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Abstract. We investigate by Molecular Dynamics simulations of a molecular liquid the
thermodynamic scaling (TS) of the structural relaxation time τα in terms of the quantity
Tρ−γts where T and ρ are the temperature and the density, respectively. The liquid does not
exhibit strong virial-energy correlations. We propose how to evaluate both the characteristic
exponent γts and the TS master curve by resorting to experimentally accessible quantities
characterising the anharmonic elasticity and no details about the microscopic interactions. In
particular, we express the TS characteristic exponent γts in terms of the lattice Grüneisen
parameter γL and the isochoric anharmonicity δL. An analytic expression of the TS master
curve of τα with δL as the key adjustable parameter is found. The comparison with the
experimental TS master curves and the isochoric fragilities of thirty-four glassformers is
satisfying. In a few cases, where thermodynamic data are available, we tested against the
available thermodynamic data: i) the predicted characteristic exponent γts, ii) the isochoric
anharmonicity δL, as drawn by the best-fit of TS of the structural relaxation. A linear relation
between the isochoric fragility and the isochoric anharmonicity δL is found and favourably
compared to the experiments with no adjustable parameters. A relation between the increase
of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is
derived.
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1. Introduction

Temperature-density scaling [1, 2, 3, 4, 5, 6, 7], also known as ”thermodynamic scaling”
(TS), is an impressive advance in the understanding of the progressive solidification of
a supercooled liquid on approaching the glass transition (GT) [8, 9]. TS states that the
dependence of the relaxation and the transport of liquids and polymeric systems on the
temperature (T ) and the density (ρ) may be considered on an equal footing by the scaling
quantity Tρ−γts , leading to a material-dependent master curve [1, 2, 3, 4, 5, 6, 7]:

log τα, log η = FTS(Tρ−γts) (1)

where τα and η are the structural relaxation time and the viscosity, respectively. In Eq.1
both the form of the master curve FTS and the exponent γts are system-specific. TS has
been usually examined for processes involving very long time scales with a few exceptions
[10, 11, 12, 13]. It applies to van der Waals liquids, polymers, ionic liquids [5, 6, 7, 14, 15, 16],
liquid crystals [17] and plastic crystals [18] but not to all of the hydrogen-bonded liquids since
the equilibrium structure of the liquid and its degree of hydrogen bonding are expected to
change when temperature and pressure are changed [19].

TS is attractive for encompassing the changes of both temperature and density so that
it represents a severe test of theory and models of the structural arrest occurring at the glass
transition (GT). As to the microscopic origin, one hypothesis is that it is strictly related to
the intermolecular potential. Indeed, for a liquid having a pairwise additive intermolecular
potential described by an inverse power law (IPL) v(r) ∝ r−n, all the reduced thermodynamic
and dynamic properties can be expressed in terms of the variable ρn/3/T [20]. Therefore,
the conformity of real materials to TS may result from their intermolecular potential being
approximated by an IPL, at least in some definite range of intermolecular distance [21]. On
a more general ground, Dyre and coworkers proved that liquids with strong correlation of
the fluctuations of the virial pressure (W) and the potential energy (U), the so called strongly
correlating liquids, exhibit TS. In this scheme the quantity 3γts is interpreted as the exponent
of an effective IPL potential [22, 23, 24]. Even if sufficient, strong virial-energy correlations
are not necessary for TS. Indeed, TS is observed in experiments concerning a few hydrogen-
bonded liquids (e.g. glycerol and sorbitol) [5] and molecular-dynamics (MD) simulations
of supercooled metallic liquids [25] and polymers [13]. All these systems are not strongly
correlating liquids since glassformers with competing interactions have poor virial-energy
correlations [26, 27]. In particular, polymers exhibit competition between the distinct bonding
and non-bonding interactions [13, 28, 29].

Derivations of the TS master curve of the structural relaxation have been reported
[13, 30, 31, 32, 33]. An approach considers the structural relaxation as thermally activated
with a density dependent activation energy τα(T, ρ) ∼ exp[EA(ρ)/T ] [30]. Assuming
EA(ρ) ∝ ργts , TS is recovered. However, such a picture is in contrast with the fact τα
is not an exponential function of Tρ−γts [5]. Casalini et al. used the entropy model of
Avramov [34] to derive an expression of the relaxation time in terms of the pressure and
the temperature [31, 32]. It accurately fits the experimental data of several glass-forming
liquids and polymers with three adjustable parameters, having taken γts from the experiment.
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Another expression, with the same number of adjustable parameters, based on an entropic
model recently formulated by Mauro et al. [35] has been investigated [33]. Very recently,
consideration of the TS scaling of the fast mobility, namely the mean square amplitude of the
rattling motion of a particle trapped in the cage of the first neighbours, yields a TS master
curve of the structural relaxation with two adjustable parameters [13].

Viscous liquids close to GT manifest transient elasticity at short times followed by flow
at longer times. As a way to reveal the transitory elastic response in a liquid, a sudden,
homogeneous, strain step γxy is applied and the relaxation of the shear stress σxy(t) is followed
in time [36]. It is observed that the time-dependent elastic modulusG(t) = σxy(t)/γxy reaches
a plateau Gp persisting up to the structural relaxation time τα [37]. The intermediate-time
elastic modulus Gp of polymers has the remarkable property, first suggested by Tobolsky in
1960 [38], that it is largely contributed by non−bonding interactions with minor role by stiffer
bonds, a feature confirmed by MD simulations [39]. Microscopically, transient elasticity and
flow correspond to the temporary trapping of a particle in the cage of the closest neighbours
and the subsequent escape process, respectively. The presence of rattling and escape processes
in liquids and relationships between them were first proposed by Maxwell [40] and Frenkel
[41, 42, 43], see a recent review [44], and later by Tobolsky et al. deriving relations between
viscosity and shear modulus [45].

