
1

Stochastic feedback-based control of QoS in soft
real-time systems
T. Cucinotta, L. Palopoli, L. Marzario

Abstract— This paper investigates application of feedback
based control mechanisms to the problem of scheduling soft
real-time tasks, so to meet certain quality of service (QoS)
requirements. First, a stochastic model is introduced for a
task evolving under the effect of a feedback based controller,
where the uncertainties due to the apriori unknown execution
times of the jobs are catched in terms of an input stochastic
process. The problem of control is formalised in the stochastic
domain, by expressing QoS requirements in terms of stochastic
properties to be satisfied by the system state evolution process.
Control laws satisfying some of the stated requirements are
introduced, and fundamental facts are proved on the closed
loop system dynamics under the effect of such controllers,
such as stochastic stability. Finally, experimental results are
presented gathered by an implementation of the controllers in
the Linux kernel, showing feasibility and effectiveness of the
proposed approach in controlling the QoS experienced during
a video decoding application.

I. I NTRODUCTION

The ubiquitous presence of networked computing systems
in consumer electronics has emphasized the importance of
appropriate resource allocation policies: i.e., a limited pool
of computing elements and resources have to be shared
between different contending requests so that each user
receives a specified level of Quality of Service (QoS). This
problem offers important opportunities for the application
of feedback control theory. Generally speaking, the amount
of resource necessary to sustain a specified QoS level for an
application changes in time and a feeback based adaptation
can make the resource management more efficient provided
that an appropriate set of “sensors” be available to collect
measurements.

This type of applications has gained momentum in the
last few years with particular focus on the control of
computer networks and queues [1]. An emerging trend
is the application of feedback control techniques to the
management of shared resources inside the operating system
of a computer. In a modern computer system, even the
simplest one, it frequently occurs that multiple software
programs (tasks) run concurrently competing for the use of
CPU, RAM memory, disks, etc. . . . The operating system is
the component in charge of scheduling the access of tasks
to the shared resources. This activity becomes particularly
challenging when the applications implemented by software
tasks are time-sensitive, as it is the case of a multimedia
application. In this case schedulers have to allocate the
machine resources so that real-time constraints are met.
For many applications real-time constraints aresoft, i.e.,
occasional violations entail only QoS degradations without

any danger for the integrity of the system or for the people
safety. As an example, for a video streaming application
it is not necessary to decode every frame within a fixed
interval as long as fluctuations in the decoding rate do
not overcome the threshold of human perception. In this
context properly designed schedulers offer considerably
better performance than conventional solutions. The most
important feature required to these scheduling algorithms
is to approximate a “fluid” allocation of the resources such
as Resource Reservation (RR) [2] and Proportional Share
[3]: the scheduler can allocate a fraction (bandwidth) of
the shared resources to each task (in the sequel we will
restrict to the problem of CPU allocation). This technology
is not by itself sufficient to solve the problem of QoS
driven CPU allocation to tasks: how should one choose
the bandwitdth allocated to each task ? This choice is
dictated by the execution requirements of each task that
are hardly known beforehand and may dramatically change
in time. This is a strong motivation for the application of
feedback control to adjust the bandwidth based on QoS
measures. It is noteworthy that for a feeback solution to be
acceptable in this context, its introduced overhead must be
negligible as compared to the normal bookkeeping activities
of the scheduler. A first proposal of this kind for time
sharing systems dates back to 1962 [4]. More recently,
feedback control techniques have been applied to real-time
scheduling [5], [6], [7], [8] and multimedia systems [9],
[10]. Owing to the difficulties in modelling schedulers as
dynamic systems, these works could offer little analytical
evidence of the effectiveness of their approaches. The use
of scheduling algorithms such as the RR allows us to fill in
this gap. Based on a precise dynamic model for the system’s
evolution, a switching PI strategy was developed [11] and
formal proofs on the stability of the resulting schemes were
offered in [12]. In [13] ad-hoc nonlinear feedback laws
were proposed for the system. The sequence of execution
times for a task plays the role of a noise term, which is
characterised in terms of its worst case effects on the system
stability. A significant drawback with this approach is that
any knowledge on the stochastic properties of the execution
times process is dissipated. On the other hand, it frequently
occurs that such a knowledge is available (e.g., the decoding
time of a MPEG player) and that it can be leveraged to
improve the system’s performance. To achieve this goal,
the control design problem is best attacked in the stochastic
domain.

The first goal of this paper is to show possible feedback
design laws based on the theory of stochastic control. The

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/84495537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

second goal is to show a stability criterion that can be
applied to assess the stability of the closed loop system
in a stochastic sense, i.e., the existence and uniqueness
of a steady state invariant probability distribution for the
controlled quantity. The technological feasibility of the
proposed approach by means of a minimally invasive set
of modifications to the Linux Operating System is shown
in [14].

II. PROBLEM DESCRIPTION

In this section we describe the problem of QoS control in
soft real-time systems. Before getting into the presentation
of the problem, we need to quickly introduce some basic
concepts and terminology concerning real-time scheduling.

