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Plants are known to respond to variations in cellular oxygen availability and distribution

by quickly adapting the transcription rate of a number of genes, generally associated

to improved energy usage pathways, oxygen homeostasis and protection from

harmful products of anaerobic metabolism. In terrestrial plants, such coordinated gene

expression program is promoted by a conserved subfamily of ethylene responsive

transcription factors called ERF-VII, which act as master activators of hypoxic gene

transcription. Their abundance is directly regulated by oxygen through a mechanism

of targeted proteolysis present under aerobic conditions, which is triggered by ERF-VII

protein oxidation. Beside this, in Arabidopsis thaliana, the activity of the ERF-VII factor

RAP2.12 has been shown to be restrained and made transient by the hypoxia-inducible

transcription factor HRA1. This feedback mechanism has been proposed to modulate

ERF-VII activity in the plant under fluctuating hypoxia, thereby enhancing the flexibility

of the response. So far, functional balancing between RAP2.12 and HRA1 has been

assessed in isolated leaf protoplasts, resulting in an inverse relationship between HRA1

amount and activation of RAP2.12 target promoters. In the present work, we showed that

HRA1 is effective in balancing RAP2.12 activity in whole arabidopsis plants. Examination

of a segregating population, generated from RAP2.12 and HRA1 over-expressing plants,

led to the first quantitative proof that, over a range of either transgene expression

levels, HRA1 counteracts the phenotypic and transcriptional effects of RAP2.12. This

report supports the occurrence of fine-tuned regulation of the hypoxic response under

physiological growth conditions.

Keywords: low oxygen, regulation of anaerobic gene expression, ERF-VII transcription factors, trihelix

transcription factor family, transcription factor balancing

INTRODUCTION

Conditions characterized by sub-optimal oxygen levels are considered common in plants (van
Dongen and Licausi, 2015). Cellular oxygen concentrations can fall below the threshold set by
the mitochondrial complexes for optimal aerobic respiration in several situations, ranging from
soil waterlogging, with consequent root asphyxia, and flooding stress (Drew, 1997; Voesenek
et al., 2006), to tight packaging of cells inside compact structures like bulky tissues and fruits
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(Ho et al., 2011; Licausi et al., 2011a), biogenesis of gas-
impermeable layers in some seeds (Borisjuk and Rolletschek,
2009), or the existence of underground organs (De Willigen and
van Noordwijk, 1989). Terrestrial plants have evolved a wide
range of adaptations to either prevent the onset of severe hypoxia
in their organs, or improve metabolism during a shortage of
oxygen (Bailey-Serres and Voesenek, 2008). On the other hand,
in some cases, hypoxia can help cells control the production of
dangerous oxidative conditions, so that it becomes even required
for the correct progression of specific developmental processes,
such as and pollen differentiation inside maize anthers (Kelliher
and Walbot, 2012, 2014).

Hypoxic responses have been associated to a wide
reconfiguration of plant transcriptomes (Branco-Price et al.,
2005; Loreti et al., 2005; Mustroph et al., 2010; Lee et al., 2011).
Regulation of transcription upon oxygen deprivation relies
on ERF-VII transcription factor family members (Nakano
et al., 2006), which redundantly activate the expression of the
complete set of hypoxia-responsive genes by direct promoter
recognition (Bui et al., 2015; Papdi et al., 2015; Gasch et al.,
2016). Over-expression of the RAP2.12 member of the ERF-
VII subfamily, for instance, is sufficient to trigger the core
transcriptional response to hypoxia in Arabidopsis thaliana, as
previously defined (Mustroph et al., 2009), even in the absence
of the corresponding external stimulus (Licausi et al., 2011b).
The activity of RAP2.12 is tightly regulated by oxygen through
a targeted proteolytic pathway, whereby the transcription factor
is made oxygen-labile, coupled to a subcellular localization
mechanism that guarantees the cell the presence of quickly
available RAP2.12 as hypoxia arises (Kosmacz et al., 2015).
Indeed, RAP2.12 is post-transcriptionally regulated by oxygen
through a direct biosensing mechanism that deploys the Cys/Arg
branch of the N-end rule pathway for proteasomal degradation
(composed, in Arabidopsis, by the arginyl aminotransferase
enzymes ATE1 and ATE2 and by the E3 ubiquitin ligase PRT6)
and plant cysteine oxidase enzymes (Gibbs et al., 2011; Weits
et al., 2014).