In a solid-like approach of the vibrational properties of a liquid a central role is played by
the anharmonicity. Due to anharmonicity, the phonon frequencies depend on the volume and
the temperature, as well as the vibration amplitude [44, 46, 47, 48, 49, 50]. Anharmonicity
plays an important role in glass formation. Indeed, there is a known correlation between the
anharmonicity and fragility [51, 52, 53, 54, 55] and it is also shown that the anharmonicity
contributes to the fast relaxation [53]. The role of vibrational anharmonicity as key ingredient
of the relaxation has been noted [54, 56, 57, 58]. In the framework of TS, anharmonicity was
also taken into consideration. Some works tried to derive an expression for the TS master
curve and explain the meaning of the material dependent exponent basing on the entropy
model, the difference between isobaric and isochoric heat capacity and the thermodynamic
definition of the Grüneisen parameter γT [31], although the identification of the scaling
exponent γts with the Grüneisen constant is not trivial [59]. For simple liquids it was
concluded that γts . 2γT [60].

The presence of elastic modes in supercooled liquids has been considered since long
time ago. According to Frenkel [41, 42, 43], the only difference between a liquid and a solid
glass is that the liquid does not support all transverse modes as the solid, but only those with
frequency ω > 1/τα. In the spirit of the Debye theory the number Nt of transverse modes
with ω > 1/τα in a system with N particles is Nt = 2N [1 − (ωDτα)−3] , where ωD ∼ 1013

rad/s is the Debye frequency [44]. Since in a viscous liquid the relaxation time τα fairly
exceeds the picosecond timescale, the inequality ωDτα � 1 follows and Nt ' 2N , i.e. the
number of transverse modes is essentially the same that exist in a solid glass. Consistent with
Frenkel’s viewpoint, extended, fast modes have been indicated in several studies concerning
liquids [61, 62, 63, 64, 65, 66, 67, 68]. Even in the presence of local order [69, 70], the major
role of the extended elastic modes in setting the mean square amplitude of the rattling motion
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of a trapped particle in the cage of the neighbours has been revealed [71, 72].
The prominent role of elasticity in the relaxation process is investigated by the so-called

elastic models, see refs. [73, 74] for excellent reviews and refs. [75, 76, 77, 55, 78, 79,
80, 44, 81, 82, 83, 84, 85, 86, 37, 87, 39, 88] for recent related papers. In particular, both
MD simulations [37, 87] and extended comparison with experiments [87] suggest strong
correlation between the structural relaxation and transient elasticity. The related master curve
has the form [37, 87]:

log τα = Υ̃0 + Υ̃1X + Υ̃2X
2 (2)

where

X =
GpTg
GpgT

(3)

Gpg is the modulus at the glass transition, Υ̃1 = 3.4(2), Υ̃2 = 10.3(8) are suitable universal
constants independent of the kinetic fragility, and Υ̃0 = 2 − Υ̃1 − Υ̃2 to comply with the
usual definition τα = 100 s at the glass transition. Eq.2 has been validated in the whole
supercooled region by MD simulations on polymers [37] and ionic liquids [87], as well as
comparison with the experimental data concerning several glassformers in a wide fragility
range (20 ≤ m ≤ 115) including van der Waals and hydrogen-bonded liquids, metallic
glasses and the strong glassformer silica (the latter over about fifteen decades of viscosity
with no adjustable parameters) [87]. Eq.2 follows from an elastic cavity model [87], relating
the linear elasticity with the fast mobility, and consideration of the universal master curve
between the latter and the structural relaxation [89, 90, 91, 92, 93, 94, 95, 12, 96, 97, 71, 67].

Building on the elastic scaling of the structural relaxation, Eq. 2, we interpret TS as
related to the temperature/density dependence of the shear elasticity due to anharmonicity.
The study examines the matter by Molecular-Dynamics (MD) simulations of a model
molecular liquid and compares the MD findings with the available experimental data. The
model under study exhibits limited changes of the local structures in virtue of the high packing
of the investigated states [69, 71, 98]. Notably, our model liquid does not manifest strong
virial-energy correlations [24], as previously noted [28, 13] and recently reported for a very
similar model [29].

The paper is organized as follows: Sec.2 illustrates basic results about anharmonic
elasticity, Sec.3 gives details about the MD simulations, Sec.4 discusses the results of the
MD simulations and the comparison with the experimental data. Finally, Sec.5 summarizes
the conclusions.
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2. Anharmonic elasticity

2.1. General aspects

The vibrational frequencies in harmonic solids do not depend on either the density or
the temperature since the normal frequencies have no dependence on volume or strain
[46]. In addition, purely harmonic solids do not exhibit thermal expansion and temperature
dependence of the elasticity [47]. Real solids are never purely harmonic since the general
conditions to ensure the absence of terms beyond the second order in the displacements from
the lattice potential energy are rather stringent [48].

To deal with anharmonic response, we consider vibrational modes with frequency νi.
Under infinitesimal changes of temperature and density one has:

d ln νi = γi d ln ρ− δi d lnT (4)

where γi is the isothermal Grüneisen parameter [99, 49]:

γi = −∂ ln νi
∂ lnV

∣∣∣
T

(5)

and δi is defined as:

δi = −∂ ln νi
∂ lnT

∣∣∣
V

(6)

The parameter δi accounts for the isochoric changes of frequency and is recast as:

δi = −Tai (7)

where the (intrinsic) isochoric mode anharmonicity ai is defined as [100]:

ai =
∂ ln νi
∂T

∣∣∣
V

(8)

It can be shown that [100, 101]:

ai = α(γi − γiP ) (9)

where α is the thermal expansion coefficient

α = −∂ ln ρ

∂T

∣∣∣
P

(10)

and the isobaric Grüneisen parameter of the i-th mode is defined as:

γiP = −∂ ln νi
∂ lnV

∣∣∣
P

(11)

Because the measured isobaric parameters are in general higher than the isothermal ones, the
ai parameters are usually negative so that δi > 0, namely in an isochoric experiment the mode
frequency often decreases with increasing temperature.

