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Abstract
Purpose of Review The bone marrow microenvironment
hosts a multicellular complex that is extraordinary in its inter-
dependence and function. The composite machinery within
the axial and long bones is involved in the homing, mainte-
nance, differentiation, and egress of hematopoietic/
progenitors stem cells (HSCS) as well as mesenchymal/
stromal stem cells (MSCs) that dwell in specific anatomical
areas inside the marrow space, described as niches. The need
for more efficient hematopoietic stem cell transplantation pro-
tocols and bone marrowmanipulation techniques has motivat-
ed scientists to identify effective niche regulators such as the
parathyroid hormone (PTH).
Recent Findings PTH treatment is increasingly used with
promising outcomes in autologous and allogeneic transplan-
tation of HSCs, because PTH operates as a significant medi-
ator in HSC engraftment, expansion, and mobilization. In ad-
dition to the well-established anti-osteoporotic effect of PTH,
there is evidence that it may also coordinate hematopoietic
stem cell activities.
Summary This report provides up-to-date information about
PTH action within marrow niches and highlights the impor-
tance of this hormone in the behavior of hematopoietic ele-
ments in the bone marrow.

Keywords PTH . PTHrP . Bonemarrow niche .

Hematopoiesis . HSCs

Introduction: the Current Understanding of Bone
Marrow Structure and Function

The structure and function of the bone marrow have been the
object of scientific research for many decades. Certainly, the
study of the elegant equilibrium between the different habitats
of the bone marrow reservoir presents a complex challenge.
Specialized cellular compartments within the bone cavities are
characterized by interdependence and interconnectedness and
establish dynamic operational microareas designated as
niches. The niche milieu encompasses a panorama of undif-
ferentiated and stem elements as well as mature cells. The
niche hosts mesenchymal/stromal stem cells (MSCs) many
of which can commit to form osteoblasts, chondrocytes, and
adipocytes and hematopoietic stem/progenitor components
(HSCs) which give rise to blood cells. In particular, the prim-
itive murine hematopoietic cells have been identified as a
heterogeneous Lin−, Sca1+, and C-kit+ (LSK) population
comprising multipotent progenitors (MPP), long-term HSCs
(LT-HSCs), and short-term HSCs (ST-HSCs) [1, 2].

The niche ontogeny is complemented by various space-
specific resident cells, such as perivascular reticular cells,
perivascular mesenchyme progenitors, endothelial cells, and
neuronal and muscle stem cells, which actively participate in
the microenvironmental homeostasis [2]. Current findings in-
dicate that some HSCs are located near the endosteal bone
surface (endosteal niche) with distinct functions that are de-
pendent on the distance from the bone surface while others are
in close proximity to the specialized blood vessels within the
bone marrow, the sinusoids (vascular niche) [3–5]. Both the
endosteal and the sinusoidal regions are strategic bonemarrow
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areas that support HSC maintenance, self-renewal, quies-
cence, differentiation, and egression. These features are made
possible by the involvement of additional factors including
cytokines and hormones, which are critical for the bone mar-
row homeostatic tableau.

The Interdependence of Niche Inhabitants

Accumulating evidence indicates that the Bbone forming^ os-
teoblasts, the Bbone feeder^ osteoclasts, and the MSCs are the
foremost regulators of the HSC phenotype. The wide array of
MSC functional and architectural properties provides the re-
quired platform for the assembly and organization of the skel-
etal and perivascular hematopoietic niche framework within
the bone marrow. For this reason, MSCs and progenies have
been considered for about two decades the preeminent niche
manufacturers [2]. In point of fact, it is thought that the differ-
ent committed MSCs progenies provide signals for HSC dif-
ferentiation and osteoclastogenesis [6, 7], while the in vivo
depletion or impaired function of osteoblasts in mice disrupts
hematopoiesis. In accordance, the osteocalcin+ osteoblasts
have been identified as HSC-supporting cells because imma-
ture hematopoietic cells were found organized in follicle-like
structures next to them [3]. Moreover, it has been found that
HSCs establish contacts with osteoblasts lining the bone sur-
face, named spindle-shaped N-cadherin+CD45− osteoblastic
(SNO) cells, which express high levels of the multifunction
N-cadherin protein. N-cadherin-mediated interaction between
osteoblasts and hematopoietic cells plays a critical role in the
survival and homing of HSCs and hematopoietic progenitors
[3]. In addition, tunica endothelial cell kinase 2 receptor
(Tie2)/angiopoietin-1 (Ang-1) signaling supports tight adhe-
sion of HSCs to the niche through an N-cadherin/β1-integrin-
dependent mechanism [8]. Taking into consideration the com-
plexity of the niche morphology, these precedent studies have
deduced that both the osteoblasts and the endosteal niche are
key components of HSCmaintenance [9–11]. On the contrary,
modern concepts argued that osteoblasts create a niche for
certain early lymphoid progenitors but not for HSCs [12••].
Specifically, deletion of SCF, CXCL-12, and angiopoietin
using Col2.3-Cre ablation of osteoblasts in mice does not
affect the HSC function and the overall HSC numbers but
impaired LT-self-renewal of HSCs [12, 13••, 14–17].

