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a b s t r a c t

Diaconis and Ylvisaker (1979) give necessary conditions for conjugate priors for
distributions from the natural exponential family to be proper as well as to have the
property of linear posterior expectation of the mean parameter of the family. Their
conditions for propriety and linear posterior expectation are also sufficient if the natural
parameter space is equal to the set of all d-dimensional real numbers. In this paper
their results are extended to characterize when conjugate priors are proper if the natural
parameter space is bounded. For the special case where the natural exponential family is
through a spherical probability distributionη, we show that the proper conjugate priors can
be characterized by the behavior of the moment generating function of η at the boundary
of the natural parameter space, or the second-order tail behavior of η. In addition, we
show that if these families are non-regular, then linear posterior expectation never holds.
The results for this special case are also extended to natural exponential families through
elliptical probability distributions.

© 2014 The Authors. Published by Elsevier Inc.

1. Introduction

Let η be a σ -finite measure on Rd, and consider the natural exponential family (NEF) F through η, with densities

f (x|θ) = eθ ′x−M(θ)

with respect to η, where the cumulant generating functionM(θ) is defined by

eM(θ)
=


Rd

eθ ′x dη(x)

(e.g., [1]). Let Θ = {θ : M(θ) < ∞} be the natural parameter space of F . The family of standard conjugate distributions for
F (relative to the natural parameter) has densities

π(θ |s, ν) ∝ es
′θ−νM(θ)

with respect to the Lebesgue measure on Θ (e.g., [6]).
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Let J(s, ν) =


Θ
es

′θ−νM(θ)dθ . Then the hyperparameters s and ν giving proper standard conjugate distributions are the
ones for which J(s, ν) < ∞. For Bayesian inference on θ it is natural to employ priors from the standard conjugate family,
and it is important to know when these are proper, or yield proper posteriors.

For regular NEFs (i.e., Θ is open) where Θ is non-empty, Diaconis and Ylvisaker [4] show in Theorem 1 that if X, the
interior of the convex hull of the support of η, is a non-empty open set in Rd, then J(s, ν) < ∞ if ν > 0 and s/ν ∈ X, and
conversely, if Θ = Rd, then J(s, ν) < ∞ implies that ν > 0 and s/ν ∈ X. (Note that the reference uses νswhere we use s.)
This gives a complete characterization of all proper conjugate distributions for the case Θ = Rd, leaving open the cases
where Θ ⊂ Rd.

In this paper, we prove that if Θ is bounded, there exists −∞ ≤ ν0 ≤ 0 such that for arbitrary s, the conjugate priors
with hyperparameters ν and s are proper for ν > ν0 and improper for ν < ν0. We provide examples showing that all values
for ν0 in the range −∞ ≤ ν0 ≤ 0 are possible.

More specific results are obtainedwhenη is a (non-degenerate) spherical probability distribution onRd, i.e., a distribution
invariant to orthogonal transformations. In this case, X is of the form {x : ∥x∥ < σ }, where σ is finite if and only if η has
bounded support, and Θ is an open or closed ball with radius ρ for some 0 < ρ ≤ ∞. For ρ = ∞, Θ = Rd, and the result of
Theorem 1 in Diaconis and Ylvisaker [4] yields that the hyperparameters giving proper conjugate priors are those for which
ν > 0 and ∥s∥ < σν. For ρ < ∞, our characterization applies, and we show that lower (and/or upper) bounds for ν0 can
be derived if the behavior of the moment generating function of η at the boundary of the natural parameter space can be
characterized via asymptotic lower (and/or upper) bound functions. In addition we establish that ν0 can be related to the
‘‘second order tail behavior’’ of η.

If θ ∈ int(Θ), µ(θ) = ∇M(θ) =


Rd xf (x|θ)dη(x) is the mean parameter of the NEF. Diaconis and Ylvisaker [4] show in
Theorem 2 that if Θ is open and θ has a distribution which corresponds to a proper conjugate prior with hyperparameters
s and ν satisfying s/ν ∈ X and ν > 0, then E(∇M(θ)) = s/ν. Clearly, in this case the posterior from an observation x is
a conjugate distribution with parameters s + x and ν + 1, so that E(∇M(θ)|x) = (s + x)/(ν + 1) is linear in x. For NEFs
through a spherical probability distribution with bounded Θ , we show that E(∇M(θ)) does not exist for ν ≤ 0 if Θ is open,
and exists for all s and ν if Θ is closed, where in this case E(∇M(θ)) ≠ s/ν unless s = 0 and ν ≠ 0. Finally, we show that if
Θ is closed, linear posterior expectation never holds when using canonical priors.

These results for η a (non-degenerate) spherical probability distribution on Rd are extended to the case of elliptical
distributions as given in Fang et al. [5, p. 31f]. We show that propriety of conjugate priors is only possible if the matrix
in the linear transformation is a square matrix of full rank and that if the natural parameter space is bounded the value of
ν0 and the characterization of propriety for ν = ν0 are the same as for the corresponding spherical probability distribution.
Similarly linear posterior expectation only holds in the regular case for ν > 0 and never holds in the non-regular case when
canonical priors are used.

2. General NEFs with bounded natural parameter space

We first establish a general result on the propriety of conjugate priors for NEFs with bounded natural parameter space.

Theorem 1. Let η be a σ -finite measure on Rd. Suppose the natural parameter space Θ of the NEF through η is bounded and
non-empty. Then ν ≥ 0 and arbitrary s give proper conjugate distributions, and there exists ν0 = ν0(η) with −∞ ≤ ν0 ≤ 0
such that for arbitrary s, the conjugate distributions with parameters s and ν are proper for ν > ν0, and improper for ν < ν0.

