
Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/44633/1/1-s2.0-S1051200417301434-main.pdf

Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be reused according to the conditions of the licence. For more details see:
http://creativecommons.org/licenses/by/2.5/

A note on versions:
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Introducing anisotropic tensor to high order variational model for image restoration

Jinming Duan a, Wil O.C. Ward a, Luke Sibbett a, Zhenkuan Pan b, Li Bai a

a School of Computer Science, University of Nottingham, UK
b School of Computer Science and Technology, Qingdao University, China

A R T I C L E I N F O

Article history:
Available online xxxx

Keywords:
Total variation
Anisotropic tensor
ADMM
Fast Fourier transform

A B S T R A C T

Second order total variation (SOTV) models have advantages for image restoration over their first order counterparts including their ability to remove the staircase artefact in the restored image. However, such models tend to blur the reconstructed image when discretised for numerical solution [1–5]. To overcome this drawback, we introduce a new tensor weighted second order (TWSO) model for image restoration. Specifically, we develop a novel regulariser for the SOTV model that uses the Frobenius norm of the product of the isotropic SOTV Hessian matrix and an anisotropic tensor. We then adapt the alternating direction method of multipliers (ADMM) to solve the proposed model by breaking down the original problem into several subproblems. All the subproblems have closed-forms and can be solved efficiently. The proposed method is compared with state-of-the-art approaches such as tensor-based anisotropic diffusion, total generalised variation, and Euler’s elastica. We validate the proposed TWSO model using extensive experimental results on a large number of images from the Berkeley BSD500. We also demonstrate that our method effectively reduces both the staircase and blurring effects and outperforms existing approaches for image inpainting and denoising applications.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Anisotropic diffusion tensor can be used to describe the local geometry at an image pixel, thus making it appealing for various image processing tasks [6–13]. Variational methods allow easy integration of constraints and use of powerful modern optimisation techniques such as primal–dual [14–16], fast iterative shrinkage-thresholding algorithm [17,18], and alternating direction method of multipliers [2–4,19–24]. Recent advances on how to automatically select parameters for different optimisation algorithms [16,18, 25] dramatically boost performance of variational methods, leading to increased research interest in this field.

As such, the combination of diffusion tensor and variational methods has been investigated by researchers for image processing. Krajsek and Schar [7] developed a linear anisotropic regularisation term that forms the basis of a tensor-valued energy functional for image denoising. Grasmair and Lenzen [8,9] penalised image variation by introducing a diffusion tensor that depends on the structure tensor of the image. Roussos and Maragos [10] developed a functional that utilises only eigenvalues of the structure tensor. Similar work by Lefkimmiatis et al. [13] used Schatten-norm of the structure tensor eigenvalues. Freddie et al. proposed a tensor-based variational formulation for colour image denoising [11], which computes the structure tensor without Gaussian convolution to allow Euler-equation of the functional to be elegantly derived. They further introduced a tensor-based functional named the gradient energy total variation [12] that utilises both eigenvalues and eigenvectors of the gradient energy tensor.

However, these existing works mentioned above only consider the standard first order total variation (FOTV) energy. A drawback of the FOTV model is that it favours piecewise-constant solutions. Thus, it can create strong staircase artefacts in the smooth regions of the restored image. Another drawback of the FOTV model is its use of gradient magnitude to penalise image variations at pixel locations \(\mathbf{x} \), which uses less neighbouring pixel information as compared to high order derivatives in a discrete space. As such, the FOTV has difficulties inpainting images with large gaps. High order variational models thus can be applied to remedy these side effects. Among these is the second order total variation (SOTV) model [1,2,12,26,27]. Unlike the high order variational models, such as the Gaussian curvature [28], mean curvature [23, 29], Euler’s elastica [21] etc., the SOTV is a convex high order extension of the FOTV, which guarantees a global solution. The SOTV is also more efficient to implement [4] than the convex total generalised variation (TGV) [30,31]. However, the inpainting results of

E-mail address: zkpan@qdu.edu.cn (Z. Pan).

http://dx.doi.org/10.1016/j.dsp.2017.07.001

1051-2004 © 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article in press as: J. Duan et al., Introducing anisotropic tensor to high order variational model for image restoration, Digit. Signal Process. (2017), http://dx.doi.org/10.1016/j.dsp.2017.07.001
the model highly depend on the geometry of the inpainting region, and it also tends to blur the inpainted area [22,22]. Further, according to the numerical experimental results displayed in [1–5] the SOTV model tends to blur object edges for image denoising.

In this paper, we propose a tensor weighted second order (TWSO) variational model for image inpainting and denoising. A novel regulariser has been developed for the TWSO that uses the Frobenius norm of the product of the isotropic SOTV Hessian matrix and an anisotropic tensor, so that the TWSO is a nonlinear anisotropic high order model which effectively integrates orientation information. In numerous experiments, we found that the TWSO can reduce the staircase effect whilst improve the sharp edges/boundaries of objects in the denoised image. For image inpainting problems, the TWSO model is able to connect large gaps regardless of the geometry of the inpainting region and it would not introduce much blur to the inpainted image. As the proposed TWSO model is based on the variational framework, ADMM can be adapted to solve the model efficiently. Extensive numerical results show that the new TWSO model outperforms the state-of-the-art approaches for both image inpainting and denoising.

The contributions of the paper are twofold: 1) a novel anisotropic second order variational model is proposed for image restoration. To the best of our knowledge, this is the first time the Frobenius norm of the product of the Hessian matrix and a tensor has been used as a regulariser for variational image denoising and inpainting; 2) A fast ADMM algorithm is developed for image restoration based on a forward-backward finite difference scheme.

The rest of the paper is organised as follows: Section 2 introduces the proposed TWSO model and the anisotropic tensor T; Section 3 presents the discretisation of the differential operators used for ADMM based on a forward-backward finite difference scheme; Section 4 describes ADMM for solving the variational model efficiently. Section 5 gives details of the experiments using the proposed TWSO model and the state-of-the-art approaches for image inpainting and denoising. Section 6 concludes the paper.

