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Abstract

In the classic Crawford-Sobel (CS) model of strategic communication be-

tween an informed Sender and uninformed Receiver, perfect information

transmission is never achieved as an equilibrium outcome. I present a modi-

fied version of the CS cheap talk game with the following two innovations: (i)
both players take actions, and (ii) actions are strategic substitutes. In contrast

to the CS setup, the modified game can facilitate perfect information revela-

tion. I characterize the conditions under which a full information revelation

equilibrium exists. When these conditions are violated, only partial revelation

equilibria exist. Under partial revelation, the Sender reveals information up

to a threshold state and pools beyond this threshold, resulting in some loss of

information. Welfare analysis suggests that partial revelation equilibria with

a higher threshold pareto dominate those with lower thresholds. Crucially, a

higher threshold equilibrium is also interim efficient – every Sender type at

least weakly prefers this over a lower threshold equilibrium.

Keywords: Cheap talk, interdependent action games, full information

revelation
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1 Introduction

Crawford and Sobel (1982) (hereafter CS), in their seminal paper, consider the
problem of strategic communication between an informed Sender and uninformed
Receiver. The main result of their work is that when the Sender is biased, cheap
talk messages -costless, unverifiable and non-binding- never perfectly reveal in-
formation and communication is always noisy. Equilibrium communication takes
the form of (noisy) state partitions. The Sender reveals that the state is within
a certain partition, but never truthfully reports the true state, as long as there is
some degree of conflict of interest. This fundamental analysis of cheap talk has
spawned a large literature on both the theoretical1 and applied2 front.

An important feature of the CS framework is that the Receiver is the only
decision maker. In this paper, I focus on a variation of the standard set-up. In-
stead of a single decision maker, I consider a scenario in which both the Sender
and Receiver take an action after communication, and further, these actions are
substitutable.

Almost all of the work on cheap talk models so far have neglected the pos-
sibility of information transmission with action substitutability.3 Yet, a number
of real world situations involve this kind of interdependence. For example, lead-
ers of countries work cooperatively to achieve a common foreign policy objective.
Alternatively, organizations (private or governmental) with multiple departments
work together on a common project by sharing information and taking actions
that jointly affect the success of a project.

1Farrell and Gibbons (1989) study the case of a single sender and two receivers; Krishna and
Morgan (1999), and Li, Rantakari, and Yang (2016) analyze information transmission between
multiple senders and a single receiver; Galeotti, Ghiglino, and Squintani (2013) look into cheap
talk in networks; Battaglini (2002) models the case of many senders with a multidimensional state
space; Sobel (1985), and Morris (2001) investigate the role of reputation building in a repeated
cheap talk setting; and Baliga and Morris (2002) throw light on coordination incentives and cheap
talk communication.

2Cheap talk communication has been used extensively to study pertinent questions in a wide
array of fields including political science (see Austen-Smith (1990), Austen-Smith (1993), Gilli-
gan and Krehbiel (1989), and Morgan and Stocken (2008)), organizational theory (see Melumad
and Shibano (1991), Rantakari (2008), and Alonso, Dessein, and Matouschek (2008)), finance (see
Morgan and Stocken (2003)) and macroeconomics (see Stein (1989) and Moscarini (2007)), among
others.

3Barring Alonso (2007), who considers a principal-agent setting in which an uninformed prin-
cipal controls decision rights and the informed agent communicates information strategically, and
actions of the two players are either strategic complements or substitutes.
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In both instances, there is an element of credible information transmission and
substitutability in actions of players. This paper provides a useful starting point
to study the nature of strategic information transmission in such interdependent
environments.

To understand the nature of trade-offs with action substitutability, consider the
augmented CS model. Suppose the Sender is also allowed to take an action after
the communication round. The Sender can anticipate the (posterior) beliefs in-
duced by her message to the Receiver and precisely predict the Receiver’s action.
This way, the Sender can best respond to this action to maximize her own payoff.
Therefore, what matters for truthful communication is whether the Sender, given
the permissible set of actions, is able to compensate sufficiently for the Receiver’s
action, that in itself is induced by the message.

The addition of action substitutability, therefore, alters the insights of the stan-
dard CS model by allowing the Sender to reveal the state truthfully. Specifically,
contrary to the standard CS prediction, I find that when actions are strategic sub-
stitutes, there can be full information revelation by the Sender.

Perfect information revelation crucially depends on whether the Sender is able
to communicate the lowest state and the highest state truthfully.4 Specifically, ir-
respective of the conflict of interest between the players, if the domain of the
Sender’s action set is sufficiently large enough, the Sender can credibly reveal
the state and subsequently take an action that precisely compensates for the Re-
ceiver’s action. Therefore the Sender can credibly reveal the highest state5 and
there is full information revelation in equilibrium.

When the Sender is able to reveal the lowest state but is unable to do so for the
highest state, communication deteriorates and there is only partial revelation of
information. A partial revelation equilibrium takes the form of a cut-off equilib-
rium in which the Sender reveals truthfully up to a threshold state, and beyond
the threshold, pools information. I precisely characterize the conditions under
which there are only partial revelation equilibria.

4When the former is violated, the Sender does not have any incentive to reveal her private
information, and there is communication breakdown in the sense that only a ’babbling’ equilibrium
of the cheap-talk game exists.

5The assumption of single crossing ensures that any other lower state, ipso facto, can also be
revealed truthfully. See Aumann (1990) and Baliga and Morris (2002) for more on credibility of
cheap talk messages.
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Further, in the absence of full revelation, the most informative equilibrium is
the one with the highest threshold. Comparative statics reveal that this threshold
is higher when biases are closer to each other, and when the upper bound on
actions is greater. The former result is similar to the original CS model argument,
while the latter is a direct consequence of action substitutability. A greater upper
bound on the action set implies the (upward biased) Sender is able to compensate
efficiently for a greater measure of types. This enables more truthful communica-
tion, leading to a higher threshold. Hence, either a decrease in conflict of interest
between players, fixing the bound, or an increase in the domain of available ac-
tions, keeping the bias constant, leads to more information transmission.

Finally, I study some welfare properties of partial revelation equilibria. Intu-
itively, I find that the most informative equilibrium (ex ante) Pareto dominates
every other partial revelation equilibria. Further, contrary to the nature of CS
equilibria, I establish that the most informative equilibrium also achieves interim
efficiency.6 That is, for every type of Sender, the most informational equilibrium
is at least weakly preferred. There are two reasons for this finding. First, a higher
threshold reduces the measure of states for which the Sender is unable to com-
pensate sufficiently. Second, by providing more information, the Sender raises
the expected action of the Receiver over the states that are not revealed truthfully.
These two effects reinforce each other making every Sender type at least weakly
better off from revealing more information.