Proof. If Θ is bounded, then clearly J(s, ν) < ∞ if and only if K(ν) =


Θ
e−νM(θ)dθ < ∞, and K(0) =


Θ
dθ < ∞. To

establish the theorem, it suffices to show that if K(ν1) < ∞, then K(ν) < ∞ for all ν > ν1. Now M is convex; the assump-
tions on Θ are readily seen to imply that M is proper in the sense of Rockafellar [9]. By Corollary 12.1.2 of Rockafellar [9],
there are x ∈ Rd and α ∈ R such that M(θ) ≥ x′θ + α for all θ (i.e., M can be bounded below by a hyperplane). Hence,
writing γ = |α| + ∥x∥ supθ∈Θ ∥θ∥ < ∞, −M(θ) ≤ γ for all θ ∈ Θ .

Now suppose K(ν1) is finite and ν > ν1. Clearly, for all θ ∈ Θ , −νM(θ) = −ν1M(θ) + (ν − ν1)(−M(θ)) ≤

−ν1M(θ) + (ν − ν1)γ so that

K(ν) ≤


Θ

e−ν1M(θ)e(ν−ν1)γ dθ = e(ν−ν1)γ K(ν1)

and hence K(ν) is finite as well. Taking ν0 = inf{ν : K(ν) < ∞}, the proof is complete. �

Remark. In contrast to the case where the natural parameter space is equal to Rd, negative values of ν also give proper prior
distributions. In this case the parameter ν cannot be interpreted as a prior sample size. Furthermore, the mean for the prior
distribution does not necessarily exist as indicated in the example given by Diaconis and Ylvisaker [4, p. 275].

Remark. If Θ is not bounded, J(s, ν1) < ∞ does not necessarily imply that J(s, ν) < ∞ for all ν ≥ ν1. This can straightfor-
wardly be seen for Θ = Rd, taking, e.g., η to have the density with respect to the Lebesgue measure given by f (x) ∝ e−∥x∥2

for min(x) := min(x1, . . . , xd) > 1, and zero otherwise. Then clearly Θ = Rd and X = {x : min(x) > 1}. By Theorem 1 of
Diaconis and Ylvisaker [4], J(s, ν) < ∞ if and only if ν > 0 and s/ν ∈ X, or equivalently, if and only if 0 < ν < min(s).
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As a counterexample for unbounded Θ ⊂ Rd, take d = 1 for simplicity (the case of general d can be handled by taking
products as above), and let η have density f (x) ∝ (x − µ)pe−x for x > µ > 0 and zero otherwise, where p > −1. Then
X = (µ, ∞) and

eM(θ)
=


∞

µ

eθxe−x(x − µ)pdx = e(θ−1)µ


∞

µ

e−(1−θ)(x−µ)(x − µ)pdx

= e(θ−1)µ


∞

0
e−(1−θ)t tpdt = e(θ−1)µ Γ (p + 1)

(1 − θ)p+1

for θ < 1, so that Θ = (−∞, 1). Thus,

J(s, ν) =
1

Γ (p + 1)ν

 1

−∞

esθ (1 − θ)(p+1)νe−νµ(θ−1)dθ.

For convergence, we need (p+ 1)ν > −1 (otherwise the singularity at θ = 1 integrates to infinity), i.e., ν > −1/(p+ 1) =

ν0(p), and s > νµ, or equivalently, ν0(p) < ν < s/µ. Note that p → ν0(p) is increasing for p > −1 with limp→−1+ ν0(p) =

−∞ and limp→∞ ν0(p) = 0. Hence, by suitably choosing p, we can achieve that for arbitrary negative ν0 we have proper
priors for hyperparameters satisfying ν0 < ν < s/µ (containing the range where ν > 0 and s/ν ∈ X, i.e., ν < s/µ, as a
proper subset).

3. NEFs through spherical probability distributions

In what follows, we restrict our attention to natural exponential families through spherical probability distributions.
Suppose that η is an orthogonally invariant probability measure on Rd. Then if X is distributed according to η, it has

a representation X =
d RU where U is uniformly distributed on the unit hypersphere Sd−1, R is a non-negative scalar, and

R and U are independent (e.g., [5], p. 30). Equivalently, if we consider the polar decomposition X = ∥X∥U , its polar
part U is uniform, and independent of ∥X∥. Write ηR for the probability measure on [0, ∞) with distribution function
FηR(r) = η({x : ∥x∥ ≤ r}), and ηU for the uniform distribution on Sd−1. Following [5], we will say that η is the spherical
probability distribution generated by ηR.

Clearly, if r is in the support of ηR, then all points on the hypersphere with radius r are in the support of η. Hence, if we
write σ = sup{r : FηR(r) < 1} for the supremum of the support of FηR , the interior X of the convex hull of the support of η
is the open ball with radius σ (and hence Rd if ηR has unbounded support).

