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Abstract

Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing

livelihood to over a billion people. While normally dominated by perennial C4 grasses, these

rangelands are increasingly affected by the massive spread of native, mainly woody

legumes. The consequences are often a repression of grass cover and productivity, leading

to a reduced carrying capacity. While such encroachment by woody plants has been exten-

sively researched, studies on similar processes involving herbaceous species are rare. We

studied the impact of a sustained and massive spread of the native herbaceous legume Cro-

talaria podocarpa in Namibia’s escarpment region on the locally dominant fodder grasses

Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass

production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x

10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight con-

secutive years and under different seasonal rainfalls and estimated the potential relative

productivity of the land. We found the percentage of active Stipagrostis tussocks and the

biomass production of individual tussocks to increase asymptotically with higher seasonal

rainfall reaching a maximum around 300 mm while the land’s relative productivity under

average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa

encroachment had no effect on the proportion of productive grass tussocks, but reduced he

productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on

grass productivity was immediate and direct and was not compensated for by above-aver-

age rainfall. Besides this immediate effect, over time, the density of grass tussocks declined

by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the

lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble

those of woody encroachers. Therefore, against the background of global change, the

spread of herbaceous legumes and the underlying patterns needs to be further investigated

to develop adequate counter measures for a sustainable land use.
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Introduction

The savannas and grasslands of arid and semi-arid drylands in the subtropics and tropics

make up more than 20% of the earth’s land surface. Dominated by often protein-rich perennial

C4 grasses, whose stalks and panicles supply fodder for wildlife and livestock, more than 70%

of these lands are used for pasture and provide livelihood to over a billion people [1]. An

increasing number of these rangelands are affected by the recent and massive proliferation of

C3 species [2,3]. These encroachers are typically native woody, perennial legumes but occa-

sionally herbaceous plants or invasive alien species [4–6], that lastingly change the community

structure and repress the formerly dominant grasses [7,8]. The drivers of such dominance

shifts are manifold [9–11] and include land-use changes such as unsustainable grazing practice

[12,13], altered fire regime [14,15] but also climatic factors such as rainfall regime [12,13] or

elevated atmospheric CO2 levels [2,16–18]. The ecological consequences of these encroach-

ment processes are similarly diverse, and often ambiguous, ranging from negative through

neutral to positive depending on the respective ecosystem and function [9,19]. However, there

is a wide consensus that encroachment is associated with a loss of pasturage in the affected

areas [9,20,21], leading to substantial declines of pastoral production and endangering local

people’s livelihood. In Namibia more than 26 M ha are affected by encroachment of various

woody legumes, such as Senegalia mellifera (Vahl), Vachellia reficiens (Wawra) or Dichrosta-
chys cinerea (L.) Wight & Arn [22]. As over 60% of the agricultural production in Namibia

originates from livestock farming [23] the annual losses are estimated to amount to over 70 M

US$ [22], and similar numbers apply for South Africa [24] or Uganda [25]. This negative effect

of encroachment on pastoral production has so far mainly been attributed to the encroachers’

spatial demands [21,26]. Studies demonstrating a direct (competitive) impact of the encroach-

ing species on the grasses density and individual productivity are rare [27–29]. However,

encroachment is not restricted to woody species and similar processes have been described for

annual and perennial forbs and grasses [4,30,31]. Just like woody encroachers, these forbs or

grasses exhibit massive increase in population densities, and, while themselves being unpalat-

able, reduce the pastures forage quality [4,22]. Since 2008 the herbaceous legume C. podocarpa
has exhibited a massive spread in Namibia’s escarpment region between Namibrand in the

South and Karibib in the North, leading to articulate complaints of local farmers about the

plants’ negative impact on pasturing (T. C. Wagner, personal communication). With our

study, we characterize and quantify the direct and long-term impact of this spread of C. podo-
carpa on the productivity of Stipagrostis grassland and the role of seasonal rainfall in grass bio-

mass production between 2009 and 2016. We ask the following question: How does

encroachment by C. podocarpa affect dormancy state, individual tussock productivity and tus-

sock density of Stipagrostis under natural rainfall conditions?