The papers closely related to my work are those by Kartik, Ottaviani, and
Squintani (2007), Kartik (2009), Morgan and Stocken (2003), and Ottaviani and
Squintani (2006). Kartik et al. (2007) derive a fully separating equilibrium with
lying costs and the possibility of a naive Receiver. The key condition driving
their result is the unboundedness of the domain of private information. In Kar-
tik (2009), truthful communication is restricted by the presence of a bound on
the state space, leading to incomplete separation. In Morgan and Stocken (2003),
threshold equilibria result is driven by uncertainty in the extent of bias of the
informed party. Finally, Ottaviani and Squintani (2006) construct cheap talk equi-
libria with naive receivers and a bounded state space in which communication is

6In the most informational partition of the standard CS setup, there is always a low type Sender
that prefers the babbling equilibrium over the more informational partition equilibrium. Hence,
even though partitional equilibria could be ordered in the Pareto sense, they never achieve never
interim efficiency. See Chen, Kartik, and Sobel (2008) for more on this point.
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truthful up to a threshold, and partitional beyond.
The key difference in my results is that it is driven by substitutability and

restricted domain of actions that act as a form of resource constraint on the Sender.
Resource constraints indirectly affect the capacity of the Sender to compensate,
and this in turn affects truthful communication in equilibrium.

The paper proceeds as follows. In Section 2, I present a simple example to
show the main intuition driving my results. Section 3 builds the basic model and
develops the necessary condition for full information revelation equilibrium. Sec-
tion 4 contains the results pertaining to partial information revelation equilibria.
In Section 5, I present some comparative statics results and welfare analysis of
the partial revelation equilibrium follows in Section 6. Finally, Section 7 contains
concluding remarks.

2 Leading Example

Consider a variant of the basic Crawford-Sobel set-up with strategic interdepen-
dency in actions. An informed player, S, receives a perfectly observable signal
about the state of the world θ, drawn from an uniform distribution [0, 1] and
communicates this information through a cheap talk message m to an uninformed
player, R. Upon communication, both R and S take actions in a way that affects
both their payoffs. Let the modified utility function be the following:

UR = −
[(

xR + ηxS

1 + η

)
− θ

]2

US = −
[(

xS + ηxR

1 + η

)
− θ − b

]2

Observe the small departure from the CS set-up. Both players now are allowed
to take actions after communication, and actions are substitutes in that ∂2Ui

∂xR∂xS
< 0,

where η ∈ (0, 1) captures the degree of substitutability7. Further, let the actions of
players xi have a domain [−a, a]. Given this structure, when S truthfully reveals
the true state of the world through her message, m = θ, the two players solve the

7The case of η = 1 is one where actions are perfect substitutes. Under perfect substitutes, no
information can be credibly revealed and there is only a babbling equilibrium.
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following best responses:

R : xR = (1 + η)m− ηxS

S : xS = (1 + η)(m + b)− ηxR

To simplify the exposition, let b = 2
5 and η = 1

2 . Equilibrium actions after
(truthful) messaging are given by: x∗R = m− 2

5 , x∗S = m + 4
5 . Notice immediately

that full information revelation is possible if a > 9
5 . This is so because S is able

to compensate precisely even for the highest type, θ = 1. At the other extreme,
if a < 4

5 , no information can be credibly revealed by S, since irrespective of what
the true state is, reporting the truth is never optimal for S. This stems from her
inability to sufficiently compensate even for the lowest type signal.

For example, when a = 2
5 , the equilibrium action of the sender under truthful

communication is x∗S = 2
5 , irrespective of the state. However, S can inflate her

signal in order to make R play a higher action. To see this, suppose instead of
m = 0, S inflates and sends a message m = 2

5 . Then, R best responds by taking
an action x∗R = 2

5 . But notice that S can fully anticipate this response by R and
suitably adjust her optimal action. In particular, S takes an action x∗S = 3

5 −
1
5 = 2

5 .
Though S’s action has not changed, she has managed to push R’s action upwards,
and thereby achieves a payoff of 0. But this incentive to misrepresent means
that R would never believe any message from S, and therefore communication is
rendered ineffective in equilibrium.

Finally, when 4
5 < a < 9

5 , S has an incentive to reveal some information.
To see this, let a = 1. Then, for any θ ∈ [0, 1

5 ], S reveals the state truthfully
since her optimal action is within the domain of available actions (in this case
x∗S(

1
5) = 1). But, for any θ > 1

5 , S cannot sustain a truthful messaging strat-
egy. To see this, suppose θ > 1

5 , and S reports truthfully. Then the optimal
action for S is bounded by xS = 1, while R provides the residual as demanded
by her best response function, which is xR = 3

2 θ − 1
2 . This cannot be an equilib-

rium since there is under-provision as far as S is concerned: S gets a payoff of

US = −
(

1+ 1
2 (

3
2 .θ− 1

2 )
3
2

− θ − 2
5

)2

= −( 1
10 −

θ
2)

2 < 0 for θ > 1
5 . Therefore, S has an

incentive to exaggerate her information in order to induce R to contribute more.
This precludes separation beyond θ = 1

5 .
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θ0 1

m

1

(a) a ≥ 9
5

θ0 1
5

1

m

1

(b) a = 1

Figure 1: When a ≥ 9
5 , there are no resource constraints for the Sender, resulting

in full information revelation. On the other hand, when a ∈ (4
5 , 9

5) there is only
partial revelation of information. Specifically, for all states above 1

5 , the Sender
pools and sends a message m = 1.

In fact, all types above this cutoff must pool and send the highest message,
m = 1. This is primarily because the signals are (imperfectly) invertible in this
environment. Any pure message m < 1 could be interpreted as coming from
one of the many possible (weakly lower) types. For instance, when θ = 2

5 , S
would want to exaggerate and send a message of at least m ≥ 3

5 , since this would
ensure that S’s action is within the bound a = 1. Say S sends m = 3

5 . But this
message could possibly come from any of the types θ ∈ (1

5 , 2
5 ], each of whom

have incentives to deviate and send m = 3
5 . Hence, R could invert the message

and form beliefs accordingly8. But if this is the case, every type in the interval
(1

5 , 1] would find it profitable to send the highest pooling message possible, m = 1.
At most, there is a partial revelation equilibrium, in which S reveals truthfully (or
separates) for θ ∈ [0, 1

5 ] and pools her messages for θ ∈ (1
5 , 1].

8For precisely a similar argument, partition equilibria of the kind developed by CS are also
ruled out on the interval ( 1

5 , 1]. Again, this is because there would not exist an indifference type in
this interval, since there is a natural propensity to inflate information. This incentive to exaggerate
ensures that if there are two partitions, the high types in the lower partition would find it profitable
to deviate to the higher partition, precluding the existence of an indifference type in the first place.
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The example suggests a novel trade-off for information transmission with ac-
tion substitutability. That is, the ability to truthfully reveal information depends
on how large the bounds on actions are, namely the size of a. Crucially, as a
increases (on the interval (4

5 , 9
5) in the example above), there is more information

revealed by S. The informed Sender is able to provide more information regard-
less of the extent of the biases between the two players.

3 The Model

Consider two players, a receiver R and sender S, who decide on contributions to
a joint project. The payoff from the project is contingent on an unknown state
θ ∈ Θ ≡ [0, 1], distributed according to the density function f (.). The sender
receives a perfectly observable private signal about the state θ, while the receiver
has no information.

Each player’s utility is given by U(φi(xi, x−i), θ, bi), where φi(.) is the player-
specific (symmetric) joint contribution function.9 The contribution function φi(.)
depends on player i’s action xi, as well as the contribution of the other player,
x−i. Actions of players are such that xi ∈ V ⊆ R, where the set V is closed and
compact. The bias parameter bi measures the conflict of interest between the two
players.

