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Abstract

To have a better understanding of the influence of topographic, climatic, and,
especially, anthropogenic factors on hydrological discharge and flooding, this
study proposes a new framework approach using a set of methods to answer
the questions why, where, when, and how flooding occurs. Including condi-
tional inference tree (CIT), cross-correlation, and double-mass curves analysis,
the approach is demonstrated in an application to the Wei River Basin,
China. From the CIT analysis, dam construction period was identified as the
most important factor (why), and the sub-catchment farthest upstream con-
tributed the most to the flooding of the downstream floodplain (where). We
then analysed the effect of the periods of dam construction on the time lag
change (when) and the precipitation–discharge relationship (how) using
cross-correlation analysis and double-mass curves analysis, respectively. The
results suggested that the dam construction delayed the precipitation for
0.4 days on average compared to before the dam construction period, and the
discharge at the outlet of the basin was reduced by 44%. This framework
approach is promising as it can quantitatively evaluate the importance of mul-
tiple factors on multiple years of flooding, while many studies evaluate single
flooding events.

Introduction

Flood hazard has become a growing concern due to an
increasing number of extreme meteorological events and
human intervention in the hydrological cycle (IPCC,
2013). Studies of the causes and characteristics of differ-
ent kinds of floods, ranging from coastal regions, urban
areas, and large river catchments to flash floods have
been undertaken worldwide (Islam and Sado, 2000; Thu-
merer et al., 2000; Cançado et al., 2008). The assessment
of flood risk on different scales has also been studied
worldwide (Islam and Sado, 2000; Gao et al., 2007; Del-
gado et al., 2010; Mohamed Elmoustafa, 2012). Studies of
palaeofloods have suggested that extreme floods are usu-
ally associated with unique atmospheric patterns (Huang
et al., 2007; Li et al., 2014). The interaction between pre-
cipitation and stream flow has thus been the main focus
for flood prediction and studies of risk assessment (Peng
et al., 2014; Huang et al., 2015a,b). These and other

studies worldwide have concluded that the causes of
flooding can be categorised into three groups: (1) topo-
graphic factors; (2) climatic factors, and (3) anthropogenic
factors (Table 1). A comprehensive and accurate evalua-
tion of flood risk requires knowledge of the factors that
have triggered a flood and how these indicators influence
the flood risk.
Precipitation has a direct impact on flooding, and the

topography of catchments has an influence on the spatial
distribution of soil moisture and thus evapotranspiration
and surface and subsurface run-off (Wilson et al., 2005;
Hardie et al., 2011). The differentiation in the hydrology of
upslope and downslope regions caused by steep slopes can
be offset by fine-textured soil and an increase in evapotran-
spiration (Berger and Entekhabi, 2001; Neupane et al.,
2015; Peng et al., 2015).
The stationary theory of flood risk on a fluvial system

has been challenged due to the effect of sediment deposi-
tion and the influence of water infrastructure, channel
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modifications, and changes in land cover and use (Plate,
2002; Milly et al., 2008). The diversion of water, con-
struction of reservoirs, and even the installation of small
dams can dramatically alter the hydrological characteris-
tics of a drainage basin (Braatne et al., 2008; Shaw et al.,
2014). Gao et al. (2010) have identified water diversions
for irrigation and urban and industrial use, measures of
soil and water conservation, and the construction of
water-control projects as some of the human interven-
tions that led to the trend of decreasing discharge in the
Yellow River. The construction of the Sanmenxia Dam
on the Yellow River was the most influential project. The
dam has changed the processes and morphology of the
Wei River (Wang et al., 2007) because the outlet of the
Wei River is controlled by the elevation and discharge of
the Yellow River. The Sanmenxia Dam has increased sed-
iment deposition in both rivers, and the raised bed of the
Wei River has reduced the drainage capacity of the river
and has even led to water drawback. The number of
floods has thus increased since the construction of
this dam.
Urbanisation decreases the cover of vegetation and

increases direct runoff, which increases discharge. Urba-
nisation also decreases the time lag between the effective
precipitation and peak discharge (Islam and Sado, 2000;
Liu et al., 2014b). The large Grain to Green project
implemented in 1999 is an example of land-use change
in which farmers are compensated for converting culti-
vated areas to green land (Jian et al., 2015). Not only
the urbanisation developed rapidly, but also the conver-
sion of cropland to woodland and grassland increased
substantially between 2000 and 2010 on the central
Loess Plateau (Liu et al., 2014a). The impact of these
dramatic changes on discharge, however, has been
poorly studied.
Many methodologies have been applied to evaluate the

impact of distinctive factors on flooding or the associated
hydrological processes. Models are often used to explore
the effect of unique factors on river discharge or water yield
(Braud et al., 2001; Schreider et al., 2002; Brath et al., 2003;
Bormann et al., 2005; Bormann et al., 2007; Yihdego and
Webb, 2013). Double-mass curve analyses are widely used
to understand the precipitation–discharge relationships in

