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Chapter 1

Introduction

The focus of our work is the uniform convergence of different de la Vallée Poussin
type summations. We encounter this topic in theories of classical and multivariate
trigonometric Fourier series, discrete Fourier series and trigonometric interpola-
tion, and finally algebraic interpolation. There are many similarities but also

some differences in our methods when dealing with these problems.

In this chapter we discuss the historical background of our study, establish the
most important notations and definitions and recall some fundamental results on

which the later chapters (presenting our results) are based upon.

1.1 Summations of trigonometric Fourier series

1.1.1 Preliminaries

Let Cy; denote the linear space of complex valued 27-periodic continuous functions
defined on the real numbers R. It is well known that C5; endowed with the

maximuim norm

[flle = max|f(@)]  (f € Car) (1)

is a complete normed space, i.e. Banach space.
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The complex trigonometric system
gi(r):==¢e9"  (xeR, j€Z:={0,+1,42,...}) (1.2)
is an orthonormal system with respect to the scalar product

1 s
7T/ fgdt (f?gec%r)y
i.e.
(ew,e0) =0ry (K1 E€Z).

Denote by 7, (n € N:={0,1,...}) the linear space of all complex valued trigono-

metric polynomials of degree not exceeding n:

We remark that the set of all trigonometric polynomials 7 := |J, _y 7, form a

nEN

closed system in the space (Car, || - ||o), i-€. the set is closed under linear combi-

nations of its elements and the closure of the set is Cy;.

For a function f € U5, denote the trigonometric Fourier coefficients by

fG) = (Freh = o /.f )it (j e 7).

The trigonometric Fourier series of f is given by

=5 f)es. (13)

JEZ

Denote the n-th partial sum of this series by

= > flele)  (zeR).

j=—n
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We can rearrange this expression to the form

($u0)@) = o7 [ FODua =01

where

D,(t):=1+2 icosjt (t € R), (1.4)

Jj=1

is the so-called one dimensional Dirichlet kernel.

It is clear that S, : Cs, — 7T, is a linear operator with the projection property

(Sng)(x) = g(z) (9 € T,z €R). (1.5)

In the study of convergence, the concept of the operator norm plays an important
role. In this case, for amap 7" : (Car, || - ||oo) = (Cons ||+ ||oo)s the norm of operator
T is defined by
T| = Tl oo
ITI= max IS
[flle<1

Usually we don’t evaluate the exact value of this expression, only give estimations.

We remark that by a simple calculation, or the usage of the Riesz representation
theorem (see [8, IV. 6.3] or [61]) one can establish the well known connection

between the Dirichlet kernel and the norm of .S,,, namely

1 ™
=||Dpll1 = — D, (t)|dt.
15,0 = 1Dl == 5= | 1Du(0)

Consequently, for the operator S, the following result (cf. [5, p. 42]) is known.

Theorem 1.1. For 1 <n € N we have
4
I8l = —5 logn +O(1),
i.e. there exist independent constants cy,co € R such that

4 4
ﬁlogn—i—cl < |ISn]] < ﬁlogn—kcg.
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An important consequence of this statement is that, based on the Banach—
Steinhaus theorem [33, p. 101], the sequence of partial sums of Fourier series
of f does not converge uniformly to f for all f € Cy, (i.e. for some functions
f € Cyr we have lim || f — S, f|loc = 0 as n — 400), since the set of norms of all
operators S, is not bounded. For more details see e.g. [33, Sect. 6.6] or [5, Part

I]. In summary, we have

Corollary 1.2. For some f € Cy, the sequence (S, f) does not converge uniformly,

moreover sup,, ||Sy f|lcc = +00.

We present some solutions to the problem of uniform convergence in the next

subsection.

The previous train of thought shows us that the operator norms and the con-
vergence of a sequence of operators are closely related. Indeed, if we notate by
E,(f) the error of the best approximating trigonometric polynomial, i.e. E,(f) :=
min, e7, ||/ — Pnlloo, then we have the following estimation of error [62, (13.25)]

and [62, Chap. I1.12].
Theorem 1.3.

1 = (Snf)llco < {USnll + 1} - En(f)-

Before we move on, we recall one of the most characteristic properties of the
Fourier series, the so-called Faber-Marcinkiewicz—Berman theorem (see [7, p. 281]
for details), namely that the operator S, has the smallest norm among similar

projection operators.

Theorem 1.4. Let T, : Cs, — T, denote a linear trigonometric projection oper-

ator, i.e. suppose that (T,9)(z) = g(x), (g9 € Tn,x € R). Now we have

% / :(Tngtm — 1)dt = (Sug)(x),

where g, := g(- +t) is the t-translation operator. Moreover

1 Toll = [1:Sll-
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1.1.2 p-sums and the Natanson—Zuk theorem

It is already known that the sequence of the partial sums of Fourier series of f is
not uniformly convergent for all f € Cy,, since the operators in question are not
uniformly bounded. This problem is usually avoided by replacing S, f (n € N)
with a bounded linear operator obtained by applying summation over the Fourier

series (see e.g. Fejér summation).

The general case, i.e. when the summation method is given by a suitable matrix,
was studied (among others) in [9], [19], [35], [48]. In [46] B. Szokefalvi-Nagy
showed that in the special case when the summation is generated by a continuous
function ¢ the uniform convergence of the p-sums of the trigonometric Fourier
series may be characterized by the Fourier transform of the summation function

¢ (see also [5], [25], [47], [58] and [59]).

We investigate a generalization of this idea called p-summation, i.e. a summation

generated by a function ¢ as defined below.

Let us denote by ® the set of functions ¢ : R — R satisfying the following

requirements (cf. [42]):

(i) ¢ is an even function supported in [—1, 1],

(i) lim o(t) = ¢(0) = 1,

t=>0
(iii) the limits
o(ty £0) := lim ()

t—to+0

exist and finite in every ¢y € R,
(iv) for all ¢ € R the function value ¢(t) lies in the closed interval determined by

o(t —0) and ¢(t +0).

The condition (iii) ensures that every ¢ € @ is Riemann integrable on [0, 1].

Indeed, it implies the existence of a sequence of step functions which uniformly
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converges on the interval [0,1] to ¢. Therefore ¢ is continuous except at most

countable points of [0, 1].

Now let us fix a function ¢ € ®. The n-th @-sum of the trigonometric series of

f € Co, is defined as (S2f)(z) :=(S,f)(x) for n =0, and otherwise by

(520 = o (2) e - 3 ¢ (1) fper,

JEL j=—n

(xeR, 1<neN).

The Fourier series S[f] is called uniformly p-summable if the sequence

(1.6)

(S¢ f,n € N) uniformly converges on R as n — +oo. The limit is called the ¢-sum

of S[f]-
It is clear that for every f € (s, and all n € N we have
(Sef)(x / f(t)Dg(x — t)dt,
T or

where
“"t)::1+2§ gp(l>cosjt (t € R),
n
i=1

i.e. S¢f is a trigonometric polynomial of degree not exceeding n and
Sy Cor = Ty,

is a bounded linear operator.

(1.7)

Next we recall another fundamental result, the so-called Natanson—Zuk theorem.

(see [25, p. 168]).

Denote by L!(R) the usual linear space (over R) of measurable functions g : R — R

for which the Lebesgue integral

| lowas
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is finite. The function

+oo
oo = [ lo@lds (g€ L'®) (1)
is a norm on the space L'(R) and the normed space (L'(R), |- || z:(r)) is a Banach

space.

The Fourier transform of the function g € L'(R) is defined by

1) =5 [ et wem), (1.9

:%_OO

It follows immediately from the definition that the Fourier transform of every
function g € L'(R) exists for all z € R. Further, it can be proved that if g € L'(R)
then the Fourier transform ¢ is a uniformly continuous function on R and g(x)

tends to zero as x — £oo (see e.g. [5], Proposition 5.1.2).

The Fourier transform of a function from L!'(R) does not belong to the space

L'(R), in general. For example the function

et ift >0,

0 ift<0

9(x) = (z €R)

this is not true.

Now using definition (1.9), we are in a position to formalize the aforementioned

theorem of Natanson—Zuk.

Theorem 1.5. Suppose that ¢ € ®. Then (S¥f,n € N) uniformly converges to
f on R for every function f € Csy, if and only if the Fourier transform of ¢ is

(Lebesque) integrable on R.
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1.1.3 The de la Vallée Poussin sums and other examples

In this subsection we recall some of the important summations of Fourier series,

and investigate them with the tools described above.

1.1.3.1 Partial sums of the Fourier series

First, let ¢; be the unique element of ® which equals to 1 on [—1,1] (and 0
otherwise). Now by (1.6) it is clear that S¥' = S,,, so we obtain the partial sums

of the Fourier series as a specific ¢-sum. Also

1 +oo 1

. 1 . 1
@1<$) / QOL(t)e_wtdt _ _/ e—zxtdt _ Sin (x c R),

21 J_ 2 )4 T

therefore ¢, ¢ L'(R) and by Theorem 1.5 we obtain the already mentioned nega-

tive result of Corollary 1.2.

1.1.3.2 Fejér means of Fourier series

The so-called Fejér sums of the Fourier series holds a historical importance as
being one of the first methods which yields uniform convergence [12]. These sums

are the arithmetic means of the partial sums, so the operator F;,, can be defined as

1 n
7=0
Now if we let
1—|z|, ifzel[-1,1],
wo(z) =

0, otherwise,

then ¢y € ® and a simple calculation shows the relation F), = Sffil.

Since we have

Po(x) = % (%)2 (z € R)

and thus ¢ € L'(R), by Theorem 1.5 we obtain the result of Fejér [12].
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Corollary 1.6. The sequence (F,f,n € N) uniformly converges to f on R for

every function f € Cy,.

Consequently, by the Banach—Steinhaus theorem [33, p. 101] the norms of opera-

tors F,, must be uniformly bounded, i.e. sup,, || F,| < +oc.

Corollary 1.7. There exists ¢ € R independent of n such that

| Fn < c.

1.1.3.3 De la Vallée Poussin sums

Originally, the de la Vallée Poussin sums [49] were similar solutions to the problem
of uniform convergence as the Fejér sums, and can be defined as arithmetic means
of partial sums as well, but for n € N, we take the average of the partial sums

SnySnits .-, S2,, obtaining the operator

1 n
Gn,n_nﬂjzznsj (n € N).

The idea of taking arithmetic means of partial sums can be further generalized
(see e.g. [62, Chap. III.1]), namely for two parameters n,m € N, we may take
the average of the partial sums S,,, S,41, - - -, Snem. For our work, we consider this

approach and define the operator G, ,, as

n+m

G, ':m+1ZS (n,m € N).

Note that now we have two important relations with the previous operators,
namely G, o = S, and Gy,, = F,, so the partial sums and the Fejér means
are obtained as two extremal cases of G, ,,. This connection makes it possible
for us to use the de la Vallée Poussin means as a bridge between the previous

methods, and use them to describe a transition between them.
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For the norm of G, ,,, (n,m € N), we state the following result, a direct conse-

quence of [22, Theorem 1.2.2].
Proposition 1.8. Suppose that (n,m € N). We have

4 n+m-+1
|Gnmll = = log ————

O(1

i.e. there exist positive constants ci, co independent of n,m such that

4 n+m+1 4 n+m-+1
—log ————— < |Gpmll < —log——— .
g o ta s |Gl < Glog— 7 — 4o

Compare this result with Theorem 1.1 and Corollary 1.7.
Applying the Banach—Steinhaus theorem once again, we have

Corollary 1.9. For k € N, consider the sequences of natural pairs (ny, my) and
suppose that ny — +oo as k — +o0o. The sequence (G, m, f) tends uniformly to

f for every f € Cop if and only if

{ ng + myg }
sup § log —— » < +o0.
keN my + 1

It is also clear that Gy, : Caor — Tpim and (Gpmg)(z) = g(z) for any g €
T.,x € R, so the operator has some kind of projection property. In fact, we have

an analogue of the Faber-Marcinkiewicz—Berman theorem due to Nikolaev [30].

Theorem 1.10. Fizn,m € N, n > 1 and let T,, : Cor — Tpim denote a de la
Vallée Poussin type trigonometric projection operator, i.e. suppose that (T,,g)(x) =
g(z), (g € Th,z € R). Now there exist a positive constant ¢ € R independent of
n, m such that

n-—+m

.1 >cl .
1 ,H_cogm+1

We remark that the relation |7}, .|| > [|Gpm|| does not hold generally.

As before, the operator G, ,, can be expressed as a specific p-sum as well.
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Definition 1.11. For a« = 1 let ¢, := ¢, as defined before. Otherwise, for
a € [0,1) let ¢, be the unique function which is 1 on the interval [—a, ], 0 on
R\[—1, 1], and is linear on the nonempty intervals [—1, —a| and [a, 1], i.e. if @ # 1

then on x € [0, 1] we have

1, fo<z <«
@a(x):
1—z .
, fa<z<l1.
11—«

The function ¢, (see Figure 1) is called the Fejér summation function if a = 0
(note that it is the same function as ¢ before), and generally a de la Vallée

Poussin type summation function if 0 < a < 1.

AY

1

> T
Figure 1.
Now it is clear that if n,m € N, n +m > 1 and the relation o = Ty holds,
then by (1.6) we have G, = S)5 41
Also

fall) = o)~ Togo()  (HER)

therefore

1 sin?(x/2) — sin*(az/2)
2(1 — a)m (x/2)?

Palz) = (z € R).

Consequently ¢, € L'(R), and applying Theorem 1.5 we obtain the following

result.
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Corollary 1.12. For any fized o € [0,1) the sequence (S¢=f,n € N) uniformly

converges to f on R for every function f € Cy,.

Note that this can also be obtained as a case of Corollary 1.9, since a fixed value
of @ € [0,1) means that the ratio of n to n + m + 1 is fixed, consequently the

conditions of Corollary 1.9 hold.

A part of our work concerns the multivariate extensions of some results presented
in this section. More accurately, some new results popped up lately regarding the
multivariate extensions of Theorems 1.1, 1.4 and Corollary 1.7 for triangular sums
of Fourier series ([41],[56]). As a sequel of these new results, we managed to obtain
the corresponding variants of Proposition 1.8 and Theorem 1.10. The details are

worked out in Chapter 2.