A. Basic definitions on real-time processor scheduling

A real-time computing system consists of a set of concur-
rently running software activities (tasks){τ (i), i = 1, .., n}.
Each taskτ (i) is a program consisting of a stream of jobs
(execution instances){J (i)

k }k=1,2,.... The kth job J
(i)
k of

the ith task arrives (i.e. becomes executable) at timer
(i)
k

and requires a variable computation timee
(i)
k ; the finishing

time of J
(i)
k , depending on the scheduling performed by

the Operative System (O.S.), is denoted asf
(i)
k . For real-

time taks, each jobJ (i)
k is associated a deadlined(i)

k ,

which is said to berespectedif f
(i)
k ≤ d

(i)
k , violated

otherwise (f (i)
k > d

(i)
k ). While in the hard real-time setting

all deadlines must be respected, for soft real-time tasks
occasional deadline misses can be tolerated provided that
this deviation be kept in check. We will be more formal on
this issue later. For the scope of this paper, we will consider
only periodically activated tasks, i.e.r(i)

k = kT (i), where
T (i) is the task’s activation period. Moreover, for the sake
of simplicity, the deadline of a job will be set equal to the
activation instant of the next one:d

(i)
k = r

(i)
k+1.

A quantity of interest for some real-time applications
based on periodic tasks is the so calledjitter on the finishing
time, defined as the differenceF (i)

k = f
(i)
k − f

(i)
k−1 − T (i).

A small value of the jitter allows one to consider the task
as a fixed delay element and to use this information in the
design of the overall system.

B. Resource Reservation scheduling

As multiple tasks run on the same CPU, a scheduling
algorithm is needed to mediate contending requests of
execution. The present work is focused on the analysis and
control of a set of tasks scheduled according to a class
of algorithms known as Resource Reservation (RR), first
proposed in [2] then developed in [15], [16], [17], [18].
Using such techniques, each taskτ (i) is associated a pair
[Q(i), P (i)] meaning that the task is guaranteed abudget
of Q(i) execution time units for every allocation period
P (i), whenever in need. Thus the ratiob(i) , Q(i)

P (i) is the
utilisation fraction of the CPU allocated to the task. The
allocation periodP (i) may be arbitrarily chosen in RR

techniques; for reasons explained below we will assume
small values ofP (i) as compared to the task periodT (i).
Under this assumption it is possible to show that RR
scheduling approximates a fluid allocation of the processor,
i.e. one where each task executes as if on a dedicated slower
processor having speed equal to a fraction (equal tob(i)) of
the real CPU. In order to illustrate this concept, define the
virtual finishing timev(i)

k as the time a jobJ (i)
k would finish

if it were running on a dedicated processor of speedb(i)

times the real CPU speed. It is possible to prove [17] that, if
the RR paradigm is strictly applied (i.e. a taskτ (i) receives
exactly Q(i) ticks everyP (i) even when more processor
time could be available), then the relation

v
(i)
k − δ(i) ≤ f

(i)
k ≤ v

(i)
k + δ(i) (1)

holds, whereδ(i) , (1− b(i))P (i), showing that a resource
reservation scheduler approximates a fluid allocation up
to a granularity dictated by the choice ofP (i). Based on
this result, the dynamic model used for control design in
this paper assumes a fluid allocation. Furthermore, this
abstraction allows us to apply the results shown in this
paper also to other classes of scheduling algorithms that
approximate a fluid model, such as Proportional Share
(PS) [3]. Note also that, from a practical standpoint,P (i)

cannot be chosen too small, because of the higher overhead
introduced for the frequent context switches between the
tasks.

Clearly, whenever multiple tasks populate a processor,
the total sum of the bandwidthsb(i) cannot exceed the
processor’s availability of computing power:

∑
i b(i) ≤ 1.

As a matter of fact, depending on the efficiency of the
scheduling algorithm, the total availability of bandwidthU
may in general be lower than1 :

∑
i b(i) ≤ U ≤ 1.

C. Quality of Service metrics and dynamic model

In order to properly adjust the scheduling parameters
(e.g. Q(i) and P (i)) of each task, it is of paramount
importance to quantify the Quality of Service (QoS) that
the task experiences during its execution. Since in our
model we tolerate occasional violation of the deadlines, it
is reasonable to use, as QoS metrics, thescheduling error
(s.e.) defined as the difference between the finishing time of
a job and its deadline, measured relatively to the task period.
Referring to the fluid allocation assumption, the definition

of this quantity isε
(i)
k = v

(i)
k −d

(i)
k

T (i) . An ideal bandwidth

allocation would be one for whichε(i)
k = 0 for all k and

i. Indeed, bothε
(i)
k > 0 and ε

(i)
k < 0 are undesirable

situations, since in the former case the job does not respect
its timing constraint, whilst in the latter one it is given more
bandwidth than strictly required, stealing resources to other
possible activities into the system. Concerning the problem
of controlling jitter fluctuations, instead, it is easy to see
that, if the evolution ofε(i)

k is constrained ina small interval,
then also the jitter is bounded in a small interval.

For notational convenience, the task superscript(i) will
be dropped from now on whenever all cited quantities



3

refer to the same task. Furthermore, the symbolckwill be
used as a shortand forek/T . The dynamics ofεk will be
characterised by a functionSC(·), highlighting dependence
of the s.e. value at the next step from the s.e. at the current
step, the allocated bandwidth for the next job execution,
and its actual computation time. This may be formalised as
[19]

εk+1 = SC(εk, ck, bk) = s(εk) +
ck

bk
− 1, (2)

wheres(·) is defined ass(x) , x if x > 0 and s(x) , 0
otherwise.

