
Multi-Domain Software Defined Networking:

Research Status and Challenges
Franciscus X. A. Wibowo, Mark A. Gregory, Khandakar Ahmed, Karina M. Gomez

RMIT University

Melbourne, Australia

Abstract— A key focus of the transition to next generation

computer networking is to improve management of network

services thereby enhancing traffic control and flows while

simplifying higher-level functionality. Software-defined

networking (SDN) is an approach that is being developed to

facilitate next generation computer networking by decoupling

the traffic control system from the underlying traffic

transmission system. SDN offers programmability in network

services by separating the control plane from the data plane

within network devices and providing programmability for

network services. Enhanced connectivity services across the

global digital network require a multi-domain capability. This

paper presents a review of the current research status in SDN

and multi-domain SDN, focusing on OpenFlow protocol, and its

future related challenges.

Index Terms— Software Defined Networking, Networking,

OpenFlow, Controller, East-West, Multi-domain

1. Introduction

Software Defined Networking (SDN) concepts are moving

from the data centre to the enterprise networks and Wide Area

Networks (WAN) presenting a number of challenges.

Telecommunication network growth and complexity

continues unabated and people and machines can

communicate with each other through various network types

utilizing a range of technologies. Global IP Traffic is

predicted to increase from 59.9 Exabytes per month in 2014

to 168.4 Exabytes per month in 2019 (Cisco, 2015).

Smartphone and tablet use accounted for 40% of the global

IP traffic in 2014 and is expected to rise to 67% in 2019. This

phenomenon has led to the need for a high capacity, reliable

and yet cost-effective network that can carry increasing

traffic volume, with dynamic and distinct applications for

each entity.

The global digital networks are currently struggling to

meet the increasing traffic volumes, and the shift from

traditional enterprise networks to distributed Cloud

Computing exacerbates this trend. The current network

architectures were based on a vertically integrated approach

with discrete semi-autonomous devices, which limit the

potential for flexible flow management and network service

innovation.

Service and network providers face challenges in

operating networks, which consist of a vast number of

network devices, for example, switches, routers, and

gateways. IT departments must configure thousands of

devices in order to implement network-wide services, which

will result in difficulty to maintain Quality of Service (QoS),

security and other policies. Current networks are built based

on the monolithic or vertical approach, which integrates the

control and forwarding functionality in a box, with vendor

system standardization being a secondary consideration. The

different vendor designs and construction approaches limit

interoperability and have a detrimental effect on flexible

network service innovation.

Global digital networks are evolving to cope with

increasing traffic volumes and connected devices. There is a

need for next generation network management and control

systems that provide flexibility and device programmability,

to facilitate dynamic updates and the introduction of new

network services without hardware replacement. SDN offers

one approach in providing “programmable networks” and

vendors have generally adopted SDN as the next evolution of

computer networking. SDN decouples the control plane from

the forwarding plane in network devices and carries out

traffic management utilizing a hierarchy of systems known as

controllers (Foundation, 2012). Controllers connect to

network switching and routing devices using open interfaces

and protocols, e.g. OpenFlow (McKeown et al., 2008).

Scalability of the network has been one of the active and

contentious topics in SDN. There are two common

approaches in SDN controller implementation to improve the

scalability, which includes centralised and distributed

approaches. A centralised model is the simplest one, and it

relies on the increase performance of standard controller.

However, it introduces a single point of failure (SPOF) to the

network. Distributed controller model eliminates SPOF and

improves the scalability of the network, but it needs a method

to coordinate all the controllers which could be in different

domain.

A domain in SDN can be referred to an SDN

administrative domain. Multi-domain SDN requires

interconnection of controllers in different domains to

exchange information across domain. Multi-domain SDN

will enable the interconnection of global SDN domains,

introduce interoperability between domains, and provide

better provisioning of cross domain services. Currently,

some ongoing researches are being done in multi-domain

SDN, such as its architectures (Helebrandt & Kotuliak,

2014), distributed multi-domain controller architecture

(Phemius et al., 2014), inter-domain communication platform

(Lin et al., 2015) and application (Jahan et al., 2014), and

routing mechanism (Kotronis, Gämperli, & Dimitropoulos,

2015).

Several surveys have studied SDN from different points of

view. Jarraya, Madi, and Debbabi (2014) had compiled a

survey on SDN providing the first taxonomy to classify SDN

research works. Nunes, Nguyen, Turletti, Mendonca, and

Obraczka (2014) studied the state of the art of programmable

network with the emphasis on SDN, along with its

implementation alternatives, and its promising research

directions. Another survey by Farhady, Lee, and Nakao

(2015) successfully present deep understanding of all three

SDN layers. Recently, survey paper by Kreutz et al. (2015)

presented a comprehensive survey on SDN which covered

almost all aspect of SDN, starting from its definition,

architecture and applications, until the current ongoing

research efforts and challenges. However, those surveys do

not present or only mentioned at very high level the multi-

domain implementation aspects of SDN. Therefore, this

article focuses on the multi-domain aspect of SDN.

In this paper, our aim is to provide an overview of the

recent developments in multi-domain SDN (using academic

and industry sources), and analyse the main research issues

and approaches for future multi-domain SDN developments.

The key contributions of this paper are:

 a tutorial on SDN and OpenFlow that includes a

discussion of their origins, architecture and principal

components.

 a review of controller implementation, both open-source

and commercial, and a table with a comparison of the

controller features.

 a review of current research into multi-domain SDN and

the major challenges to be addressed by future research.

The rest of this paper is organized as follows. In section 2,

we present a brief overview of SDN, including its

architecture and the OpenFlow protocol. Section 3 discuss the

multi-domain implementation of SDN. in section 4, we

present multi-domain SDN challenges and identify the future

research in multi-domain SDN. Section 5 concludes the

paper.

2. Overview Software Defined Networking

Existing networks were generally built with proprietary

hardware and systems from a single vendor. This would lead

to a vendor “lock in”, where it was difficult to shift to another

vendor or to adopt multi-vendor solutions. The use of vendor

specific network devices and systems often led to the

organisation’s systems becoming tailored to match the

intricacies of the vendor equipment and systems as illustrated

in Fig. 1. Programmable networks, that permitted the

separation of the control and data planes, were seen to be the

solution to the vendor “lock in” problem and the introduction

of low-cost white label SDN-enabled networking devices

provided a more flexible approach that organizations are now

beginning to exploit. Although programmable networking

was first introduced in the late 1990s, SDN has

revolutionized the shift to programmable networking and

SDN has become the focus of next generation networks.

2.1. SDN Background

SDN has evolved over the past decade to provide a more

flexible and dynamic networking architecture that

incorporates improved support for management and network

services. The SDN approach is for the management of traffic

flows to be decoupled from the underlying infrastructure and

systems that forward traffic. A standardized and open

protocol was introduced to facilitate the separation of control

and data planes. This protocol, known as OpenFlow, was

developed to facilitate control traffic transfer between

management systems, known as controllers, and the network

devices, such as a switch, that forward data traffic.

The development of SDN originated from the early work

on programmable networking and the separation of control

logic from the data transfer mechanism. There are two

schools of thought regarding the concept of programmable

networking including active networks and open signaling.

However, the idea of decoupling the control logic from the

data transfer mechanism emerged later, as a new architecture,

to reduce the complexity of the distributed computations.

2.1.1. Programmable Networks: Active Network and

OPENSIG

The active network concept was introduced in the mid-

1990s in an endeavor to control a network in real-time. Active

networking introduced a method that permits packets flowing

through the network to carry instructions to be executed at

network nodes. The code carried within the packets alters the

network operation either temporarily for an individual packet

or for a stream of packets. In this approach, the network

devices become a dynamically programmable environment

that can be dynamically altered using the code carried by the

packets, which differs from the rigidity of traditional

networking (Farhady et al., 2015; Xia, Wen, Foh, Niyato, &

Xie, 2015).

Implementations of active networks include SwitchWare

(Alexander et al., 1998) and conventional computer routing

suites such as Click, XORP, Quagga, and BIRD (Xia et al.,

2015). With the active networking implementations, the

operations and behavior of the network can be modified

dynamically. Although the active networking approach

offered a new paradigm by providing a more dynamic

environment, there was only minor development of the

control plane. The active networking approach placed the

intelligence at the end points (which can be inferred to be

computers and servers acting as smart devices) whilst

utilizing enhanced switches and routers to execute and carry

out limited tasks based on the instructions carried within

packets traversing the network. Thus, in active networking,

packets are entities that can determine or control how nodes

manage packets and streams.

In addition to the active networking approach introduced

by the IP network community, another method known as

Open Signalling (OPENSIG) was proposed by the

telecommunication network community (Campbell, Katzela,

Miki, & Vicente, 1999). The OPENSIG suggested to provide

an access to network hardware by means of open and

programmable network interfaces. This idea was motivated

by the need to separate the communication hardware and

control software. It was a thought-provoking idea due to the

vertically integrated architecture of network devices (e.g.

routers and switches). OPENSIG suggested that the well-

defined programmable network interfaces will lead to a

Fig. 1 Proprietary Network Element Configuration

Devices A
Proprietary Firmware &
Configuration Settings

Control Plane
Routing Protocol, MAC
Learning, Forwarding
Tables & Decisions

Data Plane
Forwarding Path

Devices B
Proprietary Firmware &
Configuration Settings

Devices B
Proprietary Firmware &
Configuration Settings

Control Plane
Routing Protocol, MAC
Learning, Forwarding
Tables & Decisions

Data Plane
Forwarding Path

Communication ProtocolCommunication Protocol

distributed programming environment which provides open

access to switches and routers and facilitates the entry into

the telecommunication software market of third-party

software providers.

2.1.2. Separation of Data and Control Plane

In parallel with the programmable networking effort,

innovations have emerged on the separation of the control

and data planes. The aim of the innovations was to develop

open and standardized interfaces along with a logically

centralized network control model. The innovations were

developed by a project called ForCES (Haleplidis et al.,

2015) conducted by Internet Engineering Task Force (IETF).

