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Abstract— A key focus of the transition to next generation 

computer networking is to improve management of network 

services thereby enhancing traffic control and flows while 

simplifying higher-level functionality. Software-defined 

networking (SDN) is an approach that is being developed to 

facilitate next generation computer networking by decoupling 

the traffic control system from the underlying traffic 

transmission system. SDN offers programmability in network 

services by separating the control plane from the data plane 

within network devices and providing programmability for 

network services. Enhanced connectivity services across the 

global digital network require a multi-domain capability. This 

paper presents a review of the current research status in SDN 

and multi-domain SDN, focusing on OpenFlow protocol, and its 

future related challenges.  

Index Terms— Software Defined Networking, Networking, 

OpenFlow, Controller, East-West, Multi-domain 

1. Introduction 

Software Defined Networking (SDN) concepts are moving 

from the data centre to the enterprise networks and Wide Area 

Networks (WAN) presenting a number of challenges. 

Telecommunication network growth and complexity 

continues unabated and people and machines can 

communicate with each other through various network types 

utilizing a range of technologies. Global IP Traffic is 

predicted to increase from 59.9 Exabytes per month in 2014 

to 168.4 Exabytes per month in 2019 (Cisco, 2015). 

Smartphone and tablet use accounted for 40% of the global 

IP traffic in 2014 and is expected to rise to 67% in 2019. This 

phenomenon has led to the need for a high capacity, reliable 

and yet cost-effective network that can carry increasing 

traffic volume, with dynamic and distinct applications for 

each entity. 

The global digital networks are currently struggling to 

meet the increasing traffic volumes, and the shift from 

traditional enterprise networks to distributed Cloud 

Computing exacerbates this trend. The current network 

architectures were based on a vertically integrated approach 

with discrete semi-autonomous devices, which limit the 

potential for flexible flow management and network service 

innovation.  

Service and network providers face challenges in 

operating networks, which consist of a vast number of 

network devices, for example, switches, routers, and 

gateways. IT departments must configure thousands of 

devices in order to implement network-wide services, which 

will result in difficulty to maintain Quality of Service (QoS), 

security and other policies. Current networks are built based 

on the monolithic or vertical approach, which integrates the 

control and forwarding functionality in a box, with vendor 

system standardization being a secondary consideration. The 

different vendor designs and construction approaches limit 

interoperability and have a detrimental effect on flexible 

network service innovation. 

Global digital networks are evolving to cope with 

increasing traffic volumes and connected devices. There is a 

need for next generation network management and control 

systems that provide flexibility and device programmability, 

to facilitate dynamic updates and the introduction of new 

network services without hardware replacement. SDN offers 

one approach in providing “programmable networks” and 

vendors have generally adopted SDN as the next evolution of 

computer networking. SDN decouples the control plane from 

the forwarding plane in network devices and carries out 

traffic management utilizing a hierarchy of systems known as 

controllers (Foundation, 2012). Controllers connect to 

network switching and routing devices using open interfaces 

and protocols, e.g. OpenFlow (McKeown et al., 2008).  

Scalability of the network has been one of the active and 

contentious topics in SDN. There are two common 

approaches in SDN controller implementation to improve the 

scalability, which includes centralised and distributed 

approaches. A centralised model is the simplest one, and it 

relies on the increase performance of standard controller. 

However, it introduces a single point of failure (SPOF) to the 

network. Distributed controller model eliminates SPOF and 

improves the scalability of the network, but it needs a method 

to coordinate all the controllers which could be in different 

domain.  

A domain in SDN can be referred to an SDN 

administrative domain. Multi-domain SDN requires 

interconnection of controllers in different domains to 

exchange information across domain. Multi-domain SDN 

will enable the interconnection of global SDN domains, 

introduce interoperability between domains, and provide 

better provisioning of cross domain services.  Currently, 

some ongoing researches are being done in multi-domain 

SDN, such as its architectures (Helebrandt & Kotuliak, 

2014), distributed multi-domain controller architecture 

(Phemius et al., 2014), inter-domain communication platform 

(Lin et al., 2015) and application (Jahan et al., 2014), and 

routing mechanism (Kotronis, Gämperli, & Dimitropoulos, 

2015).  