D. Stochastic model

In this subsection a stochastic evolution model is in-
troduced for the system under consideration, where all
time-varying quantities of interest introduced so far are
modeled as discrete-time stochastic processes (s.p.), with
the time instants at which a task evolution is observed being
equal to the job finishing times{fk}. Thus, the following
notation will be used in the remind of this section: given a
discrete-time stochastic process{Xk}, fXk

(x) andFXk
(x)

will denote, respectively, the probability density function
(p.d.f.) and the cumulative density function (c.d.f.) for the
stochastic variable (s.v.)Xk; µXk

and σXk
will denote,

respectively, the expected value and the standard deviation
of Xk. Finally, Pr{·} will denote the probability operator,
which applied to an event outputs the probability that the
event occurs, andE[·] denotes the expectation operator,
which applied to a s.v. outputs its expected value.

For each task, given the impossibility of exact predictive
knowledge of the job execution times, the sequence{ck}
is modeled as the discrete-time, continuous-state s.p.{Ck},
where thekth job execution time is modeled as the s.v.Ck.
The control action can be modeled by a functionB(·) that,
at each stepk, assigns the bandwidth to be reserved for
the next job depending on the current system state and the
sequence of past job execution times. Any case, the assigned
value cannot be greater than a prefixed limitBH ∈]0, 1] that
is allocated on a per-task basis:

bk = B(εk, BH , {ck−1, ck−2, . . . }). (3)

Defining the initial scheduling error asε1 , 0, and
considering the dynamic evolution in Equation 3 and 2,
the sequence of bandwidth and scheduling error values
are modeled as stochastic processes as well, respectively
denoted as{Bk} and{Ek}. Evolution of the s.e. process is
stated in terms of the relation between stochastic variables
given by theSC function introduced above:

Ek+1 = SC(Ek, Bk, Ck) = s(Ek) +
Ck

Bk
− 1. (4)

The stochastic properties of the process{Ck} are applica-
tion specific, depending on the type of required computation
activities. For example, an MPEG decoder is modelable by
a s.p. with a different type and parameters than a control
application. Thus, feedback mechanism to use is to be
calibrated on specific classes of applications. A simple case

of interest that will be considered later for the purpose of
stochastic staiblity is the one where the stochastic variables
{Ck} are independent and identically distributed (i.i.d.).

E. Stochastic evalutation of control performance

As far as the current work is concerned, quality of service
is defined in terms of the scheduling error experienced by
a task. Given the representation of the s.e. evolution as a
s.p., the QoS experienced by a task can be defined in terms
of the stochastic properties of that process. Specifically, the
first order probability density functionfEk

(·) may be used
to make qualitative comparisons among different control
algorithms, by plotting the resulting distributions on the
same graph. A precise assesment of the effectiveness of an
algorithm in controlling the s.e. evolution may be done on
the basis of the achieved s.e. expected valueµEk

= E [Ek]
and standard deviationσEk

= E
[
(Ek − µEk

)2
]
. Another

metrics of interest can be defined in terms of the probability
that the s.e. resides within a prefixed intervalI near the
origin Pr {Ek ∈ I} . Such metrics, generally dependent on
the time subscriptk, will assume particular relevance for
k → ∞ whenever the resulting process reaches stochastic
equilibrium, representing the expected behaviour of the
closed loop controlled system in the long run.

III. C ONTROL SCHEMES

This section explores control schemes dictated by dif-
ferent requirements on the closed loop system behaviour.
The primary purpose of each controller is ensuring that the
experienced QoS does not degrade below acceptable values;
in terms of the scheduling error this means thatεk should
never be too positive (meaning a severe violation of the
deadline). In addition, we aim at an efficient utilisation of
the CPU: the bandwidthbk allocated to each job should
be minimal to make room for other applications. The
different control schemes presented below achieve different
tradeoffs between these two requirements. Their behaviour
is specified in terms of the stochastic properties of the
system’s expected evolution for the next step, given current
state and the predicted behaviour of the processCk. The
structure of the resulting controllers is comprised of two
blocks (see Figure 1): a block predicting information on
the evolution ofCk (predictor) and a block implementing
a feedback law based on the measured value ofεk and on
the information received from the predictor.

Generally speaking, the stochastic requirements will be
formulated below as conditoned probabilities and expecta-
tions, where the conditioning event is the knowledge of the
system past evolution that the controller uses. In particular,
if the process{Ck} is correlated, a good prediction is based
on the knowledge of the past samples of{Ck}. In order to
formalise this concept, we first introduce the vectorzk of
past computation times occurred during a task evolution up
to a statek as zk , [ck−1, ck−2, . . . ], and its stochastic
counterpartZk , [Ck−1, Ck−2, . . . ]. Then, we observe
that, in case of correlated{Ck}, the expected behaviour
of the input process, as well as the expected QoS achieved



4

Fig. 1. Control loop. Assigned bandwidth depends on the current s.e.
value and on the predicted behaviour of the input process.

at the next step, are not only conditioned by the current
s.e. valueεk, but also (potentially) by the entire input
process history represented byzk, and known (in principle)
to the controller. This is translated in conditioning all
involved probability and expectation operators used below,
for the purpose of stating requirements and properties of the
various controllers, not simply to the{Ek = εk} event, but
to the joint {Ek = εk ∧ Zk = zk} event. Note that, in the
simple case of independent{Ck} process, the past history
zk does not carry any valuable information. For notational
simplicity and without loss of generality, in the discussion
below, we will refer to this simpler case.

Clearly, conditioned stochastic properties ensured by the
different control schemes are not generally related to the
unconditioned properties. The latter can only be assessed
on the invariant steady state distribution, if it exists. This
topic will be discussed in the next section.