This project provided improvements to networking with the

use of distributed packet processing network elements. Other

approaches to developing a centralized network control

model were proposed including Routing Control Platform

(RCP), Path Computation Element (PCE) and Intelligent

Route Service Control Protocol (IRSCP). These proposals

were focused on improving network operation and the need

for coexistence and backward compatibility prevented them

from being deployed immediately (Jarraya et al., 2014).

Other initiative, commenced in the period of 1990,

included the Devolved Control of Asynchronous Transfer

Mode (ATM) Networks (DCAN), which emerged from the

scalable control and management objective for ATM

networks. This initiative suggested the removal the control

and management functions from ATM based network

devices. Those functions should be assigned to external

entities, dedicated to that function. DCAN also assumed a

simple protocol between the manager and the network, which

aligns with today’s OpenFlow protocol (Nunes et al., 2014).

In 2004, the 4D project (Greenberg et al., 2005) introduced

a clean slate design, which stressed the separation of the

routing decision logic and the protocols used to pass

messages between network elements. The proposal gave a

global view of the network with a decision plane, serviced by

a dissemination and discovery plane used to control the data

traffic forwarding. Later, these ideas provided the inspiration

for advanced research into NOX, the first SDN controller,

which in the context of an OpenFlow-enabled network is also

known as an ‘operating system for networks’.

2.1.3. Other Pre-SDN Projects

The IETF Network Configuration Working Group

proposed NETCONF in 2006, as a management protocol for

network device configuration. The protocol carried messages

to network devices through an exposed API that supported

extensible configuration data. NETCONF had efficiency,

effectiveness, and security advantages when compared to the

Simple Network Management Protocol (SNMP), a popular

network management protocol, especially when managing

complex and diverse network environments (J. Yu & Al

Ajarmeh, 2010). SNMP and NETCONF are both useful

management tools that can be used in parallel on hybrid

switches that support programmable networking.

Other protocols that preceded OpenFlow were the SANE

(Casado et al., 2006) and Ethane projects (Casado et al.,

2007) completed in 2006. They defined a new architecture for

enterprise networks that utilized a centralized controller to

manage policy and security. Identity-based access control

was its significant feature. Like SDN, Ethane used two

components: a controller and Ethane switch. The controller

decides whether a packet should be forwarded, while the

switch connects to the controller via a secure channel and

holds a flow table providing the foundation for SDN.

2.2. SDN Standardization Efforts

To date, several standardization organizations have

focused on SDN and some SDN-related standards have been

published, as shown in Table 1. There is ongoing work to

define further SDN and associated technologies (Farhady et

al., 2015; Hakiri, Gokhale, Berthou, Schmidt, & Gayraud,

2014; Kreutz et al., 2015; Nunes et al., 2014; Xia et al., 2015).

The Open Network Forum (ONF) released documentation

on the current SDN Architecture, focusing on the OpenFlow

protocol. The IETF with its Forwarding and Control Element

Separation (ForCES) Working Group has focused on

standardizing mechanisms, interfaces, and protocols

targeting the centralization of network control and

abstraction. The International Telecommunication Union-

Telecommunication Sector (ITU-T) has set up several Study

Groups (SGs) which have developed SDN recommendations.

A Joint Coordination Activity on SDN (JCA-SDN) was

formed to coordinate the SDN standardization effort between

groups.

The Broadband Forum (BF) considered SDN and Network

Function Virtualization (NFV) to be within the Technical

Work Area of its Technical Committee Work in Progress and

is currently investigating the migration and deployment of

SDN and NFV-enabled implementations across all aspects of

the broadband network. At the IEEE, the 802 LAN/MAN

Standards Committee has recently initiated several activities

to standardize SDN for access networks based on the IEEE

802 infrastructure through the P802.1CF project, for both

wired and wireless technologies to embrace new control

interfaces. The Metro Ethernet Forum (MEF)’s aim in SDN

was to define the service orchestration with APIs for existing

networks. The Internet Research Task Force (IRTF) created

the Software Defined Networking Research Group (SDNRG)

to investigate SDN from its perspective with the goal of

identifying alternate approaches and future research

opportunities.

The open source software community continues to work

on controllers and networking stacks including

OpenDaylight, OpenStack, and CloudStack. This effort aims

to develop the basic building blocks to support SDN and NFV

Table 1

SDN Standardization Activities

Standardization

Organizations
Scope of Work

ONF

SDN Architectures and its components, SDN

interfaces, OpenFlow protocol extensions,

OpenFlow Switch Specifications, OpenFlow

Configuration and Management Protocol,

IETF
ForCES Protocol, SDN Architechture, OpenFlow

interworking, Control Plane Requirements,

ITU-T

Signalling requirements using SDN technologies

in Broadband Access Network, Functional

architecture for SDN, SDN Control of Transport

Network, and Security aspect in SDN

Broadband Forum
Requirements and impacts of deploying SDN in

Broadband Networks

IEEE Applicability of SDN to IEEE 802 infrastructure

IRTF Prospection of SDN for the evolution of Internet

MEF Service orchestration in Network as a Service

implementations. For example, OpenDaylight is intended to

be extensible and configurable to support potentially

emerging SDN open standards e.g. OpenFlow, I2RS,

VxLAN, PCEP.

2.3. SDN Architecture

The ONF defined SDN as an emerging network

architecture where network control is decoupled from

forwarding and is directly programmable (Foundation, 2012).

The control function is migrated from formerly tightly bound

devices in each network to accessible computing devices.

This migration enables the underlying infrastructure to be

abstracted for applications and network services. Later, the

network could be treated as a logical or virtual entity.

There are two major SDN characteristics, as depicted in

Fig. 2, including decoupling of the control and data planes,

and control plane programmability. Both have previously

been the focus of extensive research and recent

improvements in the reliability, capacity and capability of

global networks that have enabled the control plane

programmability concept to move forward. SDN

encompasses the separation of control and data planes in the

network’s architectural design, which means that network

control is to be carried out utilizing separate channels

between device control management ports that utilize

different addresses to that used for the data plane. The

network intelligence is taken out of the switching devices,

thereby leaving the switching devices as general forwarding

devices.

There are three functional layers in SDN architecture, i.e.

Application Layer, Control Layer, and Infrastructure Layer.

Each layer had its own functions and communicate to each

other via an specific interface (Hakiri et al., 2014; Jarraya et

al., 2014). The descriptions of SDN layers are presented

below:

a) Application Layer

The Application Layer consists of network services and

applications that can be abstracted using the dynamic

modular structure of the Application Layer. Examples of

network services and applications include management

systems, monitoring, security and flow control related

network services.

The network abstraction utilizes an Application

Programming Interface (API) to provide consistency and

standardization of the interface. Through this API, SDN

services and applications can access network status

information reported from forwarding devices. SDN

services and applications can also use this API to transfer

flow rules to forwarding devices through the lower

layers.

b) Control Layer

The Control Layer consists of a set of software-based

SDN controllers that provide control functionality

through open API-based interfaces that facilitate the

control and management of traffic forwarding. The

controllers incorporate three communication interfaces,

i.e. southbound, northbound and eastbound/westbound.

The control plane acts as an intermediary layer between

the application and data planes. The controller provides

a programmatic interface that can be accessed by

network services and applications in the Application

Layer and used to implement management and control

tasks. The abstraction presumes the centralized control

and the applications are developed within the framework

of a single interconnected system. It enables the SDN

model to be implemented for a broad range of scenarios,

such as centralized, hybrid or distributed and also for

heterogeneous network technologies (wireless or wired).

The controller implementation design significantly

affects the overall performance of the network. Several

challenges must be overcome to achieve network

performance that is at or above the network performance

of the preceding legacy network.

c) Infrastructure Layer

The Infrastructure Layer is the lowest layer in the SDN

architecture. Forwarding elements are the main

components in this layer, which include physical and

virtual routers and switches. These devices are accessible

via an open interface and carry out packet routing,

switching and forwarding. The control connections to the

network devices utilize separate secure channels to that

used for user data flows.

SDN architecture employs a three specific interfaces.

These interfaces enable the interactions between and within

SDN layers. Below, we present the description of SDN

interface:

a) Northbound Interface

The Northbound interface is used to connect network

services and applications found in the Application Layer

to the controllers in the Control Layer. The Northbound

interface consists of one or more API providing a

programmability capability that is used to dynamically

manage network traffic flows. It is more considered as a

software API rather than a protocol based interface, to

take advantage of the innovative programmability

paradigm. The ONF suggest a definition that the

different levels of abstractions are latitudes and the

various use cases are longitudes, but this characterisation

is yet to be finalized. The ONF approach suggest that

more than a single northbound interface standard can

provide increased flexibility to serve differing use cases

and environments. Representational State Transfer

(REST) is one of the proposed APIs to provide a

programmable interface for business applications to the

controllers (Jarraya et al., 2014).

b) Eastbound/Westbound Interface

The Eastbound/Westbound interface is a proposed

communication protocol related interface, which is yet to

be fully standardized. It is identified to enable

communication between groups or federations of

Fig. 2 SDN Architecture.

Application
Layer

Application
Layer

Control
Layer

Control
Layer

Infrastructure
Layer

Infrastructure
Layer

Virtualization

Network
Policy &
Security

Applications

Network
Access
Control

Applications

Other
Network
Related

Applications

Other
Business

Applications

SDN Controller SDN ControllerSDN Controller

Physical SwitchesPhysical Switches Virtual SwitchesVirtual Switches

Northbound API

Southbound API

Eastbound
API

Westbound
API

controllers to synchronize states for high reliability and

resiliency. The interfaces are to be used to cope with the

SDN scalability and reliability challenge. The

Eastbound/Westbound interface protocol manages

communications between the multiple controllers. There

are two possible use cases for this interface. The first use

case is an interconnecting interface between

conventional IP networks with SDN networks. As there

are no standards defined for this interface, its

implementation depends on the technology used by the

underlying network. An example of this use case is the

connection between SDN domain with a legacy domain

using a legacy routing protocol to react to message

requests (e.g., Path Computation Element (PCE)

protocol and MPLS). The second use case is to use the

interface as an information conduit for admission and

authentication, between the SDN control planes of

different SDN domains. The multi-domain connectivity

challenge needs to be overcome to facilitate a global

network view and influence the routing decisions of

controllers on domain boundaries. A solution would

allow a seamless setup of network flows across

heterogeneous SDN domains. Conventional border

protocols, like BGP, could be utilized or extended to

support interconnection of remote SDN domains.

c) Southbound Interface

This interfaces facilitate the communication between

SDN controller with the Forwarding Elements in the

infrastructre layer. The standardized protocol for this

communication is OpenFlow. It is developed and

maintained by ONF. OpenFlow is described as the

fundamental element of SDN solution development.