hydrological studies and for filling gaps in gauge records
(Kliment and Matoušková, 2006; Abedini et al., 2013; Gao
et al., 2013; Choi et al., 2016). Double-mass curves are also
used to test long-term discharge trends and together with
Mann–Kendall tests are thus suitable for examining the
impact of human activities over a certain time period
(Kliment and Matoušková, 2009; Matoušková et al., 2011;
Zhang et al., 2012). Cross-correlation is able to identify the
time lag between precipitation and its correlated discharge
measured at the hydrological station for a single event
(Talei and Chua, 2012; Löwe et al., 2014) but has not been
used for exploring the precipitation–discharge relationship
over a long period.
The effect of climate change and human activities on

hydrological processes has been studied in a variety of Chi-
nese catchments (Ma et al., 2010; Wang et al., 2010; Ye
et al., 2013). The Wei River Basin is one of the most impor-
tant sites for studying the influence of all factors on hydro-
logical processes due to its delicate environment and
large-scale human intervention. The causes and characteris-
tics of individual floods in the basin have been extensively
analysed (Jiang et al., 2004; Xing et al., 2004; Pang, 2007;
Tao and Dang, 2011). Human activities have contributed
up to an estimated 80% of the change in discharge of the
Wei River (Gao et al., 2013; Zhao et al., 2013). A large
range of studies has begun to address the flood hazard of
the Wei River Basin (Jiang et al., 2004; Li and Wu, 2011;
Yin et al., 2012; Peng et al., 2014). However, a comprehen-
sive study or an integrated approach to identify the most
influential factors causing flooding in the Wei River over
multiple years (as opposed to individual floods) at both
spatial and temporal scales is still lacking. Especially in the
multitude of impacts from multiple factors, it is difficult to
explore the importance and the contribution of each factor
in comparison to others.
The objective of this study was thus to analyse the

characteristics of floods in the Wei River Basin over the
last 60 years and to understand the impacts of various
factors on flooding and discharges using a new frame-
work approach that is capable to analyse this multitude
of potentially contributing factors over multiple years.
Using this framework, we specifically focused on the fol-
lowing questions. (1) Why: what are the most important
factors influencing flooding of the catchment on a
monthly and yearly basis? (2) Where: what is the most
influential location (sub-catchment) to the downstream
flood regarding the discharge? (3) When: what is the
effect of the identified factor on the time lag between
precipitation and discharge? And (4) How: how does the
identified factor affect the precipitation–discharge rela-
tionship? The new framework approach includes a set of
methods to answer the above four questions in a
systematic way.

Table 1 Synopsis of the factors influencing floods

Topographic
factors

Climatic
factors Anthropogenic factors

Slope Temperature Change in land use and
cover

Elevation Precipitation Vegetational coverage
Soil properties Wind Water diversion

Solar activity Dam and reservoir
construction
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Methods

Introduction of the framework approach for
unravelling the impact of multiple factors on
flooding at the catchment scale

In order to answer the questions of why, where, when, and
how flooding occurred in a catchment in a systematic way,
a framework approach was proposed in this study with a
suggested set of method shown in Figure 1. The methods
included in the framework approach are conditional infer-
ence tree analysis (CIT), cross-correlation analysis and
double-mass curves, which are able to qualitatively and
quantitatively assess the impact of multiple factors on
flooding occurrence using either qualitative or quantitative
data. The result on flood occurrence of this framework is
able to identify the driving factor(s) or sub-catchment
(s) and also give the ranking among all factors or sub-
catchments leading to flood occurrence by applying the
CIT. Based on the factors that are identifed by the CIT, the
data set should then be reorganised for conducting the
cross-correlation analysis and the double-mass curves anal-
ysis. These two analyses are able to give more detailed
insight into the impact of the identifed driving factor on
the time-lag effect and the quantitative change of the rela-
tion between precipitation and discharge. The detailed
explanation of each method and its application regarding
the questions and the interpretation of the result are
demonstrated in a case study of the Wei River Basin,
China.

Case study – application of the framework
approach to the Wei River Basin, China

Study area

The Wei River in China is the largest tributary of the Yel-
low River and is regarded as the ‘Mother River’ of the
Guanzhong Plain with a total catchment area of
134 800 km2 (Figure 2(a)). The river originates in the
Niaoshu Mountains in Gansu province and flows east
through Ningxia and Shaanxi provinces to the Yellow
River, with a total length of 818 km. Two important

tributaries, Jing River and Beiluo River, comprise 34% and
20% of the total catchment area of the Wei River Basin,
respectively.
The climate of the basin is controlled by the continental

summer monsoon, which brings an average annual precipi-
tation of approximately 570 mm, over 60% of which falls
in summer (July–September), the flood season (Gao et al.,
2013). Precipitation is concentrated on the South Bank of
the Wei River in the Qinling Mountains, with an average
annual precipitation of 800 mm. A yearly average of
540 mm falls north of the river. The catchment can be
divided into four sub-catchments (Figure 2(a)): Jing River
(J), Beiluo River (B), upstream along the Wei River (U),
and the South Bank (S). Jing River and Beiluo River are the
two largest tributaries of the Wei River, with Zhangjiashan
(J1) and Zhuangtou (B1) hydrological stations located at
their respective outlets. Linjiacun (U1) is a control station
of the upstream Wei River sub-catchment, and Huaxian is
the most downstream control station in the Wei River
Basin, although the Beiluo River flows into the Wei River
below the Huaxian station. The corresponding meteorolog-
ical and hydrological stations with data for the various sub-
catchments are shown in Table 2. Daily discharge data were
unfortunately not available for the hydrological stations for
the period 1990–1999.
Land use in the catchment consists mainly of farmland

