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ARTICLE INFO ABSTRACT
Article history: Diaconis and Ylvisaker (1979) give necessary conditions for conjugate priors for
Received 19 September 2012 distributions from the natural exponential family to be proper as well as to have the
Available online 13 January 2014 property of linear posterior expectation of the mean parameter of the family. Their
conditions for propriety and linear posterior expectation are also sufficient if the natural
AMS subject classifications: parameter space is equal to the set of all d-dimensional real numbers. In this paper
gggg their results are gxtended to characterize yvhen conjugate priors are proper if.the naFurgl
62H11 parameter space is bounded. For the special case where the natural exponential family is
through a spherical probability distribution 1, we show that the proper conjugate priors can
Keywords: be characterized by the behavior of the moment generating function of 7 at the boundary
Baygsian 3ﬂ3_1y515 of the natural parameter space, or the second-order tail behavior of 5. In addition, we
Conjugate prior show that if these families are non-regular, then linear posterior expectation never holds.

Elliptical distribution
Exponential family

Linear posterior expectation
Spherical distribution

The results for this special case are also extended to natural exponential families through
elliptical probability distributions.
© 2014 The Authors. Published by Elsevier Inc. Open access under CC BY license

1. Introduction

Let  be a o-finite measure on R¢, and consider the natural exponential family (NEF) # through 5, with densities
f(xlg) = MO

with respect to 1, where the cumulant generating function M(9) is defined by

eM® =/ " dn(x)
Rd

(e.g.,[1]).Let ® = {6 : M(P) < oo} be the natural parameter space of #. The family of standard conjugate distributions for
F (relative to the natural parameter) has densities

7 (0)s, v) o &M

with respect to the Lebesgue measure on ® (e.g., [6]).
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LetJ(s,v) = [, e$9="M® 49 Then the hyperparameters s and v giving proper standard conjugate distributions are the
ones for which J(s, v) < oo. For Bayesian inference on 6 it is natural to employ priors from the standard conjugate family,
and it is important to know when these are proper, or yield proper posteriors.

For regular NEFs (i.e., ® is open) where ® is non-empty, Diaconis and Ylvisaker [4] show in Theorem 1 that if X, the
interior of the convex hull of the support of 7, is a non-empty open set in R%, then J(s, v) < oo if v > 0ands/v € X, and
conversely, if ® = RY, then J (s, v) < oo implies that v > 0 and s/v € X. (Note that the reference uses vs where we use s.)
This gives a complete characterization of all proper conjugate distributions for the case ® = RY, leaving open the cases
where ® C RY,

In this paper, we prove that if @ is bounded, there exists —oo < vy < 0 such that for arbitrary s, the conjugate priors
with hyperparameters v and s are proper for v > vg and improper for v < vg. We provide examples showing that all values
for vg in the range —oo < vy < 0 are possible.

More specific results are obtained when 7 is a (non-degenerate) spherical probability distribution on R¢, i.e., a distribution
invariant to orthogonal transformations. In this case, X is of the form {x : ||x|| < o}, where o is finite if and only if  has
bounded support, and @ is an open or closed ball with radius p for some 0 < p < o0o. For p = 00, ® = R and the result of
Theorem 1 in Diaconis and Ylvisaker [4] yields that the hyperparameters giving proper conjugate priors are those for which
v > 0and ||s|| < ov.For p < oo, our characterization applies, and we show that lower (and/or upper) bounds for vy can
be derived if the behavior of the moment generating function of n at the boundary of the natural parameter space can be
characterized via asymptotic lower (and/or upper) bound functions. In addition we establish that vy can be related to the
“second order tail behavior” of 7.

If6 € int(®), u(@) = VM) = f]Rd xf (x|0)dn(x) is the mean parameter of the NEF. Diaconis and Ylvisaker [4] show in
Theorem 2 that if ® is open and 6 has a distribution which corresponds to a proper conjugate prior with hyperparameters
s and v satisfying s/v € X and v > 0, then E(VM(#)) = s/v. Clearly, in this case the posterior from an observation x is
a conjugate distribution with parameters s + x and v + 1, so that E(VM(0)|x) = (s 4+ x)/(v + 1) is linear in x. For NEFs
through a spherical probability distribution with bounded ®, we show that E(VM (0)) does not exist for v < 0if @ is open,
and exists for all s and v if @ is closed, where in this case E(VM(6)) # s/v unless s = 0 and v # 0. Finally, we show that if
® is closed, linear posterior expectation never holds when using canonical priors.

