor site were 

overwhelmed their capacity, and the reprocessing of fuels was prohibited all over the 

world. A new problem was raised in the context of the SNF. The question was; How and 

where to store the SNF?  

https://en.wikipedia.org/wiki/Radionuclide
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The only answer available to the question is the dry storage of SNF. In this 

process, the SNF after cooling down in the fuel pool were taken out and kept inside a 

container, suitable enough to absorb the residual heat and to contain the gamma radiation 

from the fuels cells, followed by transportation to desired geological sites for disposal and 

storage. These containers were called as Spent Nuclear Fuel Casks. The geological sites 

for disposal of SNF were carefully chosen so that if accidentally the casks fail to perform 

its objective and radiation leakage happens, it should not affect the leaving being and the 

environment. Hence, these sites were selected such that it should be far away from the 

residential areas. Till now not a single country has the desired disposal site according to 

the Nuclear Regulatory Commission (NRC). Radiation from nuclear waste may cause 

death of human body cell, genetic mutation, cancer, leukemia, birth defects, and disorders 

of the reproductive, immune and endocrine systems. Also after the 9/11 attack on World 

Trade Centre (WTC) in the USA, the world came to know the capacity of terrorism and 

focus was also shifted towards the protection of disposal sites as well as SNF casks. These 

casks are transported through public route to the disposal sites and hence care must be 

taken that it should have enough radiation leakage resistance. During transportation by 

road or rail line accidents may happen and catch fire leading to failure of casks depending 

on the crash severity and temperature generation. Considering all these aspects of 

transportation and safe disposal issues in hand, the major requirements for cask 

fabrication are: 

1. The cask should have sufficient dynamic toughness so that it can withstand severe 

accidental condition as well as terrorist attacks, without failure and radiation leakage.  

2. The cask material should possess high thermal conductivity to sustain severe fire 

accidents and heat generated from the spent fuel. 

3. The dynamic fracture toughness cannot be neglected as it determines the rate of crack 

propagation, initiated due to various loading conditions; hence the cask material 

should possess adequate fracture toughness. 

Since the late 1970’s; research has been going on to obtain a suitable material for 

the fabrication of SNF cask. Efforts were made all around the world and especially states 

with high capacity and usage of nuclear power, in the direction of development of not 

only material properties but also policies for the nuclear waste disposal and storage. 
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Table 2.1: Nuclear power plants worldwide, in operation and under construction, IAEA as of 1st 

June 2015 [21]. 

Country 

 

In Operation Under Construction 

Number 

Electricity                    

Net Output 

(MW) 

Number 

Electricity                   

Net Output 

(MW) 

Belarus - - 2 2.218 

United Arab 

Emirates 
- - 3 4,035 

Armenia 1 375 - - 

Iran 1 915 - - 

Netherlands 1 482 - - 

Slovenia 1 688 - - 

Brazil 2 1,884 1 1,245 

Bulgaria 2 1,926 - - 

Mexico 2 1,330 - - 

Romania 2 1,300 - - 

South Africa 2 1,860 - - 

Argentina 3 1,627 1 25 

Pakistan 3 690 2 630 

Finland 4 2,752 1 1,600 

Hungary 4 1,889 - - 

Slovakian 

Republic 
4 1,814 2 880 

Switzerland 5 3,333 - - 

Czech 

Republic 
6 3,904 - - 

Taiwan, 

China 
6 5,032 2 2,600 

Belgium 7 5,921 - - 

Spain 7 7,121 - - 

Germany 9 12,074 - - 

Sweden 10 9,651 - - 

Ukraine 15 13,107 2 1,900 

United 

Kingdom 
16 9,373 - - 

Canada 19 13,500 - - 

India 21 5,308 6 3,907 

Korea, 

Republic 
24 21,667 4 5,420 
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China 27 23,025 24 23,738 

Russian 

Federation 
34 24,654 9 7,371 

Japan 43 40,290 2 2.650 

France 58 63,130 1 1,630 

USA 99 98,639 5 5,633 

Total 438 379,261 67 65,482 

 

Fig. 2.1: Nuclear power plant status worldwide as on 1st June 2015 (IAEA 2015) [21]. 
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Fig. 2.2: Schematic diagram for working principle of nuclear power plant [25]. 

 

2.1.1. Types Of SNF Cask   

 Spent fuel transportation casks are sturdy containers that provide protection, 

containment, shielding, heat management, and nuclear criticality safety for the spent fuel 

contained within. Spent fuel transport casks are designed in a variety of sizes and 

configurations depending on the characteristics of the spent fuel to be carried. The very 

first caskwas made following a sandwich structure consisting of thick-walled stainless 

steel cylinder as inner and outer shell and Lead or depleted Uranium that act as a gamma 

shield, in between the shells. This was the most common type structural configuration for 

a spent nuclear fuel cask. The outer cylinder contains hydrogenous materials like 

polyethylene and protects the containment from leakage of gamma radiation. The spent 

fuel casks are employed with detachable external protective structures called impact 

limiters that reduce the mechanical forces act on the package under accident conditions. 

The interior spaces of the cask are filled with Helium to enhance the heat transfer and to 

build a non-oxidizing environment for the spent fuels. However, some designs use a 

monolithic thick-walled steel cylinder that provides both gamma shielding and structure 

integrity.  
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 The other type of design uses brittle ceramic materials like (DUO2, Al2O3, Gd2O3, 

etc.) embedded in a strong, ductile steel metal matrix with a high thermal conductivity, 

thus combining the best properties of both materials. These cermet type casks offer greater 

capacity for same gross weight of cask, greater capacity for the same external dimension, 

improved resistance to assault and superior repository performance. The addition of 

depleted uranium dioxide to the cermet increases shielding density and effectiveness and 

capacity of the cask for a given weight and size. The low-densityaluminum oxide is added 

to the upper and lower section of the cask to reduce the cask weight and increases the 

assault resistance when used in appropriate locations. Repository performance may be 

improved by compositional control of the cask body to (1) create a local geochemical 

environment that slows the long-term degradation of the SNF and (2) enables the use of 

DUO2 for long-term criticality control. The benefits of cermet cask are achieved by 

controlling the composition, volume fraction and particle size of the ceramics [26]–[28]. 

The SKODA JS offers a double barrier type SNF cask consisting cast manganese steel 

body (260mm thickness) and CrNi austenitic steel canister containing spent fuels welded 

to the body.From the point of view of achieving advantageous brittle-fracture and plastic 

properties compared to other materials the casting material of the cask body is tested first 

[28]. Similar to these cermet type casks, Germany and Russia are employing composite 

structures consisting steel-concrete and austenitic stainless steel type design [often called 

multi-canister overpack (MCO)], with welded joints [29], [30]. On the other hand, the 

Korean NPP uses basket type design to incorporate a large amount of SNF and reduce the 

transportation and fabrication cost as well as less space utilization [31]. Despite all these 

benefits provided by composite structures, the primary challenge is to develop low-cost 

fabrication methods for cermet composition.  
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(a)                                                                     (b) 

Fig. 2.3: (a) Generic Truck Cask for Spent Fuel (cutaway view), (b) Generic Rail Cask for Spent 

Fuel (cutaway view) [32] 

 

   

 

(a)                                                            (b) 
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(c) 

Fig. 2.4: Different types of cask design. (a) Steel-concrete cask, (b) Cermet type cask,                                          

(c) Basket type design [28], [31] 

 

2.1.2. Property Requirements For SNF Cask  

The material selection for fabrication of transport cask for radioactive materials 

involves careful selection that depends on the type of radioactive material to be 

transported. These container designs need to meet certain standards regardless of the 

fabrication process, and agreed by various national and international bodies, to protect the 

person involved, and those who may come across, till the whole process of transportation 

is accomplished. The transportation of used nuclear fuel requires primarily good shielding 

against radiation and thermal conductivity, sufficient dynamic fracture toughness and 

excellent impact resistance. The IAEA Safety Regulations for the Safe Transport of 

Radioactive Material (2009 Edition) [33], articulates various provisions regarding the type 

of radioactive material and its transport container mentioning the acceptable level of 

radiation under different transport and environment conditions. 

The transport containers should be designed in such a way that as far as practicable, 

its surface should prevent collection and retention of water, free from projecting features 

and can be decontaminated easily. Furthermore, the attachments on the surface should 

only be necessary for supporting the mass of the container, and the package can easily and 

safely be transported.  The container materials shall be chosen so that, those are physically 

and chemically compatible with each other and the radioactive content.  The behavior 
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under irradiation condition and ambient pressure and temperature, need to be taken into 

account because they can deteriorate the efficiency of the container.  The container should 

withstand the effects of acceleration, vibration which may arise under different transport 

condition without affecting the performance of closing devices or the integrity of the 

package as a whole. Additionally, if the containments are to be sent by air transport, then 

care must be taken so that the surface temperature should not exceed 50°C at an ambient 

temperature of 38°C. The container shall have the capacity to withstand, without leakage, 

an internal pressure difference of not less than the maximum normal operating pressure 

plus 95KPa. However if the containment, in any case,is exposed to an ambient 

temperature ranging from -40°C to +55°C, the integrity of it should not be damaged. 

Portable tanks may also be used for transport of radioactive materials, which has to meet 

the above requirements and additionally capable of withstanding a working pressure of 

265KPa and should be designed to prevent more than 20% increase in radiation level that 

may be generated from static and dynamic stresses during general transport condition. 

  

 In addition to above criteria, the containers traveled by rail/road transport, certain 

mechanical properties such as strength, toughness, and heat resistance capacity of 

container material play an important role. The design should meet the requirements those 

may arise from accidental conditions. If the container meets these accidental conditions, in 

any case, it should not fail to fulfill its objective of preventing damage to the nuclear fuels 

and/or leak radiation to the environment. In view of this, specific testing methods were 

established by the IAEA, which should be followed before putting the container into 

actual service. The mechanical test consists of three different drop tests so as to cause 

maximum damage to the container. In drop I, the specimen is dropped from a height of 

9m., measured from the lowest point of the specimen to the upper surface of the target. 

The target should be flat, horizontal and the surface character should be such that any 

increase in its resistance to displacement or deformation upon impact by the specimen 

would not significantly increase damage to the specimen. The second drop test comprises 

of dropping the specimen onto a bar rigidly mounted and perpendicular to the target. A 

height of 1m., from the point of impact to the upper surface of the bar shall be maintained. 

The bar should be cylindrical and shall of mild steel of diameter of 15.0 ± 0.5 cm and 20 

cm long. The upper end of the bar onto which the specimen will be dropped shall be flat 

and edges rounded off to a radius below 6mm. In the 3rd drop, a dynamic crushing test 

should be carried out by dropping a mass of 500kg from 9m., onto the specimen so that 
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the specimen suffers maximum damage. The mass should be of solid, mild steel plate of 

1m×1m and fall in a horizontal attitude. This is followed by mechanical testing thermal 

and water immersion test is carried out to assess the integrity of the container. 

 

 The container should be in thermal equilibrium conditions of an ambient 

temperature of 38°C and subjected to the design, maximum rate of internal heat 

generation within the package from the radioactive material. The thermal test comprises 

of two methods. In first method specimen is exposed to a thermal environment that 

provides a minimum average flame emissivity coefficient of 0.9 and temperature of at 

least 800°C, for 30 minutes. The test involves fully engulfing of the specimen with a 

surface absorptivity coefficient of 0.8 or the value that of the packaging material. The 

second method comprises of subjecting the specimen to an ambient temperature of 38°C 

and subjected to the design, maximum rate of internal heat generation within the package 

from the radioactive material for sufficient period to ensure that the specimen temperature 

is decreasing or approaching initial steady state condition from everywhere. The specimen 

should not be cooled artificially, and the combustion should proceed naturally. The water 

immersion test consists of immersion of specimen under a head of 15m least,for not less 

than 8 hours. An external pressure of at least 150KPa shall be maintained. 

 

2.2. Spheroidal Graphite Cast Iron … Why? 

2.2.1. Emergence & Advantages of SG Cast Iron 

 Iron castings have been there in our society and produced for weapons of war, art 

and culture, somewhere symbolizing strength & toughness of human being and many 

more functional forms, for more than 2000 years and still have an influence on our day to 

day life. The iron industry in a sense produces many usual and key products, and most of 

them are additionally processed, assembled, and then incorporated as an integrant of 

various machines, equipment and consumer items. The Fe-C binary system is broadly 

divided into two parts, i.e., steel and cast iron, on the basis of % of C. The first part is steel 

containing up to 2.1% of Carbon diffused into pure iron, whereas the other one has 2.1% - 

6.67% of Carbon, and known as cast iron. Cast iron is not a single alloy; rather it is set of 

different alloys consisting white cast iron, gray cast iron, and malleable cast iron, which 

are differentiated on the basis of graphite orientation in the matrix. White iron and gray 
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cast irons are brittle due to the presence of different carbides and flake-like shaped 

graphite respectively. The flaky graphite acts as stress raiser [Fig.2.6 (a)] and helps in 

premature localized plastic flow leading to the brittleness of gray cast iron. Unlike these, 

the malleable cast iron is carbidic and has to undergo a “malleablizing” or “annealing” 

heat treatment that converts the carbides into roughly spherical graphite form referred as 

“temper carbon.” Due to this spherical form of graphite, the malleable iron becomes more 

ductile compared to white or gray cast iron, but the carbide formation at the time of 

solidification causes shrinkage resulting the need for more feeder material; 

consequentially increasing the production cost. 

Despite the fact, there was much progress achieved in the manufacture of cast iron, 

at the American Foundrymen’s Society (AFS) in 1943 J.W. Bolton made a statement, 

"Your indulgence is requested to permit the posing of one question. Will real control of 

graphite shape be realized in gray iron? Visualize a material, possessing (as-cast) graphite 

flakes or groupings resembling those of malleable iron instead of elongated flakes" [34].  

In response to this statement in 1948 at AFS convention Henton Morrogh of the British 

cast iron research association publicize their successful production of spherical nodules in 

gray cast iron via the addition of small amount of cerium. After Morrogh’s declaration, 

the International Nickel Company disclosed their development, starting with Millis' 

discovery in 1943, of magnesium as a graphite spheroidizer. The International Nickel 

Company received US patent 2,486,760 On October 25, 1949,  assigned to Keith D. 

Millis, Albert P. Gegnebin, and Norman B. Pilling. 
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(a)                                                                       (b) 

Fig. 2.5: (a) Micrograph of Gray Iron showing the crack-like behavior of graphite flakes [35],              

(b) Micrograph of Ductile Iron showing how graphite spheroids can act as "crack-arresters" [36]. 

 Over the years from the emergence of  SG cast iron, it has shown great 

improvement in terms of properties through alloying addition and heat treatment 

processes resulting evolution of desired microstructure for numerous applications. The 

major applications include agricultural equipment, earth moving machinery, pipes, 

automotive components, aerospace applications, energy sectors and power production, 

special engineering castings, decorative castings, hydro applications and many more. 

Because of the spherical graphite particles SG cast iron possess good ductility without 

compromising strength and as it is easily castable, it is widely preferred over other ferrous 

cast materials. A comparisonal data of properties of SG cast iron with other cast ferrous 

materials is presented in Fig. 2.7. Although every material has some individual properties 

which make them preferable in respective applications, the versatility of SG cast iron 

regarding mechanical properties and higher performance at a lower cost often attracts 

manufacturers. SG cast iron offers the designers to choose the highly ductile material, 

with grades having more than 20% ductility and tensile strength exceeding 900 MPa. 