The standard Crawford-Sobel assumptions on the utility function of players
hold. Specifically, U(.) is twice continuously differentiable, U1(.) = 0 for some
φi, U12(.) > 0, U13(.) > 0 and U11(.) < 0 so that U has a unique maxima for any
given pair (θ, bi). This implies that there is an unique joint contribution function
φi for each player that satisfies their maximization problem.

The utility functions of the players satisfy the condition ∂2U
∂xixj

< 0, implying
that actions of the two players are strategic substitutes. For sake of exposition,
I normalize the bias of receiver to 0 and that of sender to b > 010. The two
players therefore maximize their payoff functions given by U(φR(xR, xS), θ) and

9The assumption of symmetry is not important in order to generate the main findings. How-
ever, it aides comprehension of the same.

10The biases could be a function of θ in that b(θ) may be the extent of conflict of interest,
instead of a constant b. This, however, does not change the main results of the paper as long as
single-crossing property holds, meaning U13 > 0.
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U(φS(xS, xR), θ, b).
Players have action interdependence in the sense that each players’ action

xi affects the contribution function of the other player φ−i(.). Since b > 0 and
U13(.) > 0, it implies that φS(.) > φR(.) for every θ. I make the following further
assumptions on the functional form of φi(.) to ensure an interior solution to the
contribution decision of the players:

Assumption 1 Non-decreasing marginal contribution: ∂φi(.)
∂xi
≥ 0

Assumption 2 Non-negative spillover: ∀i, j 6= i : ∂φi(.)
∂xj
≥ 0

Assumption 3 Imperfect substitutability: ∀i, j 6= i : ∂φi(.)
∂xi

> ∂φi(.)
∂xj

and ∂φi(.)
∂xj

< 1

Assumption 1 ensures that the contribution function is non-decreasing in the
player’s own action, while the second assumption implies that a player’s con-
tribution function is non-decreasing in the other player’s action. Assumption 3
implies that the marginal contribution effect dominates the non-negative spillover ef-
fect. Further, it rules out perfectly substitutable actions.11

The game proceeds in two stages. In the first stage, the sender observes the
true state θ and sends a message (or report) m ∈ M to the receiver. Let this
messaging strategy be defined by a mapping from the private signal of the sender
into a message m = µ(θ). Let p(θ | m) denote receiver’s posterior beliefs on θ after
receiving the message m. In the next stage, both players simultaneously decide
on contributions.

A communication equilibrium of this game is a (pure strategy) perfect Bayesian
Equilibrium (PBE) which satisfies the following properties:

• given the sender’s message m and the posterior beliefs p(. | m) over the state,
both players simultaneously choose actions that maximize their respective
payoffs

• the posterior beliefs are updated using Bayes’ rule where possible

11When actions are perfect substitutes, notice that there is no guarantee of an interior equilib-
rium. Take the example presented in Section 2 and substitute η = 1. The best responses are such
that the equations do not have a solution. For this reason, I focus on imperfect substitutability of
actions in this paper.
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• given the beliefs and second stage contributions xR(m) and xS(θ, m), the
sender’s reporting strategy µ(.) maximizes the expected payoff in the first
stage

A PBE always exists in games with cheap talk. This is a babbling equilibrium
in which the sender’s message is ignored and the receiver acts based on her prior
information, while the sender anticipates this and acts accordingly. In this paper,
I try to identify conditions under which more informative equilibria emerge.

3.1 Full Revelation

In a full revelation equilibrium, the private information of the sender is com-
pletely revealed to the receiver, meaning µ(θ) = θ for all θ ∈ [0, 1]. To see if a full
revelation equilibrium12 exists, it is important to understand the trade-offs for the
sender. Since actions are substitutable, players compensate for each others’ action
by contributing the residual action required. The players are constrained by the
lower and upper bound on permissible actions, given by inf V and sup V respec-
tively. That is, the size of the bound directly affects the ability of either player to
contribute.

Revealing information truthfully then becomes a question of whether the sender
can follow up a truthful message with an appropriate action that is within the
available domain of the actions. If the sender’s action upon truthful communica-
tion is within the bound, then it precludes her incentive to misrepresent. There-
fore, in some sense, the action set V acts as an incentive compatibility constraint for
truth-telling.

However, since b > 0 and U13 > 0, we know that φS(.) > φR(.). Further,
given the assumption of imperfect substitutability (φS

′

1 (.) > φS
′

2 (.)), the sender’s
only concern is whether the optimal best response is within the upper bound
of the action set. Because single crossing property U12 > 0, the only incentive
compatibility constraint of interest is the one where θ = 1. That is, if the optimal
action for the sender upon revealing the highest state θ = 1 is within the domain
of available actions, then it must be so for every θ < 1. This property is made
clear in the following definition.

12Any messaging function µ : [0, 1] → [0, 1] that is one-to-one and onto is a fully revealing
messaging strategy. I will, however, concentrate on the most intuitive one in which if the state is
θ, the sender sends a message that is equivalent to the statement - ”The state is θ”.
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Definition 1 Let x̃S(θ, m) be the optimal actions of the sender when, i) unrestricted
domain is satisfied (xS ∈ R); and ii) the sender’s message m (truthful or otherwise) is
believed by the receiver to be the true state. That is, the action x̃S(θ, m) is the solution
to the unconstrained optimization problem of the sender when her message is believed.
Stated formally:

R’s action: x̃R(m) solves max
xR∈V

U(φR(xR, x̃S(m)), m) subject to x̃S(m)

≡ arg max
xS∈R

U(φS(xS, x̃R(m)), m, b)

S’s action: x̃S(θ, m) solves max
xS∈R

U(φS(xS, x̃R(m)), θ, b)] subject to x̃R(m)

≡ arg max
xR∈V

U(φR(xR, x̃S(m)), m)

Further, when communication is truthful, let the optimal action of players under the
unconstrained optimization problem be x̃R(θ) and x̃S(θ) = x̃S(θ, θ).

Assumption 4 x̃S(0) ≥ inf V

Note that Definition 1 does not necessarily prescribe the action of the sender
in equilibrium, x∗S(.). Instead, x̃S(θ, m) allows us to intuitively characterize the
optimal response of the sender when her message is believed to be true13, and
her actions have an unrestricted domain R. x̃S(θ, m) takes into account the fact
that the receiver’s action is constrained by the bounds imposed by V. Assumption
4 ensures that the optimal action of the sender is above the lower bound of per-
missible actions, when she reveals the lowest state. Given the above formulation,
let c = sup V be the upper bound of the domain of action set V. The following
conditions are then useful to characterize the communication breakdown and full
information revelation equilibrium.

Definition 2 Lowest type incentive compatibility (LTIC) : x̃S(0) ≤ c

Definition 3 Highest type incentive compatibility (HTIC) : x̃S(1) ≤ c

13One way to interpret this is to think of a naive receiver, as studied in Kartik et al. (2007) and
Ottaviani and Squintani (2006). A naive receiver is not rational, and believes any message sent by
the sender.
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LTIC provides an intuitive criteria for any information transmission with ac-
tion substitutability. When LTIC fails, no information can be credibly revealed by
the sender, since the receiver always believes that the sender is exaggerating her
information. To put it differently, the sender would always find it profitable to
inflate her message so that the receiver contributes more. Instead, if the sender
does reveal truthfully, then the actions from the constrained optimization prob-
lem (given by equations 1 and 2 in Appendix A.1) and unconstrained optimiza-
tion problem are such that x∗S(θ) = c ≤ x̃S(θ). The sender, therefore, does not
maximize her payoffs from truthful revelation for any θ ∈ [0, 1].