Several surveys have studied SDN from different points of 

view. Jarraya, Madi, and Debbabi (2014) had compiled a 

survey on SDN providing the first taxonomy to classify SDN 

research works. Nunes, Nguyen, Turletti, Mendonca, and 

Obraczka (2014) studied the state of the art of programmable 

network with the emphasis on SDN, along with its 

implementation alternatives, and its promising research 

directions. Another survey by Farhady, Lee, and Nakao 

(2015) successfully present deep understanding of all three 

SDN layers. Recently, survey paper by Kreutz et al. (2015) 

presented a comprehensive survey on SDN which covered 

almost all aspect of SDN, starting from its definition, 



architecture and applications, until the current ongoing 

research efforts and challenges. However, those surveys do 

not present or only mentioned at very high level the multi-

domain implementation aspects of SDN. Therefore, this 

article focuses on the multi-domain aspect of SDN.  

In this paper, our aim is to provide an overview of the 

recent developments in multi-domain SDN (using academic 

and industry sources), and analyse the main research issues 

and approaches for future multi-domain SDN developments. 

The key contributions of this paper are: 

 a tutorial on SDN and OpenFlow that includes a 

discussion of their origins, architecture and principal 

components. 

 a review of controller implementation, both open-source 

and commercial, and a table with a comparison of the 

controller features. 

 a review of current research into multi-domain SDN and 

the major challenges to be addressed by future research.  

The rest of this paper is organized as follows. In section 2, 

we present a brief overview of SDN, including its 

architecture and the OpenFlow protocol. Section 3 discuss the 

multi-domain implementation of SDN. in section 4, we 

present multi-domain SDN challenges and identify the future 

research in multi-domain SDN. Section 5 concludes the 

paper. 

2. Overview Software Defined Networking 

Existing networks were generally built with proprietary 

hardware and systems from a single vendor. This would lead 

to a vendor “lock in”, where it was difficult to shift to another 

vendor or to adopt multi-vendor solutions. The use of vendor 

specific network devices and systems often led to the 

organisation’s systems becoming tailored to match the 

intricacies of the vendor equipment and systems as illustrated 

in Fig.  1. Programmable networks, that permitted the 

separation of the control and data planes, were seen to be the 

solution to the vendor “lock in” problem and the introduction 

of low-cost white label SDN-enabled networking devices 

provided a more flexible approach that organizations are now 

beginning to exploit. Although programmable networking 

was first introduced in the late 1990s, SDN has 

revolutionized the shift to programmable networking and 

SDN has become the focus of next generation networks. 

2.1. SDN Background 

SDN has evolved over the past decade to provide a more 

flexible and dynamic networking architecture that 

incorporates improved support for management and network 

services. The SDN approach is for the management of traffic 

flows to be decoupled from the underlying infrastructure and 

systems that forward traffic. A standardized and open 

protocol was introduced to facilitate the separation of control 

and data planes. This protocol, known as OpenFlow, was 

developed to facilitate control traffic transfer between 

management systems, known as controllers, and the network 

devices, such as a switch, that forward data traffic. 

The development of SDN originated from the early work 

on programmable networking and the separation of control 

logic from the data transfer mechanism. There are two 

schools of thought regarding the concept of programmable 

networking including active networks and open signaling. 

However, the idea of decoupling the control logic from the 

data transfer mechanism emerged later, as a new architecture, 

to reduce the complexity of the distributed computations. 

2.1.1. Programmable Networks: Active Network and 

OPENSIG 

The active network concept was introduced in the mid-

1990s in an endeavor to control a network in real-time. Active 

networking introduced a method that permits packets flowing 

through the network to carry instructions to be executed at 

network nodes. The code carried within the packets alters the 

network operation either temporarily for an individual packet 

or for a stream of packets. In this approach, the network 

devices become a dynamically programmable environment 

that can be dynamically altered using the code carried by the 

packets, which differs from the rigidity of traditional 

networking (Farhady et al., 2015; Xia, Wen, Foh, Niyato, & 

Xie, 2015). 