1.2 Summations of discrete trigonometric Fourier

series

It is known that many theorems concerning convergence of Fourier series can
be transferred to the convergence of trigonometric interpolation with equidistant
points. These polynomials can be considered as partial sums of discrete Fourier
series. In the paper of J. Marcinkiewicz [20] a systematic investigation of this
subject is given. Also, some convergent summation processes were defined by
L. Fejér and D. Jackson (see e.g. [62, X. §6]). After a paper by S. N. Bernstein [2],
many authors have studied the summation of the trigonometric interpolation by
the same methods which had previously been proved successful for the summation
of Fourier series. S. Lozinski [19] showed that, in many cases, theorems on con-
vergence or summability of Fourier series can be transferred to the convergence or

summability of the trigonometric interpolation process with equidistant nodes.

These type of operators can be considered as special cases of discrete operators.

The map T : Cy, — Oy, is called a discrete operator if for every f € Cy, the
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function T'f € Cy, is uniquely determined by the function values of f given at

finitely many points of the interval [—m, 7].

1.2.1 Preliminaries and the discrete trigonometric p-sums

The discrete version of the Fourier series (1.3) can be defined as follows (cf. e.g.
[62], Vol. II, Chapter X). Let us fix a natural number M € N* := {1,2,...} and

consider the equidistant point system

2
XM ZI{SCk,M = /{ZMW . k’ZO,l,...,M—l }, (110)

and the discrete measure

MM({;L«,C,M});: poas = —  (k=0,1,...,M — 1),

which generates the following discrete integral

M-1
fduar =Y floadma  (f € Co).
k=0

Xm

It is clear that

S

-1

f@rp)g(wear) (9 € Con) (1.11)

o
(fr9)m = . fadpn = 57

B
Il

is a scalar product on the space of all complex valued functions defined on X,;.

Again, consider the complex trigonometric system (1.2). For every fixed number

M € N* we have
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for all m,[ € Z. From this it follows that

1, if M |m-—1,
(Em,e)m = (1.12)
0, f Mtm—1L

This means that every M consecutive terms of the sequence (¢;,j € Z) are or-
thonormal with respect to the scalar product (1.11), i.e. for all fixed number

N € 7 we have

(Emedar = 0my (M€ {N,N+1,...,N+M—1}). (1.13)

The discrete trigonometric Fourier coefficients with respect to the point system

(1.10) of f € Oy, are defined by

,_.

Fui) = (e = 2 3 Fanae 5 (j € 2. (1.14)

k=0
From (1.13) it follows that the sequence (fa(j),j € Z) is periodic by M, i.e.

~

Fu(i) = fulG+IM) (1, € 7). (1.15)

The discrete Fourier series with respect to the point system (1.10) of the function

f € Cy, is defined by
= fuli)e;. (1.16)

JEL
Now we introduce the discrete version of (1.6). Fix the summation function ¢ € ®
and the number M € NT. The n-th discrete p-sums with respect to the point
system (1.10) of the function f € Cy, are defined by

(Sinl) @)= T (2) dutiseyo) = > (2) dutisesto

j=-n (1.17)
(x eR, f € Cyy, meN).

Thus for every function ¢ € & we have a two-parameter operator family.
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Since ¢ is an even function thus for every f € Cy; and all n, M € N N > 1 we

have

=

(Sf,Mf)(x) = % f@rm)DE(x — 2 01) (1.18)

e
i

where the function DY is defined by (1.4).

It is clear that S:f’ [ is a trigonometric polynomial of degree not exceeding n and
S?f,M : C27|— — 7;L

is a bounded linear operator.

Conditions of uniform convergence and other properties for these general operators
are investigated in [39, 42|, while a summary on many discrete linear interpolatory
operators was given in [36]. In the following, we recall two important results

concerning these operators.

1.2.2 The discrete trigonometric Natanson—Zuk theorem

In order to investigate the uniform convergence for the discrete case, first we
have to choose a sequence of operators Sff A» Since now we have a two-parameter

operator family. This shall be done as explained below.

From the two-parameter operator family (Srf, s €N, M e NT) we can choose a
one-parameter family using two arbitrary index sequences (ng, k € N) and (My, k €

N). Thus we obtain a sequence of bounded linear operators:
Sy, Con = Ty (k € N). (1.19)
In this Section we investigate the uniform convergence of the operator sequence

(1.19).

In 1997, F. Schipp and J. Bokor [31] published some results with respect to the
discrete version of general p-summation processes in the case when the summation

function ¢ is a continuous function. Few years later, L. Szili and P. Vértesi [42]
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gave the following discrete version of the Natanson-Zuk theorem (see Theorem

1.5), which is also a generalization of a result in [31].
Theorem 1.13. Suppose that one of the following two conditions holds:

1° ¢ € ® and for the index sequences (ng, k € N), (My, k € N) we have

lim ng =+o0c and lim (M} —ng) = o0, (1.20)

k——~4o00 k——+o0

2° p € ®, ¢ is continuous at the point 1 (so it is continuous at —1, too) and the

index sequences (ny, k € N) and (M, k € N) satisfy the relations

lim ny = 400 and My > ni(1+0(1)) (k — +00).!

k——4o00

Then the sequence (Srfk,Mkf,k € N) uniformly converges on R to f for every

[ € Cyor if and only if the Fourier transform of ¢ belongs to L*(R).

1.2.3 Interpolatory properties

As we stated in the beginning of the section, our aim is to investigate problems
of trigonometric interpolation using the summation methods of discrete Fourier
series. Therefore, it is natural to ask under what conditions is the operator Sy,

interpolatory, i.e. for a function f € Cy,;, when do the equations

fleenn) =(S5 0 f) (wens)  (wra € X

hold for £ =0,1,..., M — 1. When this happens, we also say that S,fo interpo-

lates the function f at the points Xj,.

Surprisingly, the interpolatory property of the operator S7,, can be character-
ized by some symmetrical property of the summation function ¢. We recall the

following statement (cf. [39, Lemma A, p. 137]).

Yap = o(1) (k — +o00) means that ay — 0 (k — +00).
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Theorem 1.14. Suppose that ¢ : R — R is an even function supported in [—1,1],
©(0) =1 and M > n. The polynomial S;iMf interpolates the function f at the
points Xy if and only if

¢(i)+¢(M_j):1 (j=1,2,...,M—1). (1.21)

n

n

|
|
|
|
|
,,,,,,,, o __2>
|
|
|
!
T

|

8

~— ]
|
T
|
|
|
|
|
|
|
|

8 T -7 """~~~

M M
2n n

Figure 2.

This lemma visually states that for j =1,2,..., M — 1 the

()

points from the graph of ¢ are positioned symmetrically to the point (%, %) on

the interval [0, %} This property is demonstrated on Figure 2.

In Chapter 3, we discuss specific types of trigonometric interpolations, with main
focus on the Lagrange and Hermite-Fejér interpolations. It turns out that the de
la Vallée Poussin sums provide an excellent tool describing the transition and the

connections between these two classic interpolation methods.






Chapter 2

Multivariate de la Vallée Poussin

type projection operators

In this chapter we deal with the de la Vallée Poussin means of the triangular
partial sums of multivariate Fourier series. We determine the exact order of the
corresponding operator norms. The lower estimation of these norms will be ex-
tended to a class of projection operators having similar projection properties as

the de la Vallée Poussin mean. The presented results are from our own work [26].

2.1 Introduction

Multivariate Fourier series has been the subject of intensive study. We may refer
to the classical works of Zygmund [62, Ch. XVII] and Stein, Weiss [34, Ch. VII].

First, we introduce some notations.

Let d > 1, d € N be fixed and R? be the Euclidian d-dimensional space, and let

T? := R? (mod 27Z%) denote the d-dimensional torus.

Further, let C'(T?) denote the space of (complex valued) continuous functions on

T<. By definition they are 27-periodic in each variable.

19
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For g € C(T%), we define its (multivariate) Fourier series by

90~ S g0 = o [aweta e

where in the above vector notation ¥ = (91, 9a, ..., 04) € T k = (ky, ko, ..., kg) €
Z* and k-9 = S0 kv, (scalar product).

In the multivariate case, the partial sums of the Fourier series could be defined
multiple ways. Our results in this chapter concern with the so—called triangular

partial sums.

The triangular n-th partial sum of the Fourier series is defined by

Snalg.9) == > gk)e*”  (neN), (2.2)

[k[1<n
where |k|; = 327 |k (the I} norm of the multiindex k).

We remark that the rectangular n-th partial sum of the Fourier series is usually

defined by
Mg = 3 gk (neN),

[k[oo<n
where |k|o = max;—;_4]|ki| (the I, norm of the multiindex k). In a way, the
investigations regarding ST[:]d are apparent: in many cases they are essentially one
variable problems (see the already mentioned works [34, 62]). Note that our results

in this chapter are also true when the operator S, 4 is replaced by 57[: ]d.

However, there are relatively few works dealing with the triangular (or [;) sums
(see Herriot [16]). In a recent paper [41] the authors gave the exact order of
the norms of the operators S, 4 together with some similar types of projection
operators. Others were dealing with the so-called Fejér—summability (among some
other summation methods) of the triangular partial sums [1, 56]. We recall the

details of some of these results later.

Our aim is to investigate the de la Vallée Poussin means of the partial sums of

Fourier series.
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Definition 2.1. For n,m € N, let the de la Vallée Poussin mean G, ,, 4 of the

Fourier series of the function g be defined by

1 m
Gn7m7d(ga ’0) = m Z Sn-l—j,d(gv '19)~ (2-3)
=0

Note that for d = 1 we obtain Gy, ;0 = G from Subsection 1.1.3, i.e. the

one-dimensional de la Vallée Poussin mean.

Further, let 7, 4 be the space of trigonometric polynomials of form

where k = (ki, ko, ..., kq) € Z%.

Definition 2.2. In the following, let 7T}, ,, s denote a de la Vallée Poussin type
projection operator, i.e. an arbitrary linear projection operator such that

Tn,m,d : C(Td) — 77’L+m,d and Tn,m,d(gv "‘9) = 9(19) for every g € 777,,d-

Note that G, ,, 4 is an operator of this type, and that S, ;s = G}, 0.4

In the next section we derive a formula for the kernel function of G, ,, 4.

2.2 Kernel function of the de la Vallée Poussin

operator

Introducing the notation

Dpa(®)= > &*?  (n>0), (2.4)
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where g € C(T9),9,t € T (cf. [34, Chs I, VII], [1]).

For D, 4(1), Xu proved the following relation (cf. [60, Lemma 1])

2 cos l (sin ;)42 soc Mﬂl

D, 4(9) : (2.5)
; H] 1]#(00819; — cos V)
where the function soc (sin or cos) is defined by
sind, if d is odd;
soct =
cos®, if d is even.
Similarly, for G,, ;,, 4, from (2.3) we have
Gl 9) =3 / (9 — t)Dyss a(t)dt
n,m,d 9, _m n 1 pr (27T)d Td g n+j,d
_ / (9 — t) (Lip : (t))dt
_(27T)d ng m+1 gt n+j,d
so let us introduce the notation
1 m
Vn,m,d(’l?) = 7m 1 — Dn+j,d(ll9>- (26)

This kernel function of the de la Vallée Poussin mean has an explicit form similar

to the aforementioned result of Xu.

Theorem 2.3. The kernel V,, ,,, 4(9) takes the form

(sin¥) ! sin "9, soc 2Ly,

= H?ZL#Z(COS ¥, — cos¥;) - (m + 1) sin? %'

(2.7)

Proof. From (2.5) and (2.6) we have, by changing the order of the sums,

d_2cos 2 (sin ;)42 (Z;::O soc %ﬁo

H?ZL#Z(COS Y —cosv;) - (m+1)

=

=1
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If d is odd, then

m

ZSOC n+k Zsm(n—l—k‘—l— )191

1 m

9 Z (cos(n + k) — cos(n+ k + 1)0))
2 k=0

_ cosnid; — cos(n +m + 1)V,

Yy
2

sin (n 4 21 9, - sin 2L,
= 19l .

2 sin

2 sin

sin

If d is even, then

L 2(n4 k)41 i ( 1)
so¢c ———— ) = cos|n+k+=)0

1 m
- 7 Z (sin(n + k + 1)¥; —sin(n + k)d)
2 k=0
~sin(n +m + 1)0; — sinnd,
- ]

2 sin 5

cos (n + m—“) J; - sin mTHQ%

Yy
2

sin

Consequently, for any d > 1 we have

Zsoc n+k 19 soc(n—l—mﬂ)ﬁl smm—ﬂﬁl7

Y

sin 5

thus the proof of (2.7) is complete. O

2.3 Characterization of the operator norms

The concepts of maximum norm and operator norm are defined similarly to the

one-dimensional case. For a function g € C(T4) let

lgll = max g()]
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and for the norm of T}, ,,, 4 let

Tymall = max ||T,, malg, 9 n,m € N).
| T m.all D T m,alg: ) ( )
lgll<1

In a recent paper [41] the authors evaluate the exact order of the operator norm
|Sn.dll = ||Gno.4ll, and give a lower bound for the norm of an arbitrary projection

operator of type T, o4, namely for n > 2 and d > 1 we have

| Tn0.all = [1Snall ~ (logn)*.

Note that the above inequality is a multivariate extension of the Faber—-Marcinkiewicz—
Berman theorem introduced in Chapter 1 (see Theorem 1.4), namely the operator
Sh.q has the smallest norm among all projection operators of the type 7}, 9 4. The
second half of the statement is also interesting, stating that the exact order of the
norm of S, 4 is (logn)?. This is the d-dimensional version of a weaker variant of

Theorem 1.1.

A specific type of the de la Vallée Poussin means are the so-called F,;, ; Fejér means

of the (triangular) partial sums of Fourier series, defined as

m

1

Fog=Gomag=——
-d 0;m,d m+ 14
j=0

7,d>

where d > 1, m € N. Note that for d = 1 these are the classical F}, Fejér means

of Fourier series defined in Subsection 1.1.3.

Regarding the norms of these operators we recall the result of Weisz [56], i.e. there

exists a ¢ positive constant independent of m such that
[Emall < c.

This is a direct multivariate extension of Corollary 1.7.
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With the next theorem we try to establish a connection between the aforemen-
tioned results by evaluating the exact order of |G, 4|l and giving a lower esti-

mation for the norms of de la Vallée Poussin type projection operators in general.