A common requirement for all control schemes – implic-
tily assumed in the discussion below – is that the bandwidth
chosen by the controller cannot exceed a maximum value
BH . Furthermore, all control schemes have been designed
with complexity in mind: the computations that take place
within the OS before a scheduling decision need to be
reduced to the bare minimum.

A. Stochastic invariant set

In the first control scheme, it is assumed that, at step
k, the predictor provides an interval[hk,Hk] whereCk is
expected to fall with a high probability. The control goal is
constraining the evolution of the s.e. within a fixed interval,
called invariant set I , [−e,E], with e ∈ [0, 1[, E ∈
[0,+∞[, whenever the input process respects the prediction.
It is possible for the s.e. to occasionally evolve outside
of the invariant set, due to wrong predictions. Different
tradeoffs can be achieved by different choices ofe andE.
In particular, if the only concern is the probability of a
deadline miss, one can simply setI = [−1, E], whereas a
narrow I corresponds to requiring small jitter fluctuations
so that the assigned bandwidth remains always close to the

strictly necessaryCk. In stochastic terms, this goal can be
formulated as follows.

Requirement 1:Given a s.e. evolution rangeI and a
probability p, at each stepk with Ek = εk ∈ I, guarantee
that Pr{Ek+1 ∈ I | Ek = εk} ≥ p.
The following result provides a family of control laws
meeting this requirement.

Proposition 1: If, at each stepk, an interval[hk,Hk] is
known to the controller, such thatPr{Ck ∈ [hk,Hk]} ≥ p,
then Requirement 1 is satisfied by any controller choosing
a bandwidth value in the rangeB(ε) ∈[

Hk

1 + E − s(εk)
, min

{
hk

1− e− s(εk)
, BH

}]
, (5)

under the assumption thate + hk

Hk
E ≥ 1 − hk

Hk
andBH ≥

Hk.
Proof: Pr{Ek+1 ∈ [−e,E] | Ek = εk} = Pr{bk[1 −

e− s(εk)] ≤ Ck ≤ bk[1 + E + s(εk)]}. Choosingbk in the
range dictated by Equation 5, which is guaranteed to be not
empty under the stated assumptions (see [13, Theorem 1]),
impliesbk[1−e−s(εk)] ≤ hk andbk[1+E+s(εk)] ≥ Hk,
thus:Pr{bk[1− e− s(εk)] ≤ Ck ≤ bk[1 + E + s(εk)]} ≥
Pr{hk ≤ Ck ≤ Hk} ≥ p.
Clearly, with the introduced controller, arecovery policy
must be undertaken when the state falls outside of the in-
variant setI = [−e,E]. A reasonable policy is a minimum
time strategy; it corresponds to choosing, forεk > E, the
maximum available bandwidth that preservesεk+1 ≥ −e
wheneverCk ≥ hk. This can be formulated as:B(εk) ={

min
{

BH , hk

1−e−εk

}
if E < εk < 1− e

BH if εk ≥ 1− e
(6)

The just introduced control law is equal to the one intro-
duced in the context of deterministic systems in [13], where
also necessary and sufficient conditions for its existence are
stated, along with a detailed discussion of its properties.

The prediction algorithm for constructing the interval
[hk,Hk] is application specific. As an example, for a video
decoder, it could be possible to perform a quick estimation
of the upper and lower bounds for a frame decoding time by
looking at the frame structure before starting the decoding
itself. For independent, identically distributed (i.i.d.)Ck,
such interval does not depend onk.

B. Stochastic dead-beat

The invariant-based technique presented above provides
the user with a relatively fine control of the system per-
formance by different choices of the interval extremes.
However, this freedom for some applications can also be
a source of unrequired complexity in the parameter tuning
and in the design of the predictor. In some cases, an effective
goal can just be limited to the control of the next s.e.
expected value, as formalised in the following.

Requirement 2:Fixed a target s.e. valueε∗, guarantee
that E[Ek+1 | Ek = εk] = ε∗.
The following yields a control law satisfying such a require-
ment.



5

Proposition 2: If, at each stepk, the expected value
µCk

of the next job execution timeCk is known, then
Requirement 2 is satisfied by a controller settingB(εk) ={

µCk

1−ε∗−s(εk) if εk < 1− µCk

BH

BH if εk ≥ 1− µCk

BH

. (7)

Proof: The relation 4 directly impliesE[Ek+1 | Ek =
εk] = s(εk)+ E[Ck]

B(εk)−1. By imposing the expected next s.e.
value to be equal to the target valueε∗, it is easily obtained

B(εk) =
µCk

1− ε∗ − s(εk)
.

Considering the upper bound constraint on the set of
possible bandwidth values, the proposition statement easily
follows.
A particular case of interest is obtained by settingε∗ = 0 in
Equation 7, achieving, at each step, a null expected schedul-
ing error for the next job. As compared to the invariant
based controller, the SDB requires a looser knowledge of
the input stochastic process, i.e. just theµCk

parameter.

C. Optimal cost

One of the most effective way of trading performance
(QoS) vs command cost (bandwidth) is by formulating
the control problem as an optimal control problem. Taking
inspiration from the dynamic programming techniques [1,
pgg. 536-542], it is possible to define, for each state
transition, acost function, depending on the system state at
the next step and the bandwidth allocated at the current step
W (εk+1, bk). Then, the control law chooses the bandwidth
so as to optimise the cost function.