OpenFlow allows multi-vendor SDN network devices to

be implemented. Other alternarives to OpenFlow is the

Forwarding and Control Element Separation (ForCES)

Framework (Haleplidis et al., 2015). The latter defines

an architectural framework with coupled protocols to

standardize information exchange between the control

and forwarding layers. Although it has been an IETF

proposal for several years, it has never reached the level

of support that exists for OpenFlow.

2.4. OpenFlow as SDN Enabler

OpenFlow is an open source communications protocol that

is used to transport messages from controllers to network

devices via the Southbound interface. OpenFlow provides

software-based access to the switch and router flow tables to

enable dynamic network traffic management. Manual or

automated control systems can be used depending on the

specific network management operations scenario. The

OpenFlow protocol provides a management tools to manage

features such as topology configuration or packet filtering.

OpenFlow shares common ground with the architectures

proposed by ForCES and SoftRouter. The difference is in the

concept of flow management and leveraging the existence of

flow tables in commercial switches and routers (Braun &

Menth, 2014).

Switches with OpenFlow compliance are categorized in

two main types, i.e. OpenFlow-only switch and OpenFlow-

hybrid. OpenFlow-only switches support only OpenFlow

operations; i.e., all packets are processed and controlled using

the OpenFlow pipeline to the upstream controller.

OpenFlow-hybrid switches support both OpenFlow

operations and legacy Ethernet switching operations. The

hybrid switches support a classification mechanism outside

of OpenFlow that routes traffic to either of the packet-

processing pipelines (Farhady et al., 2015; Jammal, Singh,

Shami, Asal, & Li, 2014; McKeown et al., 2008).

The OpenFlow architecture consists of numerous

OpenFlow-enabled switches that are managed by one or more

OpenFlow controllers, as shown in Fig. 3. Network traffic

can be partitioned into flows, where a flow could be a

Transmission Control Protocol (TCP) connection, packets

with the same MAC address or IP address, packets with the

same Virtual Local Area Network (VLAN) tag, or packets

arriving from the same switch port. Several elements of the

OpenFlow architecture are explained in this section.

2.4.1. OpenFlow Protocol

An OpenFlow-enabled switch contains flow and group

tables that include a number of entries, depending on the

network device. The flow entries are used to control traffic

flows arriving at the switch using identifiers such as source,

destination and IP port. OpenFlow messages manipulated the

flow entries in the flow table. The messages are exchanged

between the switch and the controller via a secure channel.

By maintaining a flow table, the switch can make forwarding

decisions for incoming packets using a simple look-up on the

entries of its flow table. The switch will do an exact match

check on particular fields of the incoming packets. The

switch goes through its flow table to find a matching entry for

incoming packets. Numbering in the flow tables are done

sequentially, starting from 0. The packet processing pipeline

starts at the first flow table and if a match is not found it

moves on to the next flow table and so on until a match is

found, or the end of the last flow tables is reached. If the

specific packet fields match a flow entry, the corresponding

instruction set is executed. Instructions related to each flow

entry describe packet forwarding, packet modification, group

table processing, and pipeline processing.

Pipeline-processing instructions enable the packet fields to

be matched to a flow entry in one table and based on the flow

entry instructions be sent to associated tables for additional

matching and processing, which can result in an aggregation

of actions that are to occur to the packet before transmission.

The aggregated information (metadata) can be communicated

between flow tables. Flow entries may also forward to a

physical or virtual port.

Flow entries may link to a group table entry, which

specifies additional processing. Additional forwarding

methods (multicast, broadcast, fast reroute, link aggregation)

are offered by a group entries inside a group table. A group

entry contains a group identifier, a group type, counters, and

Fig. 3 OpenFlow Elements

Controller 1 Controller 2 Controller n

Secure Channel

Group Table

Flow 1 Flow 2 Flow 3 Flow n

OpenFlow Switch

SDN Control Plane

OpenFlow Protocol

a list of action buckets, which contain a set of actions to be

executed and associated parameters. Groups also allow

multiple flows to be forwarded to a single identifier, e.g., IP

forwarding to a common next hop. Occasionally, a table miss

occurs, where a packet might not match a flow entry in any

of the flow tables. The action taken in the case of a miss

depends on the table configuration. By default, selected

packet fields are sent to the controller over the secure

channel. Another option is to drop the packet.

OpenFlow was first released by Stanford University in

2008 (McKeown et al., 2008). Since 2011, the OpenFlow

switch specification has been maintained and updated by the

ONF. OpenFlow vendors have widely adopted the latter

version. In the initial ONF version, forwarding was based on

a single flow table, and packet matching using Layer 2

information and IPv4 addresses. Version 1.1 introduced the

multiple flow tables and MPLS tags, while IPv6 support was

included in version 1.2. Version 1.3 added the support for

multiple parallel channels between switches and controllers.

In version 1.4, improvements include retrofitting various

parts of the protocol with the Type/Length/Value (TLV)

structures introduced in version 1.2 for extensible field

matching and a flow monitoring framework enabling a

controller to monitor in real-time the changes made to flow

tables within other controllers. The latest OpenFlow

specification published in 2014 is version 1.5, (with minor

improvements in 2015 becoming version 1.5.1) which

introduces new features such as an Egress Table, Packet type

aware pipeline, and a Flow Entry Status Trigger.

2.4.2. OpenFlow Switch

An OpenFlow-enabled switch contains at least one flow

table and group table. It performs packet lookups and

forwarding. Controller manages the switch utilizing the

OpenFlow protocol via a secure channel. A set of flow entries

makes a flow table in the switch. Each flow entry is used to

match to the packet header fields, counters, and a set of

instructions for matching packets (Jammal et al., 2014).

2.4.3. OpenFlow Channel

The OpenFlow channel is the interface that connects

OpenFlow-enabled switches to a controller. The controller

configures and manages the switch, using this interface. The

OpenFlow protocol supports three message types that

transport the control messages across the secure channel. The

messages can be categorized as controller-to-switch,

asynchronous, and symmetric, each having multiple

subtypes. Controller-to-switch messages are used to manage

or derive information directly regarding the switch state.

These messages are initiated by the controller. Asynchronous

messages are initiated by the switch. These messages are used

to update the controller with changes to the switch state and

network events. Symmetric messages are initiated by either

the switch or the controller and are sent without solicitation.

The OpenFlow channel is usually encrypted using transport

layer security (TLS), but can also operate directly over TCP

(Jammal et al., 2014).

2.4.4. OpenFlow Controller

The controller is responsible for maintaining the network

protocols, policies and distributing appropriate instructions to

the network devices. In other words, the OpenFlow-enabled

controller is responsible for determining how to handle those

packets that do not match valid flow entries found in the

switch flow tables. It manages the switch flow table by

adding, modifying and removing flow entries over the secure

channel using the OpenFlow protocol. The switch must be

able to communicate with a controller at a user-configurable

(but otherwise fixed) IP address using a user-specified port

and recent implementations provide uPnP to enhance

connectivity options. A standard TLS or TCP connection to

the controller is started by the switch, based on controller’s

IP address. Traffic coming in and out the OpenFlow channel

does not travel through the OpenFlow pipeline. Hence, the

switch must identify incoming traffic as local before

matching it compared to the flow tables. A single or multiple

controllers can establish communication with the switch

(Jammal et al., 2014).

Reliability could be improved by having multiple

controllers, because the switch can continue to operate in

OpenFlow mode if one controller connection fails. The

controllers themselves managed the hand-over between

controller, which enables load balancing and fast recovery

from failure. The controllers coordinate switch management

based on rules set by higher layer applications, and the goal

of the multiple controller functionalities is to synchronize

controller hand-offs performed by the controllers.

2.4.5. Flow and Group Tables

There are three fields in flow table entries, i.e. Packet

Header, Action, and Statistic. Packet header which is unique

to the flow, defines the flow, and is almost a ten-tuple. Its

fields contain information such as VLAN ID, source and

destination ports, IP address, and Ethernet source and

destination. Action field specifies how to handle the packets

in the flow. An example is for the switch to forward the

packet to a given port or ports, drop the packet, or forward

the packet to the controller. Statistics field includes

information such as the number of packets, the number of

bytes, and the time from when the last packet matched the

flow for each type of flow. Counters are typically used to

monitor the number of packets and bytes for each flow, and

the elapsed time since flow initiation (Jammal et al., 2014).

Besides Flow table, an OpenFlow switch also has Group

table, which consists of group entries. A flow entry can point

to a group, which characterise OpenFlow’s new method of

forwarding (e.g. select and all). Each Group table entry has

four fields. The first field is a Group Identifier, which is a 32-

unsigned integer that uniquely identified the group. The

second field is group type, which determines group

semantics. The third field is Counters, which is updated when

packets are processed by a group. The last field is Action

Buckets, which is an ordered list of action buckets. Each

action bucket contains a set of actions to execute and

associated parameters (Jammal et al., 2014).

3. Multi-Domain in Software Defined Networking

SDN offers flexibility in managing the flows inside a

network. In the other hand, global digital network is

increasing on its size and complexity. Each network domains

are connected to each other to become a massive and large

network. With its advantages, SDN could provide more

efficient way in managing the flows and network.

Multi-domain SDN emerges as one of the solutions in

implementing SDN in large network. The need to enhance

current networks operations and managements motivates the

implementation of SDN in them. Nevertheless, SDN hasn’t

yet equipped to operate in very large network, e.g. there

hasn’t any standard yet for East/Westbound interfaces.

Therefore, there are a great deal of works need to be done in

this area.

 In this section, we discuss the works on multi-domain

SDN, starting from the challenges in implementing SDN in

SDN in large network from the controller view. Some

approaches to overcome the scalability issues and lists of

supporting SDN controllers are also presented. At the end of

the section, we will discuss the multi-domain SDN

architectures.