On the contrary, the HTIC condition provides a sort of IC constraint for full
revelation. As long as HTIC is satisfied, the sender can never do better than reveal
the truth. This is because the solution to her constrained optimization problem
coincides with that of the unconstrained optimization problem, implying that
x∗S(θ) = x̃S(θ) for all θ ∈ [0, 1]. This ensures that there is no incentive for S to lie,
and full revelation is achieved as an equilibrium.

Proposition 1 Under Assumptions (1-3 and 4), given a bias b of the sender,
1. No information is credibly revealed in equilibrium if the LTIC condition is violated.
2. There is full information revelation if the HTIC condition is satisfied.

Proof. See Appendix B.1
Notice that the condition for truth-telling with one-sided incomplete informa-

tion and strategic substitutability in actions resembles the credibility notion of
self-signaling14, identified by Aumann (1990), and Farrell and Rabin (1996). When
the unconstrained action is above the bound under truthful revelation, it implies
that the sender faces a positive spillover from the receiver’s action, implying that
U1(φ

S∗(c, x∗R(θ)), θ, b) > 0 when x̃S(θ) > c. This ’positive spillover effect’ implies
that communication ceases to be credible at the bound, for the sender (weakly)
prefers to induce a higher action from the receiver, by inflating her private infor-
mation.15

14A cheap talk message is self-signaling if the sender intends it to be believed only if it is true.
15Baliga and Morris (2002) study a game of strategic complementarities in actions, in which the

presence of positive spillovers precludes cheap talk communication. In this sense, the first part of
Proposition 1 illustrates how the communication breakdown result holds true even when actions
are strategic substitutes.
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4 Partial Revelation

So far, I have identified the sufficient conditions for both extremes -communication
breakdown and fully revealing equilibria- to emerge. Consequently, as long as
LTIC holds, there is always some information transmission. However, when the
HTIC condition fails, the sender may only be able to reveal information up to a
cutoff state, and not beyond. This section will focus on the nature of such ’partial
revelation equilibria’ (henceforth PRE)16.

In a PRE, the sender sends a truthful message m = θ up to a threshold cutoff
θ∗ and for all states above this cutoff, pools her message (m = 1 if θ > θ∗).
Before stating the result on PRE, one needs to identify the states for which truthful
messages can never be credible. As pointed out earlier, these are states for which
the IC constraint, given by the upper bound, is violated. Let G = {θ : x̃S(θ) > c}
be the set of states for which truthful revelation is not possible for the sender. The
following lemma establishes the condition for G to be non-empty.

Lemma 1 If LTIC holds and HTIC is violated, then the set G is non-empty.
Proof. When x̃S(0) ≥ inf V and x̃S(1) > c, by continuity of U(.) and φi(.), and
single-crossing property U12(.) > 0, the set G must be non-empty.

Given this property, observe that there must then exist a cutoff θ̄ such that
x̃S(θ̄) = c and θ̄ = sup{[0, 1]\G}. The set G = (θ̄, 1] represents the signal types
for which there are incentives to lie for the sender. This is because for all signals
in the set G, reporting the truth implies that the sender’s optimal action is out-
side the domain of permissible actions. Therefore, by misreporting her private
information θ, say by reporting m > θ, the sender can induce the receiver to take
a higher action. As a result, none of the messages in this interval are credible and
will never be believed in equilibrium. That is, the sender must pool her messages
for all signals in G by sending the highest message17, m = 1. I will now state the
result formally.

Proposition 2 Under assumptions 1-4, if LTIC holds and HTIC is violated, then there
exists a PRE with threshold θ∗ = θ̄.

16See Appendix A.1 for a more detailed and formal definition.
17R assigns the off-equilibrium path beliefs that would discourage deviations on-the-

equilibrium path. For example, for any off-equilibrium path message m ∈ (θ̄, 1), R could assign
the state to be the cutoff θ∗.
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Proof. See Appendix B.2
Proposition 2 suggests that inflated messaging occurs above the cutoff state,

while every message within the cutoff is truthful.18 Moreover, the incentive to
exaggerate above the cutoff is exacerbated by the fact that any inflated message
could now possibly come from a continuum of types, instead of a one-to-one map-
ping (see proof of Proposition 2 in Appendix). Specifically, any message above
the cutoff that is not m = 1 is inverted as being from a set of types, rather than a
single type. This ensures that the sender sends the highest possible message for
all types of θ above the cutoff, in order to avoid imitation by lower types.19

4.1 Multiplicity of threshold equilibria

The cutoff θ∗ = θ̄ is only one of many possible thresholds that could be supported
as an equilibrium. To characterize all the PRE and simplify analysis of the same,
I make the following assumption:

Assumption 5 Feasible Low type deviation: x̃S(0, 1) ∈ V

This assumption ensures that when the lowest type sender (θ = 0) misrepre-
sents her signal and sends the most inflated message (m = 1) that is further be-
lieved to be true by the receiver, the optimal (unconstrained) action of the sender
is within the domain of permissible actions.20

Proposition 3 Under Assumptions 1-5, if LTIC holds and HTIC is violated, then every
threshold θ∗ ∈ (0, θ̄) is a PRE.

Proof. See Appendix B.3

18The PRE expressed above is similar to the cut-off equilibria obtained by Kartik (2009). The
exaggeration in communication is driven by lying costs. In Kartik’s work, however, the sender
(almost) always uses inflated communication even though the rational receiver is able to invert,
and thereby decode, the inflated message. See also Morgan and Stocken (2003).

19This is in contrast with the result of Ottaviani and Squintani (2006), who consider the presence
of naive receivers. They construct a cutoff equilibrium in which messages are revealing (albeit in-
flated) below the threshold, and for states above the cutoff, information transmission is partitional
in nature.

20Note that this is a stronger version of assumption 4, which concerns the feasibility of truthful
communication for the lowest type information. Assumption 5 makes upward deviations by the
sender possible in the sense that they would never induce an action that goes below the lower
bound of the feasible action set, meaning x̃S(0, m) ∈ V for all m < 1.
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One implication of the above result is that the sender could possibly choose
how much information to reveal in equilibrium. Though the PRE θ∗ = θ̄ is the
most informative one, it does not necessarily restrict the sender from providing
lesser information. In section 6, I address this multiplicity problem pertaining to
PREs, by looking at the welfare properties of the different threshold equilibria.

5 Resource constraints

As pointed above, the PRE relies on two crucial parameters - the bias of the sender
and the size of the upper bound c. In both cases, what is relevant is to check how
the most informative PRE reacts to changes in these parameters. With bias b,
the results from the standard literature on cheap talk hold in my setting as well.
Specifically, if b decreases, then since U13 > 0, it implies that the sender is able to
to compensate sufficiently for more types in the state space.