As an example, we have analysed a cost function that
depends linearly from the assigned bandwidth value, and
quadratically from the achieved value of the s.e. at the next
step, where a weight factorγ ∈]0, 1[ is used for tuning the
importance given to the s.e. deviation with respect to the one
given to assigning high bandwidth values. Such cost optimal
requirement on the stochastic evolution of the system may
be formalised as follows.

Requirement 3:Given the cost functionW (εk+1, bk) =
γε2

k+1 + (1 − γ)bk, with γ ∈]0, 1[, associating, at each
stepk, a cost to the next system transition, guarantee that
the expected value of such costE [W (Ek+1, b) | Ek = ε] ,
conditioned to the current system state, be minimum.
This problem may be solved in closed form, as reported in
the following result.

Proposition 3: If the mean valueµC and the standard
deviationσC of the next job execution timeCk are known,
the bandwidth assignmentB(ε) satisfying Requirement 3,
subject to the constraintB(ε) ≤ BH , is given by the
formula

B(ε) = min
{

3
√

ρ + δ(ε) + 3
√

ρ− δ(ε), BH

}
ρ ,

γ(σ2
C + µ2

C)
(1− γ)

δ(ε) ,

√[
γ(σ2

C + µ2
C)

1− γ

]2

+
(

2
3

µCγ

1− γ
[1− s(ε)]

)3

.

Proof: The expected total cost (conditioned toEk = ε,
omitted for notational convenience), under assignment of
bk = b, results:E [W (Ek+1, b)] =

= γE

[(
s(ε) +

Ck

b
− 1

)2
]

+ (1− γ)b =

= γ

{
[s(ε)− 1]2 +

σ2
C + µ2

C

b2
+ 2

µC [s(ε)− 1]
b

}
+ (1− γ)b

Searching the minimum ofE [W (Ek+1, b)] leads to:

∂

∂b
E [W (ε, b)] = 2γ

{
µC [1− s(ε)]

b2
− σ2

C + µ2
C

b3

}
+1−γ = 0

b3 − 2γµC [s(ε)− 1]
1− γ

b− 2γ(σ2
C + µ2

C)
1− γ

= 0

The final solution is obtained using the well known formula
for polynomials of third degree. It is also possible to verify
that this value ofb corresponds to a minimum of the
expected costE [W (ε, b)] . Proof of this fact can be found
in [20] and is omitted for the sake of brevity.

Remark 1:The above shown formula can also be used
in the case of imaginaryδ(ε), by making computations in
the complex domain, and with a proper computation of the
two cubic roots, so that in the final sum the two imaginary
parts cancel each other.

The controller based on this approach is the most flexible
among the presented schemes: different tradeoffs between
QoS and the applied bandwidth are simply decided by
choosing a value forγ. However, required computations
are quite involved and their viability inside the OS is still
under evaluation.

IV. STOCHASTIC STABILITY OF THE PROPOSED

CONTROLLERS

When evalutating correctness of the QoS control strate-
gies introduced above, two properties are of great interest:
stochastic stability, i.e., the existence and uniqueness of
an invariant probability function for{Ek} when k → ∞,
and ergodicity of the resulting process. In the following,
we focus on the simple case of i.i.d. job execution times.
Extensibility of some of the exposed concepts to the more
general case of not i.i.d. input process, especially in those
cases in which the application domain allows the correlated
input process to be tightly modeled as an independent
process filtered through a linear system, is still work in
progress and needs further investigation.

This section, after expliciting the Markov operator asso-
ciated to the system evolution, provides two general criteria
stating sufficient conditions for the existence and uniqueness
of an invariant p.d.f. for the controlled system. Such criteria
are directly applicable to all of the controllers introduced
so far. Then, some properties of the stochastic equilibrium
are stated as well.



6

A. Basic definitions and Markov operator

In this section, we will use terminology and results taken
from [21], comprising the concepts of Markov Chains (MC)
as defined in section 2.2, and weak-Feller property of a MC,
as defined in (2.2.2). Such definitions are not reported here
for the sake of brevity.

Let fk(·) represent the p.d.f. of the scheduling error at
stepk, and letf0(·) be the scheduling error p.d.f. at step
0. The system may be associated a Markov operatorP :
D → D, where D denotes the set of probability density
functions on the[−1,+∞[ range, such thatfk+1 = Pfk.
When the system is controlled by an appropriate (this will
be discussed more deeply later) lawB(·), it is expected that
the function sequence{fk} converges to the invariant p.d.f.
f = limk→+∞ fk, independent fromf0(·), and possessing
the fundamental property of being the fixed point of theP
operator, i.e.f = Pf.

The Markov operator for our system can be easily
explicited by considering the probabilityfk+1(y) dy =
Pr{y ≤ Ek+1 < y + dy}, the relation 4 between the
stochastic variablesEk, Ck,Ek+1, and conditioning to all
possible values of the scheduling error at the current step,
leading to

Pf(y) =
∫ +∞

−1

fCk
[B(x)(1 + y − s(x))]B(x)f(x)dx.

(8)
Another quantity of interest, when dealing with properties
of our system at stochastic equilibrium, is thestochastic
kernelassociated to the operatorP, i.e. the functionK(x, y)
such that:Pf(x) =

∫
K(x, y)f(y)dy. From the explicit

representation ofP of Equation 8, it easily follows

K(x, y) , fC [B(y)(1 + x− s(y))]B(y). (9)

B. Sufficient conditions for the existence and unicity of an
invariant p.d.f.

Theorem 1:Consider the system defined by Equation 4,
evolving under the action of an input process{Ck} i.i.d., for
which the mean value and standard deviation exist, under
the control of a generic control functionB(·) satisfying the
following requirements:
(b1) B(·) is continuous
(b2) B(·) is upper bounded byBH > µC , and ∀ε ≥ εH ,
B(ε) = BH

(b3) B(·) is lower bounded by aBL > 0.
Then, an invariant p.d.f. exists for the scheduling error
evolution.