Material and Methods

Study Area

The study was carried out on long term observation plots on the 7000 ha sized farm Rooiklip

(S 23˚24’23.29”, E 016˚03’37.35”), which is situated in Namibia’s lower escarpment, a steep

decline that constitutes a narrow transition zone between the more humid Nama-Karoo

biome of the Namibian highveld and the Namib desert. The climate is hot-arid, and mean

annual precipitation is 120 mm. Rainfall is generally erratic and predominantly occurs

between October and March, with a pronounced high in February and March that defines the

main growing season. The vegetation is dominated by a sparse matrix of the perennial tussock

forming C4 grasses Stipagrostis ciliata and Stipagrostis uniplumis with an average density of 2
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tussocks/m2 and a rainfall-dependent total canopy cover reaching a maximum of 50%. Inter-

spersed are occasional trees, mainly Senegalia reficiens (formerly Acacia reficiens) or Commi-
phora sp. and shrubs such as Orthanthera albida, Blepharis sp. or Petalidium sp. During the

rainy season, these perennials are complemented by annual grasses and various therophytes,

among them the herbaceous legume C. podocarpa. As the annual plants are short-lived and

rarely live longer than a few weeks, the main pasturage comprises the nutrient-rich perennial

Stipagrostis species. Due to climate and vegetation, livelihood is primarily reliant on extensive

livestock-keeping with goats and sheep, and, where rainfall and grass density suffice, cattle too.

The farm Rooiklip was last used for farming at a larger extent in the 1970s. In 1981 the south-

ern part of the farm was proclaimed a private game reserve, while the northern part of the

farm is still used for extensive grazing with a total of 200–600 sheep. Our research on Rooiklip

was approved by the Ministry of Environment and Tourism of Namibia, (research permit

1982/2014) and conducted with the explicit permission of the farm owners.

Study Species

Stipagrostis ciliata (Desf.) De Winter and the closely related Stipagrostis uniplumis (Licht.) De

Winter are perennial tufted C4-grasses that are widespread on sandy and stony soils in south-

ern Africa where the mean annual precipitation ranges between 100 and 300 mm [32]. These

grasses constitute the primary source of forage for livestock and native herbivores in the study

area [33,34], their persisting dried up culms providing fodder long into the dry season. Both

species are highly drought-tolerant and can remain dormant for up to two years under dry

conditions. Under favourable conditions, tussocks can reach an age of seven years or more

[35]. Stipagrostis propagates both vegetatively by means of rhizomes and reproductively

through seeds. Their biomass production varies considerably with rainfall [36,37] while the

general tussock density in the respective area corresponds with long-term average

precipitation.

The annual, herbaceous legume Crotalaria podocarpa DC is common in arid parts of south-

ern Africa [38], where it prefers sandy and stony soils. A symbiosis with Methylobacterium
nodulans [39] allows nitrogen fixation and supports the species’ success in its nutrient-limited

environments, as long as sufficient water is available. Its growth, number of flowers and seed

set vary considerably with rainfall and water availability (T.C. Wagner and C. Fischer, unpub-

lished data). Seeds are produced in high numbers, are viable for over four years and build up a

persistent soil seed bank [40]. Due to its content of pyrrolizidine alkaloids and flavonoids, C.

podocarpa is unpalatable for livestock [41,42]. In the study area, C. podocarpa used to occur in

moderate numbers with less than 5 individuals per 100 m2 as an inconspicuous therophyte of

the local grassland communities. It shares several significant life history traits with encroach-

ing woody legumes in the region, such as Vachellia sp., Senegalia sp. or Acacia sp. (Table 1).

Since 2008, according to complaints by local farmers and our personal observation, C. podo-
carpa has exhibited a pronounced and steady increase in the study region and since then even

replaced Stipagrostis as the dominant species in some places during the growth period.

Grass density and biomass production in relation to seasonal rainfall

For the selection of our study sites, a stratified random approach was taken. In 2009, two areas

within the ungrazed southern part of the Rooiklip farm were selected one already encroached

with C. podocarpa (initial total C. podocarpa cover� 10%, later referred to as “affected sites”)

and one with still normal C. podocarpa densities (initial total C. podocarpa cover� 1%, later

referred to as “unaffected sites”). Due to the high spatial variability of rainfall, both sites were

located within a 2 km radius to ensure equal rainfall conditions. Within each area 10 plots of
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10 m x 10 m were randomly selected with a minimum distance of 50 m (center-center) from

each other and set up as long-term observation plots.