Eq.4 incorporates two distinct kind of anharmonicity, the extrinsic anharmonicity,
i.e., volume-dependent properties such as the Grüneisen parameter and the related thermal
expansion, as well as the intrinsic anharmonicity yielding temperature-dependence at constant
volume (corresponding to explicit temperature dependence of the vibrational frequencies)
[102]. Extrinsic anharmonicity is usually managed by quasi-harmonic approximation (QHA)
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Figure 1. Isochoric-anharmonicity parameter of glassy PMMA and PS [103].

[102]. In the QHA approximation, it is assumed that the solid behaves like a harmonic solid at
given volume, i.e. phonons are well-defined, but the phonon frequencies depend on volume.
The frequencies do not depend explicitly on temperature, so that heating at constant volume
does not change them. QHA yields δi = 0, i.e. γi = γiP according to Eq.7 and Eq. 9
[100]. Like in the harmonic approximation, the energy needed to remove an atom from
the crystal is infinite in QHA - therefore, diffusion and melting cannot be explained within
this approximation [50]. QHA breaks down at high temperatures where phonon-phonon
interactions and explicit temperature dependence of the vibrational frequencies become
prominent.

2.2. Lattice Grüneisen parameter γL

Our major interest will be limited to long-wavelength acoustic modes. We will not make
distinction between transverse and longitudinal modes, i.e. all the acoustic frequencies are
taken with the same volume dependence and then equal Grüneisen parameter. In the Debye
model [99] this assumption results in a volume-independent Poisson ratio [46]. The Grüneisen
parameter restricted to the acoustic modes is usually referred to as lattice Grüneisen parameter
[104]. To make it explicit, henceforth, we set the subscript i = L from Eqs. 4 through
Eq. 11. The lattice Grüneisen parameter γL is dominated by the intermolecular forces
[105, 106, 107]. In contrast, the usual thermodynamic Grüneisen parameter γT is contributed
by both intra- and inter-molecular interactions [99]. For metals and ionic crystals γT ' γL
[104]. However, for molecular systems a large difference between these two Grüneisen
parameters can exist. This is due to the very different values of the intra- and inter-molecular
Grüneisen parameters and their relative weight at different temperatures. Normally, intrachain
covalent bonds vibrations (high frequency, short wave length) have very low values of the
Grüneisen parameter, while interchain anharmonic vibrations involving van der Waals bonds
(low frequency, long wave length) have very high values of the Grüneisen parameter. γL
is affected by the local order [106] and is a weak function of temperature [107, 104, 108]
with no (see poly(chlorotrifluoroethylene) in Ref. [104]) or small [109] step across the glass
transition, with the notable exception of poly(vinyl acetate) [108]. In contrast, γT is strongly
temperature dependent. At low temperature, where only acoustic inter-molecular modes are
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excited, γT ∼ γL, whereas γT � γL at high temperature where optical, quasi-harmonic
vibrations dominate [110]. The ratio γL/γT is related to the ratio of the total heat capacity at
constant volume CV and the intermolecular contribution Cinter [105, 106, 104]:

γL
γT

=
CV
Cinter

(12)

At high temperature γT ∼ 1 and Cinter/CV is of the order of 10 − 20 %, so that γL/γT ∼ 5

to 10, e.g. γL = 4.0 for poly(methylmethacrylate) and γL = 9.0 for isotactic poly(propylene)
[104].

2.3. Isochoric anharmonicity δL

The isochoric anharmonicity parameter δL, defined by Eq.6 with i = L, if treated
perturbatively, is mainly affected by cubic and quartic anharmonicity associated to three-
phonon and four-phonon processes, respectively [111]. δL changes mildly across the glassy
regime of several polymeric glassformers [103], see Fig.1 for two selected examples. Fig.1
suggests that under isochoric conditions ν ∼ T−δL with nearly constant δL. We may figure out
that the vibrational mode with frequency ν follows by a suitable effective confining potential
ueff (q) where q is a generalized coordinate. Assuming ueff (q) ∝ qβ with β > 0 yields
ν ∝ E1/2−1/β where E is the associated total energy [112]. With E ∼ 〈E〉 ∼ T one obtains:

δL =
1

β
− 1

2
(13)

For harmonic potential (β = 2), δL = 0 as expected, whereas δL > 0 implies β < 2. In
particular, with δL ∼ 0.36, see Fig.1, one has β ∼ 1.16 suggesting moderate anharmonicity
in the glassy phase of polymers.

For molecular liquids the parameter δL has been derived as [101]:

δL = 1− αT − 1

n
(14)

Eq.14 predicts δL < 1 and relies on the modified Van der Waals equation of state due to Flory
which deals with both polymers [113] and liquids [114]. The positive parameter n is the ratio
between the inner pressure Pi and the cohesive energy density c.e.d. [115, 116]

In a solid-state approach the isochoric anharmonicity parameter δL may be related to the
constant volume heat capacity. To show that, we start from the expression [117]:

C vib
V = 3NkB

[
1− 2T

ν̄

dν̄

dT
+
T 2

ν̄2

(
dν̄

dT

)2

− T 2

ν̄

d2ν̄

dT 2

]
(15)

where kB and ν̄ are the Boltzmann constant and the geometrically averaged phonon frequency,
respectively and the derivatives are taken at constant volume. Eq.15 is derived by the free
energy of a harmonic solid in the high-temperature approximation and takes into account the
isochoric frequency change with the temperature due to the intrinsic anharmonicity. When
extended to viscous liquids, Eq.15 represents the total heat capacity, i.e. CV ' C vib

V ,
if the configurational contribution C conf

V is negligible [117, 44]. Reminding the relation
CV = T ∂S/∂T |V , support to the inequality C conf

V � C vib
V is offered by liquid silica where
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the configurational entropy is much smaller than the vibrational entropy [118]. By plugging
Eq. 6 with i = L in Eq.15 and neglecting the temperature dependence of δL we get:

C vib
V = 3NkB(1 + δL) (16)

The breakdown of the Dulong-Petit law which is seen in Eq.16 is a known effect of the
anharmonicity [44]. An alternative treatment of the isochoric anharmonicity derives the
relation d ln ν̄/dT |V = −α/2(q − 1), where q is the logarithmic derivative of the average
Grüneisen parameter with respect to volume, and recasts Eq. 15 as [119]:

C vib
V = 3NkB[1 + α(q − 1)T ] (17)

In the present context T ' Tg. Referring to Eq. 7 and Eq. 9, we see that Eq. 16 and Eq. 17
yield similar results provided that γLP ' γL+q−1. Usually q ∼ 2 [119]. Further comparison
between Eq.16 and Eq.17 is deferred to Sec.4.4.3.