(~38%) and grassland (~50%). After the Grain for Green
project conducted in 1999, the forest area of the basin was
raised from 4.8% to 14.4% in the year 2005, while the grass
land area decreased from 58.7% to 44.0% in the same time
span. Residential areas contributed only 0.8% to the total
catchment area in the 1980s but had increased to 2.2% by
1996. This change in residential area is negligible compared
to that of other land-use types, but the increase within a
time span of 10 years is significant. Land use, however,
generally did not change significantly between 1980 and
2005 (Gao et al., 2013).
Soils in the Wei River Basin vary but have developed

from the dominant loess deposits that are widely distribu-
ted in the Jing and Beiluo River Basins, with an average
thickness of approximately 100 m (Zhang et al., 2014). The
South Bank sub-catchment, with a total area of about
15 200 km2, is sharply defined by the abrupt cliff-like
northern face of the Qinling Mountains, with steep slopes
that accelerate surface discharge.
The Tongguan elevation, defined as the water table cor-

responding to a discharge of 1000 m3/s at the Tongguan
hydrological station on the Yellow River, is the base level of
erosion of the lower Wei River. The Tongguan elevation is
negatively correlated with the bankfull discharge at Huax-
ian (Li and Wu, 2010) and has been raised by approxi-
mately 5 m since the construction of the Sanmenxia Dam
in the 1960s (Wang et al., 2007).

Figure 1 The structure of the framework approach for analysing
the impact of multiple factors on flooding.
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Flooding, defined as water overflowing the riverbanks
onto the floodplain, occurred in the Wei River Basin on
average 1.3 times per year in the last 60 years. The flood-
plain of the catchment covers the lower reaches of the Wei
River Basin where the elevation is relatively low, especially
where most of the South Bank tributaries join the main river.
The floodplain of the Wei River begins at the Baojixia Dam
midway along the main river (Figure 2(b)), but most floods

occur east of the city of Xi’an (meteorological station MS1 in
Figure 2(a)). Sedimentation upstream of the Sanmenxia
Dam on the Yellow River (Figure 2(a) and (c)) has raised
the lower sections of most of the tributaries in the South
Bank above the level of the ground surface. These raised riv-
ers are the main cause of flooding in the floodplain. Numer-
ous dams and reservoirs have been constructed in the
catchment both for controlling flooding and for water and

Figure 2 (a) Location of the study area and distribution of the hydrological and meteorological stations (abbreviations as in Table 2),
dams and reservoirs, sub-catchments, and example pictures of (b) the Baojixia Dam, and (c) the Sanmenxia Dam.
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soil conservation. Thirty-one large-scale (storage >106 m3)
reservoirs (Figure 2(a)) in the catchment with a total storage
capacity of approximately 1.4 billion m3, 21 of which were
built between 1970 and 1983 and the rest were built before
1970, have been included in this study.

Collection of flooding records

An extensive literature and internet search was performed
to collect information of flooding records onto the flood-
plains at the Wei River Basin during 1956–2010. The char-
acteristics of each flood were extracted from the Table of
Flooding Elements in the Annual Hydrological Report of
the P. R. China – Hydrological Data of the Yellow River
Basin, including the date and amount of peak discharge,
level of the water table at peak discharge, and peak sedi-
mentation at Huaxian.

Data sets

To apply the framework approach, a wide range of data sets
regarding the factors possibly affecting flooding were col-
lected and organised based on the CIT model requirements
(Table 3). Slope data were derived from the Digital Eleva-
tion Model of the basin using ArcMap 10.0. Land use was
calculated from land use data sets of the years 1980, 1985,
2000, and 2005, and we assumed the land use for
1956–1984 to be the same as that in 1980 (no earlier
records of land use were available), 1985–1990 the same as

that in 1985, 2000–2004 the same as that in 2000 and
2005–2010 the same as that in 2005. Both the DEM and
land use data were provided by the Environmental and
Ecological Science Data Center for West China, National
Natural Science Foundation of China (http://westdc.
westgis.ac.cn) and International Scientific Data Mirror
Website of Computer Network Information Center of Chi-
nese Academy of Science (http://datamirror.csdb.cn). Mete-
orological data were obtained from The National
Meteorological Information Centre. Data of the elevation
of the outlet were obtained from the Shaanxi Administra-
tion Bureau of Sanmenxia Reservoir. Three periods were
analysed based on the time of dam construction: (1) before
extensive dam construction (1956–1969), (2) during the
construction of most of the dams (1970–1983), and (3) after
most of the dams had been constructed (1984–2010). The
factors were classified into three groups corresponding to
the influencing factors identified in the introduction: topo-
graphic, climatic, and anthropogenic factors shown in
Table 3. All analyses excluded 1991–1999 due to the lack of
daily discharge data for all hydrological stations.