Using the fact that
Sd−1

eγ ′u dηU(u) = 0F1(; d/2; ∥γ ∥
2/4),

where

0F1(; ν; z) =

∞
n=0

Γ (ν)

Γ (ν + n)
zn

n!

is a generalized hypergeometric series (e.g., [7], p. 168, by rewriting themodified Bessel function Iν in terms of 0F1) we obtain
that the moment generating function of η satisfies

Rd
eθ ′x dη(x) =


∞

0


Sd−1

erθ
′u dηU(u) dηR(r) =


∞

0
0F1(; d/2; r2∥θ∥

2/4) dηR(r)

=


∞

0


∞
n=0

Γ (d/2)
Γ (d/2 + n)

(r∥θ∥)2n

4nn!


dηR(r) =

∞
n=0

cnm2n∥θ∥
2n,

where

cn =
Γ (d/2)

Γ (d/2 + n)
1

4nn!
, m2n =


∞

0
r2n dηR(r),

so that if d = 1, cn = 1/(2n)!; if d = 2, cn = 1/(4n(n!)2); if d = 3, cn = 1/(2n + 1)!.
Thus, the moment generating function of η is a function of the maximal invariant function ∥θ∥

2 for the group of
orthogonal transformations acting on Rd, and (where finite) admits a power series representation with coefficients given by
the moments of ηR. (Clearly,


Rd eθ ′xdη(x) can be finite for θ ≠ 0 only if all moments of ηR are finite.)

Let

c(z) =

∞
n=0

cnm2nzn
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so that eM(θ)
= c(∥θ∥

2). Note that for r ≥ 0, r → c(r2) is non-decreasing with c(0) = c0m0 = 1. Let ρ2 be the radius of
convergence of c(z). Then clearly, if c(ρ2

−) = ∞, Θ is the open ball with radius ρ, and the NEF is regular; otherwise, Θ is
the closed ball with radius ρ. In analogy to the notion of the characteristic generator (for which the characteristic function
at θ equals φ(∥θ∥

2)) employed by Fang et al. [5], we will refer to c as themoment generator of η.

3.1. Propriety of canonical priors

For spherical distributions where the parameter space Θ is bounded Theorem 1 is applicable, but does not provide any
insight on specific values of ν0. In the following we use the familiar Bachmann–Landau notations defined in the following
way:

f (x) = O(g(x)) ⇔ ∃C > 0 : lim
x→a

 f (x)g(x)

 ≤ C

f (x) = Ω(g(x)) ⇔ ∃C > 0 : lim
x→a

 f (x)g(x)

 ≥ C

f (x) ≍ g(x) ⇔ ∃Cu, Cl > 0 : lim
x→a

 f (x)g(x)

 ≤ Cu, lim
x→a

 f (x)g(x)

 ≥ Cl

f (x) = o(g(x)) ⇔ ∀C > 0 : lim
x→a

 f (x)g(x)

 ≤ C .

Using this notation the following theorem provides a characterization of ν0(η) for spherical η in terms of the behavior of
the moment generator of η at its convergence radius.

Theorem 2. Let η be a spherical probability distribution on Rd with moment generator c and ρ2 the radius of convergence of c.
Suppose that 0 < ρ < ∞. Let β > 0.

(a) If limr→ρ− c(r2) is finite, ν0(η) = −∞.
(b) If c(r2) = O((ρ − r)−β) as r → ρ−, ν0(η) ≤ −1/β .
(c) If c(r2) = Ω((ρ − r)−β) as r → ρ−, ν0(η) ≥ −1/β .
(d) If c(r2) ≍ (ρ − r)−β as r → ρ−, ν0(η) = −1/β .

Proof. If themoment generator c has radius of convergence equal to ρ2 with 0 < ρ < ∞, then the natural parameter space
Θ of the NEF through η satisfies {θ : ∥θ∥ < ρ} ⊆ Θ ⊆ {θ : ∥θ∥ ≤ ρ} and hence is bounded and non-empty.

Using the polar decomposition θ = ru, dθ = adrd−1drdηU(u), where ad is the area of Sd−1,

K(ν) =


Θ

e−νM(θ)dθ =

 ρ

0


Sd−1

c(r2)−νadrd−1drdηU(u)

= ad

 ρ

0
rd−1c(r2)−ν


Sd−1

dηU(u)dr = ad

 ρ

0
rd−1c(r2)−νdr.

By Theorem 1, K(ν) is finite for ν ≥ 0. Hence, suppose ν < 0. As r → c(r2) is non-decreasing on [0, ρ) with c(0) = 1, K(ν)
is finite if and only if Kϵ(ν) =

 ρ

ρ−ϵ
c(r2)−νdr is finite for some ϵ > 0. This implies assertion (a), i.e., if limr→ρ− c(r2) is finite,

Kϵ is finite for all ν.
Let β > 0. If c(r2) is ≤ (or ≥) C(ρ − r)−β on (ρ − ϵ, ρ) for positive ϵ and C , −ν > 0 implies that Kϵ(ν) is ≤ (or ≥) ρ

ρ−ϵ

(C(ρ − r)−β)−νdr = C−ν

 ϵ

0
rνβdr,

respectively, which converges if and only if νβ > −1, or equivalently, if and only if ν > −1/β . Thus, if c(r2) = O((ρ−r)−β)
as r → ρ−, K(ν) is finite for all ν > −1/β , and hence ν0(η) ≤ −1/β (assertion (b)). Conversely, if c(r2) = Ω((ρ − r)−β)
as r → ρ−, K(ν) is infinite for all ν ≤ −1/β , and hence ν0(η) ≥ −1/β (assertion (b)). Assertion (d) follows by combining
these two results. �

Our next result shows how for spherical η, ν0(η) can also be characterized in terms of the tail behavior of the generating
distribution ηR.