3.1. Challenges in SDN Controller Design

Controller design requires substantial effort if the

controller is to provide flexible interfaces for network

services and applications and a verified OpenFlow interface.

It is more than just a matter of designing and implementing

the interfaces, matching the interfaces with the network and

applications, programming languages, and software

architecture in the controller; the design also relates to the

performance of SDN-enabled networks.

3.1.1. Scalability

An initial concern that arises when offloading control from

the switching hardware is the scalability and performance of

the network controller(s). SDN’s centralized control

methodology naturally faces scalability issues. The controller

is the most important artifact in the SDN architecture and a

single controller elucidation may result in a single point of

failure and performance bottleneck problems in a wide area

SDN (Farhady et al., 2015; Nunes et al., 2014). The entire

network will break down if the controller fails. On the other

hand, no matter where we place the controller, it will be

farther away from some of the switches under its control.

These switches will experience higher flow setup latency

(Karakus & Durresi, 2016). Clearly, a single controller

solution is not suitable for wide-area SDN and some

enterprise networks.

Other concerns on the scalability of SDN in large network

are the aggregating and disseminating a huge number of

information, both from and throughout the network (Shuhao

& Baochun, 2015). Those processes need to be done in real-

time, which make things worse. The proposed solutions from

control plane design to cope with scalability issues can be

classified in two categories. The first category is using a

single-controller approach. In this category, improvements

are done by reducing the overhead of the centralized

controller in several aspects (Farhady et al., 2015; Karakus &

Durresi, 2016).

The second category is using multi-controller approach.

For a multi-controller SDN wide area solution, two

alternatives are possible: replicated and distributed (Kreutz et

al., 2015). Multiple replicated controllers can improve fault

resilience. A replicated approach is to maintain an online

shadow controller that will take over only if the primary

controller fails. Switches are configured to communicate with

both controllers simultaneously as the alternative approach,

which is switch replication, remains to be implemented

(Shuhao & Baochun, 2015). Using a shadow switch may

produce a significant communication overhead in a WAN,

where the controller and switches could be several hops apart.

For short flows, this might generate more flow setup traffic

than the flow itself. In distributed controller architecture,

controllers are responsible for a portion of the network.

Therefore, distributed controller solution should yield

improved performance and robustness than replicated

solution (Ahmed & Boutaba, 2014).

3.1.2. Placement and Reliability

In the wide area SDN implementation, controller(s)

location may impact on the overall network performance.

Whether the SDN consists of single or multiple controllers,

the placement of the controller(s) will have an impact on the

performance and the cost of the network. Research is ongoing

into architecture, location and the number of controllers with

respect to the average and worst case latencies of control

plane (Heller, Sherwood, & McKeown, 2012) and other

metrics, e.g. latency in case of failure and inter-controller

latency (Vizarreta, Machuca, & Kellerer, 2016)

The research shows that latency drives the overall behavior

of the network, and bandwidth for the control traffic affects

the number of flows that the controller can process. The

modeling of the network is used to identify controller

locations that enhance reliability and limit control message

latency (Sallahi & St-Hilaire, 2015). While other alternative

approach tries to solve the controller(s) placement issue,

focuses on optimizing the reliability of the control network

and identifies several placement algorithms and strategies

along with metrics to characterize the reliability of SDN

control networks (Jimenez, Cervello-Pastor, & Garcia, 2014;

Vizarreta et al., 2016).

3.1.3. Security

SDN controllers may suffer from a range of security

problems, which can reduce the performance of the network.

The attacks might affect performance due to the lack of

controller scalability in the event of a denial of service attack.

The impact could be worst in the large network with only a

single controller or even for the multiple controllers.

Those attacks can aim the forwarding layer, control layer,

and application layer, and their types can be discussed as

follow (Dabbagh, Hamdaoui, Guizani, & Rayes, 2015; Kaur,

Singh, Singh, & Sharma, 2016). On the application layer, the

attacks could be trough unauthenticated application and

policy enforcements. Denial of Service (DoS) are the attack

that target the forwarding and control layer. DoS could be

caused by the massive flows that flood the switches and

controllers which cause processing delay or device collapsed.

Fig. 4 SDN Control Design for Scalability

Other type of attacks is the compromised controller attack,

which happens when the attacker somehow gain access to the

controller and could take over all the network. Data leakage

and flow rule modification are the impact of attacks on

forwarding layer input buffers. is often disastrous. Controller

hijacking and fraudulent rule Insertion attacks are types of

malicious applications. DOS (Denial of services) are related

to availability related attacks. Type of DOS attack is

Controller-Switch Communication Flood between the switch

and the main controller.

There are some possible countermeasures for those

attacks. Attacks targeted the forwarding plane could be

avoided by proactive rule caching, rule aggregation,

increasing switch’s buffering capacity, decreasing switch-

controller communication delay, and packet type

classification based on traffic analysis. Other attacks that

targeted control and application plane could be mitigated by

controller replication, dynamic master controller assignment,

efficient controller placement, controller replication with

diversity, and efficient controller assignments (Dabbagh et

al., 2015).

3.1.4. Availability

SDN in large network could suffer from various failures

Those failures including controller/switch failure and link

failure. SDN controller can be overloaded due enormous

request from networks. A SDN-enabled switch could

confront with a failure if any of its sub-component does not

function correctly. This causes the traffic routing/forwarding

functions of the network not constantly retained. While link

failures can occur on a network link as device connection is

broken. The cause of this failure could be from network

connectivity and hardware problems, or software problem in

any network device that generate link down notifications

falsely (Nguyen et al., 2015).

In SDN networks, the overall design, including placement

and selection of network devices such as the controllers and

switches, should be robust, and this should be tested for a

range of anticipated scenarios. An approach that improves the

robustness of SDN is to use a runtime system that automates

failure recovery by spawning a new controller instance and

replaying inputs observed by the old controller. The

controller can install static rules on the switches to verify

topology connectivity and locate link failures based on those

rules. Another approach is to try to improve recovery time by

the frequent issuing and receipt of monitoring messages, but

this may place a significant load on the control plane

(Farhady et al., 2015). In multi-controllers SDN, a load

balancing mechanism based on a load informing strategy is

proposed to dynamically balance the load among controllers

(Jinke, Ying, Keke, Shujuan, & Jiacong, 2016).

3.2. Wide Area SDN Control Plane Design

SDN controller designs for large or wide area network

mainly aimed to solve the scalability issue. As presented in

Error! Reference source not found., the approaches

proposed to overcome this challenge can be categorized in

two big categories, i.e. single controller solution and multiple

controller solution (Xia et al., 2015). The single controller

approach implements multi-thread hardware and the

overhead reduction of the centralized controller in certain

scenarios. The multiple controller approach consists of

logically centralized and fully distributed or multi-domain

approaches (Xia et al., 2015). In this section, we will discuss

both approaches and the summary of supporting controller

platforms.

3.2.1. List of Available of Controller

Currently, many SDN controllers are available, both open

source and commercial ones. Those controllers have their

own specific features and support, especially in wide area

implementation. A summary of those controller is presented

in Table 2.

3.2.2. Single Controller Approach

SDN may have either a centralized or distributed control

plane (Hakiri et al., 2014; Kreutz et al., 2015), although the

protocols such as OpenFlow specify that a controller controls

a switch, and this seems to imply centralization. OpenFlow is

not defined for controller-to-controller communication, but it

is apparent that something similar is needed for distribution

or redundancy in the control plane.

The single controller approach, shown in Fig. 5, is based

on a single centralized controller that manages and supervises

the entire network, which is already supported by the ONF.

In this model, network intelligence and states are logically

centralized inside a single decision point. This centralized

controller uses the southbound protocol (e.g. OpenFlow) to

conduct global management and control operations. The

centralized controller must have a global view of the entire

network, including the load on each switch along the routing

path. It also has to monitor link bottlenecks between the

remote SDN nodes. Additionally, statistical information,

errors and faults from each network device can be collected

by the controller from the attached switches and this

information is passed on to another entity, which is often a

database and analytic system that identifies switch and

network loads and predicts future loads.

As mentioned before, single controller approach exploits

two methods, i.e. utilizing the hardware and reducing the

overhead to minimize controller loads. The first method

provides performance scalability at times of high load or

when a controller failure occurs. Conventional software

optimization techniques can be used to improve the

controller’s performance. Multi-core hardware that supports

multi-threading can be used to support parallel process

optimization, load balancing, and replication. High-

performance controllers, such as McNettle (Voellmy &

Wang, 2012), target powerful multi-core servers and are

Fig. 5 Single Controller Approach

being designed to scale up to handle large data center

workloads (around 20 million flow requests per second and

up to 5000 switches).

Despite the performance improvements presented in this

approach, there are limitations and challenges. The hardware

setup cannot be easily modified due its rigid nature. Another

limitation is that this approach retains a Single Point of

Failure due its single-controller architecture

The second method tries to reduce the controller load, as

highlighted by proposals including as DIFANE (M. Yu,

Rexford, Freedman, & Wang, 2010) and DevoFlow (Curtis

et al., 2011), by extending the switch data plane mechanism.

DIFANE partly uses intermediate switches called authority

switches to make the forwarding decisions instead of totally

relying on the centralized controller to reduce the load and

the latencies of rule installation. A similar approach is also

proposed in DevoFlow with the selection of particular flows

to be directed to the controller, while switches handle the

other flows.

3.2.3. Multiple Controller Approach

Multiple controllers approach, as shown in Fig. 6, offers

solutions to solve the SDN scalability issues. This approach

uses multiple controllers that manage and supervise the

network. These controllers are distributed along the network

and can be called distributed controllers. There are two

classes of distributed SDN controllers, i.e. logically

centralized but physically distributed controller, and the

completely distributed controller.