In this view, other findings indicated that HSCs depend on a
perivascularnichecreatedbyendothelial cells and leptin receptor
(Lepr)- or Prx1-expressing perivascular stromal cells, whereas
osteoblastic cells and endosteal niche support proliferation and
differentiation of some early lymphoid progenitors [12••].

Likewise, at least three studies have provided evidence
highlighting the contribution of the vascular niche: in one
study, human MSCs expressing CD146 proved capable of
supporting HSCs at the sinusoidal level [18]. Two other

studies reported that MSC subpopulations within the same
compartment, such as CXCL12-abundant reticular (CAR)
cells, orchestrate HSC metabolism via stem cell factor (SCF)
and CXCL12 production [19, 20]. In addition, in vivo deple-
tion of the MSC pool expressing the intermediate filament
nestin reduces bone marrow homing of HSCs, an indication
that = nestin+ MSCs are important HSC regulators [21].

The distinct bone marrow anatomical zones and their topo-
graphical interactions continue to be the subject of controver-
sy. Several authors suggested that the endosteal niche main-
tains HSC quiescence [3, 5, 8], whereas the vascular niche
supports stem and progenitor cell homeostasis and regulates
megakaryopoiesis [4]. However, current findings have indi-
cated quite the opposite, reporting that HSCs reside adjacent
to the perivascular niche, whereas early lymphoid progenitors
inhabit the endosteal area [12••]. The multifaceted bone mar-
row microarchitecture and the candidate anatomical
microareas for the HSCs continue to be the object of intense
investigation.

Bone Deposition is Controlled by Niche Elements

Bone formation and osteoblast physiology are influenced by
the metabolic features of HSCs [22]. Stem, progenitor, and
mature hematopoietic cells coordinate bone cell differentia-
tion and matrix deposition. For instance, osteomacs, a specific
macrophage subdivision, provide bone-forming signals dur-
ing the deposition phase [2].

The physical interactions between the niches, and conse-
quently the fate of the MSCs and HSCs, are broadly influ-
enced by a plethora of autocrine, paracrine, and endocrine
Bbone-forming^ factors such as bone morphogenetic proteins
[23–25], growth factors [26], prostaglandins [27–31], shared
cytokines and chemokines [2], and hormones such as the para-
thyroid hormone (PTH) [32]. Although all of these molecules
appear to be fundamental for the maintenance of bone
microarchitecture and stem/progenitor cell homeostatic fea-
tures within the bone marrow, PTH has been identified as a
key niche element that functionally and spatially links the
activities of MSCs and HSCs.

PTH Effects Within the Bone Marrow at a Glance

PTH, a peptide comprised of 84 amino acids, is the fundamen-
tal regulatory molecule of calcium and phosphate systemic
levels; nonetheless, the PTH metabolic features go beyond
this and meet the needs of osteocyte signaling, osteoblast pro-
liferation, differentiation and apoptosis, and HSC homing,
maintenance, and egression [32, 33].

It is well documented that the administration of PTH, its
recombinant human analog PTH 1–34, and its nearly
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homologous PTH-related peptide (PTHrP) exerts dose-
dependent differential effects in the bone and the bonemarrow
microenvironment [32].