Theorem 3. Let η be a spherical probability distribution on Rd such that ηR((r, ∞)) = η({x : ∥x∥ > r}) ≍ e−ρr rδ as r → ∞,
for some ρ > 0 and δ ∈ R. Then the natural parameter space Θ of the NEF through η satisfies {θ : ∥θ∥ < ρ} ⊆ Θ ⊆ {θ :

∥θ∥ ≤ ρ} and hence is bounded and non-empty, and prior distributions from the standard conjugate family are proper for all
s ∈ Rd and ν ∈ R if δ ≤ (d − 3)/2 (corresponding to ν0(η) = −∞), and for all s ∈ Rd and ν > ν0(η) = 1/((d − 3)/2 − δ) if
δ > (d − 3)/2.
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Proof. For x > 0,
∞

0
e−ρr rx−1dr =


∞

0
e−u(u/ρ)x−1du/ρ = Γ (x)/ρx.

For n > 0,

m2n =


∞

0
s2ndηR(s) =


∞

0


∞

0
2n1[0,s)(r)r2n−1dr


dηR(s)

=


∞

0
2nr2n−1


∞

0
1(r,∞)(s)dηR(s)


dr = 2n


∞

0
r2n−1ηR((r, ∞))dr,

interchanging the order of integration being justified by Fubini’s theorem.
By assumption, there exist positive and finite constants Cl and Cu such that for all r sufficiently large,

0 < Cl ≤
ηR((r, ∞))

e−ρr rδ
≤ Cu < ∞.

By possibly modifying these constants, we can in fact assume that these inequalities hold for all r ≥ 1. Then for all n > 0
such that 2n + δ > 0,

m2n ≤ 2n
 1

0
r2n−1dr + 2n


∞

1
r2n−1Cue−ρr rδdr ≤ 1 + 2nCu


∞

0
e−ρr r2n+δ−1dr

= 1 + Cu
2n

2n + δ
(2n + δ)

Γ (2n + δ)

ρ2n+δ
= 1 + Cu

2n
2n + δ

Γ (2n + δ + 1)
ρ2n+δ

.

Thus, there is a C∗
u < ∞ such that for all n sufficiently large,

m2n ≤ C∗

u
Γ (2n + δ + 1)

ρ2n+δ
.

Conversely,

m2n ≥ 2n


∞

1
r2n−1Cle−ρr rδdr = 2nCl


∞

0
e−ρr r2n+δ−1dr −

 1

0
e−ρr r2n+δ−1dr


≥ 2nCl

Γ (2n + δ)

ρ2n+δ
− 2nCl

 1

0
r2n+δ−1dr = Cl

2n
2n + δ

Γ (2n + δ + 1)
ρ2n+δ

− Cl
2n

2n + δ
.

Thus, there is C∗

l > 0 such that for all n sufficiently large,

m2n ≥ C∗

l
Γ (2n + δ + 1)

ρ2n+δ
.

Therefore,m2n ≍ Γ (2n+δ+1)/ρ2n asn → ∞, and themoment generator c(z) =


n cnm2nzn has the same convergence
radius as c̃(z) =


n cnΓ (2n + δ + 1)(z/ρ2)n, and the same asymptotic behavior as z converges to the convergence radius

from below.
Using Pochhammer’s symbol (x)n = Γ (x + n)/Γ (x),

cn =
Γ (d/2)

Γ (d/2 + n)
1

4nn!
=

1
(d/2)n4nn!

and for δ ≥ −1,

Γ (2n + δ + 1)
Γ (δ + 1)

=

n−1
i=0

(δ + 1 + 2i)
n−1
i=0

(δ + 2 + 2i) = 4n
n−1
i=0

((δ + 1)/2 + i)
n−1
i=0

((δ/2 + 1) + i)

= 4n Γ ((δ + 1)/2 + n)
Γ ((δ + 1)/2)

Γ ((δ/2 + 1) + n)
Γ (δ/2 + 1)

= 4n((δ + 1)/2)n(δ/2 + 1)n.

Thus,

c̃(z) = Γ (δ + 1)

n

((δ + 1)/2)n(δ/2 + 1)n
(d/2)nn!


z
ρ2

n

= Γ (δ + 1)2F1((δ + 1)/2, δ/2 + 1; d/2; z/ρ2),

where 2F1 is the Gaussian (or ordinary) hypergeometric function. From well-known results on such functions, the radius of
convergence c̃ equals ρ2. This implies that the natural parameter space Θ of the NEF through η satisfies {θ : ∥θ∥ < ρ} ⊆

Θ ⊆ {θ : ∥θ∥ ≤ ρ} and hence is bounded and non-empty.
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The behavior of c̃(z) at ρ2 and therefore also of c(z) can be obtained, e.g., from Olver et al. [8], Section 15.4(ii),
http://dlmf.nist.gov/15.4.ii. We have the following three cases.
– If 0 < d/2 − (δ + 1)/2 − (δ/2 + 1) = (d − 2δ − 3)/2, or equivalently, δ < (d − 3)/2, limr→ρ− c̃(r2) exists. In this case,

Theorem 2 implies that ν0(η) = −∞.
– If δ > (d − 3)/2, c̃(r2) ∼ (1 − (r/ρ))(d−2δ−3)/2 as r → ρ−. We can thus use Theorem 2 with β = −(d − 2δ − 3)/2 to

obtain ν0(η) = −1/β = 2/(d − 2δ − 3).
– Finally, if δ = (d − 3)/2, c̃(r2) ∼ − log(1 − (r/ρ)) as r → ρ−, and Theorem 2 cannot be applied directly. From the

proof of Theorem 2, clearly, K(ν) < ∞ if and only if
 1
1/2(− log(1 − r))−νdr is finite. Substituting − log(1 − r) = u so

that r = 1 − e−u, 1

1/2
(− log(1 − r))−νdr =


∞

log(2)
u−νe−udu

which again is finite for all ν. Hence, ν0(η) = −∞.