While already differing in C. podocarpa density, both areas initially had a similar density of

Stipagrostis tussocks (2.12 ± 0.14 and 2.10 ± 0.10 tussocks/m2), and did not differ in soil types,

soil texture and general vegetation structure (Table A in S1 Table) and rainfall. Rainfall data

were recorded on a daily basis using a standard rain gauge, midway between affected and unaf-

fected sites. For further analysis only rainfall occurring during the main rainy season and

respective growth period between February and March was considered.

Between 2009 and 2016 the number of individuals, total cover and the area covered per

individual plant (in m2) were determined for Stipagrostis and C. podocarpa at the end of the

growing season in April each year before the die off of C. podocarpa. Cover of Stipagrostis tus-

socks was measured including dried up culms. Stipagrostis tussocks were counted and parti-

tioned into active tussocks (with visible green blades) and inactive tussocks, the latter group

consisting of dormant or actually dead tussocks, that did not produce new biomass during the

current growing season. C. podocarpa individuals were included if at least one pinna was devel-

oped. No data were gathered in 2010 due to logistical problems. Individual cover was used as

proxy for biomass production [37,43]. These data were used to model the effect of C. podo-
carpa on grass productivity and compare biomass production by individual grass tussocks on

affected and unaffected sites under the respective seasonal rainfall conditions.

Statistical Analysis

Stipagrostis tussock density on affected and unaffected sites was modelled over time using a lin-

ear mixed effect model with year, rainfall and their interaction as explanatory variables and

manually simplified by eliminating insignificant factors rainfall and its interaction with year.

The percentage of active Stipagrostis tussocks in response to seasonal rainfall was modelled

using a non-linear mixed effect model assuming asymptotic function through the origin (SSa-
sympOrig: Asym�(1-exp(-exp(lrc)�input)), while the individual cover of Stipagrostis tussocks in

relation to seasonal rainfall was modelled assuming an asymptotic function (SSasymp: Asym
+(R0-Asym)�exp(-exp(lrc)�input)). The latter model was used to determine the lower thresh-

old of rainfall necessary to support growth of Stipagrostis and the amount of precipitation at

which grass productivity reaches 95% of the asymptotic maximum. The predicted values for

the percentage of active tussocks and individual tussock cover were used to calculate the poten-

tial relative productivity in relation to seasonal rainfall (% active tussocks � predicted tussock

Table 1. Life-history traits of woody encroaching species and C. podocarpa.

Life-history trait Encroaching woody legumes in southern Africa C. podocarpa Shared trait

Growth forms shrub, tree forb no

Longevity perennial annual no

Rooting pattern tap root tap root yes

Protection against mammalian herbivores yes (often thorns and/or poison) yes (poison) yes

Dry season survival yes, dormancy yes, seed yes

Persistence yes, phanerophyte yes, seed bank yes

Reproduction generative generative yes

Dispersal mode zoochorous autochorous no

Seed bank transient persistent no

Photosynthetic pathway C3 C3 yes

N-fixation ability yes yes yes

Shared traits 63%

doi:10.1371/journal.pone.0166743.t001
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area/predicted maximum tussock area) assuming a constant tussock density. The results were

used to derive rainfall thresholds for 95% and 75% productivity and estimate relative grass pro-

ductivity at the mean seasonal rainfall in the study area. Statistical analysis was performed with

R 3.2.1 [44]. Linear and non-linear mixed effect models were implemented with lme or nlme
(library nlme R package version 3.1–128, [45]) with maximum log likelihood and using ‘Plot’

as random factor to ensure independence of errors with respect to temporal autocorrelations

[46]. Where possible, models were manually simplified by stepwise of non-significant factors

until the minimal adequate model was reached.