Why – CIT analysis for identifying the most
influential factor causing flooding

A CIT analysis was constructed to identify the driving factor
and the contribution of each factor associated with flooding
occurrence on both a monthly and yearly basis by recursive

Table 2 Hydrological and meteorological stations in the sub-catchments

Sub-catchments
J
Jing River

B
Beiluo River

U
Upstream of Wei River

S
South Bank of Wei River

M
Wei + Jing Rivers

Corresponding
hydrological stations

J1
(Zhangjiashan)

B1
(Zhuangtou)

U1
(Linjiacun)

Huaxian

Catchment area (km2) 43 216 25 154 30 661 106 498 105 350
Hydrological stations* J2

(Jingcun)
J3
(Yuluoping)
J4
(Yangjiaping)
J5
(Jingchuan)
J6
(Maojiahe)
J7
(Qingyang)

B2
(Liujiahe)

U2
(Qin’an)

S1
(Luolicun)
S2
(Maduwang)
S3
(Qinduzhen)
S4
(Laoyukou)
S5
(Heiyukou)

M1
(Weijiabao)
M2
(Xianyang)

Meteorological
stations*

MJ1
(Changwu)
MJ2
(Xifengzhen)
MJ3
(Pingliang)
MJ4
(Huanxian)

MB1
(Luochuan)
MB2
(Wuqi)

MU1
(Baoji)
MU2
(Tianshui)
MU3
(Huajialing)
MU4
(Xiji)

MS1
(Xi’an)
MS2
(Shangzhou)
MS3
(Zhen’an)
MS4
(Fuping)

MM1
(Tongchuan)
MM2
(Wugong)

*Increasing numbers indicate increasing distances from the hydrological station at the outlet.
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binary partitioning in a conditional inference framework
(Hothorn et al., 2006). This non-parametric class of regres-
sion trees supports all types of variables, including nominal,
ordinal, numeric, and multivariate response variables
(Hothorn et al., 2006). The statistics-based approach of CIT
uses non-parametric tests as splitting criteria, corrected for
multiple testing to avoid overfitting. This approach results in
unbiased predictor selection and does not require pruning.
Stopping criteria based on multiple test procedures are
implemented and it is shown that the predictive perfor-
mance of the resulting trees is as good as the performance of
established exhaustive search procedures (Hothorn et al.,
2006). We assumed that the distribution of the responding
variables depended on a function of the variables. Flooding
was the responding variable, and the influencing factors
were the variables. Flooding was defined as ‘Yes’ or ‘No’,
with ‘Yes’ indicating an occurrence of flood in a certain
month or year. A subset of available factors possibly affect-
ing flooding was included in the model (Table 3). The model
generated a tree-shaped graph, with each node of the tree
representing the case weights of the observations of the
responding variable. The P value represents the result of
multiple significance tests under a permutation test algo-
rithm. The covariate with the minimum P value was selected

among all covariates for further splitting. The P value shown
in the tree indicates the level of significance of the selected
covariate (Hothorn et al., 2006).

Where – CIT analysis to identify the sub-
catchments contributing to flooding

CIT was constructed to analyse the most important hydro-
logical stations and sub-catchments contributing to flood-
ing downstream. Monthly averaged discharge data from
18 hydrological stations (Table 2, the Huaxian station was
excluded because it was the control station for the entire
basin and did not represent a sub-catchment) were the
input variables, and monthly and yearly flood occurrence
were the responding variables. In this analysis, we assumed
the distribution of the flood occurrence on a monthly or
yearly basis is based on a function of the discharge of the
18 hydrological stations.

When – cross-correlation analysis for time-lag
investigation

Cross-correlation analysis investigated and quantified a
possible time lag between precipitation and discharge
(or flood) (Bieger et al., 2012; Talei and Chua, 2012; Löwe
et al., 2014). We analysed the time lags between the

Table 3 Description of the data sets used in the framework approach

Variable Variable name Description

Topographic factors
Slope Average slope of the catchment (�) J sub-catchment: 14.10

B sub-catchment: 13.51
U sub-catchment: 12.50
S sub-catchment: 16.80

Climatic factors
Temperature Average monthly temperature (�C) Continuous value
Precipitation Average monthly precipitation (mm) Continuous value
Humidity Average monthly humidity (%) Continuous value
Sunshine hours Total monthly hours of sunshine (h) Continuous value
Sunshine percentage Average monthly sunshine percentage (%) Continuous value
Season Rainy or dry season Rainy season: June–October