The above assumed that δ ≥ −1. Otherwise, for 0 ≤ r < ρ, c̃(r2) is majorized by the series for δ = −1, which always
has a finite limit as r → ρ−. Thus δ < −1 gives ν0(η) = −∞, and the proof of the theorem is complete. �

In the following examples different distributions for ηR are considered, with the Poisson and the negative binomial
distributions as examples for discrete distributions and the Gamma distribution as an example for a continuous distribution.
For these distributions it is investigated for which parameter values s and ν prior distributions from the standard conjugate
family are proper using either Theorem 1 in Diaconis and Ylvisaker [4] or Theorem 3.

Example. Suppose ηR is a Poisson distribution with mean parameter λ. Then

ηR((r, ∞)) = 1 −

a
k=0

λk

k!
e−λ

=
1

Γ (a + 1)

 λ

0
tae−tdt,

where a = ⌊r⌋. As in the integrand, e−λ
≤ e−t

≤ 1 for all 0 ≤ t ≤ λ, it holds that

ηR((r, ∞)) ∼
1

Γ (a + 1)

 λ

0
tadt =

λa+1

Γ (a + 2)
= exp(−a(log(a) + O(1)))

as a → ∞. Hence, in this case ρ = ∞ and Theorem 1 in Diaconis and Ylvisaker [4] can be used to conclude that the prior
distributions from the standard conjugate family are proper if and only if ν > 0.

Example. SupposeηR is a negative binomial distributionwith size parameter n and success probability p, where the negative
binomial distributed random variable indicates the number of failures before the first success. Then

ηR((r, ∞)) =
1

B(a + 1, n)

 p

0
ta(1 − t)n−1dt,

where a = ⌊r⌋ and B(a + 1, n) is the Beta function. As in the integrand, (1 − p)n−1
≤ (1 − t)n−1

≤ 1 for all 0 ≤ t ≤ p, it
holds that

ηR((r, ∞)) ∼
1

B(a + 1, n)

 p

0
tadt =


a + n
n − 1


pa+1

∼ paan−1

as a → ∞. Thus, Theorem 3 can be applied with ρ = log(p) and δ = n − 1 to obtain that ν0(η) = −∞ if n ≤ (d − 1)/2,
and ν0(η) = 1/((d − 1)/2 − n) otherwise.

Example. Suppose ηR is a Gamma distribution with shape parameter α and rate parameter ρ. Then

ηR((r, ∞)) =


∞

r

ρα

Γ (α)
e−ρssα−1ds =


∞

ρr

e−uuα−1

Γ (α)
du ∼

e−ρr(ρr)α−1

Γ (α)

as r → ∞ (see for example Olver et al. [8], Section 8.11(i), http://dlmf.nist.gov/8.11.i). Thus, Theorem 3 can be applied with
ρ and δ = α − 1 to obtain that ν0(η) = −∞ if α ≤ (d − 1)/2, and ν0(η) = 1/((d − 1)/2 − α) otherwise. If ηR is a shape
mixture of Gamma distributions with fixed rate parameter ρ, where the mixture density is not compactly supported, the
convergence radius is still ρ, but ν0(η) must satisfy ν0 > 1/((d − 1)/2 − α) for all α sufficiently large, so that ν0(η) = 0.

Remark. The example where ηR is a shape mixture of Gamma distributions shows that in fact all values of ν0 in the range
[−∞, 0] are possible. In fact, this can also be inferred directly from Theorem 3 by fixing r0 ≥ 0 and taking ηR supported on
(r0, ∞) with ηR((r, ∞)) ∝ e−ρr rδ for r ≥ r0 (δ < −1 needs r0 > 0). This again gives ν0 values which monotonically cover
the range [−∞, 0) as δ varies from −∞ to ∞; ν0 = 0 can be obtained by using tails which are ≍ exp(−ρr(1 + o(1))) as
r → ∞ but are heavier than e−ρr rδ for all δ, such as tails proportional to exp(−ρr + δ

√
r).

http://dlmf.nist.gov/15.4.ii
http://dlmf.nist.gov/8.11.i
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Combining the example where ηR is a shape mixture of Gamma distributions and the above remark we obtain the
following.

Corollary 1. For every ν0 with −∞ ≤ ν0 ≤ 0 a σ -finite measure η on Rd can be found, for which the natural parameter space
Θ of the NEF through η is bounded and non-empty, and for which the conjugate priors are proper for hyperparameters ν > ν0
and arbitrary s and improper for hyperparameters ν < ν0 and arbitrary s.

Remark. It would certainly be interesting to investigate in more detail whether and how ν0(η) can be related to the tail
behavior of η in the general (non-spherical) case of bounded Θ covered by Theorem 1 (assuming for example that η has a
sufficiently nice density). We leave this for future research.

3.2. Linearity of posterior expectation

Next, we investigate how Theorem 2 in Diaconis and Ylvisaker [4] can be extended in the spherical case where regularity
of the NEF is not necessarily given and ν is allowed to be negative.

Theorem 4. Let η be a spherical probability distribution on Rd with moment generator c, and 0 < ρ2 < ∞ the radius of
convergence of c. Suppose θ follows a proper conjugate prior with parameters s and ν for the NEF through η.

(a) If c(ρ2
−) = ∞ (regular case), E(∇M(θ)) = s/ν for all s and ν > 0. If ν ≤ 0, the expectation does not exist.