Distributed controllers have several key challenges that

should be addressed to improve the scalability and robustness

of networks. The first challenge is the requirement of a

consistent network-wide view in all controllers. Static

configuration could not be used to overcome this challenge,

because it can cause uneven load distribution between

controllers. The mapping between control planes and

forwarding planes must be automated. The second challenge

is to gain an optimal global view of the whole network. Not

to mention, identification of an optimal number of distributed

controller that guarantee the linear scale up of SDN network,

is another hard effort. The last challenge is how synchronize

the overall local and distributed events to provide a global

picture of the network. Most of the approaches use local

algorithms to develop coordination protocols, in which each

controller needs to respond only to events that take place in

its local neighbourhood.

The first class of distributed controllers is the logically

centralized but physically distributed controller. These

controllers have to share information with each other so as to

build a consistent view of the entire network. They are using

either distributed file system, a distributed hash table, or a

pre-computation of all possible combination to centralized

their logic. This approaches impose a strong requirement: a

strongly consistent network-wide view in all the controllers.

The network-wide view is maintained via controller-to-

controller synchronization. When the local view of a

controller changes, the controller will synchronize the

updated state information with the other controllers. The

information exchange or state synchronization among

controllers consumes network resources; therefore, it is

critical to reduce the resulting network load, while keeping

the information consistent for the logically-centralized

control plane. The example of this implementation are:

a. Onix (Koponen et al., 2010) focuses on the problem by

providing generic distributed state management APIs.

With Onix, the control plane operates with a global view

of the network.

b. Hyperflow (Tootoonchian & Ganjali, 2010) suggests a

logically centralized control which consists of many

distributed controllers and exhibits excellent scalability.

It has been implemented as an application for a NOX. In

reality, network operators can deploy any number of

controllers on demand. By propagating events that affect

the controller’s state, HyperFlow can enable all of the

controllers to obtain a network-wide view by passively

synchronizing network-wide views of OpenFlow-

enabled controllers. Since each controller has a global

view, HyperFlow minimizes the response time of the

control plane through local decision making by each

controller.

c. Google has presented their experience with B4 (Jain et

al., 2013), a global SDN deployment interconnecting

their data centers, using a logically centralized Traffic

Engineering (TE) service to decide on path computation.

d. Devolved controllers (Tam et al., 2011) propose control

plane distribution using pre-computation of other inter-

relationships. Devolved controllers require a strongly

consistent network-wide view to be maintained in the

controllers.

Fig. 6 Multiple Controller Approach

Table 2

Summary of Controller Platforms

Controller Name Prog.

Language

Organization Open

Source

Architecture Description

Beacon Java Stanford Yes
Centralized

Multi-threaded
Cross-platform, modular, Java based OpenFlow Controller that support event-based and threaded operation (Erickson, 2013).

Maestro Java Rice Univ. Yes
Centralized

Multi-threaded

A network operating system based on Java which provides interfaces for implementing modular network control applications (Cai,

2011).

FloodLight Java Big Switch Network Yes
Centralized

Multi-threaded

Java-based OpenFlow Controller, based on the Beacon implementation, works with physical and virtual OpenFlow switches

(Floodlight).

RISE C & Ruby NEC Yes Centralized OpenFlow Controller based on Trema, which is an OpenFlow stack based on Ruby and C (Ishii et al., 2012).

ONOS Java ON.Lab Yes Distributed

Open source SDN controller platform designed specifically for scalability and high-availability. With this design, ONOS projects

itself as a network operating system, with separation of control and data planes for Wide Area Network (WAN) and service provider

networks (Berde et al., 2014).

RYU Python NTT Yes
Centralized

Multi-threaded

SDN operating system that aims for logically centralized control and APIs, to create new network management and control

applications (Kubo, Fujita, Agawa, & Suzuki, 2014).

NOX/POX Python Nicira Yes Centralized The first OpenFlow controller (Gude et al., 2008).

OpenContrail Python Juniper Yes Distributed An open source version of Juniper’s Contrail controller (Lin et al., 2015; Singla & Rijsman, 2013)

OpenDaylight Java Linux Foundation Yes Distributed
An open source project based on Java. It supports OSGi Framework for local controller programmability and bidirectional REST for

remote programmability as Northbound APIs (Medved, Varga, Tkacik, & Gray, 2014; Phemius et al., 2014).

OpenMUL C KulCloud Yes
Centralized

Multi-threaded

C-based multi-threaded OpenFlow SDN controller that supports a multi-level northbound interface for attaching applications (Saikia

& Malik, 2015).

Big Cloud Fabric controller Java Big Switch Network No
Centralized

Multi-threaded

The controller is part of Big Switch’s SDN-based Data Center solutions. It is hierarchically implemented SDN controller that capable

to be implemented as a cluster of virtual machines or hardware appliances for high availability ("Big Cloud Fabric: Hyperscale

Networking for All," 2014)

Brocade Vyatta Controller Java Brocade No Distributed OpenDaylight Based Controller with additional support services from Brocade ("Brocade Vyatta Controller," 2015).

Ericsson SDN Controller Java Ericsson No Distributed
Ericsson used the OpenDaylight as the base of its controller and bind a Policy Control to drive end-user service personalization in

network connectivity ("The Real-Time Cloud," 2014).

One Controller Java Extreme Networks No Distributed

Extreme Networks offers its SDN controller (OneController) in form of hardware appliance based on OpenDaylight controller and

provides Extreme Network’s OpenDaylight-based API, Software Development Kit (SDK) and a developer community

("OneController™ OpenDaylight-based SDN Controller," 2015).

HP VAN SDN Controller Java HP No Distributed

OpenDaylight based controller with HP contributions in AAA, device drivers, OpenFlow and Hybrid Mode, clustering for High

Availability, multi-application support including the Network Intent Composition (NIC) API, Persistence, Service Function Chaining,

OpenStack integration and federation of controllers ("HP VAN SDN Controller Software,").

Programmable Network

Controller
Java IBM No Distributed

OpenDaylight based controller offered by IBM as part of its Data Center Solution ("IBM Programmable Network Controller V3.0,"

2012).

Contrail Python Juniper No Distributed
Contrail Controller is a software controller that is designed to operate on a virtual machine (VM). It exposes a set of REST APIs for

northbound interaction with cloud orchestration tools, as well as other applications ("Contrail Architecture," 2013).

Programmable Flow

Controller
Java NEC No Centralized

It provides a high performance, fabric-based SDN with advanced network automation, control, and flexibility, enabling full network

virtualization and secure, multi-tenant networks ("Award-winning Software-defined Networking NEC ProgrammableFlow®

Networking Suite," 2013).

Open SDN Controller Java Cisco No Distributed

OpenDaylight based SDN Controller with additional Cisco’s embedded applications, robust application development environment and

additional OpenFlow protocol support for Cisco Multiprotocol Label Switching (MPLS) extensions ("Cisco Open SDN Controller

1.1," 2015).

Huawei IP SDN Controller Java Huawei No Distributed
OpenDaylight based SDN controller with addition of Huawei’s Open Programmability System (OPS), which implements multi-layer

capability openness including network control and management ("Huawei IP SDN Controller Open and Application," 2013)

The second type of distributed controller model is the

completely distributed controller. It introduces a physically

distributed control plane state and logic; therefore, there is no

synchronization of network states between controllers to

maintain a global view. Synchronization could lead to a

network overload due to the frequent network changes and it

suffers from control state inconsistency which will degrade

the performance of applications running on top of SDN.

For the distributed control plane, each controller handles

its local domain and attempts to make improved routing

decisions at each controller by using a local algorithm that

can be utilized to develop efficient coordination using

available protocols and messages, whereby each controller

cooperates only with its neighboring controllers. Although

the existing distributed algorithms may be used, there are also

demands for a SDN dedicated distributed algorithm.

A multi-domain SDN architecture refers to a network

architecture that connects multiple SDN domains. SDN

domain refers to the administrative SDN domain, which

might be a sub-network in a data center network, or a carrier

or an enterprise network, or an Autonomous System (AS).

Most of the distributed control plane architectures with a

logically centralized approach such as Onix, Hyperflow, and

Elasticon currently cannot manage inter-domain flows

between SDN domains. According to (Egilmez, 2014), the

fully distributed SDN controller architectures, both vertical

and horizontal approaches could be utilized for multi-domain

SDN communication. A summary of contributions in multi-

domain SDN is presented in Table 3.

Different approaches to the distributed SDN controllers

are proposed by Elasticon, Pratyaastha, DISCO (Distributed

Multi-domain SDN Controllers), ONOS, and Kandoo. Those

controllers are designed to support fully distributed

architecture and have the potential to support multi-domain

SDN implementation.

ElastiCon (Dixit, Hao, Mukherjee, Lakshman, &

Kompella, 2013) proposes a controller pool which

dynamically grows or shrinks corresponding to traffic

conditions, and the workload is dynamically allocated among

the controllers.

Pratyaastha (Krishnamurthy et al., 2014) is an Efficient

Elastic Distributed SDN Control Plane; it proposes a novel

method for assigning SDN switches and partitions of SDN

application state to distributed controller instances.

DISCO (Phemius et al., 2014) is another open and

extensible SDN control plane architecture intended to address

the distributed and heterogeneous characteristic of wide area

networks and modern overlay networks. DISCO is

implemented on top of Floodlight, an open source OpenFlow-

enabled controller and consists of two parts: an intra-domain

part where each controller manages its network domain, and

an inter-domain part, which manages the communication

with other DISCO controllers, through a lightweight control

channel, to ensure end-to-end network services.

The Open Network Operating System (ONOS) (Berde et

al., 2014) followed in the footsteps of previous SDN

controllers such as Onix but is intended for release as an open

source project which relies on the SDN community to

contribute, examine, evaluate, and extend it. ONOS adopts

the distributed architecture for high availability and scale-out.

The ONOS characteristic abstract device approach means

that the core operating system does not have to be aware of

the particular protocol being used to control a device.

As shown in Fig. 7, in the distributed ONOS core, the

ONOS instances work together to create what appears to the

rest of the network and applications as a single platform.

ONOS allows applications to examine the global network

view and create flow paths that specify full or partial routes

along with traffic that should flow over that route and other

actions that should be taken, or use a global match-action (or

match-instruction) abstraction which provides the full power

of OpenFlow to enable an application to program any switch

from a single vantage point.

