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A COGNITIVE APPROACH TO MOBILE ROBOT 

ENVIRONMENT MAPPING AND PATH PLANNING 

ABSTRACT 

This thesis presents a novel neurophysiological based navigation system which uses 

less memory and power than other neurophysiological based systems, as well as traditional 

navigation systems performing similar tasks. This is accomplished by emulating the 

rodent’s specialized navigation and spatial awareness brain cells, as found in and around 

the hippocampus and entorhinal cortex, at a higher level of abstraction than previously used 

neural representations. Specifically, the focus of this research will be on replicating place 

cells, boundary cells, head direction cells, and grid cells using data structures and logic 

driven by each cell’s interpreted behavior. This method is used along with a unique 

multimodal source model for place cell activation to create a cognitive map. Path planning 

is performed by using a combination of Euclidean distance path checking, goal memory, 

and the A* algorithm. Localization is accomplished using simple, low power sensors, such 

as a camera, ultrasonic sensors, motor encoders and a gyroscope. The place code data 

structures are initialized as the mobile robot finds goal locations and other unique locations, 

and are then linked as paths between goal locations, as goals are found during exploration. 

The place code creates a hybrid cognitive map of metric and topological data. In doing so, 
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much less memory is needed to represent the robot’s roaming environment, as compared 

to traditional mapping methods, such as occupancy grids. A comparison of the memory 

and processing savings are presented, as well as to the functional similarities of our design 

to the rodent’ specialized navigation cells. 
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GLOSSARY 

Word Definition 

Allocentric Perspective with respect to objects in the environment. 

Allothetic External or global based. Example: Allothetic based cues used for 

navigation/localization, such as landmarks. 

Affordances All possible actions available to take at a given moment after 

sensing the environment. 

Anterior Near the front of an object, such as an organ. 

Cognitive Relating to cognition; concerned with the act or process of 

knowing, perceiving, etc. [1]. 

Distal Situated away from the center of the (robot’s or animal’s) body. 

Dorsal The upper side of an animal or organ (e.g., hippocampus). 

Foraging Searching for food in by an animal in its environment. 

Hippocampus A region of the brain that is primarily associated with memory, as 

well as a key role in spatial processing and navigation. 

Kinesthetic Relates to the learning of sense of body (e.g., position and motion) 

through feedback to the brain from muscles, tendons and joints. 

Idiothetic Internal or self-motion based.  

Incentives A thing that motivates a biological or mechanical entity (e.g., food 

seeking and food intake driven by the hypothalamus). 

Lateral Relating to the sides of an object, such as an organ. 



xvi 

 

 

Neurophysiological Relating to a branch of physiology and neuroscience that is focused 

on the study of the functioning of the nervous system. 

Posterior Towards the rear of an object, such as an organ. 

Proprioceptive Relating to stimuli that is produced and perceived by the nerves 

connected to tissue (e.g., muscle) used for position and movement 

of the body. 

Ratbot The name given to the autonomous mobile robot used in this paper. 

Salient Most noticeable or important. 

Somatosensory Relating to sensation from touch, pain, or warmth from any part of 

the body.  

Taxon As used as a navigation type, taxon navigation refers to following 

a visual cue to get to a target location. 

Ventral Of or relating to the bottom portion of an animal or organ. 

Vestibular Relating to the inner ear or an animal’s sense of balance. 

Wayfinding Following a known route, from one known location to another. 

This involves the use of spatial awareness. 
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CHAPTER 1: INTRODUCTION 

Autonomous mobile robotics have many diverse applications and domains (i.e., 

indoor, outdoor, underwater, and airborne). For instance, indoor applications include 

security, rescue, and service mobile robots, while outdoor applications include driverless 

automobiles. Underwater and airborne robot systems include ocean and space exploration 

robots, respectively. The success of any autonomous mobile robot is based on its ability 

to reliably navigate in its environment. This is especially true for animals and other living 

creatures whose survivability is dependent on their ability to navigate effectively in their 

environment. They would perish if they were unable to find and relocate food and cache 

locations, their home, as well as shelter spots from predators. Navigation, for both 

biological creatures and machines, can be defined as the ability to maintain a course when 

going from one location to another [2, 3].  

1.1 Research Problem and Scope 

The basic tasks required for accomplishing navigation are localization and mapping. 

In robotics, the combined task of mapping and localization is also referred to as the 

simultaneous localization and mapping (SLAM) problem [4-6]. Thus, it is assumed that 

the robot is starting in a completely unknown environment, and it needs to map the 

environment while localizing itself within that environment. Because autonomous mobile 

robots have sensors, actuators and navigation algorithms that cater to their application and 

working environment [7, 8], these robots are still very rigid in their navigation capabilities. 
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Problem areas include navigating through dynamic environments and the need for high 

precision localization data for mapping and path planning.  

Animals, on the other hand, are masters at navigating in their environments. For 

central to biological based navigation is the ability to travel from one place to another 

without getting lost. It was suggested by Tolman in 1948 that for rats and humans to be 

able to accomplish various navigation tasks, they must have a cognitive map of their 

environment in their head [9, 10]. In 1971, O’Keefe and Dostrovsky [11] discovered a 

special type of neuron in the rodent’s hippocampus that fired only when the rodent was in 

a specific location and was aptly named the place cell.  It became evident that the place 

cell (PC) was part of the suspected cognitive map and has been heavily researched from 

that point on. Since the discovery of the place cell, the head direction (HD) cell, and the 

boundary cell (BC) were discovered in the rodent’s hippocampus, and the grid cell (GC) 

in the neighboring entorhinal cortex (EC). These specialized neurons are believed to play 

a vital role in the navigation abilities of the rodent. The hippocampus is also believed to 

be involved in the storage of new episodic memory [12, 13]. 

In addition to cognitive maps used by rodents, many species, such as spiders, 

crustaceans, insects, birds, and many mammals continually update an internal vector 

trajectory with respect to their previous location [9, 14]. This internal vector math allows 

for the animal to take the most direct path between any point in the environment to their 

home, even in the dark and through unknown areas, and despite having left via a circuitous 

route. This is accomplished through dead reckoning, which is also known as path 

integration (PI), as originally proposed by Darwin [15]. This natural form of vector based 
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navigation is speculated to take place in, or around the hippocampus and its surrounding 

area, in the rodent’s brain. 

We could have chosen a simpler neural based navigation system to implement in a 

robot, such as that found in many insects (e.g., bees and ants). These systems are 

fundamentally dominated by optical flow data. For many types of insects use image-

matching memory, as well as PI to accomplish navigation [16-18]. Such a choice would 

have made our system purely dominated by its visual recognition capabilities of 

landmarks and other visual cues. However, much of what is known about insect navigation 

is surmised from external manipulation tests and behavioral observance of insects. 

Hypotheses are thus drawn from these observations. In vivo observation of the insect’s 

neural circuitry related navigation is very limited at this point. Thus, we chose the more 

complex neurophysiological based navigation system of the rodent to emulate due to the 

wealth of data gathered from use of probes in various parts of the rodent’s brain, while it 

performed navigation tasks.   

1.2 Motivation 

Over the past couple of decades, a great deal of research has gone into creating 

computational models of the rodent’s spatial awareness and cognitive mapping neural 

circuitry. The goal of such research has been to better understand their role in navigation, 

and estimate the dependency between these neurons. Another motivating factor for such 

research is its application to autonomous mobile robot navigation. Because of the need for 

high computational processing demands of multi-neural network systems, most of the 

robot systems that are used to represent the rodent are a combination of an external cluster 
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of computers connected to a mobile “robot” that provides the computers with sensor data 

and acts on the action commands sent from the computers. The low-level detail of these 

specialized neurons, their connections and dependencies, as well as the validity of the 

models certainly have a place in research to better understand the brain. However, the 

question that is worth answering, and is the topic of this thesis, is whether the specialized 

spatial awareness and navigation neurons, and their interconnections, can be adequately 

approximated by a core system of greatly reduced processing demand. Particularly, a core 

navigation system that has the ability to create and use cognitive maps in Tolman’s sense, 

that is, for shortcut abilities and for latent learning [3, 9]. If so, and if this core navigation 

system works for many disparate navigation strategies as exhibited by the rodent, then 

such a system would be a great candidate to use in mobile robotic navigation systems. 

Additionally, this would allow for the testing of supporting mechanisms to rodent 

navigation by neuroscientists, biologists and alike to use a simplified core to better 

understand the rodent’s behavior (e.g., navigation strategies, stimulus-reward 

associations, associations between location information with reward and emotional 

information [9], testing of various levels of visual systems, etc.) rather than creating a 

computational neurophysiological based navigation system that is only designed and 

tested to work for a single navigation strategy (e.g., water maze, 8-arm maze, regular 

maze, open area, foraging, wayfinding, etc.).  

1.3 Contributions 

This paper presents a novel, low power, neurophysiological based, navigation system 

which mimics the basic functionality of the rodent hippocampus in terms of spatial 
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awareness and navigation capabilities. The issues at hand for replicating the same 

functionality of neurophysiological based circuits are: 1) the brain does all its processing 

using neural networks composed of neurons, axons, dendrites and synapses, 2) very little 

of how the brain performs various functions are fully understood, and 3) the 

implementation of artificial neural network (ANN) based algorithms on currently 

available conventional computational resources is very computationally intensive, and 

thus requires much power and time to perform. Therefore, the removal of realism in terms 

of ANN based algorithms, where possible, is the only way of accomplishing the low power 

goal. As will be shown, some processing performed by the brain, such as directionality 

(vestibular stimuli) and movement (proprioceptive stimuli), are accomplished easily with 

microelectromechanical systems (MEMs) based gyroscopes and wheel encoders, 

respectively. However, without the use of ANNs for place recognition, the robot’s 

environment needs to be somewhat engineered for the use of less computationally 

intensive goal and landmark recognition techniques.  

An additional benefit of our research is the creation of a neurophysiological based 

navigation framework which may help neuroscientists obtain a better understanding of 

how these specialized neurons interact at a more abstract level.  
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CHAPTER 2: SPATIAL AWARENESS IN RODENTS 

As briefly discussed in the Introduction section, the rodent performs mapping and 

localization through the use of multi-sensory input, yet can perform homing behavior with 

only internal sensory input (vestibular and proprioceptive) through path integration [19, 

20]. It would at first seem that these two navigation methods are unrelated. However, after 

reviewing the specialized neurons the rodent uses for navigation and spatial awareness, 

we will discuss the neurophysiological connection between these two navigation methods. 

Additionally, key state of the art research in rodent neurophysiological based navigation 

systems as installed on, or integrated with, mobile robot platforms will be presented. 

Further details can be found in [21]. Additionally, earlier, similar research can be found 

in [2, 3, 22].  

2.1 Specialized Navigation and Spatial Awareness Rodent Brain Cells 

The rodent brain has been studied greatly, particularly the hippocampus and its 

surround area for its navigation related cells [9, 23]. These cells (neurons) include: place 

cells, boundary cells, and head direction cells (in the subiculum), and grid cells (in the 

neighboring EC). The rodent is not the only mammal with these special brain cells. Mice, 

rats, and bats have been found to also have place cells and grid cells [24, 25]. However, 

this list is most likely longer. A brief description of the firing characteristics of these 

navigation related brain cells follow and can also be found in [21, 26]. Fig. 2.1a illustrates 

the location and size of the rodent hippocampus (left and right), while Fig. 2.1b illustrates 

the major components of the hippocampus, via a cross section horizontal slice of the 
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ventral portion of the hippocampus. The location(s) of the specialized navigation cells 

with respect to the areas shown in Fig. 2.1b, as well as their basic behavior are covered 

next.  

a) b)  

Figure 2.1.  The rodent brain. (a) In yellow is the left hemisphere hippocampus. (b) Anatomy of hippocampal 

formation and parahippocampal region (horizontal slice A in part a). Abbreviations: Carnus amonis (CA), 

dentate gyrus (DG), lateral entorhinal cortex (lEC), medial entorhinal cortex (mEC), parasubiculum (PaS), 

and presubiculum (PrS). Picture adaptions: Fig. (a) from [27], and (b) from [25]. 