Implementations of active networks include SwitchWare 

(Alexander et al., 1998) and conventional computer routing 

suites such as Click, XORP, Quagga, and BIRD (Xia et al., 

2015). With the active networking implementations, the 

operations and behavior of the network can be modified 

dynamically. Although the active networking approach 

offered a new paradigm by providing a more dynamic 

environment, there was only minor development of the 

control plane. The active networking approach placed the 

intelligence at the end points (which can be inferred to be 

computers and servers acting as smart devices) whilst 

utilizing enhanced switches and routers to execute and carry 

out limited tasks based on the instructions carried within 

packets traversing the network. Thus, in active networking, 

packets are entities that can determine or control how nodes 

manage packets and streams. 

In addition to the active networking approach introduced 

by the IP network community, another method known as 

Open Signalling (OPENSIG) was proposed by the 

telecommunication network community (Campbell, Katzela, 

Miki, & Vicente, 1999). The OPENSIG suggested to provide 

an access to network hardware by means of open and 

programmable network interfaces. This idea was motivated 

by the need to separate the communication hardware and 

control software. It was a thought-provoking idea due to the 

vertically integrated architecture of network devices (e.g. 

routers and switches). OPENSIG suggested that the well-

defined programmable network interfaces will lead to a 
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distributed programming environment which provides open 

access to switches and routers and facilitates the entry into 

the telecommunication software market of third-party 

software providers. 

2.1.2. Separation of Data and Control Plane 

In parallel with the programmable networking effort, 

innovations have emerged on the separation of the control 

and data planes. The aim of the innovations was to develop 

open and standardized interfaces along with a logically 

centralized network control model. The innovations were 

developed by a project called ForCES (Haleplidis et al., 

2015) conducted by Internet Engineering Task Force (IETF). 

This project provided improvements to networking with the 

use of distributed packet processing network elements. Other 

approaches to developing a centralized network control 

model were proposed including Routing Control Platform 

(RCP), Path Computation Element (PCE) and Intelligent 

Route Service Control Protocol (IRSCP). These proposals 

were focused on improving network operation and the need 

for coexistence and backward compatibility prevented them 

from being deployed immediately (Jarraya et al., 2014). 

Other initiative, commenced in the period of 1990, 

included the Devolved Control of Asynchronous Transfer 

Mode (ATM) Networks (DCAN), which emerged from the 

scalable control and management objective for ATM 

networks. This initiative suggested the removal the control 

and management functions from ATM based network 

devices. Those functions should be assigned to external 

entities, dedicated to that function. DCAN also assumed a 

simple protocol between the manager and the network, which 

aligns with today’s OpenFlow protocol (Nunes et al., 2014). 

In 2004, the 4D project (Greenberg et al., 2005) introduced 

a clean slate design, which stressed the separation of the 

routing decision logic and the protocols used to pass 

messages between network elements. The proposal gave a 

global view of the network with a decision plane, serviced by 

a dissemination and discovery plane used to control the data 

traffic forwarding. Later, these ideas provided the inspiration 

for advanced research into NOX, the first SDN controller, 

which in the context of an OpenFlow-enabled network is also 

known as an ‘operating system for networks’. 

2.1.3. Other Pre-SDN Projects 

The IETF Network Configuration Working Group 

proposed NETCONF in 2006, as a management protocol for 

network device configuration. The protocol carried messages 

to network devices through an exposed API that supported 

extensible configuration data. NETCONF had efficiency, 

effectiveness, and security advantages when compared to the 

Simple Network Management Protocol (SNMP), a popular 

network management protocol, especially when managing 

complex and diverse network environments (J. Yu & Al 

Ajarmeh, 2010). SNMP and NETCONF are both useful 

management tools that can be used in parallel on hybrid 

switches that support programmable networking. 