2. The TWSO model for image restoration

2.1. The TWSO model

In [26], the authors considered the following SOTV model for image processing

$$\min_u \left\{ \frac{\eta}{2} \| u - f \|_2^2 + \| \nabla^2 u \|_1 \right\}, \quad (2.1)$$

where $\eta > 0$ is a regularisation parameter, $\nabla^2 u$ is the second order Hessian matrix of the form

$$\nabla^2 u = \left(\frac{\partial^2 u}{\partial x_1 \partial x_2} \right). \quad (2.2)$$

and $\| \nabla^2 u \|_1$ in (2.1) is the Frobenius norm of the Hessian matrix (2.2). By using such norm, (2.1) has several capabilities: 1) allowing discontinuity of gradients of u; 2) imposing smoothness on u; 3) satisfying the rotation-invariant property. Thought this high order model (2.1) is able to reduce the staircase artefact associated with the FOTV for image denoising, it can blur object edges in the image [1–4]. For inpainting, as investigated in [22,22], though the SOTV has the ability to connect large gaps in the image, such ability depends on the geometry of the inpainting region, and it can blur the inpainted image. In order to remedy these side effects in both image inpainting and denoising, we propose a more flexible and generalised variational model, i.e., the tensor weighted second order (TWSO) model that takes advantages of both the tensor and the second order derivative. Specifically, the TWSO model is defined as

$$\min_u \left\{ \frac{\eta}{p} \| u - f \|_p^p + \| \nabla^2 u \|_1 \right\}, \quad (2.3)$$

where $p \in (1, 2]$ denotes the L^1 and L^2 data fidelity terms (i.e., $\| u - f \|_p^p$ and $\| \nabla^2 u \|_1$), and γ is a subset of Ω (i.e., $\Gamma \subset \Omega \subset \mathbb{R}^2$). For image processing applications, the Ω is normally a rectangle domain. For image inpainting, u is the given image in $\Gamma = \Omega \setminus D$, where $D \subset \Omega$ is the inpainting region with missing or degraded information. The values of f on the boundaries of D need to be propagated into the inpainting region via minimisation of the weighted regularisation term of the TWSO model. For image denoising, f is the noisy image and $\Omega = \Gamma$.

In the regularisation term $\| \nabla^2 u \|_1$ of (2.3), \mathbf{T} is a symmetric positive semi-definite 2×2 diffusion tensor whose four components are $T_{11}, T_{12}, T_{21},$ and T_{22}. They are computed from the input image f. It is worth pointing out that the regularisation term $\| \nabla^2 u \|_1$ is the Frobenius norm of a 2×2 tensor \mathbf{T} multiplied by a 2×2 Hessian matrix $\nabla^2 u$, which has the form

$$\nabla^2 u = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}.$$

(2.4)

where the two orthogonal eigenvectors of \mathbf{T} span the rotated coordinate system in which the gradient of the input image is computed. As such \mathbf{T} can introduce orientations to the bounded Hessian regulariser $\| \nabla^2 u \|_1$. The eigenvalues of the tensor measure the degree of anisotropy in the regulariser and weight the four second order derivatives in $\nabla^2 u$ in the two directions given by the eigenvectors of the structure tensor introduced in [32]. It should be noting that the original SOTV (2.1) is an isotropic nonlinear model while the proposed TWSO (2.3) is an anisotropic nonlinear one. As a result, the new tensor weighted regulariser $\| \nabla^2 u \|_1$ is powerful for image inpainting and denoising, as illustrated in the experimental section. In the next section, we shall introduce the derivation of the tensor \mathbf{T}.

2.2. Tensor estimation

In [32], the author defined the structure tensor J_{ρ} of an image u

$$J_{\rho} (\nabla u_\sigma) = K_{\rho} * (\nabla u_\sigma \otimes \nabla u_\sigma), \quad (2.5)$$

where K_{ρ} is a Gaussian kernel whose standard deviation is ρ and ∇u_σ is the smoothed version of the gradient convolved by K_{ρ}. The use of $(\nabla u_\sigma \otimes \nabla u_\sigma) = \nabla u_\sigma \nabla u_\sigma^T$ as a structure descriptor is to make J_{ρ} insensitive to noise but sensitive to change in orientation. The structure tensor J_{ρ} is positive semi-definite and has two orthonormal eigenvectors $v_1 \| \nabla u_\sigma$ (in the direction of gradient) and $v_2 \| \nabla u_\sigma$ (in the direction of the isolevel lines). The corresponding eigenvalues μ_1 and μ_2 can be calculated from

$$\mu_{1,2} = \frac{1}{2} \left(j_{11} + j_{22} \pm \sqrt{(j_{11} - j_{22})^2 + 4j_{12}^2} \right). \quad (2.6)$$

where j_{11}, j_{12} and j_{22} are the components of J_{ρ}. They are given as

$$j_{11} = K_{\rho} \ast (\partial_x u_\sigma)^2, \quad j_{22} = K_{\rho} \ast (\partial_y u_\sigma)^2,$$

$$j_{12} = K_{\rho} \ast (\partial_x u_\sigma \partial_y u_\sigma). \quad (2.7)$$

The eigenvalues of J_{ρ} describe the ρ-averaged contrast in the eigendirections, meaning: if $\mu_1 = \mu_2 = 0$, the image is in homogeneous area; if $\mu_1 \gg \mu_2 = 0$, it is on a straight line; and if $\mu_1 > \mu_2 > 0$, it is at objects’ corner. Based on the eigenvalues, we can define the following local structural coherence quantity

$$\text{Coh} = (\mu_1 - \mu_2)^2 = (j_{11} - j_{22})^2 + 4j_{12}^2. \quad (2.8)$$
This quantity is large for linear structures and small for homogeneous areas in the image. With the derived structure tensor \(T = D(J_\rho(\nabla u_\sigma))\) whose eigenvectors are parallel to the ones of \(J_\rho(\nabla u_\sigma)\) and its eigenvalues \(\lambda_1\) and \(\lambda_2\) are chosen depending on different image processing applications. For denoising problems, we need to prohibit the diffusion across image edges and encourage strong diffusion along edges. We therefore consider the following two diffusion coefficients for the eigenvalues

\[
\lambda_1 = \begin{cases}
1 & s \leq 0 \\
1 - e^{-\frac{3.31488}{\alpha (C)^2}} & s > 0
\end{cases}, \quad \lambda_2 = 1, \tag{2.9}
\]

with \(s := |\nabla u_\sigma|\) the gradient magnitude and \(C\) the contrast parameter. For inpainting problems, we want to preserve linear structures and thus regularisation along isophotes of the image is appropriate. We therefore consider the weights that Weickert [32] used for enhancing the coherence of linear structures. With \(\mu_1, \mu_2\) being the eigenvalues of \(J_\rho\) as before, we define

\[
\lambda_1 = \gamma, \quad \lambda_2 = \begin{cases}
\gamma & \mu_1 = \mu_2 \\
\gamma + (1 - \gamma) e^{-\frac{\alpha}{\mu_1}} & \text{else}
\end{cases}, \tag{2.10}
\]

where \(\gamma \in (0, 1), \gamma \ll 1\). The constant \(\gamma\) determines how steep the exponential function is. The structure threshold \(C\) affects how the approach interprets local structures. The larger the parameter value is, the more coherent the model will be. With these eigenvalues, the regularisation is stronger in the neighbourhood of coherent structures (note that \(\rho\) determines the radius of neighbourood) and weaker in homogeneous areas, at corners, and in incoherent areas of the image.