Beside the basic working principle of this oxygen biosensor,
it has been shown that further mechanisms of regulation exist
that empower plant cells to achieve improved control of RAP2.12
activity. In detail, a feedback loop has been described, in which
the transcription factor HRA1 can act on RAP2.12 to restrain
its transactivation power on target genes (Giuntoli et al., 2014).
Intriguingly, the up-regulation of HRA1 homologs in response
to low oxygen in several species allows the attribution of HRA1
to the set of plant core conserved hypoxia-responsive genes
(Mustroph et al., 2010). It has been put forward that the induction
of HRA1 might be used by plants to produce transient pulses of
anaerobic gene expression promoted by RAP2.12, which would
enable dynamic and fast regulation in response to conditions
of fluctuating hypoxia (Giuntoli et al., 2014). However, an
assessment of the influence of this mechanism in planta is still
needed.

In order to understand whether the interaction of RAP2.12
and HRA1 transcription factors results in a functional balancing
in the plant, we decided to study how plant morphology and gene
expression are affected when both genes were over-expressed

in a constitutive fashion. Our results report that HRA1 had
measurable effects on the processes downstream of RAP2.12. Our
findings give way to future experiments to gain more in-depth
knowledge regarding the range of action of the HRA1 fine-tuning
function in the plant.

MATERIALS AND METHODS

Generation of 113RAP2.12xHRA1 Double
Over-Expressors in Arabidopsis thaliana
Two stabilized transgenic lines over-expressing the individual
genes, isolated in previous works, were crossed (Licausi et al.,
2011b; Giuntoli et al., 2014). 35S:HRA1 plants express the coding
sequence of HRA1 fused to a C-terminal FLAG tag sequence,
under control of the CaMV 35S promoter. 35S:∆13RAP2.12
plants, instead, encode an N-end rule insensitive version of
RAP2.12 lacking the first 13 N-terminal residues. Both lines
were generated in the Columbia-0 background. Homozygous
parental plants were crossed manually and the hybrid progeny
was propagated to the following F2 generation.

Plant Growth Conditions and Sampling
Seeds were sown in a moist mixture of soil perlite 3:1 and
stratified at 4◦C in the dark for 48 h. Plants were grown at
23◦C day/18◦C night under a neutral day cycle (12 h light/12
h darkness, ∼100 µmol photons m−2s−1 light intensity). Upon
attainment of the developed rosette stage (stage 3.50 Boyes et al.,
2001), corresponding to 4–5 weeks of growth in our conditions,
plants were evaluated phenotypically and subsequently sampled
for gene expression analyses.

RT-qPCR
Transcript abundance was measured in whole rosettes of stage
3.50 (Boyes et al., 2001) arabidopsis plants, by means of real
time quantitative PCR. RNA extraction, removal of genomic
DNA, cDNA synthesis and RT–qPCR analyses were performed
as described previously (Licausi et al., 2011c). The sequences of
the primers used for cDNA amplification are listed in Table 1.
Steady-state mRNA levels were normalized using UBQ10 as the
reference gene, and relative expression values were calculated
using the comparative Ct method (Schmittgen and Livak, 2008).
Total RAP2.12 and HRA1 expression was assessed with primers
annealing on the respective coding sequences. In non-transgenic
plants, total gene expression coincided with the level of the
endogenous transcripts encoded by the wild type genome. On the
opposite, in transgenic plants, 3′-UTR sequences were exploited
in order to discriminate between the expression of transgenes
and endogenous genes. Specifically, expression of the RAP2.12
transgenic sequence (referred to as transRAP2.12) was measured
directly, through an amplification product spanning over the 3′-
UTR region encoded by the transgenic construct. On the other
hand, HRA1 transgene expression (transHRA1) was calculated
by subtracting the endogenous HRA1 expression level, measured
with specific HRA1 3′-UTR genomic primers, from the total
amount of HRA1 transcript, measured with primers annealing
on the coding sequence. Transgenic mRNA abundance was
subsequently expressed as relative to the level measured in one
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TABLE 1 | Nucleotide sequences of the primers used in the RT-qPCR

analyses.