Dry season: November–May
Month
Year

Continuous value
Continuous value

Anthropogenic factors
Grass Grassland area (% of total area)
Water Water area (% of total area)
Cultivation Cultivated area (% of total area)
Residence Residential area (% of total area)
Forest Forested area (% of total area)
Elevation of the outlet The water table at the Tongguan hydrological

station* (m)
Water table corresponding to a discharge
of 1000 m3/s at the Tongguan
hydrological station, continuous value

Period of dam construction Before: 1956–1969
During: 1970–1983
After: 1984–2010

*The Tongguan water table is influenced by the accumulated sedimentation because of the downstream Sanmenxia Dam. Tongguan is considered as the out-

let and erosion base of the Wei River.
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precipitation at the meteorological stations (Table 2) and
the measured discharge at the control (Huaxian) hydrologi-
cal station at the outlet of the Wei River Basin. Precipitation
data for 122 days in the rainy season (from 1 June to
30 September) of each year of a recorded flood were
extracted from the data set of daily precipitation. Based on
the most influential factor identified by the CIT analysis
done in Sections Why – CIT analysis for identifying the most
influential factor causing flooding and Where – CIT analysis
to identify the sub-catchments contributing to flooding, the
data sets can be divided into subsets accordingly to be used
as comparison with each other. The precipitation data from
each meteorological station are then cross-correlated with
the discharge data at Huaxian within each subgroup using
the ccf function of R version 2.14.0 (Venables and Ripley,
2002). This result is aiming at explaining the impact of the
most influential factor (or any factor of interest) on the time
lag effect between precipitation and discharge.

How – double-mass curves to analyse the effect
of dam construction on the precipitation–
discharge relationship

Double-mass curves are widely used in hydrology to test
the consistency and long-term trends of hydro-
meteorological data (Abedini et al., 2013; Gao et al., 2013;
Choi et al., 2016). A straight line between cumulative pre-
cipitation and discharge indicates that the proportionality
between the two remains unchanged. This method is able
to smooth and show the main trends of time series. How-
ever, a change in the regression slope (proportionality) of
the plotted curve indicates the change of trends, which is
usually caused by external factors. In order to investigate
the impact of the most influential factor or sub-catchment
identified by the CIT analysis in Sections Why – CIT analy-
sis for identifying the most influential factor causing flooding
and Where – CIT analysis to identify the sub-catchments
contributing to flooding, in this study we divided the precip-
itation and discharge data into contrastive subsets accord-
ing to the identified factor. Double-mass curves are then
plotted regarding each subgroup to quantify the overall
influence of the factor on the change between cumulative
average precipitation from all meteorological stations in the
catchment and discharge at Huaxian hydrological station.
The significance in differences among the changes in the
regression slopes were compared using analysis of covari-
ance (ANCOVA) using R version 3.1.2.

Results

Floods

Six large-scale (recurrence interval > 100 years) and more
than 37 medium- and small-scale floods occurred between

1956 and 2010 on the floodplain of the Wei River Basin
(Table 4), with an average frequency of 1.3 per year. All
floods occurred between May and October, with more than
half in July and August. The peak discharge at Huaxian
(control station) averaged 3912 m3/s, and the depth of the
water table averaged 339.8 m. The peak discharges are
homogeneous over time while the level of the water table
shows an increasing trend (Table 4).

Why – factors influencing flooding

CIT analysis was first constructed to identify the driving
factor and the contribution of each factor to the occurrence
of flooding on a yearly basis. As ‘Yes’ (shown as dark area
in Figure 3) indicating the occurrence of flood, the node of
the tree represents the case weights of the ‘Yes’ observations
of the total responding variable (Figure 3). The period of
dam construction was identified as the most important fac-
tor for flooding occurrence on a yearly basis. The number
of floods was significantly higher before and during the
period of dam construction than after the period of dam
construction (Nodes 8, 10, and 11 compared to Nodes 3, 5,
and 6 in Figure 3). A further division (Node 7) shows that
more flooding occurred before than during the period of
dam construction (Nodes 10 and 11 compared to Node 8).
Elevation of the outlet was subsequently identified as the
second most important factor after the dam construction
period. Before the dam construction period, there were
more floods when the elevation of the outlet is higher than
323.69 m (Node 9 in Figure 3). After the dam construction
period, there is a clear division for the occurrence of flood
when the elevation of the outlet reached 327.75 m (Node 2
in Figure 3). Floods were much more common before dam
construction even though the identified elevation of the
outlet was lower (323.69 m compared to 327.75 m) than in
the period after dam construction (compare Nodes 3 and
11 in Figure 3).
CIT analysis was also applied to analyse the factors influ-

encing flood occurrence on a monthly basis. Similar to the
yearly analysis, the corresponding factor is the ‘Yes’ case
(shown as dark area in Figure 4) indicating the occurrence
of a flood in the month. Average monthly precipitation
appeared to be the dominant factor for flooding on a
monthly basis (Nodes 1, 2, and 3 in Figure 4). There is a
significant difference between the number of occurrence of
floods from precipitation more and less than 97 mm (Node
8 and 9 compared to Nodes 4, 5 and 6 in Figure 4). In the
category of precipitation more than 97 mm, which is the
condition leading to more flooding, the dam construction
period appeared to be the second most important factor
causing flooding. It can be clearly seen that even with the
same precipitation condition, less floods occurred after the
dam construction period than before and during.
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Table 4 Characteristics of the floods at the Huaxian hydrological station with the highest peak discharge for each year with a flood