2.1.1 Place Cells 

The place cell (PC) was the first spatial type of brain cell to be discovered (O’Keefe 

and Dostrovsky in 1971). A PC fires maximally when the rodent is in a particular location 

of its environment [23, 28]. A PC is usually limited to a single firing field (FF), unless the 

environment is large. Additionally, the firing of a PC is only dependent on location and 

not direction (in rodents), unless the place field is in a constrained location, such as a maze 

corridor. PCs are found mainly in CA3 and CA1 of the hippocampus, and to a lesser 

degree in the dentate gyrus (DG) with smaller place fields [9]. Thus, PCs play an important 

role in the mapping of the rodent’s environment. A PC’s FF size is dependent on its type 

and location in the hippocampus. As stated in [29], a place field can be defined as the area 
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between the points in an environment where the theta phase precession begins and 

terminates.   

2.1.2 Head Direction Cells 

The head direction (HD) cell fires at a preferred direction (+/- a few degrees) of the 

rodent’s head in the horizontal plane, irrespective of the rodent’s location, the angle 

between its head and body, and eye movement. Thus, HD cells provide the rodent with a 

sense of directional heading relative to its environment (allocentric based).  HD cells are 

found primarily in the rodent’s postsubiculum (PoS), the anterior thalamic nuclei (ATN) 

and the lateral mammillary nuclei (LMN) [9, 30]. 

2.1.3 Boundary Cells 

The boundary cell (BC) is similar to the PC in that it is direction invariant and location 

specific in its firing. Also, as with the PC, the BC typically has a single FF, which is 

dedicated to a specific border, barrier, or boundary. BCs can be found in the medial 

entorhinal cortex (mEC), parasubiculum (PaS) and subiculum [23]. However, it is 

believed that there are boundary vector cells (BVCs) in the subiculum which fire 

according to a fixed distance and direction to a boundary [31, 32]. 

2.1.4 Grid Cells 

The grid cell (GC) is the most unique spatial awareness brain cell to be found in the 

rodent and was discovered by the Mosers in 2005. GCs are predominantly found in layer 

II of the mEC (shown in Fig. 2.1b), which is located one synapse upstream of the PCs in 
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the hippocampus [33, 34]. The GC differs from the PC and BC such that it has many FFs. 

Each GC’s FF maps over the rodent’s entire roaming environment at the vertices of 

equilateral triangles, which creates a hexagonal lattice. The FFs of a GC create a 

hexagonal lattice across the environment, which is defined shortly after a rodent is 

introduced to a novel area [35]. It is suggested that the lattice is anchored in orientation 

and phase to external landmarks and geometric boundaries [34, 36, 37]. Additionally, each 

FF of a GC is direction independent. Although, there exists conjunctive grid cells in the 

middle and deeper layers of the EC, which fire only on a given absolute direction [37-39]. 

The FFs of GCs differ from one another in three possible ways: size, orientation and phase. 

The GCs FF’s size increases monotonically from its dorsal to ventral location in the mEC 

[37, 40]. 

2.2 Path Integration 

PI is accomplished through different methods by various creatures. However, any PI 

system requires the integration of some form of compass (sense of direction) and distance 

cues [41, 42]. Influencing factors as to the type of sensory used by a given species includes 

the complexity of their nervous system or brain, and their native environment. For 

example, the Cataglyphis fortis (desert ant), as well as other arthropods, receives 

directional information from the sun (angle of polarized light and/or direct light), and 

distance traveled from proprioceptive cues, and to a lesser extent, from optic flow 

information [14, 43, 44]. This allows for the desert ant to navigate circuitously hundreds 

of meters from its home, in a featureless environment, and still return in a straight vector.  
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It is generally believed that the PI neural circuitry of a rodent is located in and around 

its hippocampal formation, see Fig. 2.1b. More specifically, it is argued in [9] that the 

subiculum (Sub), the parasubiculum (PaS), and the superficial layers of the EC make up 

the PI circuit. This circuit creates a chain of neural processing stages that involve the head 

direction system, primarily found in the PoS, and the PaS is interconnected with the 

posterior cingulate [23], which possibly supplies additional directional and self-motion 

information. However, it has been shown that the hippocampus and EC are not essential 

for PI in humans [45].    

2.3 Review of Rodent Spatial Awareness and Navigation Models  

As found in [21], this section covers state-of-the-art research in neurobiological based 

navigation systems, where the systems have been implemented in a mobile robot since the 

early 2000s. Although the emphasis on the review of these rodent inspired navigation 

models is on the computation resources needed to realize ANN based models, the 

relationship between the various navigation based specialized brain cells can be easily 

extracted from these reviews. Due to the heavy computation resources required, many of 

the systems researched rely on external central processor units (CPUs) to perform 

neurophysiological simulation for the robot (e.g., Khepera mobile robot platform). Of 

course, silicon packages have continued to shrink during this time frame (early 2000’s to 

present day). However, since increasing a processor’s clock has no longer been an option 

due to heat dissipation issues, multi-core CPUs have been the solution for squeezing out 

any possible performance increase. It is certainly possible to use today’s multi-core 

technology, such as multi-core CPUs and graphics processor units (GPUs) to create an 
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onboard solution for this type of research. Such systems need to be well planned and 

tradeoffs made as to response time latency incurred by the transfer of data back and forth 

between different multi-core technologies, processing time, as well as power limitations.  

The definition of an autonomous mobile robot used in this paper, requires the 

complete processing system to be onboard the mobile robot system, with no external 

computing resources required. Thus, the autonomy classification of each robot presented 

is included in Table 2.1. 

2.3.1. Arleo and Gerstner 2000   

Arleo and Gerstner 2000. The study article by Arleo and Gerstner, 2000 [46], has had 

an influence, in one form or another, on many future works covered in this section, 

particularly [47, 48]. The references used in [46] fall into the categories of both 

neuroscience: O’Keefe and Nadel, 1978 [49]; Taube et al. 1990 [50]; Redish, 1997 [22]; 

and so forth and neurophysiological inspired circuits and models: Burgess et al. 1994 [24]; 

Brown and Sharp, 1995 [51]; Redish and Touretzky, 1997 [52], Zrehen and Gaussier, 

1997 [53]; and so forth, which form a basis of references used by the other proceeding 

studies/articles. More references can be found in Arleo and Gerstner, 2000 [46] and 2000 

[54]. Additionally, this paper’s presentation and functional use of neurobiological 

specialized spatial navigation cells found in the rodent’s hippocampus, for modeling in 

robotic navigation, are central to the theme of all papers reviewed. 
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(1) System Architecture  

The Khepera robot system used consists of the following: an onboard camera for 

vision based self-localization (90° field of view in horizontal plane), eight infrared (IR) 

sensors for obstacle detection and light detection, a light detector for measuring ambient 

light, and an odometer for sensing self-motion signals. The neurobiological based 

navigation system models two crucial spatial navigation cells: HD cells and PCs. This is 

performed on an external computer. 

(2) Head Direction and Place Cells for Spatial Navigation 

In Fig. 2.2, the allothetic (external cue sourced stimuli) inputs consist of data from 

the onboard camera, which is used for the place cells in the sEC submodule, as well as 

data from the eight IR sensors and the ambient light sensor, which are used by the visual 

bearing cells in the VIS submodule (left side of Fig. 2.2). The neural networks (Sanger’s 

[50]) to the PC from the camera input are programmed offline during an initial 

unsupervised, Hebbian learning phase [51]. During this initial, exploration/neural network 

training phase, each PC location is learned by dividing images taken into smaller 32 × 32 

pixels, running the reduced image through 10 different visual filters of 5 set scales each. 

This is done for the north, west, south, and east views of the robot’s arena from each 

snapshot/PC location. The networks of each cell are then trained with the reduced images 

and adjusted for maximum response for each image location. Thus, the place cells are 

programmed neural networks with the onboard camera image, divided into four quadrants 

of 32 × 32 pixels each, at the input, and will allow for self-localization in the online mode. 
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A light source is added to one wall of the robot’s arena, where the IR sensors and 

ambient light sensor can lock onto this global direction (with the help of neural networks 

for fine-tune positioning to the light source). This allows for calibration of the robot’s 

directional module (right side of Fig. 2.2), which bounds the accumulated error in 

directionality. 

 

Figure 2.2 A functional overview of the ANN based directional system [46]. 

The robot uses three different neural populations of cells (right side of Fig. 2.2) to 

calculate its head direction from its current angular velocity and anticipated angular 

velocity and feedback from the system output and calibration cells. The result is a set of 

quantized, directional cells to drive the robot’s motors for proper heading. 
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(3) Computational Demand  

The computational demand of this system is a bit more extensive than briefly covered 

here. Further details can be found in [46, 54, 55]. However, any neural network system is 

going to have a relatively high need for computational resources and processing time 

requirements, based on the number of neural networks and the processing status of offline 

and online/real-time learning. The environment is somewhat engineered and needs to be 

static. This is true though of any system in the initial stages of wringing out system 

integration errors, model problems/accuracy, and so forth. 

(4) Mapping and Route Planning  

Visual based mapping, through the use of snapshot recognition (place cells), is used 

to help correct head direction error and not for obstacle avoidance or route planning. 

Therefore, true mapping and any form of route planning are not addressed in [46, 54]. 

2.3.2. Fleischer et al. 2007   

(1) System Architecture  

The neurophysiological modeled navigation system for Darwin XI mobile robot 

designed by Fleischer et al. [56] is not autonomous, by the definition used in this paper, 

due to the use of external computers to simulate a detailed neurophysiology based system. 

However, the system pushes the limit on simulating large scale features of vertebrate 

neuroanatomy and neurophysiology (the medial temporal lobe specifically) in real time. 

Using a Beowulf cluster of 12 x 1.4 GHz Pentium IV computers running a Linux operating 

system, sensor data is communicated on a wireless link from the mobile robot to one of 
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the cluster computers, while motor data is sent back to the robot. The simulation 

processing cycle from sensor data input to motor command output is approximately 200 

ms of real time. The simulator, referred to as the brain-based device (BBD), simulates 57 

neural areas, 80,000 neuronal units, and approximately 1.2 million synaptic connections. 

Darwin XI is equipped with a visual system (camera), a head direction system 

(compass) plus wheel odometry (current head direction), a laser range finder system 

(facing downward to detect neuronal reward), and a whisker system which reads bumps 

along the plus-maze walls. 

(2) Modeled Hippocampus  

A schematic of the mobile robot mobile I/O sensors connected to the corresponding 

neurophysiological based navigation system can be found in [56]. However, Fig. 2.3 

illustrates the type of connections and simulated parts of the medial temporal lobe, 

including the hippocampus entities. Fig. 2.3 is similar to that found in [23, 25]; however 

further details pertaining to the various layers of the EC are lacking in this figure. 

 

Figure 2.3. Neural connectivity of the medial temporal lobe, including the hippocampus of Darwin XI. 

Hippocampus: DG, dentate gyrus, and CA3 and CA1. EC: ECin and ECout. Neural interfaces to external 

sensors: S, value system and Mhdg, motor. 
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Although both the previous research using Darwin X [57, 58], which used a dry 

variant of the Morris water maze task [59], and that using Darwin XI, which uses the plus-

maze, are performed on rodent based navigation testing platforms, the focus of these 

studies is on the formation of episodic memory. Using a backtrace analysis tool, several 

seconds of neuronal activity and synaptic changes can be analyzed to determine causality 

of a particular neural event. Both studies showed the strongest synaptic influence from the 

entorhinal neuronal units on episodic memory, particularly from the performant path (ECin 

→ DG, ECin → CA3, and ECin →CA1 in Fig. 2.3), while Darwin XI specifically focused 

on journey-dependent and journey-independent memory, as well as path prediction. A 

further detailed analysis can also be found in [60]. 