These results for 1 a (non-degenerate) spherical probability distribution on R? are extended to the case of elliptical
distributions as given in Fang et al. [5, p. 31f]. We show that propriety of conjugate priors is only possible if the matrix
in the linear transformation is a square matrix of full rank and that if the natural parameter space is bounded the value of
vo and the characterization of propriety for v = vy are the same as for the corresponding spherical probability distribution.
Similarly linear posterior expectation only holds in the regular case for v > 0 and never holds in the non-regular case when
canonical priors are used.

2. General NEFs with bounded natural parameter space
We first establish a general result on the propriety of conjugate priors for NEFs with bounded natural parameter space.

Theorem 1. Let 1 be a o-finite measure on RY. Suppose the natural parameter space @ of the NEF through n is bounded and
non-empty. Then v > 0 and arbitrary s give proper conjugate distributions, and there exists vg = vo(n) with —0co < vy < 0
such that for arbitrary s, the conjugate distributions with parameters s and v are proper for v > vy, and improper for v < vy.

Proof. If © is bounded, then clearly J(s, v) < oo ifand only if K(v) = [, e™"M@dh < oo, and K(0) = [, d6 < oco.To
establish the theorem, it suffices to show that if K(v;) < oo, then K(v) < oo for all v > v{. Now M is convex; the assump-
tions on @ are readily seen to imply that M is proper in the sense of Rockafellar [9]. By Corollary 12.1.2 of Rockafellar [9],
there are x € RY and @ € R such that M(0) > x'6 + « for all # (i.e., M can be bounded below by a hyperplane). Hence,
writing y = |a| + [|X]| supgee 101l < 00, —M(0) < y foralld € ©.

Now suppose K(vy) is finite and v > vq. Clearly, forall 6 € ®, —vM(@) = —viM®@) + (v — v))(—M(@)) <
—viM(0) + (v — vq1)y so that

K() < f e IMO) (=Y 49 — e(val)VK(vl)
2]
and hence K (v) is finite as well. Taking vy = inf{v : K(v) < oo}, the proof is complete. O

Remark. In contrast to the case where the natural parameter space is equal to RY, negative values of v also give proper prior
distributions. In this case the parameter v cannot be interpreted as a prior sample size. Furthermore, the mean for the prior
distribution does not necessarily exist as indicated in the example given by Diaconis and Ylvisaker [4, p. 275].

Remark. If ® is not bounded, J (s, v{) < oo does not necessarily imply that J(s, v) < oo forall v > vy. This can straightfor-
wardly be seen for @ = RY, taking, e.g.,  to have the density with respect to the Lebesgue measure given by f (x) o e~ IxI?
for min(x) := min(xy, ..., Xq) > 1, and zero otherwise. Then clearly ® = R and X = {x : min(x) > 1}. By Theorem 1 of
Diaconis and Ylvisaker [4],] (s, v) < oo ifand only if v > 0 and s/v € X, or equivalently, if and only if 0 < v < min(s).
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As a counterexample for unbounded ©@ C RY take d = 1 for simplicity (the case of general d can be handled by taking
products as above), and let n have density f(x) o« (x — u)Pe ™ for x > u > 0 and zero otherwise, where p > —1. Then
X = (u, 0o) and

o0 o0
MO _ / e (x — 11)Pdx = e(@—l)u/ e~ (06— (x _ /)P
m

"
RS /00 =0t ppgp — go—tu L@+ D
0 (1 -0yt
for6 < 1,sothat ® = (—o0, 1). Thus,
1
J(s, v) = ;f e (1 — ) PHvevr@=Dgg.
ro+1"J

For convergence, we need (p + 1)v > —1 (otherwise the singularity at & = 1 integrates to infinity), i.e,v > —1/(p+ 1) =
vo(p), and s > vu, or equivalently, vo(p) < v < s/u. Note that p = vy(p) is increasing for p > —1 with lim,_,_1; vo(p) =
—o0 and limp_, » vo(p) = 0. Hence, by suitably choosing p, we can achieve that for arbitrary negative v, we have proper
priors for hyperparameters satisfying vy < v < s/u (containing the range where v > Oands/v € X,ie,v < s/u,asa
proper subset).

3. NEFs through spherical probability distributions

In what follows, we restrict our attention to natural exponential families through spherical probability distributions.

Suppose that 7 is an orthogonally invariant probability measure on RY. Then if X is distributed according to 7, it has
a representation X =¢ RU where U is uniformly distributed on the unit hypersphere S~', R is a non-negative scalar, and
R and U are independent (e.g., [5], p. 30). Equivalently, if we consider the polar decomposition X = | X||U, its polar
part U is uniform, and independent of ||X]|. Write ny for the probability measure on [0, co) with distribution function
Fy,(r) = n({x : |Ix]| < r}), and ny for the uniform distribution on S%1, Following [5], we will say that 7 is the spherical
probability distribution generated by 7.