3. Discretisation of differential operators

In order to implement ADMM for the proposed TWSO model, it is necessary to discretise the derivatives involved. We note that different discretisation may lead to different numerical experimental results. In this paper, we use the forward–backward finite difference scheme. Let \(\Omega\) denote the two dimensional grey scale image of size \(MN\), and \(x\) and \(y\) denote the coordinates along image column and row directions respectively. The discrete second order derivatives of \(u\) at point \((i, j)\) along \(x\) and \(y\) directions can be then written as

\[
\frac{\partial^2}{\partial x^2} u_{i,j} = u_{i-1,j} - 2u_{i,j} + u_{i+1,j}, \quad \frac{\partial^2}{\partial y^2} u_{i,j} = u_{i,j-1} - 2u_{i,j} + u_{i,j+1}, \tag{3.1}
\]

\[
\frac{\partial^2}{\partial x \partial y} u_{i,j} = u_{i+1,j+1} - u_{i-1,j-1} - u_{i+1,j-1} + u_{i-1,j+1}. \tag{3.2}
\]

Fig. 1 summarises these discrete differential operators. Based on the above forward–backward finite difference scheme, the second order Hessian matrix \(\nabla^2 u\) in (2.2) can be discretised as

\[
\nabla^2 u = \begin{pmatrix}
\frac{\partial^2}{\partial x^2} u & \frac{\partial^2}{\partial x \partial y} u & \frac{\partial^2}{\partial y^2} u \\
\frac{\partial^2}{\partial x \partial y} u & \frac{\partial^2}{\partial y^2} u & \frac{\partial^2}{\partial y^2} u
\end{pmatrix}. \tag{3.5}
\]

In (3.1)–(3.5), we assume that \(u\) satisfies the periodic boundary condition so that the fast Fourier transform (FFT) solver can be applied to solve (2.3) analytically. The numerical approximation of the second order divergence operator \(\nabla^2 u\) is based on the following expansion

\[
d\nabla^2 (P) = \frac{\partial^2}{\partial x^2} (P_1) + \frac{\partial^2}{\partial y^2} (P_2) + \frac{\partial^2}{\partial x \partial y} (P_3) + \frac{\partial^2}{\partial x \partial y} (P_4), \tag{3.6}
\]

where \(P\) is a \(2 \times 2\) matrix whose four components are \(P_1, P_2, P_3\), and \(P_4\), respectively. For more detailed description of the discretisation of other high order differential operators, we refer the reader to [3,4]. More advanced discretisation on a staggered grid can be found in [21,33,34].

Finally, we address the implementation problem of the first order derivatives of \(u_\sigma\) in (2.7). Since the differentiation and convolution are commutative, we can take the derivative and smooth the image in either order. In this sense, we have

\[
\frac{\partial}{\partial x} u_{\sigma} = \frac{\partial}{\partial x} K_{\sigma} * u, \quad \frac{\partial}{\partial y} u_{\sigma} = \frac{\partial}{\partial y} K_{\sigma} * u. \tag{3.7}
\]

Alternatively, the central finite difference scheme can be used to approximate \(\partial u_{\sigma}\) and \(\partial u_{\sigma}\) to satisfy the rotation-invariant property. Once all necessary discretisation is done, the numerical computation can be implemented.

4. Numerical optimisation algorithm

It is nontrivial to directly solve the TWSO model due to the facts: 1) it is nonsmooth; 2) it couples the tensor \(T\) and Hessian matrix \(\nabla^2 u\) in \(\|TV^2u\|\) as shown in (2.4), making the resulting high order Euler–Lagrange equation drastically difficult to discretise to solve computationally. To address these two difficulties, we present an efficient numerical algorithm based on ADMM to minimise the variational model (2.3).

4.1. Alternating Direction Method of Multipliers (ADMM)

ADMM combines the decomposability of the dual ascent with superior convergence properties of the method of multipliers. Recent research [20] unveils that ADMM is also closely related to Douglas–Rachford splitting, Splitgarn’s method of partial inverses, Dykstra’s alternating projections, split Bregman iterative algorithm etc. Given a constrained optimisation problem
min \{ f(x) + g(z) \} \text{ s.t. } Ax + Bz = c, \quad (4.1)

where \(x \in \mathbb{R}^d, z \in \mathbb{R}^d, A \in \mathbb{R}^{m \times d}, B \in \mathbb{R}^{m \times d}, c \in \mathbb{R}^m, \) and both \(f(\cdot) \) and \(g(\cdot) \) are assumed to be convex. The augmented Lagrange function of problem (4.1) can be written as

\[
L_A(x; z; \rho) = f(x) + g(z) + \frac{\rho}{2} \| Ax + Bz - c - \rho \|_2^2,
\]

(4.2)

where \(\rho \) is an augmented Lagrangian multiplier and \(\rho > 0 \) is an augmented penalty parameter. At the kth iteration, ADMM attempts to solve problem (4.2) by iteratively minimising \(L_A \) with respect to \(x \) and \(z \), and updating \(\rho \) accordingly. The resulting optimisation procedure is summarised in Algorithm 1.

Algorithm 1 ADMM.

1. Initialization: Set \(\rho > 0, z^0 \) and \(\rho^0 \).
2. while a stopping criterion is not satisfied do
3. \(x^{k+1} = \arg \min_x \left\{ f(x) + \frac{\rho}{2} \| Ax + Bz^k - c - \rho \|_2^2 \right\} \),
4. \(z^{k+1} = \arg \min_z \left\{ g(z) + \frac{\rho}{2} \| Ax^{k+1} + Bz - c - \rho \|_2^2 \right\} \),
5. \(\rho^{k+1} = \rho^k - (A x^{k+1} + B z^{k+1} - c) \).
6. end while

4.2. Application of ADMM to solve the TWSO model

We now use ADMM to solve the minimisation problem of the proposed TWSO model (2.3). The basic idea of ADMM is to first split the original nonsmooth minimisation problem into several subproblems by introducing some auxiliary variables, and then solve each subproblem separately. This numerical algorithm benefits from both solution stability and fast convergence.