Intermittent PTH (iPTH) injections in experimental an-
imals induce a progressive and adaptive response in the
cell targets enhancing trabecular bone formation with a
concomitant minor loss of the cortical bone [34, 35].
iPTH affects the osteoblastic pool by shifting MSC differ-
entiation towards osteoblastogenesis [36] and also in-
creases the number of HSCs probably due to the simulta-
neous expansion of the osteoblastic cells and, consequent-
ly, the fine-tuned interactions between HSCs and osteo-
blasts [3, 37, 38]. PTH bone marrow anabolic and bone-
building effects were observed following defined dose-
treatment protocols in rats (80 μg/kg/day for 14 days)
[36], mice (40 μg/kg/day for 21 days) [38], and humans
(20 μg daily for 24 months) [39]. Nonetheless, hemato-
poietic progenitors are preferentially sustained by the
early-osteoblastic lineage and PTH administration boosts
this anabolic scenery [40]. Certainly, iPTH administration
has opened up new avenues for the treatment of bone
diseases such as osteoporosis and immune disorders, and
iPTH administration could be of use in the future to affect
bone marrow transplantation/engraftment outcomes.

In contrast to the anabolic effects of intermittent PTH ad-
ministration, chronically elevated PTH levels have catabolic
effects. Such supraphysiological PTH levels occur in patho-
logical conditions such as primary and secondary hyperpara-
thyroidism, chronic renal disease, and chronic inflammation,
all of which induce osteopenia. Actually, modern concepts
have portrayed osteopenia and osteoporosis as an Baccident
of inflammation^ [41]. In this context, PTH levels are in-
creased within an acute inflammatory scenario and continu-
ous PTH production drives bone resorption and loss of both
the cortical and trabecular bones.Moreover, in the context of
inflammation, activated immune cells can release PTHrP,
which has been shown to be overexpressed in both acute
and chronic inflammation [42, 43]. Continuous PTH admin-
istration and/or release within the bone marrow leads to ab-
normal production of factors that affect hematopoietic line-
age commitment. For instance, cPTH enhances receptor ac-
tivator of nuclear factor-κB ligand (RANKL) and macro-
phage colony-stimulating factor (MCSF) release by osteo-
blasts and consequently prompts osteoclast differentiation
and activation and diverting the fate of HSCs toward the
maturation of myeloid progenies. On the other hand, it has
been observed that MSCs and osteoblasts release less osteo-
protegerin (OPG) (a decoy receptor of RANKL) after cPTH
injection [44, 45]. Nevertheless, treatment with PTH at high
doses (13.6 μg/kg/day) for 18–24 months was found to in-
crease the risk of osteosarcoma in rats due to the exaggerated
bone formation response provided by the PTH receptors on
the osteoblastic cells [46].

The Role of PTH in HSC Niche Regulation

PTH Influences HSCs via Specific MSC Subpopulations
and Release of Cytokines and Chemokines

Several studies support the thesis that proper functioning of
the bone marrow niche is based on complex interactions be-
tween ligands and receptors, as well as physical interactions
between the different bone marrow niche residents. In this
perspective, PTH provides signals for stem cell differentiation,
proliferation, and maintenance, via its specific receptors
(PTHR) expressed by the osteoblastic lineage as well as by
MSCs within the marrow. An important note is that these
receptors are not present in HSCs: this observation indicates
that mesenchymal populations and, as recently reported, T-
lymphocytes are solely responsible for mediating the effects
of PTH within the marrow niche [37, 47–49]. The PTH niche
targets are summarized in Fig. 1.