Claim 1 Take two biases b1 and b2 such that b1 < b2. Then the most informative PRE
under the two biases are such that θ̄1 > θ̄2.

The more interesting comparative static finding comes from varying the extent
of the bound c, or in other words, expanding the domain of actions imposed
on the sender. Remember that c affects truth telling by enabling the sender to
compensate for types up to a certain threshold. Increasing this bound leads to
more communication since the sender can now reveal truthful information for
more types, pushing the threshold to the right. I summarize these two intuitive
findings in the following claim.

Claim 2 Take two bounds c1 = sup V1 and c2 = sup V2 such that c1 < c2. Then the
most informative PRE under the two bounds are such that θ̄1 < θ̄2.

In the context of the examples put forth in the introduction, c could be interpreted
as a form of resource or capacity constraint imposed on the sender that prevents
her from revealing information. Propositions 1 and 2, therefore, highlight the
importance of the interaction between resource constraints and the bias of the
sender when there is action substitutability.
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Resource constraints are frequently observed in the real world. As a motiva-
tion, think of the following scenario. Suppose two departments in an organiza-
tion decide to implement a project that involves contributions from both entities.
Further, let us assume that only one department holds information relevant to the
implementation of the joint project, and contributions are substitutable. In this sit-
uation, an absence of any constraints (shortage of manpower or financial burdens,
say) would enable the two departments to perfectly cooperate their activities, and
all private information regarding the project may be credibly conveyed.

However, in the presence of resource constraints, the informed department
could misrepresent its information for higher states of the world, in order to
induce the other to spend more resources on the project. Any information loss
could then be viewed as a source of inefficiency in the project. Above results show
that in order to improve informational efficiency, it may be in the interest of an
informed party to either choose a partner with more aligned interests, or mitigate
the burden of constraints imposed upon it by the organization.21

6 Welfare - Ex-ante and Interim efficiency

The previous section establishes that more information can be revealed when
the upper bound of the domain of actions available to the sender is increased.
However, the sender may also choose to reveal any threshold of information,
starting from a cutoff θ∗ = 0, up to a θ∗ = θ̄. An important question that arises is
whether the sender would find it in her interest to convey less information. Given
a cutoff θ∗, the ex ante utility of receiver R can be expressed as,

VR(θ
∗) =

θ∗∫
0

U(φR∗(x∗R(t),x
∗
S(t)), t) f (t)dt+

1∫
θ∗

U(φR∗(x∗R((θ
∗, 1]), x∗S(t, (θ

∗, 1])), t) f (t)dt

21In a typical organization, this could involve hiring more staff or increasing the budget allo-
cated for the project within the department.

16



That of sender S can be similarly written as,

VS(θ
∗) =

θ∗∫
0

U(φS∗(x∗S(t),x
∗
R(t)), t, b) f (t)dt+

1∫
θ∗

U(φS∗(x∗S(t, (θ
∗, 1]), x∗R((θ

∗, 1])), t, b) f (t)dt

where x∗S(t, (θ
∗, 1]) and x∗R((θ

∗, 1]) are the equilibrium actions of the sender and
receiver respectively, given the receiver’s beliefs that the state is in the interval
(θ∗, 1], given a cutoff θ∗.

Notice that a higher θ∗ may benefit the receiver since providing more accurate
information over a larger domain of type space makes it possible for the receiver
to compensate more precisely for these (truthfully) reported states. But does this
hold from the perspective of the sender?

Proposition 4 Ex-ante efficiency: The most informative PRE where θ∗ = θ̄ Pareto
dominates every other PRE.

Proof. See Appendix B.4
The intuition for this Pareto ranking of equilibria is the following. Think of

a sender providing information up to some threshold, say ε < θ̄. Then, for all
other states θ > ε, the sender, by pooling her message on m = 1, induces an
expectation over the possible states for the receiver given by beliefs that θ ∈ (ε, 1].
The action of the receiver takes into account this posterior belief and induces an
action x∗R((ε, 1]). Notice that for any such cutoff ε, there must exist a θε such that
x∗S(θε, (ε, 1]) = c, by assumption 5 and single crossing. But, for every θ > θε, the
sender suffers inefficiency since she is unable to compensate sufficiently.

Pareto ranking the equilibria then becomes possible by observing two sources
of inefficiency that arise with pooling of information. First, the greater the cutoff
ε, the smaller are the measure of types (θε, 1] for which the sender is unable to
compensate efficiently. Second, the severity of this inefficiency for states θ > θε,
given that x∗S(θ, (ε, 1]) = c, is greater when ε is smaller. Both these sources of in-
efficiencies are reduced when more information is communicated in equilibrium.
As a result, it is always in the sender’s interest to provide more information in
equilibrium.
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Usually, however, ex ante Pareto dominance is not a sufficient criterion to select
equilibria since it only provides an aggregate welfare measure. In particular,
it may be that different types of sender may have varying preferences over the
equilibria, making it harder to tackle the multiplicity problem prevalent in cheap
talk models.22 However, when actions are strategic substitutes, I find that a higher
cutoff PRE is not only ex-ante efficient, but also guarantees interim efficiency. That
is, every sender type weakly prefers a higher cutoff PRE to a lower one.

Proposition 5 Interim efficiency: Every sender type weakly prefers a PRE with θ∗ = θ̄.

Proof. See Appendix B.5
The intuition is an extension of the arguments made for Proposition 4. Specifi-

cally, sender types that are at the higher end of the spectrum tend to prefer θ̄ since
there is a positive spillover effect at the bound. Hence, for these high types, induc-
ing a higher (expected) action from the receiver increases payoffs. Since the cutoff
θ̄ induces a greater action from the receiver, meaning x∗R((θ̄, 1]) > x∗R((θ

∗, 1]) for
all θ∗ < θ̄, the highest types strictly prefer the PRE with cutoff θ̄. For all other
types the optimal response is within the bound, making them indifferent between
θ̄ and θ∗(< θ̄). Therefore, either every type of sender is indifferent to or strictly
prefers a PRE with threshold θ̄.

7 Conclusion

This paper investigates the nature of cheap talk communication with (one sided)
incomplete information when actions of players are strategic substitutes. With
pure messaging strategies, I show that cheap talk communication fully reveals
information when the informed sender is able to compensate for the actions of
the uninformed receiver for every possible state, once that private information is
revealed. Conversely, when the sender is unable to reveal even the lowest state
truthfully, there is complete communication breakdown and no information is
conveyed.

Consequently, when the domain of the action set constrains the sender from
taking an efficient action for some states, I find that communication deteriorates.

22In view of this, Chen et al. (2008) develop a selection criterion to deal with multiplicity prob-
lem in the classic CS set up - a notion they call the ’No incentive to separate’ condition.
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Specifically, there is only partial information revelation in equilibrium. The sender
reveals the state up to a threshold, and for states higher than this threshold, no
information is conveyed. An interesting property of the cutoff equilibria is that
they are dependent on the boundedness of action sets. Specifically, the bounds on
actions act as an incentive constraint for truthful revelation.