In order to implement ADMM, one scalar auxiliary variable \(\tilde{u} \) and two \(2 \times 2 \) matrix-valued auxiliary variables \(W \) and \(V \) are introduced to reformulate (2.3) into the following constraint optimisation problem

\[
\min_{\tilde{u}, u, W, V} \left\{ \frac{\eta}{p} \| 1_{\Gamma} (\tilde{u} - f) \|_p + \| W \|_1 + \| \tilde{V} \|_1, W = TV \right\} \text{ s.t. } u = \tilde{u}, V = \nabla^2 u, W = TV,
\]

(4.3)

where \(W = (W_{11}, W_{12}, W_{21}, W_{22}) \), \(V = (V_{11}, V_{12}) \). The constraints \(u = \tilde{u} \) and \(V = \nabla^2 u \) are respectively applied to handle the non-smoothness of the data fidelity term \((p = 1) \) and the regularisation term, whilst \(V = \nabla^2 u \) decouples \(T \) and \(V^2u \) in the TWSO. The three constraints together make the calculation for each subproblem point-wise and thus no huge matrix multiplication or inversion is required. To guarantee an optimal solution, the above constrained problem (4.3) can be solved through ADMM summarised in Algorithm 1. Let

\[
L_A(\tilde{u}, u, W, V; s, d, b)
\]

be the augmented Lagrange functional of (4.3), which is defined as follows

\[
L_A(\tilde{u}, u, W, V; s, d, b) = \frac{\eta}{p} \| 1_{\Gamma} (\tilde{u} - f) \|_p + \| W \|_1 + \frac{\theta_1}{2} \| \tilde{u} - u - s \|_2^2 + \frac{\theta_2}{2} \| V - \nabla^2 u - d \|_2^2 + \frac{\theta_3}{2} \| W - TV - b \|_2^2.
\]

(4.4)

where \(s, d = (d_{11}, d_{12}), b = (b_{11}, b_{12}) \) are the augmented Lagrangian multipliers, and \(\theta_1, \theta_2, \theta_3 \) are positive penalty constants controlling the weights of the penalty terms.

We will now decompose the optimisation problem (4.4) into four subproblems with respect to \(\tilde{u}, u, W \) and \(V \), and then update the Lagrangian multipliers \(s, d, b \) and \(u \) until the optimal solution is found and the process converges.

1) \(\tilde{u} \)-subproblem: This subproblem \(\tilde{u}^{k+1} = \min \n L_A(\tilde{u}, u^k, W^k, V^k; s^k, d^k, b^k) \) can be solved by considering the following minimisation problem

\[
\tilde{u}^{k+1} = \arg \min_{\tilde{u}} \left\{ \eta \left\| 1_{\Gamma} (\tilde{u} - f) \right\|_p + \frac{\theta_1}{2} \| \tilde{u} - u^k - s^k \|_2^2 \right\}.
\]

(4.5)

The solution of (4.5) depends on the choice of \(p \). Given the domain \(\Gamma \) for image denoising or inpainting, the closed-form formulae for the minimisers \(\hat{u}^{k+1} \) under different conditions are

\[
\hat{u}^{k+1} = \begin{cases} (1/\eta_1) + \theta_1 (u^k + s^k) & \text{if } p = 2 \\ f + \max \left\{ (\psi^k - \theta_1 \eta_1), 0 \right\} \circ \text{sign} (\psi^k) & \text{if } p = 1 \end{cases},
\]

where \(\psi^k = \hat{u}^k + s^k - f \). \(o \) and \(\circ \) symbols denote the component-wise multiplication and sign function, respectively.

2) \(u \)-subproblem: We then solve \(u \)-subproblem \(u^{k+1} = \min \n L_A(\hat{u}^{k+1}, u, W^k, V^k; s^k, d^k, b^k) \) by minimising the following problem

\[
u^{k+1} = \arg \min_{u} \left\{ \theta_2 \| u^{k+1} - u - s^k \|_2^2 + \frac{\theta_2}{2} \| V^k - \nabla^2 u - d^k \|_2^2 \right\},
\]

(4.7)

whose closed-form can be obtained using the following FFT under the assumption of the circulant boundary condition (Note that to benefit from the fast FFT solver for image inpainting problems, the introduction of \(\hat{u} \) is compulsory due to the fact that \(\mathcal{F}(1_{\Gamma} f) \neq 1_{\Gamma_{\mathcal{F}} f} \))

\[
u^{k+1} = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(\theta_1 (\hat{u}^{k+1} - s^k) + \theta_2 d^k \mathcal{F}(\nabla^2 u - d^k))}{\theta_2 + \theta_2 \mathcal{F}(\nabla^2 u - d^k)} \right),
\]

(4.8)

where \(\mathcal{F} \) and \(\mathcal{F}^{-1} \) respectively denote the discrete Fourier transform and inverse Fourier transform; \(d^k \) is a second order divergence operator whose discrete form is defined in (3.6); \(\|\cdot\| \) stands for the pointwise division of matrices. The values of the coefficient matrix \(\mathcal{F}(\nabla^2 u^k) \) equal \(4(\cos \frac{2\pi k}{M} + \cos \frac{2\pi l}{N} + 2) \), where \(M \) and \(N \) respectively stand for the image width and height, and \(r \in [0, M] \) and \(q \in [0, N] \) are the frequencies in the frequency domain. Note that in addition to FFT, AOS and Gauss–Seidel iteration can be applied to minimise the problem (4.7) with very low cost.

3) \(W \)-subproblem: We now solve the \(W \)-subproblem \(W^{k+1} = \min \n L_A(\hat{u}^{k+1}, u^{k+1}, W, \hat{V}; s^k, d^k, b^k) \). Note that the unknown matrix-valued variable \(W \) is componentwise separable, which can be effectively solved through the analytical shrinkage operation, also known as the soft generalised thresholding equation

\[
W^{k+1} = \arg \min_{W} \left\{ \| W \|_1 + \frac{\theta_3}{2} \| W - TV - b \|_2^2 \right\}.
\]

whose solution \(W^{k+1} \) is given by

\[
W^{k+1} = \max \left(\| TV^k - b^k \| - \frac{1}{\theta_3}, 0 \right) \circ TV^k + b^k \| TV^k + b^k \|,
\]

(4.9)

with the condition that \(0 - (0/0) = 0 \).

