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Abstract  

 

In the last twenty years it has been widely demonstrated that cell nucleus contains neutral 

and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear 

lipids may show specific organization forming nuclear lipid microdomains and have both structural 

and functional roles. Depending on their localization, nuclear lipids play different roles such as the 

regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for 

vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene 

expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling 

pathways  influence the physiopathology of numerous cell types. In neural cells the nuclear lipids 

are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal 

metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative 

diseases such as Alzheimer disease and Parkinson disease among others. 
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Introduction 

Cell nucleus contain glycerophospholipids, sphingolipids, and cholesterol [1-3]. Major nuclear 

glycerophospholipids include polyphosphoinositides (PPIn) including phosphatidylinositol 

phosphate (PIP), phosphatidylinositol 4,5- bisphosphate (PI4,5P2), and phosphatidylinositol 1,4,5- 

trisphosphate (PI1,4,5P3), phosphatidylcholine (PC), phosphatidylserine (PS), and 

phosphatidylethanolamine (PE). Nucleus also contains sphingolipids, including sphingomyelin 

(SM), ceramide, ceramide-1-phosphate (C1P), sphingosine, sphingosine-1-phosphate (S1P) and 

gangliosides as well as cholesterol and its hydroxyl and oxygenated derivatives. Many enzymes 

involved in lipid metabolism and many lipid receptors are known to be localized in the nucleus or 

are translocated to the nucleus in response to a variety of stimuli [for reviews see [1-8]].  

 The signaling pathway of PPIn has been extensively studied. Increasing evidence suggest 

that the nucleus constitutes a functionally distinct compartment of inositol lipid metabolism and that  

the regulation of the nuclear PI pool is independent from the plasma membrane counterpart [5,8]. 

The pathways for the interconversion of phosphoinositides in the nucleus are illustrated in Fig. 1. 

PPIn are phosphorylated by specific kinases (PIPKs). PIPK type I phosphorylates PI4P to PI4,5P2; 

PIPK type II phosphorylates PI5P to PI5P4,5P2; PI3K (C2α, C2β, and C2γ isoforms) 

phosphorylates PI to PI3P. PI3K indirectly regulates the PPIn-dependent protein kinase-1 (PDK1) 

and interacts with the AKT/PKB pathway. The nuclear activities of PI3K and AKT are antagonized 

by a variety of phosphatases that can translocate to the nucleus such as Src homology 2 domain 

containing inositol-5′-phosphatase 2 (SHIP2) known to be one of lipid phosphatases converting 

PI3,4,5P3 to PI3,4P2. PPIn are degraded by specific PI-dependent phospholipase C (PI-PLC). 

Different PI-PLCs isoforms have been identified in the nucleus, namely PI-PLC-β1, γ1, δ1 and ζ. 

[5,6]. PLC-mediated cleavage of  PI4,5P2 generates the two second messengers diacylglycerol 

(DAG) and inositol-1,4,5-trisphosphate (IP3). DAG stimulates PKC isoforms and IP3 modulates 

nuclear calcium level thereby regulating  gene transcription, DNA replication, and nuclear envelope 

(NE) breakdown [7]. IP3 can also be converted via successive kinases to inositol tetrakisphosphate 

(IP4), inositol pentakisphosphate (IP5), and inositol hexakisphosphate (IP6) which have distinct 

regulatory functions in protein deacetylation (IP4) and RNA export (IP6). 

Plasmalogen and PC are metabolized by PC-dependent PLC that produce DAG and 

phosphocholine. In addition, the nucleus contains phospholipase D (PLD), DAG-kinases and DAG-

lipases, monoacylgycerol-lipase, cyclooxygenases, lipoxygenases, and neuroaminidases [2,4,9-11].  

There are differences between nuclear and non-nuclear compartments in terms of agonist 

responses and properties of enzymes involved in phospholipid metabolism found in these 
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subcellular fractions. For example, during retinoic-acid induced differentiation of neuroblastoma 

cells, there is stimulation of phospholipase A2 (PLA2), PLC, PLD, and generation of lipid 

mediators in the nucleus but not in the plasma membrane or the cytosol. Determination of kinetic 

parameters indicates that retinoic acid treatment does not affect the Km value, but Vmax values for 

PE and plasmalogen-PLA2 activities are increased in the nuclear fraction of  neuroblastoma LA-N-

1 cells [2].  

Sphingolipids  are metabolized by sphingomyelinase (SMase), sphingomyelin-synthase 

(SM-synthase), reverse sphingomyelin-synthase (RSM-synthase), ceramidase, ceramide kinase 

(CerK) and sphingosine kinases (SK) in multiple nuclear compartments, including chromatin, NE, 

and nuclear matrix [1,3,11,12] (Fig. 2). Similar to SMase, reverse SM synthase catalyzes the 

degradation of SM but with the difference that it catalyzes the transfer of the phosphocholine group 

from SM to DAG, forming ceramide and PC. Nuclear SM, SMase, SM-synthase and RSM-synthase 

are localized in specific nuclear lipid microdomains (NLM) that act as platform for vitamin and 

drug action, and for chromatin anchoring thereby regulating gene expression [13-15]. Interestingly, 

reverse SM synthase is also found in chromatin [16].  

The activity of all these enzymes leads to the generation of  nuclear lipid mediators such as 

DAG, ceramide, sphingosine,  S1P, arachidonic acid, eicosanoids, platelet activating factor and 

various inositol phosphates. Nuclear DAG serves as a chemoattractant for some isoforms of PKC 

that migrate to the nucleus in response to a variety of agonists. DAG-kinases and DAG-lipases 

terminate DAG-dependent signals and control many DAG-dependent nuclear events [2,4,6,10,9] . It 

has been suggested that DAG derived from PI is shuttled directly to a DAG kinase (DAGK) present 

in the nucleus, while DAG derived from PC is not accessible to DAGK. Thus, nuclei may contain at 

least two distinct pools of DAG that are generated by the action of two distinct phospholipases 

[2,3]. Interestingly,  in an in vitro  model of ischemia in rat hippocampal cells and in in vivo 

experiments, during transient ischemia-reperfusion of the forebrain and following  kainate-induced 

seizures of hippocampal neurons, DAGKζ migrates outside the nucleus in vivo and never relocates 

to the nucleus. Since these conditions result later in cell death [17-20], it has been hypothesized that 

nuclear export of DAGKζ could somehow facilitate neuronal apoptosis. 

Nuclear membranes contain  a variety of receptors (including those for endocannabinoids, 

platelet activating factor (PAF), prostaglandin E2 (PGE2), thromboxane, inositol 1,4,5-

trisphosphate (IP3), retinoic acid, vitamin D and peroxisome proliferator receptors) [2] that can 

initiate nuclear signal transduction pathways and also cross-talk with other subcellular organelles 

and with the plasma membrane. A variety of stimuli modulates the activity of the nuclear enzymes 

or promotes their translocation to the nucleus. The stimulation of signaling pathways involving lipid 
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second messengers leads to changes in permeability to ions, in nuclear calcium levels, in 

transcription,  and in protein and mRNA trafficking.  These changes regulate cellular processes such 

as differentiation, proliferation, and cell death.  