Proof: The proof is given applying theorem 7.2.4 in
[21]. This theorem states that sufficient conditions for the
existence of an invariant probability function are: (a) the
MC respects the weak-Feller property, and (b) fixed an ar-
bitrary, continuous, strictly positive functionf0(·), with the
property thatlimx→∞ f0(x) = 0, a nonnegative numberb
and a nonnegative measurable functionV (·) not identically
null exist, s.t.∀x, E[Ek+1 | Ek = x] ≤ V (x)− 1 + bf0(x).

(a). As shown in the note at page 58 of [21], a MC of
the form Ek+1 = F (Ek, Ck), with {Ck} i.i.d., is weak-
Feller if F (·, y) is continuous∀y. In our case,F (x, y) ≡
s(x)+ y

B(x)−1 is always continuous, under the assumptions
that theB(·) function be continuous and strictly positive,
as from the assumptions.

(b). Define V as V (x) , x2. Then, E[V (Ek+1) |
Ek = x] = E

[
(s(x) + Ck

B(x) − 1)2
]

= [s(x) − 1]2 +
µ2

C+σ2
C

B2(x) + 2[s(x) − 1] µC

B(x) ≤ x2 − 1 + bf0(x), where last
inequality must be verified. For positive values ofx, we
have:2(1 − x)

(
1− µC

B(x)

)
+ µ2

C+σ2
C

B2(x) ≤ bf0(x). Consider

the valuex∗ defined asx∗ , max{εH , 1}. It is clear
that, if µC < BH , ∀x > x∗, the left member becomes
negative, and diverges to−∞ as x → ∞. Thus, due
to the strictly positive lower boundBL > 0 on B(x),
a b value satisfying the inequality always exists:b ≥
maxx∈[−1,x∗]

{
1

f0(x)

[
2(1− x)

(
1− µC

B(x)

)
+ µ2

C+σ2
C

B2(x)

]}
.

For negative values of x, instead, we have:
2

(
1− µC

B(x)

)
+ µ2

C+σ2
C

B2(x) ≤ x2 + bf0(x). As

x ∈ [−1, 0], it is sufficient to take: b ≥
maxx∈[−1,0]

{
1

f0(x)

[
2

(
1− µC

B(x)

)
+ µ2

C+σ2
C

B2(x) − x2
]}

.

Thus, the finalb value is the maximum between the two
cases.

Remark 2:Actually, the just stated theorem proves ex-
istence of an invariantprobability measure, as defined in
section 1.2.1 of [21], and not of a probability density
funtion.For the sake of simplicity, measures have not been
used in this work, even if a formally correct statement of
the found results should make use of them.
Given the p.d.f. of an input process modeling a real ap-
plication, and a control functionB(·), the stated result
allows to check the existence of an invariant p.d.f. for the
closed loop system dynamics. This is not all what one
may want to check. In fact, theoretically, the sequence
{fk} may converge to an invariant p.d.f. only when starting
from some states, and it may not converge at all when
starting from other states. Furthermore, multiple invariant
p.d.f. functions may exist for the system under examination,
each one reached starting from a different set of starting
states. The following result provides a criterion that allows
to assess unicity of the invariant p.d.f., provided that further
assumptions on the input process are validated.

Theorem 2:Suppose, in addition to the assumptions
made in 1, that the input process p.d.f.fC(·) is strictly
positive in an interval[a, b] such thata < BL < BH < b,
and is null if c < a. Then, a unique stationary p.d.f. exists
for the s.e. evolution, and the system is ergodic.

Proof: Due to 1, a stationary p.d.f. exists. Then, it is
sufficient to apply Proposition 4.2.2 in [21], stating that if
a MC is irreducible, and admits an invariant p.d.f., then the
invariant p.d.f. is unique and the MC is ergodic. In order
to prove irreducibility, we have to show that the expected
number of visits to any setA (with non null measure) is
positive, given any start statex, which may also be written
as: ∀x ∈ [0,+∞[, ∀A s.t. φ(A) > 0,

∑∞
n=1 Pn(x,A) >

0, with the transition probability functionP given by:



7

P (x,A) =
∫

A
K(y, x)dy. We will prove that, starting

from any statex, there exist a sequence of expanding
ranges{Rn ≡ [an, bn]} of y values whereKn(y, x) is
certainly strictly positive, and that this sequence converges
to the entire state space, forn → ∞. In fact, K(y, x) =
fC [B(x)(1 + y − s(x))]B(x), and B(x) ≤ BH implies
B(x)(1+y−s(x)) ≤ BH(1+y−s(x)) ≤ b which is implied
by anyy ≤ b

BH
+ s(x)− 1 > s(x). Furthermore,B(x) ≥

BL implies B(x)(1 + y − s(x)) ≥ BL(1 + y − s(x)) ≥ a
which is implied by anyy ≥ a

BL
+ s(x)− 1 < s(x). This

means thata1 = s(x)− (1− a
BL

), b1 = s(x) + ( b
BH

− 1)];
an+1 = s(an)−(1− a

BL
), bn+1 = s(bn)+( b

BH
−1), and the

upper bound of each set grows of a value( b
BH

−1) > 0 for
each set in the sequence. Proof if concluded by observing
that the region{ε < −(1 − a

BL
)} is never reachable, in

any number of steps, thus it is sufficient to exclude it from
the state space, and also from the possiblex values, in the
proof. Thus, on the remaining range[−(1− a

BL
),+∞[, the

MC is completely reachable, thus it is irreducible.
Using the above criteria it is immediate to show the follow-
ing result.