Austempered Ductile Iron (ADI) even offers the strength of about 1600MPa for thin wall 

casting. Furthermore, most industrial casting like steel and malleable iron requires 

additional attached reservoirs to compensate the shrinkage during solidification. On the 

other hand, the formation of spherical graphite causes an internal expansion of SG cast 

iron, and as a result, it can be cast without any significant shrinkage defects leading to the 

reduced requirement for additional material and increases the productivity of SG cast iron.   
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Fig. 2.6: Comparison of the engineering characteristics of  SG cast iron versus competitive ferrous 

cast materials. [37] 

2.2.2. Types and Grades of SG Cast Iron 

 SG cast iron can be of different types and they are generally named according to 

their microstructure. Each member has unique typical strength, ductility, and surface 

characteristics, but they all share the nearby spherical graphite embedded in the matrix. 

Ferritic SG cast iron consists of graphite spheroids lodged into ferrite matrix, resulting in 

high ductility, low-temperature toughness, and low strength. It can be produced directly at 

the time of casting, but additional annealing treatment is also provided to achieve more 

ductility and uniform distribution of matrix without residual stress. The pearlitic grade of 
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ductile iron has spheroids of graphite in the matrix resulting higher strength and wear 

resistance than that of the ferritic grade. One of the most common grades, which can be 

produced by casting is the ferritic-pearlitic SG cast iron that has properties intermediate 

between ferritic and pearlitic grades with excellent machinability and lower production 

cost. These are the grades that can be directly produced by casting methods and 

controlling the rate of cooling during solidification. However, the addition of alloying 

elements such as Cu, Ni, Mo,etc. and application of heat treatment can change the as-cast 

microstructure into martensitic, bainitic (upper and lower) and austenitic matrices. The 

tensile strength values for different matrices have been presented in Fig. 2.8. 

Fig. 2.7: Microstructure and tensile strength of various types of SG cast iron. [38] 

 Concerning the need and requirements of design engineers and foundries, a set of 

standards is created specifying the properties of SG cast iron, that simplifies the selection 

and purchasing appropriate grades of material for desired application. Once the bid is 

made according to the specified standard, the foundry is responsible for the casting to 

meet or exceed the properties regardless of the casting method, unless until specifically 

mentioned by the designer. The SG cast iron standards are defined by American, 

European, Japanese and national/international bodies like ASTM, SAE for promoting and 

ease of availability of design engineers. There are five different standards set by ASTM, 

out of which ASTM A536 is the most preferable and widely used grade. With the 

formation of European Community, the EN (EuroNorm) standards becoming increasingly 
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demanded specification as compared to other standards of national and international 

specifications. All the standards are specified based on respective mechanical properties 

except austenitic and austempered SG cast iron.  

Table 2.2: Various standards for SG iron design engineers [39]. 

Country Standard Grade 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

% 

Elongation 

Impact 

Energy 

(J) 

Matrix 

Structur

e 

North 

America 

ASTM 

A536 

60/40/18 414 276 18   

65/45/12 448 310 12   

80/55/06 552 379 6   

100/70/03 689 483 3   

120/90/02 827 621 2   

SAE J434 

D400 400 275 18 120 F 

D450 450 310 12 80 P+F 

D500 500 345 6 54 P+F 

D550 550 380 4 40 P+F 

D700 700 450 3 27 P 

D800 800 480 2  
P or 

TM 

ASTM 

A897 

850/550/10 850 550 10 100  

1050/700/7 1050 700 7 80  

1200/850/4 1200 850 4 60  

Japan 
JIS 

G5502 

FCD 350-

22 
350 220 22 17  

FCD 400-

18 
400 250 18 14  

FCD 400-

15 
400 250 15   

FCD 450-

10 
450 280 10   

FCD 500-7 500 320 7   

Europe 

 

EN 1563 

EN-GJS- 

350-22 
350 220 22   

EN-GJS-

400-18 
400 240 18   

EN-GJS-

450-15 
450 250 15   

EN-GJS-

450-10 
450 310 10   

EN-GJS-

500-7 
500 320 7   

EN 1564 

EN-GJS-

800-8 
800 500 8   

EN-GJS-

1000-5 
1000 700 5   

EN-GJS-

1200-2 
1200 850 2   

EN-GJS-

1400-1 
1400 1100 1   
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South 

Africa 

SABS 

936/937 

SG 38 375 245 17  F 

SG 42 410 275 12  F 

SG 50 490 345 7  F & P 

SG 60 590 390 4  P 

SG 70 685 440 3  P 

SG 80 785 490 2  P/TM 

SABS 

1656 

ADI 850 850 550 10 100  

ADI 1050 1050 700 7 80  

ADI 1200 1200 850 4 60  

ADI 1400 1400 110 1 35  

ADI 1600 1600 1300    

 

F - Ferrite, P - Pearlite, TM – Tempered Martensite 

ASTM A897, EN 1564, SABS 1656: Austempered grade  

 

2.2.3. SG Cast Iron as SNF Cask 

Since the late 70’s and early 80’s of the twentieth century, when transportation and 

dry storage of spent nuclear fuel came into the picture, SGCI was considered the 

appropriate candidate. Use of SGCI offers near net final shape monolithic casting without 

shrinkage in product dimension, wide range of property variation, elimination of welds in 

the containment boundary and above all its cost of fabrication over other types of designs 

and materials. These benefits draw quite an interest to study the behavior of SGCI under 

the specified conditions, for fabrication and to be used for nuclear material transport and 

storage casks.  

In 1983, Lawrence Livermore National Laboratories prepared a report which was 

reviewed by Transnuclear, Incorporation addressing the design criteria for ductile failure 

and developing criteria for preventing brittle failure in SG cast iron shipping containers in 

accordance with U. S. Nuclear Regulatory Commission (NRC) guide [40]. In the report, it 

was recommended that a safety factor of 4 for stress intensity factor on minimum ultimate 

tensile strength and a ductility value high enough should be considered for SGCI material 

to be used as a nuclear fuel transport cask fabrication. Also, the fracture toughness of 37 

Ksi√in (40.65 MPa√m) is the most appropriate value to be considered for designing the 

ductile cast iron spent fuel cask. Schwartz [41], in the preceding year, proposed similar 

conditions for SG cast iron to be used as nuclear fuel cask.  Mochizuki & Matsushita [42] 

conducted experiments to evaluate the structural integrity of spent nuclear fuel cask 

fabricated with an unalloyed ductile iron equivalent to FCD 37 in the JIS Standard. The 

fracture toughness value of ferritic ductile iron was found to be very low, but analytically 
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it was confirmed that nodular cast iron containers are strong enough to withstand an 

impact load during drop tests if the applied stresses are less than the yield stress. Also, the 

critical flaw sizes associated with the yield stress were within the non-destructive 

inspection capabilities. Compared to steel, cast irons have shown brittle behavior under 

similar loading conditions. However, SGCI has more ductility compared to other cast 

irons due to the spherical shape of graphite, which prevents the stress concentration effect 

and restricts the path of crack propagation. Over the years SG cast iron with full scale or 

1:2.5/1:3 scales of cask dimension, the safety against brittle failure under severe 

accidental conditions was being studied, following the test parameters recommended in 

the IAEA regulation [43]–[45]. It was reported that to get satisfied as a candidate material 

for nuclear fuel transportation and storage cask SGCI need to be ferritic grade which 

provides better elongation property along with strength. In addition to that, the tensile 

strength should be maintained 50% of the proof stress and a fracture toughness value of 

55MPa√m.  In order to avoid testing of prototype casting which involves an enormous 

amount of money,  finite element methods can be approached for the study. Brynda et al. 

[28] reported the major criterion for fabricating SNF transportation and storage casks. 

They addressed three major considerations: the structural integrity of the cask, damage 

due to radiation, and resistance to corrosion during loading of the SNF and under the 

climatic conditions at the storage sites. Ductile iron and austenitic corrosion-resistant 1% 

boronated Cr-Ni steel were used for cask fabrication (1:2.5 scale) and were tested using a 

9m drop impact test on the edge of the casks dropped onto a flat base and a 1m flat-drop 

impact onto a spine protruding from a flat base. They concluded that both ductile iron and 

the austenitic corrosion-resistant 1% boronated Cr-Ni steel are suitable for the fabrication 

of SNF casks and satisfy the specified requirements. Teng et al. [46] and Jaksic and 

Nilsson [47] used an MSC (MacNeal-Schwendler Corporation)/Dytran three-dimensional 

program and continuum mechanics approach to solving this problem via analytical 

methods. Their test procedure consisted of a 1m drop impact test onto a flat undeformed 

concrete base and onto a steel bar to investigate the dynamic, nonlinear behavior of SGCI 

full-scale casks. The obtained results were in good agreement with the physically 

investigated results.  

 

In the year 2005, SG cast iron was included in the ASME standard for material 

properties for spent nuclear fuel cask. The primary reason behind is that SGCI offers 
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homogeneous matrix structure and less production cost with better mechanical properties 

over other type of materials designed to be used for the SNF cask fabrication.  The 

required properties of ferritic ductile iron to be used under low temperature conditions are 

specified in ASTM A874/874M standard. It is recommended that to be used as nuclear 

fuel transport cask or for applications concering service in -40°C, the microstructure of 

SGCI shuold be ferritic with no massive carbides. In addition to that the graphite must 

belong to type I and type II i.e., the nodularity value should be higher than 90% and the 

maximum percentage of carbon equivalent be 4.5. Tensile strength, proof strength and 

elongation should have minimum value of 300MPa, 200MPa and 12% respectively. 

During the last two decades number of works had been carried out and reported following 

different experimental as well as analytical techniques of investigation, to understand and 

enlighten the behsvior of SGCI under various static and dynamic loading paradiagms 

[48]–[53]. 

 

2.3. Effect of Alloying Element on Morphological & 

Mechanical Properties of SGCI 

 To achieve desired properties for a particular application, control over matrix 

structure and morphological aspects is necessary, and that can be achieved by controlling 

processing parameters and the addition of alloying elements. The addition of alloying 

elements influences the mechanical properties by changing the cast matrix microstructure 

from ferritic to pearlitic, ferritic/pearlitic and/or austenitic depending upon the alloy 

composition. If the processing parameters such as tapping temperature and cooling rate 

are kept constant, the final matrix bends towards the matrix influencing element. 

Incorporation of Ni from 12-38% (max.), a highly ductile material of austenitic SGCI is 

obtained. On the other hand, a higher Si amount results in ferritic matrix and that of Cu 

and Mn lead to the formation of harder pearlitic matrix. A proper control of ferrite and 

pearlite influencing elements results in a mixed ferritic/pearlitic structure having 

properties intermediate between ferritic and pearlitic grades of SGCI. 

2.3.1. Effect of Base Composition  

 Silicon is the most vital element in the production of SGCI and influences the 

solidification process in conjunction with Carbon. An increase of 1% Si content shifts the 
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eutectic composition towards the left (approximately 0.30% of Carbon), resulting in low 

solidification temperature. With increasing Si content the eutectoid Carbon content is 

lowered, and hence transformation occurs over a broadening range. Silicon is a graphitizer 

and ferrite promoter, hence reduces the strength properties of ferritic ductile iron, which if 

needed, further can be improved by the addition of desired amount of Nickel. Increased 

Silicon content increases the carbon equivalent (%CE), hence prevents the precipitation of 

carbides and allows the formation of more free form of carbon leading to increased nodule 

count and decreased hardness and UTS [54]–[57]. On the other hand, for austenitic grades 

increase in Si content increases the tensile strength & 0.2% yield strength [54]. The 

substantial influence of silicon on the ductile-brittle transition temperature of ferritic 

Ductile Iron is shown in Fig. 2.8 [58]. From the figure, it is clearly understood that to 

achieve optimum low-temperature toughness, the amount of Si should be maintained as 

low as possible. Fully ferritic carbide free ductile iron production needs high purity charge 

materials, proper holding and casting practice and highly effective inoculation for 

maximum nodule count. Higher amount of Silicon leads to a reduction in low impact 

toughness, increased DBTT and decreased thermal conductivity. Si is held below 2.2% 

when producing the ferritic grades and between 2.5% and 2.8% when producing pearlitic 

grades [59], [60]. 

 

 
 

Fig. 2.8: Variation of carbide percentage (a) and nodule count (b) in ductile cast iron with Silicon 

content [55] 
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Fig. 2.9: Influence of silicon content on the v-notched Charpy energy of ferritic Ductile Iron [58]. 

 

 Manganese stabilizes carbide very strongly at eutectoid graphitization and 

increases the amount of combined carbon. Excess Mn has little effect on solidification and 

only weakly retards primary graphitization. The presence of a correct amount of Mn forms 

manganese sulfide and reduces the proportion of combined carbon by removing the effect 

of sulfur [36]. Being a mild pearlite promoter, it influences only a few properties like 

proof stress, hardness to a small extent. Mn retards the onset of the eutectoid 

transformation, decreases the rate of diffusion of Carbon in ferrite and stabilizes cementite 

(Fe3C). However, the problem here is the embrittlement caused by it so that the limiting 

range would be (0.3-1.01) [59]–[62]. Mn is held between 0.4% and 0.6% when making 

pearlitic grades and below 0.3% when making ferritic grades and can be achieved by 

dilution with high purity pig iron to avoid pearlite and carbide formation [60], [61]. 

Higher Mn content leads to increased pearlite content resulting in increased strength and 

hardness and decreased elongation. However for a ferritic grade of SGCI Mn dissolved 

into the ferrite matrix and improves strength [63]. Use of higher Mn level is not preferred 

as it causes segregation at the grain boundaries that causes grain boundary carburet and 

creation of secondary phase along the boundaries leading to degradation in plasticity in 

SG cast iron. In combination with Ni, higher manganese content can stabilize austenite 

and increases carbide by depressing the solidification cooling curve encouraging graphite 

to segregate at a lower temperature consequentially resulting lower generation of free 

graphite and reduced ductility and impact toughness [64]–[67]. 
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Fig. 2.10: The relationship between tensile strength, elongation, average hardness and pearlite 

content versus Mn content (0.05% Cu) [63] 

 

 Sulfur affects the form of carbon in a manner which is opposite to that of Si. The 

higher the S content, the higher will be the amount of combined carbon, thus tends to form 

a hard and brittle matrix. An excessive amount of S will increase the tendency of dross 

defects more than 0.015% promote the formation of quasi-flaky graphite [35, 43]. The 

addition of S is done for better machinability, but it is kept around 0.009%, and maximum 

0.015% as the larger additions of Sulfur may cause the hot (red) shortness[59]. Sulfur is 

an active interfacial element and has less solid solubility in austenite, therefore, gets 

enriched in liquid melt and at the freezing point. The presence of S encourages the 

eutectic graphite to branch frequently resulting in formation of chunky graphite [68]. 