Clearly, if r is in the support of ng, then all points on the hypersphere with radius r are in the support of 7. Hence, if we
write 0 = sup{r : F,(r) < 1} for the supremum of the support of F,,, the interior X of the convex hull of the support of 5
is the open ball with radius o (and hence R¢ if 1 has unbounded support).

Using the fact that

/ i1 e’V dny (u) = oF1(; d/2; |y 1%/4),
o

where

N WO NS
OFl(’V’Z)_;F(V—l-n)n!

is a generalized hypergeometric series (e.g., [7], p. 168, by rewriting the modified Bessel function I,, in terms of oF; ) we obtain
that the moment generating function of 5 satisfies

/ & dn(x) = / f e dny (u) dne(r) = f oF1: d/2: P11012/4) dne(r)
R 0 sd—1 0

_ [T (s~ L@ alen™ & N
_/0 (Z rddj/2+n) 4! )an(r)_nZ;CanHHQH )

n=0

where
rdj/2 1 o
__f@2 1 Man =/ " dig(r),
rd/2 +n 4! 0

sothatifd =1,¢, = 1/2n)!; ifd = 2, ¢, = 1/(4"(n!)?); ifd = 3,¢c, = 1/2n + 1.

Thus, the moment generating function of 7 is a function of the maximal invariant function ||@||?> for the group of
orthogonal transformations acting on RY, and (where finite) admits a power series representation with coefficients given by
the moments of 7. (Clearly, fRd e"/"dn(x) can be finite for & # 0 only if all moments of ny are finite.)

Let

n

[o¢]
@)=Y camyz"
n=0
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so that eM©@ = ¢(||0|]?). Note that for r > 0, r > c(r?) is non-decreasing with c(0) = comy = 1. Let p? be the radius of
convergence of c(z). Then clearly, if c(p>—) = oo, © is the open ball with radius p, and the NEF is regular; otherwise, © is
the closed ball with radius p. In analogy to the notion of the characteristic generator (for which the characteristic function
at 6 equals ¢(]|9]|?)) employed by Fang et al. [5], we will refer to c as the moment generator of 1.

3.1. Propriety of canonical priors

For spherical distributions where the parameter space ® is bounded Theorem 1 is applicable, but does not provide any
insight on specific values of vy. In the following we use the familiar Bachmann-Landau notations defined in the following
way:

f(x) =0(g(x) < 3IC>0: 11m

g(X)
f(x) =2(gkx) < 3IC >0:lim &
x—a | g(X)
f(x) < gx) & 3G, G >0:lim & <G, [& G
x—a (X) x—a g(x)
_ f®
fx) =o0(g(x) < VC>0: hm
algx)

Using this notation the following theorem provides a characterization of vy (7) for spherical 5 in terms of the behavior of
the moment generator of 7 at its convergence radius.

Theorem 2. Let 1 be a spherical probability distribution on R with moment generator c and p? the radius of convergence of c.
Suppose that 0 < p < oo. Let B > 0.

(a) If lim,—, ,— c(r?) is finite, vo (1) = —oc.

(b) If c(r®) = 0((p — 1) F)ast — p—,vo(n) < —1/B.

(© If cr®) = 2((p —1) Pyast — p— vo(n) = —1/B.

() If c?) < (p =) P asr — p—, wo(n) = —1/B.

Proof. If the moment generator c has radius of convergence equal to p2 with 0 < p < oo, then the natural parameter space

® of the NEF through 7 satisfies {6 : |0 < p} € ©® C {6 : ||0|| < p} and hence is bounded and non-empty.
Using the polar decomposition 8 = ru, d6 = ayr¢~drdny (u), where qg is the area of S,

P
fe—“M<9>d9=/ / c(r®) Vagrt'drdny (u)
® 0 Jsd-1
p p
ad/ rd’lc(rZ)’“/ dny()dr = ad/ rd’1c(r2)’”dr.
0 sd-1 0

By Theorem 1, K (v) is finite for v > 0. Hence, suppose v < 0. As r — c(r?) is non-decreasing on [0, p) with c(0) = 1,K(v)
is finite if and only if K. (v) = fp‘; c(r?)~"dr is finite for some ¢ > 0. This implies assertion (a), i.e., iflim,_, ,— c(r?) is finite,
K. is finite for all v.