2.4. Anharmonic modulus

We now restrict Eq. 4 to acoustic shear waves and assume γL and δL as constant quantities.
Integration of Eq.4 and consideration of the dispersion law ω = (Gp/ρ)1/2 k yields the
temperature-density scaling of the shear modulus Gp:

Gp = A
ρ 2γL+1/3

T 2δL
(18)

where A is a constant. Under isothermal conditions Eq.18 is an alternative form of the so-
called Birch’s law relating the velocity of elastic waves to density [120]. Under isobaric
conditions Eq.10 and Eq.18 yield

Gp(T ) ∼ exp

[
−C

(
T

Tg

)]
(19)

where, in the QHA spirit, the weak power-law dependence due to the isochoric anharmonicity
has been neglected. The parameter C is given by

C = (2γL + 1/3)αTg (20)

All the quantities in the right hand side of Eq.20 are attainable by experiments. For polymers
αTg ' 0.164 [121] and γL is in the range 4 − 10 [104, 107] so that 1.4 . C . 3.3. The
exponential decay of the elastic modulus with temperature, Eq.19, has been considered in
supercooled metallic melts [122, 86]. In particular, Krausser et al find C = (2 + λ)αTg
[86] where λ, the steepness of the short-ranged repulsion, is a fitting parameter, whereas
Harmon et al considered C as fitting parameter [122]. In supercooled metallic melts C is
found in the range 0.6 − 3.3 [86] as well as C = 1.29 [122]. The fact that the parameter
C controlling the temperature influence on the elastic modulus under isobaric conditions is
quite similar in polymers and supercooled metallic melts suggests similarities between their
extrinsic anharmonicities. Finally, we note that the lattice Grüneisen parameter γL is also
affected by the steepness of the short-ranged repulsion [106], so that Eq.20 is consistent with
the findings of Krausser et al [86] .
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3. Methods

A coarse-grained polymer model of a melt of 667 linear, unentangled chains with three
monomers per chain is considered. The chains are fully-flexible, i.e. bond-bending and bond-
torsions potentials are not present. Non-bonded monomers at distance r belonging to the same
or different chains interact via the truncated Lennard-Jones (LJ) potential:

ULJ(r) =

{
ε
[(

σ∗

r

)12 − 2
(
σ∗

r

)6
]

+ Ucut if r ≤ rcut

0 otherwise
(21)

where σ∗ = 6
√

2σ is the position of the potential minimum with depth ε, and the value of the
constant Ucut is chosen to ensure ULJ(r) = 0 at r = rcut = 2.5σ. The bonded monomers
interact by a stiff potential Ub which is the sum of the LJ potential and the FENE (finitely
extended nonlinear elastic) potential [123]:

UFENE(r) = −1

2
kR2

0 ln

(
1− r2

R2
0

)
(22)

k measures the magnitude of the interaction and R0 is the maximum elongation distance. The
parameters k andR0 have been set to 30 ε/σ2 and 1.5σ respectively [124]. The resulting bond
length is rb = 0.97σ within a few percent. All quantities are in reduced units [125]: length
in units of σ, temperature in units of ε/kB and time τMD in units of σ

√
m/ε where m is the

monomer mass. We set m = kB = 1 Periodic boundary conditions are used. NV T ensemble
(constant number of particles, volume and temperature) has been used for equilibration runs,
while NV E ensemble (constant number of particles, volume and energy) has been used for
production runs for a given state point. The simulations were carried out using LAMMPS
molecular dynamics software (http://lammps.sandia.gov) [126]. Several states with different
number density ρ and temperature T are studied. Different time steps are chosen in order to
ensure an energy drift of about 1 % in NVE runs. In particular, the following [ρ; T1, T2, ...]
pairs are simulated with time step 3 · 10−3: [0.98; 0.5], [0.984; 0.3, 0.31, 0.32, 0.33, 0.34,
0.36, 0.4, 0.5, 0.6], [0.995; 0.6], [1; 0.4, 0.7], [1.015; 0.6], [1.020; 0.5, 0.7], [1.033; 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9], [1.035; 0.6], [1.039; 0.5], [1.04; 0.7], [1.05; 0.5], [1.052;
0.5], [1.055; 0.6], [1.056; 0.7], [1.071; 0.7], [1.075; 0.6], [1.086; 0.6, 0.63, 0.7, 0.75, 0.8,
0.9, 1], [1.09; 0.7, 0.75, 0.8], [1.095; 0.6], [1.1; 0.95]. The following [ρ; T1, T2, ...] pairs are
simulated with time step 1 · 10−3: [1; 1, 1.2, 1.4, 1.6], [1.05; 1.3, 2], [1.025; 1.44, 2.02, 2.6].

For each state we averaged over at least sixteen different runs. The equilibration
procedure involves runs with time lengths ∆teq exceeding at least three times the average
reorientation time of the end-end vector [127].