OpenDaylight (ODL) (Jahan et al., 2014; Medved et al.,

2014) makes it possible for the network to be logically and/or

physically split into different slices or tenants. The split can

be with parts of the controller, modules, explicitly dedicated

Table 3
Summary of Contributions in Multi-Domain SDN

Contributions Descriptions

Elasticon
Proposed an IETF draft to connect SDN domains

using an automated system (Yin et al., 2012).

Pratyaastha

Proposes a novel method for assigning SDN

switches and partitions of SDN application state to

distributed controller instances (Krishnamurthy,

Chandrabose, & Gember-Jacobson, 2014)

DISCO

Proposed an open and extensible distributed SDN

control plane able to deal with the distributed and

heterogeneous properties of modern overlay

networks and WAN (Phemius, Bouet, & Leguay,

2014)

Kandoo

Proposed a hierarchical model of distributed

controllers, i.e. root controller and local controllers

(Hassas Yeganeh & Ganjali, 2012)

ONOS
Propose the distributed architecture for high

availability and scale-out SDN (Berde et al., 2014)

ODL SDNi
Propose an application that can connects multiple

controllers in different domains (Jahan et al., 2014)

IETF SDNi
Proposed an IETF draft to connect SDN domains

using an automated system (Yin et al., 2012).

West-East Bridge
Proposes an information exchange platform for

inter-domain SDN peering (Lin et al., 2015),

Novel SDN Multi-

Domain

Architecture

Proposed multi-domain SDN architecture and

defined an interconnection protocol (Helebrandt &

Kotuliak, 2014).

Fig. 7 ONOS Architecture (Berde et al., 2014)

Network ViewNetwork View

OpenFlow
Manager

(Floodlight)

Distributed Key-Value Store

ONOS Graph Abstraction

Application

OpenFlow
Manager

(Floodlight)

OpenFlow
Manager

(Floodlight)

Application Application

Network View API

D
is

tr
ib

u
te

d
 R

eg
is

tr
y

Ev
en

t
N

o
ti

fi
ca

ti
o

n

to one or a subset of these slices. A multi-controller instance

is developed by using an inter-SDN controller

communication application called ODL-SDNi (Software

Defined Network interface), which includes the SDNi

Aggregator, a Northbound SDNi plugin that acts as an

aggregator for collecting network information to be shared

across federated SDN controllers, SDNi RestAPI, that is used

to fetch the network information from the Northbound plugin,

and SDNi Wrapper, which is responsible for collecting and

sharing information to/from federated controllers. The ODL-

SDNi architecture is shown in Fig. 9.

Kandoo (Hassas Yeganeh & Ganjali, 2012) is another

distributed control plane design, which has a hierarchical

architecture. Kandoo employs two layers of controllers, i.e.

root controller (top layer) and local controller (bottom layer).

Kandoo enables network operators to deploy local controllers

on demand and relieve the load on the top layer controller,

which is the only potential bottleneck regarding scalability.

Apart from the limited control plane architecture support

for multi-domain SDN, the SDN interface, especially the

Eastbound/Westbound interface, plays a significant role.

SDN interconnect (SDNi), was among the first to connect

SDN domains using an automated system (Yin et al., 2012).

However, the SDNi draft form that was placed on the IETF

data tracker in mid-2012 expired in December 2012; no

further work was done, and it appears to have been

abandoned. Another approach to the interconnection of SDN

controllers is the West-East Bridge (Lin et al., 2015), which

is an ongoing project. It has already successfully

implemented an international test bed that connects

heterogeneous controllers across four SDN domains

(CERNET, CSTNET, Internet2, and SURFnet). Lastly,

(Helebrandt & Kotuliak, 2014) proposed a novel multi-

domain SDN architecture and defined an interconnection

protocol. However, little information is currently available in

the literature.

Hence, there are two implementation approaches for

completely distributed controllers: the horizontal approach

and the vertical approach, as shown in Fig. 8. In horizontally

distributed controllers, multiple controllers are organized in a

flat control plane where each one governs a subset of the

network switches. This can be done either with state

replication or without state replication. Vertically distributed

controllers are a hierarchical control plane where the

controller functionality is organized vertically. In this

deployment model, control tasks are distributed to different

controllers depending on selected criteria such as network

view and locality requirements. Thus, local events are

handled by the controller that is lower in the hierarchy, and

global events are handled at the higher level.

4. Multi-Domain SDN Challenges

Despite the ongoing work being done on distributed SDN

architectures and the SDN controller interconnection, several

challenges remain. We will discuss some of those challenges

and future works of multi-domain SDN below.

4.1. Controller Scalability

As mentioned in the previous section, the logically

centralized control plane typically consists of multiple

distributed controllers. The distributed controllers help to

improve the number of flow requests handled per controller

and to reduce the flow request response time. The logically

centralized control plane architecture aims to maintain a

consistent global network view and the controllers share

information through a state synchronization mechanism

which can overload the network due to the frequent changes

that occur in the network. To improve scalability, the state

synchronization load should be reduced to maintain a

consistent information state among controllers.

A Load Variance-based Synchronization (LVS) method is

proposed in (Guo et al., 2014) to cope with this challenge.

LVS-based schemes conduct effective state synchronization

among controllers only when the load of a specific network

or domain exceeds a certain threshold. Therefore, the LVS

can effectively reduce the synchronization overhead among

controllers.

Another approach to achieve a global network view was

proposed that utilizes local algorithms in a distributed control

plane (Schmid & Suomela, 2013). The improvement is based

on the reasoning that each controller needs to communicate

only with its local neighbors, within a predefined number of

hops. Accordingly, the controller load can be reduced and

load balance among neighbouring controllers is achieved.

4.2. Controller Placement

The distributed control plane leads to open challenges,

such as determining the number of controllers required. The

Fig. 9 OpenDaylight SDNi (Jahan, Shaik, Kotaru, & Kuppili, 2014)

Data Plane Elements

Southbound Interfaces & Protocol
Plugins

Controller Platform

Basic
Network
Service

Functions

Service Abstraction Layer (SAL)

SDNi
Aggregator

ODL API (REST) SDNi RestAPI

SDNi
Wrapper

Session Establish

East/West Interface

SDNi
Wrapper

Data Plane Elements

Southbound Interfaces & Protocol
Plugins

Controller Platform

Basic
Network
Service

Functions

Service Abstraction Layer (SAL)

SDNi
Aggregator

ODL API (REST)SDNi RestAPI

Fig. 8 Approaches in Distributed SDN Controller

SDN Controller SDN Controller SDN Controller

SDN Controller

Network Network Network

SDN Controller SDN Controller SDN Controller

Network Network Network

(a) Vertical Approach

(b) Horizontal Approach

number of controllers and their location has a direct impact

on SDN performance. Characterization of the placement

problem of controllers was formally introduced by Heller et

al. (Heller et al., 2012). The authors consider the optimal

controller placement problem in an attempt to minimize the

propagation delay between controllers or controller-switch in

the WAN. This work identifies open issues for future work.

Other work undertaken by (Jimenez et al., 2014) defines

the principles for designing a scalable control plane so as to

address the controller placement problem. They use an

algorithm called k-Critica to find the minimum number of

controllers and their locations to build a robust control

network topology.

However, the methods discussed focus on static networks

and do not support dynamic networks. In (Bari et al., 2013),

a framework for dynamically deploying multiple controllers

in the WAN is proposed. According to the network status, the

number of required active and inactive controllers and their

locations could be identified, and this work could effectively

decrease the set-up time for traffic flows.

4.3. Multi-Domain SDN Communication Protocol

Communication between multiple controllers utilizing the

eastbound/westbound interface is the important key

component of multi-domain SDN architecture. Despite

alternate approaches being proposed, the logical approach for

IP-based computer networking is to use existing inter-domain

protocols, as there remains a requirement to communicate

with legacy network devices.

The peering between autonomous systems or domains in

current global networks supporting the Internet typically

utilize the Border Gateway Protocol (BGP). An comparative

experiment highlighting the use of BGP in multi-domain

SDN and an ordinary IP network is presented in (Wibowo &

Gregory, 2016). This comparative study suggested BGP

works in both type of network and despite its mediocre

operational performance compared to existing IP multi-

domain networks, SDN propounds the flexibility and more

advance network management interaction. Therefore,

enhancements in the eastbound/westbound interface to

accommodate improved multi-domain solutions would be

beneficial and provide an overall performance improvement

for multi-domain SDN communication.

4.4. Discussion and Future Work

SDN offers improved control of a network by introducing

a programmability capability and the separation of the control

plane from the data plane. The potential benefits of these

features are enhanced configuration, improved performance,

and innovation in future network architecture design. With its

ability to gather the instantaneous network status, SDN

allows for the real-time centralized control of a network

based on both the instantaneous network status and user-

defined policies. This leads to benefits in optimizing network

configurations and improving network performance. The

potential benefit of SDN is further evidenced by the fact that

SDN offers a convenient platform for the development of

new techniques and encourages innovative network design,

attributed to its programmability and the ability to define

isolated virtual networks via the control plane. In addition to

the benefits described, SDN facilitates virtualization, device

configuration, and troubleshooting. The ONF describe

several use cases for SDN such as campus networks, data

centers, and Cloud computing.

This paper has provided a review of the SDN architecture

for multi-domain networks and examines the significant work

being done in the area of distributed SDN controller

architecture supporting these networks. For the carriage

service provider, a multi-domain SDN makes it possible to

have optimum Capital Expenditure (Capex), and to reduce

Operational Expenditure (Opex) while operating a network

that might comprise both national and international networks.

However, several issues still need to be tackled to improve

the development and use of multi-domain SDN, especially in

carriage service provider networks.

The horizontal and vertical approaches in a distributed

SDN control plane can support multi-domain SDN. From the

perspective of carriage service providers, factors such as

network cost, QoS, and network performance still need to be

analyzed. Scalability problems should also be studied, and

this is an area of current research. The location and the

number of controllers also significantly affects network

performance. The coordination between controllers is an

essential mechanism that warrants investigation. The

Eastbound/Westbound interface still requires more work to

find an efficient means of communication between SDN

domains. An increase in the number of efficient interfaces

will significantly enhance SDN development. Controller

security is an important issue since attacks on the controllers

could compromise the entire network, which spells disaster

for a carriage service provider. The issues of controller

security and the techniques to secure communication between

controllers and controller switches are major issues that

should be tackled in future work.