Year Month Day Peak-discharge water table (m) Peak discharge (m3/s) Peak sedimentation (kg/m3)

1958 8 21 338.46 6040 213
1959 7 16 336.77 3920 438
1960 8 4 337.23 2900 605
1961 10 20 337.48 2700 25.9
1962 7 28 338.07 3540 65.4
1963 5 25 338.45 4570 59
1964 9 15 338.78 5130 85.7
1965 7 9 337.48 3200 357
1966 7 28 339.47 5160 636
1967 5 19 338.27 2110 80.6
1968 9 12 340.54 5000 76
1970 8 31 340.55 4320 235
1973 9 1 341.57 5010 428
1974 7 14 340.13 3150 47.8
1975 10 2 340.97 4010 96
1976 8 29 340.15 4900 117
1977 7 7 340.43 4470 795
1980 7 4 340.35 3770 33.3
1981 8 23 341.05 5380 68.7
1983 9 28 339.37 4160 38.3
1984 9 10 339.16 3900 50.6
1985 9 16 339.24 2660 31.1
1986 6 28 339.02 2980 485
1990 7 8 339.24 3210 55.4
1992 8 14 340.95 3950 528
1994 7 9 338.54 2000 765
1996 7 29 342.25 3500 565
1998 8 23 340.06 1620 130
2003 9 1 342.76 3570 598
2005 10 4 342.32 4820 31.4
2010 7 26 341.15 2040 459

Figure 3 Results of CIT analysis of yearly flooding with all factors shown in Table 3. The dark areas indicate the ratio of the number of
flooding cases to the total number of the cases (n) in the node. (Total number of cases in all categories is 2160).
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Where – effect of discharge of sub-catchments
on flooding

Figure 5 shows the results of the CIT analysis conducted
based on the variables being the discharge of the control
hydrological stations of each sub-catchment and the
responding variable being the occurrence of flooding on a
monthly basis. Only the control hydrological stations in
sub-catchments U, J, and B (U1, J1, and B1 in Table 2) and
the hydrological stations in sub-catchment S (S1, S2, S3, S4,
and S5 in Table 2) were included in the model to identify
the most influential sub-catchment, i.e. the most important
control station of the tributaries. The most upstream sub-
catchment (U) was identified as the dominant contributor
(Node 1 in Figure 5). Additionally, the South Bank dis-
charge was the second most important factor contributing
to the flooding downstream. Especially when the discharge
of U1 station is above 131 m3/s and the discharge of S5 sta-
tion is higher than 19.4 m3/s (Node 7 in Figure 5), the
flooding occurrence is significantly higher than for all the
other cases (Node 9 compared to Nodes 4, 5, 6, and 8 in
Figure 5). When the discharge of the S2 station is higher

than 53 m3/s, more floods occurred (Nodes 6 compared to
Nodes 4 and 5 in Figure 5). The results highlight the
importance of the South Bank and upstream discharge on
the flooding of the floodplain.

When – effect of dam construction on time lag
with respect to precipitation to discharge

The period of the dam construction was identified as the most
important factor causing the flood occurrence downstream in
section Why – factors influencing flooding. Therefore, as a
next step, we analysed the time lags between the precipitation
at the meteorological stations (Table 2) and the measured dis-
charge at the control hydrological station (Huaxian) at the
outlet of the basin for the three periods subsequently. Meteor-
ological and hydrological data sets were subdivided into the
three groups regarding the periods described in Section Data
set based on the dam construction periods.
Figures 6–9 show the results of the cross-correlation

between precipitation, as measured at the meteorological
stations in Table 2, and discharge, as measured at the main

Figure 4 Results of CIT analysis of monthly flooding with all factors shown in Table 3. The dark areas indicate the ratio of the number of
flooding cases to the total number of the cases (n) in the node. (Total number of cases in all categories is 2160).
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river outlet (Huaxian) for the four sub-catchments and two
periods (before and after dam construction). In general, for
all sub-catchments, the highest cross-correlation indicates
the highest correlated time lags, i.e. the highest correlated
discharge of all meteorological stations occurred within
5 days after precipitation. In addition, the strength of the
correlation decreased with increasing distance to the outlet

for all meteorological stations located in the catchment (the
ascending number of the meteorological stations indicates
the increasing distance to the outlet, for instance, MU1 is
located closer to the outlet compared to MU2), except for
sub-catchment M. The detailed time lag effects of meteoro-
logical stations of different sub-catchments regarding the
periods are shown in Table 5.