2.3.3. Strösslin et al. 2005   

(1) System Architecture 

Strösslin et al. [48] use the same mobile robot platform (Khepera) as Arleo. The robot 

has a camera, odometers, and proximity sensors. Thus, the robot only uses body-centric, 

local sensor information for navigation. The Khepera is attached to an external computer, 

running the neural model, with a long cable that also provides power to the robot and 

allows for sensor data to be transmitted from the robot to the computer. 

(2) Neural Model: Place Code and Cognitive Maps  

In a dry water maze, similar to that used for Darwin X, a navigation map is learned 

by the PCs in 20 trials, which is similar to the results found with rodents in the water maze 

[59]. Thus, visual and idiothetic (self-motion cues) information feeds the external neural 
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model, which is composed of step cells (SCs) and rotation cells (RCs). These cells make 

up the local view (LV) and are fed by the visual input, a head direction (HD) system in 

the PoS, PI in the mEC, and combined place code (CPC) in the hippocampus (HPC) and 

subiculum. The directional action cell (AC) in the nucleus accumbens (NA) is what 

eventually drives the navigational learning of the CPC. See Fig. 2.4 for connectivity. 

The cognitive map or spatial representation of the robot’s environment is 

accomplished through unsupervised Hebbian learning between the PCs and the HD cells. 

Additionally, route planning is accomplished by use of biologically inspired 

reinforcement learning mechanism in continuous state space (place cells) and ACs. 

 

Figure 2.4. Simulated neural system. LV, RCs and SCs, processes, stores and compares visual stimuli. SCs 

drive the allothetic place code (APC) in the lEC and RCs calibrate the HD system in the PoS. Internal 

odometric input drives HD and the position integrator (PI) in mEC. APC calibrates PI and they both project 

to the CPC in the HPC and subiculum. CPC is used for navigation learning on the ACs in the NA. Redrawn 

with permission from Strösslin et al. [48]. 
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2.3.4. Hafner 2008   

(1) Place Code and Cognitive Maps 

In [61], Hafner uses PCs for creating a cognitive map of a mobile robot’s area. The 

mobile robot, outfitted with only an omnidirectional camera and a compass, produces a 

cognitive map during an exploration phase, where the map is represented by place fields 

and PCs. Each snapshot taken by the camera is converted into a 16-dimensional 

transformation, which is used as the sensory input to a neural network system. That is, 

each 360° camera snapshot is divided up into 16 angular, azimuth sections of 22.5° each, 

filtered, and sent to the PCs’ neural networks. The weights of each neural network, 

initially set to random values, take on evolved values during the exploration phase. The 

place cells, as shown in the “output layer/map layer” in Fig. 2.5, become relationally 

connected to each other based on a self-organizing map (SOM) methodology [62], where 

each single winner of a particular snapshot becomes connected to the previous winner and 

the corresponding connection weight is increased. Since the PCs are not geometrically 

fixed, they are assigned relative angles to each other, creating a topological map. This is 

all done without the use of reward during learning. Additionally, there is no goal state. 

(2) Simulated Route Planning 

However, once the neural cognitive maps have been built, they can only be used in 

simulation for navigation. The topological and metric information requires too much 

memory to reside in the mobile robot [61]. Thus, the mobile robot relies on landmark 

(snapshot) recognition and use of the SOM to reach goal spots or areas. 
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Figure 2.5. Neural network structure as a result of learning connectivity between place cells. The input 

layer represents input from the robot’s sensors [61]. 

2.3.5. Barrera and Weitzenfeld 2008 

(1) System Overview 

Barrera and Weitzenfeld [47, 63] propose and implement an intricate, and modular 

neurophysiological based navigation model. As with Arleo and Gerstner [46, 54], all of 

the proposed functionalities are mapped back to existing neurophysiological entities. 

Many of these modules are implemented using Gaussian distribution functions for 

calculating affordances, and the Hebbian learning rule/equation for neural networks. The 

main goals of this research are: (1) for the mobile robot to be able to learn and unlearn 

path selections for goal locations based on changing rewards, (2) to create a realistic 

neuroscience based test bed for use in further behavior studies, and (3) to add to the 

existing gap in the SLAM model between mapping and map exploitation [47]. The mobile 

robot’s test environment configurations are limited to the T-maze and the 8-arm radial 

maze. 
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The neurophysiological theory that forms the basis for this study comes from [64]. 

Thus, in addition to idiothetic and allothetic sensory inputs, there are also internal 

state/incentives (e.g., food seeking and food intake driven by the hypothalamus) and 

affordances (possible actions to take) information sensory inputs. Fig. 2.6 shows the 

functional modules of this system, while removing many of the underlying details of the 

neurophysiological framework. Further details, such as model description, the 

neurophysiological framework, and equations for each of these modules can be found in 

[47, 65-67]. 

 

Figure 2.6. Computational spatial cognitive model of the Barrera and Weitzenfeld neurophysiological based 

mobile robot navigation system. Some submodules and neurophysiological framework are not shown and 

can be found in [47]. ˇr = effective reinforcement; PC = place information pattern; EX = expectations of 

maximum reward on their corresponding directions (DX); DIR = next rat direction; ROT = rat rotation; and 

DIS = next rat moving displacement. 

Idiothetic data comes in the form of kinesthetic data, which is processed by PI and 

then the hippocampus module, before being sent to an external motor control module, via 
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the Action Selection module, as shown in Fig. 2.6. This is used for executing rotations 

and translations of the robot. 

(2) Place Cells and Cognitive Map Generation 

The Place Representation module in Fig. 2.6 is where the cognitive map is made, 

stored, and accessed for the mobile robot to select movement options. Thus, this module 

represents the functionality of the hippocampus. The path integration information is 

combined with landmark information, through the Hebbian learning rule, to create a PC 

layer. The overlapping PC fields in this layer represent given locations or nodes that are 

found in the world graph layer (WGL), as shown in Fig. 2.7. 

The WGL uses a simple algorithm to decide its next move. It analyzes active nodes 

connected to the Actor Unit and, based on the highest weight, the WGL chooses the step 

that will get it closer to its learned goal or the best move for the time when a goal has been 

changed or not learned yet. 

 

Figure 2.7. World graph layer module which implements a topological map of the mobile robot’s 

environment inside the Place Representation module. 
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(3) Computational Resources 

Because of the high computational resources required for this neurophysiological 

based navigation system, most of the model runs on an external 1.8GHz Pentium 4 PC, 

which communicates wirelessly with a Sony AIBO ERS-210 4-legged robot. Thus, the 

system is not autonomous. 

 

Figure 2.8. Connectivity diagram of the RatSLAM, version 3. 

2.3.6. Wyeth and Milford: RatSLAM, Version 3 

(1) System Overview 

Wyeth and Milford focus in [39, 68] on a neurobiologically inspired, SLAM based, 

mapping system for a mobile robot navigation system, based on models and earlier 

versions of RatSLAM [69]. Their robot, a Pioneer 2-DXE base system, performs mock 

deliveries in a large, single floor, office building using simple sensors: motor encoders for 

odometry, sonar and laser range finder for collision avoidance and pathway centering, and 

a panoramic camera system for landmark recognition. This system, named RatSLAM, 

uses the concept of place cells coupled to head direction (HD) cells to derive, what they 

call, pose cells. 
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(2) Pose Cells 

The continuous attractor network (CAN) [22, 70] based pose cells are used with local 

view cells, which are snapshots of the panoramic camera along the robot’s journey. Thus, 

Milford and Wyeth have added a new type of cell: the pose cell. The pose cell is similar 

to the conjunctive grid cells, which is a combination of grid cells and head direction cells 

found in the rodent brain. The pose cells work like weighted probabilities that each local 

view cell is in the direction and location of the stored pose (averaged). Fig. 2.8 illustrates 

the connectivity of the RatSLAM, version 3, as described here and in [39]. 

(3) Cognitive Map 

The mapping algorithm incorporates a loop closure and map relaxation techniques to 

correct PI errors, thus creating more of a topological map than a metric map. A loop 

closure event only occurs when a threshold of consecutive local view cells matches the 

camera’s input, thus allowing for a change in the pose data. To save original pose data, 

the relaxed map is saved to an “Experience Map” (see Fig. 2.9 for an illustration of the 

Experience Map Space), and the local view cells with accompanying pose cell data are 

stored in a connection matrix. Due to the topological nature of the Experience Map, 

transitions between experiences are stored, thus allowing route planning to be possible. 

The benefit that comes from this design is that it is a first step into implementing the 

functionality of some of the specialized, navigation and spatial awareness, brain cells in a 

mobile robot. The downside is that it has been shown that the competitive attractor 
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network can be easily replaced by a filter system [71], which leads to substantial 

computational speedup.  

2.3.7. Cuperlier et al. 2007 

(1) Transition Cell 

Cuperlier et al. built a neurobiologically inspired mobile robot navigation system in 

2007 [72] using a new cell type which they named the “transition cell.” Their cell is based 

on the concept of moving from one place cell to the next over a defined interval of time. 

Thus, two place cells are mapped to a single transition cell, creating a cell which represents 

both position and direction of movement or spatiotemporal transitions, thus a graph-like 

structure. 

 
Figure 2.9. The RatSLAM system. The left side represents the CAN system which forms pose cells from 

local view cells using a 3D CAN algorithm. The right side represents the Experience Map, which helps 

disambiguate scenes that are similar in a semi-metric form. A further, detailed description can be found 

[39]. Permission for replication given by Dr. Michael Milford.  
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(2) Computation Resources 

Multiple neural networks span the system’s architecture, as shown in Fig. 2.10, from 

the landmark extraction/recognition stage to the cognitive map and motor transition 

stages. The many inputs of video, place cells, and so forth into a system of neural networks 

require many calculations to be carried out during each time step. This computational 

resource demand is similar to Arleo and Gerstner [46, 54] and Barrera and Weitzenfeld 

[47, 63, 67], covered in the previous section. To illuminate the amount of processing that 

is required it is stated in [72] that the system uses 3x Dual Core Pentium 4 Processors 

which run at 3GHz each. However, the author reports that this processing architecture has 

since been reduced to a single Intel® Core™ i7 processor, which has 4 cores that run at 

just over 3GHz. Azimuth angles are measured using an onboard compass, displacement 

is obtained from wheel encoders, and the visual is obtained from a panoramic camera. 

The navigation process starts at the leftmost part of Fig. 2.10, where a single, potential 

landmark is selected and analyzed at a given time. This occurs up to � times per snapshot, 

where � is set to a value to help balance the algorithm’s efficiency with its robustness. 

Therefore, as expected in any visual extraction/recognition system, a fair amount of 

processing time and power is spent during this stage. Additionally, during the initial 

exploration phase, weighted neural network coefficients are calculated for each potential 

landmark (32 × 32 pixels) and azimuth grid value, so that these small local views can be 

learned online. For more details on the calculations performed to arrive at the place cells 

from the landmark-azimuth matrix (PrPh) consult [72]. 
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(3) Cognitive Map 

Each place cell (center of Fig. 2.10) is connected to each neuron of the landmark-

azimuth matrix, where each connection has its own, unique, learned weights for that 

landmark-azimuth-place cell combination, as well as temporary scalars for the current, 

potential landmark view. However, it is very likely that several place cells will be active 

enough at a given location. The paper states that when a whole area has been mapped, 

during the initial exploration phase, the place cells are divided up into their own areas to 

eliminate these overlaps (see Fig. 2.11), thus, creating a cognitive map. 

An assumption is made about the average number of possible place cell transitions 

from any particular place cell for the test conducted in [72]. This is done to reduce �×� 

neural network based, transition matrix to 6 × �, where � represents the number of 

possible transition place cell targets, thus, greatly reducing the computational complexity 

from O(N2) to O(N). However, this value may not work for all test cases, or in-field use. 

 

Figure 2.10. The system’s neural network based model architecture. Processing flow 

starts at the far left with the input of each camera snapshot [72]. 
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(4) Route Planning 

The robot’s cognitive map built during an initial exploration phase, as previously 

described, consists of nodes and edges, as shown in Fig. 2.12, and is thus a graph: � = (�, 

�). Each node is a transition cell and an edge signifies that the robot has traveled between 

the two transition cells or nodes. The edges hold weight value (e.g., function of use) and 

the nodes hold activity values. The recorded nodes/edges of the cognitive map are used in 

a neural network version of the Bellman-Ford algorithm [73] to find the most direct route 

from a motivation point to the single source destination, while several types of motivations 

(drink, eat, sleep, etc.) are used to initiate the robot’s travel to the proper destination 

source. The satisfaction level of the motivations changes with time and distance traveled, 

while increasing at the source. 