Differences in the lipid composition of cellular membranes depend on the 

physiopathological state, and also on the in vivo and in vitro growth environments but in some 

instances the differences might be an artifact of the in vitro culture conditions [21]. Fatty acid 

composition and the function of lipids may be different in cells that use aerobic glycolysis and those 

that respire to obtain energy. This might have consequences in conditions such as ischemia and 

hypoxia and in cancer since some tumour cells can switch between glycolytic and oxidative 

metabolism in a reversible fashion [22]. It is known that, in contrast to most untransformed tissues, 

which use dietary lipids, cancer cells frequently re-activate de novo lipogenesis. In some tumours, 

increased content of saturated fatty acids in PC correlates with higher tumour grade and lower 

survival, while a shift in polyunsaturated PI is correlated with invasiveness [23]. Recently, the 

components of membranes of subcellular organelles, especially those of mitochondria, have been 

intensely studied. The lipidomes of  highly purified mitochondria isolated from normal brain, from 

brain tumours (astrocytoma and ependymoblastoma) grown in vivo, from astrocytoma cultured 

 cells and from non-tumorigenic astrocytes have been compared. Major differences have been found 

between normal tissue and tumour tissue and between in vivo and in vitro growth environments in 

the content or in the fatty acid composition of ethanolamine glycerophospholipids, 

phosphatidylglycerol and cardiolipin [21]. The in vitro experimental conditions produced lipid and 

electron chain transport  abnormalities in cultured non-tumorigenic astrocytes that were similar to 

those associated with tumorigenicity. For example, hydroxylated fatty acid molecular species were 

found in cardiolipin from tumour cells grown in vitro, but were not found in cardiolipin from the 

solid tumours grown in vivo, suggesting the possibility that hydroxylated fatty acids are produced as 

an artifact of the in vitro environment [21]. The lipid composition of nuclear membranes and 

nuclear lipid microdomains (NLM) obtained from cultured hepatocytes and from hepatoma cells 

has recently been compared [24]. NLMs of cancer cells exhibit reduced saturated very-long-chain 

fatty acid (24:0) SM and increased long-chain fatty acid (16:0) SM, as well as increased  SM 

containing unsaturated fatty acids. The content of signaling proteins in NLMs is also modified in 

hepatoma cells [24]. Unfortunately, no similarly detailed studies concerning the composition of the 

nuclear membrane of neural cells are available at the moment.  

We will overview the data concerning the physiopathological role of nuclear lipids, in 

particular the role of nuclear phosphoinositides, sphingolipid, cholesterol and its metabolites  in the 

nervous system.  
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Role of the nuclear phosphatidylinositide pathway in the brain 

 

Phospholipases C 

 

PI-PLC β1 is the isoenzyme best characterized and is involved in the regulation of differentiation 

and proliferation in cultured myoblasts, adipocytes and erythroid leukemia cells [5]. The 

interactome of nuclear PI-PLC β1 in erythroid leukemia cells comprises proteins involved in 

cellular metabolic processes, gene expression, transport, developmental processes, translation, RNA 

splicing and processing, response to oxidative stress, and regulation of apoptosis [5].  It is known 

that PI-PLCs are highly expressed in the nucleus of  cultured rat glioma cells [25]. Montaña et al.  

[26] have studied the distribution of the PI-PLCβ1 isoform in the adult rat nervous system in vivo, 

and the phenotype of cells expressing PI-PLCβ1, and also its subcellular localization in cortical 

neurons by immunofluorescence staining and confocal laser scanning. PI-PLCβ1-positive cells are 

colocalized with GABAergic neurons and glial processes of the spinal cord white matter. In cortical 

neurons,  PI-PLCβ1 is found at speckles, a nuclear compartment that lacks membrane structures. 

Garcia del Caño et al. [6,9] have shown the localization of PLC-β1 and DAGL-α, which is much 

more abundant than DAGL-β in brain, in the neuronal nuclear compartment and also the 

PLC/DAG-dependent production of the endocannabinoid 2-arachidonylglycerol.  

To study the functions of a protein is useful to identify the proteins that are able to interact with 

it as well as to study the consequences of its overexpression and knockdown. An interesting interactor 

of PI-PLCβ1 is -synuclein. This  protein, highly expressed in brain, is also the major component of 

neurodegenerative plaques and it is  mutated in some forms of familial Parkinson disease (PD). In vitro 

experiments show that -synuclein binds strongly to PI-PLCβ1 and promotes the release of Ca2+ from 

the endoplasmic reticulum [27]. It has been shown that the expression of -synuclein increases the 

cellular level of PI-PLCβ1 by protecting it against degradation from enzymes such as calpain. 

Interestingly, oxidative stress that is often correlated with neurodegeneration, down-regulates PLCβ1 

thereby promoting α-synuclein aggregation [28]. Nuclear -synuclein inhibits histone acetylation and 

promotes death in SH-SY5Y neuroblastoma cells while cytoplasmatic -synuclein is neuroprotective 

[29];-synuclein  binds to DNA in a conformation-specific manner and causes a conformational 

transition that could  play a significant role in neuronal cell dysfunction [30].  It is worth noting that -

synuclein  has been found in the nuclei of some neurons and oligodendroglia from brains of patients 

with multiple system atrophy [31,32]. Increased levels of nuclear α-synuclein are associated with 
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Parkinson-linked mutations of α-synuclein [29,33]. Experiments with transgenic flies expressing nuclear 

or cytoplasmatic α-synuclein have demonstrated that nuclear α-synuclein is associated with loss of 

dopaminergic neurons [29]. 

It is worth noting that the PLC 1-knockout mice develop epileptic seizures from the fourth 

week of life, and show a selective loss of somatostatin-containing interneurons in the hippocampus [34], 

excessive adult hippocampal neurogenesis, and an abnormal migration of adult-born granule neurons 

[35]. These knockout mice also exhibit symptoms similar to human schizophrenia such as locomotor 

hyperactivity, impaired prepulse inhibition of the startle response, lack of barbering and nesting 

behaviors, socially subordinate status, impaired learning, and lack of type II theta rhythm which has 

been implicated in working memory [36]. In schizophrenia-affected patients, deletions of PLC1 gene 

in orbito-frontal cortex samples [37], as well as down-regulation of PLC1 transcript in the dorsolateral 

prefrontal cortex have been found [38], and a PLC1 deletion-associated early-onset epileptic 

encephalopathy has been reported  [39]. Altogether these observations suggest that PLCβ1 has a role  in 

the normal and pathological development of cortical and hippocampal circuitry. 

PI-PLC1 is also found in the nucleus. NGF treatment leads to the activation of the shorter 

isoform of phosphatidylinositol kinase enhancer (PIKE-S),  by triggering the nuclear translocation of PI-

PLC1, which acts as a physiological guanine nucleotide exchange factor for PIKE-S through its SH3 

domain. The ability of PI-PLC1 of activating PIKE does not depend on its phospholipase activity but 

results in PI3K/AKT activation in the nucleus and NGF-induced neuroprotection [40].  