Figure 5 Results of CIT analysis of monthly flooding with discharge of the hydrological stations of sub-catchment S and the control sta-
tions of sub-catchments J, U, and B. The dark areas indicate the ratio of the number of flooding cases to the total number of the cases
(n) in the node. (Total number of cases in all categories is 540).
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Figure 6 Cross-correlations between precipitation measured at meteorological stations and discharge at the Huaxian station for the U
sub-catchment before (a) and after (b) dam construction (abbreviations as in Table 2; CI, 95% confidence interval).
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The time lags between precipitation in the Wei River
Basin and discharge at Huaxian increased after the period
of dam construction by an average of 0.4 days (Table 5).
The delay was most pronounced in sub-catchment J
(0.75 days), while sub-catchment M had no time lag
change. The fact that the construction of the dams has the
most impact in sub-catchment J is consistent with the
result obtained from the CIT analysis in Section Where –

effect of discharge of sub-catchments on flooding. As the
dam construction successfully delayed the precipitation, the
discharge in sub-catchment J appeared to be not important
for the flood occurrence. Moreover, the time lag increased
with distance from Huaxian. The construction of the dams
and reservoirs thus had a large effect on the time lags for
sub-catchments U and J.

How – effect of dam construction on the
precipitation–discharge relationship

In order to investigate how much the dam construction
period affects the precipitation–discharge relationship, we
plotted double-mass curves for the three periods mentioned
in section Data sets, i.e. before, during and after construc-
tion of most of the large dams. Figure 10 shows the results
of the double-mass curve analysis of the precipitation–
discharge relationship at Huaxian for the three periods.
The slope of the regression lines decreased over time (anal-
ysis of covariance, P < 0.0001); it was highest for the period
before dam construction and was lowest after construction.
This decline indicates that the discharge decreased with the
same amount of precipitation, which may have been due to
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Figure 7 Cross-correlations between precipitation measured at meteorological stations and discharge at the Huaxian station for the J
sub-catchment before (a) and after (b) dam construction (abbreviations as in Table 2; CI, 95% confidence interval).
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Figure 8 Cross-correlations between precipitation measured at meteorological stations and discharge at the Huaxian station for the S
sub-catchment before (a) and after (b) dam construction (abbreviations as in Table 2; CI, 95% confidence interval).
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the construction of the dams and reservoirs. Compared
with the accumulative discharge for the period before dam
construction, the accumulative discharge for the period
after dam constructions was reduced by 44%.

Discussion

This study presented and evaluated a framework approach
consisting of a set of methods to answer the questions why,
where, when, and how flooding occurs in a catchment with
complex conditions, multiple potential contributing factors,
and including multiple years. CIT analysis is a relatively
new method used mainly in biological and medical studies
to identify the factors and primary components of phenom-
ena (Blank and Blaustein, 2014; Johnstone et al., 2014; Zeng
et al., 2015). It has not often been applied in hydrological
studies. Many studies of flooding in the Wei River Basin
have focused on one or two factors, mainly those involved
in the precipitation–discharge or sediment load relation-
ships. We introduced CIT analysis in this study to deter-
mine the most important factors, among all climatic and
anthropogenic factors, and their impacts on flooding. The
result from this study was able to present statistical evi-
dence to the fact that the dam construction period has the

most important impact on flooding occurrence in a catch-
ment. Together with the cross-correlation analysis and
double-mass curves analysis, we were able to identify the
quantitative influence of the identified factors. The results
of the three methods were consistent among themselves,
highlighting the importance of dams effects on flooding
control in the catchment. However, the framework method
can be applied in any catchment flooding analysis where
many factors need to be considered.
The cross-correlations indicated that dam construction

had a more pronounced effect on the discharge than on the
time lag after precipitation. The operation of the reservoirs
can account for this result. We assume that reservoirs store
the runoff from upstream precipitation. The reservoirs in
our study, however, only stored the amount of runoff suffi-
cient to prevent flooding downstream and passed along
most of the runoff generated from the upstream precipita-
tion (RDRSMPRC, 1991; LFPPRC, 1998). The effect of the
time lag was thus not very pronounced. With the amount
of the runoff stored in the reservoir, infiltration and water
diversions led to the decrease in the total discharge at the
outlet gauging station, accounting for the results of the
double-mass curve analysis.
Changes in land use are assumed to be extensive in the

study area due to the Grain to Green project (Liu et al.,

Table 5 Time lags (days) between precipitation measured at meteorological stations and the discharge at the Huaxian station before
and after dam construction based on the cross-correlations in Figures 6–9