Other protocols that preceded OpenFlow were the SANE 

(Casado et al., 2006) and Ethane projects (Casado et al., 

2007) completed in 2006. They defined a new architecture for 

enterprise networks that utilized a centralized controller to 

manage policy and security. Identity-based access control 

was its significant feature. Like SDN, Ethane used two 

components: a controller and Ethane switch. The controller 

decides whether a packet should be forwarded, while the 

switch connects to the controller via a secure channel and 

holds a flow table providing the foundation for SDN. 

2.2. SDN Standardization Efforts 

To date, several standardization organizations have 

focused on SDN and some SDN-related standards have been 

published, as shown in Table 1. There is ongoing work to 

define further SDN and associated technologies (Farhady et 

al., 2015; Hakiri, Gokhale, Berthou, Schmidt, & Gayraud, 

2014; Kreutz et al., 2015; Nunes et al., 2014; Xia et al., 2015). 

The Open Network Forum (ONF) released documentation 

on the current SDN Architecture, focusing on the OpenFlow 

protocol. The IETF with its Forwarding and Control Element 

Separation (ForCES) Working Group has focused on 

standardizing mechanisms, interfaces, and protocols 

targeting the centralization of network control and 

abstraction. The International Telecommunication Union-

Telecommunication Sector (ITU-T) has set up several Study 

Groups (SGs) which have developed SDN recommendations. 

A Joint Coordination Activity on SDN (JCA-SDN) was 

formed to coordinate the SDN standardization effort between 

groups.  

The Broadband Forum (BF) considered SDN and Network 

Function Virtualization (NFV) to be within the Technical 

Work Area of its Technical Committee Work in Progress and 

is currently investigating the migration and deployment of 

SDN and NFV-enabled implementations across all aspects of 

the broadband network. At the IEEE, the 802 LAN/MAN 

Standards Committee has recently initiated several activities 

to standardize SDN for access networks based on the IEEE 

802 infrastructure through the P802.1CF project, for both 

wired and wireless technologies to embrace new control 

interfaces. The Metro Ethernet Forum (MEF)’s aim in SDN 

was to define the service orchestration with APIs for existing 

networks. The Internet Research Task Force (IRTF) created 

the Software Defined Networking Research Group (SDNRG) 

to investigate SDN from its perspective with the goal of 

identifying alternate approaches and future research 

opportunities. 

The open source software community continues to work 

on controllers and networking stacks including 

OpenDaylight, OpenStack, and CloudStack. This effort aims 

to develop the basic building blocks to support SDN and NFV 

Table 1 

SDN Standardization Activities 

Standardization 

Organizations 
Scope of Work 

ONF 

SDN Architectures and its components, SDN 

interfaces, OpenFlow protocol extensions, 

OpenFlow Switch Specifications, OpenFlow 

Configuration and Management Protocol,  

IETF 
ForCES Protocol, SDN Architechture, OpenFlow 

interworking, Control Plane Requirements,  

ITU-T 

Signalling requirements using SDN technologies 

in Broadband Access Network, Functional 

architecture for SDN, SDN Control of Transport 

Network, and Security aspect in SDN   

Broadband Forum 
Requirements and impacts of deploying SDN in 

Broadband Networks 

IEEE Applicability of SDN to IEEE 802 infrastructure 

IRTF Prospection of SDN for the evolution of Internet 

MEF Service orchestration in Network as a Service 

 



implementations. For example, OpenDaylight is intended to 

be extensible and configurable to support potentially 

emerging SDN open standards e.g. OpenFlow, I2RS, 

VxLAN, PCEP. 

2.3. SDN Architecture 

The ONF defined SDN as an emerging network 

architecture where network control is decoupled from 

forwarding and is directly programmable (Foundation, 2012). 

The control function is migrated from formerly tightly bound 

devices in each network to accessible computing devices. 