 

 Phosphorus combines with iron to form iron phosphide and produces a ternary 

eutectic with cementite and austenite. The ternary eutectic is known as steadite, which is 

relatively brittle and tends to form a continuous network outlining the primary austenite 

dendrites resulting lower toughness. It increases fluidity and extends the range of eutectic 

freezing, thus increasing primary graphitization when Si content is high. Incorporation of 

P above 0.05% can produce internal defects. It also causes embrittlement of iron, 

increases the ductile-brittle transition temperature, promotes galvanizing and temper-

embrittlement. P often segregates to grain boundaries and produces carbide/phosphide 

complexes, hence needs to be maintained as low as possible. P is kept intentionally low as 

it causes cold shortness and so the properties of ductile iron will be degraded [59]. 
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Magnesium is used as nodularizer and responsible for spherical form of graphite, 

but at lower level chunky graphites are formed. Like Sulphur, it is also an interfacial 

element and has less solid solubility in austenite. Magnesium makes the eutectic graphite 

grow with screw dislocations along the crystal orientation, giving the eutectic graphite 

growth characteristic into a spherical form. The lower level of Mg counteracts the surface 

activity of Sulphur and Oxygen promoting the formation and growth of chunky graphite 

particles. Due to the segregation effect when Magnesium content becomes high enough 

the graphite shape converts to spherical form [68]. 

If these elements are controlled at proper levels, then the only remaining variable 

is the shape, size, and distribution of graphite nodules that influence the mechanical 

properties of as-cast SGCI. However besides the base composition the properties of SGCI 

of any type and grade can be developed by incorporating different alloying elements 

separately or in combination. 

2.3.2. Effect of Alloying Element   

Chromium prevents the corrosion by forming the layer of chromium oxide on the 

surface and prevents the further exposition of the surface to the atmosphere.However, as it 

is a strong carbide former, it is not required in carbide free structure. In general it is kept 

around 0.05%. It must be kept <1% in GGG-50 grade [59]. 

 

Nickel is used for strengthening ferrite in additionto Si leading to increased UTS 

without compensating ductility and impact values. It is usually added in traces due to high 

cost and also to avoid the embrittlement of matrix (if it exceeds 2%) [59]. Increased Ni 

content decreases the ductility for austenitic grade SGCI [54]. Nickel is known to shift the 

transformation temperature range, i.e. the effect produced at higher temperatures for 

nickel–free iron is attained at lower temperature ranges when it is alloyed with nickel. 

Nickel has the ability to stop the precipitation of secondary carbides in the upper bainitic 

range. Uma et.al [69] studied the effect of toughened austempered SG cast iron with 

increasing Ni content up to 2.5%. It is reported in their work that, with increasing Ni 

content pearlite content is increased in the as-cast matrix. Also, the retained austenite gets 

stabilized in the final microstructure. It is increased due to the fact that Ni concentrates in 

the austenite phase in the (α+γ) region, resulting in increased impact toughness and wear 

resistance. When subjected to austempering treatment, SG cast iron with Ni content higher 

than 0.5% slows down the bainitic reaction and causes the formation of martensite at the 
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austenite cell boundaries on cooling [70]. Although the addition of Ni promotes the 

stabilization of austenitic matrix in SG cast iron, it accelerates the formation of pearlite by 

shifting the knee of transformation diagram to higher time intervals. Thus, the eutectoid 

transformation of ductile cast iron in cooling austenite has resulted in a significant amount 

of pearlite structure and decreasing nodule count and increased yield and tensile strength 

and hardness and decreased ductility and impact toughness [71].  

 

 
 

Fig. 2.11: Comparison of nodular graphite of the Co & Ni alloyed SG cast irons: (a) nodularity 

and (b) nodule count [71]. 

 

 
 

Fig. 2.12: Comparison of constituent content in the microstructure of the Co & Ni alloyed SG cast 

irons: (a) graphite, (b) ferrite and (c) pearlite [71]. 

 

Copper is a strong pearlite promote and is undesirable in ferritic grade. It 

increases the UTS, 0.2% yield strength and hardness without an embrittlement in the 

matrix. In total Cu is kept between 0.4-0.8%[57], [59], [60]. Along with promoting, it also 

refines the slice distance of pearlite in the eutectoid transformation period and is 

beneficial in stabilizing super-cooled austenite and increases the closing rate of the 
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austenite shell that enables graphite to achieve perfectly spherical shape [63], [70]. Copper 

strengthens the matrix when Mn levels are low.  Unlike Mn, copper has an adverse effect 

on segregation and usually gathers at the interface between graphite and matrix. As a 

result, the diffusion of C is restricted due to a higher concentration of Cu, which leads to 

the formation of perfectly spherical nodules and increased nodule count. The combined 

effect of Cu & Ni, when subjected to austempering treatment, balances the hardenability, 

segregation tendency of Mn and inhibits the transformation of untransformed austenite 

into pearlite during quenching to austempering temperature. An excess amount of Cu 

results in the evolution of copper or copper-rich phase that affects the mechanical 

properties [72], [73]. 

 

 
Fig. 2.13: Relationship between the mechanical properties and the Copper content for different Mn 

level [63]. 

 

Molybdenum is a mild pearlite promoter and forms intercellular carbides 

especially in heavy sections leading to increased proof stress and hardness and also 

improves properties at elevated temperature [59]. Also, Mo segregates at the grain 

boundaries causing decrease in impact toughness. When subjected to austempering or 

ausforming process, increased amount of Molybdenum stabilizes and increases austenite 

and bainite content. At zero Mo content the matrix is mainly bainitic, but with the 

increased amount it also increases the amount of carbide [74]. Mo, with an extreme 

tendency of segregating to the last solidification area, retards the bainite reaction and 

causes the micro shrinkage porosity in the intercellular region. Consequently, the Mo 

alloyed iron offers the lowest impact strength [75]. 
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Rare earth (RE) materials in the nodularizer can eliminate the bad effect of the 

interferential elements like Titanium, Bismuth, Arsenic, Antimony,etc. and reduce the 

content of Si and Mg, which is helpful to avoid graphite degeneration [57]. Ferro et.al [76] 

in their work reported that the graphite structure and nodule count can be improved by a 

well-dosed amount of RE elements in the inoculant composition. This is caused by a large 

decrement in surface free energy at liquid/graphite interface due to adsorption on graphite. 

RE elements also favor the graphite shape due to their neutralization effect of excesses of 

contaminants which cause nodule degeneration. However excess RE metals may cause 

graphite deterioration, especially in heavy castings where they form micro-segregation at 

grain boundaries, which can be neutralized by proper addition of Bismuth. In another 

work by Choi et.al [77] it was reported that addition of rare earth elements influences the 

formation of ferrite at the vicinity of graphite nodules. The addition of RE increases the 

ferrite thickness with increased casting thickness due to slower cooling rate than that of 

castings without RE. However, in the case of thicker casting (40mm), it does not play any 

significant role on ferrite formation. Also increasing RE up to 0.02% there was a 

reduction in nodule size and the nodule size increases with increasing RE from 0.02% to 

0.03%. However, the graphite nodule size is further decreased when the RE content is 

again increased to 0.04%. Furthermore, the presence of RE changes nucleation and 

growth rate by changing the liquidus temperature. The addition of RE appears to increase 

undercooling, as a result of which its nucleation rate is increased, but the growth rate is 

decreased. Rare earth elements like Lanthanum increases nodule count with increasing 

content when La to S ratio is as low as 1, hence increases the strength and ductility. 

However, it does not show any significant development in the nodularity value, which 

remains almost constant with increasing La amount [78].   

2.4. Effect of Heat Treatment on Morphological & 

Mechanical Properties of SGCI 

 Heat treatments are applied to obtain desired properties for any particular 

application to minimize the production cost by avoiding the addition of alloying elements. 

The heat treatments carried out by heating the component up to or above critical 

temperature (referred as austenitizing temperature) followed by different rate of cooling or 

quenching in furnace, air, certain oil or water bath and sometimes even in salt baths, 

leading to transformation of as-cast matrix into various fine or coarse matrix structures. 

The final microstructure obtained depends on the chemical composition, austenitizing 
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temperature and time, cooling or quenching medium and in some cases further reheating 

to certain temperature (referred as second stage transformation temperature) and soaking 

period at that particular temperature. This transformation results in variation of 

microstructure and micro constituents leading to enhanced properties. The application of 

heat treatment is chosen based on the desired property and application of the end product. 

In general, for ferritic or pearlitic grade of SGCI following heat treatments are applied. 

1. Stress Relieving: Castings with complicated shapes requires stress relieving 

treatment to remove stresses generated during the solidification process. This operation 

does not affect the microstructure of as-cast specimen, rather helps grain refinement and 

results in slight increase in toughness and reduction in hardness. It is carried out at 510-

675°C and holding there for 1 hour plus 1hour per 25mm section thickness, followed by 

furnace cooling to 290°C followed by cooling in air to room temperature. 

 

2. Annealing: To achieve maximum ductility and good machinability of SGCI, 

annealing treatment is carried out resulting in fully ferritic matrix with graphite nodules 

embedded within. Annealing can be performed in three different ways. (i) Austenitizing 

the casting to 900-950°C and holding there for 1 hour plus 1 hour per 25mm section 

thickness followed by furnace cooling to 690°C and keeping there for 5 hours plus 1 hour 

per 25mm thickness. After this, the casting is furnace cooled to room temperature. The 

holding time at austenitizing temperature may be up to 8 hours for heavy castings. (ii) In 

the second method after austenitizing the casting is furnace cooled to 650°C by 

maintaining the cooling rate below 20°C/hour, followed by furnace cooling to room 

temperature. In both of these cases, the final matrix obtained is necessarily fully ferritic. 

However, when impact strength is not of great significance and carbides can be tolerated 

in the matrix the 3rd method of annealing is opted. In this case, austenitization is carried 

out at 700°C and hold there for 5 hours plus 1 hour per 25mm section thickness followed 

by cooling to 590°C in a furnace. For superior machinability Mn, P and alloying elements 

such as Cr, Ni and Mo should be kept as low as possible, because these are carbide 

promoters and among them chromium carbides take the longest time to decompose at 

925°C. Annealing usually produces partial decomposition of the pearlite structure and 

improves machinability [60]. Annealing of SG cast iron comprises of a slow process of 

diffusion process, and hence does not have a significant effect on nodule count, but can 

improve the nodularity in the ferritic matrix compared to that of as-cast matrix [79], [80]. 
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This facilitates the removal of thermal stresses involved during the casting process and 

improves microstructure refinement, consequently increases the ductility and toughness 

but reduces the strength and hardness of the component. In the work carried by                   

El-Banna[80], it was reported that with increasing the austenitizing temperature above 

900°C the ferrite volume fraction increases, whereas at temperatures below 900°C the 

ferrite matrix also contain some sub boundary structure. 

 

3. Normalizing: This process is opted when tensile strength and hardness is required 

to enhance.  Casting is austenitized at the temperature range of 870-940°C and soaked for 

1 hour followed by air cooling to room temperature. The temperature and time of soaking 

vary with composition, especially with Si and Cr contents. It is generally followed by 

tempering at 510-650°C and soaking for 1 hour, to achieve required hardness and relieve 

stresses during air cooling. Tempering is also adopted to improve toughness and impact 

resistance in addition to tensile strength. The microstructure after normalizing generally 

contains globular graphite logged in fine pearlite matrix. The martensitic structure can be 

obtained after normalizing treatment in case of alloyed light weight casting. Normalizing 

process involves a faster cooling rate as compared to annealing resulting in increased 

pearlite content and decreased lamellar spacing of pearlite structure. As a result of this, the 

material hardness and strength is increased with increasing pearlite content [81].  

 

4. Hardening & Tempering: After austenitizing the casting is oil quenched 

followed by immediate tempering in the range of 300-600°C for 1 hour plus 1 hour per 

25mm section thickness. To reduce the stress development during quenching, oil is 

preferred as quenchant; however, water and brine solution can also be used. For castings 

with complex shapes, oil is maintained at 80-100°C to avoid quench cracks. The 

microstructure of quenched SGCI appears to be martensitic, with tensile strength ranging 

from 700-1300 MPa, yield strength from 540-880 MPa and elongation of 10-12%. Shaker 

[82] in his work showed that hardening and tempering increases the workability limits 

with increasing tempering temperature. Also it was observed in the work that with 

increasing tempering temperature to 400°C, the martensite broke and formed tempered 

martensitic structure leading to reduced ductility as the embrittlement had already been 

progressed to detrimental degree. Depending on the chemical composition and nodule 

count, tempering treatment in the temperature range from 350-450°C lead to decreased 

hardness and provide ductility coupled with high strength.  
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5. Surface hardening: Pearlitic type SG cast iron are preferred for flame or 

induction hardening as time required for austenitizing is comparatively less. Prior to the 

hardening process, the casting are tempered at 595-650°C for 1 hour plus 1 hour per 

25mm section thickness to remove virtually all the internal stresses. In this case the 

hardness increases to 600-750 BHN.    

 

6. Austempering: It is the most preferred and commonly applied heat treatment for 

SGCI, to achieve the full potential of the material. It offers two different matrix 

microstructures depending upon the processing parameters such as austempering 

temperature and time. A tensile strength value of 1600 MPa with 1% elongation can be 

achieved in thin wall SGCI, whereas lowest strength value of 800 MPa with 16% ductility 

is achieved for heavy castings. However if the as-cast material is defective, then 

austempering lead to the inferior end product and the very advantage of adopting 

austempering will be lost. The casting is austenitized at 850-950°C and then quickly 

transferred to a liquid bath (salt solution) maintained in the temperature range of  235-

425°C, and soaked there for a period of up to 4 hours followed by air cooling to room 

temperature. The final microstructure obtained in this case is bainitic matrix with 

spherical graphite particles embedded within. Due to the bainitic matrix austempered 

SGCI possess good machinability and wear resistance compared to other grades of SGCI. 

However, if high hardness is aimed the material needs to be machined prior to the 

treatment. The bainitic matrix of unalloyed SG cast iron is available either as lower 

bainitic or upper bainitic depending on the austempering temperature and time. The 

austempering process involves isothermal transformation of primary austenite (γ0) into 

acicular ferrite (α) and carbon enriched stable austenite (γc), resulting in an ausferritic 

matrix structure. This ausferritic matrix may contain supplemental martensite, carbide, 

pearlite, and retained austenite when the austempering temperature ranges from 250 to 

350°C, resulting in high strength with lower toughness. However, when the austempering 

time is increased to more than 2hr, the retained austenite disappears from the matrix, 

resulting in increased static as well as dynamic toughness [12]–[15], [17], [83], [84]. 

Furthermore, increasing the austempering temperature to greater than 350°C and the 

austempering time to more than 2 h results in only ferrite (α) and carbon enriched stable 

austenite (γc) being present [85]–[88]. However, for austempering temperatures greater 

than 350°C and time shorter than 2 h, respectively, traces of retained austenite may be 
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present. The resulting matrix at higher austempering temperatures comprises coarser 

ferrite and austenite, leading to a coarse upper bainitic matrix that causes a considerable 

increase in strength along with increased toughness. 

 

 

Fig. 2.14: Dependence of: a) volume fraction Xγ of retained austenite; b) austenite carbon content 

Cγ; c) total carbon austenite content Cγ,tot., and d) untransformed austenite Xγ.α on austempering 

time ta and austenitizing temperature Tγ. [89] 

 

Fig. 2.15: The effect of austempering time on: (a) 0.2% proof stress; (b) UTS and (c) impact 

energy at different austempering temperatures[11]. 
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Fig. 2.16: Influence of heat treatment on the V-notched Charpy Behavior of Ductile Iron [90]. 