In rat hippocampal neurons,  a massive increase in the intracellular Ca2+ elicited by ionomycin, 

thapsigargin or glutamate induces PI-PLC1 translocation from cytoplasm to nucleus as well as nuclear 

shrinkage. The nuclear translocation of PI-PLC1 is mediated by a Ca2+ -dependent direct interaction 

with importin b1. Furthermore, overexpression of GFP-PLC1 facilitates ionomycin-induced nuclear 

shrinkage in embryonic fibroblasts derived from PI-PLC1 knockout mice [41]. Therefore, nuclear 

translocation and the PI-PLC activity of PI-PLC1 may regulate the nuclear scaffold during Ca2+- 

induced cell death, such as in ischemia and excitotoxicity.  

 

 Phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate 

effectors 

 

PI4,5P2 is found in NE and intra-nuclear structures. It binds and regulates nuclear PI4,5P2 effectors 

some of which have recently been identified. These effectors are involved in a variety of processes, 

including transcription, mRNA processing, mRNA export, chromatin remodeling, stress responses, 

DNA repair, and mitosis [42]. A PI4,5P2 effector is Speckle Targeted PIPKIα Regulated-Poly(A) 
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Polymerase (Star-PAP). Start-PAP  is a poly(A) polymerase critical for the 3′ cleavage, 

polyadenylation and expression of select mRNAs. PIPKIα, PI4,5P2 and Star-PAP function together 

in a complex to control the mRNA processing and expression of specific mRNAs, such as the ones 

codifying the proapoptotic protein BIK and heme-oxygenase-1 [42]. BIK is a proapoptotic protein 

while heme-oxygenase-1 catalizes heme degradation generating biliverdin, Fe
2+

 and CO. This 

enzyme has a neuroprotective role since it protects against oxidative injury, regulates apoptosis, and 

modulates inflammation [43]. PI4,5P2 directly activates Star-PAP and also regulates other 

components of the complex, such as casein kinase I PKCδ required to activate Star-PAP following 

oxidative stress and DNA damage respectively [42].  

Another interesting nuclear PI4,5P2 effector is steroidogenic factor 1 (SF-1). The 

transcriptional activity of SF-1 is regulated by a direct association with PI4,5P2. SF-1 binds PI4,5P2 

with the head group exposed to the surface and this allows its phosphorylation by a polyphosphate 

multikinase. The association of SF-1 with PI3,4,5P3 stabilizes its binding to coactivators leading to 

enhancement of the transcriptional activity of SF-1[44]. 

It is worth noting that steroids are not only synthesized in adrenal glands and gonads, but 

they are also synthesized within the brain and rapidly modulate neuronal excitability. For example, 

neurosteroids are endogenous regulators of seizure susceptibility, anxiety, and stress [45]. 

 

Phosphatidylinositol 3- kinase effectors. AKT and its role in neuronal survival.  

 

AKT also known as protein kinase B (PKB) is the  canonical downstream signaling effector 

of PI3K and it is also an oncogene with critical roles in cell growth. Three AKT isoforms encoded 

by different genes have been identified in mammalian cells [46]. AKT3 is predominantly localized 

within the nucleus and at the NE while AKT1 and AKT2 mainly localize at the plasma membrane 

and cytosol, and may translocate to the nucleus after growth factor stimulation. The nuclear  

PI3K/AKT pathway is involved in mRNA processing and exportation, DNA replication and repair, 

ribosome biogenesis, cell survival and tumourigenesis [47]. 

Nuclear PI3K/AKT signaling is implied in neuronal survival. Nuclear PI3K and its upstream 

regulator PIKE are necessary and sufficient to mediate the anti-apoptotic effect in PC12 cells stimulated 

with nerve growth factor (NGF) and in growth factor- stimulated HeLa  and HEK-293 cells by 

preventing DNA fragmentation [48]. Recently some nuclear targets of AKT involved in survival have 

been identified and they include nucleophosmin /B23, Acinus and ribosomal protein S3 (RPS3) [48-

52] (Fig.3).  The nucleolar phosphoprotein B23 dynamically shuttles between the nucleus and 

cytoplasm as well as from the nucleolus to the nucleoplasm in the S-phase of the cell cycle. 
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Addition of PI3,4,5P3 to cell nuclei mimicks the antiapoptotic effect but requires nuclear AKT [48]. The 

neuroprotective effect of PI3,4,5P3 appears to be due to the interaction between AKT and the nuclear 

PI3,4,5P3 receptor, B23 [49], which prevents the caspase-3 dependent degradation of B23 and promotes 

survival [50]. The nuclear protein Acinus, after caspase-3 mediated proteolysis, is required for apoptotic 

chromatin condensation. AKT-phosphorylated Acinus forms a complex with the antiapoptotic protein 

zyxin, and this association prevents the caspase-3 mediated cleavage of Acinus and subsequent 

chromatin condensation.  Another AKT substrate for neuronal survival is ribosomal protein S3 (RPS3), 

a conserved protein of the ribosomal 40S subunit, which is required for ribosome biogenesis. RPS3 

shuttles between the cytoplasm and the nucleus, and acts in both the compartments with extra-ribosomal 

functions including apoptosis [52]. In PC12 cells, AKT-mediated phosphorylation of RPS3 increases 

nuclear accumulation of RPS3 and decreases its pro-apoptotic effect. Overexpression of RPS3 in the 

PC12 cells or in the primary hippocampal neurons induces neuronal apoptosis by cooperating with the 

transcription factor E2F1 and causing up-regulation of pro-apoptotic proteins, Bim and death protein 

5/harakiri. AKT-dependent phosphorylation of RPS3 inhibits pro-apoptotic protein induction and leads 

to nuclear accumulation of RPS3, thereby promoting neuronal survival. Thus, these findings imply that 

upon NGF stimulation not only AKT translocates into the nucleus, but also triggers its target proteins, 

that have a proapoptotic function in the cytoplasm, to move into the nucleus preventing neuronal death. 

(Fig. 3). It is worth noting that only some aspects of this mechanism have been studied in primary 

neurons. Being PC12 a pheochromocytoma-derived cell line, it is important to clarify whether this 

prosurvival signaling pathway is similar in neurons in vitro and also in vivo.  

 

Nuclear phosphatases 

The activity of  the kinases such as PI3K and AKT are antagonized by a variety of phosphatases such as 

phosphatase and tensin homolog deleted on chromosome TEN (PTEN) and SHIP2 that can translocate 

to the nucleus.  

In astrocytes, the phosphatase SHIP2 is found the nucleus, at nuclear speckles, and in the 

cytoplasm [53,54]. Phosphorylated SHIP2 on S132 can be found in the nucleus and nuclear speckles. 