This migration enables the underlying infrastructure to be 

abstracted for applications and network services. Later, the 

network could be treated as a logical or virtual entity. 

There are two major SDN characteristics, as depicted in 

Fig.  2, including decoupling of the control and data planes, 

and control plane programmability. Both have previously 

been the focus of extensive research and recent 

improvements in the reliability, capacity and capability of 

global networks that have enabled the control plane 

programmability concept to move forward. SDN 

encompasses the separation of control and data planes in the 

network’s architectural design, which means that network 

control is to be carried out utilizing separate channels 

between device control management ports that utilize 

different addresses to that used for the data plane. The 

network intelligence is taken out of the switching devices, 

thereby leaving the switching devices as general forwarding 

devices. 

There are three functional layers in SDN architecture, i.e. 

Application Layer, Control Layer, and Infrastructure Layer. 

Each layer had its own functions and communicate to each 

other via an specific interface  (Hakiri et al., 2014; Jarraya et 

al., 2014). The descriptions of SDN layers are presented 

below: 

a) Application Layer 

The Application Layer consists of network services and 

applications that can be abstracted using the dynamic 

modular structure of the Application Layer. Examples of 

network services and applications include management 

systems, monitoring, security and flow control related 

network services.  

The network abstraction utilizes an Application 

Programming Interface (API) to provide consistency and 

standardization of the interface. Through this API, SDN 

services and applications can access network status 

information reported from forwarding devices. SDN 

services and applications can also use this API to transfer 

flow rules to forwarding devices through the lower 

layers.   

b) Control Layer 

The Control Layer consists of a set of software-based 

SDN controllers that provide control functionality 

through open API-based interfaces that facilitate the 

control and management of traffic forwarding. The 

controllers incorporate three communication interfaces, 

i.e. southbound, northbound and eastbound/westbound. 

The control plane acts as an intermediary layer between 

the application and data planes. The controller provides 

a programmatic interface that can be accessed by 

network services and applications in the Application 

Layer and used to implement management and control 

tasks. The abstraction presumes the centralized control 

and the applications are developed within the framework 

of a single interconnected system. It enables the SDN 

model to be implemented for a broad range of scenarios, 

such as centralized, hybrid or distributed and also for 

heterogeneous network technologies (wireless or wired).  

The controller implementation design significantly 

affects the overall performance of the network. Several 

challenges must be overcome to achieve network 

performance that is at or above the network performance 

of the preceding legacy network. 

c) Infrastructure Layer 

The Infrastructure Layer is the lowest layer in the SDN 

architecture. Forwarding elements are the main 

components in this layer, which include physical and 

virtual routers and switches. These devices are accessible 

via an open interface and carry out packet routing, 

switching and forwarding. The control connections to the 

network devices utilize separate secure channels to that 

used for user data flows. 

SDN architecture employs a three specific interfaces. 

These interfaces enable the interactions between and within 

SDN layers. Below, we present the description of   SDN 

interface: 

a) Northbound Interface  

The Northbound interface is used to connect network 

services and applications found in the Application Layer 

to the controllers in the Control Layer. The Northbound 

interface consists of one or more API providing a 

programmability capability that is used to dynamically 

manage network traffic flows. It is more considered as a 

software API rather than a protocol based interface, to 

take advantage of the innovative programmability 

paradigm. The ONF suggest a definition that the 

different levels of abstractions are latitudes and the 

various use cases are longitudes, but this characterisation 

is yet to be finalized. The ONF approach suggest that 

more than a single northbound interface standard can 

provide increased flexibility to serve differing use cases 

and environments. Representational State Transfer 

(REST) is one of the proposed APIs to provide a 

programmable interface for business applications to the 

controllers (Jarraya et al., 2014). 

b) Eastbound/Westbound Interface 

The Eastbound/Westbound interface is a proposed 

communication protocol related interface, which is yet to 

be fully standardized. It is identified to enable 

communication between groups or federations of 

 

Fig.  2 SDN Architecture. 