 

Figure 2.11. Assignment of dedicated place cell fields. Permission for replication given by Dr. 

Cuperlier et al. [72]. 
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Figure 2.12. Topographical cognitive map in the form of a graph is produced in the system, as illustrated. 

Permission for replication given by Dr. Cuperlier et al. [72]. 

2.3.8. Grid Cell Centric Systems 

Perhaps since the grid cell was not discovered until 2005, or due to its complex nature 

and uncertain contribution to navigation, there are a sparse number of robot navigation 

systems that are based on the grid cell. Instead related research in grid cells comes from 

computational/oscillational models [25, 74-78]. 

There are currently two prevailing computational model classes for describing the 

stimuli configuration required for the grid cell firing pattern. The first is the continuous 

attractor network (CAN) which follows along the lines of what was covered under the 

RatSLAM navigational model. The CAN model, which in simplest terms, is a neural 

network based model that describes the stabilization or convergence of a multistate system 

to a single state over time, by way of synaptic interaction between excitatory and 

inhibitory neurons [70, 79]. An example of a CAN model which describes the role of PI 

in the firing of the GCs is outlined in [80]. The second computational model, is the 

oscillating interference model [81]. The oscillating interference model is typically 
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simulated using spiking neural networks on non-robotic systems [74, 77, 78]. Both 

working models have strong pros and cons to their validity. Further details will be given 

on the oscillating interference model shortly, since it is a foundational concept that is used 

in the proposed thesis navigation model. 

As covered in the previous section, Milford and Wyeth [39, 68] use pose cells in their 

neurobiologically based navigation model RatSLAM, which are based on the conjunctive 

GCs found in the deeper layers of the mEC, as further described in [82, 83]. Additionally, 

the wrapping connectivity of the pose cell grid creates a GC type firing pattern. However, 

there is much scientifically backed detail missing pertaining to the functionality of regular, 

non-conjunctive grid cells found at the superficial layers of the mEC, as well as the 

specifics of the conjunctive GCs’ connectivity based on attributes of scale, orientation, 

and phase modeled.  

Gaussier et al. [84, 85] use a mathematical model of the grid cell for their mobile 

robot navigation system. The GC’s firing pattern is a modulo projection of the PI input. 

The tests performed on the mobile robot show poor patterns for the grid cell firing when 

relying on just path integration with growing accumulated errors as expected. Adding 

visual input to reset and recalibrate the path integration fixes the noisy path integration 

input, thus sharpening the firing pattern of the grid cells. The system described and tested 

on a robot in [85] illustrates a well-integrated system composed of a visual system, path 

integrator, place cells and grid cells. The results obtained from various tests show a 

promising beginning to a grid cell based system.  
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(1) Oscillatory Interference Model 

As previously touched on, one theory on what causes GCs and PCs to fire is 

oscillatory interference [76-78]. This model relies on HD cells, based on their preferred 

direction and the current head direction of the rat, to modulate persistent spiking cells 

(oscillators) who’s frequency is a function of the distance traveled by the rodent over a 

delta time-period. Each oscillator has a given offset phase and frequency scaler. Each GC 

is fed by the same input network of oscillators in a neural network layer configuration, 

then the output of these GCs feed PCs. Thus, the HD cells and oscillators act as a PI 

system, which feeds the GCs. The oscillatory interference computational model for the 

implementation presented in [74] is as follows: 

    ϕ(i,j)(t) = 2π( ƒt +bj ʃ0
t
 di(τ) dτ)     (2.1) 

   s(i,j)(t) = H(cos(ϕ(i,j)(t) + ψ(i,j)) - sthr)    (2.2) 

   gj(t) = ΠsϵSj s(t)      (2.3) 

where ϕ(i,j) is the persistent spiking cell’s phase modulated by the ith head direction cell 

and projecting to the jth grid cell, ƒ is the frequency, bj is the scaling factor for all persistent 

spiking cells projecting to the jth grid cell, s(i,j) is the persistent spiking cell signal, ψ is the 

phase offset, sthr is the threshold, H is the Heaviside function with H(0) = 0, g is the grid 

cell signal, and Sj is the set of persistent spiking cells projecting to the jth grid cell. Fig. 

2.13 illustrates the persistent spiking circuit architecture described above and in [74]. 

From this model, the hexagonal firing pattern of each grid cell (see Fig. 2.14a and Fig. 

2.14b), is supposedly created.  
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Figure 2.13. Architecture representation of the persistent spiking computational model which 

drives the selection of GCs and PCs as presented in [74]. 

 a)    b)   

Figure 2.14. Grid cell firing fields. a) Recorded firing locations (red dots) of a single grid cell, as a rat 

explores (black line) a square, enclosed area. b) The autocorrelogram of the firing data for the grid cell. The 

hexagonal pattern of the firing locations can be seen in both parts a and b of the figure [86]. 

2.4 Analysis of Reviewed Systems’ Localization 

The visual capabilities of the reviewed material, as listed in Table 2.1, play an 

important role in the localization accuracy, as well as place field mapping, of these 

systems in their environment. Most of these neurological based navigation systems [39, 

46, 48, 61, 68, 72] use a camera that has a near to full 360° field of view (FOV). This is 
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accomplished using a spherical lens or by the robot performing multiple in-place rotations 

to obtain connecting/overlapping snapshots. The Barrera and Weitzenfeld [47, 63] 

navigation system uses a camera with a narrow FOV, however, the uniquely color coded 

landmark indicators are positioned at the end of corridors of a movement restricted maze. 

Thus, the visual data obtained is processed by various image processing algorithms and 

stages, then fed into neural networks, along with heading/azimuth data so that locations 

in the environment can be uniquely identified, via place field assigment. The use of global, 

allocentric data can greatly reduce PI error and increase overall localization accuracy 

when used along with movement and rotation estimation ANNs, as demonstrated in [48], 

and checked against a compass or similar [85]. This accuracy does cost processing time 

and computational resources, as presented in these systems, due to their integration into 

ANNs. However, these types of navigations systems very much adhere to a 

neurophysiological based architecture.  

Quantifying the accuracy of the localization and actual processing/memory 

requirements is difficult, if not impossible, to obtain from the literature alone. However, 

omnidirectional visual processing is a visual type of triangulation, which can be very 

accurate (even more so that civilian grade GPS systems [87]), particularly as landmarks 

are plentiful and/or close. Correct heading information (azimuth data) is stored with the 

visual processed data. This is required to prevent perceptual aliasing. An issue can still 

arise with this form of localization if images vary due to different sensory information at 

different points in time (e.g., illumination, noise, etc.). Additionally, such systems will not 

work in areas of very limited visual cues, whether due to lack of light or lack of landmarks.  
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Table 2.1. Neurobiologically based navigation research. 

Authors/Articles Platform/Sensors Visual Capabilities Brain Cells Emulated Cognitive Map Route Planning and Autonomy (*) 

 
 

 

Arleo; Gerstner [46] 

1) Khepera mobile robot. 
2) 8 IR sensors – 

Obstacle detection. 

3) Light detector –  
Ambient light measure. 

4) Camera 90° H – Self-

localization. 
5) Odometer – Self-motion 

- Offline, unsupervised, Hebbian 
learning, network (NN) training. 

- Four 90° horizontal snapshots 

taken (N, W, S, E) to create a  
single, location recognizable view. 

- Used primarily to assist with  

robot NN directionality.   

- Place cells and 
- Head direction (HD) cells 

Built into NNs of place cells 
&  

head direction cells. (Use of  

external homing light and 
offline 

NNs). 

*Use of external computer, thus not 
autonomous. 

 

 
 

Fleischer et al. [56] 

1) BBD – Beowulf cluster 

2) Robot platform: 
a) CCD Camera 

b) Compass 

c) Laser range finder 
d) Whisker system 

e) Odometer 

- Transformation of RGB video 

data (320 x 240 pixels) to YUV 
color space on one of the cluster 

computers. After some processing, 

interfacing of color neuronal units 
to inferotemporal cortex, and edge 

units to parietal cortex.  

- Place cells. 

- Dentate gyrus. 
- EC and other medial  

temporal lobe cells. 

Limited movement in plus-

maze. 
Directional choices at  

intersection is learned by 

place  
cells in the hippocampus. 

 

-Route retrospective and prospective 

responses/planning are shown in  
backtrace analysis. 

*Not autonomous due 

to external BBD. 

 
 

Strösslin et al. [48] 

1) Khepera mobile robot. 
2) Camera 60° H FOV. 

3) Odometers. 

4) Proximity sensors. 

- Simulates rodent’s FOV by  
rotating camera 4 times to obtain 

240° FOV image. 

- Extracts directional information  
from visual inputs. 

- Path integration through visual 

and self-motion information.  

- Place cells and 
- HD cells 

- Action-cells, located in  

dentate gyrus. 
- Many neurophysiological 

based elements.  

Combined place code (CPC)  
neurons, where visual and  

odometric information are  

stored. 

Biologically inspired reinforcement 
learning mechanism in continuous  

state space. 

*Not autonomous due to use of  
external PC. 

 
Hafner [61] 

1) Omnidirectional camera 
2) Compass. 

- 360° snapshot divided into 16  
segments. Input into place cell  

NN, thus assists with robot’s  

position determination. 

- Place cells. Topological map- 
Relational navigation 

connections between 

place cells.  

Can only be performed in simulations 
due to the amount of metric data  

processing required. 

*Not autonomous. 

 

 

Barrera & 
Weitzenfeld [47, 

63] 

1) Sony AIBO, 4-legged 

robot. 

2) Camera 50° H 
3) Limited turns in  

increments of +/- 45°. 

4) External PC w/ 1.8 GHz  
Pentium 4 Processor. Runs 

nav. model and connects. 

wirelessly to AIBO robot. 

- Simple color recognition  

representing landmarks and goal. 

- Distance extracted from images  
of engineered environment and 

known relations. 

- Places cells & 

many neurophysiological 

based elements. 

Place cells (nodes) and 

connections (edges). 

Simple T-maze and 
8-arm maze. 

Ability to learn and unlearn goal  

locations. 

*Not autonomous due to use of  
external PC. 



  

 

 

Table 2.1 (continued). Neurobiologically based navigation research. 

Authors/Articles Platform/Sensors Visual Capabilities Brain Cells Emulated Cognitive Map Route Planning and Autonomy (*) 

 

 
Wyeth & Milford 

[39, 68] 

1) Pioneer 2-DXE robot. 

2) Motor encoders – Odometry 
3) Sonar & laser range 

finder – Collision avoidance 

& pathway centering. 
4) Panoramic camera syst.  

– Landmark recognition. 

- 360° snapshot. Each unique 

snapshot is stored as a local view 
cell (VC) for landmark 

recognition. 

- Place cell & 

head direction cell 
combined 

as a pose cell. 

 

A cognitive map is stored in an  

experience map. The map is  
created from the pose cells in 

the 

continuous attractor network 
(CAN). 

Office delivery locations are stored 

in the mobile robot, which uses the  
experience map and CAN to make  

deliveries. 

*Autonomous. 

 

 
Cuplier et al. [72] 

1) Robot with 3x Dual Core 

Pentium Processors (3 GHz 
each). 

2) Panoramic camera. 

3) Compass to measure  
azimuth angles. 

4) Wheel encoders. 

- 360° snapshot taken at low 

resolution and image is convolved 
using difference of Gaussian  

(DoG) to detect characteristic  

points (Landmark recognition). 

- Place cells coupled 

together to create transition  
cells. 

Topological map. 

Created online during initial  
exploration phase: images and 

directions used to create place  

cells which are then used 
to create trans. cells.  