 

For the austenitic grade (obtained by adding Ni in the range of 12-30%) the heat 

treatments applied are: 

1. Stress Relieving: Large and complex SG Ni-Resist iron castings should be mold-

cooled to 315°C before shakeout to relieve stresses. When required, stress-relief should be 

performed at 620-675°C. 

 

2. Annealing: Annealing, which softens and improves ductility primarily by the 

decomposition and spheroidization of carbides, should be conducted at 960-1035°C for 1 

to 5 hours, depending on section size and the degree of decomposition and spheroidization 

required. Annealing should be followed by air cooling or furnace cooling if minimum 

hardness and maximum elongation are required. When SG Ni-Resist iron is to be used at 

temperatures of 480°C and above, the casting can be stabilized to minimize growth and 

warpage by holding at 870°C for two hours, followed by furnace cooling to 540°C, 

followed by air cooling to room temperature. To assure dimensional stability for all Types 

of SG Ni-Resist iron, the following heat treatment should be performed: holding at 870°C 

for 2 hours plus 1 hour per 25mm of section size; furnace cool to 540°C; holding for 1 

hour per 25mm of section size, and slowly cool to room temperature. After rough 
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machining, reheating to 450-460°C and holding for 1 hour per 25mm of section size to 

relieve machining stresses followed by furnace cool to below 260°C. 

 

2.5. Effect of Alloying & Heat Treatment on Corrosion 

Behaviour of SGCI 

 Corrosion is an electrochemical process involving the oxidation of metal (the 

anodic reactions) and the corresponding reduction of another material (the cathodic 

reactions). Corrosion may be defined as “the undesirable reaction of a metal or alloy with 

its environment” and it follows that the control of the process may be affected by 

modifying either of the reactants (the metal or the environment). Corrosion is the gradual 

degradation of a material. SGCI components like pipes, windmill casing, nuclear and 

hazardous waste material container,etc., could be affected by environmental corrosion and 

hence reduced mechanical and physical properties leading to a shorter service life. Cast 

iron corrosion products are generally large in volume formed by reaction of the 

environment with ferrous ions that migrate from the underlying metal to the surface. 

Studies performed by Krawiec et.al [91] and Mohammadi et.al [92] confirmed the 

development of Si-rich layer on the surface that decreases the rate of corrosion and 

recommended that Cast irons with higher silicon content or nickel corrosion resistant cast 

irons should opt for components that fail due to corrosion. Ukoba et.al [93] investigated 

the response of SG cast iron to different corrosive environments and suggested that the 

components need to be stored in an air-conditioned environment for protection against 

corrosion failure. Corrosion in SG cast iron initiates at the ferrite-graphite interface and 

localizes near the nodules due to galvanic coupling where graphite nodules act as a 

cathode and accelerates anodic dissolution of the nearby ferrite [94]–[97]. Hence, the 

lesser nodule count means better corrosion resistance [92], [97]. Nickel addition decreases 

the rate of corrosion because it dissolves in the ferrite matrix and improves the electrode 

potential of the matrix that reduces the potential difference between graphite and ferrite 

which results in slowing down the reaction rate. Nickel and Copper addition reduces the 

nodule count and additionally form a compact Cu2O passive oxide film over the alloy 

surface in chloride solution which is mainly responsible for better corrosion resistance. On 

austempering condition alloying elements like Cu, Ni, and Mo improves corrosion 

resistance significantly by reducing nodule count and increasing retained austenite in the 

bainitic matrix [97]–[99]. 
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(a)                                                                        (b) 
Fig. 2.17: (a) A comparison of weight loss of various irons after salt-spray [100],                                                  

(b) Weight loss of uncoated and coated ADIs in 10 Vol.% H2SO4 aqueous solution [100]. 

 

 
 

Fig. 2.18: Graph of corrosion rate vs. time for castings produced by varying chill thickness [101]. 
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3. MATERIALS AND METHODS 

3.1. Processing of Materials 

 Spheroidal graphite cast iron material was melted and cast into (210×65×75) mm3 

ingots using open ladle treatment method at a commercial foundry(L&T Kansbahal, 

India). SG iron was produced by melting Pig iron, steel scrap; coconut charcoal and SG 

iron returns (scraps) in a coreless medium frequency induction furnace. Spheroidization 

was carried using Ferro-Silicon-Magnesium (45.5% Si and 6% Mg) and Ferro-Silicon 

(75% Si) inoculant was used for inoculation process. The molten metal was poured into 

the ladle at 1450°C (tapping temperature) and covered with tundis. After tapping 

commercial Argon gas was punched into the ladle for proper mixing and initiation of 

spheroidization process followed by addition of Fe-Si inoculant. Pre-inoculation, post-

inoculation, and late-inoculation techniques were followed to produce quality ductile iron. 

After inoculation, liquid metal was poured at 1370°C into a sand mold for casting process. 

A similar process was followed to obtain SG iron with eight different compositions. Final 

chemical compositions of the alloys studied are presented in Table 3.1. Carbon equivalent 

was calculated according to the formula as in equation 3.1. The cast test blocks are shown 

in Fig. 3.1. 

     % % 0.33  % 0.33  % 0.4  % 0.027 (% )    (3.1)CE C Si P S Mn       

 

Fig. 3.1: SGCI test block after sand mold casting. 
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Table 3.1: Chemical composition of alloys studied in present research (in wt. %). 

Alloy SG-1 SG-2 SG-3 SG-4 SG-5 SG-6 SG-7 SG-8 

Elements (in 

wt. %) 

C 3.45 3.61 3.59 3.52 3.48 3.48 3.63 3.50 

Si 2.07 2.10 2.01 2.04 2.14 1.93 2.19 2.07 

Mn 0.15 0.20 0.17 0.17 0.14 0.19 0.25 0.17 

S 0.008 0.007 0.009 0.009 0.008 0.008 0.008 0.009 

P 0.024 0.022 0.023 0.022 0.021 0.019 0.033 0.018 

Cr 0.02 0.03 0.01 0.02 0.03 0.03 0.03 0.03 

Ni 0.15 0.47 0.45 0.11 0.46 0.49 0.09 0.44 

Mo 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Cu 0.007 0.009 0.007 0.020 0.010 0.010 0.014 0.009 

Mg 0.043 0.043 0.026 0.042 0.034 0.044 0.042 0.038 

Ce 0.004 0.004 0.006 0.007 0.007 0.009 0.007 0.003 

Carbon Equivalent          

(% CE) 
4.14 4.30 4.25 4.20 4.19 4.12 4.36 4.18 

 

3.2. Heat Treatment Processes 

 The physical and mechanical properties of ductile iron have a direct relationship 

with morphological characteristics such as phase volume fraction, nodularity, and nodule 

count that can be controlled according to desired property requirement and application. In 

general, it is done by either addition of alloying elements like Cu, Cr, Ni, Mo, etc. or 

application of suitable heat treatment processes. The effect of both the methods on 

properties of ductile iron is elaborately discussed in chapter 2. 

 In present work five different heat treatment processes viz. annealing, normalizing, 

quenching & tempering, austempering and intercritical austenitizing followed by 

quenching were employed to obtain different microstructures. The heat treatments were 

carried out with the help of OKAY raising hearth furnace (Max. Temp. – 1700°C) for 

austenitizing. And a pit furnace (Make - Process Instrumentation & Engineering CO., 
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Max. Temp. – 2000°C) for reheating after quenching in the case of austempering and 

quench & tempering heat treatment. For austempering, specimens were quenched in 

KNO3+NaNO3 (1:1 ratio) and in the event of quench& tempering as well as intercritical 

austenitizing process specimens were quenched in mineral oil maintained at 100°C. The 

processes are presented in Fig. 3.2. For every heat treatment process except intercritical 

austenitization followed by quenching treatment (DMS-treatment), the austenitizing 

temperature was kept 1000°C and austenitization time is 90 minutes. The purpose of 

selecting such parameter was to achieve complete austenitization, consequentially 

homogenous matrix at room temperature after subsequent cooling or quenching process. 

Whereas, for DMS-treatment the austenitization temperature was kept at 800°C and 2 

minutes of austenitization time, to avoid complete transformation of parent matrix into 

austenite.   

 

      

(a) Annealing                                                      (b) Normalizing 

      

(c) Quench & tempering                                               (d) Austempering 
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(e) DMS treatment 

Fig. 3.2: Heat treatment processes employed in present study. 

3.3. Optical Microscopic Analysis 

  To understand the correlation between microstructure and mechanical 

property of SG cast iron in as-cast as well as heat treated condition the optical 

microscopic investigation was employed. Standard metallographic sample preparation 

technique was followedprior to conducting the microstructural analysis. Microscopic 

images of as-cast and heat treated specimens of individual alloys were taken, before as 

well as after etching with 2% Nital solution. The polished surfaces of individualalloy in 

as-cast and heat treated specimens were observed under the optical microscope 

incorporated with computer interface with ‘Metal Power’ Image Analyser tool. All the 

unetched specimens were observed at 10X magnification and undergone for quantitative 

metallographic analysis for measuring graphite characteristics such as nodularity and 

nodule count following ASTM E2567-13a Standard. The specimens after etching were 

viewed at 10X magnification except the austempered specimens which were observed at 

20X magnification. The quantitative metallographic technique was also applied to the 

etched specimens to determine the phase volume fractions in respective as-cast and heat 

treated specimens of each alloy. The magnification was set to 10X for each and every 

specimen, before taking the image. A set of 10 clean and appropriate frame was captured 

for each and every specimen. Once the frames were captured, post processing was carried 

out with the image analyser tool. The graphite particles and the respective phases were 

differentiated by Yellow and Blue colour code. The minimum diameter of the nodule was 

measured by “Linear Measurement” option, which was found to be 8 µm, and in the 

analyser tab the minimum nodule area was set to 50 µm2.  all the frames were put for 

Nodularity and Nodule count analysis. Based on the colour code and area of the nodule a 
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computer generated report was obtained for each specimen, mentioning nodularity and 

nodule count for each frame and average value as well 

3.4. Determination of Mechanical Properties  

 After demoulding the ingots were machined into tensile and Izod impact 

specimens according toASTM E8 and E23 − 12c standards respectively (at M/S Steelage 

Engineering Works, Rourkela, India). The tensile and impact specimens are shown in Fig. 

3.2 (a) & (b) and the dimension oftensile specimen is presented in Table 3.2. Tensile 

strength, 0.2% yield strength and %elongation were determined by conducting tension test 

on INSTRON 1195 universal testing machine incorporated with a computer, at a 

crosshead speed of 1mm/min. Vickers hardness (HV) was measured using Vickers 

hardness tester applying 20 kg load. VEEKAY - TL VS4 Izod impact tester was used for 

obtaining the impact energy, applying 50 J hammer blow at a striking angle of 150°.  

Table 3.2: Dimension for tensile specimen according to ASTM E8, FLAT SUBSIZE SPECIMEN 

Grip section 1.25 inch 

Width of grip 

section 
3/8 inch 

Gauge length 1±0.003 inch 

Width 0.25±0.005 inch 

Reduced section 1.25 inch 

Overall length 4 inch 

Thickness 0.005≤t≤0.25 inch 

 

   

(a)                                                                   (b) 

Fig. 3.3 (a): ASTM E8, flat subsize tensile specimen, (b): ASTM E23-12c, Izod impact specimen. 
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3.5. Corrosion Behaviour  

   Corrosion study was carried out by subjecting each specimen to sea water 

immersion under room temperature and pressure for ten weeks following ASTM G52 − 

00 (Reapproved 2011) standard. Weight loss of each specimen is noted down after a 

regular span of time, i.e., 173 hours with the help of Contecmicrobalance (0.001 gm. 

accuracy). The corrosion rate is calculated by equation 3.2, as stated in the Standard 

ASTM G1 − 03 (Reapproved 2011). 

K×W
Corrosion rate =       (3.2)

A×T×D
       

 
 

 

Where: 

K  = 8.76 × 104, A constant (decided on the basis of final unit i.e., mm/year in this case), 

T  = 173  hours, Time of exposure in hours, 

A  = 0.66 cm2, Area in cm2, 

W = Mass loss in grams, and 

D = Density in gm/cm3  

 

3.6. SCANNING ELECTRON MICROSCOPE STUDIES 

To investigate the mode of failure under monotonic tensile and dynamic impact 

loading condition, fractured surfaces for each as-cast and heat treated specimens after 

tensile and impact test is investigated under JEOL - JSM 6480LV, Scanning Electron 

Microscope. 

To investigate the corrosion mechanism as well as role of chemical composition, 

corrosion products were investigated under SEM/EDAX elemental mapping. Two 

different type of products were analysed i.e., the corrosion scale over the surface of 

specimens and the porous product collected after 1st and 12th week of immersion.  

3.7. X-Ray Diffraction Analysis 

X-ray diffraction technique was employed to analyse the crystal structure and 

determination of phases of as-cast as well as heat treated specimens for every alloy 

studied. Rigaku Ultima – IV X-ray diffractometer with filtered Cu-Kα target (λ = 0.1542 
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nm) was used for getting the diffraction patterns by scanning specimens between 40°-90° 

at a rate of 10° per minute. Further, the patterns were analysed by Xpert Highscore and 

JCPDS software to get the crystallographic planes. The volume fraction of austenite and 

ferrite in individual austempered specimens were calculated using the Direct Comparison 

Method, assuming only two phases, i.e., austenite & ferrite were present in the matrix. 

The carbon content in austenite was also calculated using empirical formula stated in 

equation 3.4. 

The corrosion products were also subjected to X-ray diffraction analysis to 

investigate the role of alloying elements in corrosion process during subsequent weeks of 

immersion. The scanning was carried out from 20°-90° at a scanning rate of 10°/minute. 
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4. RESULTS AND DISCUSSION 

4.1 Microstructural Characterization 

4.1.1 Optical Microscopic Investigation 

4.1.1.1 EFFECT OF HEAT TREATMENT  

The microstructure of as-cast and heat treated specimens without etching is 

presented in Fig. 4.1. It can be seen that graphite nodules are lodged into the respective as-

cast and heat treated matrices. Quantitative metallographic analysis was carried out on 

these images to determine the nodularity, and nodule count for individual as-cast and heat 

treated specimens of respective alloys. Even though all the microstructure looks alike but 

the difference in nodularity and nodulecount is clearly noticeable. Apart from the graphite 

nodules and the concerned phase, secondary graphite particles (which are not considered 

as nodules and ignored while determining nodularity and nodule count) can also be 

observed in as-cast as well as heat treated specimens. The nodularity and nodule count 

values of as-cast and heat treated specimens of respective alloys are presented in                    

Table 4.1. The normalized, quench & tempered and austempered specimens are observed 

to have higher no.of nodules per unit area than those of as-cast and annealed specimens. 