Results

The percentage of active Stipagrostis tussocks was not different on affected and unaffected sites

and increased asymptotically with seasonal rainfall with a logarithmic rate constant of

-4.06 ± 0.05 (Estimate ± SE; t119 = 57.36, p<0.001) and an asymptotic value of 0.90 ± 0.02

(t119 = -75.81, p<0.001) or 90% active tussocks above 400 mm. With seasonal precipitation

above 200 mm, 95% of the asymptotic value (equivalent to 86% active tussocks) was reached

(Fig 1).

On both affected and unaffected sites, cover and hence biomass of Stipagrostis increased

asymptotically with the amount of seasonal rainfall (Fig 2; Table A in S2 Table). In either case

Fig 1. Percentage of active Stipagrostis tussocks (tussocks that produced biomass during the

current growing season) in relation to seasonal rainfall (February-March) between 2009 and 2016. The

predicted line from the non-linear mixed effect model is shown.

doi:10.1371/journal.pone.0166743.g001
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95% of the asymptotic value was reached around 315 mm. Crotalaria podocarpa did not signif-

icantly influence the rate constant lrc nor the intercept of the x-axis r0, but on affected sites the

maximum area per individual tussock (0.19 ± 0.01 m2) was significantly lower than on unaf-

fected sites (0.29 ± 0.01 m2) (Estimate ± SE: 0.09 ± 0.13, t97 = 7.15, p<0.001). Grass productiv-

ity was continuously 30–35% less on affected compared to unaffected sites; higher seasonal

rainfall did not compensate for this lower productivity.

On unaffected sites, the density of Stipagrostis tussocks remained largely at its initial level

with 2.16 ± 0.14 tussocks/m2 and decreased only by -0.04 ± 0.01 (t49 = -4.87, p<0.001) per year

throughout the observation period. In contrast, on affected sites, Stipagrostis density decreased

steadily (Estimate ± SE: -0.23 ± 0.02, t49 = -14.30, p<0.001) from 2.02 ± 0.11 tussocks/m2 to

0.91± 0.09 in 2016, reducing tussock density to less than 45% (Fig 3).

Projected relative land productivity (as combined index of the percentage of dormant tus-

socks and individual tussock) and hence relative carrying capacity is zero below ~24 mm sea-

sonal rainfall. Above this threshold, a steep, quasi-linear increase up to 100 mm occurs, but

later flattens out, reaching an asymptotic upper limit and 95% of potential capacity above 330

mm only (Fig 4). Similar to the individual production of tussocks, the relative carrying capacity

on affected sites was continuously 30% less than on unaffected sites.

Fig 2. Cover per Stipagrostis tussock in relation to seasonal rainfall (February-March) on unaffected

sites and affected sites between 2009 and 2016. Predicted lines from non-linear mixed effect models with

asymptotic function are shown.

doi:10.1371/journal.pone.0166743.g002
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Discussion

Our study provides evidence that the massive spread of the herbaceous legume C. podocarpa
has a significant impact on Stipagrostis biomass production. The presence of high numbers of

C. podocarpa did not affect the percentage of active grass tussocks, but decreased Stipagrostis
productivity by 30% and, over time, reduced grass tussock density on the affected sites to less

than 50% of its maximum. Both the percentage of active tussocks and Stipagrostis biomass pro-

duction increased asymptotically with seasonal rainfall, but with additional rainfall there was

no compensation of the reduced grass productivity in Crotalaria-affected areas. Rainfall had

also no influence on grass tussock density.

Effect of rainfall on grass productivity

As expected, the main factor driving the vegetation productivity of such arid rangelands is

rainfall [21,47]. The production of grass biomass is thereby determined by both, the number of

grass tussocks that are active following a certain amount of rainfall and the respective

Fig 3. Trend of Stipagrostis tussock density on unaffected and affected sites between 2011 and 2016. Predicted

lines for linear mixed effect models are shown.