(b) If c(ρ2
−) < ∞ (non-regular case), then

E(∇M(θ)) =


s
ν


1 −

c(ρ2
−)−ν J(s, 0)
J(s, ν)


if ν ≠ 0, s ∈ Rd,

s
J(s, 0)


Θ

log

c(∥θ∥

2)

c(ρ2−)


es

′θdθ if ν = 0, s ∈ Rd.

Proof. We have

E(∇M(θ)) =
1

J(s, ν)


Θ

∇M(θ)es
′θ−νM(θ)dθ =: E(s, ν).

In the spherical case, we haveM(θ) = log(c(∥θ∥
2)) so that for θ ∈ int(Θ)

∇M(θ) = 2
c ′(∥θ∥

2)

c(∥θ∥2)
θ

and

E(s, ν) =
2

J(s, ν)


Θ

c ′(∥θ∥
2)

c(∥θ∥2)1+ν
es

′θθdθ,

where the integrand is a positive scalar function times θ , and can be uniformly bounded away from zero and infinity on
∥θ∥ < ρ − ϵ for all ϵ > 0. Thus, the integral exists if and only if

ρ−ϵ≤∥θ∥<ρ

c ′(∥θ∥
2)

c(∥θ∥2)1+ν
∥θ∥es

′θdθ < ∞,

which upon transforming to polar coordinates is easily seen to be equivalent to ρ

ρ−ϵ

c ′(κ2)

c(κ2)1+ν
2κdκ < ∞.

But the last integral is just c(κ2)−ν/(−ν) |
ρ−

ρ−ϵ for ν ≠ 0 and log(c(κ2)) |
ρ−

ρ−ϵ for ν = 0, and hence infinite if and only if
c(ρ2

−) = ∞ and ν ≤ 0. Hence, E(∇M(θ)) exists unless c(ρ2
−) = ∞ and ν ≤ 0.

To actually compute E(s, ν) (if it exists), we can use ∇(es
′θ−νM(θ)) = (s − ν∇M(θ))es

′θ−νM(θ) for θ ∈ int(Θ) to obtain
that for ν ≠ 0,

E(s, ν) =
1
ν


s −

1
J(s, ν)


Θ

∇es
′θ−νM(θ)dθ


,
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where


Θ
∇es

′θ−νM(θ)dθ exists if and only if E(s, ν) exists. Write θi for component i of θ , and θ−i for θ without component i.
Then 

Θ

∂

∂θi
es

′θ−νM(θ)dθ =


∥θ−i∥<ρ

 √
ρ2−∥θ−i∥2

−

√
ρ2−∥θ−i∥2

∂

∂θi
es

′θ−νM(θ)dθidθ−i =


∥θ−i∥<ρ

es
′θ−νM(θ)


√

ρ2−∥θ−i∥2

−

√
ρ2−∥θ−i∥2

dθ−i

= c(ρ2
−)−ν


∥θ−i∥<ρ

es
′
−iθ−i


esi

√
ρ2−∥θ−i∥2 − e−si

√
ρ2−∥θ−i∥2


dθ−i.

If c(ρ2
−) = ∞ and ν > 0, c(ρ2

−)−ν
= 0 and hence E(s, ν) = s/ν (which could also have been obtained from Theorem 2

in Diaconis and Ylvisaker [4]), establishing (a).
If c(ρ2

−) < ∞, we obtain that


Θ
∇es

′θ−νM(θ)dθ = c(ρ2
−)−νh(s), where h does not depend on ν; hence, h(s) =


Θ

∇es
′θ

dθ = s


Θ
es

′θdθ = sJ(s, 0), establishing (b) for the case where ν ≠ 0. Finally, E(s, 0) can be obtained as limν→0 E(s, ν),
where interchanging integration and taking limits is justified as the above shows that the integrals of the absolute values
are uniformly bounded on compact ν intervals. Now with a = c(ρ2

−),

E(s, ν) =
s
ν


1 −

a−ν J(s, 0)
J(s, ν)


= sJ(s, 0)

g(s, 0) − g(s, ν)

ν
,

where g(s, ν) = a−ν/J(s, ν), so that

lim
ν→0

E(s, ν) = sJ(s, 0)
∂

∂ν

a−ν

J(s, ν)


ν=0

= sJ(s, 0)
− log(a)a−ν J(s, ν) − a−ν∂ J(s, ν)/∂ν

J(s, ν)2


ν=0

= sJ(s, 0)


− log(a)
J(s, 0)

+


Θ
M(θ)es

′θdθ
J(s, 0)2


= s


1

J(s, 0)


Θ

M(θ)es
′θdθ − log(a)


=

s
J(s, 0)


Θ

(M(θ) − log(a))es
′θdθ.

Note that this can also be written as

E(s, 0) =
s

J(s, 0)


∥θ∥<ρ

log

c(∥θ∥

2)

c(ρ2−)


es

′θdθ

where the integral is always negative. �

Remark. More generally, for θ ∈ int(Θ)

∇(es
′θ−νM(θ)g(θ)) = ((s − ν∇M(θ))g(θ) + ∇g(θ))es

′θ−νM(θ),

so that if θ follows a proper conjugate prior with parameters s and ν,

E((ν∇M(θ) − s)g(θ)) = E(∇g(θ)) −
1

J(s, ν)


Θ

∇(es
′θ−νM(θ)g(θ))dθ.