Locus name (AGI code) Primer name Primer sequence (5′-3′)

ADH1 (At1g77120) ADH1_F tattcgatgcaaagctgctgtg

ADH1_R cgaacttcgtgtttctgcggt

HB1 (At2g16060) Hb1_F tttgaggtggccaagtatgca

Hb1_R tgatcataagcctgaccccaa

HRA1 (At3g10040) HRA1_F tcatgttacggcggagtgaa

HRA1_R caacccgtgtacccgaagac

HRA1_Endo_F gggaagaagcggcaagtgtagtg

HRA1_Endo_R tttactgcctaatgtcactaaaacgtgag

HRA1_Tot_F agtcagcagcagaactgttttcacg

HRA1_Tot_R tctccactccttcccactcataccc

HSP18.2 (At5g59720) HSP18.2_F ggcctgaagaaggaagaagtcaagg

HSP18.2_R agcacacaagctttttatttgacacacc

HUP7 (At1g43800) HUP7_F accaatgttggcaacccgcttc

HUP7_R tttccctcagctcacgaacctg

LBD41 (At3g02550) LBD41_F tgaagcgcaagctaacgca

LBD41_R atcccaggacgaaggtgattg

PCO1 (At5g15120) PCO1_F attgggtggttgatgctccaatg

PCO1_R atgcatgttcccgccatcttc

PDC1 (At4g33070) PDC1_F cgattatggcactaaccggatt

PDC_1R tgttcaccaccgcctgataac

RAP2.12 (At1g53910) RAP2.12_F actgaatgggacgcttcactgg

RAP2.12_R agggtttgcaccattgtcctgag

transRAP2.12_F tgggacgcttcactggatttcc

transRAP2.12_R cgcgcccaccctttcagaag

UBQ10 (At4g05320) UBQ10_F ggccttgtataatccctgatgaataag

UBQ10_R aaagagataacaggaacggaaacatagt

selected plant from the relative parental line, in which it was set
to 100%.

Statistical Analysis
In the segregating F2 population (n = 32), resulting from
the cross of 35S:HRA1 and 35S:∆13RAP2.12 parental lines
of arabidopsis, the interaction between the two factors under
investigation was evaluated upon measurement of the expression
level of eight anaerobic marker genes, known from the literature
as targets of RAP2.12. Specifically, a linear model was fit
to the scatterplot expression of every marker gene, used as
output variable, in dependence of two chosen predictors, namely
total RAP2.12 expression values and transHRA1 presence. The
analyses of covariance and linear regressions were performed
with the R statistical software (R Development Core Team, 2010).

RESULTS

Over-Expression of HRA1 Restrains the
Impact of ∆13RAP2.12 on Plant Phenotype
We chose to investigate the effects of HRA1 on the transcriptional
activity of RAP2.12 by crossing homozygous 35S:∆13RAP2.12
and 35S:HRA1 parental plants. The former parental genotype

expressed an N-terminally mutated form of RAP2.12 that,
by escaping the oxygen-dependent degradation, allowed us
to study a constitutive hypoxic response in plants kept in
aerobic conditions (Licausi et al., 2011b). Constitutive expression
of an oxygen-insensitive RAP2.12 form leads to widespread
morphological changes in arabidopsis (Weits et al., 2014).
35S:∆13RAP2.12 plants developed abnormal lateral organs in
the vegetative rosette, where leaves often displayed irregular
margins, bent and twisted petioles associated with downwards
curling leaves, and enhanced wax deposition that results in higher
stiffness and glossy appearance. Bleaching and necrosis of leaves
was also commonly observed in this parental line (Figure 1A).

In this genetic background, we assessed whether and to which
extent the over-expression of HRA1 modulated the activity of
RAP2.12. We analyzed the F2 progeny of the cross, which, as a
segregating population, enabled us to observe the combinatorial
effect of the two loci in a uniform genetic background. Among 32
F2 plants, the expression of the transgenes ranged from 0 to 133%
for∆13RAP2.12 (indicated as transRAP2.12) and from 0 to 590%
forHRA1 (transHRA1), as compared to a reference parental plant
whose expression was set at 100% (Table 2). Variable transgene
expression levels could be explained by the segregation of the two
T-DNAs, as well as by an intrinsic degree of individual variation
derived from the parental lines.