The framework I have presented could be extended to applications with mul-
tiple senders and (or) receivers (contribution games in networks and team theory,
for example). With multiple sources of information, the nature of truth-telling
would be dependent on the distribution of the biases and the size of the con-
straints on actions. In case of multiple receivers, the sender’s incentive to reveal
information would be similar to the conditions I developed in this paper. This
means that full revelation ensues as long as the highest type signal can be credi-
bly revealed by the sender. Such scenarios require a more detailed analysis, and
are left for future work.

Another interesting avenue to explore is the role of commitment on part of
the receiver (see, e.g., Alonso and Matouschek (2008), and Melumad and Shibano
(1991)). Can the receiver, by committing to a message contingent decision rule
(a deterministic mechanism), do better than the cheap talk equilibrium? Of course,
when there is full information revelation, the receiver can do no better from com-
mitment. However, in the case of partial revelation, whether a mechanism of the
kind described above is better for the receiver remains an open question.
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A Formal definitions of PBE and PRE

A.1 PBE:

A communication equilibrium of the game is given by:

1. given the message m and posterior beliefs p(θ | m), R and S simultane-
ously choose actions

(
x∗R(m), x∗S(θ, m)

)
that maximizes their expected utility

according to the following dual (constrained) optimization problem:

max
xR∈V

Eθ[U(φR(xR, x∗S(θ, m)), θ)] subject to x∗S(θ, m) ≡

max
xS∈V

U(φS(xS, x∗R(m)), θ, b),xS ∈ V
(1)

max
xS∈V

Eθ[U(φS(xS, x∗R(m)), θ, b)] subject to x∗R(m) ≡

arg max
xR∈V

U(φR(xR, x∗S(θ, m)), θ),xR ∈ V
(2)

2. the optimal actions by the two players in equilibrium, x∗R(m) and x∗S(θ, m),
together, must ensure that the contribution function maximizes each players’
expected utility conditional on their information, ie, φR∗(x∗R(m), x∗S(θ, m)) ≡
arg maxφR U(φR(xR, xS), θ) and φS∗(x∗S(θ, m), x∗R(m)) ≡
arg maxφS U(φS(xS, xR), θ, b)

3. the posterior beliefs, p(. | m), are updated using Bayes’ rule whenever pos-
sible, given the messaging rule µ(.)

4. given the beliefs and second stage contributions xR(m) and xS(θ, m), S
chooses a reporting strategy that maximises expected payoff in the first
stage,

µ(θ) ∈ arg max
m∈M

U(φS(xS(θ, m), xR(m)), θ, b)

A.2 PRE:

The PRE of the game consists of a θ∗ such that,
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• for all θ ≤ θ∗, S sends a separating (truthful) message m = θ; for every
θ > θ∗, S sends a pooling message m = 1

• When m ≤ θ∗, the posterior beliefs are p(θ | m = θ) = 1; when m = 1,
p(θ | m) = f (θ | θ > θ∗)

• Upon receiving message m ≤ θ∗, players’ optimal actions are x∗S(m) = x̃S(m)

and x∗R(m) = x̃R(m)

• Upon receiving message m = 1, players’ optimal actions are,

x̃S(θ, (θ∗1]) ≡ arg maxxS∈R

1∫
θ∗

U(φS(xS, x∗R((θ
∗, 1])), θ, b) f (θ | θ > θ∗)dθ and

x∗R((θ
∗, 1]) ≡ arg maxxR∈V

1∫
θ∗

U(φR(xR, x̃S(θ, (θ∗1])), θ) f (θ | θ > θ∗)dθ

– If x̃S(θ, (θ∗1]) ≤ c, then x∗S(θ, (θ∗1]) = x̃S(θ, (θ∗1]) and x∗R((θ
∗, 1]) is as

above

– If x̃S(θ, (θ∗1]) > c, then x∗S(θ, (θ∗1]) = c and x∗R((θ
∗, 1]) ≡

arg max
1∫

θ∗
U(φR(xR, c), θ) f (θ | θ > θ∗)dθ

The first condition says that for all states in [0, θ∗], S communicates truthfully,
and for any state above, pools by sending an exaggerated message m = 1. The
second condition describes the formation of posterior beliefs. For any message on
[0, θ∗], R believes it to be truthful and for messages m = 1, the posterior is just the
conditional prior on the state space.
The third and fourth statements indicate the equilibrium actions conditional on
the message and the posterior beliefs of R. The important departure to note is
when the sender’s unconstrained action goes above the bound. Specifically, R
best responds by taking into account the possibility that S’s action is constrained
by the upper bound - x̂S(θ, m) > c implies x∗S(θ, m) = c- and adjusts her actions
accordingly. This revised best response is indicated by the last sub-condition.
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B Proofs

B.1 Proof of Proposition 1

B.1.1 Communication Breakdown:

When LTIC is violated, x̃S(0) > c, meaning that the unconstrained actions does
not coincide with the constrained optimization action x∗S(0) = c. Moreover, since
U12 > 0, it must hold for every θ ∈ [0, 1] that x̃S(θ) > c. But if this is so, truth-
telling can never be optimal since the sender can always inflate her message and
ensure R contributes more.
To see this, think of a generic θ

′
. If S reports θ

′
, the optimal actions are x∗S(θ

′
) = c

and x∗R(θ
′
) solves maxxR∈V U(φR(xR, c), θ

′
). However, this x∗R(θ

′
) is inefficient

since φR∗(x∗R(θ
′
), c) < φS∗(c, x∗R(θ

′
)) < φ̃S(x̃S(θ

′
), x̃R(θ

′
)). The term φ̃S(x̃S(θ

′
), x̃R(θ

′
))

is the optimal contribution function that maximizes S’s payoff. But, because LTIC
is violated, the contribution under truth-telling is φS∗(c, x∗R(θ

′
)) which is clearly

sub-optimal in the sense that U1(φ
S∗(c, x∗R(θ

′
)), θ

′
, b) > 0. This condition corre-

sponds with the ’positive spillover effect at the bound’.
Finally, note that φS∗

2 (c, x∗R(θ
′
)) ≥ 0 by assumption 2. This implies that if S instead

sends a higher message θ
′′
> θ

′
, R increases her optimal action thereby improving

S’s payoff. Of course, anticipating this, R must never believe any message m as
being truthful. The same argument can be applied for any θ ∈ [0, 1). Hence,
this leads to a communication breakdown with all types pooling on the message
m = 1.