The increased nodule count in specimens heat treated with faster rate of cooling was 

attributed to the increased cooling rate that suppressed the diffusion of carbon atom into 

the large graphite nodules during transformation resulting generation of more no. of 

graphite nucleation sites [7], [102]–[104]. Furthermore, due to the high rate of cooling the 

diffusion of carbon atoms from austenite into the parent nodules was restricted resulting 

increased nodule count as well as precipitation of secondary graphite particles. On the 

other hand, the annealed specimens have higher nodularity as compared to the as-cast 

samples. Annealing involves very slow transformation process, and consequentially no 

significant difference in nodule count was observed. The intercritically austenitized 

specimens did not show any marginal change in nodule count because it barely undergone 

a process of carbon movement due to minuscule austenitization time. However, the heat 

treated specimens observed to have increased nodularity as compared to the as-cast 

condition. The annealing heat treatment provided sufficient time for carbon accumulation 

into the neighboring graphite nodules resulting increased nodularity and decrease in no.of 

nodules per unit area. Whereas the normalizing, quench and tempering, austempering and 
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DMS treatment involves a higher rate of cooling that restricts the gathering of carbon into 

near graphite nodules and hence, led to smaller nodule diameter and increasing nodule 

count.  

Table 4.1: Nodularity and Nodule Count of As-Cast and Heat Treated Specimens of Respective 

Alloys. 

Alloy 

Nodularity (%) Nodule Count (mm-2) 

As-

cast 

Ann

eale

d 

Nor

mali

zed 

Quenc

h & 

Temp

ered 

Aust

emp

ered 

D

M

S 

As-

cast 

Ann

eale

d 

Nor

mali

zed 

Quenc

h & 

Temp

ered 

Aust

emp

ered 

D

M

S 

SG-1 92 95 95 98 91 91 33 35 48 52 50 30 

SG-2 95 100 97 99 93 
10

0 
28 30 46 49 43 25 

SG-3 100 100 97 97 96 94 40 43 59 63 51 28 

SG-4 94 96 96 96 93 92 29 33 39 43 33 35 

SG-5 92 94 97 95.5 97 93 34 36 42 49 39 26 

SG-6 100 100 100 97.5 94 96 40 42 47 51 42 33 

SG-7 98 98 90 100 92 95 30 34 37 43 33 36 

SG-8 92 94 95 96 90 98 33 36 39 47 36 39 

 

       

(a) As-cast                                                               (b) Annealed 
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(c) Normalized                                                       (d) Quench & tempered 

        

(e) Austempered                                                         (f) DMS 

Fig. 4.1: Microstructure of Unetched as-cast and heat treated specimens. 

 

The microstructures after etching for respective alloys in as-cast and heat treated 

conditions are illustrated in Fig. 4.2. It was observed that the as-cast (Fig. 4.2 (a)) and 

annealed (Fig. 4.2 (b)) specimens have a fully ferritic matrix. The chemical compositions 

and the wt.% of alloying elements were so maintained; as required to obtain ferritic matrix 

in the as-cast microstructure.  On the other hand, the annealing from high austenitizing 

temperature (1000°C) followed by longer holding time (330 minutes) at subsequent 

transformation temperature (700°C); provided large transformation window to achieve the 

fully ferritic matrix. The full annealing treatment resulted in a significant reduction in 

cooling rate (close to equilibrium eutectoid transformation temperature), which 

significantly increased the ferrite fraction in the matrix [105]. Specimens treated with 

normalizing heat treatment have transformed from as-cast ferritic to the pearlitic/ferritic 

structure (Fig. 4.2 (c)). Pearlite growth is a consequence of diffusion that depends on the 

transformation temperature. A higher transformation temperature leads to the lower 
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driving force resulting less growth rate about the diffusion speed giving rise to large 

pearlite spacing, whereas lower temperature results in finer spacing [106]. The quench & 

tempering heat treatment resulted in the transformation of the as-cast ferritic matrix into 

the tempered martensitic structure (Fig. 4.2 (d)). The tempering of oil quenched 

specimens at 500°C resulted in breaking of large martensite into tempered martensite 

[107]. The austempering treatment lead to the transformation of the as-cast matrix into the 

coarse upper bainitic matrix (Fig. 4.2 (e)) that can be accredited to two facts. One is the 

high austenitizing temperature and longer austenitizing time, leading to increased stable 

austenite and less ferrite formation [108] and secondly high austempering temperature and 

time that results in coarsening the ferrite [109]. Austempering involves a two-step reaction 

process consisting transformation of primary austenite into acicular ferrite and carbon 

enriched austenite in 1st stage reaction, and the 2nd stage reaction comprises a 

decomposition of carbon enriched austenite in ferrite-carbide aggregate depending on the 

temperature and time. The austempered specimens were observed to free from carbide and 

martensite due to the higher austenitizing temperature that resulted in complete 

austenitization and higher austempering temperature and time, i.e., 500°C and 240 

minutes respectively that suppresses the carbide precipitation and martensite formation 

[88], [110]–[112]. Sohi et.al [113] in their work reported that, increase in austempering 

temperature resulted in higher amount of carbon in austenite leading to difficulty in 

martensite transformation on subsequent cooling. They have observed that the ductility 

and impact energy was increased and strength decreased when specimens were 

austempered at 350°C as compared to 315°C. Higher austenite volume fraction was 

expected in final microstructure in this study due to such higher austempering time, was 

found to be quite in agreement with the explanation provided by Sohi, and hence resulted 

in lower strength and higher ductility and impact energy. The bainitic ferrite is formed by 

the rejection of carbon from the graphite nodules or retained austenite. With the increase 

of bainitic ferrite size and amount, the austempering progresses by the further rejection of 

carbon into neighboring austenite. The increased austenitization time resulted in coarse 

austempered microstructure that can be credited to the grain growth of austenite resulting 

lower heterogeneous nucleation of ferrite . Specimens treated with intercritical 

austenitizing followed by quenching in mineral oil at 100°C observed to have graphite 

spheroids embedded with ferrite + martensite matrix (Fig. 4.2 (f)). Intercritical heat 

treatment commences with partial austenitization that depends on the alloy composition 

and temperature. The partial austenite transforms to martensite upon quenching in oil 
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resulting in a final matrix of graphite nodules embedded in ferrite + martensite [114]. It 

was observed that most of the alloys have the large graphite spheroids surrounded by 

ferrite phase, which is further localized by martensite. Such arrangement of phases can be 

explained by the nucleation and growth of martensite at the intercellular boundaries [115]. 

It was noticed that the martensite was continuous and distributed uniformly in every alloy. 

All of the specimens was observed to undergone a complete transformation without any 

precipitation of carbides or retained austenite after respective heat treatment processes, 

which is good enough for obtaining higher ductility in respective materials. However, in 

every case presence of secondary graphite particles was observed that is associated with 

individual alloying elements and the presence of concerned matrix that restricts the 

diffusion of carbon from the neighboring austenite as the transformation progresses.  

     

(a) As-cast (Ferritic)                                             (b) Annealed (Ferritic) 

      

          (c) Normalized (Pearlitic/Ferritic)                                   (d) Quench & tempered  
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      (e) Austempered (Coarse Upper Bainitic)                             (f) DMS (Ferrite + Martensite)   

Fig. 4.2: Microstructure of As-cast and heat treated specimens after etching (Nital 2%). 

F – Ferrite, G – Graphite, P – Pearlite, M – Martensite 

 

4.1.2 X-Ray Diffraction Studies 

To investigate the structural changes in microstructure due to chemical 

composition and heat treatment processes small piece from all the specimens belong to 

each composition in as-cast as well as heat treated condition, was put to X-ray diffraction 

study. The respective XRD plots of every alloy in as-cast and heat treated conditions are 

shown in Fig. 4.3. It can be noticed that there was only three major crystallographic planes 

were found for every state i.e., plane (1 1 0) at 43°, 2θ position with d-spacing of 2.02, 

plane (2 0 0) at 65° with d-spacing of 1.43 and plane (2 1 1) at 82° with d-spacing of 1.17. 

All of these planes belong to BCC crystal structure which confirms the ferritic, pearlitic-

ferritic, tempered martensitic, and ferritic + martensitic matrix for as-cast, annealed, 

normalized, quench & tempered, and DMS treated specimens, as obtained from 

metallographic investigation. However for specimens underwent austempering heat 

treatment a plane of (3 1 1) was obtained at 65° with d-spacing of 1.43. The plane (3 1 1) 

belongs to the FCC crystal structure and thus confirms the presence of retained austenite 

in the matrix microstructure of austempered specimens. Quantitative XRD analysis was 

carried out for austempered specimens to determine the volume fraction of ferrite and 

austenite in individual alloys, following the Direct Comparison Method and assuming 

only ferrite and austenite was present in the matrix. The austenite and ferrite volume 

fraction and carbon content in the retained austenite was calculated from the equation 

stated in equation 4.1 and 4.2 respectively. It was observed that the carbon content in the 

retained austenite was increased with increase in the carbon content of the alloy. The 
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phase volume fractions in respective alloys are presented in Table 4.2. The volume 

fraction of retained austenite was observed to increase with the increase in Ni content as 

was observed from the quantitative metallographic investigation. 

𝑋𝛾 =
𝐼𝛾 𝑅𝛾⁄

(𝐼𝛾 𝑅𝛾)⁄  + (𝐼𝛼 𝑅𝛼)⁄   
    - - - - - - - - (4.1) 

aγ = 0.3548+0.0044Cγ         - - - - - - - - (4.2) 

Where Iγ and Iα are the integrated intensities and Rγ and Rα are the theoretical relative 

intensity for the austenite and the ferrite, respectively. And aγ is the lattice parameter of 

austenite in nanometre and Cγ is the carbon content of austenite in wt.%. 

 
Table 4.2: Volume fraction of austenite and ferrite and carbon content in austenite of respective 

austempered specimens. 

Alloy 
Carbon content in 

austenite (Cγ) 

Austenite volume 

fraction  

Ferrite volume 

fraction 

SG-1 2.5387 88.51% 11.49% 

SG-2 2.5941 70.00% 30.00% 

SG-3 2.6393 87.95% 12.05% 

SG-4 2.5873 85.07% 14.93% 

SG-5 2.5549 88.63% 11.37% 

SG-6 2.5528 89.53% 10.47% 

SG-7 2.6673 88.04% 11.96% 

SG-8 2.5655 87.71% 12.29% 
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Fig. 4.3: X-ray Diffraction patterns of as-cast and heat treated specimens of individual alloys. 

 

4.1.3 Effect of Alloying Elements on Microstructure  

In Chapter 2 it was discussed that particular elements can promote ferrite 

formation whereas some promote pearlite and some nurtures the austenite transformation 

upon austenitizing process leading to different microstructures at room temperature upon 

cooling or quenching.The successful transformation of the as-castmatrix into different 

microstructure obtained through heat treatment processes and influence on nodularity and 

nodule count had been discussed in the previous section. The heat treatment parameters if 

varied within specified limit, can affect the phase volume fraction as well as nodularity 

and nodule count. However, in the present study, only a single set of process parameter 

was maintained for all the alloys and hence, the variation in microconstituents can only be 

credited to the alloying element. Chromium was present in very low quantity in each alloy 

i.e., 0.01 % - 0.03%, and Molybdenum in the final composition was found to be 0.001% 

in every alloy, hence the effect of both of these elements was insignificant. Similarly 

Sulphur was present in the range of 0.007 – 0.009 wt.% and that of Phosphorus in the 

range of 0.018 – 0.033 wt.%, and the effects were hence negligible. Sulphur and 

Phosphorous, generally leads to segregation in final microstructure after casting and heat 

treatment. But in current study no segregation was observed neither in as-cast nor in any 

of the heat treated specimens, that is attributed to the higher amount of Si content and high 

austenitizing as well as transformation temperature [116]. On the other hand, Silicon, 

Manganese, Nickel, Copper which was present in noticeable amount had shown their 
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influence on phase volume fraction and combined effect of Magnesium and Cerium was 

observed on nodularity and nodule count.  

The influences of base elements as well as alloying elements are shown in Fig. 4.4. 

Silicon is inherently present in SGCI and it has the effect of modifying the Fe–C phase 

diagram, a three-phase region of (α + γ + graphite) is introduced into the Fe–C–Si phase 

diagram. The ferrite volume fraction of as-cast and annealing treated specimens was 

observed to increase with an increase in Silicon content Fig. 4.4 (a). Silicon also plays a 

significant role in graphite stabilization and was evident from the quantitative 

metallographic analysis. The graphite nodularity was observed to increase with Si content, 

and the growth in nodule count was credited to the combined effect of Si and C as well as 

Mg and Ce [117]. 

The normalizing treatment led to the pearlitic/ferritic matrix, although the 

austenitizing temperature and time were high enough to convert the parent matrix into the 

fully pearlitic matrix. Even though the combined effect of Mn, Cu and P content is 

sufficient to produce a fully pearlitic matrix [118], but was not enough to suppress the 

effect of Si leading to the presence of ferrite in the final structure.  The pearlite fraction 

was observed to increase with Mn content Fig. 4.4 (b) and simultaneously there was an 

increase in ferrite volume fraction, Fig. 4.4 (c), with an increase in Si [117]. The amount 

of austenite is largely influenced by the presence of Mn, Ni, Cu and Mo and helps in 

dissolving carbon during austenitization process. As mentioned in the previous chapter 

that the Mo contributes only 0.001 wt.% of the chemical composition of every alloy, its 

effect on the final micro-constituents cannot be distinguished and so as the case for 

Chromium whose contribution to composition do not have varied significantly (or the 

difference is minor). The combined effect of Manganese, Nickel and Copper was 

observed for quench&tempered and austempered specimens. The quantitative 

metallographic analysis reveals that volume fraction of tempered martensite and bainite 

was increased with the increase of these alloying elements, Fig. 4.4 (d) and Fig. 4.4 (e) 

respectively [119]. A similar effect was also observed for DMS-treated specimens. The 

martensite volume fraction was observed to be increased by Mn content, and as Ni 

promotes austenite during austenitization process, the ferrite in the final matrix was 

observed to decrease. However, the presence Si only contributes to maintaining the 

graphite characteristics. The nodularity value didn’t observe to change, whereas a slight 

increase in nodule count was noticed.    
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(a)                                                                                 (b) 

    

(c)                                                                                (d) 

 

(e) 

Fig. 4.4: (a) Wt. % of Silicon vs. Ferrite and Graphite volume fraction, (b) Wt. % of Manganese 

vs. Pearlite volume fraction, (c) Wt. % of Silicon vs. Ferrite volume fraction for normalized 

specimens, (d) Combined effect of Manganese and Nickel on tempered martensite volume 

fraction, (e) Wt. % of Nickel vs. Bainite volume fraction.   
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4.2 Mechanical Properties  

 

4.2.1 Vickers Hardness  

The bulk hardness was determined using Vickers hardness tester applying 20 KN 

load. The hardness values of as-cast and heat treated specimens of respective alloys are 

illustrated in Fig. 4.5. It is interesting to note that the standard deviation in hardness values 

is minuscule, which is an indication of uniform and homogeneous matrix, achieved by 

heat treatment processes. The difference in hardness of as-cast and annealed specimen 

was not noticeable, but slight decrement was observed in the case of the annealed sample. 

The highest and lowest hardness values of 301HV20 and 265HV20 respectively in the as-

cast state were obtained for alloy SG-2 and SG-1 respectively, whereas the maximum and 

minimum hardness values in annealed condition were 292HV20 and 235HV20 for alloy 

SG-2 and SG-1 respectively. Annealing treatment involves a very slow cooling process; 

that softens the matrix by removing the internal stresses present in the as-cast samples 

during casting and machining process, consequentially lowering the hardness value even 

though the matrix was similar. 