As a first remark, the strong phenotype displayed by the
35S:113RAP2.12 parental was attenuated in the F2 population,
which showed a variable extent of reversion to the wild
type phenotype. This observation prompted us to look for a
correlation between abundance of the two transgene products
and phenotypic aspect of the plants. We ranked the phenotypes
displayed by the hybrid progeny by means of three main
qualitative hallmarks of the 113RAP2.12-related morphology:
smaller rosette (parameter P1), petiole bending (P2), and
increased waxiness of leaf adaxial surfaces (P3). The evaluation
of each qualitative parameter describing the113RAP2.12-related
phenotype was carefully made. For P1, smaller rosette size had
to be coupled with normal petiole and leaf blade length, to
avoid confusion with the 35S:HRA1 phenotype (compact rosette
with contracted petioles and rounder leaf shape (Figure 1A
and Giuntoli et al., 2014). For P2, bending was scored when
it coincided with altered leaf margin shape and curling of the
leaf blade. In parameter P3, finally, the presence of leaf gloss
and enhanced thickness were both required. The presence or
absence of each parameter was scored upon visual inspection
and expressed as a binary value (0 or 1), the three scores were
summed and each plant’s phenotype was expressed by a lumped
index ranging from 0 (near-wild type morphology) to 3 (near-
113RAP2.12 morphology) (Figure 1B).

The first hybrid generation presented a uniform morphology
with intermediate 113RAP2.12 traits, namely bent and curled
leaves with rounder blades (Figure 1A). Such outcome might be
due either to an incomplete dominance of the transRAP2.12 allele
in the heterozygous configuration, or to a functional balancing
between transRAP2.12 and transHRA1 alleles. In the subsequent
F2 generation, the observed phenotypes segregated and their
distribution was plotted against the expression level of the two
transgenes (Figure 1C and Table 2).
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FIGURE 1 | Modulation of the ∆13RAP2.12 phenotype by high levels of HRA1 expression. (A) Representative morphology of parental 35S:∆13RAP2.12 and

35S:HRA1 plants, first generation hybrids and wild type Col-0 plants at the adult stage of rosette development. Scale bar = 2 cm. (B) Sample output of the visual

ranking procedure applied for the phenotypization of the F2 population. Appearance of the glossy leaves feature is marked with white asterisks, curved leaves are

indicated with black ones, while smaller plant diameter can be inferred from the scale bar (2 cm) and is marked by green asterisks. (C) Bar plot of phenotypic index as

a function of transRAP2.12 mRNA abundance and presence of transgenic HRA1. Each column represents an F2 individual, or a plant of a reference genotype

(hatched columns). transRAP2.12 and transHRA1 were expressed as percent relatively to one 35S:∆13RAP2.12 or 35S:HRA1 parental plant, respectively. Support

data for the diagram can be found in Table 2. The grouping of the bars in different colors is discussed in the main text.

With two exceptions (yellow columns), top phenotype index
scores were assigned to plants that expressed transRAP2.12
alone (light blue columns, transRAP2.12 = 9–100%) or to

such an extent that transHRA1 expression could be overcome
by RAP2.12 (dark blue columns, transRAP2.12 = 90–133%).
The absence of transgenic ∆13RAP2.12 expression, on the
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TABLE 2 | Expression values of the two transgenes and phenotypic index

value of the plants used in the analysis.