 

Application 
Layer

Application 
Layer

Control 
Layer

Control 
Layer

Infrastructure 
Layer

Infrastructure 
Layer

Virtualization

Network 
Policy & 
Security 

Applications

Network 
Access 
Control 

Applications

Other 
Network 
Related 

Applications

Other 
Business 

Applications

SDN Controller SDN ControllerSDN Controller

Physical SwitchesPhysical Switches Virtual SwitchesVirtual Switches

Northbound API

Southbound API

Eastbound 
API

Westbound 
API



controllers to synchronize states for high reliability and 

resiliency. The interfaces are to be used to cope with the 

SDN scalability and reliability challenge. The 

Eastbound/Westbound interface protocol manages 

communications between the multiple controllers. There 

are two possible use cases for this interface. The first use 

case is an interconnecting interface between 

conventional IP networks with SDN networks. As there 

are no standards defined for this interface, its 

implementation depends on the technology used by the 

underlying network. An example of this use case is the 

connection between SDN domain with a legacy domain 

using a legacy routing protocol to react to message 

requests (e.g., Path Computation Element (PCE) 

protocol and MPLS). The second use case is to use the 

interface as an information conduit for admission and 

authentication, between the SDN control planes of 

different SDN domains. The multi-domain connectivity 

challenge needs to be overcome to facilitate a global 

network view and influence the routing decisions of 

controllers on domain boundaries. A solution would 

allow a seamless setup of network flows across 

heterogeneous SDN domains. Conventional border 

protocols, like BGP, could be utilized or extended to 

support interconnection of remote SDN domains. 

c) Southbound Interface 

This interfaces facilitate the communication between 

SDN controller with the Forwarding Elements in the 

infrastructre layer. The standardized protocol for this 

communication is OpenFlow. It is developed and 

maintained by ONF. OpenFlow is described as the 

fundamental element of SDN solution development. 

OpenFlow allows multi-vendor SDN network devices to 

be implemented. Other alternarives to OpenFlow is the 

Forwarding and Control Element Separation (ForCES) 

Framework (Haleplidis et al., 2015). The latter defines 

an architectural framework with coupled protocols to 

standardize information exchange between the control 

and forwarding layers. Although it has been an IETF 

proposal for several years, it has never reached the level 

of support that exists for OpenFlow. 

2.4. OpenFlow as SDN Enabler 

OpenFlow is an open source communications protocol that 

is used to transport messages from controllers to network 

devices via the Southbound interface. OpenFlow provides 

software-based access to the switch and router flow tables to 

enable dynamic network traffic management. Manual or 

automated control systems can be used depending on the 

specific network management operations scenario. The 

OpenFlow protocol provides a management tools to manage 

features such as topology configuration or packet filtering.  

OpenFlow shares common ground with the architectures 

proposed by ForCES and SoftRouter.  The difference is in the 

concept of flow management and leveraging the existence of 

flow tables in commercial switches and routers (Braun & 

Menth, 2014).  

Switches with OpenFlow compliance are categorized in 

two main types, i.e. OpenFlow-only switch and OpenFlow-

hybrid. OpenFlow-only switches support only OpenFlow 

operations; i.e., all packets are processed and controlled using 

the OpenFlow pipeline to the upstream controller. 

OpenFlow-hybrid switches support both OpenFlow 

operations and legacy Ethernet switching operations. The 

hybrid switches support a classification mechanism outside 

of OpenFlow that routes traffic to either of the packet-

processing pipelines (Farhady et al., 2015; Jammal, Singh, 

Shami, Asal, & Li, 2014; McKeown et al., 2008). 

The OpenFlow architecture consists of numerous 

OpenFlow-enabled switches that are managed by one or more 

OpenFlow controllers, as shown in Fig.  3. Network traffic 

can be partitioned into flows, where a flow could be a 

Transmission Control Protocol (TCP) connection, packets 

with the same MAC address or IP address, packets with the 

same Virtual Local Area Network (VLAN) tag, or packets 

arriving from the same switch port. Several elements of the 

OpenFlow architecture are explained in this section.  