B.1.2 Full revelation result:

When HTIC condition is satisfied, it implies that for every θ ∈ [0, 1), x̃S(θ) < c
by single crossing property of the utility function (U12 > 0). But if this is the
case, when the sender sends a truthful message m = θ, the optimal action under
both constrained optimization and unconstrained optimization coincide for the
sender. This means that for every θ ∈ [0, 1], x∗S(θ) = x̃S(θ). This ensures there is
no inefficiency in terms of contributions. Hence, there always exists a full reve-
lation equilibrium in which the sender has an incentive to reveal her information
truthfully.
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B.2 Proof of Proposition 2

For θ∗ = θ̄ to be supported as an equilibrium, I will construct the following
beliefs: for any m ≤ θ̄, R believes it to be the true type; for the message m = 1, R
believes it to be the types (θ̄, 1]. For off-equilibrium path messages m ∈ (θ̄, 1), R
assigns the belief θ = θ̄, that is the deviation comes from the lowest possible type
in the set of possible off-equilibrium path messages. Then, for an equilibrium
with cutoff θ̄ to exist, there should be no profitable deviations for any of the types
of players. To check this, consider the types of in (0, θ̄] and (θ̄, 1].
For any θ ∈ (0, θ∗], S does not have an incentive to deviate from truth telling
since the optimal action under unconstrained optimization coincides with the
constrained optimization problem, implying that x̃S(θ) = x∗S(θ) ≤ c.
For θ ∈ (θ̄, 1], however, x̃S(θ, (θ̄, 1]) ≤ c or x̃S(θ, (θ̄, 1]) > c. Since x̃S(θ̄, (θ̄, 1])
< c and x̃S(1, (θ̄, 1]) > c, from single crossing, continuity of U(.) and φS(.) and
assumption 5, there must exist a θ

′ ∈ (θ̄, 1) such that x̃S(θ
′
, (θ̄, 1]) = c. Then, for

every θ in (θ̄, θ
′
], it must hold true that x̃S(θ, (θ̄, 1]) ≤ c. Therefore, sending the

message m = 1 maximizes payoff for the same reasons put forth above.
For types θ ∈ (θ

′
, 1], the constrained optimization solution suggests that S’s action

is constrained by the bound, meaning x∗S(θ, (θ̄, 1]) = c. But, the payoff to S from
sending m = 1 is still higher than sending any other off-equilibrium path message.
To see this, notice that x∗R((θ̄, 1]) ≥ x∗R(θ̄) and φS∗

2 (c, x∗R(.)) > 0 at the bound.
Therefore, U(φS∗(c, x∗R((θ̄, 1])), θ, b) ≥ U(φS∗(c, x∗R(θ̄)), θ, b) for all θ ∈ (θ′, 1] such
that x∗S(θ, (θ̄, 1]) = c. This concludes the proof.

B.3 Proof of Proposition 3

I will start by defining the off-equilibrium path messages that would be sufficient
to support any PRE with a threshold θ∗. As in Proposition 2, for any m ∈ (θ∗, 1),
R assigns the belief θ = θ∗, that is the deviation comes from the lowest possible
type in set of possible off-equilibrium path messages. Then, for an equilibrium
with θ∗ to exist, there should be no profitable deviations for any of the types of
players.
To check this, consider the types of in (0, θ∗] and (θ∗, 1], in that order. For any
θ ∈ (0, θ∗], S does not have an incentive to deviate from truth telling since the
optimal action upon truthful messaging is strictly within the bound, x̃S(θ) ≤ c.
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This implies that the unconstrained solution also coincides with the constrained
optimization problem, x̃S(θ) = x∗S(θ).
For θ ∈ (θ∗, 1], x̃S(θ, (θ∗, 1]) ≤ c or x̃S(θ, (θ̄, 1]) > c. Since x̃S(θ

∗, (θ∗, 1]) < c and
x̃S(1, (θ∗, 1]) > c, as before, from single crossing, continuity of U(.) and φS(.) and
assumption 5, there must exist a θ

′ ∈ (θ∗, 1) such that x̃S(θ
′
, (θ∗, 1]) = c. Then, for

every θ in (θ∗, θ
′
], it must hold true that x̃S(θ, (θ∗, 1]) ≤ c.

For the types θ ∈ (θ
′
, 1], the constrained optimization solution suggests that

x∗S(θ, (θ∗, 1]) = c. But, the payoff to S from sending m = 1 is still higher than send-
ing any other off-equilibrium path message. To see this, notice that x∗R((θ

∗, 1]) >
x∗R(θ

∗) and φS∗
2 (c, x∗R(.)) > 0. Therefore, U(φS∗c, x∗R((θ

∗, 1])), θ, b) ≥
U(φS∗(c, x∗R(θ

∗)), θ, b) for all θ ∈ (θ′, 1]. This completes the proof.

B.4 Proof of Proposition 4

Receiver’s ex-ante utility:

VR(θ
∗) =

θ∗∫
0

U(φR∗(x∗R(t), x∗S(t)), t) f (t)dt+

1∫
θ∗

U(φR∗(x∗R((θ
∗, 1]), x∗S(t, (θ

∗, 1])), t) f (t)dt

Taking the derivative of receiver’s welfare with respect to θ∗,

dVR(θ
∗)

dθ∗
= U(φR∗(x∗R(θ

∗), x∗S(θ
∗)),θ∗) f (θ∗)−

U(φR∗(x∗R((θ
∗, 1]), x∗S(θ

∗, (θ∗, 1])), θ∗) f (θ∗) > 0

for any θ∗ ≤ θ̄

Sender’s ex-ante utility:
Take any two feasible cutoffs of a PRE, say θ

′
and θ

′′
, such that θ

′
< θ

′′ ≤ θ̄. I will
try to establish that sender is better off with the more informative equilibrium
θ
′′
. Similar to arguments made in earlier Propositions 2 and 3, for any cutoff

equilibrium θ∗ there must exist a θ ∈ (θ∗, 1] such that x̃S(θ, (θ∗, 1]) = c.
Let θ

′
c and θ

′′
c be such deviation types for the two cutoffs θ

′
and θ

′′
, respectively.
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First, I claim that θ
′
c < θ

′′
c . Suppose not, and θ

′
c > θ

′′
c . Then, x̃S(θ

′′
c , (θ

′
, 1]) <

x̃S(θ
′
c, (θ

′
, 1]) = c. But by single-crossing property, x̃S(θ

′′
c , (θ

′
, 1]) ≥ x̃S(θ

′′
c , (θ

′′
, 1]) =

c. This is a contradiction. Therefore the claim holds. In order to prove the result
for the sender, I will have to consider two possible scenarios.

Scenario (a): When θ
′
c < θ

′′
. That is, θ

′
< θ

′
c < θ

′′
< θ

′′
c . The sender’s utility under

the two PRE’s is given by,

PRE
′

: VS(θ
′
) =

θ
′∫

0

U(φS(x∗S(t),x
∗
R(t)), t, b) f (t)dt+

1∫
θ
′

U(φS(x∗S(t, (θ
′
, 1]), x∗R((θ

′
, 1])), t, b) f (t)dt

PRE
′′

: VS(θ
′′
) =

θ
′′∫

0

U(φS(x∗S(t), x∗R(t)), t, b) f (t)dt+

1∫
θ
′′

U(φS(x∗S(t, (θ
′′
, 1]), x∗R((θ

′′
, 1])), t, b) f (t)dt

Under PRE
′

the sender’s optimal action is within the bound for the interval
(0, θ

′
c]. Since θ′c < θ

′′
c , the sender’s optimal action is also within the bound

over the interval (0, θ
′
c] under PRE

′′
. Therefore, what is left to be checked are

those states in which there is inefficiency because of the bounds imposed on
actions of the sender. In PRE

′
this corresponds to the interval (θ

′
c, 1]. On the

same interval, I compare the utility (ex-ante) achieved under PRE
′′
. I will re-

fer to this utility as the residual welfare that results from inefficiency, VRES
S (θ).