PTH osteogenic activity and its capacity to stimulate MSC
expansion have been correlated with HSC homing and the
increase of the HSC pool. PTH orchestrates an operational
platform among osteoblasts, MSCs, and HSCs, recruiting me-
diators capable of Bsewing the niche patchwork,^ such as N-
cadherin, Wnt/β-catenin, and Notch/Jagged1 [33, 37]. In
point of fact, PTH stimulates hematopoiesis in mice via up-
regulation of cadherin-11 expression in MSCs. Of interest,
cadherin-11 is also highly expressed in hematopoietic progen-
itors characterized by elevated self-renewal capacity [50, 51].
PTH-induced cadherin-11 production in MSCs can facilitate
physical interactions between hematopoietic progenitors and
MSCs and, as a consequence, hematopoietic progenitor cell
expansion. PTH treatment in mice subjected to lethal irradia-
tion and bone marrow transplantation led to increased
cadherin-11 levels in MSCs with concomitant HSCs expan-
sion, substantially improving the survival rate of the experi-
mental animals [52]. Bearing in mind that cadherin-11 inter-
acts with β-catenin [53] and that Wnt/β-catenin activation in
hematopoietic progenitor cells contributes to their expansion
[54], the above findings depict an effective operating system
through bone and immune progenitor cells within the niche.

Exogenous PTH increases the bone marrow cell secretion
of important niche regulators such as interleukin (IL)-6, IL-11,
GM-CSF, and SCF. In a synergistic fashion, these cytokines
enhance the number and mobilization of HSCs [55]. A possi-
ble explanation for PTH-induced HSC expansion is based on
SCF+-secreting cell growth and cytokine release; SCF+-se-
creting cells in combination with IL-6 and IL-11 secreted in-
side the niche frames act as signal platform for HSC expan-
sion. In point of fact, SCF expressed by osteoblasts, fibro-
blasts, CXCL12-expressing perivascular stromal cells, endo-
thelial cells, and nestin-expressing MSCs has been identified
as a critical mediator of HSC dynamics [15]. Furthermore,
considering the fact that IL-6 is a downstream mediator of

Curr Stem Cell Rep

Author's personal copy



PTH signaling [56], this cytokine can also directly support
PTH-mediated HSC expansion and coordinate hematopoiesis,
lymphopoiesis, and megakaryopoiesis [57, 58]. Of note, the
IL-6 soluble receptor sIL-6R has been found upregulated in
bone marrow cells after PTH treatment, leading researchers to
attribute to this receptor unique orphan homeostatic roles
within the niche [59]. Indeed, IL-6 and sIL-6R, in a supportive
or independent fashion, enhanced PTH-mediated HSC expan-
sion via a STAT3 signaling cascade. In IL-6 null mice, the
action of sIL-6R on hematopoietic cells was sufficient to pre-
serve PTH-mediated HSC expansion and thus guarantee PTH
anabolic effects [59].

Among the various players in bone marrow homeostasis,
proteoglycan 4 (PRG4) is thought to have a role as a regulator
of the HSC niche, due to its involvement in HSC expansion.
PRG4 supports basal expression of both niche moderators,
CXCL12 and IL-6. PTH induces upregulation of Prg4
mRNA by osteoblast progenitors within the bone marrow
and simultaneous osteoblastic PRG4 secretion, which in turn
triggers the release of CXCL12 and IL-6. These events culmi-
nate in expansion of HSCs due to PRG4 regulatory and PTH-
supporting effects. Though PRG4 has not been considered as
a Bfront row^ HSC regulator, the fact that in Prg4−/− mice
PTH does not significantly augment the marrow Lin−Sca1+c-
kit+ pool reveals the significance of PRG4 in PTH outcomes
within the niche [60].

As previously mentioned, nestin+ MSCs are spatially asso-
ciated with HSCs and contribute to HSC maintenance. In line
with this observation, PTH administration expands bone mar-
row nestin+ cells and conducts them toward osteoblastic dif-
ferentiation. In addition, PTH-induced nestin+ MSC pool ex-
pansion is directly correlated with a parallel expansion of
HSCs. Thus, PTH seems to amplify the ability of this peculiar
nestin-expressed MSC population to support HSC

maintenance within the niche [21], motivating new interest
in the structural and functional features of this hormone on
the microenvironmental behavior of MSCs and HSCs.