This is used by Chou [2] to show if ν > 0 and Θ is open (so that es
′θ−νM(θ) tends to 0 as θ approaches the boundary of Θ)

and g satisfies certain integrability conditions, the integral vanishes so that E((ν∇M(θ) − s)g(θ)) = E(∇g(θ)). If Θ is not
open, the integral does not necessarily vanish. In the spherical case, if g is radial (i.e., g(θ) = φ(∥θ∥

2)), proceeding as above
one can show that the integral equals c(ρ2

−)−νφ(ρ2)sJ(s, 0).

If θ follows a proper conjugate prior with parameters s and ν, in the regular case its posterior expectation is given by

E(∇M(θ)|x) =
s + x
ν + 1

provided that ν + 1 > 0, and hence is linear in x. In the non-regular case, the following result shows that posterior linear
expectation never occurs.

Theorem 5. Let η be the spherical probability distribution on Rd generated by ηR, with moment generator c, 0 < ρ2 < ∞ the
radius of convergence of c, and c(ρ2

−) < ∞. Suppose θ follows a proper conjugate prior with parameters s and ν for the NEF
through η. Then linearity of posterior expectation does not hold.

Proof. From Theorem 4, if θ follows a conjugate prior with parameters s and ν, E(∇M(θ)) = E(s, ν) is of the form sγ (s, ν)
where γ is scalar. Linearity of posterior expectation thus holds if and only if there are α ∈ R and b ∈ Rd such that

E(s + x, ν + 1) = (s + x)γ (s + x, ν + 1) = αx + b
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for all x in supp(η), the support of η. Rewrite this as

(s + x)(γ (s + x, ν + 1) − α) = b − αs.

If the right hand side were non-zero, necessarily γ (s + x, ν + 1) ≠ α and hence

x =
1

γ (s + x, ν + 1) − α
(b − αs) − s,

so that supp(η)were contained in the line through−swith direction b−αs, which is impossible as η is non-degenerate and
spherical (so that its support certainly contains a hypersphere with positive radius). Thus, the right hand side must be zero,
and hence γ (s + x, ν + 1) = α for all x in supp(η) for which s + x ≠ 0. If x = −s is in supp(η), it can be approximated by
elements with the same length different from −s; thus, as γ is clearly continuous in its first argument, γ (s + x, ν + 1) = α
for all x in supp(η).

To simplify notations, take c(ρ2) = c(ρ2
−), so that r → c(r2)−ν is continuous on [0, ρ] for all ν, and r →

log(c(r2)/c(ρ2)) is continuous on [0, ρ]. If h is continuous on [0, ρ2
], transformation to polar coordinates gives

Θ

es
′θh(∥θ∥

2)dθ =

 ρ

0


Sd−1

h(r2)e(rs)′uadrd−1drdηU(u) = ad

 ρ

0
h(r2)0F1(; d/2; r2∥s∥2/4)rd−1dr

= ad

 ρ

0
h(r2)


∞
n=0

cn(r2∥s∥2)n


rd−1dr = ad

∞
n=0

cn

 ρ

0
h(r2)r2n+d−1dr


∥s∥2n,

all rearrangements justified by absolute convergence. As h is bounded on [0, ρ2
], the series

fh(z) = ad
∞
n=0

cn

 ρ

0
h(r2)r2n+d−1dr


zn

converges for all z, and hence defines an entire function.
If ν + 1 ≠ 0, γ (s + x, ν + 1) = α for all x in supp(η) is equivalent to ∆(x) = J(s + x, 0) − δJ(s + x, ν + 1) = 0

for all x in supp(η), where δ = c(ρ2)ν+1(1 − α(ν + 1)). Now J(s, ν) = fh(∥s∥2) for h(r2) = c(r2)−ν and hence
∆(x) = fh(∥s + x∥2) for h(r2) = 1 − δc(r2)−(ν+1). If ν + 1 = 0, γ (s + x, 0) = α for all x in supp(η) is equivalent to
∆(x) =


Θ
log(c(∥θ∥

2)/c(ρ2))e(s+x)′θdθ − αJ(s+ x, 0) = fh(∥s+ x∥2) = 0 for h(r2) = log(c(r2)/c(ρ2)) − α. In both cases,
h is monotone and does not vanish identically. As ρ < ∞ is only possible if η has unbounded support, fh(∥s + x∥2) = 0 for
all x ∈ supp(η) implies that there is a sequence σk of non-negative reals with limk σk → ∞ and fh(σk) = 0, and the proof
will be completed by showing that this is not possible.

Let us first show that we can always find an n0 such that the coefficients γn(h) =
 ρ

0 h(r2)r2n+d−1dr all have the same
non-zero sign for n ≥ n0. This is trivial if h is non-negative or non-positive. If h changes from negative to positive, there
exists 0 < β < ρ such that h(β2) > 0. Hence,

γn(h) =

 β

0
h(r2)r2n+d−1dr +

 ρ

β

h(r2)r2n+d−1dr ≥ h(0)
 β

0
r2n+d−1dr + h(β2)

 ρ

β

r2n+d−1dr

=
h(β2)ρ2n+d

2n + d


1 +


h(0)
h(β2)

− 1


β

ρ

2n+d


,

where the term in parentheses tends to one as n → ∞. Hence, γn(h) > 0 for all n sufficiently large. Similarly, if h changes
from positive to negative, γn(h) < 0 for all n sufficiently large.