Theorem 2.4. Fix d > 1 and suppose that n,m € N and n > 1. For any de la

Vallée Poussin type projection operator 1), ,,, 4, we have

n+m ¢
Tomall = c |1 , 2.8
Tl (10 2572 (2:5)

where ¢ > 0 1s a positive constant independent of n, m.

Further, for the operator G, a we have

n-—+m d
n,m S 1 1 . 2.
Gl c{(ogm+1) " } (29)

The first inequality is a multivariate extension of Nikolaev’s result (see Theorem

1.10) for de la Vallée Poussin type projection operators in one dimension. The

second inequality is a weaker d-dimensional variant of Proposition 1.8.

We conjecture that, similarly to the one-dimensional case (see [6]), the relation
| Tom.all = ||Grnm.all does not hold generally. Giving necessary and sufficient con-
ditions for this inequality, e.g. generalizing the results of [6] to the multivariate

case, may be a subject of further study.

Since the set of all trigonometric polynomials form a closed system in the Banach
space (C(T?), || - ), the Banach-Steinhaus theorem may be applied, and we have
the analogue of Corollary 1.9.

Corollary 2.5. For k € N, consider the sequences of natural pairs (ny, my) and
suppose that n, — +00 as k — +oo. The sequence (Gy, m,.a(g,-)) tends uniformly

to g for every g € C(T?) if and only if

g+ m\
sup (log u) < +00.
keN my + 1
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Before we prove Theorem 2.4, we remark that the concept of p-summations can
be introduced in the multivariate case the same way as in the one-dimensional

case. For example, for ¢ € ® one could consider the formula

5% (0, Zso( ) X ager,

|k[1=3

This way we can obtain the de la Vallée Poussin means by applying the same
¢, function as in Chapter 1 (see Definition 1.11). The characterization of the
uniform convergence by the Fourier transform of ¢ (if possible) in this case is an

open problem.

In the last section of this chapter, we prove Theorem 2.4.

2.4 Proof of Theorem 2.4

In order to show

n+m
Tomall = ¢l )
Tl 2 e (0 27

the case n = 1 is obvious, so for every n,m € N, n > 2 we construct a trigonometric

polynomial f, ,(t) = >_; q; et with

d
n+m
ol 1 00 [Tuma G =) 2 ¢ (10 252) a0

for an appropriate 4/ € T¢.

With these polynomials we have

max ||Tnmd(97 )H > |Tn,m,d (fn,m( _'7/)a'7/)|
geC(T)

llgll<1
which proves (2.8).

Our proof is based on two ingredients. The first one is Fejér’s classical example

(see [24, Vol. II,Ch. 2/1]) and its application for the multivariate case [41]. We
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remark that the latter work also relies on Fejér’s example and ideas communicated
by Gabor Haldsz. The second one is Nikolaev’s argument for one dimension (see

[30]).
Now let us define the function
h(z) = (m+ 1) (n +m)".

Note that A(0) = m + 1, h(1) = n+ m and for arbitrary «, 5 € [0,1], o >  we
have h(a) > h(B) and

h(«) n4+m\*"’ n+m
lo =1lo = (a—f)lo )
S h(B) g(m—l—l) (o= F)log T
For the construction of f, ,,, first choose real numbers «;, 5; (j = 1,2,...,d) for
which
0<fBi<og<PBagr1<ogi1<...<pi<a <1 (2.11)

Let us consider the trigonometric polynomials

[h(ay)]
1 .
Fi(y= > Eezkﬁ, (te0,27),1<j<d).
ks |=[n(8;)]

As we know for the trigonometric polynomials

we have

b sin [t
> z <47

=1

(see [13], [14], [24, Vol. I,(118)]). Therefore we get

| Fr(t)] =2

[F5 (O] = | Finan(t) = Fingen-1(8)| < 8v/m =: M. (2.12)
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Denoting the canonical unit vectors of R? by e; = (0,...,0,1,0,...,0), (1<j <

d), we define the polynomial g, ,,(t) =: M?f, ,(t) as follows

d—1

Gnm(t) = Tt Ey(—eg 1) - [ F (€501 — €5) - ©)
! (2.13)
« . — h(oy . ’
_ ilntm)ty Ugﬂ e~ikata 3= [(XJ:)] ei(kitir1—=kjt;)
ke - k; ’
kal=[h(Ba)] J=1 \[Ikj|=[n(B;)]
where H?Zl o= 1and (ej11 —e€j) -t =141 — ;.

Using (2.12) we obtain that |f,(t)] < 1 (¢t € T?), i.e. the first requirement of
(2.10) holds.

The polynomial g, ,(t) can be written as

1 ikt
nnl®)= 2 f

o d

where k = (n+m —ky, ky — ko, ko — ks, ..., kg1 — kq), and we take the summation

for the indices [h(5;)] < k; < [h(a;)], (1 <j <d).
Now we write f,, ,(t) as
1 1 , 1 1 :
om(t) = — ikt | & ikt
Fon® =37 20 R T 2 W e
kiyeska K1,k
[k|1<n (2.14)
= Ynm(t) + Xnm(t)-
We prove that in the sum ), ,,(t) only the positive indices ki,..., kg appear.

Observe that [n+m—Fk;| = n+m—Fky. Using |k;j—kj1| > kj—kj, (1 < j <d-1),

we get

nZ |k|1:|n—|—m—k31|—|—|k:1—k2|—|—|k2—k‘3|—|——|—|kd_1—kd|
(2.15)
>n+m — kg,

whence we obtain that k; > 0.
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Now let us suppose that for a fixed index j*, (1 < j* < d —1), we have k;» <0

(consequently |kj« — kjey1| = —kj« + kjy1), and k; > 0 for every j* < j < d. We
get

k|y > n+m—2k; +2kj 1 — kg > n+m, (2.16)
which is a contradiction. This means that in 1, ,,,(t) only positive indices ky, . .., kq

appear indeed. On the other hand, if all of the indices k1, ..., k4 are positive, then

we have |k|; = n 4+ m — kg < n, consequently

1 4 [h(a))] 1 n+m\?
Uym(0) = 17 H Z o >c (log o 1) : (2.17)

i=1 \kj=[h(8;)] "’

Now we show that in the sum X, ,(t) we have |k|; > n + m. The previous
argument shows that in ., ,(t) not all of the indices &, ..., k, are positive, and
from inequalities (2.15) and (2.16) we immediately obtain that if for any index

J*, (1 <j* <d), we have k;j» <0, then [k|; > n +m.

So we have

k|1 >n+m

For the function f,,,(t —~) (v € T¢ arbitrary) we have

1 1 .
ot =) =, (6 — — S —— e
fam(E =) =tamt =)+ 05 D e

k|1 >n+m

where pg(t) are trigonometric polynomials with degree |k|; > n + m.
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Applying the linear projection operator 1), ,, 4 we have T, p, a(¢nm(- — ), t) =
wmm(t - 7)? S0

Tomd (fam (- = 1)) = Gpm(t =)+ D Flt)e™™,

k|1 >n+m
where Px(t) € Thim.q for every multiindex k.

Now by letting t =~ we get

|k|1>n+m

= wn,m(o) + Qn,m(PY)?

where @,(7) is a trigonometric polynomial without a constant term, conse-
quently de Qn.m(t) dt =0, so that @, ,, has to change sign on T?. By continuity,
Qn.m has to be zero somewhere, i.e. there exists v/ € T? so that Q,..(v") = 0,

and

Tn,m,d (fn,m( - 7,)7 7,) = @Un,m(o)-

Using (2.17) we get that the second requirement of (2.10) holds, thus the proof of

(2.8) is complete.

In order to prove (2.9), we only need to show that there exists a positive constant

¢ > 0 independent of n, m such that

n+m ¢
Gpmadll < 1 1
H ,,du_c{(ogmH) + }

holds. As a consequence of the Riesz representation theorem (see [8, IV. 6.3] or

[61]), we have

HGn,m,dH = ”Vn,m,dnl = /Td ‘Vn,m,d(ﬁﬂdﬁ' (2'18)

For the proof we use a generalized version of the argument of Weisz [56] for the

n = 0 case.
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In order to estimate the integral in (2.18), we introduce an inductive form for the
kernel function V,, ,,, 4. The n-th divided difference of a function f at the (pairwise

distinct) knots z1, ..., x, € R is introduced inductively as

[21]f == f(21), (w1, ] f = 7 Tl f [@"”’In]f. (2.19)

1 — Ty
Note that the difference is a symmetric function of the knots.

Berens and Xu proved [1] [60] that
D, 4(9) = [cos Uy, ..., cos Dy q, (9= (Vy,...,0,) € TY,

where
2n + 1

2

t.

t
sna(cost) = (=)D 2cos o (sin )" soc

Similarly, by (2.7) one can see that for V,, ,,, 4 we have
Vim.a(9) = [cos vy, ..., cosV4)vp 4, (¥ = (Vq,...,0,) € TY,

where
(sint)?! sin 2 ¢ soc ZttLy

(m + 1) sin® £

Unma(cost) = (—1)[@-1/2

If we apply the inductive definition (2.19) to Vj, .4, then in the denominator we

have factors of elements of the following table:

cos ¥y — cos Uy

cos y — cos Uyq_1 cos 9 — cos Uy
costy —cosVg_py1 costy —cosVy pio ... cosUp — costy
cos ), — cos Vs cos Uy — cos U3 ... costVy_1 — cosy

We have to choose exactly one factor from each row in the following manner: let
7 denote the set of sequences of integer pairs ((i,,jn), n =1,...,d — 1) for which

iy =1, j1 = d, (iy) is non-decreasing, (j,) is non-increasing and if (i,, j,) is given
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then let (in41,Jns1) = (in,Jn — 1) Or (ips1, jns1) = (in + 1,7,). Observe that the
difference cos¥;, — cos ), is in the k-th row of the table (k =1,...,d —1). So the

. d—1 .
factors we have chosen can be written as [[;_; cos?;, — cos?);,, and with these we

have
Vio(®) = 3 (—1yiss= 908 Viacss €05 Vs [onima
i N d—2
(i1, €T 1= (cos ¥y, — cos ;)

. Upom,a(€cos Vi, | ) — Upmalcosv;, |
_ Z (_1)”,1—1 ) d( d ) d( Jd ) (2‘20)

d—1
(i,1) €T =1 (cos¥;, — cos ;)
= Z Vn?”n?d?(ilvjl) ({19)'
(i,51)€Z

A similar argument was used by Weisz [56, page 102] to represent the Dirichlet

kernel D, 4, see more details there.

Due to symmetrical properties, it is enough to estimate the integral (2.18) on

[0, g}d. We may also suppose that > vy >4y > ... >3 > 0.

We will need the following estimations of the kernel functions. Note that these

are generalized versions of [56, Lemmas 1,2].

Lemma 2.6. Let ki and ko be positive integers satisfying 1 < k1 < ko < d and
a=0orl. Forall0<pg,vd€R, (ki —1)+0(ka— ki) +7(d—ko) <1+ we

have

Vamod, (i) (9)| <

19]@;1_61—1)+5(1€2—k1)+7(d—/€2)—1—a (2.21)

C o klfl 1+5 kQ*l 1+5 d*l 1+ .
(m + 1) =1 (191'1 - ﬁjz) Hl:k1 (ﬁil - ﬁjz) Hl:kg (ﬁiz - ﬁjz) 7

Proof. First, let a = 1. Since

2(sin t)42

(m+1)sint

|Unm.a(cost)] < ‘

and

cos¥;, — cos ¥, = 2sin 12 I gin z";‘ i
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we have

. 95 I Y
v, W) < (sind;, )2/ sin =%+ + (sindd, ,)* 2/ sin =4+
n,m,d, (i7,57) = Vi, —9;, 0y, +10;, )
(m+1) llsln 5L sin —5
and so we can conclude
d=3 | gd-3
19@(1 1 19](1 1
|Vn7m7d7(il7jl)(’l9)| S &

(m + 1) l:l (ﬁzz - ﬁjz)(ﬁiz + 19]'1>‘

Now, using ¥;, + 9, > ¥;, , > v;, , and then 9;, +9,, > 9;, — ¥,, we obtain

td—1 Jd—1

|Vnmd(iz jz)(ﬁ>| <

d—3+(B8—1)(k1—1)+(6—1) (k2 —k1)+(v—1)(d—k2) d—3+(8—1)(k1 —1)+(0—1) (k2 —k1)+(v—1)(d—k2)
ﬁid,1 +Q9]d 1

k 1 ko—1 d—1
(m+ 1) IL2 0y — )P T2 (D — 95) 0 T, (9, — 05,)1
Q95(161 1)+5(k2 k1)+7(d—k2)—2
<ec Jd—1
— ki—1 ko—1
(m + 1) 1;1 (7911 - Jz)lJrB H e ( - Jz)1+6 Hl k)g( - Jz)lJr7

forall 0 < 8,0, € R, B(ky — 1) + 6(ky — k1) +v(d — k2) <1+a.

If « =0, using
sin mTHt
(m+1)sint| =~
we have
|Unm.a(cost)] < ‘Q(Sin t)d’2 ,
and the statement can be proved similarly. O

Lemma 2.7. Let ki and ko be positive integers satisfying 1 < k1 < ko < d and
a=0o0rl. Forall0<B,6,veR, B(k1 —1)+0(ks — k1) +7y(d—ko—1) <1+«

we have

’Vnmd(izjz (19)‘ <

(n_'_m)fl?]ﬁd(ki D+d(k2—k1)+y(d—ka—1)—1—a (2.22)

¢ i1 a1 :
(m+1DTT2, (9 — 95) P T2, (Vs — Jl)1+5Hl k}g( — ;)1
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Proof. Similarly to (2.20) we can write

dna(cost, ) — dpa(cosVy, )

o ig—1—1""
Dua(®)= 3 (-1) 1 (cos ¥, — cos ;)

(il jl)eI I=1 (223)

E , Dnd (41,41)

(i,51)€T

and then we have

( )Zd ! Zn—l—m dy, d(COS ﬂld 1) - dk’d(COS ﬂjd*1>
m+1 21:11(008 ¥y, — cosv;,) ‘

anmvdv(ilvjl) (79) =

The Lagrange mean value theorem imply that there exists 9;, | > > 1;, | such

that | N
Vimod (i (’19) = (_1)%71_1 Zk n Hllﬂ d(f)(ﬁidﬂ _ﬂjdq)
n,m,d,(i;,j1) m + 1 ;l 11 (COS ’19” COS 19jl) ’
where
t 2k +1
Hy.q(t) = (—1)[=D/2 92¢os B (sint)?%soc ; t.
Let a = 1. We obtain
i d—2 : d—2
|Vn7m7dv(il7jl)(19)| SC (Sln £> - (n . nq:)gsﬁln £> i, +9; (ﬁid—l - 79jd—1)
(m+1)sm£Hl | sin =15 sin —15—
(sin €)%~
+c — - (1927—197)
H;l:_ll sin L 219” sin 19”;19” =1 PJd-1

We have used the formulas from the proof of (2.7) and that | >"7 =" soc(k+1/2)t| <
m + 1.