 On the other hand, the normalizing treatment which might have transformed the 

parent matrix into pearlitic matrix had resulted in increased hardness. The highest 

hardness, i.e., 470HV20 was achieved for alloy SG-7 and that of lowest, i.e., 405HV20 for 

alloy SG-5. These values may be related to the pearlite volume fraction in respective 

alloys, as increased pearlite volume fraction enhances the hardness of material [106]. The 

hardness values of quench and tempered specimens range from a minimum of 565HV20 

to maximum 609HV20 for alloys SG-2 and SG-7 respectively. On the other hand, alloy 

SG-7 showed lowest hardness value of 588HV20 in austempering condition and that 

highest value of 640HV20 was obtained for alloy SG-6. The hardness of quench & 

tempered and austempered sepcimens, were observed to be in agreement with the results 

reported by Dommarco et.al [104]. Bulk hardness of specimen subjected quenching and 

tempering heat treatment was found to be more than that of subjected to austempering 

treatment.  

The hardness of DMS-treated specimens showed values greater than normalized 

and lower than quench & tempered and austempered treated samples. Alloy SG-8 was 



CHAPTER - IV  RESULTS AND DISCUSSION 
 

54 

 

appeared to have the lowest hardness of 497HV20 and alloy SG-6 had the maximum 

hardness of 522HV20 in DMS-treated condition.  

 

Fig. 4.5: Vickers hardness of as-cast and heat treated specimens of respective alloys. 

4.2.2 Tensile Strength & Ductility 

The tensile strength and % elongation were obtained from the computer integrated 

INSTRON 1195 Universal Testing Machine, conducting the tensile test at a crosshead 

speed of 1mm/min, and the resultswere presented in Fig. 4.6. Specimens underwent full 

annealing treatment resulted with the loweststrengthvalues and highest ductility, and that 

of greateststrengthand lowest ductility was obtained for alloys in quench and tempered 

specimens. The strength and elongation values of the as-cast and annealed specimens 

were pretty close to each other without any significant difference, which may be due to 

the presence of similar matrix microstructure. However as mentioned in section 4.1.1; the 

large transformation window and the slow cooling process of annealing treatment led to 

lower hardness value; a similar effect was observed for decreased tensile strength and a 

favorable effect for improved ductility [103]. The alloy SG-7 had highest ductility 

(33.4%) and lowest tensile strength of 318.5 MPa, whereas that of alloy SG-6 had the 

lowest ductility of 26.1% and tensile strength of 364.8 MPa, in the as-cast state. Both the 

alloys were observed to have similar behavior for annealed specimens with 34% and 

27.6% ductility and strength value of 310.6 MPa and 390.6 MPa for alloy SG-7 and SG-6 

respectively. The highest ductility and lowest tensile strength of alloy SG-7 in as-cast and 
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annealed heat-treated condition was attributed to the higher Si content, i.e., 2.19 wt. % 

that would have resulted in maximum ferrite volume fraction [120].  

The normalizing treatment led to the transformation of the as-cast matrix into the 

pearlitic-ferriticmatrix, and the pearlite volume fraction has a directly proportional 

relationship with the amount of Mn in the chemical composition. The tensile strength 

value of 815.5 MPa was found to be the maximum for alloy SG-7, and that of the 

minimum strength was found to be 721.4 MPa for alloy SG-5, in normalized condition.  

Alloy SG-7 had 0.25wt.% of Mn content that could have led to highest pearlite volume 

fraction resulting maximum strength whereas the Mn content for Alloy SG-5 was 

0.14wt.%, that end up with least strength. On the contrary, the elongation value was 

observed to increase with the increase in Si content as it promotes the ferrite volume 

fraction [118]. Even though alloy SG-7 had maximum Mn content leading to highest 

pearlite content, the maximum Si content also supported the retention of ferrite resulting 

highest ductility. Whereas alloy SG-6 had achieved the least ductility of 11.7% because of 

the lowest Si (1.93wt.%) amount.  

In the case of quench & tempered specimens, a strength value of 1075.4 MPa was 

obtained to be the highest for alloy SG-6 with the least % elongation at break of 10.2% 

and that of alloy SG-7 had the least strength value of 853.6 MPa with maximum % 

elongation at break of 14.3%. On the other hand, the austempering treatment led to 

reduced tensile strength and improved ductility for all the alloys compared to that of in 

case of the quench & tempering heat treatment process. The reduced strength and 

improved ductility may be due to the bainitic matrix of austempered specimens. Alloy 

SG-6 with 0.49wt.% of Ni that fosters the formation of the bainitic matrix, had achieved 

maximum strength value of 1024.8 MPa and 13.8% ductility, and that of lowest strength 

value of 795.9 MPA and  18.5% ductility was obtained for alloy SG-7.  

The properties of specimen underwent intercritical austenitizing followed by 

quenching treatment (DMS treatment) observed to have a good balance of tensile strength 

and ductility. Austenitization in intercritical region transform the parent phase into partial 

austenite and led to retention of parent phase in the final microstructure after quenching. 

The combined effect of Ni and Mn was observed for DMS-treated specimens, having a 

maximum strength value of 532.2 MPa for alloy SG-6 with 15.65% elongation at fracture 

and that of the least was 358.8 MPa tensile strength value for alloy SG-5 with 19.67% 
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elongation at fracture. The maximum ductility of 21.71% at fracture was obtained for 

alloy SG-7, which was having 2.19 wt.% of Silicon. Table 4.3 and Table 4.4 represent the 

tensile and 0.2% yield strength values of respective as-cast and heat treated specimens 

respectively, and % elongation at fracture for respective alloys in as-cast and heat treated 

conditions are shown in Table 4.5.  

 

Fig. 4.6: UTS of as-cast and heat treated specimens of respective alloys. 

 

Table 4.3: Tensile strength of respective alloys in as-cast and heat treated conditions. 

Alloy As-Cast Annealed DMS Normalized Austempered 
Quench & 

tempered 

SG-1 353.3 336.1 363.3 648.5 845.7 889.6 

SG-2 334.5 328.7 504.4 730.5 990.4 1039.6 

SG-3 359.9 355.1 440.1 704.8 950.7 997.1 

SG-4 356.9 347.2 416.4 661.3 823.8 872.2 

SG-5 330.9 321.5 358.8 635.2 968.6 1026.4 

SG-6 364.8 361.2 532.2 725.4 1024.8 1075.4 

SG-7 318.5 310.6 460.9 750.6 795.9 853.6 

SG-8 354.7 341.8 370.3 675.2 931.5 985.7 
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Table 4.4: % Elongation of respective alloys in as-cast and heat treated conditions. 

Alloy As-Cast Annealed DMS Austempered Normalized 
Quench & 

tempered 

SG-1 30.2 31.3 20.53 17.7 13.8 13.2 

SG-2 31.2 32.8 19.01 14.6 14.1 11.2 

SG-3 26.8 28 16.43 15.6 12.2 11.8 

SG-4 28.7 29.4 18.7 18.1 12.8 12.5 

SG-5 32.5 33.4 16.13 15.2 14.6 11.7 

SG-6 26.1 27.6 15.65 13.8 11.7 10.2 

SG-7 33.4 34 21.71 18.5 15.4 14.3 

SG-8 29.7 30.4 19.67 16 13.2 12.3 

 
Fig. 4.7: % Elongation of as-cast and heat treated specimens of respective alloys. 

4.2.3 Impact Energy 

The as-cast and heat treated specimens of all the respective alloys were subjected 

to Izod impact test, to study the behavior of the materials under dynamic loading and the 

impact energies obtained for individual specimens are presented in Table 4.5.  Each of the 

alloys in as-cast and heat treated condition was observed to have an impactenergy of more 

than 10J, which is the recommended value of impact energy for the spent nuclear fuel 

container. Specimens subjected to annealing treatment exhibited highest impact energy 

value than the other conditions in the case of every alloy composition. The reason behind 

this was quite convincing that the longer transformation time, i.e., 330 minutes that might 

have resulted in the transformation of the fully ferritic matrix without any amount of 
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residual stresses. Alloy SG-7 had the maximum value of impact energy, i.e., 34.7 J, 

whereas that of alloy SG-6 had the lowest value of 24.84 J. Both of the alloys had the 

highest and lowest ductility value respectively, hence the impact energy values.  Also for 

as-cast, and other heat treated conditions alloy SG-7 has the maximum impact energy 

value and alloy SG-6 has the least impact energy value. The highest impact energy for 

alloy SG-7 can be due to the highest Si content that promoted ferrite formation and 

retention in respective matrices as well as encouraging graphite nodularity that restricted 

the crack propagation leading to increased impact energy.   

 

Fig. 4.8: Izod impact energies of as-cast and heat treated specimens of respective alloys. 

Table 4.5: Impact energy of as-cast and heat treated specimens of respective alloys. 

Alloy As-Cast Annealed DMS Austempered Normalized 
Quench & 

tempered 

SG-1 28.56 29.6 20.16 17.8 13.2 12.9 

SG-2 29.75 30 18.86 13.4 13 10.9 

SG-3 24.1 25.4 15.86 14.6 11.15 10.7 

SG-4 26.65 27.11 16.57 16 11.75 11.25 

SG-5 31.72 32.65 15.15 14 13.8 11.2 

SG-6 22.74 24.84 14.58 13 10.5 10.3 

SG-7 33.4 34.7 21.55 19 15.8 13.8 

SG-8 27.58 28.2 19.92 15.3 12.6 12.4 
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4.2.4 Effect of Composition  

The mechanical properties viz. UTS, 0.2% YS, % elongation, Vickers hardness, 

and Izod impact energy, of the alloys in as-cast and heat treated condition were briefly 

discussed in previous sections. However, the primary aspect that influences and 

differentiates the alloys in terms of the mechanical properties was the chemical 

composition or alloying elements in individual alloys.  Incorporation of alloying element 

into the base composition governs the phase volume fraction; consequentially increased or 

decreased mechanical properties. In the present study, a total of eight alloys were used 

with different wt.% of alloying and base elements. However, the amount of Molybdenum 

was same, i.e., 0.001 wt.% in every alloy and hence its effects on properties could not be 

justified. Similarly, the effect of Cr and Cu cannot be explained as because the amount 

and the difference between them are very less. Hence, the effect of these elements on the 

properties is insignificant. However, on the other hand, the wt.% of Carbon, Silicon, 

Manganese, and Nickel had noticeable variation, and their effects were observed. 

The as-cast and annealed specimens found to have a marginal difference in 

ductility value compared to the other heat treated conditions. That points towards the 

presence of either austenitic or ferritic microstructure; as these are the most ductile phases 

in Fe-C or Fe-C-Si system. To stabilize austenite in as-cast microstructure at room 

temperature, the minimum amount of Ni required is 10% [107]. However, 4% of Ni can 

also encourage retention of austenite at room temperature if proper heat treatment 

parameters were maintained [111]. Since in the present case of study, Ni is present from 

0.09 wt.%  for alloy SG-7 to a maximum of 0.49 wt.% for alloy SG-6, the as-cast 

microstructure was definitely not austenitic. Hence, the only microstructure possible for 

such high amount of ductility was ferritic, and as because the chemical composition was 

maintained to obtain a ferritic matrix, it can be assumed that the as-cast microstructure 

was possibly ferritic. At a closer view when the ductility and impact energy values are 

compared among the alloys, it was observed that both ductility and impact energy were 

increased with increase in Si content for as-cast as well as annealed specimens. On the 

other hand, the UTS of samples under both conditions was increased with increase in Ni 

content. For normalizing treated specimens the UTS was increased with increasing Mn 

content whereas %elongation at fracture was increased with Si content. The quench & 

tempered and DMS-treated specimens were found to increased tensile strength with 

increase in Mn and Ni content. On the other hand, the ductility of DMS-treated specimens 
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was again increased with Si content.  The specimens treated with the austempering 

process, observed to have increased UTS with Ni content.  

    

(a)                                                                       (b) 

    

(c)                                                                       (d) 
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(e)                                                                         (f) 

    

(g)                                                                          (h) 

Fig. 4.9: (a) wt.% Si vs. Elongation and Impact energy of as-cast and annealed specimens,                           

(b) wt.% Ni vs. UTS of as-cast and annealed specimens, (c) wt.% of Mn vs. UTS and Hardness of 

normalized specimens, (d) wt.% Si vs. Elongation and Impact energy of  normalized specimens, 

(e) wt.% of Ni vs. UTS of quench & tempered specimens, (f) wt.% of Ni vs. UTS and hardness of 

austempered specimens, (g) combined effect of Ni and Mn on UTS of DMS-treated specimens, (h) 

wt.% Si vs. Elongation and Impact energy of DMS-treated specimens. 

 

4.2.5 Effect of Phase Volume Fraction  

The mechanical properties viz., UTS, 0.2% YS, Vickers hardness, ductility, and 

Izod impact energy of as-cast as well heat treated specimens of individual alloys were 

elaborately discussed in Section 4.1. Itwas also mentioned in Section 4.1 that, how the 

alloying elements affect the respective properties of the alloys in every state. The alloying 

elements were also responsible for increasing or decreasing the phase volume fractions of 

respective alloys in individual states, and the properties have a direct or indirect 

relationship with the respective phase volume fraction.    

The as-cast, normalized, quench and tempered and DMS-treated specimens 

observed to have strength and hardness values intermediated to that of processed with 

annealing and austempering. The annealing treatment led to highest elongation and impact 

energy, respectively, whereas, quench & tempered specimens had the lowest ductility and 

impact toughness. On the other hand, the as-cast, normalized, austempered and DMS-

treatedspecimen had ductility and impact energy values intermediate to that of annealed 

and quench & tempered condition. The relationship between different phase volume 
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fractions with corresponding mechanical properties of respective alloys has been 

illustrated in Fig. 4.10. The behaviour of soft ferritic as-cast and annealed specimen has 

demonstrated in Fig. 4.10 (a) and (b) respectively. The % elongation at break and impact 

energy observed to behave directly proportional manner with ferrite volume fraction, 

whereas the ultimate tensile strength (UTS) and Vickers hardness was found to behaved a 

little peculiar with ferrite volume fraction, Fig. 4.10 (c). The increasing value of UTS and 

hardness with increased ferrite volume fraction can be attributed to the effect of increasing 

Ni and Mn content that provides strength to the matrix through solid solution 

strengthening for respective alloys [121]. The normalized specimen showed increased 

UTS and hardness and decreased ductility and impact energy with increasing pearlite 

content, Fig. 4.10 (d) & (e) respectively. The results obtained were well in agreement with 

that of results reported by [117]. Similar results were obtained for quench and tempered 

(Fig. 4.10 (f)) as well as austempered (Fig. 4.10 (g)) specimens, i.e., the UTS and 

hardness were directly proportional to the corresponding phase volume fraction, and 

ductility and impact energy had inversely proportional relation. The DMS-treated 

specimens exhibited an increase in strength with increasing martensite volume fraction 

whereas ductility and impact energy are proportional to ferrite volume fraction. The 

hardness value didn’t show any particular behaviour with either martensite or ferrite 

volume fraction. The hardness value for all alloys in as-cast and heat treated state is 

presented in Fig. 4.5, showed a considerable difference in the standard deviation in 

hardness of DMS-treated specimens compared to other conditions.         