Let 8 > 0.Ifc(r?) is < (or =) C(p — )P on (p — €, p) for positive € and C, —v > 0 implies that K. (v) is < (or >)

14 €
/ (Clp—r)")dr= c*”/ rfdr,
p—€ 0

respectively, which converges if and only if v8 > —1, or equivalently, ifand only if v > —1/8.Thus, ifc(r?) = 0((p —1)#)
asr — p—, K(v) is finite for all v > —1/, and hence vo(n) < —1/8 (assertion (b)). Conversely, if c(r?) = £2((p — r)~#)
asr — p—, K(v) is infinite for all v < —1/8, and hence vy(n) > —1/8 (assertion (b)). Assertion (d) follows by combining
these two results. [

K(v)

Our next result shows how for spherical 7, v9(n) can also be characterized in terms of the tail behavior of the generating
distribution ng.
Theorem 3. Let 7 be a spherical probability distribution on RY such that ng((r, 00)) = n({x : ||x|| > r}) < e " rasr — oo,
for some p > 0 and § € R. Then the natural parameter space ® of the NEF through n satisfies {0 : ||0] < p} € ® C {0 :
18]l < p} and hence is bounded and non-empty, and prior distributions from the standard conjugate family are proper for all
seR¥and v € Rif § < (d — 3)/2 (corresponding to vo(7) = —o0), and foralls € R and v > vo(n) = 1/((d — 3)/2 — 8) if
8> (d-3)/2.
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Proof. Forx > 0,

/ T mrpigr = f " e pydulp = I/
0 0

Forn > 0,

Man :/ s2"dng(s) 2/ (f 2n1[0,5)(r)r2”‘1dr> dng(s)
0 0 0

= f 2nr?"! (/ 1<r,oo><s)an<s))dr=2n / r2" = nr((r, 00))dr,
0 0 0

interchanging the order of integration being justified by Fubini’s theorem.
By assumption, there exist positive and finite constants C; and C, such that for all r sufficiently large,

_ me((r,00)

0<(
! e—pPryd

<(C, < o0.
By possibly modifying these constants, we can in fact assume that these inequalities hold for all r > 1. Then foralln > 0
suchthat2n+ 6§ > 0,

1 00 00
Mon < 2"/ r’"dr +2n/ r"1C,e P rldr < 1 +2nCu/ e R
0 1 0
2n r'(2n+36) 2n r'2n+8+1)

2n+6)———=14C
2n+8( +9) p2n+s + “an4+48 p2n+s

Thus, there is a G < oo such that for all n sufficiently large,

Lr@n+8+1)

1+G

mZTISC

u p2n+8
Conversely,
(o] o] 1
Moy > Zn/ " 1Ce " i dr = 2nG (/ e Pl —/ e“”rz"*‘s‘ldr)
1 0 0
r@2n+34 ! 2n I'@2n+8+1 2n
> 2nC,¥ —2n( / r2-lgr = ( ) I -
p2n+8 0 2n+46 p2n+8 2n+46

Thus, there is ¢ > 0 such that for all n sufficiently large,

ren+s+1)
My > C’*T

Therefore, my, =< I'(2n+8-+1)/p>"asn — oo, and the moment generator c(z) = >, CnM2nz" has the same convergence
radiusasc(z) = ), cn'(2n+ 8 + 1)(z/p?)", and the same asymptotic behavior as z converges to the convergence radius
from below.

Using Pochhammer’s symbol (x), = I'(x + n) /" (x),

. Id/2) 1 1
T r(d/2+n) 4! (d/2).4m!

and for§ > —1,

n

ren+8+1)

n—1 n—1 n—1 n—1
=[le+1+2n[Je+2+20 =4[+ D2+ [(5/2+ 1D +0)
ré+1 .

i=0 i=0 i=0
_plG+D/2+m) IF((6/2+ 1D +n)
- r(@+1/2) r/2+1)

=4"((8 + 1)/2)n(8/2 + 1)y

Thus,

s S+ 1)/2),(8/2 + 1 z\"

HOESNCERIDY (@ +D/2n@/2+ Da (2 )7 _ T8+ 1)oF (8 +1)/2,8/2+ 1;d/2; 2/ p?),
- (d/2);n! p?

where ,F; is the Gaussian (or ordinary) hypergeometric function. From well-known results on such functions, the radius of

convergence ¢ equals p2. This implies that the natural parameter space © of the NEF through 7 satisfies {9 : ||0] < p} €

® C {0 :||0|| < p} and hence is bounded and non-empty.
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The behavior of ¢(z) at p? and therefore also of c(z) can be obtained, e.g., from Olver et al. [8], Section 15.4(ii),

http://dlmf.nist.gov/15.4.ii. We have the following three cases.

-If0<d/2—(6+1)/2—-(/2+ 1) = (d — 28 — 3)/2, or equivalently, § < (d —3)/2,lim,_, ,— ¢(r?) exists. In this case,
Theorem 2 implies that vy(n) =

-If8 > (d—3)/2,c0?* ~ (- (r/,o))(d 26-3)/2 35 r — p—. We can thus use Theorem 2 with § = —(d — 26 — 3)/2 to
obtain vo(n) = —1/8 =2/(d — 26 — 3).