doi:10.1371/journal.pone.0166743.g003
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individual growth of the grass tussocks. Our models predict no measurable growth below 20

mm of seasonal rainfall, which conforms with Seely [36] and Henschel et al. [37] who

researched grass biomass production along a rainfall gradient in the Namib desert. Both stud-

ies confirm a similar lower threshold for Stipagrostis productivity, but assume a linear relation-

ship between biomass production and amount of rainfall. However, the rainfall covered in

these studies ranged only between 0 and 100 mm, in which our results show quasi-linear

behaviour too. Above 100 mm we found that productivity is clearly limited and exhibits an

asymptotic behaviour and biomass production of individual tussocks approaches their maxi-

mum above ~315 mm. Additional rainfall does not substantially increase productivity. This

suggests either a biological growth limit or a limiting resource availability other than water,

such as nitrogen, as the soils in the study region are poor in nutrients [12,48,49]. Correspond-

ingly, the potential land productivity and hence carrying capacity is also reached above 315

mm when both the percentage of active tussocks and individual productivity of tussocks are

highest. Under the current rainfall regime in the study region, with an average of 100 mm

Fig 4. Predicted relative productivity of the land at a given tussock density, combined from the predicted values

for tussock dormancy and individual tussock productivity in relation to seasonal rainfall (Feb-Mar) on unaffected

and affected sites. Dots indicate measured values, vertical line marks average seasonal rainfall in the study region.

doi:10.1371/journal.pone.0166743.g004
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seasonal rainfall, the carrying capacity of these lands reaches less than 50% of its potential.

Even with 180 mm seasonal rainfall, only 75% of the potential carrying capacity is reached.

Effect of C. podocarpa on grass productivity and density

The presence of C. podocarpa neither changed the general pattern of the Stipagrostis biomass–

rainfall relationship nor affected the grasses dormancy state, but had an immediate and con-

siderable negative impact on the productivity of Stipagrostis tussocks. This reduced growth of

Stipagrostis on Crotalaria-affected sites was not compensated for by higher rainfall, indicating

rather a competition for below- or above-ground resources such as nitrogen [12,49] or light

[50,51] instead of the expected competition for water, as suggested by other studies [49,52].

Further, the reduced productivity obviously weakens the affected tussocks and reduces their

ability to survive through the dry season [53], which explains the dramatically decreasing tus-

sock density on Crotalaria-affected sites.

Implication for affected rangelands

Disregarding its potential effects on local plant and animal communities [9,54], our findings

show serious implications for C. podocarpa encroached arid rangelands and confirm the expe-

riences and fears of local farmers. Taking into account both the reduced individual productiv-

ity of Stipagrostis and the continued decline of Stipagrostis tussock density over the last 8 years,

C. podocarpa encroachment leads to considerable losses in pastoral production on the affected

lands. Although our study is focused on only one legume species, and we do not know whether

the massive spread of C. podocarpa will be transient, the reduced individual productivity of Sti-
pagrostis and the continued decline of Stipagrostis tussock density over the last 8 years lead to

considerable losses in pastoral production on the affected lands. Further, C. podocarpa has a

considerable seed bank with more than 350 seeds/m2 ([40], T. C. Wagner and C. Fischer,

unpublished data) due to the high rainfalls over the last ten years (own rainfall data, Table A in

S3 Table), its seeds remain viable for many years (T. C. Wagner and C. Fischer, unpublished

data) and predicted higher rainfalls for the coming decades [55], make a fast decline of the spe-

cies in the study region rather unlikely. Therefore it will probably take decades for the affected

land to recover its former productivity. A study by Milton & Dean [35] found that seven years

after removing of grass tussocks, Stipagrostis tussocks reached only 34% of their former den-

sity. Studies by Seymour et al. [56] and Wiegand & Milton [57] suggest that the recovery from

such a loss might even take decades. Moreover, the ability of legumes to fix nitrogen [31,58]

and their better photosynthetic response to rising CO2-levels will further favour those C3

plants against perennial C4 grasses [26,31,59]. Therefore it is very likely that other herbaceous

legume species will increasingly spread in arid grasslands and savannas, similarly impairing

grass productivity. Consequently, increased attention to this phenomenon of herbaceous

encroachment and the underlying processes seems advisable, to allow the development of

timely and suitable management measures.

Supporting Information

S1 Table. Habitat characteristics of sites unaffected and affected by Crotalaria podocarpa.

Differences in means tested by permutational t-tests (perm.t.test, n = 999), t and p values are

given.
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S2 Table. Fitted parameters for Stipagrostis tussock area. Parameter estimates ± SE for area

per Stipagrostis tussock on unaffected and affected sites derived from non-linear mixed effect
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