U sub-catchment J sub-catchment S sub-catchment M sub-catchment

MU1 MU2 MU3 MU4 MJ1 MJ2 MJ3 MJ4 MS1 MS2 MS3 MS4 MM1 MM2 Average

Before 2 2 2.5 2.5 2 2 2 2 2 1.5 2 2 2 2 2.0
After 2 3 3 3 2 3 3 3 2 2 2 2 2 2 2.4
Change 0 1 0.5 0.5 0 1 1 1 0 0.5 0 0 0 0 0.4
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Figure 9 Cross-correlations between precipitation measured at meteorological stations and discharge at the Huaxian station for the M
sub-catchment before (a) and after (b) dam construction (abbreviations as in Table 2; CI, 95% confidence interval).
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2014a; Jian et al., 2015). Land-use changes are also an
important factor influencing the infiltration and intercep-
tion of rainwater (Fohrer et al., 2001; Costa et al., 2003),
which were responsible for the change in discharge down-
stream. Our study did include land use change as factors in
the analysis; however, they were not identified as an impor-
tant factor for flooding occurrence. This is consistent with
Gao et al. (2014), who also suggested a low impact of land-
use change on streamflow and sediment load in the Wei
River Basin. We further investigated the effect of land use
on flooding by changing the criteria of the CIT analysis to
generate another level of separation based on the current
result of Figure 3. Residential area was a branch of Node 5
below the discharge at Huaxian, indicating the influence of
built-up areas on river discharge. Pfister et al. (2004) and
Yang et al. (2015) suggested that land-use changes may
have a more significant impact on local and small catch-
ments than on regional or mesoscale catchments, consistent
with the results of our study.
Xia et al. (2014) found that discharge and sediment load

were the two dominant factors determining the bankfull
channel dimensions in an alluvial river, but sediment load
was not identified as an important factor in our study. Sedi-
ment load was not correlated with either flood-peak dis-
charge or flood-peak water table (Table 4). Sediment loads
may affect the morphology of riverbeds, which affects

flooding, especially associated with downstream dams
(Batalla and Vericat, 2009; Magilligan et al., 2013; Opere,
2013). The effect of sediment load on channel morphology
and flooding should thus be studied further.
The slope of sub-catchment S (South Bank) was higher

than those in the other three sub-catchments (Table 3), but
slope was not identified as an important factor affecting
flooding (Figure 3), which was unexpected and perhaps due
to the averaged slope. The slopes of the Qinling Mountains
in sub-catchment S are very steep, but nearly half of the
area of this sub-catchment is floodplain, which decreases
the average slope. The steeper slopes, combined with the
different geology of sub-catchment S compared to the other
three sub-catchments, produced a larger discharge from
this sub-catchment. The effect of discharge from sub-
catchment S was successfully identified in the spatial analy-
sis using CIT (Figure 5). The discharge from sub-catchment
S was responsible for most of the flooding in the Wei River
Basin on a monthly basis (Nodes 6 and 9 in Figure 5).
Factors that lead to flooding can be identified by analys-

ing the characteristics of individual floods but are difficult
to include in our type of analysis. For example, cultivation
on the floodplain affects the retreat of flood water. The
small dikes and roads for protecting cultivated areas also
increase the vulnerability of the floodplain to flooding.
These factors were difficult to include in our analysis
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because they were unregulated, temporal, and small in scale
(Jiang et al., 2004). Dike failure or exceeding the designed
threshold of the dikes, as occurred with the flooding on the
Yangtze River in 1998 (Plate, 2002), were difficult to be
included for the same reasons.
As the dams in the study area were constructed mainly for

flood control and irrigation purposes, the discharge generated
from precipitation of the upper stream of the river are collected
and stored in the reservoirs. The propagation time from precip-
itation to the discharge at the outlet of the catchment is thus
extended. This process is consistent with the observation of the
CIT analysis that dam construction period is the most impor-
tant factor explaining the occurrence of flood. The time lag
between precipitation and discharge on average increased from
the cross-correlation analysis. It can be concluded that the dam
constructions successfully delayed the precipitation.
Factors other than dam construction not included in the

double-mass curve analysis may also have played a role in
lowering the slope of the regression line of the
precipitation–discharge relationship, so determining the
exact contribution of each factor was not possible. The CIT
analysis (Figures 2 and 3 in Section Why – factors influen-
cing flooding), however, suggested that the period of dam
construction was the most influential factor for flooding.
The analysis was thus constructed based on the division of
the dam construction period.
Further studies are required to quantify the effects on flood-

ing of the factors we have identified. A model including all the
above factors as input that is able to simulate the hydrology of
a large-scale catchment will be applied by changing the input
data according to their changes in the past and to scenarios of
the future. The main focus will be the influence on flooding of
the construction of dams and reservoirs, water-diversion pro-
jects, precipitation, and land-use changes.

Conclusions

A new framework approach for flood analysis capable of
including multiple potential factors and multiple years
of data was proposed by this research with a demonstration
of a case study of the Wei River Basin, China. The
approach identified the dam construction and the most
upstream sub-catchment of Wei River Basin were the most
important factors influencing flooding, highlighting the
importance of the effects of dams on flooding control in
the basin and the effect of precipitation of the most
upstream sub-catchment on the discharge downstream.
This upstream sub-catchment contained the fewest dams
and land-use changes and was important for managing soil
and water to avoid flooding in the Wei River Basin. The
approach can be used in any large spatial and temporal
scale analysis of multiple factors affecting flooding.
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