    

(a)                                                                           (b) 
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(c)                                                                          (d) 

Fig. 4.10: Relationship between different phase volume fractions with corresponding mechanical 

properties. (a) Ferrite volume fraction vs. ductility and impact energy of as-cast specimen, (b) 

Ferrite volume fraction vs. ductility and impact energy of annealed specimen, (c) Pearlite volume 

fraction vs. UTS and Hardness, (d) Pearlite volume fraction vs. % elongation and impact energy. 

4.2.6 Fractographic Investigation 

 The Fractographic images of as-cast and heat treated specimens after tensile, and 

impact fracture is shown in Fig. 4.11 and Fig. 4.12 respectively. The as-cast and annealed 

specimens with ferritic matrix observed to have dimples around the graphite nodule and 

on the matrix as well, Fig. 4.11 (a) & (b) respectively. Due to decohesion at the ferrite 

graphite interface the microvoids nucleates at the naked region and grows at the grain 

boundary; suggesting that extensive deformation has occurred for ferrite prior to the 

fracture and the material is highly ductile. The deformation of ferrite matrix during the 

end period of straining before the fracture was evident from the dimples around graphite 

nodule [122]. Dimples are formed because of the microvoid coalescence phenomenon that 

arises under uniaxial tensile loading state leading to formation and growth of microvoids, 

signifying the ductile behaviour of the material [123]. On the other hand, the pearlitic, 

tempered martensitic and bainitic specimens had river markings and cleavage facets over 

the matrix justifying the brittle nature of the fracture. Martensite characterizes lower strain 

leading to a low rate of deformation mechanism culminating brittle fracture. The 

quenching process results in segregation of sulphur and phosphorus impurities before the 

austenite grain boundaries that result in thefavorable growth of transgranular paths, 

thereby reducing the cohesive strength [122]. The transgranular cracks were initiated at 

graphite/matrix interface and start to propagate where there is an atomic mismatch 



CHAPTER - IV  RESULTS AND DISCUSSION 
 

64 

 

between the phases such as ferrite/austenite interface in case of austempered specimens. 

The austenite being soft tends to deform whereas ferrite starts cracking and the crack 

propagates along the length of ferrite sheaves [122], [124]. The cleavage facets appeared 

due to the plastic deformation of the matrix, and the growth of deformation was because 

of the presence of secondary phase particles [115]. The transgranular, low energy stress 

paths (river markings) that signify cleavage fracture are derived from the separation of 

atomic bonding and change direction when passes through the sub-grain boundaries 

graphite nodules [125], [126]. The DMS-treated specimen had both dimples around the 

graphite nodules and river markings which are an indication of the mixed mode of fracture 

that justifies the semi-ductile nature of the specimen. The voids nucleate at the ferrite-

martensite interface associated with decohesion from the adjacent martensite [115]. The 

continuous martensite along the intercellular boundaries is a vital factor that determines 

the deformation extent of ferrite around graphite nodules. Alloys with higher martensite 

fraction were observed to have zero deformation of ferrite under tensile loading, 

suggesting decreased ductility with martensite continuity in the matrix. All the specimens 

showed similar kind of behaviour under impact loading condition that observed under 

monotonic uniaxial tensile loading and is shown in Fig. 4.12.  

 

Fig. 4.11: Fracture surfaces of as-cast and heat treated specimens after tensile failure. 
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Fig. 4.12: Fracture surfaces of as-cast and heat treated specimens after Impact failure. 

 

4.3 Corrosion Studies 

4.3.1 Corrosion Rate Of Alloys 

The nuclear spent fuel casks often disposed under the sea at distance of 30m deep 

from the sea level. The purpose is twofold; first, if in any case the containment fails to 

serve its purpose, nuclear radiations won’t scatter into the environment and 

consequentially do not pose a threat neither to the environment nor to the living being.  

And the second is to cool the container, from the liberating heat of spent nuclear fuel. Cast 

iron is the least corrosion resistive material among the other ferrous materials in the Fe-C-

Si system. The free form of graphite or carbon in the matrix acts as cathode and 

accelerates anodic dissolution of nearby iron. A continuous graphite network leads to 

higher corrosion tendency which can be seen for gray cast iron. Whereas, in the case of 

SG cast iron the graphite is present distinctively rather than as chain and hence corrosion 

takes place uniformly. The formation of graphite nodules and its uniform distribution 

results in the evolution of regular barrier film that protects the iron from corrosion [127]. 
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The as-cast and heat treated specimens of respective alloys were immersed in sea 

water under room temperature and atmospheric pressure for 12 weeks. The difference in 

weight of the specimenswas noted after a regular time interval of 173 hours and 

contaminated water was replaced with fresh sea water. The response of SGCI samples of 

each alloy in as-cast and heat treated conditions, with sea water environment are 

illustrated in Fig. 4.13 in terms of corrosion rate vs. time plot. It can be noted that there 

was no significant pattern obtained for any of the as-cast or heat treated specimens over 

the time. This unusual corrosion behaviour in as-cast and heat treated conditions can only 

be attributed to the fact that after every regular time interval the specimens had been 

subjected to fresh sea water, resulting variation in the reactivity level of sea water that was 

exposed to the specimens. The reactivity level of sea water was evident from the pH value 

noted at the end of every 173 hours. The highest rate of corrosion was obtained for 

austempered specimens with coarse upper bainitic matrix and that of lowest for the DMS 

treated specimens having ferrite and martensite in matrix microstructure. The corrosion 

rate follows DMS-treated < annealed < as-cast < normalized < quench & tempered < 

austempered, pattern for all the alloys. The rate of corrosion was lowest for the DMS 

specimens ranging from 8µm/year to 200µm/year for alloys SG-4 and SG-1 respectively. 

On the other hand, the highest rate of corrosion was found to be in the range of 20µm/year 

to 225µm/year for alloys SG-5 and SG-1 respectively in austempered condition. The 

tempered martensitic and pearlitic/ferritic grade SG cast iron observed to have 2nd and 3rd 

order of corrosion resistance. The large corrosion exhibition of normalizing, austempered 

and Quench & tempered specimens can be attributed to the fact that, increased rate of 

cooling resulted in increased nodule count leading to increased potential sites for graphitic 

corrosion. Although in many observations some values are higher than 50µm/year, but 

some values below 50µm/year is also observed in some cases. Moreover, these data are 

acceptable and also not yet objected after the sample tests conducted by Bhaba Atomic 

Research Centre (The purpose of the BRNS sponsored project).                                                                                                                                                                                                                                                               
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(a) SG-1                                                                (b) SG-2 

    

(c) SG-3                                                               (d) SG-4 

    

(e) SG-5                                                                (f) SG-6 
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(g) SG-7                                                               (h) SG-8 

Fig. 4.13: Corrosion rate vs. time interval plot for as-cast and heat treated condition for individual 

alloys.  

 

4.3.2 Effect of Alloying Elements on Rate of Corrosion 

The corrosion characteristic of SG cast iron not only depends on microconstituents 

but also on the chemical composition. The resistance to corrosion can be improved by the 

addition of Ni, Cu, and Cr.  It was clear that the austempering treatment exhibited highest 

corrosion rate and that of annealed, and DMS are the lowest for every alloy composition. 

In this case, the difference of Cr content in respective alloys is very minor and hence its 

effect was not significant or negligible. On the other hand, the corrosion resistance was 

observed to decrease with increase in Ni and Cu content. Copper addition reduces the 

nodule count and additionally forms a compact Cu2O passive oxide film over the alloy 

surface in chloride solution which is mainly responsible for better corrosion resistance 

[128]. Additionally, Nickel and Copper shifts the open circuit potential to more positive 

values resulting the alloy to enter into the passive region under natural immersion in 

solutions with high pH like seawater [128]. Furthermore, the addition of Nickel results in 

reduced nodule count and consequentially reduces the graphitic corrosion potential of the 

concerned alloy [98]. The formation of Cu2O has not been observed on the corroded 

surface but found in the porous product. It was quite possible that during the cleaning with 

alcohol the scales were peeled off from the surface and hence found in the porous product 

that was evident from the XRD and EDAX analysis. Also, the sea water contains ions of 

other than Na+ & Cl-, so it was quite possible that during the reaction other ions might 

have led to the formation similar potential that was repellent to each other and leading to 



CHAPTER - IV  RESULTS AND DISCUSSION 
 

69 

 

removal of scale from the surface. Hence the Cu2O compound was only observed in the 

porous product, and not on the corroded surface. 

4.3.3 Morphology of Corroded Surfaces 

 The corrosion products were investigated under SEM/EDAX, to understand the 

role of chemical composition in preventing corrosion. Two different type of products were 

analysed i.e., the corroded surfaces of specimens and the porous product collected after 1st 

and 12th week of immersion. The surface micrographs of as-cast and heat treated 

specimens as well as porous product, after 1st week of immersion are presented in                    

Fig. 4.14. It was observed that, the specimens were experienced with localized attack at 

the boundaries of the spherical nodules and at the grain boundaries. The localized attack 

resulted in fine network of cracks near the grain boundaries covered with non-

homogeneous lose scale like layer.  The results observed were quite in agreement with the 

observation made by Zeng et.al [95], who studied the corrosion response of SGCI and 

laser surface alloyed SGCI in HCl solution. Similar results were also observed by 

Venkatesan et.al [129]  for austempered specimens treated in still deep sea water. Pitting 

corrosion was observed over the specimen surfaces, with porous layers allowing to the 

water to impinge through the scale and react with base material resulting increased rate of 

corrosion, which may be the reason of highest rate of corrosion in present case. The 

pitting corrosion mechanism was attributed to the reaction of SGCI samples with sea 

water under physico-chemical condition. The EDAX spectra of as-cast and heat treated 

specimens revealed that after 1 week (173 hours) of immersion the corrosion was still not 

fully grown. At some places the sea water has not affected the surface, which can be 

accredited to the growth of corrosion at the graphite nodules. The results obtained from 

elemental mapping showed presence of Fe, O, Cr, Ni, and Mn in major percentage 

whereas, Si and Mg was found in traces. The mapping led to the conclusion that Fe, Cr, 

Ni and Mn oxide layers had formed over the corroded surface. Ogundare et.al [130] in 

their work reported that alloying with Chromium enhances the resistance to corrosion 

through a passivation process by forming a complex spinel-type {(FeNi)O(FeCr)2O3} 

passive film. This complex produces a coherent, adherent insulating and regenerating 

chromium oxide protective film on the metal surface leading to resistance to further 

increase in weight loss. On the other hand the porous product was found to have Na, Cl, 

and Cu in addition to the elements found on the corroded surface.  
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The surface micrographs of as-cast and heat treated specimens as well as porous 

product, after 12th week of immersion are presented in Fig. 4.15. The surfaces after 12th 

week of immersion were observed to be covered fully with corroded layer and no graphite 

particle was found. The EDAX spectra revels the presence of Fe, O, and C in major 

quantity whereas other alloying elements were found in traces. The absence of Ni, Cr, Mn 

was the evidence of iron oxide layers over the surface which can due to the reaction 

between sea water and the base material. As compared to the 1st week fewer cracks were 

found on the corroded layer suggesting precipitation of corrosion products when subjected 

to longer time period. The porous products were also found to have Fe and O in major 

quantity. 

 

     

(a) As-cast                                (b) Annealed                                (c) Normalized                                              

     

      (d) Quench & tempered                  (e) Austempered                                   (f) DMS                              
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 (g) Porous product 

Fig. 4.14: surface morphology of corroded surfaces and the porous product after 1st week of 

immersion.  

 

 

     

                  (a) As-cast                               (b) Annealed                             (c) Normalized 

     

      (d) Quench & tempered                      (e) Austempered                                 (f) DMS   
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(g) Porous product 

Fig. 4.15: Surface morphology of corroded surfaces and the porous product after 12th week of 

immersion.  

 

4.3.4 X-Ray Diffraction Study of Corrosion Product 

To understand the role of alloying elements in the process of corrosion, 

specimens after 1st week of exposure and 12th week of exposure, were subjected to XRD 

investigation. Two different corrosion products were analysed. One was the precipitated 

layer over the specimen surface and another was the porous settled product in the reactor 

that was taken carefully and dried. The XRD patterns were shown in Fig. 4.16. It was 

observed from the XRD analysis that Chromium, Iron and Oxygen have played a major 

role. Besides these elements Copper and Nickel also had significant role in the process. 

The major compounds found from the specimen surface are FeOOH, Cr2O3and Fe-Cr-Ni. 

The result was quite obvious and convincing as it was well known that when iron comes 

in contact with water it forms iron hydroxide.  The results are also in agreement with that 

obtained from the EDAX analysis. It was observed that after the end of 1st week oxides of 

Chromium, Magnesium, Chlorine, and Iron were found. The as-cast specimen was 

observed to have FeOOH, and Cr3O were found after 1st week of immersion, which was 

absent after 12th week. At the end of 12th week FeOOH compound was found in as-cast 

and heat treated specimens, justifying the observation of EDAX analysis. Copper and 

Molybdenum was found to have significant role in case of normalized and quench & 

tempered specimen after 12th week of exposure, whereas in case of austempered and DMS 

specimens, MgO was found to be replaced by FeOOH. 
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                               (a) As-Cast                                                               (b) Annealed 

    

                             (c) Normalized                                               (d) Quench & tempered 

    

                             (e) Austempered                                                          (f) DMS-treated 

Fig. 4.16: XRD pattern for corroded surfaces after 1stand 12thweek of exposure. 
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5. CONCLUSIONS 

The power generations by nuclear power plants are growing day by day all over 

the world. Although the electricity production by an NPP is pollution free and considered 

as a green source of energy, the post-processing of nuclear fuel is a critical task failing of 

which cause a significant loss to the living being and environment. It is, therefore, 

necessary to dispose of the spent fuels away from the civilization and utmost care need to 

be taken so that the radiation leakage can be prevented. Hence, a small step was taken 

towards this issue and properties of spheroidal graphite cast iron (SGCI) are developed by 

alloying addition and heat treatment processes.  

 SGCI cast blocks were fabricated by conventional sand casting technique, from 

which tensile and Izod impact specimenswere machined. The specimens were then 

subjected to annealing, normalizing, quench & tempering, austempering and intercitically 

austenitizing followed by quenching, heat treatement processes. the as-cast and heat 

treated specimens were characterized by optical microscope as well as X-ray diffraction 

technique. The mechanical properties and corrosion studies were carried out on the as-cast 

and heat treated specimens and the results were corelated to the morphological 

characteristics as well as effect of alloying was studied. The concluding remarks of the 

whole research work is stated as follows. 

1. Every alloy possesses ferritic matrix and graphite spheroids embedded within in as-

received state. The graphite spheroids belong to Type I (fully spherical) nodule with 

nodularity value more than 90% and the nodule count ranges from 28 - 40 nodules 

per unit area.  

 

2. Ferrite volume fraction was observed to increase with increased Si content whereas 

the nodularity and nodule count was attributed to the increased amount of Mg as 

well as presence Ce, Cu and Si.  

 

3. Annealing of SGCI did not observed to have any significant effect on the matrix as 

it remained ferritic, but slight increase in nodularity was observed due to a large 

transformation window provided during the operation. 
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4. Normalizing, quench & tempering, austempering treatment resulted in 

pearlitic/ferritic, tempered martensitic and coarse upper bainitic matrix respectively 

with graphite nodule lodged into the respective matrix. On the other hand, the 

intercritically austenitized followed by quenching in mineral oil led to 

transformation of as-cast ferritic matrix into ferritic + martensitic matrix. 