5. Conclusions

This paper provides a survey of the research literature

pertaining to various approaches for a multi-domain SDN

architecture. A description of the SDN architecture and its

major elements, including OpenFlow, is provided as well as

a comparative guide to selected controllers and their features.

We classified the centralized and distributed SDN models,

which leads to our understanding of the current status of

research on multi-domain SDN. The key challenges that

affect performance including scalability, number and

placement of the controllers has been discussed.

As SDN is beginning to attract the attention of carriage

service providers, the need for a multi-domain SDN solution,

with scalability support, is one of the critical challenges.

From the perspective of carriage service providers, research

related to multi-domain SDN, including a comparative

analysis of approaches to network cost, QoS and

performance, will be very beneficial. Challenges remain

including security, interoperability, and reliability.

REFERENCES

Ahmed, R., & Boutaba, R. (2014). Design considerations for

managing wide area software defined networks.

Communications Magazine, IEEE, 52(7), 116-123. doi:

10.1109/MCOM.2014.6852092

Alexander, D. S., Arbaugh, W. A., Hicks, M. W., Kakkar, P.,

Keromytis, A. D., Moore, J. T., . . . Smith, J. M. (1998).

The SwitchWare active network architecture. Network,

IEEE, 12(3), 29-36. doi: 10.1109/65.690959

Award-winning Software-defined Networking NEC

ProgrammableFlow® Networking Suite. (2013).

Retrieved from:

http://www.necam.com/docs/?id=67c33426-0a2b-4b87-

9a7a-d3cecc14d26a

Bari, M. F., Roy, A. R., Chowdhury, S. R., Zhang, Q., Zhani, M. F.,

Ahmed, R., & Boutaba, R. (2013). Dynamic controller

provisioning in software defined networks. Paper

presented at the Network and Service Management

(CNSM), 2013 9th International Conference on.

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide,

T., . . . Snow, W. (2014). ONOS: towards an open,

distributed SDN OS. Paper presented at the Proceedings

of the third workshop on Hot topics in software defined

networking.

Big Cloud Fabric: Hyperscale Networking for All. (2014). Retrieved

from: http://go.bigswitch.com/rs/974-WXR-

561/images/Big%20Cloud%20Fabric%20Data%20Sheet

%203.0_WEB.pdf?_ga=1.231291420.225344052.14406

43037

Braun, W., & Menth, M. (2014). Software-Defined Networking

using OpenFlow: Protocols, applications and architectural

design choices. Future Internet, 6(2), 302-336.

Brocade Vyatta Controller. (2015). Retrieved from:

http://www.brocade.com/content/brocade/en/backend-

content/pdf-

page.html?http://www.brocade.com/content/dam/commo

n/documents/content-types/datasheet/brocade-vyatta-

controller-ds.pdf

Cai, Z. (2011). Maestro: Achieving scalability and coordination in

centralizaed network control plane. ProQuest, UMI

Dissertations Publishing.

Campbell, A. T., Katzela, I., Miki, K., & Vicente, J. (1999). Open

signaling for ATM, internet and mobile networks

(OPENSIG'98). SIGCOMM Comput. Commun. Rev.,

29(1), 97-108. doi: 10.1145/505754.505762

Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., &

Shenker, S. (2007). Ethane: taking control of the

enterprise. Paper presented at the ACM SIGCOMM

Computer Communication Review.

Casado, M., Garfinkel, T., Akella, A., Freedman, M. J., Boneh, D.,

McKeown, N., & Shenker, S. (2006). SANE: a protection

architecture for enterprise networks. Paper presented at

the Proceedings of the 15th conference on USENIX

Security Symposium - Volume 15, Vancouver, B.C.,

Canada.

Cisco, C. V. N. I. (2015). Cisco Visual Networking Index: Forecast

and Methodology, 2014-2019. Cisco Public Information.

Cisco Open SDN Controller 1.1. (2015). Retrieved from:

http://www.cisco.com/c/en/us/products/collateral/cloud-

systems-management/open-sdn-controller/datasheet-c78-

733458.pdf

Contrail Architecture. (2013). Retrieved from:

http://www.juniper.net/assets/us/en/local/pdf/whitepaper

s/2000535-en.pdf

Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma,

P., & Banerjee, S. (2011). DevoFlow: scaling flow

management for high-performance networks. ACM

SIGCOMM Computer Communication Review, 41(4),

254-265.

Dabbagh, M., Hamdaoui, B., Guizani, M., & Rayes, A. (2015).

Software-defined networking security: pros and cons.

IEEE Communications Magazine, 53(6), 73-79. doi:

10.1109/MCOM.2015.7120048

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., & Kompella, R.

(2013). Towards an elastic distributed SDN controller.

Paper presented at the ACM SIGCOMM Computer

Communication Review.

Egilmez, H. E. (2014). Distributed QoS architectures for multimedia

streaming over software defined networks. Multimedia,

IEEE Transactions on, 16(6), 1597-1609.

Erickson, D. (2013). The beacon openflow controller. Paper

presented at the Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined

networking, Hong Kong, China.

http://delivery.acm.org/10.1145/2500000/2491189/p13-

erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBL

IC&key=65D80644F295BC0D%2E124032AC6F25F23

9%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&

CFID=706563586&CFTOKEN=26197242&__acm__=1

440464188_b9326b56763b433afeb5067a552ee140

http://delivery.acm.org/10.1145/2500000/2491189/p13-

erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBL

IC&key=65D80644F295BC0D%2E124032AC6F25F23

9%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&

CFID=706563586&CFTOKEN=26197242&__acm__=1

440464192_8016844fb178ce34c779b8a35c8eb031

Farhady, H., Lee, H., & Nakao, A. (2015). Software-Defined

Networking: A survey. Computer Networks, 81, 79.

Floodlight, S. OpenFlow Controller. Web: https://github.

com/floodlight/floodlight.

Foundation, O. N. (2012). Software-defined networking: The new

norm for networks. ONF White Paper.

Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford,

J., Xie, G., . . . Zhang, H. (2005). A clean slate 4D

approach to network control and management. ACM

SIGCOMM Computer Communication Review, 35(5), 41-

54.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown,

N., & Shenker, S. (2008). NOX: Towards an operating

system for networks. ACM SIGCOMM Comp. Commun.

Rev., 38(3), 105-110.

Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S., & Chao, H. J.

(2014). Improving the performance of load balancing in

software-defined networks through load variance-based

synchronization. Computer Networks, 68, 95-109.

Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D. C., & Gayraud, T.

(2014). Software-Defined Networking: Challenges and

research opportunities for Future Internet. Computer

Networks, 75, Part A, 453-471. doi:

http://dx.doi.org/10.1016/j.comnet.2014.10.015

Haleplidis, E., Hadi Salim, J., Halpern, J. M., Hares, S., Pentikousis,

K., Ogawa, K., . . . Koufopavlou, O. (2015). Network

Programmability With ForCES. Communications Surveys

& Tutorials, IEEE, 17(3), 1423-1440. doi:

10.1109/COMST.2015.2439033

Hassas Yeganeh, S., & Ganjali, Y. (2012). Kandoo: a framework for

efficient and scalable offloading of control applications.

Paper presented at the Proceedings of the first workshop

on Hot topics in software defined networks.

Helebrandt, P., & Kotuliak, I. (2014, 4-5 Dec. 2014). Novel SDN

multi-domain architecture. Paper presented at the

Emerging eLearning Technologies and Applications

(ICETA), 2014 IEEE 12th International Conference on.

Heller, B., Sherwood, R., & McKeown, N. (2012). The controller

placement problem. Paper presented at the Proceedings of

the first workshop on Hot topics in software defined

networks.

HP VAN SDN Controller Software. Retrieved from:

http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-

9827ENW.pdf

Huawei IP SDN Controller Open and Application. (2013). Retrieved

from: http://www.euchina-fire.eu/wp-

content/uploads/2015/01/Huawei-IP-SDN-Controller-

Open-and-ApllicationV1-2.pdf

IBM Programmable Network Controller V3.0. (2012).

Ishii, S., Kawai, E., Takata, T., Kanaumi, Y., Saito, S., Kobayashi,

K., & Shimojo, S. (2012, 12-14 Dec. 2012). Extending the

http://www.necam.com/docs/?id=67c33426-0a2b-4b87-9a7a-d3cecc14d26a
http://www.necam.com/docs/?id=67c33426-0a2b-4b87-9a7a-d3cecc14d26a
http://go.bigswitch.com/rs/974-WXR-561/images/Big%20Cloud%20Fabric%20Data%20Sheet%203.0_WEB.pdf?_ga=1.231291420.225344052.1440643037
http://go.bigswitch.com/rs/974-WXR-561/images/Big%20Cloud%20Fabric%20Data%20Sheet%203.0_WEB.pdf?_ga=1.231291420.225344052.1440643037
http://go.bigswitch.com/rs/974-WXR-561/images/Big%20Cloud%20Fabric%20Data%20Sheet%203.0_WEB.pdf?_ga=1.231291420.225344052.1440643037
http://go.bigswitch.com/rs/974-WXR-561/images/Big%20Cloud%20Fabric%20Data%20Sheet%203.0_WEB.pdf?_ga=1.231291420.225344052.1440643037
http://www.brocade.com/content/brocade/en/backend-content/pdf-page.html?http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vyatta-controller-ds.pdf
http://www.brocade.com/content/brocade/en/backend-content/pdf-page.html?http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vyatta-controller-ds.pdf
http://www.brocade.com/content/brocade/en/backend-content/pdf-page.html?http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vyatta-controller-ds.pdf
http://www.brocade.com/content/brocade/en/backend-content/pdf-page.html?http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vyatta-controller-ds.pdf
http://www.brocade.com/content/brocade/en/backend-content/pdf-page.html?http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vyatta-controller-ds.pdf
http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/datasheet-c78-733458.pdf
http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/datasheet-c78-733458.pdf
http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/datasheet-c78-733458.pdf
http://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000535-en.pdf
http://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000535-en.pdf
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464188_b9326b56763b433afeb5067a552ee140
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464188_b9326b56763b433afeb5067a552ee140
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464188_b9326b56763b433afeb5067a552ee140
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464188_b9326b56763b433afeb5067a552ee140
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464188_b9326b56763b433afeb5067a552ee140
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464188_b9326b56763b433afeb5067a552ee140
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464192_8016844fb178ce34c779b8a35c8eb031
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464192_8016844fb178ce34c779b8a35c8eb031
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464192_8016844fb178ce34c779b8a35c8eb031
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464192_8016844fb178ce34c779b8a35c8eb031
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464192_8016844fb178ce34c779b8a35c8eb031
http://delivery.acm.org/10.1145/2500000/2491189/p13-erickson.pdf?ip=131.170.90.6&id=2491189&acc=PUBLIC&key=65D80644F295BC0D%2E124032AC6F25F239%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=706563586&CFTOKEN=26197242&__acm__=1440464192_8016844fb178ce34c779b8a35c8eb031
https://github/
http://dx.doi.org/10.1016/j.comnet.2014.10.015
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-9827ENW.pdf
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-9827ENW.pdf
http://www.euchina-fire.eu/wp-content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-ApllicationV1-2.pdf
http://www.euchina-fire.eu/wp-content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-ApllicationV1-2.pdf
http://www.euchina-fire.eu/wp-content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-ApllicationV1-2.pdf