4. Results and discussion

4.1. General Aspects

4.1.1. Mobility, relaxation and elastic scaling We define the monomer displacement in a
time t as:

∆ri(t) = ri(t)− ri(0) (23)
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Figure 2. Mobility, relaxation and elastic response according to the MD simulations of
the liquid of linear trimers at T = 0.6 and different densities. Monomer MSD, Eq.24 (top),
corresponding ISF, Eq.25 (middle), elastic response (bottom). The triangles, dots and squares
mark the positions of the inflection point in the MSD ( t∗ ), the relaxation time ( τα ) and
the height of the plateau of the elastic response ( Gp ), respectively. All the quantities are in
reduced MD units.

where ri(t) is the vector position of the i-th monomer at time t. The mean square displacement
(MSD) 〈r2(t)〉 is expressed as:

〈r2(t)〉 =

〈
1

N

N∑
i=1

‖∆ri(t)‖2

〉
(24)

where brackets denote the ensemble average and N is the total number of monomers. In
addition to MSD the incoherent, self part of the intermediate scattering function (ISF) is also
considered:

Fs(q, t) =

〈
1

N

N∑
j=1

eiq·∆rj(t)

〉
(25)

ISF was evaluated at q = qmax, the maximum of the static structure factor ( 7.06 ≤ qmax ≤
7.35 ). Fig.2 shows illustrative examples of the monomer MSD (top) and ISF (middle). At
very short times (ballistic regime) MSD increases and ISF starts to decay. At later times,
when the temperature is lowered and/or the density is increased, a quasi-plateau region occurs
in both MSD and ISF, and an inflection point is seen at t∗ ' 1.023 in the log-log MSD plot,
see Fig.2 (top). t∗ is state-independent in the present model [89]. The inflection point signals
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Figure 3. Elastic master curves of the relaxation time τα according to the MD simulations.
The dashed line is Eq.30 with Υ0 = −0.191(8), Υ1 = 0.048(3), Υ2 = 0.0020(1) [37, 87].
No adjustable parameters are allowed. All the quantities are in reduced MD units.

the end of the exploration of the cage by the trapped particle and the subsequent early escapes.
We define the fast mobility of the monomers of the linear chains as the MSD at t∗ [89]:

〈u2〉 = 〈r2(t = t∗)〉 (26)

The fast mobility is the mean square amplitude of the position fluctuations of the tagged
particle in the cage of the neighbours. The inflection point in the log-log MSD plot disappears
if 〈u2〉 > 〈u2

m〉 = 0.125 signalling the absence of significant cage effect by the neighbours of
the tagged particle. The structural relaxation time τα, the average escape time from the cage,
is defined by the relation Fs(qmax, τα) = e−1.

The off-diagonal xy component of the stress tensor is defined by [37]:

σxy =
1

V

[
N∑
i=1

(
mvx,ivy,i +

1

2

∑
j 6=i

rx,ijFy,ij

)]
(27)

where V = N/ρ is the volume of the system, vα,i is the α component of the velocity of the
i-th monomer, rα,ij is the α component of the vector joining the i-th monomer with the j-th
one and Fα,ij is the α component of the force between the i-th monomer and the j-th one. The
shear stress correlation function is defined by [128]:

Gxy(t) =
V

kBT
〈σxy(t0)σxy(t0 + t)〉 (28)

where the brackets 〈. . .〉 denote the canonical average. The average value of Gxy(t), Gyz(t)

and Gzx(t) will be denoted as G(t). Fig.2 (bottom) plots the modulus G(t). At short times
(t . 0.5) G(t) is characterized by oscillations due to the bond length fluctuations [39]. For
longer times (t & 0.5) the oscillations ofG(t) vanish, force equilibration takes place [37], and
the modulus G(t) approaches a plateau-like region. The persistence of the elastic response is
due to the cage effect, namely the trapping period of each monomer in the cage of the first
neighbours which is terminated by the structural relaxation time τα [129]. Beyond τα G(t)

relaxes according to the polymer viscoelasticity. We are not interested here in this long-time
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decay which has been addressed by other studies [130]. We define the finite frequency shear
modulus Gp as [37, 87, 39]:

Gp ≡ G(t∗) (29)

Fig.3 shows the elastic scaling of the structural relaxation (top) and the cage rattling amplitude
(bottom) in agreement with other studies [37, 87]. For MD simulations it is convenient to
recast Eq.2 as [37, 87]:

log τα = Υ0 + Υ1

(
Gp

T

)
+ Υ2

(
Gp

T

)2

(30)

4.1.2. Virial-energy correlations In the case of pair potentials, the virial W , i.e., the
configurational contribution to pressure, is given by [131]:

W = −1

3

∑
i>j

w(|ri − rj|) (31)

where w(r) = rv′(r), v′ being the derivative of the pair potential v(r). For an IPL potential,
v(r) ∝ r−n, one has w(r) = −n v(r) and the virial is proportional to the potential energy
U =

∑
i>j v(|ri − rj|):

W =
n

3
U (32)

Eq.32 states that in IPL systems, irrespective of the physical state, the scatter plot of the
instantaneous potential energy and virial shows perfect correlation with slope n/3. As
pointed out in the Introduction, liquids with strong virial-energy correlations exhibits TS with
γts = n/3 [22, 23, 24]. Figure 4 plots the instantaneous virial and potential energy fluctuations
of the liquid of trimers according to our MD simulations. The degree of correlation is
quantified by the correlation coefficient R:

R =
〈∆W∆U〉√

〈(∆W )2〉
√
〈(∆U)2〉

(33)
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where ∆ denotes the deviation from the average value of the given quantity and 〈...〉
denotes the thermal averages. We find low correlation, R ∼ 0.45 − 0.52, depending on the
state. In contrast, in the case of RB chains the correlation is high, R > 0.8 (not shown),
as in previous studies on linear chains with rigid bonds [28, 132]. The drop of the virial-
energy correlations by replacing rigid bonds with semirigid ones in linear chains has been
noted [28, 29, 13].

4.2. Temperature-density scaling of the elastic response

Fig.5 shows that, in the range of interest, the elastic modulus exhibits power-law dependence
on both the temperature (top panel) and the density (middle panel). The combined master
curve is of the form predicted by Eq.18 (bottom panel) with γL = 6.19 and δL = 0.595. The
best-fit value γL = 6.19 is within the range of the reported experimental values and close to,
e.g., γ = 6.1 in poly(chlorotrifluoroethylene) and γ = 6.4 in poly(vinylidene fluoride) and
polyethylene (low density) [104].
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4.3. Temperature-density scaling of the structural relaxation

The temperature-density dependence of the elastic modulus, Eq.18, and the elastic scaling in
Gp/T of the structural relaxation, Eq.30, suggest that the TS characteristic exponent is given
by:

γts =
2γL + 1/3

2δL + 1
(34)

For the liquid of trimers under study Eq.34 yields γts = 5.80 with γL = 6.19 and δL = 0.595,
according to Fig.5. Fig.6 presents the TS scaling of the structural relaxation of all the
investigated states by the MD simulations and tests Eq.34. It shows that γts = 5.80 collapses
all the data concerning the structural relaxation time in a well-defined master curve.