Nuclear SHIP2 interacts with the nuclear lamina proteins Lamin A/C and the PP2A regulatory 

subunit PR130B [53]. In unstimulated astrocytoma cells, SHIP2 has a perinuclear and cytoplasmic 

localization. In serum-stimulated cells, SHIP2 can be localized at the plasma membrane and at focal 

contacts in polarized cells, suggesting that it could play a role in adhesion and migration. Similarly to 

plasma membrane AKT,  nuclear AKT may rely on the nuclear production of PI3,4P2 from 

PI3,4,5P3 by SHIP2 to maintain or achieve full activation.  In the glioblastoma cell line 1321 N1, that 

does not express PTEN, lowering SHIP2 expression has an impact on the levels of PI3,4,5P3, cell 
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morphology and cell proliferation. SHIP2 stimulates cell proliferation by decreasing the expression of 

key regulatory proteins of the cell cycle such as p27 [54].  

PTEN nuclear translocation is an essential step in excitotoxic (in vitro) and ischemic (in vivo) 

neuronal injuries. NMDA induces PTEN nuclear translocation and cell death. While nuclear 

overexpression of a dominant negative mutant PTEN reduces NMDA receptor-mediated excitotoxicity, 

specific blockade of PTEN nuclear translocation with the Tat-K13 peptide prevents excitotoxicity in 

cultured neurons and protects against ischemic brain damage in vivo [55]. However, the mechanism 

involved in survival is unknown. Whether nuclear PTEN in neurons is acting by dephosphorylating 

PI3,4,5P3  or by directly interacting with p53 and thereby altering  transcription activity, or if it is 

independent of the phosphatase activity, remains to be tested. 

 

Role of neural nuclear sphingolipids 

Evidence from in vitro and in vivo studies have highlighted the role of ceramide, ceramide 1-

phosphate, sphingosine, sphingosine-1-phosphate and gangliosides in  neural cell proliferation,  

apoptosis and differentiation. 

It is known that nuclear SM metabolism is independent on the non-nuclear one. Extranuclear 

and nuclear enzymes involved in sphingolipid metabolism exhibit different properties. In HN9 

embryonic hippocampal cells nuclear SMase and SM-synthase  regulate the ceramide level directly 

in the nucleus and differ from those present in the homogenate in optimum pH, Km and Vmax [56]. 

In neural cell cultures  NGF induces generation  of low levels of ceramide at plasma membrane and 

results in differentiation and neuritic outgrowth [57] whereas serum deprivation results in ceramide 

increase and apoptosis [56].  

We and others have demonstrated that the nuclear levels of distinct sphingolipid subspecies 

change under different cellular physiological states.  For example, changes in ceramide content 

have been described in vitro after serum deprivation in embryonic hippocampal cells in culture  [56] 

or during Fas-induced apoptosis in Jurkat cells [58] and in vivo during liver regeneration [59]. GM1 

increases during axogenesis in cultured neuroblastoma cells and in cultured cortical neurons [12]. 

Chromatin-associated SM synthase and SMase control dynamic oscillations in SM concentrations 

during the cell cycle both in vivo [60,61] and in vitro [62] when SM plays a role in RNA maturation 

[3,63,16].  

Ceramide as mediator of apoptosis and neurodegeneration 

Different apoptotic stimuli in different types of cells result in an increase of nuclear ceramide. We 

have demonstrated that serum deprivation induces apoptosis in HN9 embryonic hippocampal cells. 

Serum deprivation induces, after 1 hour, a rise of intracellular ceramide level, followed by 
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translocation of Bax, dysregulation of calcium, cytocrome c release and caspase 3 activation 

[64,65]. The ceramide that increases in the early phase of apoptosis is localized in the nucleus. The 

extranuclear SMase activity increases after 8-15 hours of serum deprivation, suggesting a role in 

later phases of apoptosis [56]. In Jurkat T cells, Fas ligand simultaneously stimulates neutral SMase 

and inhibits SM synthase activities in a caspase-3-dependent manner, which results in the time- and 

dose-dependent accumulation of nuclear ceramide [58]. Alterations in protein traffic may contribute 

to the apoptotic effect ceramide. Ceramide regulates nuclear protein import in smooth muscle cells 

by inducing p38 mitogen-activated protein kinase activation and the subsequent relocalization of 

two nuclear transport proteins, importin A and cellular apoptosis susceptibility gene [66]. The 

inhibition of nuclear import by exogenously supplemented ceramide results in diminished 

expression of proliferation protein markers, including cyclin A and proliferating cell nuclear 

antigen, and in reduced proliferative capacity [66]. 

Alzheimer disease (AD)  is a neurodegenerative disorder of the central nervous system and 

the most common form of dementia. The pathogenic hallmarks of AD include extracellular 

amyloid-containing plaques, intracellular neurofibrillary tangles consisting of hyperphosphorylated 

tau protein  and death of cholinergic neurons of the basal forebrain.  Amyloid plaques are mainly 

formed by aggregated amyloid β peptide (Aβ) generated by the hydrolysis of amyloid precursor 

protein. Many studies in cultured cells have demonstrated that Aβ is mainly generated in lipid rafts, 

that Aβ affects sphingolipid metabolism and that sphingolipids  regulate the production of Aβ [67]. 

Aβ induces activation of nSMase increasing ceramide levels, which result in cell death, while 

ceramide increases the stability and S1P directly activates the beta-secretase, one of the enzymes 

responsible for the production of Aβ [68]. Increasing SM and inhibition of glucosylceramide 

synthetase (the first step in ganglioside formation) leads to lower Aβ levels [68]. 

Ceramide localized in NLM is involved in 1,25-dihydroxy vitamin D3 -induced 

differentiation in embryonic hippocampal cells [69]. A portion of the nuclear 1,25-dihydroxy 

vitamin D3 receptor (VDR)  is found in NLM. The integrity of these microdomains is necessary for 

the effect of  1,25-dihydroxy vitamin D3 on this process (Fig.4). Treatment with exogenous SMase 

or serum deprivation, which increases SMase activity in these cells, changes the lipid composition 

of the NLM, impairs the localization of the receptor in the NLM and prevents neuronal 

differentiation [13]. Conversely, treatment of  serum-deprived cells with a high concentration of 

1,25-dihydroxy vitamin D3 increases the content of VDR as well as that of SM in NLM and allows 

differentiation [13]. 

The apoptotic role of ceramide has also been observed in vivo in nuclei of liver cells. The 

ligature of portal branches induces apoptosis as shown by TUNEL assay and analysis of DNA 
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degradation [59]. In ligated liver lobes, nuclear SMase activity and ceramide levels  increase after 

30 min and 1 hour respectively while no similar variations are found in the plasma membrane [59]. 

Drastic alterations in the sphingolipid content  (mainly increase in ceramide levels) and in 

the gene expression of several enzymes that control sphingolipid metabolism (serine palmitoyl 

transferase, SMases) have been  observed in the brain of human AD patients [for recent reviews see 

[67,68]].  