Plant name transHRA1

(%)

transRAP2.12

(%)

Phenotypic

index

Assigned

genotype

wild type#1 0 0 0 Wild type

F2#1 0 0 1

F2#2 0 0 0

F2#3 0 0 0

wild type#2 0 0 0

F2#4 0 1 3 35S:∆13RAP2.12

F2#5 0 9 3

F2#6 0 19 3

F2#7 0 20 1

F2#8 0 34 3

F2#9 1 48 2

F2#10 0 51 3

F2#11 0 65 2

35S:∆13RAP2.12 0 100 3

F2#12 35 0 1 35:HRA1

F2#13 56 0 0

35:HRA1#1 100 0 0

F2#14 122 0 0

F2#15 140 0 1

F2#16 170 0 0

F2#17 182 0 1

F2#18 187 0 3

F2#19 196 0 1

35:HRA1#2 250 0 0

F2#20 275 0 0

F2#21 25 109 3 35S:∆13RAP2.12,

35:HRA1

F2#22 26 25 0

F2#23 35 133 3

F2#24 72 83 2

F2#25 80 90 3

F2#26 82 43 2

F2#27 120 58 2

F2#28 146 77 1

F2#29 161 41 2

F2#30 333 44 3

F2#31 362 6 2

F2#32 590 38 3

other hand, translated into a low phenotype index (olive green
columns). Only one plant showed low phenotype in spite of
detectable transRAP2.12 expression and absence of the HRA1
transgene (pale light blue column, transRAP2.12 = 25%), indeed
all RAP2.12 targets analyzed in the subsequent gene expression
analysis proved to be lowly expressed for this individual, hinting
at a reduced activity of the stabilized transcription factor as the
cause of the phenotype in this plant. On the opposite, two plants
(white bars) presented a strong phenotype, in front of very low
transRAP2.12) or undetectable transRAP2.12 expression; even
assuming transRAP2.12 to be already active in the first case,

we could not explain the observed phenotype in the second. In
all the remaining plants (8/32, red columns), concurrent HRA1
over-expression was able to restrict the impact of ∆13RAP2.12
expression (phenotype index = 0–2, transRAP2.12 = 6–83%),
defining the borders of a RAP2.12-HRA1 balancing zone in our
diagram. An average phenotypic index, obtained as the sum
of the index of all plants in a set divided by their number,
passed from 2.6 in plants only expressing transRAP2.12 (dark
gray-shaded quarter in the diagram in Figure 1C, transHRA1 =

0–1%) to 2.2 in the set of plants also expressing transHRA1 (light
gray-shaded quarter, transHRA1 >25%), while it reached 0.2 in
wild type plants (white quarter) and 0.6 when only transHRA1
was expressed (pale gray-shaded quarter). Overall, we consider
this assessment in favor of the hypothesis that abundant HRA1
protein could contrast the activity of the oxygen-insensitive
version of RAP2.12, assumed as correlated to the phenotype
index in 35S:∆13RAP2.12 plants.

Activation of RAP2.12 Target Genes Is
Affected by HRA1 in planta
After assessing the impact of HRA1 on the 113RAP2.12
phenotype, we moved forward and analyzed the impact in terms
of molecular markers. RAP2.12 stabilization and over-expression
is known to cause constitutive expression of core hypoxia-
responsive genes in arabidopsis (Licausi et al., 2011b). Therefore,
we considered appropriate to evaluate the correlation between
RAP2.12 over-expression and expression of hypoxic targets in
our F2 population, and verify to which extent it might be affected
by HRA1 over-expression. The set of marker genes included
in the analysis encompassed the transcription factor LBD41
(At5g02550), the acyl-CoA desaturase HUP7 (At1g43800), the
cysteine oxidase PCO1 (At5g15120), the two fermentative genes
PDC1 (At4g33070) and ADH (At1g77120), the non-symbiontic
hemoglobinHB1 (At2g16060), andHRA1 (At3g10040) itself. The
anoxia-responsive heat shock factor HSP18.2 (At5g59720) was,
moreover, selected as a negative control gene, since a survey of
public trascriptomic data suggested it not to be activated in theN-
end rule mutant backgrounds ate1/2 and prt6 (Pucciariello et al.,
2012).