Now

n-+m (ﬁid& B ﬁjdﬂ)gdig
m+1 H;l;ll (ﬁu - ﬁjz)(ﬁiz + ﬁjz)

|Vn7m7d7(il 7jl) (Q?) ’ S c

n +m gd—4+(5—1)(’f1—1)+(5—1)(1€2—k1)+("/—1)(d—k2—1)
ki1—1 ko—1
m_'_ 1 H L ( i Jz)1+BH 2 ( - Jz)1+6 Hl kg( - Jl>1+7
B(k1— 1)+5(k2 k1)+"/(d ko—1)—2
n +m Jd—1

k1—1 ko—1 ’
m_'_lHl (21_ Jz)1+ﬁH2 ( - Jz)1+5Hl kz( - Jz)1+’y
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forall 0 < B,0,v € R, B(k1 — 1)+ 0(ko — k1) +y(d — ks — 1) < 2.
The proof is similar for a = 0. O

Now we proceed with the estimation of the integral (2.18). Since in (2.20) the
number of sequences in Z only depends on d, it is enough to show that for any

(11, 71) € T the inequality

d
+
/ |Vimad, (i) (9) | d9 < ¢ (log n m> 11
{5>01>02>...>94>0} m+1

holds.

First let us divide the domain [0, %} * into the following parts.

S/I:{ﬂETdI 2191>192>...>19d>0}

n-+m

S = [O,g]d\S'

Since |S'] := [5, 1 d9¥ < C(nJrlm,)d and |V, m.a(9)| < c(n +m)?, we get

. |Vam.d, (i) (9)|d9 < c.

Now we consider S. For an (i}, ;) € Z, let us define

1

— =1, k-1,
m—+1

S(il7jl)7k17k2 :{’19 €S: 191‘1 — ﬁjl >

1 1
e, =0 < ——— I =k — 1,
n+m ! = m+1 ! 2

1
— Zﬁil—ﬁjl,l:kg,...,d—l},

where 1 < ki1 < ky < d, k1,ky € Z. Note that for n = 1 the middle interval is

empty so we only have two intervals for the values of ¥;, — 9;,, consequently one

17

index k; is enough to complete the proof, similarly to [56].
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First let us consider the case ky < d and k; > 1. For the domain S, j,) k; ko1 =

Sty N{Y €S9, | > m%rl}, using (2.22) with o =1 and v = § = 0 gives

/ |Vn7m7d7(7‘l)]l)(/l9>|d/l9 S
S(iy,3) k1 ,k2,1
C/ n+m kﬁl 1 kﬁl 1
Siydy) k1 ka1 m+1 =1 (19” o ﬂjl)B—H I=k1 ﬁil N ﬁjl
d—2
1 1 _1)—
H ) : ﬂfd(kl 1) 209,
—1

=k (19’1 - ﬁjz)l_m (79 - 79]}1—1)1_‘14“2

id—1

since ¥;, , —v;, , <U;, — ;. Now we choose the indices jg_1(= 1)), i4—1(=i;_,)

and then iy o if ig_o # ig_1 or jg_o if jao # ja—1. (Exactly one of these two cases
is satisfied.) If we repeat this process we get an injective sequence (ij,1 = 1,...,d).
We integrate the term ;, — d;, in 9y, the term ¥;, — ¥, in ¥y, ..., and finally
— in 192-&71 and ¥;

Jd—1

the term v in ¥y. By the definition of the domain

id—1 Jd—1

S(ilvjl)ykl,k?QJ we have

k1—1 —B ko—k1
n-—+m 1 n—+m
() |d9 < | | _ -1
/, , [Vinm.a i) (9) _Cm—i-l (m—l—l) (Ogm—i-l)
S(Zl,n%klvk}l =1

ﬁ 1 \m5 | \75 1\ A-D-1
. n+m ' n-—+m ' m—+1
l=ko

ko—k1
m

for any 0 < 8 < kll_l.

The same argument holds for the domain S, j,) ki ka2 = Sk N {9 € S :

U5, , < 5} after using (2.22) with a = 0 and y = = 0.
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Next consider the case ky < d — 1 and k; = 1. Now for the domain S, j,),1,k,,1 =

Stirjoake N{9 €8 :0;, , > 11}, using (2.22) with a = 1 and y = § = 0 gives

Jd—1

/ Vit 00 (9) 00 <
S(iy,3)1,ka,1
ko—1 d—2

n-+m 1

¢ / H 0 19 11 =
S(im)»l,kQ,l Ji I=k2 (19@1 - ﬁjz) 2
1
: e ﬁ;jldﬁ
(192(1 1 ﬁ]d 1

ka—k1 d— Ty -1
n+m n-+m d—kg 1
<c log e
m—+1 m—+1 n+m n+m m+1

<c (log r —:_7711>
m

The same argument for the domain Sy, j)1k.2 = S@,) 1k N {9 € S ¢ nim <
o

Jd1—

—}, using (2.22) with a = 0 and y = § = 0 gives

ko—ki1+1
/ Vi iy (9]0 < ¢ (log nt ”f) .
S(iy,3)1 ka2 m+

Finally for Sg, j)ike3 = Saiake {9 € S 1 9;

}, using (2.22) with

Jdl—n+

a=0and § =0 we get

/ |Vn7m7d7(zl7]l)(ll9)‘dll9 S
S(iy,3)1,k2,3
ko—1 1 d—2 1
C/ (n+m) H H —
S kg 3 =1 ﬁil o ﬁjl I=ko (1911 - 191.1)1—"_v 42
1

(ﬁid—l - ﬁjd—l) k2

ko—ky d—2 == =
n-—+m 1 d—kg 1 d—ky
Sc(n+m)(logm+1) H(n—i—m) '<n—|—m)

I=ko

1 ~(d—ko—1) n4m ko—k1
. < c| log
n-—+m m—+1

forany0<7<ﬁ
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Now let k‘g =d—1 and ]{?1 = 1. For S(il,jl)ﬂ,d—l,l = S(ll,]l ),1,d—1 N {19 IS 19](1 1
i) using (2.22) with a =1 and § = 0 we get

[ Wi @)9 <
S(zl Ji)»1,d—1,1

d—2

n+m 1
‘ (Wi, = 05,,)" 052 dY
/S(zl g1),1,d—1,1 m+1 H (792‘1 - 193'[) d Ja—1 Jd—1

=1

d—2 -1 d—2

Scn+m- 10gn+m . 1 . ! <c logn+m .
m+1 m—+1 n+m m—+1 m—+1

For 8¢, )1,d-12 = St a1 N{Y €S : mLm <, , < mLH}, using (2.22) with

a =0 and 6 = 0 in a similar way gives

n-—+m -1
|Vn=m=dv(il7jz)( )|d'l9 <c log 1 .
S(ip.ip),1,d—1,2 m +

Finally for S(il,jl),l,d—l,?, S(” J1),1,d—1 N {19 eS: ﬁ]d 1> im}’ using (2.22) with

a = 0 yields

/ Vit i (9) ] <
S(zl J1),1,d—1,3

d—2

1
c (n + m) - - . (
/S(il,jl),l,dl,S E (291'1 - Q9jz)1+(s

d—2 -5 1 1 5(d—2)
cn+m H< ) . ( ) <c
P n+m n-+m n+m

forany0<5<d—i2.

— 9.

Jd—1

9 ). P21 g

td—1 Jd—1

Now we only need to investigate the case ky = d. First, let k; > 1. For the domain

Stirinkndl = Sg)kd N {9 € S v, | mlﬂ}, using (2.21) with @ = 1 and
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0 =0 we get
[ Wamawo(@ldo <
S(’Ll ]l) k1,d,1
k1—1 d—1
1 1 1 Blk1—1)—2
c ST A
L(il 1) k1 ,d,1 m+ 1 E (19@1 - ﬁjz)H_ﬂ llz_k‘[l (1911 - ﬁjz) Jit

d—ky ki—1 -8 B(k1—1)—1
1 1 1
S cC log n+m . H R . -
m+1 m+1 L\ +1 m—+1

forany0<6<k1 I

We obtain the same result for S, ;) ka2 = Sg,j)k.a NV{P €S 10, | < mil},

using (2.21) with a =0 and § = 0.

Finally let k1 = 1. For S(, j)1.d1 = Stj)k,a N {9 € S : 0
(2.21) with @ = 1 and ¢ = 0 to obtain

1
a1 m+1}’ we use

1 =g

Vi @19 < |
/S(il,jl),l,d,l i m+1 H 191

S(igsip)1,d,1 =1

- 1 | n-+m -1 1 -t
C 0 . J—
~m+1 gm—l—l m+1

d-1
<c (log n tf?) )
m

For the domain S, 1,42 = Sgij)1a N {0 € S = < ¥, , < 1}, the same

Jd—1 —

-2
05D

Jl

l

argument using (2.21) with a = 0 and § = 0 gives

n—+m d
‘Vnmd Zz,Jz)( )’dﬂ <c | log 1
S(ig,dp) k1 ,d,2 m+
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For the final domain S, j 1,43 = Sgij)1a N {9 € S : 05, < —-}, let us apply
(2.21) with a = 0.

d—1
1 §(d—1)—1

Vi @9 < | L gy

/S(il'jlm’d's - S(iy,1),1,d.3 E (19” - 19]'1)1—’_6 Ja-1

d—1 1 -5 1 8(d—1)
< . <
_CH (n—i—m) (n—l—m) =6

=1

for any 0 < § < dfll. Thus we proved our statement. O



Chapter 3

De la Vallée Poussin sums in

trigonometric interpolation

In this chapter we discuss some classic methods of trigonometric interpolation,
mainly the well known (trigonometric) Lagrange and Hermite-Fejér interpola-
tions, using the tools of discrete p-summations introduced in Section 1.2. We also
define the de la Vallée Poussin sums, which will be used as a tool to describe the
transition between these two classic methods. We give general properties, the pre-
cise operator norm and (uniform) convergence order for these cases. The results

of this chapter are from our own work [27].

3.1 Some specific types of interpolation

We show that using the specific ¢ € ® functions defined in Subsection 1.1.3 for a
discrete operator S, f, (n € N, M € N*) defined by (1.17), we may obtain some
well known interpolation methods. The point system Xy, (M € NT) is defined
by (1.10).

41
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3.1.1 Lagrange interpolation

For a fixed M € NT, a trigonometric Lagrange interpolation polynomial of a
function f € Cy, is a trigonometric polynomial of degree < [%] which interpolates

f at the points of X, i.e. the equations

J(@rn) Z(Sff}wf)(xk,M) (k€ Xur)

hold for £k =0,1,..., M — 1.

When M = 2m + 1 is odd, letting n = m and using ¢; of Subsection 1.1.3, it is
clear that S;?’Mf has a degree < m = [%} and, by Theorem 1.14, interpolates
f € Cs:. We denote the operator S,f; v by Ly for odd M. It is known that in the

odd case, the Lagrange interpolation polynomial is unique [39].

When M = 2m is even, letting n = m and defining ¢} € ® as the element of ¢
which equals to 1 on (—1,1) and ¢j(1) = 3, it is clear that SﬁMf has a degree
<m= [%} and, by Theorem 1.14, interpolates f € Cy,. We denote the operator
SﬁM by Ly for even M. It is also known that in the even case, the Lagrange

interpolation polynomial is not uniquely determined [39].

We already know that ¢ = ¢; ¢ L'(R), so considering Theorem 1.13, we obtain

the result of Faber [11] for the trigonometric Lagrange interpolation:

Corollary 3.1. There exists some f € Cor for which

If = (Laf)loo =0 as M — 4oc0.

For the trigonometric Lagrange interpolation, the following results are known (see

e.g. [22]). Later we are going to obtain this as a corollary of our results.

Proposition 3.2. The exact norm of operator Ly is given by

2
[ Ll = ;IOgMJFO(l)-
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If E,(f) notates the error of the best approximating trigonometric polynomial of

degree < n, we have

2007 = flle < {21020 + O} - ),
where m =n —1= [%}

Compare these results to Theorems 1.1, 1.3 and Corollary 1.2 for the partial sums

of trigonometric Fourier series.

3.1.2 Hermite—Fejér interpolation

For a fixed M € N7, the trigonometric Hermite-Fejér interpolation polynomial of
a function f € (), is the trigonometric polynomial Hy; f of degree < M —1 which

satisfies the following Hermite—Fejér interpolation properties:

(HMf) (ZL‘k7M) :f(ZEk’M), (HMf)/ (ZL‘k7M) :O (k:(),l,,M— 1)

It was shown by Szili [39, Theorem 1, p. 142] that the operator S§},, satisfies
the conditions above, and it is known that the trigonometric polynomial Hj;f

uniquely exists for f € Co [22], so we have Hy = Si7

We already know that ¢, € L'(R), so applying Theorem 1.13, we obtain the
trigonometric version of Fejér’s classical result for first kind Chebyshev roots in
the unweighted case. (See e.g. [37, p. 165], [53].), and also the order of the norm
of Hy; by the Banach—Steinhaus theorem.

Corollary 3.3. The sequence (Hysf,n € N) uniformly converges to f on R for ev-
ery function f € Cor. Moreover, there exists a positive constant ¢ € R independent
of M such that

[Hul < c.

Compare these results to Corollaries 1.6 and 1.7 regarding the Fejér means of

trigonometric Fourier series.
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3.1.3 De la Vallée Poussin type interpolation

Let us consider the de la Vallée Poussin type summation functions ¢, € ®, (a €
[0,1)) (see Definition 1.11). The case a = 1 is left out because of practical reasons,
as we will see at the generation of Lagrange interpolation by these summation

functions.