 

Sphingosine, S1P, and fingolimod 

It is known that cAMP rapidly decreases nuclear concentrations of ceramide and stimulates the 

nuclear localization of SK1 while concomitantly increases sphingosine and S1P levels [11]. A 

nuclear S1P target has recently been discovered, linking nuclear S1P to epigenetic regulation of 

gene expression. S1P  binds to the histone deacetylases1 (HDAC1) and HDAC2 and inhibits their 

enzymatic activity [70]. SK2 is associated with HDAC1 and HDAC2 in repressor complexes and is 

selectively enriched in the promoters of the genes encoding the cyclin-dependent kinase inhibitor 

p21 or the transcriptional regulator c-fos, where it increases local histone H3 acetylation and 

transcription [70]. S1P acts not only as a second messenger, but also as a ligand of five G-protein 

coupled receptors (S1PR) found to be involved in a wide range of physiopathological processes in 

different tissues, including the nervous system. Both S1P synthesis and S1PR expression are 

required for embryonic neurogenesis whereas in the adult nervous system, S1P/S1PR axis regulates 

neurotransmission, promotes survival and affects differentiation [71,72]. All S1PR are found in the 

nucleus of neural tissue; the nuclear subtype 3 is overexpressed in malignant compared to normal 

tissue [73]. The role of nuclear S1PR is unknown. 

 An analogue of sphingosine, FTY720 (fingolimod) is able to enter the nucleus, where it is 

phosphorylated by SK2 and the nuclear FTY720-phosphate, as S1P, binds and inhibits class I 

HDACs, enhancing specific histone acetylations and gene expression  [74,70].   FTY720-phosphate 

binds S1P1 to downregulate activated microglial production of pro-inflammatory cytokines as 

tumour necrosis factor-α, interleukin-1β, and interleukin-6. FTY720 also upregulates microglial 

production of brain-derived neurotrophic factor and glial cell-derived neurotrophic factor [75]. 

FTY720 decreases production of Aβ in cultured cortical neurons [76]. Interestingly, this 

decrease is independent of known downstream signaling pathways of S1PRs, but whether this effect 

is due to the action of FTY720 on protein acetylation has not been investigated. 
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Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system 

characterized by infiltration of immune cells and progressive damage to myelin and axons  together 

with reactive astrogliosis and activated microglia.  The pathology is generally believed to reflect 

autoimmune attack upon myelin autoantigens. In lymph nodes, fingolimod  induces the 

internalization of type 1 S1PR (S1P1)  in T cells. As a result, lymphocytes no longer respond to the 

gradient of S1P and remain sequestered in the lymph node. However, fingolimod has beneficial 

effects in the CNS independent of its effects on immune cell trafficking [77].  Choi et al., [78] using 

animals in which S1P1 was deleted in specific cell types, have  found that S1P1 of astrocytes is 

necessary for the protective action of fingolimod in experimental allergic encephalitis, a model of 

MS. When FTY720 is given to mice, it is phosphorylated and accumulates in the brain, enhances 

histone acetylation and expression of genes associated with memory and learning, and rescues 

memory deficits [74,70].   Hait et al. [74] have tested the effects of FTY720 on memory in SK2-/-

mice. These mice have reduced both S1P levels and histone acetylation,  and display deficits in 

spatial memory and impaired contextual fear extinction that are rescued by FTY720, suggesting that 

this drug may be useful to facilitate extinction of aversive memories [74]. In addition, FTY720 

exerts an antidepressive action in mice subjected to chronic unpredictable stress, a model of reactive 

depression. Fingolimod treatment also enhances histone acetylation and adult neurogenesis in the 

hippocampus of these mice [79] supporting the idea that this drug could have a broader application 

in neurodegenerative diseases. 

Administration of FTY720 in a rat model of AD obtained by bilateral hippocampus injection 

of Aβ decreases death in the hippocampus and increases memory compared with control rats [80]. 

Similarly, in rats injected with Aβ in the cortex, the administration of the combination of FTY720 

and memantine reduces hippocampal death [81]. Unexpectedly, treatment of APP transgenic mice 

harboring mutations found in familial AD with FTY720 for 6 days results in a decrease in Aβ40, 

and an increase in Aβ42 levels in brains [76]. These results highlight the necessity to further study 

the mechanism  of the sphingolipid analogue and Aβ42 metabolism in order to avoid adverse effects 

in humans. 

 

Ceramide-1-phosphate 

 

Rovina et al. [82] identified nuclear export and import signals in the primary sequence of CerK. 

This finding suggests that nuclear ceramide can be further metabolized into C1P, which may exhibit 

unique nuclear functions that need to be explored. C1P binds to the Ca
2+

 -binding regions in the C2 

domain of cPLA2α and promotes its translocation to the perinuclear region of cells [83]. 
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Arachidonic acid, produced by the action of PLA2, can be converted by lipoxygenases to 5-oxo- 

eicosatetraenoic acid. This metabolite binds and activates the transcription factor PPARδ1,  

promoting  neuroblastoma survival [84]. Although many studies correlate S1P function to increased 

survival, differentiation and proliferation in neuronal and glial cells, the relevance of C1P/Ceramide 

axis remains to be clarified. During retinoic acid-induced differentiation of SH-SY5Y 

neuroblastoma cells  there is a down regulation of CerK expression [85]. We have demonstrated 

that CerK is involved in the anti-proliferative action of vitamin D3 and its analogues in human 

neuroblastoma cells [86]. The inhibition of CerK, the enzyme responsible for C1P synthesis, by 

specific gene silencing or pharmacological inhibition, drastically reduces cell proliferation. The 

treatment with Vitamin D3 or with its structural analogue ZK191784 induces a significant decrease 

in CerK expression and C1P content, and an increase of ceramide. Notably, the treatment of SH-

SY5Y cells with vitamin D3, the antagonist of vitamin D3 receptor ZK159222, the inhibitor of 

histone deacetylases trichostatin A, or COUP-TFI-siRNA prevented the decrease of CerK 

expression elicited by vitamin D3 supporting the involvement of VDR/COUP-TFI/histone 

deacetylase complex in CerK regulation. Altogether, these findings provide the first evidence that 

CerK/C1P axis acts as molecular effector of the anti-proliferative action of vitamin D3 and its 

analogues, thereby representing a new possible target for anti-cancer therapy of 

human neuroblastoma. Whether nuclear CerK is involved in this antiproliferative effect has not 

been explored. 

 

Gangliosides 

 

Gangliosides are important components of neuronal cell membranes that  play a critical role in 

neuronal and brain development. They are functionally involved in neurotransmission and are 

thought to support the formation and stabilization of functional synapses and neural circuits 

required as the structural basis of memory and learning [87]. Besides the nuclear membrane 

localization, GD3 has also been found in chromatin [88] after Aβ-induced cell death of cultured 

cerebrocortical neurons. In rat cortical neurons,  Aβ increases GD3 accumulation concomitant with 

a decrease of SM, the source of ceramide, and induction of the 2,8-sialyltransferase,  the enzyme 

that forms GD3 from GM3. GD3 synthase knockdown by RNA interference prevents Aβ- induced 

entry into S phase and apoptosis, supporting a role for GD3 in cell cycle activation and cell death 

[88]. Moreover, after Fas-induced apoptosis in HUT-78 T-lymphoma cells, GD3 translocation from 

the cytosol into the nucleus correlates with histone H1 phosphorylation, suggesting that GD3 may 

have an epigenetic role in the transcriptional regulation of specific genes [89]. It is worth noting that 
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after CD95/Fas triggering, raft-like microdomains could be detected in mitochondrial membranes. It 

has been hypothesized that some "small" mitochondria, possibly derived from their fission process, 

can reach the NE and strictly interact with it contributing to molecular trafficking of molecules such 

as GD3 [90].  