Experiments conducted in humans revealed that long-term
teriparatide (PTH 1–34 fragment) administration at FDA-
approved doses not only yielded favorable outcomes against
post-menopausal osteoporosis, but also increased circulating
HSCs in the absence of G-CSF. The dual effects of PTH on
bone homeostasis and hematopoiesis seem to follow defined
signaling pathways. PTH influences bone growth involving
Wnt/β-catenin mechanisms; it also exerts an effect on multi-
ple transductional mediators ofMSCs, mature osteoblasts, and
osteocytes. Concerning hematopoiesis, PTH outcomes were
mostly orchestrated by the early-stage osteoblasts and the ac-
tivation on their membrane of PTHRs via G-protein (Gsα)
signaling cascades. Indeed, mice lacking Gs in cells of the
osteoblast lineage present a decrease in pro-B and pre-B cells.
Bearing in mind that bone mass may be related to B cell
number and, in turn, this process may be regulated by signals
downstream of Gs in the osteoblast, it is reasonable to deduce
that PTH-PTHR-Gs axis activation may have beneficial ef-
fects for immune system maturation [61]. In accordance,
teriparatide-activated early osteoblasts within human bone
marrow provide a watchdog role in the HSC niche [39].

Of interest, these findings in humans were comparable to
results obtained in rodents; in mice treated a short time with
PTH, there were increases in circulating HSCs, lymphocytes,
and neutrophils, without a reduction in the HSC pool [62].
The effect of PTH on the HSC niche has been studied in mice
lacking Bmi 1 (B lymphoma Mo-MLV insertion 1), an impor-
tant epigenetic niche regulator. Bmi 1-null mice displayed
weakened HSC self-renewal and reduced HSC niche ele-
ments. Moreover, Bmi 1 maintains MSC populations and
drives mesenchymal stem cell differentiation toward

Fig. 1 PTH targets distinct bone
marrow elements within an
anabolic scenario. Notably,
intermittent administration of
PTH affects early osteoblastic
cells, MSCs, and Tcells, inducing
multiple spatiotemporal effects.
Due to its many effects and its
involvement in MSC and HSC
homeostasis, PTH has been
identified as one of the major
regulators for the maintenance of
the bone marrow phenotype. The
dashed lines represent PTH target
cells. HSCs hematopoietic stem
cells; MSCs bone marrow
mesenchymal/stromal stem cells
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osteoblastic lineage and bone formation via the regulation of
alkaline phosphatase, osteocalcin, type I collagen, and Runx2
[63]. Thus, Bmi 1 deficiency affects not only immune cells but
also bone stem and progenitor cells, whereas its absence dis-
rupts the niche integrity. In this context, PTH 1–34 adminis-
tration partially rescued hematopoietic defects in Bmi 1-null
mice and reestablished the HSC niche microenvironment.
Furthermore, PTH partially reversed the premature osteopo-
rosis that occurs in the Bmi 1 knockout mice [64]. These
results highlight the many ways PTH maintains niche func-
tionality through MSC and HSC interdependency. Extensive
investigation is underway on the action of PTH and its bone
marrow cell targets.

PTH Targets T Cells that Prompt ST-HSC Expansion
and HSC Commitment

Though MSC subpopulations, early-osteoblastic cells, and
osteocytes are thought to be the major targets of PTH,
some reports have revealed an unexpected role of T lym-
phocytes in mediating the osteo-anabolic effects of PTH.
In line with these findings, iPTH treatment in mice in-
creased T cell-released Wnt10b, a Wnt ligand that drives
osteoblastogenesis by activating Wnt receptors on MSCs
and osteoblasts. Strong support for this consideration
comes from the finding that iPTH administration prompted
a reduction in bone anabolic response in mice with T cell
deletion [65, 66]. Furthermore, since Wnt signaling active-
ly participates in hematopoiesis in a dose-dependent man-
ner [67], it has been reported that iPTH treatment in mice
modulated T cell Wnt10b production and consequently ST-
HSC expansion and ameliorated blood cell engraftment
after bone marrow transplantation. Interestingly, iPTH-
induced ST-HSC expansion did not compromise the quies-
cent HSC niche or LT-HSC self-renewal [49]. The fact that
iPTH does not increase the number of ST-HSCs at the
expense of the LT-HSC pool might break new ground in
a therapeutic context, regarding PTH preferential niche
targets. Bearing in mind the key role of MSCs and osteo-
blasts in HSC maintenance and HSC metabolic features,
these findings have added another player, T cells, to the
scenario of hematopoietic regulation in the bone marrow.
On the other hand, it is well known that PTH anabolic
protocols establish molecular pathways for bone remodel-
ing and hematopoietic niche maturation via stimulation of
bone and blood components. In line with this observation,
iPTH induce s o s t eob l a s t r e l e a s e o f monocy t e
chemoattractant protein-1 (MCP-1), which in turn recruits
myeloid precursors and differentiates them into osteoclasts
[68]. Nevertheless, it was reported that, after PTH chal-
lenge, Th17, a T cell subpopulation, produced IL-17,
which participates actively in both bone resorption and
control of hematopoietic activities [69].