- Finally, if § = (d — 3)/2,¢c(r?) ~ —log(1 — (r/p)) asr — p—, and Theorem 2 cannot be applied directly. From the
proof of Theorem 2, clearly, K(v) < oo if and only if f11/2(_ log(1 — r))~Vdr is finite. Substituting — log(1 — r) = u so
thatr =1—e™",

1 [e%s]
f (—log(1—r)) "dr = / u""e "du
1/2 log(2)

which again is finite for all v. Hence, vy(n) = —o0.
The above assumed that § > —1. Otherwise, for 0 < r < p, ¢(r?) is majorized by the series for § = —1, which always
has a finite limitas r — p—. Thus § < —1 gives vy(n) = —o0, and the proof of the theorem is complete. O

In the following examples different distributions for ny are considered, with the Poisson and the negative binomial
distributions as examples for discrete distributions and the Gamma distribution as an example for a continuous distribution.
For these distributions it is investigated for which parameter values s and v prior distributions from the standard conjugate
family are proper using either Theorem 1 in Diaconis and Ylvisaker [4] or Theorem 3.

Example. Suppose 7y is a Poisson distribution with mean parameter A. Then
a4k

A —X 1 g a, —t
nr((r,o0)) =1-— —e = te "dt,
= k! Fa+1) Jg

where a = |r]. As in the integrand, e™ < e™t < 1forall0 < t < }, it holds that

1 A a+1
r,o0)) ~ —— tdt = ———— = exp(—a(log(a) + O(1
(e, 000 ~ s | Fog; = eXp(-allog(@ + 0(1)
as a — o0. Hence, in this case p = oo and Theorem 1 in Diaconis and Ylvisaker [4] can be used to conclude that the prior
distributions from the standard conjugate family are proper if and only if v > 0.

Example. Suppose 1y is a negative binomial distribution with size parameter n and success probability p, where the negative
binomial distributed random variable indicates the number of failures before the first success. Then

— ] P a n—1
(. 00) = g /0 €01 — e,

where a = |r] and B(a + 1, n) is the Beta function. As in the integrand, (1 —p)"~! < (1 —t)""! < 1forall0 <t < p, it
holds that

a+n at+1  a,n—1
TR((r, 00)) ~ B(a+1n)/ ( 1)p Pa

as a — oo. Thus, Theorem 3 can be applied with p = log(p) and § = n — 1 to obtain that vy(n) = —occifn < (d — 1)/2,
and vo(n) = 1/((d — 1)/2 — n) otherwise.

Example. Suppose 7y is a Gamma distribution with shape parameter « and rate parameter p. Then

_ 00 pa s Otf]d :/oo efuuafld Neﬂor(pr)afl
(7. 090 /r r@° T ) T@ ™ (@)

asr — oo (see for example Olver et al. [8], Section 8.11(i), http://dImf.nist.gov/8.11.i). Thus, Theorem 3 can be applied with
pand § = a — 1toobtain that vy(n) = —ocoifa < (d — 1)/2,and vo(n) = 1/((d — 1)/2 — «) otherwise. If ng is a shape
mixture of Gamma distributions with fixed rate parameter p, where the mixture density is not compactly supported, the
convergence radius is still p, but vo(n) must satisfy vy > 1/((d — 1)/2 — «) for all « sufficiently large, so that vy() = 0.

Remark. The example where 75 is a shape mixture of Gamma distributions shows that in fact all values of vy in the range
[—o0, 0] are possible. In fact, this can also be inferred directly from Theorem 3 by fixing ry > 0 and taking ng supported on
(1o, 00) with ng((r, 00)) oc e=?"1® forr > ro (8 < —1 needs ry > 0). This again gives v, values which monotonically cover
the range [—00, 0) as § varies from —oo to 0o; vy = 0 can be obtained by using tails which are =< exp(—pr(1 4 o(1))) as
r — oo but are heavier than e~*"r® for all 8, such as tails proportional to exp(—pr + 8./7).
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Combining the example where 5y is a shape mixture of Gamma distributions and the above remark we obtain the
following.

Corollary 1. For every vy with —oo < vy < 0 a o-finite measure n on R? can be found, for which the natural parameter space
® of the NEF through n is bounded and non-empty, and for which the conjugate priors are proper for hyperparameters v > vg
and arbitrary s and improper for hyperparameters v < vg and arbitrary s.

Remark. It would certainly be interesting to investigate in more detail whether and how vy (1) can be related to the tail
behavior of 1 in the general (non-spherical) case of bounded ® covered by Theorem 1 (assuming for example that 1 has a
sufficiently nice density). We leave this for future research.

3.2. Linearity of posterior expectation

Next, we investigate how Theorem 2 in Diaconis and Ylvisaker [4] can be extended in the spherical case where regularity
of the NEF is not necessarily given and v is allowed to be negative.