The multiple roles of GM1 have been recently reviewed [12]. GM1 is located in membrane 

rafts, where it associates with specific proteins that have glycolipid-binding domains. GM1 interacts 

with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-

coupled receptors, and neurotrophin receptors. GM1 occurs at high concentrations in the nuclear 

membrane of differentiating neuroblastoma and cultured embryonic neurons obtained from cortex 

and from  the superior cervical ganglion [12]. GM1 is associated with the inner NE in neurons, 

astrocytes and neuroblastoma cells, and plays a prominent role in nuclear Ca2+ homeostasis. This 

ganglioside is tightly associated with a Na
+
/Ca

2+ exchanger (NCX)  which mediates the 

countertransport of three Na
+ ions for one Ca

2+ ion against a Ca
2+

gradient. Ca
2+ uptake experiments 

with isolated nuclei  and imaging using Ca
2+ 

sensors have demonstrated that  GM1 association with 

NCX potentiates Na
+
 and Ca

2+
 exchange between the nucleoplasm and the NE lumen, thus 

protecting the nucleus from degradative enzymes activated by prolonged Ca
2+

 elevation. Moreover, 

studies using cultured neurons obtained from knockout mice engineered to lack GM2/GD2 

synthase, which results in deficient synthesis of GM2, GD2, and GM1, have demonstrated key 

regulatory roles for nuclear membrane–associated GM1 in Ca
2+

 homeostasis [12]. Cultured neurons 

from these  mice are highly vulnerable to Ca
2+

 -induced apoptosis but they are rescued to some 

extent by GM1 and more effectively by LIGA-20, a membrane-permeant derivative of GM1 that 

traverses the plasma membrane more effectively than GM1 and inserts into the NE. 

Huntington disease (HD) is a neurodegenerative disorder caused by the expansion of a 

polyglutamine stretch in the protein huntingtin (Htt), and it is characterized by extensive 

neurodegeneration of striatum and cortex. Synthesis of the ganglioside GM1 is reduced in 

fibroblasts from HD patients and in cell models of HD [91], and decreased GM1 levels contribute to 

increase HD cell susceptibility to apoptosis. Administration of GM1 restores ganglioside levels in 

HD cells and promotes activation of AKT and phosphorylation of mutant Htt, leading to decreased 

mutant Htt toxicity and increased survival of HD cells. 

Studies in rat have indicated  that the synthesis of distinct ganglioside subspecies in the 

nucleus is differentially regulated during development. GM1, GM3, and c-series gangliosides are  

abundant in mature rat brain but there are  relatively more GM3 and GD3 during embryonic 

development  [1]. 
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The GM2/GD2 synthase knockout mice develop late-onset neurological disease and are 

susceptible to kainate-induced seizures accompanied by increased apoptosis in CA3 hippocampal 

neurons.  Consistent with Ca
2+

 dysregulation, kainate-induced seizures are also attenuated by 

LIGA-20 administration to the mutant mice. This neuroprotective effect correlates with the ability 

of LIGA-20 to cross the blood-brain barrier, enter brain cells, insert into the NE, and potentiate the 

NCX [12]. Since many studies have reported neurotrophic and neuro-protective effects of applied 

gangliosides, clinical trials have been designed to test their efficacy as therapeutic agents [for a 

review see [12]]. GM1 therapy shows partial restoration of depleted striatal dopamine and 

nigrostriatal neuron recovery in animal models of  Parkinson disease (PD), and also reduces motor 

symptoms and slows symptom progression over a 2-year period in patients [12]. Another clinical 

study has reported that ganglioside combined with methylprednisolone in early acute spinal injury 

promotes the recovery of nerve function of patients and improves the prognosis compared to 

treatment with only methylprednisolone [92].  

Moreover, intraventricular infusion of ganglioside GM1 induces phosphorylation of mutant 

Htt at specific serine amino acid residues that attenuate Htt toxicity, and restores normal motor 

function in already symptomatic HD mice [93]. The in vitro experiments suggest a role of nuclear 

GM1 in the protective effect, since mutant HD dysregulates calcium and interferes with numerous 

transcription factors. However, it is important to note that the alteration of gangliosides found in the 

post-mortem brain samples of three HD patients (grade 3) [94,95] is different from that found in the  

R6/1 and YAC128 mouse models and in the HD cultured fibroblasts [91,94].  In the latter, GM1 is 

reduced whereas an increase in GD3 and GM1 is  observed in the caudate nucleus and in the 

cerebellum of HD patients, respectively [94,95].  Quantitative analyses of a larger number of human 

samples with varying grades of pathology are required to evaluate the impact of altered sphingolipid 

metabolism on HD. In addition, it would also be convenient to develop  new animal models of the 

disease, since the current models do not mimic all the neurodegenerative changes observed in 

human HD.  

 

 

Nuclear endocannabinoids and cannabinoid receptors  

 

Endocannabinoids (N- arachidonoylethanolamine/anandamide and 2-arachidonylglycerol) and their 

receptors are involved in the regulation of energy balance, addiction, synaptic plasticity, 

neuroprotection, pain, anxiety, and depression [96-99]. Mammalian tissues contain at least two 

types of cannabinoid receptors, CB1 and CB2, both coupled to G proteins. CB1 is expressed mainly 
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by neurons of the central and peripheral nervous system. CB2 is primarily associated with immune 

function and is expressed on immune cells, including microglial cells within the nervous system 

[100]. CB2 expression has been found in gliomas, [101] and in human peripheral nerves after 

injury, particularly in painful neuromas [102]. It is worth noting that the effects of the cannabinoids 

are not always mediated by cannabinoid receptors, since they may also derive from the metabolism 

of the arachidonic acid present in their structure, and the generation of many bioactive lipids. CB1 

maintain homeostasis in the central nervous by inhibiting excessive neuronal excitation and activity. 

Endocannabinoids that are synthesized and released following neurotransmitter binding to 

postsynaptic receptors function as retrograde synaptic messengers acting on presynaptic CB1 

receptors to inhibit the release of neurotransmitters. Cannabinoid receptor immunoreactivity and 

binding activity are located on plasma and nuclear membranes whereas only low affinity binding is 

observed in the chromatin fraction [103]. Recently, CB1 has also been found in mitochondria, 

where it is overexpressed after traumatic brain injure and modulates apoptosis [104,105]. 