4) The \(V \)-subproblem: Given fixed \(u^{k+1}, W^{k+1}, d^{k}, b^{k} \), the solution \(V^{k+1} \) of the \(V \)-subproblem \(V^{k+1} = \min \n L_A(\hat{u}^{k+1}, u^{k+1}, W^{k+1}, \hat{V}; s^k, d^k, b^k) \) is equivalent to solving the following least-square optimisation problem

\[
V^{k+1} = \arg \min_{V} \left\{ \theta_2 \| V - \nabla^2 u^{k+1} - d^k \|_2^2 + \frac{\theta_2}{2} \| W^{k+1} - TV - b^k \|_2^2 \right\}.
\]

Algorithm 2 ADMM for the proposed TWSO model for image restoration.

1. Input: \(f, \gamma, \rho, \theta, \sigma, \gamma, C, n, b \) and \((\theta_1, \theta_2, \theta_3) \).
2. Initialise: \(u = f, \mathbf{W} = 0, \mathbf{V} = 0, \mathbf{d} = 0, \mathbf{b}^0 = 0 \).
3. While some stopping criterion is not satisfied do
4. Compute \(\mathbf{d}^{k+1} \) according to (4.8).
5. Compute \(\mathbf{u}^{k+1} \) according to (4.8).
6. Compute \(\mathbf{W}^{k+1} \) according to (4.9).
7. Compute \(\mathbf{V}^{k+1} \) according to (4.10).
8. Compute \(R^{k+1} = D(f, \mathbf{V}^{k+1}) \) according to (2.9) or (2.10).
9. Update Lagrangian multiplier \(s^{k+1} = s^k + \rho_k + \gamma - 1 \).
10. Update Lagrangian multiplier \(\mathbf{d}^{k+1} = \mathbf{u}^k - \mathbf{V}^k + \gamma - 1 \).
11. Update Lagrangian multiplier \(\mathbf{b}^{k+1} = \mathbf{b}^k + \mathbf{V}^k - \mathbf{W}^k \).
12. End while

In summary, an ADMM-based iterative algorithm was developed to decompose the original nonsmooth minimisation problem into four simple subproblems, each of which has a closed-form solution that can be point-wisely solved using the efficient numerical methods (i.e. FFT and shrinkage). The overall numerical optimisation algorithm of our proposed method for image restoration can be summarised in Algorithm 2. We note that in order to obtain better denoising and inpainting results, we iteratively refine the diffusion tensor \(T \) using the recovered image (i.e. \(u^{k+1} \) as shown in Step 8 in Algorithm 2). This refinement is crucial as it provides more accurate tensor information for the next round iteration, thus leading to more pleasant restoration results. Due to the reweighed process the convergence of the algorithm is not guaranteed. However, the algorithm is still fast and stable, as evident in our experiments.

5. Numerical experiments

We conduct numerical experiments to compare the TWSO model with state-of-the-art approaches for image inpainting and denoising. The images used in this study are normalised to \([0,255]\) before inpainting and denoising. The metrics for quantitative evaluation of different methods are the peak signal-to-noise ratio (PSNR) and structure similarity index map (SSIM). The higher PSNR and SSIM a method obtains the better the method will be. In order to maximise the performance of all the compared methods, we carefully adjust their built-in parameters such that the resulting PSNR and SSIM by these methods are maximised. In the following, we shall introduce how to select these parameters for the TWSO model in detail.

5.1. Parameters

For image inpainting, there are 8 parameters in the proposed model: the standard deviations \(\rho \) and \(\sigma \) in (2.5), the constant \(\gamma \) and structure threshold \(C \) in (2.10), the regularisation parameter \(\eta \) in (4.4), and the penalty parameters \(\theta_1, \theta_2 \) and \(\theta_3 \) in (4.4).

The parameter \(\rho \) averages orientation information and helps to stabilise the directional behaviour of the diffusion. Large interrupted lines can be connected if \(\rho \) is equal or larger than the gap size. The selection of \(\rho \) for each example has been listed in Table 1. \(\sigma \) is used to decrease the influence of noise and guarantee numerical stabilisation and thereby gives a more robust estimation of the structure tensor \(\mathbf{J}_{\rho} \) in (2.5). \(\gamma \) in (2.10) determines how steep the exponential function is. Weickert [32] suggested \(\gamma \in (0, 1) \) and \(\gamma \ll 1 \). Therefore \(\gamma \) is fixed at 0.01. The structure threshold \(C \) affects how the method understands local image structures. The larger the parameter value is, the more sensitive the method will be. However, if \(C \) goes to infinity, our TWSO model reduces to the isotropic SOTV model. \(C \)’s selection for different examples is presented in Table 1. The regularisation parameter \(\eta \) controls the smoothness of the restored image. Smaller \(\eta \) leads to smoother restoration, and it should be relatively large to make the inpainted image close to the original image. The value of \(\eta \) is chosen as 100 for all the inpainting experiments.

We now illustrate how to choose the penalty parameters \(\theta_1, \theta_2 \) and \(\theta_3 \). Due to the augmented Lagrangian multipliers used, different combinations of the three parameters will provide similar inpainting results. However, the convergence speed will be affected. In order to guarantee the convergence speed, we use the rule introduced in [35] to tune \(\theta_1, \theta_2 \) and \(\theta_3 \). Namely, the residuals \(R^{k} \) (i = 1, 2, 3) defined in (5.1), the relative errors of the Lagrangian multipliers \(L_i^k \) (i = 1, 2, 3) defined in (5.2) and the relative errors of \(u \) defined in (5.3) should reduce to zero with nearly the same speed as the iteration proceeds. For example, in all the inpainting experiments, setting \(\theta_1 = 0.01, \theta_2 = 0.01 \) and \(\theta_3 = 0.001 \) gives a good convergence speed as each pair of curves in Fig. 2 (a) and (b) decrease to zero with very similar speed. In addition, Fig. 2 (d) shows that the numerical energy of the TWSO model (2.3) has reached to a steady state after only a few iterations. Fig. 2 shows the plots for a real inpainting example in Fig. 7.