The Importance of PTH in HSC Bone Marrow Niche
Manipulation

Research in bone and bone marrow manipulation has
powered the development of heterotopic bone models
formed in vivo by transplanted MSCs; these capsular
bone-mimicking microenvironments are termed ossicles.
PTH treatment plays a key role in bone apposition and
HSC engraftment and expansion into these ectopic
cortical-like bone assemblies [70]. In mice with PTH-
treated ossicles, augmented HSC frequency associated
with simultaneous bone growth has been reported. Thus,
PTH significantly supports ossicle niche development,
probably due to its ability to increase anabolic Jagged-1/
Notch signaling through osteoblasts and HSCs, to modu-
late the HSC niche regulator SDF-1 (referred also as
CXCL12) and to increase the number of microvessels
within this tissue-engineered scenario. In line with this ob-
servation, PTH provides ossicle structural and functional
sustenance for hematopoietic long-term multilineage re-
constitution cells (CD150+CD48−CD41−Lineage− cells)
[38]. A recent study also demonstrated that iPTH adminis-
tration (40 μg/kg) for 28 days in mice transplanted with
human MSC-derived ossicles induced a significant in-
crease in the weight of the humanized ossicles, as com-
pared to untreated littermate controls [71].

An important challenge is the improvement of HSC trans-
plantation techniques and HSC engraftment and egression
efficiency. It is well documented that, in patients treatedwith
granulocyte colony-stimulating factor (G-CSF)-based pro-
tocols, poor HSC mobilization has been observed. Several
authors have noted that targeting the distinct niche popula-
tions might improve stem cell-based remedies, since treat-
ments with a combination of cytotoxic drugs influence both
osteoblasts and HSCs in experimental animals [36]. In this
context, a phase I clinical trial established that PTH exerts a
prominent pharmacological role inHSCmaintenance during
G-CSF-induced mobilization treatment [47]. Generally, G-
CSF cotreatment used in allogeneic transplantation tech-
niques provokes a homeostatic imbalance in the regulation
of osteoblasts and osteoclasts. Decrease of osteoblast num-
bers leads to reduced levels ofHSPCmobilization regulators
such as SDF-1, SCF, and OPN. Moreover, it was found that
after short-term G-CSF treatment, osteoblast loss and osteo-
clast pool expansion altered the fine-tuned signaling be-
tween bone remodeling mediators and HSCs [72]. In order
to offset bone niche disruption and impaired bone remodel-
ing caused by drug treatment, therapy combining PTH and
RANKL to enhance HSC egression was tested. PTH and
RANKL countered the side effects of cytotoxic chemother-
apy in two ways: first, by triggering the anabolic features of
osteoblasts and osteoclasts, and second, by protecting the
HSC pool during treatment [36].
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Conclusions

Bone marrow homeostasis is related to the specific features of
each niche element, and within this complex system, physical
interactions and the release of cytokines and hormones govern
MSC and HSC homeostasis. PTH plays a leading role in the
panorama of interactions inside the bone marrow. Indeed, the
administration of an anabolic regimen of PTH supports MSC
and osteoblast differentiation and bone deposition, HSC ex-
pansion and protection during chemotherapy, HSC post-
transplantation engraftment, and ST-HSC pool development
and egression. PTH signaling through early osteoblasts and T
lymphocytes in the axial and long bones orchestrates hemato-
poiesis and coordinates niche microenvironmental dynamics.
Given the pharmacological potential of PTH and its important
physiological role in the niche apparatus, it is to be expected
that this key hormone will be the subject of intense future
inquiry.
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