Two populations of transcripts corresponding to RAP2.12
were quantified and correlated to target gene expression. The
mRNA encoded by the ∆13RAP2.12 transgene was measured
with transRAP2.12 specific primers, while total RAP2.12
expression represented the cumulative amount of the transcript
encoded by the endogenous genomic locus and by the transgene,
when present. Predictably, total RAP2.12 expression displayed
poor correlation with the aerobic levels of the targets in plants
lacking ∆13RAP2.12 transgene expression (Figure 2A), where
the endogenous RAP2.12 mRNA was translated in the oxygen-
labile, inactive form of the transcription factor. Instead, a closer
relationship was found in ∆13RAP2.12 over-expressors, when
target transcript levels were plotted either against total RAP2.12
(Figure 2B) or transRAP2.12 expression values (Figure 2C).
Total RAP2.12 was, therefore, assumed as a suitable predictor
of target expression and kept for the subsequent analysis.
Incidentally,HSP18.2 proved to be activated by∆13RAP2.12 in a
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FIGURE 2 | Correlation between RAP2.12 and target gene expression. Linear regressions of anaerobic mRNA levels in F2 (n = 32), parental (n = 3), and Col-0

plants (n = 2). The full set of plants was split into two subsets, based on (A) the absence (n = 16) or (B,C) presence of transRAP2.12 transgene expression (n = 21).

For the latter subset of plants, expressing the ∆13RAP2.12 T-DNA, target gene expression was correlated either with total RAP2.12 levels (B) or transRAP2.12

transgene levels (C). For the former, total RAP2.12 expression corresponded to the endogenous RAP2.12 transcript (A). Every dot represents an individual plant.
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similar fashion to the other well-known core hypoxia-responsive
genes and was, therefore, assimilated to the other target genes.

To assess the effect of HRA1 on the RAP2.12-mediated target
activation (Figure 2) the F2 population was split into plants
over-expressing HRA1 (“+transHRA1” plants) and those not
(“-transHRA1”). With an ANCOVA, the tendency of HRA1 to
limit RAP2.12 activation power on the anaerobic targets was
measured. A linear model was fit to the scatterplot expression of
every RAP2.12 target (Figure 3), using total RAP2.12 expression
values and transHRA1 presence as predictors (Table 3). The
analysis confirmed the existence of a significant effect exerted by

total RAP2.12 expression over the steady state mRNA levels of
all selected markers and furthermore highlighted a contribution
by HRA1 transgene expression (Table 4). HRA1 importance
was especially apparent from the significant interaction terms
between the two predictor variables in the case of LBD41, HUP7,
and marginally for HB1, HRA1, and PDC1. However, no HRA-
RAP2.12 interaction occurred for ADH, HSP18.2, and PCO1
activation. In four of the five cases where the interaction took
place, the expression of transHRA1 had an antagonistic effect in
respect to RAP2.12, as indicated by the negative coefficients for
the “RAP2.12 x transHRA1” term in the linear model (Table 3).

FIGURE 3 | Effect of HRA1 over-expression on RAP2.12 targets. F2 (n = 32), parental (n = 3) and Col-0 plants (n = 2) were clustered into two groups,

distinguishing HRA1 over-expressors (“+transHRA1,” transHRA1 >25%, n = 23) from plants with wild type HRA1 levels (“-transHRA1,” transHRA = 0–1%, n = 14),

and the expression of the targets was plotted against total RAP2.12 expression.
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TABLE 3 | Summary of linear model parameters.

Gene Intercept Coefficient

(RAP2.12)

Coefficient

(transHRA1)

Coefficient

(RAP2.12 x

transHRA1)

LBD41 −0.48 ± 0.37 0.52 ± 0.07 0.59 ± 0.47 −0.23 ± 0.09

HUP7 1.62 ± 0.53 0.71 ± 0.1 −0.28 ± 0.67 −0.28 ± 0.13

PCO1 0.74 ± 0.54 0.51 ± 0.11 2.15 ± 0.69 −0.14 ± 0.13

HRA1 0.03 ± 0.37 0.26 ± 0.07 0.88 ± 0.48 −0.18 ± 0.09

ADH 0 ± 0.78 0.44 ± 0.16 1.22 ± 1.00 −0.22 ± 0.19

PDC1 −1.67 ± 0.60 0.59 ± 0.11 −0.33 ± 0.77 −0.28 ± 0.14

HB1 −0.28 ± 0.43 0.13 ± 0.09 −0.65 ± 0.56 0.19 ± 0.10

HSP18.2 −1.05 ± 0.36 0.22 ± 0.07 1.25 ± 0.47 −0.13 ± 0.09

TABLE 4 | P-values from the ANCOVA of RAP2.12 target gene expression.