Use of the Bellman-Ford algorithm 

to 
choose most direct route from the  

cognitive map (transition cells with 

weighted links). 
*Autonomous. 

 

 

 

 



  

 

 

CHAPTER 3: SENSORY INPUT 

3.1 Idiothetic Sensors for Path Integration Model 

Removing the neurophysiological implementation details results in a simplified 

functional module that can replace the GCs and the path integrator neuron circuitry. The 

PI related inputs to the persistent spiking model are the HD cells and distance traveled. 

This information is replaced by heading information from a MEMS gyro (vestibular data), 

and distance traveled information in delta time (ʃ0
t di(τ) dτ).  The distance traveled, 

assuming straight segment movements by the robot, is captured by the motors’ encoders 

(proprioceptive data). Therefore, the travel vector that emerges from the path 

integrator/GCs module, in moving from one point in the environment to another, is of 

magnitude d and at heading θ, or vector d = (d, θ). The travel vectors of the mobile robot 

presented in this paper are acquired and transformed into Cartesian coordinates by a 

microcontroller. Our model maps the firing characteristics of a GC to a Cartesian 

coordinate system. Being that GCs are neural network based, this might not be a perfect 

one-to-one comparison, however, in a top-level view, there are many similarities.  

In our system, the x, y coordinates for an internally stored Cartesian based map, are 

found by using the sine and cosine functions on the mobile robot’s tracked allocentric 

heading θ. This is similar to the cybernetic models of PI found in [88], and also presented 

by Mittelstaedt as described in [9]. The travel vector to coordinate equation used is as 

follows: 

xk = dk sin(θk) + xk-1       (3.1) 
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yk = dk cos(θk) + yk-1       (3.2) 

The terms xk-1 and yk-1 represent the Cartesian coordinate of the robot’s last stop/turn. 

For k=0, the values of these terms, (x-1 , y-1), are defined as (0, 0). This which represents 

the initial starting location (home) of the robot. Fig. 3.1 shows the graph assignment with 

respect to “home” and an initial allocentric bearing of 90° (θ0 = 0° for the robot’s internal 

calculations).  

 

Figure 3.1. A conceptual overlay of an internal Cartesian graph representation of the ratbot’s navigation 

environment. The yellow circle represents the ratbot’s home and starting location, while the green circle is a 

goal location (e.g., food or water). The PI algorithm always assumes the starting position to be at the origin 

(0, 0) of an imaginary graph. The black vectors represent the robot’s path, while the red vectors (Rn) represent 

calculated homing vectors. θi is the ratbot’s allocentric heading. 

Mobile robots are prone to systematic PI errors such as unequal wheel diameters, 

imprecision in odometry and direction measurements, as well as non-systematic errors, 

such as floor slippage and uneven floors. The result is an accumulation of PI error over 

time [89]. As expected, these errors have a major impact on mapping and localization [90].  
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3.1.1 Heading Sensor 

A pertinent example of a systematic accumulated PI related error is found with our 

mobile robot’s gyroscope. Our robot is here after referred to as the ratbot. The ratbot uses 

the InvenSense MPU6050, MEMS - 6 axis, accelerometer and gyroscope. Particularly, the 

yaw rotational axis of the gyroscope is used to determine the robot’s heading. With MEMS 

based gyroscopes, however, there is a relatively constant drift. To compensate for this drift, 

the gyroscope measurement data is sampled in a loop at the beginning of the robot’s main 

program, from which an average drift rate is derived. This drift rate is subtracted from all 

future reads from the MEMS gyro. However, since the drift rate is not perfectly constant, 

this value will slowly drift as well. The graph in Fig. 3.2 shows how the measured heading 

still drifts when the gyroscope is stationary over a 12-minute interval. The drift is 

approximately 15 degrees in this time frame, which works out to be about 0.02 

degrees/second. The initial, uncompensated drift rate was measured at 0.47 

degrees/second. This, of course is just the static error. There are three phases of movement 

during the turning of the robot: (1) initial acceleration, (2) constant velocity, and (3) 

deceleration. Since the turn rate is a rotational velocity measurement, there will be rate 

averaging occurring over these three phases. When the sampling occurs during these 

phases, and the duration of the time frame that the sample is used, will no doubt be a source 

of additional heading measurement error.  
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Figure 3.2. MPU6050 post drift compensated gyroscope data.  

The allothetic heading θ from the gyroscope is calculated as follows: 

   θ = θprev + (ω - ωd) * Δt     (3.3) 

where, θ is the current heading, θprev is the previous heading, ω is the measured gyro rate 

of change (16 bit A/D value) at Δt microseconds after the previous gyro rate measurement, 

and ωd is the drift rate of the sensor (measured average at startup). 

As with rodents and other animals, PI error is reset by observing known external distal 

cues, which allows them to become certain again of their local or global location [34, 91, 

92]. Autonomous systems have found that using sensors that capture allothetic stimuli, 

such as visual recognition hardware and software, greatly helps with this area [39, 48, 93]. 

Therefore, the use of some form of allothetic based system on the mobile robot is 

imperative to its autonomous capabilities. The allothetic sensors used on the ratbot are 

covered in section 3.2. 
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3.1.2 Motor Encoders 

The ratbot uses two Devantech 12V, 30:1 gear motors with encoders. A Daventech 

MD25 motor controller board it connected to these motors for digital control of H bride 

motor drivers, as well as data acquisition (i.e., motor encoder values, supply voltage level, 

etc.) via a PIC microcontroller. The main controller of the ratbot sends and receive data 

to/from the MD25 to regulate the movement of the ratbot over a serial communication 

interface, and collect encoder values to derive distance traveled. The encoder values are 

summed by the MD25’s PIC microcontroller over time, and can be zeroed out at any time. 

The encoder values collected are in degrees of wheel rotation at a resolution of 2 degrees.   

3.2 Allothetic Sensors 

3.2.1 Ultrasonic Range Sensors 

The ratbot is equipped with five ultrasonic (sonar) sensors to achieve an object 

detection coverage of approximately 180°, as shown in Fig. 3.3. These sensors are located 

around the front of the ratbot: one forward, a pair of left/right angled “whiskers”, and a 

pair of left/right side facing ultrasonic sensors.  
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Figure 3.3. Ultrasonic range sensors covering the front of the ratbot. Five sensors giving a forward 180° 

field of view coverage. 

Table 3.1. Electrical and Mechanical Specifications of the HC-SR04 Ultrasonic Range Sensor. 

Working Voltage DC 5V 

Working Current 15mA 

Maximum Range 4m 

Minimum Range 2cm 

Beam Angle 20 degrees off axis (3 dB) 

Trigger Input Signal 10uS TTL pulse 

Echo Output Signal TTL pulse width in 

proportion to target range 

Dimension 45x20x15mm 

Ultrasonic Frequency 40 kHz 

 

The ultrasonic sensors used on the ratbot are the HC-SR04 Ultrasonic Range Sensor. 

The working specifications for this sensor is listed in Table 3.1. The ultrasonic sensor is 

not as fast/responsive (speed of sound vs. light), nor as accurate as an optic range finder. 
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Additionally, the beam width of the ultrasonic sensor is much wider and doesn’t have the 

same range capabilities as an optic range finder. However, the ultrasonic sensor does have 

the advantage of not being affected by the color and texture of the target. For object 

detection at relatively short distance, the target offset error due to the larger beam width is 

reduced. The ultrasonic sensor’s beam angle is defined as the total angle, where the sound 

pressure level of the main beam has been reduced by 3dB (half power) on both parts of the 

center axis, represented here by θ. This angle is obtained using Chart No. 67 from Acoustic 

Design Charts, replicated in Fig. 3.4, based on the results of the following equations: 

ƛ = c/f = 343 m/s /40k cycles/s = 8.6 mm      (3.4) 

D/ ƛ = 13mm/8.6mm = 1.5      (3.5) 

where, wavelength of the sound pulse ƛ is equal to the speed of sound c divided by the 

pulse frequency f. The ratio of the diameter of the round transmitter (infinite planar baffle) 

to the wavelength, determines the sound beam’s width or angle θ of 20° at 3dB. 

The ultrasonic sensors are used for object/boundary detection and avoidance. The data 

collected from these range sensors, along with pose data, are used for BC FF 

activation/initialization, which becomes part of the navigation system’s cognitive map.    
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Figure 3.4. Chart No. 67 from Acoustic Design Charts [94]. 

The ultrasonic sensor is unable to collect the level of detail needed to replace a visual 

system. Particularly, the details required to identify landmarks and goals, and thus perform 

a recalibration/reset of the PI error. For this, the ratbot uses a visual system and a slightly 

engineered environment. 

3.2.1 Visual System 

The ratbot uses the Pixy Cam (CMUcam5) from Charmed Labs for landmark and goal 

location recognition. The Pixy Cam has the capability to swivel on a two degrees of 

freedom platform, via two mini servos. One servo rotates the camera along the horizontal 

axis, while another servo rotates the camera along the vertical axis. Currently, the camera 

is used in a stationary position, pointing directly forward and downwards at a 40° angle 

with the parallel plane of the ratbot’s platform. The camera lens FOV is 75° horizontal and 

47° vertical. Fig. 3.5 illustrates this configuration of the ratbot’s camera. 
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Figure 3.5. The ratbot’s Pixy Cam downward looking FOV. Illustration is a view from the ratbot’s 

right side. 

   Instead of using neural networks and vision data compression algorithms to record 

and compare gathered visual data to, as was covered in the review section, the Pixy Cam 

identifies objects by color, using a connected components algorithm to determine where 

one object begins and another ends. Additionally, using more than one color placed next 

to each other (color code), allows for many more objects to be uniquely identify. For the 

ratbot’s environment, goal places (i.e., home, water and food), and unique landmark 

locations are marked by color coded paper. An example of this is shown in Fig. 3.6. These 

color codes are pre-programmed into the Pixy Cam’s flash memory using the PixyMon 

application.  

Therefore, a tradeoff is made between having an ANN based visual recognition 

system, which doesn’t need an engineered environment and works with distal salient cues, 

versus using a simple color-code based system with narrow, local visual capabilities only, 

which requires very little processing power and resources, but a slightly engineered 
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environment. Since the aim of this paper is to test the core of the navigation system, the 

actual vision system used is of no consequence. However, the processor onboard the Pixy 

Cam does calculate relative X, Y position data with respect to the object’s location in the 

camera’s field of view. Additionally, the angle of the color-code image, with respect to the 

axis running between the two or more colors, is calculated and is available for use. This is 

displayed as ϕ in Fig. 3.6b. Therefore, the color-coded object’s pose can be translated into 

an allocentric pose, based on the robot’s current pose data. 

a)      b) 

 

Figure 3.6. Demonstration of the Pixy camera. a) The ratbot’s Pixy camera is connected to a laptop to 

demonstrate what the camera sees. The color code card (red and green) represents a preprogrammed goal or 

landmark that has been recognized. b) A screen shot of the PixyMon program, which is used to program the 

color codes and/or display what the Pixy camera sees. 
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CHAPTER 4: NEW MULTIMODAL PLACE CELL MODEL 

4.1 Multimodal Place Cell Model Basics 

As proposed in [23], GCs and PCs are speculated to not be a concurrent hierarchy, but 

complementary. Additionally, BCs have a great influence on the creation of PC fields [31, 

95]. Plus, adding the fact that taxon navigation takes place by visual input only works into 

a newly derived model by this paper as to how PCs are activated. As is illustrated in Fig. 

4.1, there are three parallel sources which feed the input to the PCs. Firstly, as illustrated 

and described in [23], active BVCs (simply stated as BC in this paper) in the rodent’s brain 

for a particular environment can source a PC to fire near the intersection of two boundaries, 

or an internal corner in a boundary. Similarly, our model produces place fields at the ends 

of boundaries.  Secondly, unique locations, such as landmarks and goals locations, can be 

learned from the visual data, thus creating place fields which can be used to help reduce PI 

error. Thirdly, the metric/coordinate based system used by the ratbot to map out its 

environment is similar to the function of GCs in the rodent’s brain, which sources the 

activation of PCs for cognitive map generation, (i.e., place code), as well as allow for PI in 

complete darkness (no allothetic stimuli).  