2.4.1. OpenFlow Protocol  

An OpenFlow-enabled switch contains flow and group 

tables that include a number of entries, depending on the 

network device. The flow entries are used to control traffic 

flows arriving at the switch using identifiers such as source, 

destination and IP port. OpenFlow messages manipulated the 

flow entries in the flow table. The messages are exchanged 

between the switch and the controller via a secure channel. 

By maintaining a flow table, the switch can make forwarding 

decisions for incoming packets using a simple look-up on the 

entries of its flow table. The switch will do an exact match 

check on particular fields of the incoming packets. The 

switch goes through its flow table to find a matching entry for 

incoming packets. Numbering in the flow tables are done 

sequentially, starting from 0. The packet processing pipeline 

starts at the first flow table and if a match is not found it 

moves on to the next flow table and so on until a match is 

found, or the end of the last flow tables is reached. If the 

specific packet fields match a flow entry, the corresponding 

instruction set is executed. Instructions related to each flow 

entry describe packet forwarding, packet modification, group 

table processing, and pipeline processing. 

Pipeline-processing instructions enable the packet fields to 

be matched to a flow entry in one table and based on the flow 

entry instructions be sent to associated tables for additional 

matching and processing, which can result in an aggregation 

of actions that are to occur to the packet before transmission. 

The aggregated information (metadata) can be communicated 

between flow tables. Flow entries may also forward to a 

physical or virtual port. 

Flow entries may link to a group table entry, which 

specifies additional processing. Additional forwarding 

methods (multicast, broadcast, fast reroute, link aggregation) 

are offered by a group entries inside a group table. A group 

entry contains a group identifier, a group type, counters, and 
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a list of action buckets, which contain a set of actions to be 

executed and associated parameters. Groups also allow 

multiple flows to be forwarded to a single identifier, e.g., IP 

forwarding to a common next hop. Occasionally, a table miss 

occurs, where a packet might not match a flow entry in any 

of the flow tables. The action taken in the case of a miss 

depends on the table configuration. By default, selected 

packet fields are sent to the controller over the secure 

channel. Another option is to drop the packet. 

OpenFlow was first released by Stanford University in 

2008 (McKeown et al., 2008). Since 2011, the OpenFlow 

switch specification has been maintained and updated by the 

ONF. OpenFlow vendors have widely adopted the latter 

version. In the initial ONF version, forwarding was based on 

a single flow table, and packet matching using Layer 2 

information and IPv4 addresses. Version 1.1 introduced the 

multiple flow tables and MPLS tags, while IPv6 support was 

included in version 1.2. Version 1.3 added the support for 

multiple parallel channels between switches and controllers. 

In version 1.4, improvements include retrofitting various 

parts of the protocol with the Type/Length/Value (TLV) 

structures introduced in version 1.2 for extensible field 

matching and a flow monitoring framework enabling a 

controller to monitor in real-time the changes made to flow 

tables within other controllers. The latest OpenFlow 

specification published in 2014 is version 1.5, (with minor 

improvements in 2015 becoming version 1.5.1) which 

introduces new features such as an Egress Table, Packet type 

aware pipeline, and a Flow Entry Status Trigger. 

2.4.2. OpenFlow Switch 

An OpenFlow-enabled switch contains at least one flow 

table and group table. It performs packet lookups and 

forwarding. Controller manages the switch utilizing the 

OpenFlow protocol via a secure channel. A set of flow entries 

makes a flow table in the switch. Each flow entry is used to 

match to the packet header fields, counters, and a set of 

instructions for matching packets (Jammal et al., 2014). 

2.4.3. OpenFlow Channel 

The OpenFlow channel is the interface that connects 

OpenFlow-enabled switches to a controller. The controller 

configures and manages the switch, using this interface. The 

OpenFlow protocol supports three message types that 

transport the control messages across the secure channel. The 

messages can be categorized as controller-to-switch, 

asynchronous, and symmetric, each having multiple 

subtypes. Controller-to-switch messages are used to manage 

or derive information directly regarding the switch state. 