The residuals \(R_i^k \) (i = 1, 2, 3) are defined as

$$
R_i^k = \frac{\left\lVert \mathbf{u}^k - \mathbf{u}^{k-1} \right\rVert_{L_1}}{\left\lVert \mathbf{u}^k \right\rVert_{L_1}} (5.1)
$$

where \(\left\lVert . \right\rVert_{L_1} \) denotes the \(L^1 \)-norm on the image domain \(\Omega \). The relative errors of the augmented Lagrangian multipliers \(L_i^k \) (i = 1, 2, 3) are defined as

$$
L_i^k = \frac{\left\lVert \mathbf{d}^k - \mathbf{d}^{k-1} \right\rVert_{L_1}}{\left\lVert \mathbf{d}^k \right\rVert_{L_1}}, \quad \frac{\left\lVert \mathbf{b}^k - \mathbf{b}^{k-1} \right\rVert_{L_1}}{\left\lVert \mathbf{b}^k \right\rVert_{L_1}} \quad (5.2)
$$

The relative errors of \(u \) are defined as

$$
\frac{\left\lVert \mathbf{u}^k - \mathbf{u}^{k-1} \right\rVert_{L_1}}{\left\lVert \mathbf{u}^k \right\rVert_{L_1}} (5.3)
$$

In summary, there are only two built-in parameters \(\rho \) and \(C \) that need to be adjusted for inpainting different images (see Table 1 for their selections). Consequently, the proposed TWSO is a very robust model in terms of parameter tuning.
Fig. 2. Plots of the residuals (5.1), the relative errors of the Lagrangian multipliers (5.2), the relative errors of the function u in (5.3), and the energy of the proposed model (2.3) against number of iterations for the real inpainting example in Fig. 7.

Fig. 3. Plots of the residuals (5.1), relative errors of the Lagrangian multipliers (5.2), relative errors of the function u in (5.3), and the energy of the TWSO model (2.3) against the number of iterations for the synthetic image in Fig. 9.
For image denoising, there are 7 parameters in the TWSO model: ρ and σ in (2.5), the contrast parameter C in (2.9), and η, θ_1, θ_2 and θ_3 in (4.4). Each parameter plays a similar role as its counterpart in the inpainting model. However, in contrast to inpainting, ρ here should be small because we do not need to connect gaps for image denoising. We have also found that $\sigma = 1$ is sufficient for the cases considered in this paper. C determines how much anisotropy the TWSO model will bring to the resulting image. We illustrate the effect of this parameter using the example in Fig. 10. The regularisation parameter η should be small when image noise level is high. The three penalty parameters are chosen based on the quantities defined in (5.1), (5.2) and (5.3). Fig. 3 shows that using $\theta_1 = 5$, $\theta_2 = 5$ and $\theta_3 = 10$ leads to fast convergence speed for the synthetic image in Fig. 9 and these values are used for the rest of image denoising examples. Finally, the parameters selected are given in the last two columns in Table 1.

Table 1

Parameters used in the TWSO model for the examples in Figs. 4–7 and Figs. 9–10.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fig. 4</th>
<th>Fig. 5</th>
<th>Fig. 6</th>
<th>Fig. 7</th>
<th>Fig. 9</th>
<th>Fig. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>σ</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>γ</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>C/C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>η</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>θ_2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>θ_3</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

5.2. Image inpainting

In this section we test the capability of the TWSO model for image inpainting and compare it with several state-of-the-art inpainting methods such as the TV [36], TGV [37], SOTV [2,22], and Euler’s elastica [21,38] models. We denote the inpainting domain as D in the following experiments. The region Γ in equation (2.3) is $\Omega \setminus D$. We use $p = 2$ for all examples in image inpainting.

Fig. 4 illustrates the importance of the tensor T in the proposed TWSO model. The damaged images overlaid with the red inpainting areas are shown in the first row. Second row and third row show that the TWSO performs much better than SOTV. SOTV introduces blurring to the inpainted regions, whilst TWSO recovers these shapes very well without causing much blurring. In addition to the capability of inpainting large gaps, the TWSO interpolates smoothly along the level curves of the image in the inpainting domain, indicating the effectiveness of tensor in TWSO for inpainting.

In Fig. 5, we show how different geometries of the inpainting region affect the results by different methods. Column (b) illustrates that TV performs satisfactorily if the inpainting area is thin. However, it fails in images that contain large gaps. Column (c) indicates that the inpainting result by SOTV depends on the geometry of the inpainting region. It is able to inpaint large gaps but at the

Please cite this article in press as: J. Duan et al., Introducing anisotropic tensor to high order variational model for image restoration, Digit. Signal Process. (2017), http://dx.doi.org/10.1016/j.dsp.2017.07.001
cost of introducing blurring. Mathematically, TGV is a combination of TV and SOTV, so its results, as shown in Column (d), are similar to those of TV and SOTV. TGV results also seem to depend on the geometry of the inpainting area. The last column shows that TWSO inpaints the images perfectly without any blurring and regardless local geometry. TWSO is also slightly better than Euler’s elastica, which has proven to be very effective in dealing with larger gaps.

We now show an example of inpainting a smooth image with large gaps. Fig. 6 shows that all the methods, except the TWSO model, fail in inpainting the large gaps in the image. This is due to the fact that TWSO integrates the tensor T with its eigenvalues defined in (2.10), which makes it suitable for restoring linear structures, as shown in the second row of Fig. 6.

Fig. 7 compares the inpainting of a real image by all the methods. The inpainting result of the TV model seems to be more satisfactory than those of SOTV and TGV, though it produces piecewise constant restoration. From the second row, neither TV nor TGV is able to connect the gaps on the cloth. SOTV reduces some gaps but blurs the connecting region. Euler’s elastica performs better than TV, SOTV, and TGV, but no better than the proposed TWSO model. Table 2 shows that the TWSO is the most accurate among all the methods compared for the examples in Figs. 5–7.

Finally, we evaluate TV, SOTV, TGV, Euler’s elastica and TWSO on the Berkeley database BSDS500 for image inpainting. We use 4 random masks (i.e., 40%, 60%, 80% and 90% pixels are missing) for each of the 100 images randomly selected from the database. The performance of each method for each mask is measured in terms of mean and standard deviation of PSNR and SSIM over all 100 images. The results are demonstrated in the following Table 3 and Fig. 8. The accuracy of the inpainting results obtained by different methods decreases as the percentage of missing pixels region becomes larger. The highest averaged PSNR values are again achieved by the TWSO, demonstrating its effectiveness for image inpainting.

5.3. Image denoising

For denoising images corrupted by Gaussian noise, we use $p = 2$ in (2.3) and the Γ in (2.3) is the same as the image domain Ω. We compare the proposed TWSO model with the Perona–Malik (PM) [39], coherent enhancing diffusion (CED) [32], total variation (TV) [40], second order total variation (SOTV) [11,22,26], total generalised variation (TGV) [30], and extended anisotropic diffusion model (EAD) [11] on both synthetic and real images.

Fig. 9 shows the denoised results on a synthetic image (a) by different methods. The results by the PM and TV models, as shown in (c) and (e), have a jagged appearance (i.e. staircase artefact).