RISE controller for the interconnection of RISE and

OS3E/NDDI. Paper presented at the Networks (ICON),

2012 18th IEEE International Conference on.

Jahan, R., Shaik, S., Kotaru, K., & Kuppili, D. C. (2014). ODL-

SDNi Retrieved December, 2016, from

https://wiki.opendaylight.org/view/ODL-

SDNi_App:Main

Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014).

Software defined networking: State of the art and research

challenges. Computer Networks, 72, 74-98. doi:

http://dx.doi.org/10.1016/j.comnet.2014.07.004

Jarraya, Y., Madi, T., & Debbabi, M. (2014). A Survey and a

Layered Taxonomy of Software-Defined Networking.

Communications Surveys & Tutorials, IEEE, 16(4), 1955-

1980. doi: 10.1109/COMST.2014.2320094

Jimenez, Y., Cervello-Pastor, C., & Garcia, A. J. (2014, 2-4 June

2014). On the controller placement for designing a

distributed SDN control layer. Paper presented at the

Networking Conference, 2014 IFIP.

Jinke, Y., Ying, W., Keke, P., Shujuan, Z., & Jiacong, L. (2016, 5-

7 Oct. 2016). A load balancing mechanism for multiple

SDN controllers based on load informing strategy. Paper

presented at the 2016 18th Asia-Pacific Network

Operations and Management Symposium (APNOMS).

Karakus, M., & Durresi, A. (2016, 23-25 March 2016). A Scalability

Metric for Control Planes in Software Defined Networks

(SDNs). Paper presented at the 2016 IEEE 30th

International Conference on Advanced Information

Networking and Applications (AINA).

Kaur, R., Singh, A., Singh, S., & Sharma, S. (2016, 3-5 March

2016). Security of software defined networks: Taxonomic

modeling, key components and open research area. Paper

presented at the 2016 International Conference on

Electrical, Electronics, and Optimization Techniques

(ICEEOT).

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L.,

Zhu, M., . . . Hama, T. (2010). Onix: A Distributed

Control Platform for Large-scale Production Networks.

Paper presented at the OSDI.

Kotronis, V., Gämperli, A., & Dimitropoulos, X. (2015). Routing

centralization across domains via SDN: A model and

emulation framework for BGP evolution. Computer

Networks, 92, Part 2, 227-239. doi:

http://dx.doi.org/10.1016/j.comnet.2015.07.015

Kreutz, D., Ramos, F. M. V., Esteves Verissimo, P., Esteve

Rothenberg, C., Azodolmolky, S., & Uhlig, S. (2015).

Software-Defined Networking: A Comprehensive

Survey. Proceedings of the IEEE, 103(1), 14-76. doi:

10.1109/JPROC.2014.2371999

Krishnamurthy, A., Chandrabose, S. P., & Gember-Jacobson, A.

(2014). Pratyaastha: an efficient elastic distributed SDN

control plane. Paper presented at the Proceedings of the

third workshop on Hot topics in software defined

networking, Chicago, Illinois, USA.

http://dl.acm.org/citation.cfm?doid=2620728.2620748

Kubo, R., Fujita, T., Agawa, Y., & Suzuki, H. (2014). Ryu SDN

Framework - Open-source SDN Platform Software. 12.

Retrieved from: https://www.ntt-

review.jp/archive/ntttechnical.php?contents=ntr201408fa

4.pdf&mode=show_pdf

Lin, P., Bi, J., Wolff, S., Wang, Y., Xu, A., Chen, Z., . . . Lin, Y.

(2015). A west-east bridge based SDN inter-domain

testbed. IEEE Communications Magazine, 53(2), 190-

197. doi: 10.1109/MCOM.2015.7045408

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,

Peterson, L., Rexford, J., . . . Turner, J. (2008). OpenFlow:

enabling innovation in campus networks. ACM

SIGCOMM Computer Communication Review, 38(2), 69-

74.

Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014).

Opendaylight: Towards a model-driven sdn controller

architecture. Paper presented at the Proceeding of IEEE

International Symposium on a World of Wireless, Mobile

and Multimedia Networks 2014.

Nguyen, T. A., Eom, T., An, S., Park, J. S., Hong, J. B., & Kim, D.

S. (2015, 18-20 Nov. 2015). Availability Modeling and

Analysis for Software Defined Networks. Paper presented

at the 2015 IEEE 21st Pacific Rim International

Symposium on Dependable Computing (PRDC).

Nunes, B. A. A., Nguyen, X.-N., Turletti, T., Mendonca, M., &

Obraczka, K. (2014). A survey of software-defined

networking: Past, present, and future of programmable

networks. IEEE Communications Surveys and Tutorials,

16(3), 1617-1634. doi:

10.1109/SURV.2014.012214.00180

OneController™ OpenDaylight-based SDN Controller. (2015).

Retrieved from:

http://learn.extremenetworks.com/rs/extreme/images/On

eController-DS.pdf

Phemius, K., Bouet, M., & Leguay, J. (2014). Disco: Distributed

multi-domain sdn controllers. Paper presented at the

Network Operations and Management Symposium

(NOMS), 2014 IEEE.

The Real-Time Cloud. (2014). Retrieved from:

http://www.ericsson.com/res/docs/whitepapers/wp-sdn-

and-cloud.pdf

Saikia, D., & Malik, N. (2015). An Introduction to Open MUL SDN

Suite.

Sallahi, A., & St-Hilaire, M. (2015). Optimal Model for the

Controller Placement Problem in Software Defined

Networks. IEEE Communications Letters, 19(1), 30-33.

doi: 10.1109/LCOMM.2014.2371014

Schmid, S., & Suomela, J. (2013). Exploiting locality in distributed

sdn control. Paper presented at the Proceedings of the

second ACM SIGCOMM workshop on Hot topics in

software defined networking.

Shuhao, L., & Baochun, L. (2015). On scaling software-Defined

Networking in wide-area networks. Tsinghua Science and

Technology, 20(3), 221-232. doi:

10.1109/TST.2015.7128934

Singla, A., & Rijsman, B. (2013). OpenContrail Architecture

Document. 2015, from

http://www.opencontrail.org/opencontrail-architecture-

documentation/

Tootoonchian, A., & Ganjali, Y. (2010). HyperFlow: A distributed

control plane for OpenFlow. Paper presented at the

Proceedings of the 2010 internet network management

conference on Research on enterprise networking.

Vizarreta, P., Machuca, C. M., & Kellerer, W. (2016, 13-15 Sept.

2016). Controller placement strategies for a resilient SDN

control plane. Paper presented at the 2016 8th

International Workshop on Resilient Networks Design

and Modeling (RNDM).

Voellmy, A., & Wang, J. (2012). Scalable software defined network

controllers. Paper presented at the Proceedings of the

ACM SIGCOMM 2012 conference on Applications,

technologies, architectures, and protocols for computer

communication.

Wibowo, F. X. A., & Gregory, M. A. (2016). Software Defined

Networking Properties in Multi-Domain Networks. Paper

presented at the International Telecommunication

Networks and Applications Conference 2016, Dunedin,

New Zealand.

Xia, W., Wen, Y., Foh, C., Niyato, D., & Xie, H. (2015). A Survey

on Software-Defined Networking. IEEE Communications

Surveys & Tutorials, 17(1), 27-51. doi:

10.1109/COMST.2014.2330903

Yin, H., Xie, H., Tsou, T., Lopez, D., Aranda, P., & Sidi, R. (2012).

SDNi: A Message Exchange Protocol for Software

https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
http://dx.doi.org/10.1016/j.comnet.2014.07.004
http://dx.doi.org/10.1016/j.comnet.2015.07.015
http://dl.acm.org/citation.cfm?doid=2620728.2620748
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_pdf
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_pdf
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_pdf
http://learn.extremenetworks.com/rs/extreme/images/OneController-DS.pdf
http://learn.extremenetworks.com/rs/extreme/images/OneController-DS.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-sdn-and-cloud.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-sdn-and-cloud.pdf
http://www.opencontrail.org/opencontrail-architecture-documentation/
http://www.opencontrail.org/opencontrail-architecture-documentation/

Defined Networks (SDNS) across Multiple Domains.

2015, from https://datatracker.ietf.org/doc/draft-yin-sdn-

sdni/

Yu, J., & Al Ajarmeh, I. (2010, 7-13 March 2010). An Empirical

Study of the NETCONF Protocol. Paper presented at the

Networking and Services (ICNS), 2010 Sixth

International Conference on.

Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable

flow-based networking with DIFANE. ACM SIGCOMM

Computer Communication Review, 40(4), 351-362.

https://datatracker.ietf.org/doc/draft-yin-sdn-sdni/
https://datatracker.ietf.org/doc/draft-yin-sdn-sdni/