4.2 Logical Architecture of Multimodal Place Cell Model 

Further logic details on the multimodal PC model implemented in the ratbot are 

presented in Fig. 4.2.  As will be covered in the FPGA and software design sections in the 

next chapter, BCs are identified in a logic block that analyzes data gathered from the sides 
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and front ultrasonic range sensors. This BC/PC determination logic also identifies PC fields 

that are assigned at boundary corners (C), and at the open ends of boundaries, when they 

are used as a FF for a turn cell (TC), as will be described in the next chapter. Equivalently, 

the visual place cell (VPC) determination logic identifies PC fields that occur at goal 

locations (G) and landmarks (L) from visual data gathered from the ratbot’s camera.  The 

exact cases for BC activation are illustrated in Fig. 4.3, while the cases for PC activation 

are show in Fig. 4.4. 

 

Figure 4.1. The proposed multimodal model of the PC firing field sources. The cognitive map located in the 

FPGA will possess BCs, VPCs and PCs. The output from the PI source to the PCs represents the interaction 

of PI data with GCs (pseudo coordinate data), which in turn enable the place fields. 
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Figure 4.2. The logic architecture of the multimodal PC model. The VPC determination logic block sends 

goal (G) or landmark (L) type indicators to the PC data structures, while the BC/PC determination logic block 

sends TC or corner C type indicators. These logic blocks are evaluated sequentially and enable coordinate 

data to the PC data structures, as well as the PC type, on condition of PC found.  

 

Figure 4.3. BC activation cases. A BC is activated in the following cases: (1) an internal object is detected 

by either side ultrasonic range sensors within the minimum distance range, (2) or between the maximum and 

minimum distance ranges, or (3) when the front sonic ultrasonic sensor measures the distance to an internal 

object within the minimum distance range. 
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Figure 4.4. PC activation cases. (1) The C type PC is activated at an internal boundary corner, (2) the TC 

type PC is activated when the robot clears a corner of an internal boundary, and (3) the G and L type PCs are 

activated when they are initially found and identified by the robot via its camera. 
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CHAPTER 5: NAVIGATION SYSTEM IMPLEMENTATION 

To better understand how the new multimodal place cell is integrated into our 

navigation system, we will first briefly describe the hardware connectivity and data flow 

of the total system. Then the software implementation of the model, as well as the general 

architecture of the navigation system is covered. Finally, we present the cognitive map and 

spatial awareness created using the central processor with an FPGA. 

5.1 Hardware System Design 

The main agent of the ratbot is the central processor board, an Arduino Mega 2560, 

which uses an Atmel® ATmega2560 microcontroller, and is integrated to the external 

sensors and actuators previously covered. The ATmega2560 microcontroller is limited to 

256 kbytes of program memory and operates at 16 MHz. Additionally, the central processor 

board uses many of its 54-digital input/output pins and four serial ports to gather data from 

sensors, communicate with another microcontroller board, which is connected to the Pixy 

Cam, and communicate with the motor controller board, as show in Fig. 5.1 and Fig. 5.2. 

Thus, the central processor gathers data about the environment through the ultrasonic range 

sensors, camera, motor encoder data, and MEMs based gyroscope (via I2C bus), and makes 

decisions on the next action to take, based on the sensor data and its current motivation 

state.  
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Figure 5.1. Top-level block diagram of the ratbot’s neurobiological based navigation system. Shown are the 

ratbot’s sensors, actuators and computational resources. 

 

Figure 5.2. The ratbot and its hardware. 

The basic decision making of the core multimodal PC model, illustrated in Fig. 4.1 

and Fig. 4.2, is carried out in the central processor. Possible new BC, VPC and PC FFs are 

identified in the central processor’s main loop program. The pseudo code for the main loop 

program is listed in Fig. 5.3. The data from newly identified BC FFs are sent from the 
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central processor to the FPGA through a serial interface, while PC FFs are stored in the 

central processor’s memory.  

1.  While MotivationState ≠ done: 

 a.  Check visual data gathered from camera for objects recognized. 

 b.  If (Identified Object[k] AND Searching for Object[k]) then 

  i.  Go to Object[k]; 

  ii. Record/Verify Object[k] (VPC/PC)   /* in CPM */ 

  iii. Take action based on MotivationState AND ObjectType; 

 c. Get sonar data (distances of objects) from all five sensors. 

 d. Based on MotivationState and barrier(s) distance(s)/location(s):    

i. Record/Verify BC or PC    /* in FPGA or CPM respectively */ 

  ii. Take action.  /* e.g., stop, turn, go forward … */ 

 e. Check MotivationState for change. 

Figure 5.3. Central processor’s main loop pseudo code. CPM is the central processor’s memory. 

5.2 Software Design 

Further details of the central processor’s main loop program, as generalized in Fig. 

5.3, are covered here. As can be seen from Fig. 5.3, the action that takes place by the 

actuators (motors) of the ratbot is a function of the agent’s motivation state. Thus, the 

motivation state integrates with the core multimodal navigation model, and is influenced 

by the current state of the environment. The motivation states of the ratbot’s navigation 

model include being: hungry, thirsty, tired, lost, a predator threat, and curiosity (explore 

mode).  The explore mode is the initial motivation state of the ratbot. The ratbot randomly 

navigates its environment, while mapping the area using BCs, VPCs and PCs as described 

by the multimodal model. This phase continues until the ratbot has discovered the food 

and water goal locations, and saved the path information between the goals and home. 

Table 5.1 lists the logical steps/cases that the taxon navigation block of the ratbot’s 

navigation software system, shown in Fig. 5.4, uses in the explore mode. The specific steps 

of the explore phase are as follows: 
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a) Random exploration until a goal location is found (water or food). 

b) Dedicate a place cell to the goal location (store coordinates). 

c) Return home directly (single vector home) or via a scan/backtrack algorithm if path 

is blocked by barrier (adding/dedicate boundary vector cells, recording direction of 

barrier and coordinates, and turn cell/place cell for transition point around barrier, 

recording coordinates and ID). 

d) Save place cell path in linked list or similar (example G1->PC1->G0). Save length 

of path as weight for this path. Goal memory (e.g., nucleus accumbens). 

e) Go back to step (a), unless all goal locations have been found. 

The navigation system block diagrams in the review section (i.e., Fig. 2.2, 2.3, 2.4 and 

2.6) are relatively similar in respect to the flow of sensor data to motor/action output, and 

the involvement of the rodent spatial awareness and navigation neurons. Our software 

block diagram is similar to the computational spatial cognitive model of the Barrera and 

Weitzenfeld neurophysiological based mobile robot navigation system shown in Fig. 2.6. 

Fig. 5.4 illustrates the block diagram of the ratbot’s navigation software system.



  

 

 

Table 5.1: Visual Part of Exploration Mode 

Visually 

Recognized 

Explore 

Sub-Mode 

Goal 

Searched 

For 

Current Action 

To Take 

Next Action 

To Take 

Goal To 

Return To 

New Goal 

Searched For 

Status Sent to 

InternalStateGen 

(Motivation State 

Satisfied) 

Water Free Run Any Go to goal and 

Record PC data 

Return Home Water No Change - 

Any 

False 

Water Return to Goal Any Go to goal Free Run None Food False 

Water Free Run Food Ignore Free Run None No Change - 

Food 

False 

Water Free Run Water Go to goal and 

Record PC data 

Return Home Water No Change - 

Water 

False 

Water Return to Goal Water Go to goal Finished None None True 

Food Free Run Any Go to goal and 

Record PC data 

Return Home Food No Change - 

Any 

False 

Food Return to Goal Any Go to goal Free Run None Water False 

Food Free Run Water Ignore Free Run None No Change - 

Water 

False 

Food Free Run Food Go to goal and 

Record PC data 

Return Home Food No Change - 

Food 

False 

Food Return to Goal Food Go to goal Finished None None True 

Landmark Free Run N/A Go to landmark Free Run None No Change False 

Landmark Other N/A Ignore (for now). Other None No Change False 

Home Free Run N/A Go to home if LoC is 

Low to reset PI  

Free Run None No Change False 

Home Return Home Any, 

Water, 

Food 

Got to home, Reset PI Function of Goal 

to Return to 

No Change No Change False 



  

 

 

 

Figure 5.4. Software block diagram of the ratbot’s neurophysiological based navigation system. 

(1) Place Cells in the Central Processor 

A PC is activated and assigned the coordinates of a goal area as they are found (e.g., 

home, food, water, etc.). Additionally, PCs are assigned to turning points (e.g., boundary 

edges/ends) to help with remembering a path between goals. This is based on the fact that 

a greater number of smaller PC fields are found near boundaries and objects [23, 61]. These 

types of PCs are designated as “turn cells” (TCs). The TCs are illustrated in the Ratbot 

Simulator output shown in Fig. 5.5. Thus, the TCs are used in route planning when the 

ratbot is following remembered paths, or performing a look-ahead feature with the map 

data. Additionally, as previously covered in chapter 4, there are additional PC types of C, 

L and G. The data structure of a single PC module, as described here and in chapter 4, is 

shown in Fig. 5.6.  
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Figure 5.5. Ratbot Simulator output. PCs are used for goal locations (large squares) and as turn cells (yellow 

squares). BCs (grey circles) are used for path planning and PI error detection. Three GC’s firing fields, with 

different spatial phases, are shown with red, green and blue circles. 

 

Figure 5.6. The PC data structure. Many of these are stored in the central processor’s memory. 

Besides the type of PC and its coordinates in the ratbot’s coordinate system, a set 

number of pointers to other PC structures are included in the PC data structure. As paths 

are discovered between one goal location to another, the PC FFs of the goals, as well as 

intermediate PC FFs, such as TC FFs are linked together to remember these paths. 

Additionally, the Euclidean distance between each pair of place fields is also stored in this 

data structure.  Thus, goal memory represents the use of this navigation data for path 
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remembrance and execution. Additionally, new paths can be found by using the A* path 

planning algorithm on a global graph that links these paths. The size of a single PC data 

structure is 21 bytes. 

(2) Goal Memory 

As defined in [9], goal memory in a rodent plays a role in route planning to goal 

locations, and is based on the position of the animal and its current needs/motivations. Our 

implementation of goal memory is a linked list of PC structures defined above. During the 

exploration phase, the path from a goal location found by the ratbot (e.g., food or water) 

to the home location is recorded in a linked list. The steps that occur to find the path from 

the goal to home during exploration is as follows: 

a) Random exploration until a goal location is found (water or food). 

b) Dedicate a place cell to the goal location (store coordinates). 

c) Return home directly (single vector home) or via a scan/backtrack algorithm if path 

is blocked by a barrier (adding/dedicate boundary vector cells, recording direction 

of barrier and coordinates, and TC for transition point around barrier, recording 

coordinates and ID). 

d) Save PC path in linked list (e.g., G1->TC1->G0). Save length of path as edge value 

for this path. Goal memory (e.g., nucleus accumbens). 

e) Go back to step (a), unless all goal locations have been found. 
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(3) Main Loop Time 

The time duration of each iteration of the central processor’s main loop shown in Fig. 

5.3, assuming no goal is detected which needs to be approached, is 325ms. The majority 

of this processing time is spent in collecting and analyzing the ultrasonic data of the five 

sensors, as well as sending serial communication data to the motor controller board. There 

is a 20ms delay between activating each ultrasonic sensor. Additionally, each sensor is 

activated three consecutive times to determine the median distance. However, the time 

delay between these consecutive executions is minimal. Thus, 5 sensors x 20ms/sensor = 

100ms in delay alone. Therefore, the frequency of the main perception/action loop = 

1/325ms = 3Hz. 

5.3 FPGA Design 

Cognitive mapping is accomplished using PC modules in the central processor and 

BC modules instantiated in the onboard FPGA. Since BC emulated brain cells can’t be 

instantiated on the fly (same with a brain), the FPGA already has a certain number of BC 

modules. All BCs are initially set as inactive (active bit set to logic 0), until assigned to a 

location.     