Table 2

<table>
<thead>
<tr>
<th>Figure #</th>
<th>PSNR test</th>
<th>SSIM value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fig. 5</td>
<td>Fig. 6</td>
</tr>
<tr>
<td></td>
<td>1st row</td>
<td>2nd row</td>
</tr>
<tr>
<td>Degraded</td>
<td>18.5316</td>
<td>12.1754</td>
</tr>
<tr>
<td>TV</td>
<td>Inf</td>
<td>12.7107</td>
</tr>
<tr>
<td>SOTV</td>
<td>28.7742</td>
<td>14.1931</td>
</tr>
<tr>
<td>TGV</td>
<td>43.9326</td>
<td>12.7446</td>
</tr>
<tr>
<td>Euler’s elastica</td>
<td>70.2979</td>
<td>54.0630</td>
</tr>
<tr>
<td>TWSO</td>
<td>Inf</td>
<td>Inf</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Missing</th>
<th>PSNR value (Mean±SD)</th>
<th>SSIM value (Mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>9.020 ± 0.4028</td>
<td>0.05 ± 0.0302</td>
</tr>
<tr>
<td>60%</td>
<td>2.750 ± 0.4200</td>
<td>0.03 ± 0.0158</td>
</tr>
<tr>
<td>80%</td>
<td>6.010 ± 0.4248</td>
<td>0.01 ± 0.0065</td>
</tr>
<tr>
<td>90%</td>
<td>5.490 ± 0.4245</td>
<td>0.007 ± 0.003</td>
</tr>
<tr>
<td>TV</td>
<td>31.99 ± 3.5473</td>
<td>0.92 ± 0.0251</td>
</tr>
<tr>
<td>SOTV</td>
<td>31.84 ± 3.9221</td>
<td>0.93 ± 0.0310</td>
</tr>
<tr>
<td>TGV</td>
<td>32.43 ± 4.9447</td>
<td>0.94 ± 0.0308</td>
</tr>
<tr>
<td>Euler’s elastica</td>
<td>32.12 ± 4.0617</td>
<td>0.94 ± 0.0288</td>
</tr>
<tr>
<td>TWSO</td>
<td>33.33 ± 4.0409</td>
<td>0.95 ± 0.0204</td>
</tr>
</tbody>
</table>

However, the scale-space-based PM model shows much stronger staircase effect than the energy-based variational TV model for denoising piecewise smooth images. Due to the anisotropy, the result (d) by the CED method displays strong directional characteristics. Due to the high order derivatives involved, the SOTV, TGV and TWSO models can reduce the staircase artefact. However, because the SOTV imposes too much regularity on the image, it smears the sharp edges of the objects in (f). Better results are obtained by the TGV, EAD and TWSO models, which show no staircase and blurring effects, though TGV leaves some noise near the discontinuities and EAD over-smooths image edges, as shown in (g) and (h).

Fig. 10 presents the denoised results on a real image (a) by different methods. Both the CED and the proposed TWSO models use the anisotropic diffusion tensor T. CED distorts the image while TWSO does not. The reason for this is that TWSO uses the eigenvalues of T defined in (2.9), which has two advantages: i) it allows us to control the degree of the anisotropy of TWSO. If the contrast parameter C in (2.9) goes to infinity, the TWSO model degenerates to the isotropic SOTV model. The larger C is, the less anisotropy TWSO has. The eigenvalues (2.10) used in CED however are not able to adjust the anisotropy; ii) it can determine if there exists diffusion in TWSO along the direction parallel to the image gradient. The diffusion halts along the image gradient direction if λ_1 in (2.9) is small and encouraged if λ_1 is large. By choosing a suitable C, (2.9) allows TWSO to diffuse the noise among object edges and prohibit the diffusion across edges. The eigenvalue λ_1 used in (2.10) however remains small (i.e. $\lambda_1 \ll 1$) all the time, meaning that the diffusion along image gradient in CED is always prohibited. CED thus only prefers the orientation that is perpendicular to the image gradient, which explains why CED distorts the image.

In addition to qualitative evaluation of different methods in Fig. 9 and 10, we also calculate the PSNR and SSIM values for these methods and show them in Table 4 and Fig. 11. These metrics show that the PDE-based methods (i.e. PM and CED) perform worse than the variational methods (i.e. TV, SOTV, TGV, EAD and...
Fig. 10. Noise reduction results of a real test image. (a) Clean data; (b) Noisy data corrupted by 0.015 variance Gaussian noise; (c–i): Results of PM, CED, TV, SOTV, TGV, EAD, and TWSO, respectively. The second row shows local magnification of the corresponding results in the first row.

Table 4
Comparison of PSNR and SSIM using different methods on Fig. 9 and 10 with different noise variances.

<table>
<thead>
<tr>
<th>Noise variance</th>
<th>Degraded</th>
<th>PM</th>
<th>CED</th>
<th>TV</th>
<th>SOTV</th>
<th>TGV</th>
<th>EAD</th>
<th>TWSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>23.1328</td>
<td>26.7600</td>
<td>29.4501</td>
<td>32.7415</td>
<td>36.1762</td>
<td>34.8756</td>
<td>36.3192</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>20.2140</td>
<td>23.3180</td>
<td>29.2004</td>
<td>31.1342</td>
<td>34.6383</td>
<td>33.7161</td>
<td>34.7220</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>18.4937</td>
<td>19.4573</td>
<td>28.3966</td>
<td>30.1882</td>
<td>32.6091</td>
<td>32.6091</td>
<td>31.4009</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>16.4172</td>
<td>18.9757</td>
<td>27.8686</td>
<td>28.9663</td>
<td>30.6554</td>
<td>30.6554</td>
<td>30.7334</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>12.1312</td>
<td>15.0719</td>
<td>22.4818</td>
<td>23.6091</td>
<td>24.9404</td>
<td>24.9404</td>
<td>23.8337</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Quantitative image quality evaluation for Gaussian noise reduction in Table 4. (a) and (b): PSNR and SSIM values of various denoised methods for Fig. 9(a) corrupted by different noise levels; (c) and (d): PSNR and SSIM values of various denoised methods for Fig. 10(a) corrupted by different noise levels.
Table 5
Mean and standard deviation (SD) of PSNR and SSIM calculated using 7 different methods for image denoising over 100 images from the Berkeley database BSD500 with 5 different noise variances.