If γn(h) > 0 for all n ≥ n0 and σ > 0,

fh(σ ) = ad
∞
n=0

cnγn(h)σ n
≥ ad

n0
n=0

cnγn(h)σ n

= adcn0γn0(h)σ
n0


1 +


0≤n<n0

cnγn(h)
cn0γn0(h)

σ n−n0


where the term in parentheses tends to one as σ → ∞. Hence, fh(σ ) > 0 for all σ sufficiently large and positive. Similarly, if
γn(h) < 0 for all n sufficiently large, we have fh(σ ) < 0 for all σ sufficiently large and positive, and the proof is complete. �

Remark. The results of Theorems3 and4 inDiaconis andYlvisaker [4] andChou [3] characterize the canonical priors as those
achieving linear posterior expectation, assuming that Θ is open. Theorem 5 shows that if Θ is closed, then the canonical
priors never achieve linear posterior expectation in the case of NEFs through spherical probability distributions. This leaves
open the question whether linear posterior expectation could be achieved by other priors.
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4. NEFs through elliptical probability distributions

Following Fang et al. [5, p. 31f], we say that a probability distribution η on Rd is elliptical if for some k ∈ {1, . . . , d} there
arem ∈ Rd, a k×dmatrix A of rank k, and a spherical probability distribution ηS onRk such that η(B) = ηS({y : A′y+m ∈ B})
for all Borel sets B in Rd. In this section, we discuss how the results in the previous section can be generalized from NEFs
through spherical distributions to NEFs through elliptical distributions.

We have
Rd

eθ ′x dη(x) =


Rk

eθ ′(A′y+m) dηS(y) = eθ ′m


Rk
e(Aθ)′y dηS(y).

Hence, withM andMS the cumulant generating functions of η and ηS , respectively, we have
M(θ) = θ ′m + MS(Aθ).

The NEF through η has densities given by

f (x|θ) = eθ ′x−M(θ)
= eθ ′(x−m)−MS (Aθ),

natural parameter space Θ = {θ : MS(Aθ) < ∞}, and standard conjugate distributions with densities

π(θ |s, ν) ∝ es
′θ−νM(θ)

= e(s−νm)′θ−νMS (Aθ)

with normalizing constants

J(s, ν) =


Θ

e(s−νm)′θ−νMS (Aθ) dθ

if proper (i.e., J(s, ν) < ∞). If k < n, the null space of A must at least have dimension one, so that Θ is always unbounded
and J(s, ν) is never finite. Thus, in what follows we only consider the case where k = d and hence A is invertible, in which
case Θ is bounded if and only if the natural parameter space ΘS of the NEF through ηS is bounded, and

J(s, ν) =


θ :MS (Aθ)<∞

e(s−νm)′A−1Aθe−νMS (Aθ) dθ = | det(A)|−1


γ :MS (γ )<∞

e(s−νm)′A−1γ e−νMS (γ ) dγ

= | det(A)|−1JS(τ (A)(s − νm), ν)

where τ(A) = (A−1)′. Thus, the set of parameters s and ν giving proper conjugate priors for the NEF through η can
straightforwardly be obtained from the corresponding set for the NEF through ηS .

The above computations didnot use the fact thatηS is spherical. Actually doing so andwriting cS for themoment generator
of ηS , we haveMS(Aθ) = cS(∥Aθ∥

2) = cS(θ ′A′Aθ). Thus,M(θ) and hence also the distribution of η depend on A only through
Σ = A′A, and if k = dwe can take A = Σ1/2 as the symmetric root of Σ (in which case τ(A) = Σ−1/2).

If cS has finite radius of convergence ρS (so that Θ and ΘS are bounded), the above relation between J and JS implies that
ν0(η) = ν0(ηS) and hence can be characterized using Theorems 2 and 3.

For hyperparameters s and ν giving a proper conjugate prior for the NEF through η, write
E(s, ν) = E(∇M(θ)|s, ν)

(where the expectation is taken with respect to this prior), and write ES for the corresponding quantity for ηS . As clearly
∇M(θ) = m + A′

∇MS(Aθ) on int(Θ), we have

E(s, ν) =
1

J(s, ν)


Θ

∇M(θ)es
′θ−νM(θ)dθ = m +

1
J(s, ν)


Θ

A′
∇MS(Aθ)e(s−νm)′A−1Aθe−νMS (Aθ) dθ

= m + A′ES(τ (A)(s − νm), ν),

where in turn ES can be obtained using Theorem 4. In particular, in the regular case (a), we have ES(s, ν) = s/ν for ν > 0,
and hence also

E(s, ν) = m + A′τ(A)(s − νm)/ν = m + (s − νm)/ν = s/ν.

Finally, let us show that if the NEF through η is non-regular (i.e., if Θ = {θ : θ ′Σθ ≤ ρ2
S }), posterior linear expectation

never occurs. As the proof of Theorem 5 shows, linearity of posterior expectation is equivalent so the existence of α and b
such that

αx + b = E(s + x, ν + 1) = m + A′ES(τ (A)(s + x − (ν + 1)m), ν)

or equivalently,
ES(τ (A)(s + x − (ν + 1)m), ν) = τ(A)(αx + (b − m))

for all x in the support of η. But clearly, x is in the support of η if and only if y = τ(A)(x − m) is in the support of ηS , so that
the above is equivalent to having

ES(τ (A)(s − νm) + y, ν + 1) = αy + τ(A)(b − m + αm)

for all y in the support of ηS . This in turn is equivalent to linearity of posterior expectation for the conjugate prior for the
NEF through ηS with parameters τ(A)(s − νm) and ν, which by Theorem 5 cannot hold if this family (and equivalently the
NEF through η) is non-regular.
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