(1) Boundary Cells in the FPGA 

BCs are activated and assigned to boundaries or barriers that lay between two goal 

locations. Typically, the FFs of BCs are assigned to any boundary of any kind in a rodent. 

However, due to the limited number of BCs, only boundaries found in the environment’s 

interior location are being recorded. The BC module includes a directional field, which 
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records a discretized value of the angle of incident of the sensor. Fig. 5.7 illustrates the 

FPGA logic for the BCs, as well as the major data fields included in each BC module. 

 

Figure 5.7. BC implementation in the FPGA. 

When the central processor identifies a boundary, it sends the coordinates and angle 

to the FPGA. The FPGA checks this data against BC modules already activated in parallel. 

If the coordinates of the new BC FF are within range of an already activated module, then 

the module’s range will either grow, or the data will be ignored (if close enough to the 

center range). Coordinates out of range of currently activated BC modules will cause the 

activation of a new module, and the data will be saved. BC FFs are given a rectangular area 

that is centered on the initial coordinates and perpendicular to the angle of incident. An 

example of BC modules instantiated is shown in the simulator’s output in Fig. 5.5 as grey 

circles.   



59 

 

 

CHAPTER 6: LOCALIZATION AND PATH PLANNING 

The ideal product of a neurophysiological based navigation system implemented in a 

mobile robot is to create a system that can navigate in varying types of environments. 

Rodents, as well as other animals, relate various allothetic and idiothetic cues with memory 

to derive a cognitive map of its environment, as well use this sensory input for spatial 

awareness. When we picture robots, we assume they are very precise in their 

actions/movements. This is true for various types of robots, such as those used in industrial 

applications (e.g., car manufacturing), or unmanned vehicles. However, for mobile robots 

used for disaster control and recovery, such as going into hazardous environments unfit for 

humans, these robots require more autonomy, and can get away with less precision in 

certain areas of their navigation capabilities. Autonomous mobile robots need to map their 

environment dynamically, while localizing themselves within the map without use of 

global positioning systems (GPS), as well as maneuver through tough or blocked terrain. 

The difficulty of the map making task is its mutual dependency on the robot’s localization 

capabilities. Many traditional navigation systems use a statistical approach to localization 

and mapping, or SLAM specifically. For example, various forms of the Kalman filter (e.g., 

indirect, extended, and augmented) are used to reduce error between odometry and other 

sensor information [89, 96, 97]. 

Path planning requires the ability to search through the cognitive map efficiently and 

obtain movement details to accomplish the task of performing a successful trip. The 
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method and accuracy of the ratbot’s localization and path planning capabilities are covered 

next. 

6.1 Localization 

The ratbot initially localizes itself to its environment based on its starting location and 

heading at its home position, as is illustrated in Fig. 3.1. The initial anchoring of spatial 

orientation of the ratbot’s coordinate system is similar to the way a rodent anchors its grid 

network (GC FFs) with respect to external landmarks shortly after being introduced to a 

new environment [36, 37]. The use of both allothetic and idiothetic data is essential in 

adding spatial information to memorized visual information [98]. The occupancy grid is an 

example of a metric/grid based traditional (non-biological based) localization and mapping 

technique which shares similarities to our neurophysiological based system. Occupancy 

grids rely on highly accurate pose data with respect to a single global coordinate system. 

The pose system is typically a combination of both odometry and external/environment 

based sensors. The robot’s area is divided up into equally sized squares. Each internally 

represented square, in the robot’s memory, is given a probability of being occupied. This 

value is based on sensor readings, such as sonar sensors, which is typically represented by 

a two-dimensional Gaussian equation [8, 99-101]. Due to the amount of detail collected 

for the map of the occupancy grid, and the increasing number of squares for large areas, 

the memory requirement becomes unbounded, as well as the time to map the area. The 

ratbot, however, only creates place code for a select group of salient entities (i.e., goals, 

turns, and landmarks) and BC mapped areas for internal boundaries. Comparisons between 
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the occupancy grid localization and mapping method and our neurobiologically based 

system occur throughout the remainder of this section due to their many similarities. 

Since idiothetic data is cumulative, so is the error. Thus, after time, the accrued PI 

error becomes too great for a robot to rely on its internal position estimate. Additionally, 

allothetic information can be misleading due to different locations having similar views or 

representations (perceptual aliasing) [39, 55, 61]. The ratbot uses a level of confidence 

function to keep the PI error bounded, as well as unique characteristics of the color-coded 

landscape markers to deal with these two issues.  

6.1.1 Level of Confidence Calculation 

The ratbot minimizes PI error by performing timely resets based on a calculated level 

of confidence (LoC). The LoC can be as simple as an allotted amount of time before a 

robot needs to return home to recalibrate [54], to being a function of how well known a 

place cell is recognized [85]. The ratbot’s LoC is calculated using a combination of these 

two methods.  

Due to the constant drift over time of the ratbot’s gyroscope, as discussed in the 

sensors section, the LoC requires a time element to its calculation. Additionally, there will 

be assumed a level of systematic and non-systematic error occurring with each turn the 

ratbot makes. A threshold is set such that if the LoC decreases to a certain point, such that 

BC, PC, and VPC FFs will no longer be assigned to the cognitive map. Since the true 

accuracy of the PI system is nondeterministic in the presence of non-systematic errors, the 

ratbot needs to perform verification of already learned place fields it comes across during 
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any of its navigation modes, if the LoC is above the threshold. Additionally, the ratbot 

periodically returns home to recalibrate with its home base and initial heading. 

6.1.2 Localization Accuracy 

As was covered back in section 2, the robot’s visual system can play a dominant role 

in its localization capabilities. For the ratbot, its current visual system is limited to 

recognizing pre-programmed color codes only. The visual system as is, allows for goal 

locations and landmarks to be found within the camera’s downward facing FOV, while the 

ratbot is navigating. Additionally, the visual system allows for the ratbot to make action 

modification to reach goals, when their actual location falls within the camera’s FOV. That 

is, the actual location of a remembered goal is now skewed from its previously determined 

coordinates by the accumulated PI errors up to that point. The right side of Fig. 2.9 

illustrates this effect. Thus, the localization accuracy of the ratbot’s navigation system, with 

its present visual capabilities, is reduced to the accuracy of the system’s PI values at any 

given time.  

6.1.3 Place and Boundary Field Initialization Accuracy  

The global or allocentric location of barriers detected via ultrasonic sensors, and goal 

locations detected via the ratbot’s camera, are calculated by translating their relative 

position to, and direction from, the ratbot’s inertial frame, as illustrated by the blue lines 

on the ratbot in Fig. 6.1a & b. Only the front and side ultrasonic sensors are used in the 

creation or verification of BCs. Fig. 6.1a illustrates how the ratbot reacts when the 

“whisker” sensor detects an object which becomes too close in range (pre-defined 
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threshold) with respect to the ratbot’s path. The ratbot will stop and rotate until a 

measurement from the side sensor hits a minimum, indicate a near perpendicular position 

to the object, see Fig. 6.1b. The data from the side sensor is then stored in the FPGA for 

the BC module. Boundary detection occurs in the sonar data processing/affordances 

portion of the navigation software, as illustrated in Fig. 5.4. 

Due to the divergent nature of sonar sensors, the accuracy of a detected barrier or 

object’s actual location, assuming perfect PI, is rather poor. For long objects, such as walls, 

this is not an issue. Additionally, where walls or barriers end can be discerned and 

maneuvered around in real time. Only with smaller objects does accuracy become a real 

issue.  Therefore, due to the wide beam width of the sonar sensor, BC FFs are given larger 

areas of representation than PC FFs. 

a) b)  

Figure 6.1. Recording of BC (BVC) location and angle of incident. a) The right “whisker” sensor detects a 

barrier (grey rectangle) to be too close (threshold range), so the ratbot stops and rotates. b) The distance 

measured from the side ultrasonic sensor is translated to a global (allocentric) reference frame from the 

ratbot’s inertial frame. 

The Pixy Cam can position the ratbot within a cm or two of the center of a goal or 

landmark. This is due to the precise calculations of the Pixy Cam’s x, y coordinates of a 
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color-coded object in its FOV. Thus, any error in the recorded coordinates of a goal or 

landmark location is approximately a function of the PI error only. Thus, a PC’s FF is 

smaller and more accurate the BC’s FF. The size of the goal and landmark color-coded 

cards are 10cm x 14cm. 

6.2 Route Planning 

There are two methods of route planning. The first is for the ratbot to follow a saved 

path, such as those that are found during the ratbot’s exploration phase. When the ratbot 

wishes to go from one goal location to another, it can do so quickly by “remembering” the 

path it has used in the past. This method is similar to a rodent’s goal memory, as discussed 

in [9]. During the exploration phase, if a goal location, such as water or food, is found 

(detected by the Pixy camera), then the ratbot will return home to record the return path. 

However, if the ratbot is blocked during its trip home, due to a barrier, the ratbot will go 

into a scanning/backtrack mode to find a way around the barrier. The key turning points 

are saved as PCs and the full path is saved to memory in the microcontroller. This is 

illustrated in the Ratbot Simulator’s output, Fig. 5.5. The small yellow squares represent 

turning points between goal location PCs and at the corner of the barriers. Therefore, the 

paths found this way may not be optimum, but are a solution for the ratbot to follow until 

it detects or learns a short cut. The total length of the path is saved with the path to represent 

its weight, which is used for determining shortcuts.  

The second method of route planning is possible when the ratbot has found all the 

goal locations. At such point, there should be a fair number of activated BCs. The ratbot is 

then capable of using a look-ahead mode, which is similar to how humans can visualize 
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traversing a path while remaining stationary. This form of navigation, wayfinding, allows 

for changes to occur in the environment and gives the ratbot the capability to reroute on 

the fly. The BC FFs stored in the FPGA come into use in this route planning method. The 

ratbot performs the following sequence of events to find a new path: 

1) Create line equations for the target path and for each BC that has multiple locations 

assigned to it.  

2) Check to see if the target path intersects any of the recorded boundaries.  

3) If no intersection (blockage) is detected, then proceed straight towards target. Go 

into exploration mode if an unrecorded barrier is found in the ratbot’s path. 

4) If an intersection is found, add the TCs connect/associated with this BC and perform 

the A* algorithm on this graph. 

5) If the A* algorithm fails to find a previously found goal, then exploration is 

required. 

The A* path planning algorithm variant of the Dijkstra algorithm was chosen because 

it best aligns with the concept of the rodent or animal/insect following the Euclidean 

distance between two points. For the A* heuristic function, which performs a least-cost 

path algorithm on the nodes/PCs, is as follows: 

   f(x) = g(x) + h(x)      (6.1) 
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where, g(x) is the sum of the distances between the initial position and the current node 

(PC) being examined, and h(x) is the Euclidean distance (straight line calculated from 

stored coordinates) from the current node to the target node (PC).   
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CHAPTER 7: SUMMARY & FUTURE DIRECTIONS 

7.1 Summary 

As stated in the introduction, our goals include providing a low power solution to 

indoor mobile robot navigation systems, which requires less precise localization data than 

previous traditional or biomimetic models/systems to accomplish navigation. How well me 

met these challenges are analyzed next. 

7.1.1 Power Analysis 

One of the goals of this navigation system was to require relatively low power, such 

that the robot could easily carry the batteries required, as well as the sensors and processors. 

The ratbot currently carries two 12V, 2000mAh battery packs. However, only one of the 

batteries is currently used to power the entire system. The second battery is dedication to 

an Arduino Yun microprocessor board, which is used during debugging only. The Yun 

microcontroller board becomes a WiFi access point, which a laptop can connect to and 

receive debug data from. The average running voltage and currents for processors onboard 

the ratbot are tabulated in Table 7.1. An estimated power of 2.5 watts is being used by the 

processors (in addition to some sensors).  