VRES
S (θ

′
) =

θ′′c∫
θ
′
c

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt +

1∫
θ′′c

U(φS(c, x∗R((θ
′
, 1])), t, b)) f (t)dt
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VRES
S (θ

′′
) =

θ
′′∫

θ
′
c

U(φS(x∗S(t), x∗R(t)), t, b) f (t)dt +

θ
′′
c∫

θ
′′

U(φS(x∗S(t, (θ
′′
, 1]), x∗R((θ

′′
, 1])), t, b) f (t)dt

+

1∫
θ
′′
c

U(φS(c, x∗R((θ
′′
, 1])), t, b) f (t)dt

Comparing the two expressions term-wise,

θ
′′∫

θ
′
c

U(φS(x∗S(t), x∗R(t)), t, b) f (t)dt +
θ
′′
c∫

θ
′′

U(φS(x∗S(t, (θ
′′
, 1]), x∗R((θ

′′
, 1])), t, b) f (t)dt >

θ′′∫
θ′c

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt +

θ′′c∫
θ′′

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt

=

θ′′c∫
θ
′
c

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt

This is because,

θ
′′∫

θ
′
c

U(φS(x∗S(t), x∗R(t)), t, b) f (t)dt >
θ′′∫

θ′c

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt

θ
′′
c∫

θ
′′

U(φS(x∗S(t, (θ
′′
, 1]), x∗R((θ

′′
, 1])), t, b) f (t)dt >

θ′′c∫
θ′′

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt

Similarly,

1∫
θ
′′
c

U(φS(c, x∗R((θ
′′
, 1])), t, b) f (t)dt >

1∫
θ′′c

U(φS(c, x∗R((θ
′
, 1])), t, b)) f (t)dt
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The first inequality follows from the fact that on the interval (θ′c, θ′′],
U(φS(x∗S(t), x∗R(t)), t, b) > U(φS(c, x∗R((θ

′
, 1])), t, b) for all t ∈ (θ′c, θ′′]. Similarly,

for all t ∈ (θ′′, θ′′c ], U(φS(x∗S(t, (θ
′′, 1]), x∗R((θ

′′, 1])), t, b) > U(φS(c, x∗R((θ
′, 1])), t, b).

The last inequality follows from noting that φS(c, x∗R((θ
′
, 1])) <φS(c, x∗R((θ

′′
, 1]))

because x∗R((θ
′
, 1]) < x∗R((θ

′′
, 1]) and since there is positive spillover at the bound

for S, U1 |x̂S(.)>c> 0. Comparing the terms pairwise therefore yields the required
result, VRES

S (θ′′) > VRES
S (θ′)

Scenario (b): When θ
′
c > θ

′′
. That is, θ

′
< θ

′′
< θ

′
c < θ

′′
c .

In this case, as earlier, I will look at states in which there is inefficiency generated
by information pooling and compare the residual welfare.

VRES
S (θ

′
) =

θ
′′
c∫

θ
′
c

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt +

1∫
θ
′′
c

U(φS(c, x∗R((θ
′
, 1])), t, b)) f (t)dt

VRES
S (θ

′′
) =

θ
′′
c∫

θ
′
c

U(φS(x∗S(t, (θ
′′
, 1]), x∗R((θ

′′
, 1])), t, b) f (t)dt+

1∫
θ
′′
c

U(φS(c, x∗R((θ
′′
, 1])), t, b) f (t)dt

Pairwise comparison yields,
θ
′′
c∫

θ
′
c

U(φS(x∗S(t, (θ
′′
, 1]), x∗R((θ

′′
, 1])), t, b) f (t)dt >

θ
′′
c∫

θ
′
c

U(φS(c, x∗R((θ
′
, 1])), t, b) f (t)dt

and,
1∫

θ
′′
c

U(φS(c, x∗R((θ
′′
, 1])), t, b) f (t)dt >

1∫
θ
′′
c

U(φS(c, x∗R((θ
′
, 1])), t, b)) f (t)dt

The first inequality follows from the inefficiency of contributing c on the interval
(θ
′
c, θ

′′
c ] when instead sender can best respond to x∗R((θ

′′
, 1]). The second inequality

results from the positive spillover property in the interval (θ
′′
c , 1] and the fact that

x∗R((θ
′′
, 1]) > x∗R((θ

′
, 1]). Therefore, VRES

S (θ
′′
) > VRES

S (θ
′
). This completes the

proof.
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B.5 Proof of Proposition 5

I will prove this by making pairwise comparison between two thresholds θ̄ and
θ
′
(< θ̄). From Proposition 4, we know that θ

′
c < θ̄c. As before, there are two

scenarios to consider.

Scenario (a): When θ
′
c < θ̄. That is, θ

′
< θ

′
c < θ̄ < θ̄c.

In this case, every type θ ∈ [0, θ
′
c] is indifferent between the two threshold equi-

libria, since the optimal actions are within the bound in both cases. Therefore,
U(φS(x∗S(θ, (θ

′
, 1]), x∗R((θ

′
, 1])), θ, b) = U(φS(x∗S(θ, (θ̄, 1]), x∗R((θ̄, 1])), θ, b) since

x̃S(θ, (θ
′
, 1]) = x∗S(θ, (θ

′
, 1]) ≤ c, and x̃S(θ, (θ̄, 1]) = x∗S(θ, (θ̄, 1]) ≤ c.

However, every θ ∈ (θ
′
c, 1] strictly prefers the θ̄ threshold equilibrium. To see

this, let us further divide the interval (θ
′
c, 1] to (θ

′
c, θ̄c] and (θ̄c, 1]. Now, every

θ ∈ (θ
′
c, θ̄c] prefers the threshold θ̄ since x̃S(θ, (θ̄, 1]) ≤ c, whereas with threshold

θ
′
, x̃S(θ, (θ

′
, 1]) > c implying that the constrained action is x∗S(θ, (θ

′
, 1]) = c. There-

fore, for θ ∈ (θ
′
c, θ̄c], U(φS(c, x∗R((θ

′
, 1])), θ, b) < U(φS(x∗S(θ, (θ̄, 1]), x∗R((θ̄, 1])), θ, b).

Lastly, for types θ ∈ (θ̄c, 1], the unconstrained action under both the thresholds
are above c. This means x̃S(θ, (θ

′
, 1]), x̃S(θ, (θ̄, 1]) > c. But, R’s action is higher

under θ̄ (x∗R((θ̄, 1]) > x∗R((θ
′
, 1])) and due to the positive spillover property, it fol-

lows that U(φS(c, x∗R((θ
′
, 1])), θ, b) <U(φS(c, x∗R((θ̄, 1])), θ, b) for all θ ∈ (θ̄c, 1].

Scenario (b): When θ
′
c < θ̄. That is, θ

′
< θ̄ < θ

′
c < θ̄c.

A analogous set of arguments hold true for this case. In particular, every type
θ ∈ [0, θ

′
c] is indifferent between the thresholds θ̄ and θ

′
. Every type θ ∈ (θ

′
c, θ̄c]

are strictly better off under threshold θ̄ because x̃S(θ, (θ̄, 1]) ≤ c, whereas with
threshold θ

′
, x̃S(θ, (θ

′
, 1]) > c. Types θ ∈ (θ̄c, 1] are also strictly better off under

threshold θ̄ because of the positive spillover argument made earlier. This com-
pletes the proof.
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