Note that now the j = n term of the sum (1.4) is zero for every ¢,-summation,

so the degree of the polynomial ;5 f (f € Car) is at most n — 1.

It is clear that the operator S,ffM is not interpolatory in general, i.e. the polynomial
Sfﬁvf f does not interpolate f for some f € C5;. Considering Theorem 1.14, we
give the following necessary and sufficient condition for S79,f interpolating the

function f € Cy;,.

Theorem 3.4. Let a € [0,1). S75,f interpolates f € Cor on the point system
Xy if and only if one of these conditions holds:
a) a - ;

1
b) M=2n—1anda >1— —.
n

Remark that for arbitrary parameters M, n, oy satisfying condition b), there exists
as € [0, 1) such that
St =Sy (f € Car)

and condition a) holds for parameters M, n, as.

Indeed, suppose that M =2n — 1 and oy > 1 — %, and let ap = % —1=1- %
It is clear that condition a) holds for the values M, n, s, and one can easily see

that in (1.17) we have

j j 1, ifj=-n+1,—n+2,...,n—1,
() 2)-

" 0, if j =—n,n.

Consequently ijj; f= S,fj\fl f for every f € (.
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Proof of Theorem 3.4. First, let us assume that a) a = % — 1. In this case it
is enough to show that the graph of ¢, on the interval (0, %) is symmetrical to

the point (%, %) Namely when it is true, then

@a () + ¢a (%—x) =1

holds and considering Theorem 1.14 the polynomial Sqffjw f interpolates f.

The graph of ¢, is symmetrical to the point (%, %) because the center points of

intervals (0, ) and (c, 1) are the same, and

(a+1> 1—od
()004 = = —.

2 -« 2

Now let us assume that condition b) holds. From o > 1 — % we have that

Da ("T_l) = 1, and also we can see that

- (W) o ((Qn—l)—(n—l)) — (1) = 0.

n

This means that (1.21) holds for j =n —1 and j = n, as well. It also implies that
for every j < n — 1 we have @, (%) =1, and ¢, (M_j) = 0, so (1.21) holds for

n

every j < n — 1. From this we get that it is true for every j > n, and by using

Theorem 1.14 we proved that S:fjw f interpolates f.

Conversely let us assume that S;f’% f interpolates f € Cs,, that means condition

(1.21) holds. We consider two cases:

i) If o < 1—21, then we have 2= € (a,1). Using (1.21) for j = n, and considering

@a(l) =0, we get @, (=) =1, whence =2 < q.

Now using (1.21) for j =n — 1 we can write

M —n M—-—n+1 M—-—n+1
Pa o | | =l | ———— | =
n n n
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and considering that ¢, is linear on [«, 1], this can only happen if a = Mn_”, that

means condition a) holds.

ii) If =1 < o, then we only have to show that M = 2n — 1. Consider (1.21) for

%(M_(n_n) o

n

7 =mn—1. We get

because in this case ¢, ("—_1) = 1. It can only happen if W >1,s0 M >

n

2n — 1.

Observe that we have

S%(M_n>=1
n

as well, because ¢, (%) = (0. This means that =2 < 2,80 M < 2n. Putting

n

these together we have M = 2n — 1. O

With this result at hand, we are in the position to prove the following statement,
which shows that the classical cases of Lagrange and Hermite—Fejér interpolations

can be obtained as specific de la Vallée Poussin type interpolations as well.
Theorem 3.5. a) The (trigonometric) Lagrange interpolation, odd case: If

M —n 1
—1-=
n n

M
M =2m + 1, nzm—l—lz[?}—l—l and o =

then S;f’% = Ly, t.e. Sf:}‘v[f 1s the uniquely determined trigonometric polynomial
of degree < [%] = m = n — 1 which interpolates the function f € Cy, at points
Xu.

b) The (trigonometric) Lagrange interpolation, even case: If

—1—

M M — 2
M=2m, n=m+1l=—+1 and a= n —

2 n
then SY9; = Ly, i.e. S;5.f is a (not uniquely determined) trigonometric polyno-

mial of degree < % =m = n— 1 which interpolates the function f € Csy, at points

X
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c) The (trigonometric) Hermite—Fejér interpolation: Fix an arbitrary natural num-
ber M. Letn = M, a =0 and f € Cyr. Then S;%; = Hy, i.e. S75,f is the
uniquely determined trigonometric polynomial of degree < (n — 1) which satisfies

the Hermite—Fejér interpolation properties (see Subsection 3.1.2).

Proof. a) The degree of the polynomial Sqffjwf in this case isn — 1 = [%], and

it interpolates f at points X, because condition b) of Theorem 3.4 holds.

b) The degree of polynomial Sfm f in this case isn — 1 = % = [%], because M

1s an even number.

Also we have
n—2 2n—-1)-n M-n
o = = =
n n n

so condition a) of Theorem 3.4 holds, meaning that Sy, f interpolates f.

c) It was shown (cf. [39, Theorem 1, p. 142]) that S7;,,f is the Hermite Fejér
interpolation polynomial if ¢ is the Fejér summation function . From Theorem

M—n

3.4 condition b) cannot hold, so necessarily o = = 0, meaning M = n. O

Note that here we obtained the Lagrange interpolation polynomials by using sum-

mation functions different from the ones in Subsection 3.1.1.

The approximation properties of de la Vallée Poussin type interpolations will be

discussed in the next section.

3.2 Approximation properties

Here we present our results regarding the approximation properties of de la Vallée
Poussin type interpolation operators S:f:}‘\/[, (a € [0,1),n € NM € N"), intro-
duced in Subsection 3.1.3. We remark that similar types of operators were inves-
tigated (among others) in [18]. Most of our results are generalizations of the de

la Vallée Poussin type interpolations introduced and discussed by Bernstein in his

paper [4].
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We investigated the projection properties thoroughly for the de la Vallée Poussin
sums of single- and multivariate trigonometric Fourier series. Let us present the

following result regarding the projection property of S;fm.

Theorem 3.6. Let o € [0, 1) be an arbitrary number and suppose that n < M. If
0 < s <min{na, M — n},
then for every trigonometric polynomial T € T, the identity
(SpuT)(@)=T(x) (z€R)
holds.

Proof. Let us consider an arbitrary polynomial

S

T(x)= Z e’ (x € R).

l=—s

Then

n

(S23T) () = 3 palL)Tari)e,

j=—n

where
S

M-1
A 1 . .
Tu(j) = 77 D a ) ety vma
k=0

l=—s

We have s < M —n and s < na < n, which means that
s—(=s)<M—-n+n=M,

so in Th(7) the inner sum is 1 if [ = j and 0 otherwise.

From this we get
(SE3T)@) = D palL) - e,
Jj=—s

Since

VA

s<nas — <«

S
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then gpa(%) =1 for every —s < j < s. LJ

Next, we give a two-sided estimation of the operator norm

1Sl = sup{[[575 fllso = [[flloo = 1} =

2 M-1 (31)
= max {57 X|pi (e = ]

in the case when the operator S:fjw is interpolatory. We will present the proof of

the following theorem in the final section of this chapter, as it is quite lengthy:.

Theorem 3.7.
2
555341 = Zlog N + O(1),

i.e. to any interpolatory operator SY9, there exist positive constants ci,co inde-

pendent of n and M such that the following inequalities hold

2 2
—log N +c1 < ||S7y ]l < =log N + ¢,
T ’ T

M

for every above numbers n, M, where N := 5.

So now we have the precise norm of these operators.

As before, let us denote the error of the n-th degree best approximation of f € Cy,
by

Choose the index sequences (ng, k € N) and (Mg, k € N) arbitrarily. We shall

investigate the convergence of the operator sequence

Spease  (Com [ ) = (Comi [ ) (R EN). (3.2)

ng, My

Using the estimations above, we have (cf. [4, p. 150]) the following result.

Theorem 3.8. Let f € Cy,. Consider the trigonometric polynomial sequence

S::’jwkf (k € N). Suppose that
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i) My — +o0o (k — +00) and let

My, — M
M’ Ny=_ "+ (k € N).

1) . — =
) T 27’Lk — Mk

Then S::”}ka interpolates f at the points Xy, for every k € N, and

172500 ~ Tl < {2108 Mo+ 0 | B (1) (7 € )

Proof. Let
o= 1S f = flloo-

We denote by Qas,—r, the trigonometric polynomial of degree M — ny, for which

Hf - QMk_nk”OO = EMk_nk (f)
Consider the inequality

(S50, 1) (@) = fla)] <

(3.3)
< (S f) (@) = Qatyn ()| + | Qaty o () = F ().

Using Theorem 3.6 the interpolatory polynomial can be written in the following

form:

(S5750,8) (@) = Qutna () + (S5, (f = Qo) ) (@)

Using Theorem 3.7 leads to the following inequality:

(87280 ) = Quic )] < {21085 + O |+ Ba (1),

which together with (3.3) gives

pr < {1 + %logN%—O(l)} By (f) =

_ {%log]\f—i—O(l)} - Epgen, (f).
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Corollary 3.9. Let f € Cs,. Consider the polynomial sequence S::f}v[kf (k eN).
Suppose that conditions i) and i1) of Theorem 3.8 hold, and

iii) the sequence

(k € N)
18 bounded.

Then the sequence S:f:mkf (k € N) uniformly converges to f.

By Theorem 3.8, the order of the convergence is near the best approximation.

For a sequence of the (trigonometric) Lagrange interpolation polynomials, if M} —

+00 (k — +00) then the sequence

M, M,
%= 2]

:2nk—Mk: 2

is not bounded, so we do not have uniform convergence for a sequence of operators

(Lar, M € N1), but Theorem 3.7 with the above values yield
[ L]l = log M + O(1),

so we deduced Proposition 3.2 from our results.

A sequence of the (trigonometric) Hermite-Fejér polynomials satisfies conditions
i)-ii1) and therefore H s f uniformly converges to f for any f € Cy,, so we obtain

the results presented in Subsection 3.1.2.

Moreover for any fixed 0 < a < 1, if conditions i) and 4i) hold for a sequence
S;f; a, f then

. Mk . 1 —|— (e}

n an — Mk - 11—«

N,
is constant (i.e. bounded), so Sff; u,J uniformly converges to f.

In the final section of this chapter, we present the proof of Theorem 3.7.
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3.3 Proof of Theorem 3.7

Squw has the interpolation property, so considering our remark for Theorem 3.4

we can assume that

M M —
a=—_1=""" (3.4)
n n
and
M

Let H :=2n— M. Observe that M and H have the same parity and 1 < H < M.

Let f € Cy,. First we give two different forms of the polynomial

(S75f) (x) MfokM)D%(:c—kaM)
k=0
o M-1
=7 2 Of TrM { +Z%‘( )cosg(q:—ka)}
Lemma 3.10. The polynomial S“" wf has the form
M-1 M H
. 1 sin 3 (@ — g ar) sin 5 (2 — 2, 0)
( Mf MH kZ:O sin2 T— x; M f(ZEk,M).

Proof. Via induction one can easily prove that

sin b 2cosx +2cos3x + ...+ 2cos(h — 1)z, h even,

= (3.5)
S 1+2cos2z+...4+2cos(h — 1)z, h odd.
Considering (1.18) we have to show that
sin 2 (z — ap ) sin 2 (z — 1)
2 ’ = D7 (x — xp)- (3.6)

2 XT— ivk M
2H sin 5

Since
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and

] 17 j:1727"'7M_H;
Pa (j) = . M-H ‘ 2 (3.7)

First, let us assume that M =2m + 1 and H = 2h+1,son =m+ h+ 1. The
following identity was showed by S.N. Bernstein in [4, p. 147]:

2m+1 2h+1

1 sin T sin x 1 I
2(2h +1) sin2 z 2(2h + 1) [(2 D+
m—h m+h (38>
+2(2h+1)Zcoij+2 Z (m—i—h—l—l—j)coij].
j=1 j=m—h+1

Observe that (3.8) completes the proof of this case as the coefficients of cosines

are the needed gpa(#m) values.
Now consider the case M = 2m and H = 2h (cf. [4, p. 151]). This means

n=m+ h. By (1.18) now we have to show that

4h sin® £

D (a :_+Z¢a( )cosyx— sinmq,jsinh:c _
2 (3.9)

1 sinmax sinhzx

" h 2tan§ sinz’
where the middle fraction is (cf. [62, p. 50])

sinmzx 1 n = , 1
= - COS )X — — cosmx.
2tanZ 2 I3

Jj=1

For the last fraction we shall use (3.5). We consider two cases:
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i) If h =20+ 1 then the right side of (3.9) becomes
1 1 & 1 ’
Ur1 (5 +;(30ij— §cosmx> . (1 +2;(3082jl‘) .

We multiply the second and third terms and use the trigonometric identity for

cos px - cos qz (p,q € N). The result becomes

m—2l—1 m—+2l .
1 [o+1 ‘ m+2+1—75
A1 T—l—(2l—l—1) ]21 cosyx—l—‘g ) 5 COS]$].
= Jj=m—

Here if we write [ = % back, we get the wanted gpa(ﬁ) coefficients for the

cosines.

i) If h = 2l then the right side of (3.9) becomes

l

1 [1 & 1
5 <§ + Zcoij - §cosmx) : (22005(2]’ - l)x) .
j:

J=1

Again, we multiply the second and third terms and use the trigonometric identity.

The result becomes

m—21 m-+2l—1 .

1 {21 2l —

2 5—}—2[ E cosj:v—kA g %coij]
j=1 j=m—20+1

Here if we write [ = 2 back, we get the wanted ¢, (=4

+h) coeflicients for the cosines.

Cases 1) and i) together yield (3.9), so the proof of the lemma is complete. [

Also from the form (1.18), by using the trigonometric identity
o8 j(x — X ar) = €OS J €OS Jy, py + sin ja sin jay ar,

one can get the following simple form of 579, f (cf. [4, p. 147]).

n
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Lemma 3.11.
Pa AO -
(S5 f) (@) = 5 +ZA cos jx + Bjsin jx, (3.10)
7j=1
where
j o M-l ' '
Aj=wal(5) g7 2 T@kan) cosjuens, (< n);
k=0
j g M-I
Bj = 9004(%) : M f(ka) SIn jZgar, (j < n)
k=0

With these lemmas at hand, we can show the following identity (cf. [4, p. 148]).