Most of the power consumed by the system is by the two 12V motors, which can draw 

up to 530mA each. That is a potential 12W for the two motors alone. However, normal 

cruising speed for the ratbot is only about half of maximum and is used on a level/hard 

surface. Thus, the power used by the motors is probably around 6W, given the max power 
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of the battery and the fact the ratbot can usually last 2 hours or so, until the battery dips to 

approximately 6V.   

Table 7.1. Power Consumption of Ratbot’s Processors 

Processor Type Note DC Volts 

(V) 

DC Amperes 

(mA) 

Power 

(mW) 

Central Processor-

Atmel ATmega2560 

Plus 5 Ultrasonic 

Sensors & MEMS 

Gyro 

5 128 640 

Pixy Cam Dual 

Processor + Atmel 

ATmega328 

Full Pixy Camera 

System 

5 300 1500 

Xilinx Spartan 6 

XC6SLX9 FPGA 

 3.3 98.5 330 

   
Total Power: 2470 

 

The low processing power required is attributed to low operating frequencies of the 

processors. For processor power consumption is proportional to the operating voltage 

(squared) times the clock frequency. The Atmel microcontrollers run at 16 MHz, the Pixy 

Cam’s onboard NXP LPC4330 dual core processor operates at 204 MHz, and the Xilinx 

Spartan 6 XC6SLX9 FPGA is run with a 50 MHz clock. 

The dimensions of the ratbot are approximately 21cm long by 17cm wide. The height 

of the chassis on the front of the ratbot is 25.5cm. 

7.1.2 Navigation Environment Scalability  

Given the limited memory of the microcontroller used as the main processor of the 

developed physiological based navigation system, scalability is an issue. The PC data 

structures require 21 bytes and are minimally used. The central processor (microcontroller) 
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used has a total of 256k bytes for both program memory and data. Currently, the program 

takes up 15,668 bytes out of the 253,952 bytes available (8k bytes of memory are dedicated 

to the boot loader). Therefore, there is plenty of memory available for PCs. However, to 

make the system reach across large areas, such as a large office building, the area should 

be segmented to several unique block areas. This helps with resetting/re-initializing the PI 

system across large spaces. Additionally, the BC data in the FPGA would have to be stored 

to memory, as should the PC data in the main controller. Thus, to adapt the current 

prototype system to one that can deal with larger areas, the following changes should be 

made: 

a) Add external memory and a processor core to the FPGA. 

b) Upgrade the central processor to be able to store and retrieve larger amounts of data. 

c) Change the visual system to be omnidirectional, thus needing to include visual 

processing algorithms and comparison/learning system (e.g., ANN based, 

comparison, etc.). 

7.1.3 Episodic Memory 

As mentioned at the beginning of this paper, the hippocampus is believed to play a 

major role in the storage of episodic memory, particularly during a biological creature’s 

sleeping stage. From the point of view of our model, although sleep is not involved, the 

remembrance of paths taken and locations (PCs) found do model episodic memory [61].   
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7.1.4 Importance of Visual Recognition in Navigation 

Although many animals, such as the rodent, can navigating previously learned paths 

while relying on only internal stimuli (no visual aid), such navigation breaks down with 

time as the PI error accumulates. Additionally, the initial learning of the animal’s 

environment requires external stimuli. Thus, from working with the ratbot and researching 

many mobile robot systems, it is quite apparent that there is a strong correlation between 

the visual recognition capabilities and the overall navigation capabilities of the 

neurobiological based mobile robot. Navigation dominant on visual cues is referred to 

taxon navigation, and applies to animals, humans, insects, etc., as well as traditional and 

neurobiological based mobile robot navigation systems. This comes as no surprise as it has 

been shown that the specialized navigation and spatial awareness cells of a rodent are 

dependent to some degree on visual cues [9, 23, 102-104]. Additionally, biological 

systems, such as those found in rodents, can navigate on non-visuals cues as well. These 

can be auditory, olfactory, and/or somatosensory cues. 

Of course, the caveat with using visual data, is the ability to process this data fast 

enough to be used in real-time. Additionally, information extraction requires deep learning 

neural networks, or similar, for image recognition.  The neurophysiological based systems 

reviewed and cited in this paper use simple neural networks and compressed data 

techniques for simple environment recognition. However, for smarter navigation systems 

that can get more useful information, such as space or other detailed environmental 

information, and analyze it, then navigation becomes more informed. But the processing 

and power requirement is become too much to allow for the system to be onboard the 
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mobile robot. Some robots use cloud computing for this purpose. The next section analyzes 

artificial neural networks and possible processing technologies for onboard systems. 

7.2 Possible Future Directions in Model Computation  

 Stanford University and Sandia National Laboratories have been working on creating 

a non-volatile organic electrochemical artificial synapse for neuromorphic computing 

[105]. This low-voltage, artificial synapse mimics the way neurons are connected in the 

brain. Thus, the neural inspired system could theoretically learn and keep its memory 

through the artificial synapse connectivity. Perhaps a neuromorphic computing machine, 

which more closely mimics the functionality of the brain than current processing systems, 

will be realized in the future. A system with elements that more closely resembles the 

dynamic learning structure of the human brain, and is similar with respect to processing 

capabilities, power requirements and size of the human brain.  

7.2.1 Neural Networks 

For completeness, a discussion on the computational demand required of the various 

neural networks used, such as the continuous attractor network of the RatSLAM [39, 68, 

69, 106], the Hebbian learning rule and how it relates to the type of artificial neural 

networks (ANNs) used in the neurophysiological based navigation system literature 

surveyed for this paper [21], as well as deep learning, which wasn’t used but has interesting 

possibilities given current computational technologies. Additionally, the computational 

limitations due to scalability of these types of navigation systems are covered.  
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(1) Continuous Attractor Network 

To keep on track with closely modeling a neurophysiological system, both allothetic 

and idiothetic stimuli are fed into ANNs of the reviewed literature. The one difference is 

with the RatSLAM system, which uses a variant of an ANN system called the (3-D) 

continuous attractor network (CAN) system (see Fig. 2.9). Although the CAN is a type of 

ANN, it is less computationally demanding to update because the activity values of the 

CAN units are varied between 0 and 1, while keeping the weighted connections fixed. 

However, the statistical nature of the RatSLAM cell calculations, as covered shortly, will 

tax the processing system. Changes in the CAN cell’s activity level ΔP is given in [39] by: 

ΔP = P * ε – φ,      (7.1) 

or, 

ΔPx’, y’, θ’ = ∑i ∑j ∑k Pi,j,k εa,b,c – φ     (7. 2) 

where P represents the activity matrix of the network, ε is the connection matrix, * is the 

convolution operator, and the constant φ is used to create global inhibition and general 

inhibition in the connection matrix. At the CAN cell level, as described in equation (7.2), 

Px’, y’, θ’ is the change in activity level for each cell, and εa,b,c is the 3-D Gaussian distribution 

of weighted connections equation that creates local excitation and inhibition at the cell 

level, where a, b, and c are wrap around functions of x’, y’, and θ’ respectively. Greater 

detail can be found in [82]. 

Another difference between the RatSLAM system compared to the rest of the systems 

presented in the literature review section, is that the other systems use ANNs throughout 
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their navigational system (thus increasing the computational complexity, but staying with 

the neurophysiological model theme), while RatSLAM only uses the CAN for mobile robot 

pose determination. The visual snapshot matching appears to be of a non-ANN based 

algorithm. Hence, the scaling down of neurophysiological realism due to on-board 

computational constraints. 

(2) Hebbian Learning Rule 

Hebbian based ANNs used in the research literature covered in this paper can be 

described by the general equation of: 

yi = ∑j wijxj      (7.3) 

 and     Δwij = αxj yi      (7.4) 

where, yi is the output from neuron i, xj is the jth input, and wij is the weight from xj to yi. 

The scalar α is known as the learning rate and it may change with time. The Hebbian 

learning rule (Δwij) is named after D. Hebb [107] and his theory that the connection or 

synapse between two neurons strengthen as a result of a repeated pre- and postsynaptic 

neuron firing relationship. Incorporating a bias or threshold term w0, and some transfer 

function σ results in the Hebbian rule, as shown in [108-110], in the form of: 

    yi = σ (∑j wijxj ˗ w0)     (7.5) 

The transfer function σ is typically a discrete step function: 

(7.6) sgn(t) =                       
0 if t < 0, 

1 if t ≥ 0,           
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or a smooth “sigmoid”, e.g. 

    σ(t) = (1 + e˗t)˗1,     (7.7) 

The sigmoid, as well as the tanh and rectified linear unit (ReLU) functions are typical non-

linear neurons used. The ReLU is currently a very popular activation neuron in deep 

learning. 

The Hebbian general equation is inherently unstable, where all the synapses can either 

reach their maximum allowed value or transition to zero [111-113]. Thus, a simple 

alternative equation to (4), such as that used in [46], [48] and [93], is as follows: 

    Δwij = αxj yi(1 ˗ wij)     (7.8) 

The neural networks used in the literature surveyed typically use no more than a single 

hidden layer and are feedforward neural networks, see Fig. 7.1. These ANNs are adequate 

for simple, discrete input/output combinations, such as heading, turn angle, etc. 

 
Figure 7.1. Single layer ANN with two inputs, two outputs and two neurons. 

(3) Deep Learning 

 Deep learning is a growing variant of the previously described simple ANNs. This is 

due to its ability to find intricate structure in large data sets. Deep learning networks 
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accomplishes this through added multiple non-linear processing layers. These processing, 

or hidden, ANN layers extract various object feature layers. As previously stated, deep 

learning has offered advances in many domains, such as: image recognition, speech 

recognition, reconstructing brain circuits, natural language understanding, relational data, 

etc. Specifically, for navigation, it is the visual object recognition ability of deep learning 

and deep convolutional networks (e.g., traffic sign recognition, detection of pedestrians, 

etc.), which allow for autonomous mobile robots and self-driving cars [114] to be realized.  

(4) Computational Time and Resources Limiting Scalability 

When determining the computational demand of a neural network, there are three 

important parameters to consider: size, depth and weight of the network. The size is the 

number of neurons, the depth is the length of a longest path from an input point to an output 

neuron, while the sum of the absolute values of the weights represent the weight of the 

network. 

The training of the ANNs that are used for complex pattern recognition, such as those 

found in interfacing allothetic stimuli to the navigation system, can only be accomplished 

off-line. The processing power and time required would have too large of an impact on 

mobile robot resources and usability. This is due to the many forward propagation and back 

propagation cycles required to set the weights of the ANN to the most optimum values 

possible (given set number of cycle constraints) for each training sample in the training 

phase. This is particularly true for deep neural networks, which have many hidden layers. 

Thus, the time complexity will be a function of network size and particularly depth. An 
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example of a simple two input, two output, single layer ANN is given in Fig. 7.1. Further 

examples can be found in the navigation models review section. 

Ways in which to add neurobiological based entities, such as allothetic stimuli, other 

percepts and/or controlling influences (e.g., nucleus accumbens, grid cells, etc) from 

various parts of the brain, while maintaining a usable mobile robot footprint, are as follows: 

1) Use of mobile GPGPU of more complex ANNs, 

2) Removing ANNs from simpler parts of the system that can be easily replaced by a 

good, cheap sensor (e.g., head direction ANN in [46] with a MEMs gyroscope). 

3) Creating an application specific integrated circuit (ASIC) that models ANNs. 

4) Use of FPGAs 

Option 3 would be the most expensive, but also the most efficient in power, size and 

processing capabilities. Option 1 is a more flexible option, but still requires a significantly 

more power than an ASIC and special programming expertise. An example of what is 

available is the NVIDIA® Jetson™ TX1 Module GPU with 256 light weight parallel 

processor (CUDA®) cores. They can be programmed using CUDA or cuDNN. Option 2 

takes the system away from the realism of a neurobiological system, but some tradeoffs 

need to be made to model portions that are most important to the research. Using FPGAs 

are also a possibility, especially if a processor core is included.  

7.3 In Brief 
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It is the hope of many researchers that work being performed in neurobiological based 

navigation and spatial awareness systems will offer added technological advances to the 

autonomous navigation capabilities of mobile robots, as well as to better understanding at 

least a small portion of the brain.    
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