 

5. The heat treatments except annealing resulted in increased nodule count due to 

increased rate of cooling during subsequent cooling and quenching process that 

restricted the carbon movement from the austenite to neighbouring graphite nodules 

resulting increased nucleation of graphite nodules in the matrix.    

 

6. The pearlite volume fraction of normalized specimens was increased with increased 

Mn content, consequentially improving strength and hardness with considerable 

amount of ductility and impact toughness. On the other hand in case of the quench 

& tempered specimens, increased tempered martensite volume fraction was credited 

to the combined effect of Mn and Ni.  

 

7. The bainitic volume fraction in austempered specimens observed to increase with 

increased Ni content resulting increased tensile strength and decreased ductility and 

impact toughness. On the other hand the DMS specimen showed a quite balance of 

ferrite and martensite with Si and Mn content respectively. 

 

8. The objective of achieving greater amount of austenite after austempering treatment 

is almost achieved because of the longer holding time at higher austempering 

temperatures, leading to improved impact toughness as well as maximum strength. 

 

9. The maximum UTS of 1200 MPa was obtained for austempered specimen for alloy 

SG-6 and that of the lowest was 295 MPa in case of annealed specimens for alloy 

SG-3. The corresponding ductility and impact energy was obtained lowest for 

quench and tempered specimens and that of highest was for annealed specimens.  

 

10. The soft ferritic matrix of as-cast and annealed specimens resulted in microvoid 

coalescence leading to formation of dimples around the graphite globules and on the 

matrix suggesting ductile nature failure. Whereas the normalized, quench 
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&tempered and austempered specimens showed the brittle nature of material 

characterized by the presence of low energy stress paths (river markings) and 

cleavage facets.  The DMS treated specimens have illustrated both dimples around 

the nodules as well as river marking on the matrix elucidating mixed mode of 

fracture. There was no significant difference observed in the fracture phenomena of 

tensile and impact fracture. 

 

11. The corrosion behaviour of as-cast and heat treated specimens of respective alloys 

didn’t show any significant pattern over the time. This unusual corrosion behaviour 

in as-cast and heat treated condition can only be attributed to two reasons. The first 

one is that after every regular time interval the specimens had been subjected to 

fresh sea water, resulting variation in the reactivity level of sea water with the 

exposed surfaces of specimens. And secondly,the area of specimen exposed to the 

corrosion environment. 

 

12. The austempered specimens observed to corrode more rapidly than the other heat 

treated and as-cast specimens, whereas the DMS treated specimen had the least rate 

of corrosion. The rate of corrosion was also decreased with increased amount of 

Nickel.   

 

13. The mechanical properties obtained for respective alloys in as-cast and heat treated 

condition are well above the desired properties of SGCI nuclear fuel cask 

specification.  
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APPENDIX - I 

 

ADVANTAGES OF SG IRON NUCLEAR FUEL CASK OVER OTHER CASK 

MATERIALS & DESIGN 

 

Sl. 

No. 

CASKS MADE OF OTHER 

MATERIALS 
SG IRON CASK 

1. 

Casks manufactured by materials 

likecombination of steel & lead or 

cermet required various post-

processingbefore the final assembly of 

different components. 

SG cast iron casks are monolithic and 

can directly be cast into the desired 

shape. 

2. 

Theses casks are quite like composite 

structures, so there is no homogeneity 

in the final product, a consequence of 

which chances of failure increased 

during severe accidental conditions. 

Due to monolithic and direct casting 

technology, SG cast iron becomes 

homogeneous and isotropic in nature 

resulting better strength and toughness 

combination. It also offers better 

corrosion resistance to various 

environments employed. 

3. 

There is the probability of radiation 

leakage during accidental conditions 

and lead or depleted uranium is used as 

radiation absorbing agent, which may 

escape if the containment material fails. 

There is no need to use lead or depleted 

uranium as SG cast iron itself is good 

enough to absorb gamma radiations 

and also possess sufficient mechanical 

properties as required for nuclear fuel 

cask. 

 

 

 

 

 

 

 

 

 



 

xvii 
 

APPENDIX - II 

HIGHLIGHTS OF THE CURRENT RESEARCH 

1. The previous works carried out regarding nuclear fuel cask was mainly focused on 

the fracture toughness investigation of spheroidal graphite cast iron. However, it is 

well established that in the case of high strength and toughness, the fracture toughness 

study can be ignored. Hence, in this current work priority is given towards the 

investigation of mechanical properties of SG cast iron to be used for nuclear fuel cask 

production. 

 

2. The investigation of mechanical properties of SG cast iron by previous researchers 

was mainly carried out on the austempering behaviour of SG cast iron and the effect 

of austempering temperature and time were discussed. The conduct of annealed, 

normalized, quench& tempered SG cast iron is not reported frequently. Hence, the 

present investigation is centred towards the effect of annealing, normalizing, quench 

& tempering and intercriticallly austenitizing followed by quenching (DMS) heat 

treatment processes on morphological and mechanical properties of SGCI. 

 

3. So far the austenitizing temperature was kept in the range of 900-950°C, and very few 

have reported beyond this range. In this research, an austenitizing temperature of 

1000°C was chosen in order to achieve a complete transformation of final 

microstructure after every heat treatment process and also tempering at 500°C was 

opted to avoid the precipitation of unnecessary carbides and martensite. 

 

4. The effect of chemical composition on morphological parameters viz. nodularity, 

nodule count and their influence on mechanical properties were less discussed. A 

thorough study is carried out in this research to have a better visualization of the role 

of morphological parameters on the mechanical properties and corrosion response to 

sea water environment. 
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APPENDIX - III 

FUTURE SCOPE OF WORK  

 

1. The fracture mechanics approach has to be employedfor all the alloys in as-cast and 

heat treated conditions to get optimum composition and heat treatment condition of 

SG cast iron material for nuclear and hazardous waste container fabrication. 

 

2. To minimize the prototype manufacturing & testing cost as well as time-saving a 

relation in mathematical form may be developed, between chemical composition, 

heat treatment parameters, and mechanical properties. 

 

3. Finite elementanalysis approach will be employed to understand the behavior of 

SGCI cask with different designs and composite structures, in actual accidental 

condition. 
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Response to examiner comments 

Reviewer 1:  

1. In the corrosion tests, there were weight gain owing to the formation of scale on 

the surface; and weight loss as the ferrous ions dissolved in the seawater. How do 

you determine the W (mass loss) in equation 3.2? 

Response: The gain and loss in weight during the corrosion test were observed and 

attributed to the same reasons as mentioned by the examiner. The abrupt pattern in the 

corrosion rate was due to the replacement of contaminated sea water with the fresh sea 

water, which results in increased reactivity level of the fresh sea water. However, the 

mass loss W, was determined by weighing the specimens with the help of a micro 

balance. Prior to measuring the weight, the specimens were gently cleaned by alcohol. 

The mass loss was noted by the difference in weight as that of measured in the 

previous week. This might also be a case, that during cleaning with alcohol some 

scales have been peeled off from the surface even. 

2. State in details how you assess the nodularity and nodule count. As they are main 

parts of your work it is just not sufficient to cite the ASTM standard E2567-13a 

only. 

Response: The as-cast and heat treated specimens without etching were observed 

under optical microscope, to determine the nodularity and nodule count. The optical 

microscope was incorporated with computer interface and “Metal Power” image 

analyser tool. The magnification was set to 10X for each and every specimen, before 

taking the image. A set of 10 clean and appropriate frame was captured for each and 

every specimen. Once the frames were captured, post processing was carried out with 

the image analyser tool. The graphite particles and the respective phases were 

differentiated by Yellow and Blue colour code. The minimum diameter of the nodule 

was measured by “Linear Measurement” option, which was found to be 8 µm, and in 

the analyser tab the minimum nodule area was set to 50 µm2, and all the frames were 

put for Nodularity and Nodule count analysis. Based on the colour code and area of 

the nodule a computer generated report was obtained for each specimen, mentioning 

nodularity and nodule count for each frame and average value as well, which has been 

reported in the dissertation. 

3. The different heat-treatment processes as given in Fig. 3.2 suggest that the samples 

were put at different temperatures for different periods of time. Some examples; 

the annealed samples were initially heated at 1000°C for 90 minutes and then 

maintained at 700°C for 5.5 hours; while DMS-treated samples were only exposed 

to 800°C for only 2 minutes. Thus the amount of grain growth would be much 

different, as illustrated in Fig. 4.2. Has the candidate considered the difference in 

grain size of the samples treated under different conditions? Would that have an 

effect on the mechanical properties and corrosion resistance? 
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Response: The careful observation made by the examiner regarding the grain growth 

in respective heat treated specimens, as each heat treatment process is different than 

the other. It is quite possible that the grain growth owing to the heat treatment process 

can change and may have affected the mechanical and corrosion properties as well. 

However, in the current study the kinetics of phase transformation has not been 

considered (as of the major importance). I am thankful to the examiner for noticing 

this point; which can be considered as a future aspect for the investigation.  

4. The XRD patterns of different samples should be put into the same graph for 

comparisons. 

Response: The XRD patterns of different samples has been put into a single graph for 

better comparison as suggested by the examiner and incorporated in the appropriate 

place in the dissertation. 

5. How can you differentiate the (311) peak and (200) peak, if they are both located 

at 65° 2θ? 

Response: It was clearly observed from the microstructure that, the specimens treated 

with austempering treatment had Coarse Upper Bainitic matrix (sometimes also 

referred as Ausferrite) indicating presence of austenite and ferrite in the 

microstructure. This is an evidence of presence of both BCC and FCC crystal structure 

in the (grains of) samples. Whereas, in the as-cast and other heat treated specimens the 

crystal structure was BCC only as no retained austenite was observed in their 

microstructure. Hence in the XRD study, the (3 1 1) FCC peak was observed at 65° 2θ 

for austempered specimens, whereas other specimens have (2 0 0) BCC peak.  The 

similar type of results was also observed by Putatunda et.al [12]. 

6. Where are equations 4.1 and 4.2? 

Response: The equations 4.1 and 4.2 were mentioned in the dissertation (page no. 49) 

as pointed out by the examiner. 

7. What evidence do you have to show “no segregation of sulphur and phosphorus” 

in the SGCI? 

Response: The composition of Sulphur and Phosphorus was well maintained within 

the limit as desired to avoid any segregation. Also neither in the microstructure nor in 

XRD analysis any kind of segregation or precipitation of any Sulphur or Phosphorus 

compound was observed. It can be attributed to the fact that the austenitizing 

temperature (i.e. 1000°C) is quite well above the upper critical temperature and the 

austenitizing time (90 minutes) is long enough to avoid any kind of segregation in the 

final microstructure. 

8. The corrosion rate of >50µm/year is considered as high for SNF cask? 

Response: Although in many observations some values are higher than 50µm/year, 

but some values below 50µm/year is also observed in some cases. Moreover, these 
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data are acceptable and also not yet objected after the sample tests conducted by 

Bhaba Atomic Research Centre (The purpose of the BRNS sponsored project). 

9. Would the candidate comment on the degree of pitting of different samples? This 

is an important factor as leaking of the SNF cask usually initiates from the pits. 

How can the candidate relate section 4.3.3 to 4.3.1? 

Response: The section 4.3.1 explains the rate of corrosion for as-cast and heat treated 

specimens for respective alloys studied. Whereas the section 4.3.3 has reported the 

mechanism of corrosion that was involved in the process. The two major mechanism 

has been observed in the study i.e., pitting corrosion and graphitic corrosion. 

However, the degree of pitting has not been a major investigation point in this study, 

because assessing the degree of pitting is difficult while conducting corrosion test in 

sea water environment. Also as far as the SNF cask is considered the degree of pitting 

is of not as important as that of corrosion rate. Hence in this study the degree of pitting 

has not been considered as part of major investigation. However, to understand this 

phenomena necessary investigations can be considered as a future study. 

10. Section 4.3.2 seems to be a compilation of previous works, without confirmation 

from the present research. For example, did the candidate observed the formation 

of Cu2O on the surface? From the EDAX study in section 4.3.3 only Fe, Cr, Ni, 

Mn are present, but not Cu. Cu was only found in the porous product (i.e. not 

protective) Similar results were obtained in the XRD study. 

Response: The findings reported in sections 4.3.2 and 4.3.3 are inter related. The 

effect of alloying elements on the corrosion behaviour was reported in section 4.3.2 

and validated in section 4.3.3. However, the facts observed by the examiner was also 

reported in the dissertation. The formation of Cu2O has not been observed on the 

corroded surface but found in the porous product. It was quite possible that during the 

cleaning with alcohol the scales were peeled off from the surface and hence found in 

the porous product that was evident from the XRD and EDAX analysis. Also, the sea 

water contains ions of other than Na+ & Cl-, so it was quite possible that during the 

reaction other ions might have led to the formation similar potential that was repellent 

to each other and leading to removal of scale from the surface. Hence the Cu2O 

compound was only observed in the porous product, and not on the corroded surface. 

Reviewer 2:  

1. Austempered components are corroding rapidly than the as-cast and heat-treated 

specimens. Why austempered specimens are indicating more rapid corrosion and 

what is the mechanism of corrosion? 

Response: The austempered specimens were observed to have higher no. of graphite 

nodules as compared to the other as-cast and heat treated specimens. The micrographs 

of corroded surface after 1st week of immersion was observed to have corrosion layers 

surrounding the graphite nodules indicating graphitic corrosion mechanism. The SEM 

investigation also revealed that the corroded surface had significant amount of cracks, 
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which led to penetration of sea water into the scale and react with the specimen 

surface, leading to higher rate of corrosion. Similar case was also observed for the 

quench & tempered specimens. 

2. Increase in Nickel content clearly indicated increase in Tensile Strength with 

decreased Ductility and Impact properties. Do you find any co-relationship of 

Nickel content with the carbon equivalent vis-à-vis mechanical properties? 

Response: The addition of Nickel content results in strengthening the as-cast matrix 

via solid solution strengthening. And as the annealing process undergoes a slow 

transformation process and does not alter the as-cast matrix, as observed in this case; 

hence effect of Ni will remain unaltered. Hence the UTS was observed to be 

increasing for the as-cast and annealed specimens with decreasing ductility and impact 

energy. On the other hand, for the specimens undergone different heat treatment 

processes the amount of phase volume fraction was proportional to Ni wt.%. This can 

be attributed to the fact that with increase in Ni content there was an increase in 

austenite content at austenitizing state resulting higher volume fraction of bainite, 

martensite in respective specimen, consequentially increasing strength and decreasing 

ductility as well as impact energy. 

3. Can we cryogenically treat this Cast Iron for the given set of applications? Offer 

your comment. 

Response: The desired property for SNF cask fabrication requires high strength as 

well as considerable amount of ductility and impact strength, to prevent the failure 

from severe accidental conditions. The cryogenic treatment of SGCI leads to increase 

in hardness and lowers the ductility and impact toughness. Hence, it may not be 

suitable to treat this cast iron cryogenically for present application. However, for 

future study can be considered to obtain a suitable cryogenic treatment condition, so 

that the cast iron can be used for SNF cask fabrication. 

 

 

 