Gene p (RAP2.12) p (transHRA1) p (RAP2.12 x transHRA1)

LBD41 *** *

HUP7 *** ** *

PCO1 *** **

HRA1 ** ◦

ADH **

PDC1 *** ** ◦

HB1 *** ◦

HSP18.2 *** *

ANOVA summary tables were calculated for each RAP2.12 target upon generation of

separate linear models. The predictors used were total RAP2.12 expression (continuous

variable) and HRA1 over-expression (categorical variable). Symbols indicate statistical

significance in the intervals specified by the following legend: 0 “***” 0.001 “**” 0.01 “*”

0.05 “◦” 0.1.

We conclude that the assessment of RAP2.12 transcriptional
activity, estimated from the expression of established marker
genes, was in substantial agreement with the prior evaluation of
its ability to affect plant morphology, when made stable in air
and over-expressed. Broadly speaking, both pieces of evidence
we collected, indeed, pointed at the ability of HRA1 to restrict
RAP2.12 functionality, although the extent of HRA1 impact
seems confined to a precise range of RAP2.12 protein abundance.

DISCUSSION

Tight regulation of gene expression to withstand fluctuations
in the intracellular oxygenation status is likely to be vital for
organisms, like the terrestrial plants, that have not evolved
specific systems for capillary oxygen delivery. In A. thaliana,
transcription in response to low oxygen signals is redundantly
triggered by the homologous ERF-VII transcription factors
RAP2.2 and RAP2.12 (Hinz et al., 2010; Gibbs et al., 2011;
Licausi et al., 2011c; Bui et al., 2015; Gasch et al., 2016). In
our previous work, we have found evidence that the HRA1
transcription factor, whose constitutive expression in arabidopsis
leads to marked reduction of hypoxic responses in oxygen-
deprived plants, interacts with RAP2.12 and, in doing so, carries
out a counterbalancing effect on the activation of RAP2.12
hypoxic target genes (Giuntoli et al., 2014). The presented

research aimed at showing to which extent the hypoxic response
attenuator HRA1 is effective in planta in modulating the
transcription of RAP2.12 target genes and the production
of phenotypes associated with RAP2.12 over-expression in
arabidopsis. Previous demonstrations of the impact of this TF
interaction are related to the response of isolated arabidopsis
protoplast cells. Here, we combined the ectopic expression of
HRA1 with that of an oxygen-insensitive form of RAP2.12,
which enabled us to investigate the regulation of the anaerobic
response without imposing external stress conditions on plants.
Deployment of a segregating population made the correlation
possible, in each individual plant, between the actual expression
level of both transgenes, which spanned a range of combinations,
and two marker traits describing RAP2.12 activity.

With this approach, we were able to spot the balancing action
exerted by HRA1 on RAP2.12 by examining the phenotype
of plants growing in normal conditions. Initial clues of the
efficacy of such a mechanism in fully developed, unstressed
plants had appeared previously, with the observation that stable
transformation of 35S:HRA1 plants with a 35S:∆13RAP2.12
T-DNA generated a progeny in which the phenotypic traits
associated to HRA1 over-expression reverted to the wild type
(Giuntoli et al., 2014). The achievement of comparable outcomes
following two independent events of T-DNA insertion in the
genome supports the conclusion that a causal link subsists
between concurrent over-expression of HRA1 and reversion of
the molecular and phenotypic effects of 113RAP2.12.

Furthermore, the present study provides the first quantitative
description of RAP2.12-HRA1 balancing in whole developed
plants, evaluated by means of anaerobic molecular markers. As
highlighted before, this result was achieved by over-expression
of the two transcription factors under control of the constitutive
CaMV 35S promoter. Despite this simple strategy, whereby
massive accumulation of either protein is allowed unrestrictedly
during the entire plant lifespan, functional balancing proved to
be still in place and amenable to quantitative modeling.