Endocannabinoids protect primary neurons, astrocytes and oligodendrocytes from apoptosis through 

mechanisms that include the control of glutamate homeostasis, calcium influx, the toxicity of 

reactive oxygen species, glial activation and the induction of autophagy [106].  Accumulating 

evidence suggests that endocannabinoids and their receptors also modulate progenitor cell 

proliferation and differentiation [107]. The modulatory effect on brain immune responses together 

with their effect on neurogenesis supports the concept that selected cannabinoids have potential as 

therapeutic agents for management of neurodegenerative disorders, such as AD, MS, HD, 

amyotrophic lateral sclerosis (ALS), and PD. In neuronal cells of adult brain, the activation of 

metabotropic receptors coupled to PLC-β1  is linked to endocannabinoid signaling through the 

production of DAG, which could be systematically metabolized by DAGL to produce an increase of 

2-arachidonylglycerol, the most abundant endocannabinoid in the brain  [98]. Interestingly, it has 

been recently reported that endocannabinoids might be synthesized also in the nucleus. Garcia del 

Caño et al. [6,9] hypothesized that nuclear endocannabinoids might regulate transcription acting as 

one of the physiological agonists at the nuclear receptor peroxisome proliferator activated receptor 

gamma (PPARgamma) or as a precursor of several types of prostaglandins. It will be interesting to 

know whether the nuclear  pathway is involved  in neuroprotection or in proliferation and 

differentiation of progenitor/stem cells. These processes are extremely important to be considered 

when developing new therapies for neurodegenerative disorders [106,107]. 

 

Cholesterol and cholesterol-derived lipids  
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Brain is the richest source of cholesterol in the body, accounting approximately 23% of total body 

cholesterol. Most brain cholesterol is present in myelin, neural membranes, and small amounts of 

cholesterol are associated with the nucleus [63,108-110]. Cholesterol affects the physicochemical 

properties of neural membranes, and activities of membrane-bound enzymes, receptors, and ion 

channels and it is the precursor of neurosteroids. In the nucleus, cholesterol metabolites modulate 

transcription.  Cholesterol is not uniformly distributed within membranes. The plasma membrane 

contains nano/micro-domains that are enriched in cholesterol and sphingomyelin, the so-called 

‘lipid rafts’. These rafts represent highly dynamic structures that recruit downstream signaling 

molecules upon activation by external or internal signals. Cholesterol is involved in synaptogenesis, 

turnover, maintenance and stabilization of synapses and is a limiting factor for outgrowth of 

neurites.. Evidence deriving from in vitro and in vivo experiments in animal models and from 

observations of patients support the importance of alterations in cholesterol metabolism in the 

pathogenesis of neurodegenerative diseases such as AD, HD, PD, and even to the cognitive deficits 

typical of aging [67,111-113,68]. Astrocytes bearing the mutated Htt produce and secrete less 

cholesterol bound to apoE lipoproteins in vitro. HD neural stem-derived neurons display neurite 

outgrowth defects compared with control neurons. Addition of cholesterol, or conditioned media 

from wild type astrocytes, but not from HD astrocytes, revert the neuritic defect, suggesting that 

reduced glial cholesterol is detrimental for HD neurons [112].  Many in vitro studies have reported 

that cholesterol derivatives such as hydroxyl cholesterols and ketocholesterols have toxic effects on 

neurons, oligodendrocytes and microglia [67,111-113,68]. Moreover, oxysterols modify specific 

sites of the Aβ peptide thus enhancing Aβ aggregation and its neurotoxicity [111]. The increased 

ratio of 27-hydroxycholesterol to 24-hydroxycholesterol  in AD brains is consistent with AD 

pathogenesis [111]. The expression of several genes involved in the cholesterol biosynthesis are 

reduced in striatum and cortex of HD mice and in post mortem cortical tissue collected from HD 

patients (see below) [112]. 

 

Oxysterols and neurogenesis  

Oxysterols are not only intermediates in the cholesterol elimination pathway but also constitute 

important signaling molecules.  Oxysterols including 24- hydroxycholesterol act as endogenous 

ligands for the nuclear receptor Liver X receptor (LXR). Recently it has been demonstrated that 

LXR is involved in neural development by regulating cell division, ventral midbrain neurogenesis, 

and dopaminergic neuronal differentiation [114]. In mice deletion of both LXRα and LXRβ slows 
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ventral midbrain neurogenesis, causing a decrease in dopaminergic neurons at birth. 

Immnunohistochemical experiments have shown that this results from an impairment in the cell 

cycle progression and from the reduced expression of several genes involved in the genesis and 

differentiation of dopaminergic neurons. To gain insight into the mechanism, in vitro experiments 

have been performed. Overexpression or activation of LXRs  by classic oxysterol ligands increases 

the number of ventromedial embryonic primary cultures and dopaminergic differentiation of mouse 

embryonic stem cells [114].  Deletion of LXRs has the opposite effect. It is possible that some 

oxysterols may enhance adult neurogenesis and promote maturation of newly generated neurons. 

Recently other ligands responsible for midbrain neurogenesis have been identified [115]. While 

cholic acid increases survival and neurogenesis of  specific red nucleus neurons, 24,25-

epoxycholesterol promotes dopaminergic neurogenesis. The latter also promotes dopaminergic 

differentiation of embryonic stem cells, suggesting that LXR ligands may thus contribute to the 

development of cell replacement and regenerative therapies for PD, and likely to other 

neurodegenerative diseases such as amyotrophic lateral sclerosis. 

The alterations found in the adult LXR double-knockout mice indicate that the function of 

LXR is not limited to the developing ventral midbrain. These mice progressively accumulate lipids 

in astrocytes and ventricular/periventricular cells, show abnormal blood-brain barrier, increased 

reactive microglia, astrogliosis, and degeneration of adult spinal cord motor neurons and midbrain 

dopaminergic neurons [116]. These results indicate that LXRs play an important role also in the 

adult brain, by regulating the maintenance of both midbrain dopaminergic  and motor neurons. 

 

Oxysterols and neurodegeneration 

LXR are also involved in the regulation of inflammatory responses by reducing the nuclear factor-

kappaB transcriptional activity and the expression of inflammatory mediators as well as cytokines 

and chemokines in the central nervous system. Accordingly, the natural and synthetic agonists of 

LXR can attenuate the imbalance of cholesterol metabolism and the overactivation of microglia and 

astrocytes in inflammation, and are widely used in a variety of neurodegenerative disease animal 

models [117]. 

The expression of genes involved in the biosynthesis of cholesterol and the amount of 

cholesterol and of 24-hydroxycholesterol are reduced in murine models of HD. In HD patients, the 

decrease of plasma 24-hydroxycholesterol  correlates with  disease progression evaluated as motor 

and neuropsychiatric dysfunction and brain atrophy [112]. Total plasma cholesterol is significantly 

reduced only in advanced stages. In cellular and animal models of HD the translocation of sterol 
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regulatory element-binding protein (SREBP) to the nucleus is reduced, resulting in decreased 

cholesterol synthesis. Some in vitro experiments have highlighted some aspects of the mechanism 

underlying the cholesterol changes. Wild type Htt is able to bind to some nuclear receptors involved 

in lipid metabolism (LXR, PPARgamma and VDR). Overexpression of Htt activates LXR while a 

lack of Htt results in a reduction of LXR-mediated transcription.  It is possible that mutant Htt is 

less able to up-regulate LXR and LXR-targeted genes such as those involved in the synthesis of 

cholesterol and ApoE, involved in the transport of cholesterol from astrocytes to neurons. In 

addition, in oligodendrocytes mutant Htt inhibits the regulatory effect of peroxisome-proliferator-

activated receptor gamma co-activator 1 alpha (PGC1a) on cholesterol metabolism and on the 

synthesis of myelin basic protein [112].  