Lemma 3.12. If M, H € N, 1 < H < M and Xy is the point system defined by

(1.10) then
1 Mlgin? i :U—ka)
D =1  (z€R).

MH 2 Y,
k=0 T2

Proof. From (3.6) and (3.7) with M = H we obtain that

M-1 . 2 H M-—1 H-1
1 sin® 5 (x — xp0) 2 1 H—j
MH pr=Ta PP 5+ 2 T cosdla — on)
k=0 2 k=0 =1

HED EE Emenm)] o

Since X, is an equidistant point system, one can see that the following equation

holds:

M-1
Zcosyx—mkM) 0 (reR,j=1,2,...,.M—1).
k=0
Using this in (3.11) we get our statement. O

Now we prove the following statement regarding the operator norm (cf. [4, pp.

148-150)).
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Lemma 3.13. Consider the interpolatory operator S:ff}w and N = 2nA_4M~
a) If N € N then the norm of the operator is
1 1 1 1
Pa _ .
- N w12 Nl + = +o+—.
el N Zo sin %ﬂ' N Lsin ﬁﬂ sin %7‘( sin 21;/1517T

b) If N is not a natural number then the norm can be estimated as

(V]

[N]—
1 1 1
WZO sin <5y ”_[N+ ]an1+29

2 N 2[N+1]

™

Proof. First let us assume that N := 2L € N. Using this, the index k in (3.1) can
be expressed as k = AN + o, where A =0,1,... H—1and o =0,1,.., N — 1.

For the norm of operator S;ff}u we get

R G jsin Yo + 27 + 1) sin Lo+ 22 + 28
= maX [— 21 20T 22T }
zeo2m) \MH purfwn sin® 5(x + =7 + 5F)
Let
A( ) 1 N—-1H-1 Sln_(x+29ﬂ+2)\_w) gin &£ (x‘i‘ 297r+2)\77r>
x) = ——
20m 2\
MH £ £~ sin” £ (z + °& —l——)

Then, we have

M +297r+2)\7r B
st T i I =

M M
Sin;l’-COS(Q—}-N)\)?T—FCOS?ZL"Sin(Q+N/\)7T

M
sin (7$+Q7T+N/\7T>‘ =
M

= = |sin —x
2

SO
N—-1H-1

’sinﬂx’ ‘sinﬂ(w+2ﬂ+2/\—”)‘
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Additionally,
o0 50 Jsin 5 x+2‘-’“+%ﬂ>\ sin? 1z + 27 4 B
where
Smg(“% | = fom (ZI(“%)HW)‘:
implying that
Alz) !Sln x} Z HﬁlSiDQ%(x—l—Q%_F?/\?W)‘
‘sm x-|- 297r ‘ — sinzé(x+%+2/\7ﬂ)

Here, considering Lemma 3.12 in the case M = H, the inner sum becomes H?,

thus

Ax) = |s1n :c‘ Z |s1n o )]

Finally, with the z = £

# substitution, by % = N we have

N

sin Sy
max A(x) = max {‘ 2 ‘ E
z€[0,27) ye[0,2mH) N ’ ‘sm %
o=

e

.9_
N

By (W —x) = By(z), € {o%ﬂ} ,
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so By is even within each period.

Also observe that By(z) > 1 and By(0) = 1. Now if the function would have a
local maximal value on the interval (0, %), then due to its parity there would be at
least 4 local extremas on the interval [O, %’r), and by its periodicity there would be

at least 4N extremas on the interval [0, 27), which is not possible. So the function

takes his only maximal value on the interval [O, QW”) at the point z = %, and due
to periodicity
1= 1
S?e || = max By(z) = — e
e x€[0,2m) w(@) N 4~ gin 2en
0=0 2N

Now suppose that N is not an integer. As above, for the norm of the operator

SPa, we have

|| || le SlIl— LL’—ZCkM)SlnH(x—JZkM)‘ (3 12)
= g[loa;; Vi > szm% . .
Here we can get the lower bound
[N]-1
1 1
1Sl = :
nM [N] ; sin %ﬂ'

by discarding some members of the sum and taking similar steps as in the previous

case.

We can also get the upper bound

TRl 1
1Syl < Z T2
[N 4 1] &

SN 5

™

in a similar way. 0

To complete the proof of Theorem 3.7, let N € N and

N—-1

1 1
LZZNZW

S11 Wﬂ'
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Using that Ly = 2log N + O(1) (cf. [4, (13)] or [37, p. 108]) we get the desired
estimation. If N is a noninteger value, we obtain the statement in a similar way

using part b) of Lemma 3.13. 0






Chapter 4

Weighted interpolation on the
roots of Chebyshev polynomials

In this chapter, we are establishing a connection between the trigonometric inter-
polations, obtained as sums of discrete (trigonometric) Fourier series, and algebraic
interpolations on the closed interval [—1,1]. It is known that the results concern-
ing the former transfer naturally to the case of algebraic interpolation on the roots
of first kind of Chebyshev polynomials. Now we are considering a more general
approach, using the roots of all four kinds of Chebyshev polynomials for the point

systems.

Achieving uniform convergence on the whole interval [-1,1] is problematic in these
cases because of unpleasant behaviour near the endpoints (regarding the details we
recommend the work [22]), but two slightly different approaches are known to deal
with this. The first is to supplement the problematic point systems with suitable
endpoints (see e.g. [40] and our own work [28]). The other technique is multiplying
the functions by suitable weight functions before dealing with the problem, thus
considering the convergence in weighted spaces of continuous functions (see e.g.

22], [44] and [45]). In this chapter we follow this latter method.

With a similar train of thought presented in [40], starting from discrete (alge-

braic) Fourier series we construct discrete interpolation processes on the roots of

61
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four kinds of Chebyshev polynomials generated by suitable summation functions
p € &,. We prove a general result similar to the Natanson—Zuk theorem, stating
that if the cosine transform of ¢ is integrable then these processes are uniformly
convergent on the whole interval [—1,1] in some weighted spaces of continuous
functions. We also examine necessary and sufficient conditions for the interpola-
tion. As applications, we obtain various new results for the Lagrange interpolation
and its arithmetic means; the Griinwald, the de la Vallée Poussin and the Hermite—

Fejér interpolation. All of the presented results are from our work [29].

4.1 Preliminaries

Let C(I) represent the linear space of continuous functions defined on an interval
I CR,
wy 5(z) == (1 —2)(1+2)° (z € [-1,1], 7,6 > 0)

be a weight function and define the weighted function space

Cuy i= {f € C(=1,1) | Tim(fw,s) = 0},

if 7,6 > 0. Otherwise, if v = 0 (respectively § = 0) let C,_, consists of all

continuous functions on (—1, 1] (respectively on [—1,1)) and

111{1(fw775) =0 (resp. li{n(fwwg) =0).

Finally , if vy =0 =0 (i.e. w,5 = 1) then let C,, , = C[-1,1].

Then
e = sl = mas (s )@ (7 € Cu)
is a norm on O, ; and (Cy, ;[ - [|w, ;) is @ Banach space.

If Xpr:={xpm} C(—1,1) (M € NT) is an interpolatory matrix, that is

-1 < Tyym < TpM-im < < Toy < Tipm< 1
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and f:[—1,1] — R is a given function then we denote the Lagrange interpolation

polynomial of f on Xy, by Ly (f, X, ).

Using [52, Theorem 2.2] we have a Faber type result (cf. Corollary 3.1 for the
trigonometric Lagrange interpolation) for the weighted approximation of the La-
grange interpolation, namely if 7,0 > 0 then for the matrix of nodes X,; there

exists a function f € C,, ; for which the relation
If = La(fs Xar, Mow, s =0 as M — +oo (4.1)

does not hold.

Therefore, as before, we can ask how to construct such discrete processes which

are uniformly convergent in suitable spaces of continuous functions.

One possibility to achieve this aim is to loosen the strict condition on the degree
of interpolating polynomials (see [37, Chapter I1], [43], [51], [17]). The success of

a construction like this strongly depends on the matrix of nodes.

Another way to obtain uniformly convergent processes is to consider suitable sums

of the Lagrange interpolation polynomials (see [44], [45]).

Here we use a mixture of the above techniques, analogue to the summation of the
discrete trigonometric Fourier series (see Chapter 1), to obtain wide classes of uni-
formly convergent weighted processes on the roots of the four kinds of Chebyshev

polynomials using a summation function .

Let wap(z) == (1 — 2)*(1 + 2)? be a Jacobi weight (a, 3 > —1) and consider

the sequence of orthonormal polynomials p,(z) := p,(f"ﬁ ) () having positive main

coefficients (n € N) with respect to the weight w, g:

1
| B e @ aple) do =6 (mmeN). (42
-1

Let us denote by

XM(wa,g) = {xk,M = xkvM(wa,B) k= 1,2,..., M}, (M S NJr)
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the M different roots of pa(wa,s, -), indexed in decreasing order.

The Lagrange interpolation polynomial of a function f € C,_ , on Xy (wap)

a.8
(M € NT) will be denoted by Ly (f, Xar(was),) and can be expressed (see [38,

Theorem 3.2.2 and 3.4.6)) as

M—1
Losr(f, Xar(wag),2) = Y ciu(Hp7(x)  (x € [~1,1)), (4.3)
=0
where u
cim(f) == cjm(f, wap) Zf i, v )P (T, 00 ) N rt (W, 3) (4.4)
k=0

for j =0,1,...,M — 1, and A\ s := Apm(wa,p) denote the Christoffel numbers

with respect to the weight w, s.

The definition of the coefficients ¢; a(f, wa,3) may be extended for all j € N by

the formula above, and the series

ZCJM (045)

JEN
can be considered as a discrete (algebraic) Fourier series of f.

For the algebraic case, we must consider a slightly different set of summation

functions, as defined below.

Let us denote by &, the set of summation functions ¢ : [0,4+00) — R satisfying

the requirements

(i) supp ¢ C [0,1),
(i) limsso40(t) = ¢(0) = 1,
(iii) the limits
plto£0) == lim o(t)

exist and finite in every ¢, € (0, +00),

(iv) for all ¢ > 0 we have ¢(t) € [p(t — 0), p(t + 0)].



Chapter 4. Weighted interpolation on the roots of Chebyshev polynomials 65

Notice that any ¢ € ¢, is Riemann integrable on [0, 1].

The next section contains the construction of p-summations for the parameters
la| = |B] = . We discuss the convergence and the interpolation property of these

processes in general.

4.2 General results

From now on, we shall consider only the special cases

ol = 8] = 3, (4.5)

i.e. the node systems X, (w,p3) contains the roots of one of the four kinds
of Chebyshev polynomials. With the notations x = cosd, x € [-1,1], ¥ €
€ [0, 7] we recall the orthonormal first, second, third and fourth kind Chebyshev

polynomials, respectively:

pr(;%*%)(x) _ %Tn(;p) = \/gcos nv (4.6)

if n € Nt and

p7(1%%>(x) _ %Un(:c) — \/gw7 (4.7)

sin
11 1 cos(2n + 1)¥
W) = v = L 2 DS 48)
2
11 1 sin(2n+1)2
P1(1 )(x) =\/zWalz) = \/;Sln—QQ (4.9)
2

For these o and 3, let us define the values

1
”y::g+— and 6§ :=

2 4 *

|

(4.10)

o |
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For a function f € C,,_ . and a fixed summation function ¢ € &, we define the

v,6

the following polynomials

3

j+v+9

m) e (F)pS? (),

5% 00 (. Xog(wag) 2) = 3 (

0

(xe[-1,1]; M eN"; neN),

(4.11)

<

where the coefficients ¢; y(f) are given by (4.4). The degree of this polynomial
is < n. Note that the above polynomials have simple explicit, easily computable

forms (the exact roots are known).

We remark that the "usual” way to define ¢ summation polynomials would be by

the formula (cf. e.g. [42], [40])

i @ (%) (@) (ze[-1,1], feCy ,, neN).
=0

Now we examine some properties of polynomials (4.11).

4.2.1 On the coefficients c¢; /(f)

First we take a closer look at the coefficients ¢; r(f, wa ) (see (4.4)), if |o| = |8] =

%. In the case of discrete trigonometric Fourier series, many general results are

based on the nice symmetry properties of the discrete Fourier coefficients fM (7)

defined by (1.14). Here we prove similar properties for the coefficients ¢; a( f, wa ).
Lemma 4.1. Let us fiz the positive integer M. For any vy v € Xa(wap) (k=
1,2,...,M) and j =0,1,..., M — 1 we have

pﬁ»""ﬁ) (Tp,0r) = —pé‘;’f,)j (Tr01), (4.12)

and

PP (zar) = 0. (4.13)
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For a function f € C,, ; the coefficients c; y(f, wa,p) have the properties

CjJ\/[(f) = —CZM_ij(f) (j = O, 1, .. .,M — 1), (414)

and

Proof. (4.13) obviously holds since the elements of X,/(w, ) are the roots of
pg\cj’ﬁ ). The equality (4.12) follows from certain trigonometric identities. The proofs
are similar in each four cases for «, 5. We shall discuss only the case a = = %,

when for k =1,2,..., M we have (see (4.7))

k
XM(w%é) S xp = COS8 Vg = COS i
Since for any j = 0,1,..., M — 1 we have
vy . , km
sin(j + 1)Uk 0 = sm[(2M+2 - (2M —j+ 1))M+ 1] =

= — sm(2M - ] + 1)19]{,]\/],
consequently by (4.7)

(3> (3-3) 2 SiIl(j 1)1919M
. f— . )
p; (Tpar) = p; (cos Vi) =4/ — sin Oy, =

11y (i,4
A (cos U ar) = —pors (k)

[SIE
(VI
N

[SIE
(NI

2 sin(2M — 7+ 1)Uk m (
= — — - = —p2
T sin Uy s

which proofs (4.12).

Now from the definition of the coefficients (4.4) immediately follow (4.14) and
(4.15). 0]

4.2.2 Discrete orthogonality

It is possible to convert the (continuous) orthogonality relationship (4.2) with

respect to the system (p%a’ﬁ ), n € N), into a discrete orthogonality relationship
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simply by replacing the integral with a certain sum. This result is similar to (1.12),

the (discrete) orthogonality of the trigonometric system.