4.4. Comparison with the experiments

This Section compares the findings of the MD simulations with a wide set of experimental
data concerning TS of the structural relaxation. The task is rather ambitious in that the
experimental TS extends up to relaxation times as long as ∼ 102 s, whereas MD simulations
are limited to fractions of microseconds. The comparison with the experiments is twofold.
First, we test Eq.34 on a few glassformers. The limited set of systems scrutinized is due to
the scarcity of experimental data, especially concerning δL. Second, we extensively compare
the prediction concerning the TS master curve of the structural relaxation with thirty-four
different glassformers.

4.4.1. Test of Eq.34 Table 1 provides the predicted scaling exponent γPWts according to
Eq.34 for some glassformers, i.e. the polymers poly(methyl methacrylate) (PMMA) and
polystyrene (PS), and the molecular liquid o-tephenyl (OTP). Consideration of further systems
was hampered by the absence of available data concerning γL and/or δL. Particular care was
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Table 1. Comparison between the experimental value of the TS exponent
γexpts and the predictions of both the present work (γPWts ), Eq.34, and
the one of Ref.[7] ( γCRts ) for the polymers poly(methyl methacrylate)
(PMMA) and polystyrene (PS) and the molecular liquid o-tephenyl (OTP).
The physical quantities used to calculate γPWts are listed. MD data are
also listed for comparison. δLg is the anharmonicity parameter, Eq.6 with
i = L, evaluated at Tg . For PMMA and PS δL = αl/αg δLg . For OTP δL
was evaluated at Tg via Eq.14. See text for further details.

Tg(K) δLg
a αl

αg
δL γL γPWts γCRts

b γexpts
b

MD 1.75c 0.595 6.19 5.8

PMMA 378 0.34 1.96d 0.67 4.0e 3.6 2.8± 0.34 1.8f

PS 373 0.334 2.75d 0.92 4.4e 3.2 2.1± 0.3 2.5

OTP 243 0.32 3.3g 4.2 4.05± 0.3 4

a Ref.[103]
b Ref.[7]
c Ref.[133]
d Ref.[121]
e Ref.[104]
f γPMMA
ts = 1.94 according to more accurate data [134]

g from Brillouin light scattering at 0.95Tg [135]

devoted to derive the parameter δL. For polymers, we extrapolated at Tg the experimental data
in the glassy state, see Fig.1, and multiplied the resulting value for the ratio of the expansion
coefficients in the liquid and the glassy state αl/αg. The procedure relies on the assumption
that the major contribution to the changes of δL from the glassy to the liquid regime are due to
the increased thermal expansion, see Eq.7 and Eq. 9 since, as noted in Sec.2, the lattice
Grüneisen parameter of polymers are weakly affected by the glass transition [107, 104].
For OTP, to the best of our knowledge, no data are available to derive δL according to the
procedure adopted for polymers. As an alternative, we resorted to Eq.14 with αTg = 0.182

[136] and n = 2, as expected for Van der Waals liquids and found for benzene [137].
Table 1 compares γPWts , Eq.34, with the experimental value of the TS exponent γexpts and

the prediction according to Ref.[7] ( γCRts ). The results are encouraging but less accurate than
the ones by the thermodynamic method of Ref.[7]. We notice that the MD results and the
experimental values for PMMA and PS concerning the anharmonicity, i.e. the ratio αl/αg, δL
and γL, are rather close, suggesting that the MD model, even if rather crude, captures the key
aspects. We find that γPWts , Eq.34, overestimates γexpts . To date, we are unable to understand
if this is due to limitations of Eq.34 or poor quality of the available experimental data. Going
into more details, we see that the deviations of our prediction, γPWts , from γexpts are limited
for PS and within 5% for OTP. Instead, the TS exponent of PMMA γPWts is close to γCRts ,
but they both differ from the experimental value. All in all, since we cannot rule out that the
anharmonicity parameters which are needed to evaluate γts from Eq.34 are affected by not
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negligible uncertainty, we conclude that additional work is needed to better validate Eq.34.

4.4.2. Elastic TS master curve We now derive the TS master curve of the structural
relaxation. To this aim, we consider Eq.2 and Eq.3. Setting τα(Tg) = 100 s, one finds
Υ̃0 = 2− Υ̃1 − Υ̃2 = −11.70(1) [87]. Now, let us define

Y = Tρ−γts (35)

Resorting to Eq.18 and Eq.34 recasts Eq.3 in terms of Y as:

X =

(
Yg
Y

)2δL+1

(36)

where Yg is the value of Y at the glass transition. Plugging Eq.36 into Eq.2 one has

log τα = Υ̃′0 + Υ̃1

(
Yg
Y

)2δL+1

+ Υ̃2

(
Yg
Y

)2(2δL+1)

(37)

In Eq.37 rigorously Υ̃′0 = Υ̃0. However, we consider Υ̃′0 mildly adjustable in the range
Υ̃0 − 0.5 ≤ Υ̃′0 ≤ Υ̃0 + 0.5 to account for small errors in the determination of the glass
transition. Taking Yg from the experiment, the total number of adjustable parameters of
Eq.37 is two (Υ̃′0 and the isochoric anharmonicity parameter δL).

Notably, the shape of the master curve given by Eq.37 does not depend explicitly on the
lattice Grüneisen parameter γL. Remind that, instead, the latter controls the change of the
elastic modulus with the temperature under isobaric conditions, see Eq.19 and Eq.20.