Theorem 4. Let 1 be a spherical probability distribution on R? with moment generator ¢, and 0 < p? < oo the radius of
convergence of c. Suppose 6 follows a proper conjugate prior with parameters s and v for the NEF through .

@) If c(p?—) = oo (regular case), E(VM(0)) = s/v forallsand v > 0.If v < 0, the expectation does not exist.
(b) If c(p?—) < oo (non-regular case), then

2 —v

g(l_C(p -) ](5,0)> o205 c R
v J(s,v)

s [ <C(|I9||2)

16.0) Jo B\ (o)

E(VM(0)) =

)es/‘)d@ ifv=0,seR

Proof. We have

E(VM(9)) = 1 / VM@©)e* "M@ dn = E(s, v).
J(Sv U) e

In the spherical case, we have M(0) = log(c(]|6||?)) so that for § € int(®)

(1612
VM) =251
c(llo11®)
and
2 / 0 2 /
E(s, v) = U0 cog49

IGs,v) Jo c(llof?)

where the integrand is a positive scalar function times €, and can be uniformly bounded away from zero and infinity on
6]l < p — € forall € > 0. Thus, the integral exists if and only if

(18112 ,
/ (”72”1)||9||e59d9 < 00,
p—e<lol<p O

which upon transforming to polar coordinates is easily seen to be equivalent to

NS
————2kdk < 00.
e C(K2)1+U

But the last integral is just c(x?)™"/(—v) 5", for v # 0 and log(c(k?)) |5~ for v = 0, and hence infinite if and only if
c(p?—) = oo and v < 0. Hence, E(VM(9)) exists unless c(p>—) = coand v < 0.

To actually compute E(s, v) (if it exists), we can use V(eS¢ "M®) = (s — yVM(0))e**"M©® for 6 € int(O) to obtain
that for v # 0,

1
E(s,v) = 5 (s

_ 1 ves/eum(a)de) i
](57 U) €]



K. Hornik, B. Griin / Journal of Multivariate Analysis 126 (2014) 14-24 21

where [ Ves'0=vM©) dg exists if and only if E(s, v) exists. Write 6; for component i of 6, and 6_; for  without component i.
Then

' P2 6_|2 ,
/ 785 9—1}M(9)d9 — / / 39 \)M(G)de do_ P = f eS 6—vM(0)
o 96 l6_ill<p J—/o?—16_iI2 a6, lo_ill<p

- C(pz_)—v/ eSLif-i (esidpz—\\e_i\|2 _ e—sin2—|\9_i\\2) do._;.
ill<p

v P2 =10-il1?
dg_;
=/ P2l

Ifc(p®?—) =ocoand v > 0, c(p?>—)~" = 0 and hence E(s, v) = s/v (which could also have been obtained from Theorem 2
in Diaconis and Ylvisaker [4]), establishing (a).

Ifc(p*—) < oo, we obtain that | Ves'="M© 4y = c(p>—)~"h(s), where h does not depend on v; hence, h(s) = fo ves'?

do = sf@ eldo = sJ(s, 0), establishing (b) for the case where v # 0. Finally, E(s, 0) can be obtained as lim,_¢ E(s, V),
where interchanging integration and taking limits is justified as the above shows that the integrals of the absolute values
are uniformly bounded on compact v intervals. Now with a = c(p*—),

E (1 _ aiu.](sa O)) — S](S, O)g(sv O) —g(S, U)’
JGs,v) v
where g(s, v) = a~"/J(s, v), so that

E(s,v) =

. . 9 a’ _ —log(a)a™"J(s,v) —a~"dJ(s,v)/dv

lim EGs, v) = I, )a el Y60 J(s,v)? v—0
B —log(a) [, M(0)e’?do ( / v )
= 5/(s,0) ( 16.0) + 1,002 =G0 M(0)e’’do — log(a)

= d — 5’6
(s, 0) /@(M(Q) log(a))e”’do.

Note that this can also be written as

5 log <C(”9”2)> e?do
1G5, 0) Jyoy<p c(p?-)

where the integral is always negative. O

E(s,0) =

Remark. More generally, for 0 € int(©®)
V(M Og0)) = (s — vVM(©)g(0) + Vg @) M,

so that if & follows a proper conjugate prior with parameters s and v,
E((vVM(0) —5)g(0)) = E(Vg(®)) — 7/ V(e MO g (9))do.

This is used by Chou [2] to show if v > 0 and @ is open (so that e?~"M® tends to 0 as 6 approaches the boundary of @)
and g satisfies certain integrability conditions, the integral vanishes so that E((vVM(0) — s)g(0)) = E(Vg(#)).If © is not
open, the integral does not necessarily vanish. In the spherical case, if g is radial (i.e., g(6) = ¢(||@]|?)), proceeding as above
one can show that the integral equals c(p*—)""¢(p?)s/ (s, 0).