For the four kinds of orthonormal Chebyshev polynomials the following discrete

orthogonality properties hold:

Lemma 4.2. For a fized M € Nt and i,j =0,1,..., M — 1 we have

(o) ) b
Z Z)Z,Oéy (xk7M) ijé, (:L‘k‘,M) wgh(s(xk,M) CM(wOévﬁ) =
k=1 0, Zf 1 7é j;
where xp € Xp(wa,p) and
(7
o P a=8=—3
B T . 1
CM(wa,B)— M1 if a:ﬁ:§
27 h .
otherwise.
(2M + 17

We remark that with suitable notations, it is possible to give a more compact
form of this result. We chose this form because it holds some details proving to

be useful later on.

Proof. From the Gauss—Jacobi quadrature formula (see [38, Theorem 3.4.1]) we

have the following discrete orthogonality relation for ¢ + 7 < 2M — 1
1 M
| 5@ @) de = 3 ) b ) eas = 1y
-1 k=1

where A p/’s are the Christoffel numbers, for which in the cases |a| = |5| = 5 by

(38, pp. 352-353] we have

Mot (Wa,5) = Orr(Wayp) - w3 s(wpar) (k= 1,..., M), (4.16)

which proves the statement. O
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4.2.3 Kernel function of the weighted operator

Our aim is to examine the approximation properties of S;Z 10 the weighted space
(Cuw 55|l * llw, 5)- Essentially, this means that for f € Cy,_ ; we have to estimate the

expression

1 = S (Fs Xar(wap), ), 5 =

= max | F(@) w0 5(x) = S5 (F Xor (1,0 00, (2) -

In other words, we approximate the function fw., s with the weighted polynomial

S (s X (wap), -) w5

Now we derive an alternative form of the weighted operator S, ,, w 5. From (4.11)

and (4.4) we have

S (f, Xor, w)wy 5(x) =

M A (4.17)
© k,M
= (wysf) (@ar) - KLy (Wa 5, w55, T s, 7) - —5——
— w3 5 (k1)
where the kernel function K:f,  1s defined as
Knip,M(wa,& Wry,65 Tk, M x) = Krf,M(xk,M7 I) =
(4.18)

NGt (@) @)
=2 () ) o)

for an x v € X

Now we establish another important connection to the trigonometric summations,
as we are going to show that this kernel can be expressed by the (Dirichlet) kernel

of the g-sum of the partial sum of trigonometric Fourier series, defined by (1.4).
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Lemma 4.3. Let us fir n € N, the positive integer M and the node xin =

= cos Uy € Xp(wap). For v € [0, 7] we have

K (cos ¥y ar, cos ) =

;

DZ (9 4 V1) + DEW — Piua), if a=p=-1
1 Dy (0 =) — DY oy + ), if a=p8= %

DYy (0 + Oiar) + Dy (9 = Vi), if a=—4, B=1

| DE (0 = Do) = Dy (9 +0ur), i a=3, B=—},

where DY is the kernel defined by (1.4), i.e.
Df(9) =142 = .
) =142 (£) coss

Proof. The proof is based on the trigonometric form of the polynomials p§°"5 )Tt

is similar in each four cases for «, 3, so we give the proof only for « = = <. In

1
5

thiscase*yzéz%,soforj:O,l,...,nwehave

JEy+o Y\ j+1
P\nryr2) " \arz)

From (4.7) and (4.18) with x =: cos ¢, (¢ € [0, 7]) we obtain

n

2 )+ 1
KiM(cos Ug.ar, cost)) = - Z ") (%) sin(j + 1)Ug arsin(j + 1)9,

since

N
N|—=

2 sin(j +1 2
w1 1(cos?) -pg- ’ )(Cosﬁ) =sin? - \/jw = \/i sin(j + 1)v,
7r m

sin ¢

N

)

I
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where j = 0,1,...,n. Thus we get

K7 i (cos ¥ ar, cos ) =

[gw( )COSJﬁ Vk.ar) giso( )cosj(19+z9k,M)],

and using the fact that ¢(1) = 0, this expression for K, (cos ¥ ar,cos?) also

equals to

n—+2 n+2 .
[1+2Z<p( )cosj(ﬁ—ﬁk7M)—1—2Zgo(nL+2) cosj(z?—i-fl?k,M)],
j=1

consequently

1
K:‘;M(cos Ognr, cos V) = Py [D,f+2(19 — Vpm) — Di (0 + 19k,M)} ) O

4.2.4 Uniform convergence

As before, from the two-parameter operator family (S s M e N) we can choose
a one-parameter family using two arbitrary index sequences (n,,, m € N) for the
degree, and (M,,, m € N) for the number of nodes. Thus we obtain a sequence of
bounded linear operators

S‘P

N, M,

:C

Wr,8

—~ P,  (meN), (4.19)

where P,, denotes the linear space of algebraic polynomials of degree < m.

Denote by L'(RT) the linear space of measurable functions g : RT™ — R for which

the Lebesgue integral [, |g| is finite. The function

ol = [ 1ol (g€ L)
R+

is a norm on L'(R*) and (L'(R"), || - ||z1+)) is a Banach space.
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The cosine transform of g € L'(R™) is defined by

Ge(x) := /0 Oog(t) cos (tx) dt (zr e RY).

The following theorem shows that if the cosine transform of the summation func-
tion ¢ is Lebesgue integrable on R := [0, +00) then a sequence of polynomials

(4.11) tends to f uniformly for any f from the weighted space C,,_;.

Theorem 4.4. Let o] = || = 5 and (v,0) is given by (4.10). Suppose that

ped, and

Ny — +00 (M — +00)  and  ny, < 2M,,.

If ¢. € L'(R") then for any f € Cy, ; we have

1 =S a0 (s Xt (Warp)s M, s =0 (m = +00), (4.20)

where the polynomials S), , —are defined by (4.11).

Compare this result with the Natanson—Zuk theorem (see Theorem 1.5) and its

discrete version Theorem 1.13. We present the proof in Section 4.4.

The direct verification of ¢ € L'(R") is generally not easy, but the following

sufficient condition is a simple consequence of [25, p. 176].

Theorem A. Ifg: RT — R is a continuous function supported in [0,1], and

g € Lipn (n > 1/2) on [0,1] then §. € L*(R™).

Using these results one can easily choose the summation function ¢ such that the
conditions of Theorem A hold, and construct many uniformly convergent discrete

processes with simple computable explicit forms.

4.2.5 Interpolatory properties

We also investigate the interpolatory properties of the polynomials (4.11). The

following theorem states that these polynomials interpolate the function f € C,,_,
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at the points Xy (wq ), i.e.

fornr) = S8 0 (fy Xnr(Wap), wenr) (T € Xor(wap))

if and only if some values of the summation function ¢ are symmetrical to the

center (zg,1/2), where
M+~v+46

T Ty 2

so we obtain a result analogue to Theorem 1.14.

Theorem 4.5. Let || = |3| = % and 7,8 > 0 arbitrary real numbers, moreover
suppose that M > 2, M < n < 2M (n,M € N*) and ¢ € ®,. The polynomial
Sy nu(f, Xar(wa,), ) interpolates the function f € C,

if and only if

at the points X (wa )

v,

J+o+7y 2M —j+0+7
ol Gy w4 =1
n+ 20 + 2y n+ 20 + 2y
for every 7 =0,1,....,n, j # M.

Proof. Let [ € was and M > 2, M € N. Using (4.14) and the fact that M <n <
< 2M we can write the polynomial S7 ,/(f, Xar(wa,s), ) (see (4.11)) in the form

St (fs X (wap), x) =
-1

o n+ 2y + 29 n+ 2y + 29

since for 0 < j < 2M —n we have n < 2M — j < 2M, and

2M —j+~v+9 _0
n+2y+25 )

Now for an arbitrary z; ;y € Xp(wap), (1 =1,2,..., M) by (4.12) we get

Sy n(fy Xar(wag), Ti) =

- Z:lcj,M(f)' [90 (M) +o <2M_j+7+5)} -i(Tim),

n+ 2y + 20 n+ 2y + 29

Jj=0
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and considering (4.3), SiM(f? X (wap), xiar) also equals to

Ly (f, Xni(wap), in)+
M-1

' j+v+9 2M —j4+~v+96 B .
+ ¢j(f) [w(n+2v+25>+¢( n+ 2y 4+ 26 L) ps(wi).

J=0

Since

Ly (f, Xnr(wag), i) = f(@inm) (V 2 € Xn(wap)),

the equation

S (fs Xnr(Wap), wina) = f(2inr)

holds for every x; p € Xpr(wa ) if and only if the polynomial

A,dzlcj',M(f)- {90 (M) +90(2M_j+7+5> _1] i)

p= n—+ 2y + 20 n—+ 2y + 20

equals to zero at every point z; s € Xar(wa ), so it has M distinct roots and its

degree < M — 1, consequently it is the zero polynomial.

So Sy 1 (f, Xar(wa,p), ) interpolates f if and only if

J+tv+0 2M —j+~v+0
ol ———)+¢ —1=0
n+2vy+ 260 n+ 2y + 20

for j =0,1,..., M — 1. This completes the proof. O

4.3 Results in special cases

Now we present specific interpolations which can be considered as the weighted
variants of some classical interpolation methods. We encourage the reader to
compare the summation functions ¢ used in this section with the ones presented

in Chapters 1 and 3.
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First, for a function f € C,,_, and M € N* the Lagrange interpolation polynomials
Ly(f, Xa(wap),-) can be obtained as special cases of (4.11). Indeed, let n := M

and

1, iftel0,1)

pr(t) ==
0, iftell,+o0).

Using Theorem 4.5 it is clear that S§7,,(f, Xas(wa,s), -) interpolates f at the points
Xnm(wap), and the degree of the summation polynomial cannot exceed M — 1
(since cpr(f) = 0, see Lemma 4.12), so it must be the Lagrange interpolation

polynomial of f.

As we have already mentioned (see (4.1)), the sequence of these polynomials gen-

erally does not tend uniformly to f in (Cu_ ;, ||+ [Jw. 5)-

4.3.1 Arithmetic means of Lagrange interpolation

Let M € Nt and for m =0,1,..., M — 1 define the polynomials
Lo (fs Xar(wa ), ZCJM WD (@), (f € Cu,yoa € [1,1).

Note that Lps—1a(f, Xar, ) is the Lagrange interpolation polynomial.

The arithmetic means of Lagrange interpolation are defined by the formula

M—-1

! > Lol Xonluns). )

M (f, X (Wap), ) = m

Theorem 4.6. Let |a| = || = 5 and (v,0) is given by (4.10). Then for any

[ € Cy, 5 we have

MIEEOO 1f = om(f: Xar(wap) w5 = 0.
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Theorem 4.6 is a discrete version of Fejér’s theorem about the arithmetic means
of Fourier series (see Corollary 1.6). Analogue results in interpolation theory are

due to S. N. Bernstein [2] and J. Marcinkiewicz [20] in the unweighted case.

We remark that the same result was already obtained in [45] (for more general
parameters «, 3,7, 0), but our proof differs from the one presented there. A similar
result was introduced for the four kinds of Chebyshev nodes in [40], where the
author supplemented the node systems with additional points instead of using

weights.

We also note that by Theorem 4.5, o/ (f, Xar(wa,p),-) does not interpolate f at
the points of X/ (wa ).

Proof of Theorem 4.6. A simple calculation shows that

om (f, Xos(Wa ), ) = S5a7 ar (fs Xr(Warp), ),

where
1—2t, iftel0,3]]
pr(t) =
0, if t € (5,+00).

For the cosine transform of pr we have

prla) = o (DY

consequently ¢r(z) € L'(R™), and by Theorem 4.4, our proof is complete. O

4.3.2 Grinwald—Rogosinski type processes

Let us consider the summation function

costm, ifte|0,3]
pa(t) =
0, if t € (5, +00).
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Theorem 4.7. Let |a| = |B| = § and (7,0) is given by (4.10) and suppose that
JE€Cy, ;-

(i) For pg we have the Rogosinski type average of Lagrange interpolation, i.e. for

f € Cy 4 the relation

w’YﬁS(QPJ\if,M(ﬁ XM(wOéﬁ)v IL‘) =

1
= i{ﬁM,wms(fa X (Wa), 71) + Lot 5(f; Xar(Wayp), SU—)}

holds, where

Lot 5(fs Xar(Wa,p), ) = wys - Ly (f, Xar(wa,p), )

and
T

vy o= weosty £V1—a?sinty,  ty = 2(M +~+3)
v

(ii) For these polynomials we have

Mlirfrloo ”f B Sf]\?[,M(f? XM(wa75)7 ')”w%é =0.

fa=p8= —% and v = 6 = 0, then we obtain Griinwald’s classical result [15] for

first kind Chebyshev roots in the unweighted case.

M.S. Webster [55] proved that for = 8 = % the uniform convergence (without

weight) is true only for closed subintervals of (—1,1). In [54] P. Vértesi generalized
Webster’s result for arbitrary a, 5 > —1. Theorem 4.7 shows that for |a| = |3]| = 3
the uniform convergence holds on the whole interval [—1, 1], if we use suitable

weight function.

We also note that by Theorem 4.5, S35 \/(f, Xar(wa,p), ) does not interpolate f

at the points of X/ (wq ).
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Proof of Theorem 4.7. The verification of (i) is based on the trigonometric

(e,8)

form of the polynomials p;~"". It is similar in each four cases for «, 3, so we give

the proof only for a = § = % In this case y = 4§ = %

Using the notation x =: cos ¥, (¥ € [0,7]) a simple calculation shows that
ry = cos(V F ty).

Now by (4.7) for j =0,1,..., M — 1 we have
(w1 1 (% %))(ZL‘ )—I— (w
3305 +

sinf(j + 1)(0 — tar)]
sin(v¥ — ty)

P ) ) =
sin [(7+ 1)+ ta)] _
sin(d + )

11
272

= sin(J — ty) - + sin(d 4+ ty) -
= 2cos(j + 1)ty - sin(j + 1)0,

and thus (by (4.3))

_{LM,w7,5(f Xt (Wa8)s 1) + Lot , (f, Xor(Wap), )} _

=0
oM : o
e j+1 } sin(j + 1)0
_ﬁmﬁzgw(mw+2) ) —gmg

where

j+1 ‘ (J+r
gp( +2) cos(j + D)ty COS o T2

J+1
M +2

forj=0,1,...,. M — 1, andgo( ) = 0, otherwise.