While analyzing plant responses, we decided to reconstruct
the behavior of HRA1 as a function of the presence or absence of
its expressed transgene (Figure 3), as quantified through specific
qPCR amplification. This is because, in first place, total HRA1
transcript levels were so superior in the over-expressing plants
(Log2 HRA1= 10.2–13.8; values refer to the expressionmeasured
in one of the wild type reference plants, taken as reference
and set to Log2 HRA1 = 0), as compared to those detected in
plants with wild type HRA1 and RAP2.12 configuration (Log2
HRA1 = −1.2–2.6), or in ∆13RAP2.12 over-expressing plants
(Log2 HRA1 = 3–5.8), that approximation to a categorical
condition was allowed. In second place, we assumed that HRA1
mRNA steady state level could be bona fide considered as
proportional to protein abundance, in the absence of any known
mechanism of targeted post-transcriptional regulation specific
for this gene. Therefore, a model where the HRA1 transcription
factor was approximated as highly abundant, as in 35S:HRA1
individuals, or lowly abundant, as in all other genotypes, was
considered acceptable to account for the balancing effect. The
same did not apply to RAP2.12, which required treatment as a
continuous quantity. A linear increase of marker gene expression
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was recorded with increasing total RAP2.12 (or transRAP2.12)
abundance along the range of expression available in our
measurements for this predictor (Figures 2B,C), suggesting that
the over-expressed 113RAP2.12 protein was not abundant
enough to saturate the target promoters.

Our investigation took advantage of striking phenotypic
features that associate to the ectopic expression of an oxygen-
insensitive variant of RAP2.12. Unraveling the downstream
events that realize this specific ontogenetic program was beyond
the aim of this work and might be worth focused investigation.
Nonetheless, we might conclude that the phenotype originates
from the accumulation of 113RAP2.12, rather than from
spurious phenomena due to the untargeted process of T-DNA
integration, because it can be at least partially rescued by the
expression of a RAP2.12-specific repressor, HRA1. In the same
way, the phenotypic consequences of 35S:HRA1 expression could
be considerably reverted by enhancing RAP2.12 activity (this
study and Giuntoli et al., 2014). Therefore, it is reasonable to
think that the alterations visible in the ∆13RAP2.12 phenotype
are caused by genes differentially regulated by 35S:113RAP2.12
and subjected to HRA1-dependent negative regulation.

The interplay between HRA1 and RAP2.12 was revealed by
the expression of transcriptional markers, namely known plant
hypoxic targets identified from the broad specialized literature.
Marginally, it could be noticed that our analysis provided further
confirmation to the fact that aerobic transcription of RAP2.12
results in inactive protein accumulation. It has been noticed
before that constitutive expression of the full version of RAP2.12
leads to minimal up-regulation of anaerobic gene expression in
air and does not cause any detectable plant phenotype (Licausi
et al., 2011b). Coherently, we found limited correlation between
full-length RAP2.12 mRNA levels and RAP2.12 transcriptional
targets (Figure 2A). Beside this, the ANCOVA highlighted a
different degree of specificity in the targets we considered. More
specifically, while some anaerobic genes are exclusively regulated
by RAP2.12, cross-talk from different cell pathways is known

to converge on other core hypoxia-responsive genes. Indeed,
RAP2.12 function is known to be superimposed on unrelated
regulatory pathways, such as the one brought about by heat shock
factors on HSP18.2 (Nishizawa et al., 2006; Guo et al., 2008)
and multiple ABA-mediated signaling events influencing ADH
expression (de Bruxelles et al., 1996; Xiong et al., 2001; Papdi
et al., 2015). We speculate that this might explain why the HRA1-
mediated repression of RAP2.12 was not detectable on ADH and
HSP18.2 (Table 4), being any additional regulation beyond the
predictive power of our bifactorial model. Detailed promoter
survey of representative genes for the two regulatory classes,
aided by the recent identification of the cis-element recognized by
RAP2.12 in its target promoters (Gasch et al., 2016), might unveil
the near-exclusive presence of the RAP2.12-specific binding site
in the first class of items and support our hypothesis.

In this first report of the effective balancing between HRA1
and RAP2.12 in the aerial tissues of arabidopsis, the equilibrium
of the two transcription factors wasmoved to a non-physiological
range, by deployment of over-expression constructs. Future steps
of this research might take advantage of native gene promoters to
understand whether, under physiological expression conditions,
the transcriptional complex is actually able to modulate
target gene expression by originating transient transcriptional
responses.
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