If 6 follows a proper conjugate prior with parameters s and v, in the regular case its posterior expectation is given by
S+x
v+ 1

provided that v + 1 > 0, and hence is linear in x. In the non-regular case, the following result shows that posterior linear
expectation never occurs.

E(VM(0)[x) =

Theorem 5. Let 1 be the spherical probability distribution on R? generated by ng, with moment generator ¢, 0 < p* < oo the
radius of convergence of ¢, and c(p?>—) < oo. Suppose 6 follows a proper conjugate prior with parameters s and v for the NEF
through n. Then linearity of posterior expectation does not hold.

Proof. From Theorem 4, if # follows a conjugate prior with parameters s and v, E(VM(0)) = E(s, v) is of the form sy (s, v)
where y is scalar. Linearity of posterior expectation thus holds if and only if there are @ € R and b € R? such that

Es+x,v+1)=GE+x)ys+x,v+1)=ax+b
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for all x in supp(n), the support of 1. Rewrite this as
+x)(y6+x,v+1) —a)=>b—as.
If the right hand side were non-zero, necessarily y (s + x, v 4+ 1) # « and hence
1
X =
ys+x,v+1) —«

so that supp(n) were contained in the line through —s with direction b — s, which is impossible as 1 is non-degenerate and
spherical (so that its support certainly contains a hypersphere with positive radius). Thus, the right hand side must be zero,
and hence y (s + x, v + 1) = « for all x in supp(n) for which s + x # 0.If x = —s is in supp(n), it can be approximated by
elements with the same length different from —s; thus, as y is clearly continuous in its first argument, y (s +x, v+ 1) = «
for all x in supp(7n).

To simplify notations, take c(p?) = c(p*>—), so that r +— c¢(r*)™" is continuous on [0, p] for all v, and r >
log(c(r?)/c(p?)) is continuous on [0, p].If h is continuous on [0, p?], transformation to polar coordinates gives

(b — as) —s,

/. P ’ p
[ e haotis = [* [ hute® - tardnw = aa [ har a2 2si 4 ar
) 0 Jsd-1 0

o %0 00 o
a [ he) (Z cn<r2||s||2>"> i =an e ([ nonrta ) s
0 n=0 n=0 0

all rearrangements justified by absolute convergence. As h is bounded on [0, p?], the series

i@ =aiy ( / ' h(r2>r2"+d”dr> z"
n=0 0

converges for all z, and hence defines an entire function.

Ifv+1+#0,py(+xv+ 1) = « forall x in supp(n) is equivalent to A(x) = J(s +x,0) —§J(s+x,v+1) =0
for all x in supp(n), where § = c(p?)"*'(1 — a(v + 1)). Now J(s,v) = fi(lIs||?) for h(r?) = c(r?)" and hence
AX) = fiu(Is + x||*) for h(r?) = 1 = 8c(?)~ D Ifv +1 = 0, y(s + x,0) = « for all x in supp(n) is equivalent to
Ax) = [, log(c(||6]12)/c(p2))eS™0do — o (s + x, 0) = fiu(||s + x||?) = 0 for h(r?) = log(c(r?)/c(p?)) — . In both cases,
h is monotone and does not vanish identically. As p < oo is only possible if 5 has unbounded support, f;(||s + x||?) = 0 for
all x € supp(n) implies that there is a sequence oy of non-negative reals with limy oy — oo and f,(oy) = 0, and the proof
will be completed by showing that this is not possible.

Let us first show that we can always find an no such that the coefficients y,(h) = [ h(r?)r***¢~1dr all have the same
non-zero sign for n > ny. This is trivial if h is non-negative or non-positive. If h changes from negative to positive, there
exists 0 < B < p such that h(8%) > 0. Hence,

B P B p
/ h(rZ)r2n+d—1dr + f h(rZ)rer-d—ldr > h(O) / r2ﬂ+d—1dr + h(ﬂz) f r2n+d—ldr
B 0 B

Ya(h)
0

n 2n+d
_ h(B2) p?+d <1+(h(0) _1> (,3) ),
2n+d h(B?) P

where the term in parentheses tends to one as n — oo. Hence, y;,(h) > 0 for all n sufficiently large. Similarly, if h changes
from positive to negative, y;,(h) < 0 for all n sufficiently large.
Ify,(h) > Oforalln > ngando > 0,

fn(o)

oo ng
g Y caya(o" = ag Yy cayn()o”
n=0 n=0

caya(h) 0)