<table>
<thead>
<tr>
<th>Noise variance</th>
<th>PSNR value (Mean±SD)</th>
<th>SSIM value (Mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>21.9 ± 0.2173</td>
<td>0.49 ± 0.1229</td>
</tr>
<tr>
<td>0.01</td>
<td>20.28 ± 0.2831</td>
<td>0.37 ± 0.1164</td>
</tr>
<tr>
<td>0.015</td>
<td>18.61 ± 0.3203</td>
<td>0.31 ± 0.1078</td>
</tr>
<tr>
<td>0.02</td>
<td>17.44 ± 0.3492</td>
<td>0.27 ± 0.1004</td>
</tr>
<tr>
<td>0.025</td>
<td>16.55 ± 0.3683</td>
<td>0.24 ± 0.0941</td>
</tr>
</tbody>
</table>

Fig. 12. Plots of mean and standard deviation in Table 5 obtained by 7 different methods over 100 images from the Berkeley database BSD500 with 5 different noise variances. (a) and (b): mean and standard derivation plots of PSNR, (c) and (d): mean and standard derivation plots of SSIM.

TWSO). The TV model introduces staircase effect, SOTV blurs the image edges, and EAD tends to over-smooth the image structure. The proposed TWSO model performs well in all the cases, showing its effectiveness for image denoising.

We now evaluate PM, CED, TV, SOTV, TGV, EAD and TWSO on the Berkeley database BSD500 for image denoising. 100 images are randomly selected from the database and each of the chosen images is corrupted by Gaussian noise with zero-mean and 5 variances ranging from 0.005 to 0.025 at 0.005 interval. The performance of each method for each noise variance is measured in terms of mean and standard deviation of PSNR and SSIM over all the 100 images. The final quantitative results are shown in Table 5 and Fig. 12. The mean values of PSNR and SSIM obtained by the TWSO remain the largest in all the cases. The standard deviation of PSNR and SSIM are smaller and relatively stable, indicating that the proposed TWSO is robust against the increasing level of noise and performs the best among all the 7 methods compared for image denoising.

In addition to demonstrating TWSO for Gaussian noise removal, Fig. 13 and Table 6 show the denoising results of images with salt-and-pepper noise by different methods. Here, we use p = 1 in (2.3) and F in (2.3) is the same as the domain of the noise in the image. We compare our TWSO method with another two state-of-the-art methods (i.e., media filter and TVL1 [41]) that have been widely employed in salt-and-pepper noise removal. From the first and second row of Table 6, it is clear that all three methods perform very well when the noise level is low. As the noise level increases, the media filter and TVL1 become increasingly worse, introducing more and more artefacts to the resulting images, and both fail in restoring the image when the noise level reaches 90%. In contrast, TWSO has produced visually more pleasing results against increasing noise and its PSNR and SSIM remain the highest in all the cases, as the introduction of tensor in TWSO offers richer neighbourhoood information.

6. Conclusion

In this paper, we present the TWSO model for image processing, which introduces an anisotropic diffusion tensor to the SOTV model. Specifically, the model integrates a novel regulariser to the SOTV model that uses the Frobenius norm of the product of the SOTV Hessian matrix and the anisotropic tensor. The advantage of the TWSO model includes its ability to reduce both the staircase
Fig. 13. Denoising results on a real colour image from Berkeley database BSDS500. First row: Images (from top to bottom) corrupted by salt-and-pepper noise of 20%, 40%, 60%, 80% and 90%; Second row: Media filter results; Third row: TVL1 results; Last row: the new TWSO results.

Table 6
Comparison of PSNR and SSIM using different methods on Fig. 13 with different noise levels.

<table>
<thead>
<tr>
<th>Noise density</th>
<th>PSNR value</th>
<th>SSIM value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>Degraded</td>
<td>11.9259</td>
<td>8.92250</td>
</tr>
<tr>
<td>Media filter</td>
<td>24.1623</td>
<td>22.6650</td>
</tr>
<tr>
<td>TVL1</td>
<td>27.9226</td>
<td>25.0812</td>
</tr>
<tr>
<td>TWSO</td>
<td>59.6130</td>
<td>29.8168</td>
</tr>
</tbody>
</table>

and blurring artefacts in the restored image. To avoid numerically solving the high order PDEs associated with the TWSO model, we develop a fast alternating direction method of multipliers based on a discrete finite difference scheme. Extensive numerical experiments demonstrate that the proposed TWSO model outperforms several state-of-the-art methods for image restoration for different applications. Future work will combine the capabilities of the TWSO model for image denoising and inpainting for medical imaging, such as optical coherence tomography [42].

Acknowledgments

We would like to thank Prof. Xue-Cheng Tai of the University of Bergen, Norway and Dr. Wei Zhu of the University of Alabama, USA for providing the Euler’s elastica code for this research. We also thank Dr. Jooyoung Hahn who initially wrote the Euler’s elastica code.

References

Jinming Duan received his BSc degree from the Nanjing University of Information Science and Technology, PR China, in 2011, and the MSc degree from the Qingdao University, PR China, in 2014. He is currently a PhD student with the School of Computer Science at the University of Nottingham, UK. His research interests include variational image restoration, multiphase image segmentation, implicit surface reconstruction and medical image analysis.

Wil O.C. Ward received his MSc in Mathematics and Computer Science at the University of Nottingham, UK, and is currently finishing his PhD with the School of Computer Science there, in collaboration with the British Geological Survey. His research topics cover recursive Bayesian filtering and uncertainty analysis with applications to near-surface geophysics and parameter estimation in hydrogeological modelling. Other research interests include medical imaging and clustering methods.

Luke Sibbett received his MSc degree in Physics from the University of Nottingham in 2015. He is currently working towards an interdisciplinary PhD with the School of Computer Science at the University of Nottingham and the British Geological Survey. His research interests include the regularisation of the nonlinear geophysical inverse problems and the use of automated analysis techniques for geophysical monitoring.

Zhenkuan Pan received his BSc degree in Engineering Mechanics from the Northwestern Polytechnical University, PR China, in 1987, and his PhD degree in Engineering Mechanics from Shanghai Jiao Tong University, PR China, in 1992. He is currently a professor of the College of Computer Science and Technology at the Qingdao University, China. From 2005 to 2006, he was a senior visiting scholar with the Department of Mathematics, the University of California, Los Angeles. His research interests include dynamics and optimisation of multibody systems, medical simulation and image processing.

Li Bai is with the School of Computer Science, University of Nottingham. She has a BSc and MSc in Mathematics, and a PhD in Computer Science from the University of Nottingham, UK. Her main research interests are in the area of computer vision, pattern recognition and medical image analysis.