Corollary 1: The SDB and the cost optimal controllers
introduced above guarantee existence and uniqueness of
an invariant probability function. Furthermore, the resulting
{Ek} process is ergodic.

Concerning the invariant-based control, a degree of free-
dom has been left on the choice of the bandwidth value,
which may be any in the range dictated by Equation 5,
whenever the current s.e. is inside the invariant. Thus,
the just cited stability criteria may be applied once any
continuous function has been chosen, with the constraint
of connecting continuously to the recovery policy of Equa-
tion 6.

Remark 3:Conditions stated in theorem 2 are overly
conservative. They can be relaxed still preserving irre-
ducibility of the MC and, eventually, unicity of the invariant
distribution. This topic needs further investigation.

C. Properties at the stochastic equilibrium

Proposition 4: Consider the stochastic system defined by
Equation 4 evolving under the control of a generic function
B(·) upper-bounded byBH ≤ 1, and for which the job
execution times are i.i.d. stochastic variables. Suppose an
invariant p.d.f. f exists for the system, and define the
expectation operatorEf as Ef [g(X)] ,

∫
g(x)f(x)dx. If

both µf , Ef [E ] =
∫

xf(x)dx and E
[

1
B(Ek)

]
are finite,

thenBH ≥ µC .
Proof: Equation 4 impliesE [Ek+1] = E [s(Ek)] +

E
[

Ck

B(Ek)

]
− 1 = E [s(Ek)] + E [Ck]E

[
1

B(Ek)

]
− 1, where

the last equality holds because of the stochastic indepen-
dence betweenCk, the next job execution time, andEk,
the current job s.e. value. Under the theorem assumptions,
and considering a sufficiently largek for which the system
has reached the stochastic equilibrium, the p.d.f. ofEk+1

must be the same as the p.d.f. ofEk, leading to µf =
Ef [s(Ek)] + µCEf

[
1

B(Ek)

]
− 1 ≥ µf + µC

BH
− 1, from

which the stated proposition easily follows.

Proposition 5: Given assumptions of Proposition 4, if
∀ε ≤ 0, B(ε) = BL, andf leads to a positive probability
of negative s.e.p ,

∫ 0

−1
f(x)dx > 0, then the following

conditions hold

p

BL
+

1− p

BH
<

1
µC

, BH > µC , p <
BL

µC
(10)

Proof: Equation 4 implies: E [Ek+1] =
E [s(Ek)] + E

[
Ck

B(Ek)

]
− 1 = E [s(Ek)] +

E [Ck]E
[

1
B(Ek)

]
− 1 =

∫ +∞
0

xf(x)dx +

µC

[∫ 0

−1
1

BL
f(x)dx +

∫ +∞
0

1
B(x)f(x)dx

]
− 1 ≥∫ +∞

0
xf(x)dx + µC

BL
p + µC

BH
(1 − p) − 1. On

the other hand, at the stochastic equilibrium,
E [Ek+1] =

∫ 0

−1
xf(x)dx +

∫ +∞
0

xf(x)dx holds, thus
it follows∫ 0

−1

xf(x)dx ≥ µC

BL
p +

µC

BH
(1 − p) − 1.

Now, from the last theorem condition
∫ 0

−1
f(x)dx > 0,

immediately follows
∫ 0

−1
xf(x)dx < 0, directly leading to

the first proposition assertion. Furthermore, it is possible to
write: 0 > µC

BL
p+ µC

BH
(1−p)−1 ≥ µC

BH
p+ µC

BH
(1−p)−1 =

µC

BH
− 1, leading to the second assertion. Finally, rewriting

this as 1 − µC

BL
p > µC

BH
(1 − p) ≥ 0, the third and last

assertions are verified.
Note 1: The just stated proposition gives guidelines on

the choice of theBH andBL parameters, within the control
law. In fact, first relation in Equation 10 dictates the upper
bound to the probability of negative s.e. at the stochastic
equilibruim, onceBL, BH andµC are assigned.

V. EXPERIMENTAL RESULTS

In this section we report experimental results gathered on
a real Linux system. Experiments are based on a modified
version of the Linux scheduler implementing a resource
reservation policy, based on a slightly modified version of
the Constant Bandwidth Server algorithm found in [22].
Implementation of such QoS support into the Linux kernel
has mainly been carried on as part of the OCERA project,
a EU funded project. The base modifications to the original
Linux kernel are based on a loadable module that, once ac-
tivated into the kernel, intercepts scheduling-related events
allowing the execution of further computations. Further
architectural details can be found in [14].

In order to prove effectiveness of the proposed approach
in controlling the QoS levels experienced by a user, we
focused on the context of multimedia applications, and
applied our feedback based scheduling mechanism to the
Xine1 MPEG video player. The original application has
been modified in order to allow us to apply the feedback
based QoS control only on the video decoding thread, which
is the most critical part of the player from a scheduling
standpoint, due to the potentially high dynamic variations
on the computation demand. All experiments shown in this

1More information can be found at the URL: http://xinehq.de.



8

Fig. 2. Scheduling error experienced with a bandwidth statically fixed to
bk = 0, 155.