AqCry Vo (M ™ [ 1+
0 0 0§n<n0 Cno yno (h)

where the term in parentheses tends to one as o — o0. Hence, f;, (o) > 0 for all o sufficiently large and positive. Similarly, if
va(h) < 0forall nsufficiently large, we have f; (o) < 0forall o sufficiently large and positive, and the proofis complete. O

Remark. Theresults of Theorems 3 and 4 in Diaconis and Ylvisaker [4] and Chou [3] characterize the canonical priors as those
achieving linear posterior expectation, assuming that @ is open. Theorem 5 shows that if ® is closed, then the canonical
priors never achieve linear posterior expectation in the case of NEFs through spherical probability distributions. This leaves
open the question whether linear posterior expectation could be achieved by other priors.
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4. NEFs through elliptical probability distributions

Following Fang et al. [5, p. 31f], we say that a probability distribution i on R is elliptical if for some k € {1, ..., d} there
arem € RY akx d matrix A of rank k, and a spherical probability distribution 5s on R¥ such that n(B) = ns({y : A'y+m € B})
for all Borel sets B in R®. In this section, we discuss how the results in the previous section can be generalized from NEFs
through spherical distributions to NEFs through elliptical distributions.

We have

[emanco = [ & wrmansgy = [ e an.
Rl RK RE

Hence, with M and M; the cumulant generating functions of  and s, respectively, we have
M(®) = 6'm + Ms(A).

The NEF through 7 has densities given by
fx|9) = ee’x—M(e) — e@’(x—m)—Mg(AO)’

natural parameter space ® = {0 : Ms(Af) < oo}, and standard conjugate distributions with densities

7 (@]s, v) es’@—vM((i) — e(s—vm)/H—VMg(AG)

with normalizing constants
J@w=/éHW*%Ww@
6

if proper (i.e., J(s, v) < 00).If k < n, the null space of A must at least have dimension one, so that ® is always unbounded
and J (s, v) is never finite. Thus, in what follows we only consider the case where k = d and hence A is invertible, in which
case © is bounded if and only if the natural parameter space ®s of the NEF through s is bounded, and

](S, V) — / e(s—\)m)/AilAQe—vMs(AQ) do = | det(A)|—l / e(S—l)m)/Ailye—l)Ms(y) d)/
6:Ms (Af)<oo ¥ :Mg(y)<oo
= | det(A)|~"s(t(A)(s — vm), v)
where t(A) = (A™'Y. Thus, the set of parameters s and v giving proper conjugate priors for the NEF through 7 can
straightforwardly be obtained from the corresponding set for the NEF through #s.

The above computations did not use the fact that 7s is spherical. Actually doing so and writing cs for the moment generator
of ns, we have Ms(A8) = cs(||A8||?) = cs(8’A’AB). Thus, M(0) and hence also the distribution of 7 depend on A only through
¥ = A'A, and if k = d we can take A = X'1/2 as the symmetric root of X (in which case t(4) = X ~1/2),

If cs has finite radius of convergence ps (so that ® and ®s are bounded), the above relation between J and Js implies that
vo(n) = vo(ns) and hence can be characterized using Theorems 2 and 3.

For hyperparameters s and v giving a proper conjugate prior for the NEF through », write

E(s,v) =E(VM(@0)ls, v)

(where the expectation is taken with respect to this prior), and write Es for the corresponding quantity for 7s. As clearly
VM) = m + A'VM;(A0) on int(®), we have

1 / I A—
EGs,v) = —— [ VM)’ do = m + A'VMs(Ag)el~m'A™ 140 o= M5 (49) g

1
JG,v) Jo Js,v) Jo
= m+ A'Es(t(A)(s — vm), v),
where in turn Es can be obtained using Theorem 4. In particular, in the regular case (a), we have Es(s, v) = s/v forv > 0,
and hence also
E(s,v) =m+At@A)(s—vm)/v=m+ (s—vm)/v =s/v.

Finally, let us show that if the NEF through 7 is non-regular (i.e., if ® = {0 : 6’30 < ,052}), posterior linear expectation
never occurs. As the proof of Theorem 5 shows, linearity of posterior expectation is equivalent so the existence of « and b
such that

ax+b=EGs+x,v+1)=m+AEG@A)E+x— @+ 1Dm),v)
or equivalently,
Es(t(A)(s+x— (v + 1Dm),v) = t(A)(ax + (b — m))
for all x in the support of 5. But clearly, x is in the support of 1 if and only if y = t(A)(x — m) is in the support of ns, so that
the above is equivalent to having
Es(t(A)(s—vm)+y,v+1) =ay+ t(A)(b—m+am)
for all y in the support of ns. This in turn is equivalent to linearity of posterior expectation for the conjugate prior for the

NEF through ns with parameters t (A)(s — vm) and v, which by Theorem 5 cannot hold if this family (and equivalently the
NEF through n) is non-regular.
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