 

Future directions 

 

Glycerophospholipids, sphingolipids, and cholesterol are not only integral components of the 

nuclear membranes and intranuclear domains but also act as messengers that regulate many cell 

processes. Evidence derived from different cell types indicate that distinct species have unique 

nuclear functions and act via temporally and spatially specific mechanisms. Despite the significant 

progress in this field, the role of nuclear glycerophospholipids, sphingolipids, endocannabinoids, 

and cholesterol and their derivatives in neurons, glia and microglia needs further investigation. 

Many nuclear effectors of the PPIn pathway involved in erythroid differentiation have been studied, 

but the ones involved in neuronal differentiation need identification. In the few cases in which the 

effectors are known (-synuclein, for example) further effort is necessary to individuate the specific 

nuclear role. The mechanism involved in the signal transduction elicited by nuclear S1P and 

endocannabinoid receptors requires to be uncovered . It will be interesting to ascertain whether the 

nuclear envelope possesses S1P transporters and to discover whether the inside-out signaling of S1P 

between the interior and exterior of the cell is extended to the nucleus. It is necessary to identify the 

different lipid species and to quantify the changes occurring in physiological and pathological 

conditions in distinct subcellular localizations  in order to allow a more complete understanding of 

how nuclear lipid metabolism coordinates global changes in cell function leading to activation, 

proliferation, differentiation or cell death. These studies need to be extended to NLM to reveal their 

role in the communication between the nucleus and the rest of the cell. Lipidomic profiling has 

revealed  changes in the fatty acid composition in different phospholipids in cancer tissue compared 

with normal tissue and during cancer progression [23], and also studies on the lipid profile in  

subcellular compartments such as mitochondria have been performed and nuclear membrane 
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[118,21,24] but no information on nuclear lipidome in neural cells is yet available. The specific 

composition of lipids may help to discriminate low- and high-grade tumours as well as malignant 

cells from benign ones. Moreover, combined with transcriptome/ proteome analyses, lipidomic data 

could also unravel new potential lipid-related nuclear targets for the development of drugs to be 

administered alone or in combination with currently used chemotherapy. Although nuclear lipid 

alterations have scarcely been so far investigated directly in the context of neurodegenerative 

diseases, they might have an important role. It is, however,  our suggestion that this area of research 

would be worthy of future investigations. 
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Legends 

 

Fig.1. Phosphoinositide metabolism in the nucleus. 

Pathways for interconversion of phosphoinositides. Black arrows indicate kinase reactions while 

discontinous arrows indicate phosphatases. Some of the nuclear localization of the enzymes are also 

specified. The bulk of PI is found in membranes where they are substrates for kinases (PIPK), 

phosphatases and phospholipases. PIPKs share significant sequence homology but differ in the 

substrate specificities, subcellular localisations and functions. Type I (PIPKI) are PIPKs that 

phosphorylate PI4P to PI4,5P2 and are called PI4P 5-kinases because they phosphorylate at the D-5 

hydroxyl group. Type II PIPKs (PIPKII) phosphorylate PI5P at the D-4 site and are called PI5P 4-

kinases. PIPKIα and PIPKIγ are found in different subcellular localizations, including the nucleus, 

whereas PIPKIβ localizes at the perinuclear region. PI4,5P2 generated by PIPKIα at sites of 

concentrated pre-mRNA processing factors known as nuclear speckles regulates the activity of the 

nuclear poly(A) polymerase Star-PAP. PIPKIIα and PIPKIIβ are also found at speckles. Class I and 

class II PI3Ks have been reported to be localized in the nucleus while Class III (called PIKFyve in 

humans) is involved in vesicular trafficking and autophagy, and in EGF receptor nuclear 

translocation [119]. Class II PI3Ks, which comprise the PI3K-C2α, -C2 β, and -C2 γ isoforms, 

preferentially phosphorylate PI to yield PI3P, however, they can also yield PI3,4P2.  Class I PI3Ks 
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phosphorylate both PI4P and PI4,5P2 to yield in vivo PI3,4P2 and PI3,4,5P3, respectively. 

PI3,4,5P3 is a crucial activator of phosphoinositide-dependent kinase 1 (PDK1) and thus the 

serine/threonine protein kinase AKT. The activity of  the kinases is antagonized by a variety of 

phosphatases that can translocate to the nucleus (PTEN, SHIP1 and 2). 

Fig. 2. Sphingolipid metabolism overview.  

SMase, SK, CDase, SMSase have been found in the nucleus. 

CDase: Ceramidase. CerS: Ceramide Synthase; CerK, Ceramide kinase; GCS, 

glucosylceramidesynthase; GCase, glucosyl ceramidase;  SK, sphingosine kinase; SMase, 

sphingomyelinase; SMS, sphingomyelin synthase;  S1P, sphingosine-1-phosphate; SPL, S1P lyase; 

SPPase, Sphingosine-1-phosphase phosphatase. 

Fig. 3. Nuclear AKT signaling in neuronal survival. 

Upon NGF stimulation, AKT is recruited to the plasma membrane, where it binds PI3,4,5P3and is 

fully activated following phosphorylation in two residues (●). AKT-mediated phosphorylation of 

ribosomal protein 3 (RPS3) increases nuclear accumulation of RPS3 and blocks its apoptotic effect. 

AKT  is translocated to the nucleus, and phosphorylates zyxin and interacts with the isoform p48 of 

the ErbB3 and with B23, leading to inhibition of chromatin condensation and DNA fragmentation. 

Nuclear AKT also increases survival by phosphorylating and inhibiting the FOXO family members 

of transcription factors (not shown). NGF stimulates the translocation of PLCto the nucleus. 

There, it binds and activates PIKE, which in turn activates nuclear PI3K, that might contribute to 

activate nuclear AKT. The mechanism of activation of the nuclear AKT by NGF is still unclear: it is 

not known whether it is identical to that  of cytoplasmatic AKT [46].  Dp5/Hrk: death protein 

5/hara-kiri. ↑: activation ;┬ inhibition. Dashed arrows indicate translocation. 

Fig. 4. Role of NLM on differentiation in HN9 hippocampal cells. 

Vitamin D3 induces differentiation in HN9 cells. In the inner nuclear membrane, vitamin D3 bound 

to its receptor (VDR) is found in lipid microdomains (NLM) which are rich in cholesterol, PC and 

SM. Decrease of SM in NLM (by treatment with exogenous SMase or by serum deprivation) leads 

to a loss of VDR and impairs differentiation. Serum-deprived cells treated with a higher 

concentration of vitamin D3 (↑VD3) express NGF,  show neurite elongation and exhibit increased 

SM and VDR content in NLM. NLM might act as a platform for vitamin D3 effect on transcription.  
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Figure 2 
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Figure 4 

 

 

  

 