The master curve Eq.37 allows to derive a compact expression of the isochoric fragility:

mv =
∂ log τα
∂ (Yg/Y )

∣∣∣∣
Yg

(38)

Plugging Eq.37 into Eq.38 leads to:

mv = (Υ̃1 + 2Υ̃2)(2δL + 1) (39)

Eq.39 establishes a linear relation between the isochoric fragility and the anharmonicity
parameter δL where Υ̃1 and Υ̃2, the characteristic parameters of Eq.2, are regarded as
universal quantities [87]. It is consistent with the known increase of the fragility with the
anharmonicity [51, 52, 53, 54, 55]. This aspect becomes even clearer by considering the usual
isobaric kinetic fragility:

m =
∂ log τα
∂(Tg/T )

∣∣∣∣
Tg

. (40)

A compact expression of the fragility m is obtained by first deriving the temperature
dependence the elastic modulus Gp(T ) from Eq.18 with ρ(T ) = ρg exp[−α(T − Tg)],
plugging the expression into Eq.3, and the result into Eq.2. From the definition Eq.40 one
has:

m = (Υ̃1 + 2Υ̃2)

[
1 + 2δL +

(
2γL +

1

3

)
αTg

]
(41)
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System γts δL Υ̃′0 mfit
v mexp

v Ref.
1 PCB62 8.5 0.103 −11.35 29± 4 24± 1 [138]
2 BMPC 7.0 0.095 −11.58 29± 4 25± 1 [139, 140]
3 BMMPC 8.5 0.052 −11.65 26± 5 26± 1 [139]
4 PCB54 6.7 0.204 −11.78 34± 5 31± 3 [138]
5 PCB42 5.5 0.381 −11.40 42± 5 35± 5 [138]
6 vitamin E 3.9 0.127 −12.20 30± 5 36± 6 [141]
7 KDE 4.5 0.319 −11.21 39± 6 39± 3 [142]
8 salol 5.2 0.520 −11.20 49± 5 40± 5 [143]
9 PCHMA 2.9 0.120 −12.20 30± 5 42± 8 [144]
10 PMMA-3 3.7 0.308 −11.93 39± 5 43± 2 [145]
11 PDE 4.4 0.409 −11.67 44± 5 45± 4 [139, 146, 142]
12 DC704 6.15 0.542 −11.50 50± 5 47± 5 [147]
13 PMMA-4 3.2 0.308 −12.20 39± 5 49± 3 [145]
14 POB 2.65 0.368 −12.20 42± 7 50± 6 [148]
15 1,4 PI 3.5 0.406 −12.19 43± 6 51± 7 [149, 150, 5]
16 PVAc 2.6 0.486 −11.20 47± 8 52± 5 [151]
17 PMPS 5.63 0.623 −11.77 54± 5 54± 3 [152]
18 OTP 4.0 0.585 −11.75 52± 5 54± 2 [153, 154, 155, 156, 157, 158]
19 verapamil HCl 2.47 0.564 −11.87 51± 4 57± 3 [159, 160]
20 DGEBA 2.8 0.909 −11.85 60± 6 57± 7 [161]
21 DPVC 3.2 0.904 −11.20 67± 5 62± 3 [162]
22 PMTS 5.0 0.500 −12.10 48± 5 63± 2 [163]
23 PCGE 3.3 0.808 −11.20 63± 6 63± 3 [164]
24 1,4 PB 1.8 0.480 −12.02 47± 12 64± 6 [4]
25 PPGE 3.45 0.734 −11.84 59± 5 65± 4 [165, 166]
26 PC 3.8 0.792 −11.20 62± 7 66± 4 [167]
27 PVME 2.5 0.472 −12.23 47± 6 66± 7 [168]
28 PMMA-20 1.94 0.561 −12.14 51± 6 67± 13 [134]
29 DGEBA-epon 3.5 0.909 −11.85 68± 8 70± 8 [169]
30 PPG4000 2.5 0.745 −12.20 60± 7 76± 15 [170]
31 PMMA-10 1.8 0.766 −12.20 61± 12 85± 20 [145]
32 1,2 PB 1.89 0.592 −12.20 52± 8 86± 15 [142]
33 PS 2.27 1.37 −11.77 90± 12 104± 8 [171]
34 sorbitol 0.18 1.35 −12.18 89± 9 112± 10 [172, 2, 173]

Table 2. Best-fit values of the parameters of the TS master curve Eq.37 (δL and Υ̃′0, adjusted
in the range Υ̃0 − 0.5 ≤ Υ̃′0 ≤ Υ̃0 + 0.5 with Υ̃0 = −11.70(1) [87]) for the glassformers in
Fig.7, Fig.8, Fig.9. The experimental characteristic exponent γts, the experimental isochoric
fragility mexp

v , Eq.38, and the best-fit value mfit
v , evaluated via Eq.39, are also listed. The

glassformers are listed in increasing order of the isochoric fragility mexp
v .
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Figure 7. TS master curve log τα vs Tρ−γts of selected glassformers (squares) with
lower isochoric fragility. The best-fit with Eq.37 is superimposed (continuous line).
Best-fit values in Table 2.

Eq.41 relates the kinetic fragility to parameters all related to the anharmonicity and predicts
m ≥ mmin = Υ̃1 + 2Υ̃2 = 24 ± 1.6, assuming δL = α = 0 for harmonic liquids. By the
way, by replacing Eq.34 into Eq.41, the isobaric fragility reduces to the expression derived by
Casalini and Roland [142]:

m = mv[1 + γtsαTg] (42)

Fig.7, Fig.8, and Fig.9 show the comparison of the theoretical TS master curve of the
structural relaxation, Eq.37, with TS of thirty-four different glassformers, including van der
Waals liquids and polymers in a wide range of isochoric fragilities (24 ≤ mv ≤ 112). The
best-fit parameters (δL and Υ̃′0, adjusted in the range Υ̃0 − 0.5 ≤ Υ̃′0 ≤ Υ̃0 + 0.5) are listed
in Table 2. The quality of the fit provided by Eq.37 - having two adjustable parameters - is
generally good with nice agreement around the glass transition. This is interpreted by noting
that Eq.37 stems from Eq.2 which covers the GT region too [87]. Some disagreement between
the experimental and the theoretical TS master curves occurs for short relaxation times. The
accuracy of Eq.37 is found to be comparable to the one of ref.[13] with the same number of
adjustable parameters. Fig.10 plots the distribution of the best-fit values of the anharmonicity
parameters δL. The distribution peaks around 0.5 and, apart from two exceptions, does not
exceed the unit value. Interestingly, a number of glassformers approaches the harmonic value
δL = 0.