Fig. 3. Scheduling error experienced under the action of a SDB controller
with a saturation value of 18%.

section have been done using an AMD Athlon(tm) XP
1800+ based platform, running the Linux OS with kernel
2.4.18.

In the first experiment, we highlight the poor quality
that is achieved by allocating a constant bandwidth to the
video decoder thread. In fact, for the execution of a movie
that requires an average CPU bandwidth of about 15,5%,
a static allocation of a bandwidth equal to 15.5% results
in unacceptable occasional degradations of the experienced
QoS levels during the play, due to temporary increases
in the computation demand of the decoder caused by too
quickly moving scenes. This is highlighted in Figure , where
a time-period has been shown where the scheduling error
experiences high positive deviations.

On the other hand, with a static bandwidth allocation of
about 18%, the decoder behaves much better during the
play, but the decoding thread most times uses a bandwidth
that is much higher than strictly required, resulting in an
unneeded steal of computation power to other possible
applications. This is reflected in a scheduling error most
times being negative and high in absolute value (not shown
for the sake of brevity).

We activated feedback based scheduling of the decoding
thread, when playing the same movie. The controller we
used embedded a predictor based on 3 independent moving
averages, each based on 4 samples, to predict the next
execution time, and a dead-beat controller (withε∗ = 0),
with a saturation value ofBH = 18%. This resulted
in a movie played substantially as fluidly as with the
static allocation of 18%, but an average allocation of the
bandwidth of 16% during play. Figure 3 shows the evolution
of the s.e. under the action of the feedback based controller,
causing the scheduling error to quickly recover from large
deviations, and its evolution remaining constrained in a
more strict interval.

REFERENCES

[1] C. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

[2] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves
for multimedia operating systems,” Tech. Rep. CMU-CS-93-157,
Carnegie Mellon University, Pittsburg, May 1993.

[3] K. Jeffay, F. SMith, A. Moorthy, and J. Anderson, “Proportional share
scheduling of operating system services for real-time applications,”
in IEEE Real Time System Symposium, (Madrid, Spain), December
1998.

[4] F. J. Corbato, M. Merwin-Dagget, and R. C. Daley, “An experimental
time-sharing system,” inProceedings of the AFIPS Joint Computer
Conference, May 1962.

[5] T. Nakajima, “Resource reservation for adaptive qos mapping in
real-time mach,” inSixth International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS), April 1998.

[6] J. Regehr and J. A. Stankovic, “Augmented CPU Reservations: To-
wards predictable execution on general-purpose operating systems,”
in Proceedings of the IEEE Real-Time Technology and Applications
Symposium (RTAS 2001), (Taipei, Taiwan), May 2001.

[7] B. Li and K. Nahrstedt, “A control theoretical model for quality of
service adaptations,” inProceedings of Sixth International Workshop
on Quality of Service, 1998.

[8] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and
M. Marley, “Performance specifications and metrics for adaptive real-
time systems,” inProceedings of the 21th IEEE Real-Time Systems
Symposium, (Orlando, FL), December 2000.

[9] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole, “A feedback-driven proportion allocator for real-rate
scheduling,” inProceedings of the Third usenix-osdi, pub-usenix, feb
1999.

[10] L. Abeni and G. Buttazzo, “Adaptive bandwidth reservation for
multimedia computing,” inProceedings of the IEEE Real Time
Computing Systems and Applications, (Hong Kong), December 1999.

[11] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
reservation-based feedback scheduler,” inProc. of the Real-Time
Systems Symposium, (Austin, Texas), November 2002.

[12] L. Palopoli, L. Abeni, and G. Lipari, “On the application of hybrid
control to cpu reservations,” inHybrid systems Computation and
Control (HSCC03), (Prague), april 2003.

[13] L. Palopoli, T. Cucinotta, and A. Bicchi, “Quality of service con-
trol in soft real-time applications,” inConference on Decision and
Control (CDC), 2003.

[14] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli,
“Adaptive reservations in a linux environment,” inTo appear in
Proceedings of RTAS 2004, 2004.

[15] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource
kernels: A resource-centric approach to real-time and multimedia sys-
tems,” in Proceedings of the SPIE/ACM Conference on Multimedia
Computing and Networking, January 1998.

[16] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” inProceedings of the IEEE Real-Time
Systems Symposium, (Madrid, Spain), December 1998.

[17] G.Lipari and S. Baruah, “Greedy reclaimation of unused bandwidth
in constant bandwidth servers,” inIEEE Proceedings of the 12th
Euromicro Conference on Real-Time Systems, (Stokholm, Sweden),
June 2000.

[18] D. Reed and R. F. (eds.), “Nemesis, the kernel – overview,” May
1997.

[19] G. Lipari, G. Buttazzo, and L. Abeni, “A bandwidth reservation algo-
rithm for multi-application systems,” inIEEE Real Time Computing
Systems and Applications, (Hiroshima, Japan), October 1998.

[20] L. Palopoli and T. Cucinotta, “QoS control in reservation-based
scheduling,” tech. rep., Scuola Superiore S. Anna, 2003.

[21] J. Lasserre and O. Hernandez-Lerna,Markov chains and invariant
probabilities, vol. Progress in mathematics: Volume 211. Birkhaeuser
Verlag, second ed., 2003.

[22] L. Abeni, “Server mechanisms for multimedia applications,” Tech.
Rep. RETIS TR98-01, Scuola Superiore S. Anna, 1998.