Consequently

1
5 Lt (s Xarap), 24) + Lot 5 (. X (), 2-) | =

); ).

—wii 2MM(f XM(“’%,%
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(ii) For the cosine transform of p¢ we have

sin(z — m)/2

2 (r € RY),

Pa(z) =

so g € LY(RT). By Theorem 4.4, we obtain our statement. O

4.3.3 De la Vallée Poussin type interpolation

Fix a number x € (0,1) and let

1, if t € [0,5%)
o= o (R, it e [ 5
\O, if t € (4%, +00)

Theorem 4.8. Let |a| = || = 5 and (7,0) is given by (4.10) and suppose that
JE€Cy, ;-

(i) For any fized k € (0,1) and M € N*t, the degree of the polynomial

Sovraa (f> X (wayp), )

is < M(1+ k) and it interpolates f at the points of Xpr(wa.p).

(ii) For any f € C,,. ; we have

V7,6

lim ”f - Sf]ﬁ[,M(f? XM(wOé,ﬁ)7 ')”w»y,a = 0.

M—+oc0

For the values kK = 1 and x = 0, we would obtain the Lagrange interpolation
and the weighted Hermite-Fejér type interpolation (see in the next subsection),
respectively. In trigonometric interpolation, S. N. Bernstein has analogue results

[4] for a class of interpolatory polynomials.

We remark that Theorem 4.8 can also be considered as a discrete algebraic version

of the de la Vallée Poussin summation of (trigonometric) Fourier series and discrete
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Fourier series. While we exhaustively investigated those processes in the previous

chapters, the discrete algebraic versions of our results are not yet available.

This result also shows similarity to a result of P. Erdés [10, Theorem 1] in the
classical (unweighted) case, where he proved that if the interpolatory point system
(Xn, M € NT) is such that the fundamental polynomials of Lagrange interpola-
tion are uniformly bounded, then for any f € C[—1,1] there exists a sequence of
polynomials Qs (M € N*T) of degree < M(1+ k) tending uniformly to f, and Qs
interpolates f at the points of X, for every M € NT. For our four point systems,

we now have a weighted analogue of this result.
Proof of Theorem 4.8. An easy calculation shows that

1 sin?(x/2) — sin?(1 + k)z

AH = e RJ’_ 7
onle) = A n (2/2)2 (z € R)
so ¢, € L'(RT), and also
eu(t) +ou(1=t) =1  (t€]0,1]),
thus from Theorem 4.4 and 4.5 we obtain the statement. O

4.3.4 Weighted Hermite—Fejér type interpolation

Let us define the summation function

1—t, iftelo,1]
pu(t) ==
0, if t € (1,+00).

The next theorem states that the weighted Hermite-Fejér type interpolatory poly-

nomials can be obtained by using suitable summation function.

Theorem 4.9. Let |a| = || = 5 and (v,0) is given by (4.10) and suppose that
J€Cy ;.
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(i) For any M =1,2,... the polynomials

2M .
1 Z JHEy+9 o
Kol 1) = (1 B w) sl

=0
(see (4.4) and (4.11)) satisfy the following Hermite—Fejér type interpolatory prop-

erties

Sf]\?[,M(f? XM(woc,B)7$k,M) = f(ﬁk,M% (421)
(w%(sSfﬁM(f, X (wa,p), ))/(ﬁkM) =0, (4.22)

for all xp 1 € Xar(wap)-

(ii) For any f € C,, ; we have

im (L = S5 (Xt (g, s = 0.

fa=p= —% and v = 0 = 0, then we obtain Fejér’s classical result for first kind

Chebyshev roots in the unweighted case. (See e.g. [37, p. 165], [53].)

In [17] Agota P. Horvath proved a general convergence theorem for the above
type weighted Hermite—Fejér interpolation process on p(w)-normal point systems
(especially on Jacobi roots, see [17, Example (2)]); but Theorem 2 of her paper

does not contain our Theorem 4.9.

G. Mastroianni and J. Szabados [23] investigated an other type weighted Hermite—

Fejér interpolation process based on Jacobi nodes.

Proof of Theorem 4.9. (i) The summation function ¢y obviously satisfies
the symmetry property of Theorem 4.5, which proves the interpolatory properties
(4.21).

For the proof of (4.22) we shall use the following result regarding some values of

the derivatives of the functions w%(;pgo"ﬁ ),
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Lemma 4.10. Let o] = || = 5 and (v,) is given by (4.10). Fiz the positive

integer M. Then for any node xy p € Xpr(wa,3) we have

/ /
@M = j +7+8) (wyap™” ) (wear) = G+ +0) (wy b5, ) (@),
where j =0,1,..., M — 1.

Proof. The proof is based on the trigonometric form of the polynomials pg.a’ﬁ ) =
pj, and is similar in each four cases for a, 3, so we give the proof only fora = 8 = 3.

In this case y =6 = %,

km
M+1

Xp(wi 1) 3 @ = cos =: cos Vg ur,

33
and by (4.7)

(w

p;)(x) = sin ((j + 1) arccos z), (j=0,1,....,M —1).

N
N

For an arbitrary j =0,1,..., M — 1 and ¢ € [0, 7] we have

' 2(j+1)-cos(j+ 1)v
(w%épj) (cos ) = 20+ 1) cosly ),

T sin ¢
and since
(j+ Dknm 2M+2—(2M —j+1))knm (2M — j+ 1)k
COS ~——— = COS = COS ,
M+1 M+1 M+1
thus
! B 2(j+1)-cos(2M — 7+ 1) m
<w%7% pj) (em) = P sin Vg ' (ear € Xar).

Observe that the expression on the right side equals to

Jj+1 2(2M —j5+1)-cos(2M — j + 1)V,
OM —j+1 Vo sin Uy, 1
jt1 '

= m(w;,é p2M7j> (ﬂvk,M),
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proving our statement. [

Let ¢ := pp. Then we have

oM .
/ j+v+0
(w"/ﬁS;pM,M(fv Xr(Wap), >> = Z ¥ (2]\44_27+25

=0

) i) (wan)

By (4.14), this equals to

M—

H

s oM —j+~+8
[ 21\%1%126 (wy5p5)" — w(ﬁ) (w%z?p?M—j)/} ¢ (f)-

Jj=0

Using
St R WO (T e e e s B
oM y2y125) "7 oM +2y+20)

and Lemma 4.10 together leads us to

(w’YyéS;pM,M(zﬂ XM7 ))/ (xk,M) =

- jHy+d N 2M—jtatd j+y+0 ‘
T [P\am 2yt s ity +o ?\2M + 27+ 26

Jj=

‘Cj,M(f> (w'y,ﬁpj)/(xk,M)a

which equals to 0 for every zy py € Xy if

2M +2y+26 ( jH+v+0 )_2M—j+7+5_
J+y+9 2M + 2y + 26 JH+y+0

for y=0,1,...,M — 1, or in another form,

(—iilii—)zl— jra+o (j=0,1,....,M—1).

2M + 2y + 26 2M + 2y + 26

Since @y satisfies this condition and the interpolatory condition as well, so the

proof of (4.22) is complete.

(ii) Since

pule) = — (M) (z €RY)
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belongs to L'(R™), therefore by Theorem 4.4 we obtain the statement. [

4.4 Proof of Theorem 4.4

Let |a| = |8] = 1. We shall use the Banach-Steinhaus theorem. The polynomials
{pga’ﬁ) : i € N} form a closed system in the space (C, .| - [, ,) (see e.g. [44,

Section 3]), therefore we have to show that
157, a0, 0o Xt ) =ill, =0 (m = +00) (4.23)

for every fixed ¢ € N, moreover the norms of the operators S:fW A, 1s uniformly
bounded, i.e. there exists ¢ > 0 independent of m such that

1S5,

N, M, ||w'y,6

<c (m e N), (4.24)
where

[E=M

Nom s M, ||w'y,5 T

sup {182 v (F Xat: s+ fE€Cu )

Il Wy § =1

In order to prove (4.23), let us fix ¢ € N and assume that m is large enough, i.e.

min{ M,,, n,,} > i. Now by Lemma 4.2, for j =0,1,..., M,, — 1 we have

1, ifi=3j
Cjn, (Pi) =
0, ifi#j

so considering n,, < 2M,, and (4.14), the equality

Syfm,Mm (pza XMm7 ) =

B i+y+0 2My, —i14+v+9
IR PG Y 3 A I Y S R
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holds. It is clear that

) i+y+0
1 —— | =¢(0) = 1.
meshoo ¥ (nm +27—|—25> #(0)

Since n,, < 2M,, (m € N) and

o 2My, —i4+y+06 .
lim inf = lim inf
m—+00 Ny, + 2’}/ + 20 m——+oo

2Mp, + 2y + 20 i+y+0 <
N, + 277 + 20 N, + 277 + 20

moreover p(z) =0 if z > 1, thus we have

lim
m—r-+00

2M,, —i+7v+96 _0
Ny + 27 + 20 7

therefore we proved (4.23).

Next we show (4.24). Using (4.16), (4.17) and Chy,, = Cu,, (wa,p), the norm can

be expressed as

1S 2t (> Xt Mo, 5 =

M,

_HZst e ) [ (Tras,) - Cu,, - K”fm,Mm(:Ek»Mm7.)H :

k=1 >
80 if [| f{w, 5 = Sup,e(_1,1 | (wsf) ()] = 1, then we obtain
Mm

H anm”w%é: sup CM Z‘K Mo, (xk,Mme)"
z€[—1,1] =0

By Lemma 4.3 the kernel can be uniformly expressed as

K Mo, (ﬁk,Mwﬁ) =

Nm,

1
% [Dﬁm+2~,+25(19 - ﬁkka) + Dim+27+25(19 + ﬁk,Mk)] )
SO

<

|| Nim, Mm||w'y,5 —

27rm ﬁrg%)fr Z{’D”MHW% (0 + 19’“ka>‘ + |Drfm+27+25(19 - ﬁk,m)‘}'
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Let

M
1
D¢ = —— su Dy (9 + 9 + | D7 (0 — Uy, .
D5l = 557 b 3 DL+ dran)l + D50 = dnan)l

Then

2nm 2nm 1 [7
D7 <(1+—)||D¢|h =(14— | — D7 (t)| dt
D2t < (14 57 ) 1020 = (1457 ) - 52 [ 1oz

(see [48, pp. 242]) and
sup || D[y = [1@ell 2 zh)
neN

(see Theorem 2 in §24 of [25]). Consequently if ¢. € L'(RT) and n,, < 2M,,, then

there exists ¢ > 0 such that

N, M, —

M, b2y 20
(Hw

155, s < O, 20 A Mol <

since Cir,, (wa,p) < 77— for any |af = [B] = +. This completes the proof of (4.24)

and consequently of Theorem 4.4. O
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Summary

The focus of our work is the uniform convergence of different de la Vallée Poussin
type summations. We encounter this topic in theories of classical and multivariate
trigonometric Fourier series, discrete Fourier series and trigonometric interpola-

tion, and finally algebraic interpolation.

In the first chapter we discuss the historical background of our study, establish
the most important notations and definitions and recall some fundamental results

on which the later chapters are based upon.

In the second chapter we deal with the de la Vallée Poussin means of the trian-
gular partial sums of multivariate Fourier series. We determine the exact order of
the corresponding operator norms. The lower estimation of these norms will be

extended to a class of projection operators having similar projection properties.

In the third chapter we discuss some classic methods of trigonometric interpolation,
mainly the Lagrange and Hermite-Fejér interpolations. We also define the de la
Vallée Poussin sums, which will be used as a tool to describe the transition between
these two classic methods. We give general properties, the precise operator norm

and (uniform) convergence order for these cases.

In the final chapter, we are establishing a connection between the trigonometric
interpolations and the algebraic interpolations on the closed interval [—1,1]. We
construct discrete interpolation processes on the roots of four kinds of Chebyshev
polynomials generated by suitable summation functions. We investigate conver-
gence in some weighted spaces of continuous functions. We also examine necessary

and sufficient conditions for the interpolation, and discuss specific applications.
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ésszefoglalés

Ertekezésiink témaja kiilonbozo de la Vallée Poussin tipust szummaécios modszerek
tanulmanyozasa. Ez a témakor a klasszikus és tobbvaltozds trigonometrikus Fourier
sorok, a diszkrét Fourier sorok és a trigonometrikus interpolacio, valamint az al-

gebrai interpolacié elméletében egyarant vizsgdlhato.

Az elso fejezetben kutatasunk torteneti hatterét ismertetjiik, bevezetjiik a fontosabb
jeloléseket és fogalmakat, és felidéziink olyan alapveté eredményeket, melyeken a

késobbi fejezetek alapszanak.

A msodik fejezetben a haromszogosszegli tobbvaltozos Fourier sorok de la Vallée
Poussin kozepeit vizsgaljuk. Meghatarozzuk a kapcsolédé operdatorok norméinak
pontos nagysagrendjét. Alsé becsléstinket hasonlé projekcios tulajdonsagokkal

biré operdtorokra is kiterjesztjiik.

A harmadik fejezetben ismertetjiik a trigonometrikus interpolécié néhany klasszikus
modszerét, kiilonos tekintettel a Lagrange és az Hermite-Fejér interpolaciokra.
Bevezetjiik a de la Vallée Poussin oOsszegeket, melyek eszkozként szolgalnak az
emlitett mdédszerek kozti atmenet vizsgalataban. Az altalanos tulajdonsdgok mel-

lett pontos operatornormat és konvergenciarendet adunk.

Az utolso fejezetben kapcsolatot teremtiink a trigonometrikus interpolacidk és a
[—1,1] intervallumon értelmezett algebrai interpoldcidk kozott. Diszkrét inter-
polécios eljarasokat konstrualunk a négy fajta Csebisev polinom gyokein, szummacioés
figgvények segitségével. A konvergenciat bizonyos silyozott fiiggvényterekben
vizsgdljuk. Az interpolacié sziikséges és elégséges feltételeit, valamint specidlis
alkalmazasokat is targyalunk.
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