Fig.11 correlates the experimental isochoric fragilities mexp
v and the isochoric

anharmonicity parameter δL, as drawn by the best-fit of Eq.37 to the experimental TS master
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Figure 8. TS master curve log τα vs Tρ−γts of selected glassformers (squares) with
intermediate isochoric fragility. Other details as in Fig.7.
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Figure 11. Correlation plot between the experimental isochoric fragilities of the thirty-four
different glassformers examined, and the corresponding isochoric anharmonicity parameter
δL, as drawn by the best-fit of Eq.37 to the experimental TS master curves (Pearson correlation
coefficient R = 0.89). See Table 2 for numerical values. The dashed line is Eq.39 with no
adjustable parameters and Υ̃1 = 3.4(2), Υ̃2 = 10.3(8) [87].

curves, see Table 2. The correlation is good (Pearson correlation coefficient R = 0.89) and
in good agreement with Eq.39 which has no adjustable parameters. We see that the isochoric
fragility increases with the anharmonicity, as accounted for by the isochoric anharmonicity
parameter δL. The finding that the anharmonicity enhances the fragility parallels many other
similar conclusions [51, 52, 53, 54, 55].

To proceed, we compare in Table 3 the anharmonicity parameters δL, as drawn by
thermodynamics, see Table 1, and from TS, see Table 2. The comparison is limited to PMMA,
PS and OTP. We always find δtdL < δtsL with better agreement for PMMA.

4.4.3. Vibrational isochoric heat capacity Anharmonicty affects the heat capacity, see
Sec.2.3. Here, we compare the vibrational isochoric heat capacity as predicted by the present
work, Eq. 16, and the alternative approach of Ref. [119] leading to Eq.17 where T = Tg is
set. Eq. 16 and Eq.17 predict that the relative change of C vib

V due to the anharmonicity is
δL and αTg(q − 1), respectively. Since q ∼ 2 [119], we compare δL and αTg in Table 3 for
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Table 3. Anharmonicity parameter from thermodynamics, δtdL , see Table 1, and from TS of
the structural relaxation, δtsL , see Table 2. The quantity αTg at ambient pressure is also listed
with data from the references listed in Table 2, apart from PMMA [121] and PVAc, OTP and
PS [117].

δtdL δtsL αTg
PCB62 0.103 0.19
vitamin E 0.127 0.13
PCB54 0.204 0.15
PCB42 0.381 0.15
PVAc 0.486 0.22
OTP 0.32 0.585 0.17
PMMA 0.67 0.766 0.19
PS 0.92 1.37 0.21

systems with different isochoric fragility mv. They are relatively close for systems with low
isochoric fragility, e.g. vitamin E and PCB54. However, considering a larger range of mv, it
is seen that the quantity αTg changes mildly, less than about 60%, whereas δL exhibits much
stronger variation. The nearly constant value of αTg is well known in polymer physics where
the ”quasi-universal” value αTg = 0.164 is reported [121]. The above analysis suggests that,
in order to discriminate between the predictions of Eq. 16 and Eq.17, one has to consider
glassformers with high isochoric fragility. We are aware that further analysis, beyond the
purpose of the present paper, is needed to better assess Eq. 16 and Eq.17. Nonetheless, we
cannot refrain from one remark. By combining Eq.16 and Eq.39, one establishes a relation
between the isochoric fragility mv and the increase ∆C vib

V with respect to the harmonic value
due to the presence of anharmonicity:

∆C vib
V =

3NkB
2

[
mv

mmin
v

− 1

]
(43)

withmmin
v = Υ̃1 +2Υ̃2 the minimum isochoric fragility for harmonic liquids. It is tempting to

note that Eq.43 is reminiscent of the well-known correlation between the kinetic fragility and
the size of the jump of the isobaric thermal capacity observed by traversing the glass transition
from below, a process leading to anharmonicity increase [174].

5. Conclusions

The present paper presents a scheme to evaluate both the TS characteristic exponent γts
and the master curve by resorting to experimentally accessible quantities characterising
the anharmonic elasticity and no details about the microscopic interactions. Two central
parameters are identified, i.e. the lattice Grüneisen parameter γL and the isochoric
anharmonicity δL. Our analysis suggests that their variations are rather limited across states of
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the TS region, thus setting the characteristic TS exponent γts and the shape of the TS master
curve.

We express the exponent γts in terms of γL and δL. We also find an analytic expression of
the TS master curve of the structural relaxation where the adjustable parameter is the isochoric
anharmonicity δL together with a narrowly varied vertical shift. The comparison with the
experimental TS master curves of thirty-four glassformers, including van der Waals liquids
and polymers, is convincing and good agreement is generally seen close to the glass transition
where elastic response is well developed. We tested against the available experimental data
concerning three glassformers - two polymers (PMMA, PS) and one molecular liquid (OTP)
-: i) our prediction of the characteristic exponent γts in terms of parameters characterizing the
anharmonic elasticity, ii) the isochoric anharmonicity δL, as drawn by the best-fit of TS of the
structural relaxation. The results are encouraging, but they suffer from the scarcity and the
uncertainty of data concerning the anharmonic elasticity in the liquid state.

The elastic interpretation of TS predicts a linear relation between the isochoric fragility
and the isochoric anharmonicity with no adjustable parameters. It agrees rather favourably
with the experimental data under consideration. A related expression concerning the usual
isobaric fragility m is presented. It predicts m ≥ 24± 1.6.

As side outcome of our treatment of the anharmonic elasticity, a relation between the
increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric
fragility is derived.
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