These messages are initiated by the controller. Asynchronous 

messages are initiated by the switch. These messages are used 

to update the controller with changes to the switch state and 

network events. Symmetric messages are initiated by either 

the switch or the controller and are sent without solicitation. 

The OpenFlow channel is usually encrypted using transport 

layer security (TLS), but can also operate directly over TCP 

(Jammal et al., 2014). 

2.4.4. OpenFlow Controller 

The controller is responsible for maintaining the network 

protocols, policies and distributing appropriate instructions to 

the network devices. In other words, the OpenFlow-enabled 

controller is responsible for determining how to handle those 

packets that do not match valid flow entries found in the 

switch flow tables. It manages the switch flow table by 

adding, modifying and removing flow entries over the secure 

channel using the OpenFlow protocol. The switch must be 

able to communicate with a controller at a user-configurable 

(but otherwise fixed) IP address using a user-specified port 

and recent implementations provide uPnP to enhance 

connectivity options. A standard TLS or TCP connection to 

the controller is started by the switch, based on controller’s 

IP address. Traffic coming in and out the OpenFlow channel 

does not travel through the OpenFlow pipeline. Hence, the 

switch must identify incoming traffic as local before 

matching it compared to the flow tables. A single or multiple 

controllers can establish communication with the switch 

(Jammal et al., 2014).  

Reliability could be improved by having multiple 

controllers, because the switch can continue to operate in 

OpenFlow mode if one controller connection fails. The 

controllers themselves managed the hand-over between 

controller, which enables load balancing and fast recovery 

from failure. The controllers coordinate switch management 

based on rules set by higher layer applications, and the goal 

of the multiple controller functionalities is to synchronize 

controller hand-offs performed by the controllers.  

2.4.5. Flow and Group Tables  

There are three fields in flow table entries, i.e. Packet 

Header, Action, and Statistic. Packet header which is unique 

to the flow, defines the flow, and is almost a ten-tuple. Its 

fields contain information such as VLAN ID, source and 

destination ports, IP address, and Ethernet source and 

destination. Action field specifies how to handle the packets 

in the flow. An example is for the switch to forward the 

packet to a given port or ports, drop the packet, or forward 

the packet to the controller. Statistics field includes 

information such as the number of packets, the number of 

bytes, and the time from when the last packet matched the 

flow for each type of flow. Counters are typically used to 

monitor the number of packets and bytes for each flow, and 

the elapsed time since flow initiation (Jammal et al., 2014). 

Besides Flow table, an OpenFlow switch also has Group 

table, which consists of group entries. A flow entry can point 

to a group, which characterise OpenFlow’s new method of 

forwarding (e.g. select and all). Each Group table entry has 

four fields. The first field is a Group Identifier, which is a 32-

unsigned integer that uniquely identified the group. The 

second field is group type, which determines group 

semantics. The third field is Counters, which is updated when 

packets are processed by a group. The last field is Action 

Buckets, which is an ordered list of action buckets. Each 

action bucket contains a set of actions to execute and 

associated parameters (Jammal et al., 2014).  

3. Multi-Domain in Software Defined Networking 

SDN offers flexibility in managing the flows inside a 

network. In the other hand, global digital network is 

increasing on its size and complexity. Each network domains 

are connected to each other to become a massive and large 

network. With its advantages, SDN could provide more 

efficient way in managing the flows and network.  

Multi-domain SDN emerges as one of the solutions in 

implementing SDN in large network. The need to enhance 

current networks operations and managements motivates the 



implementation of SDN in them. Nevertheless, SDN hasn’t 

yet equipped to operate in very large network, e.g. there 

hasn’t any standard yet for East/Westbound interfaces. 

Therefore, there are a great deal of works need to be done in 

this area.  

  In this section, we discuss the works on multi-domain 

SDN, starting from the challenges in implementing SDN in 

SDN in large network from the controller view. Some 

approaches to overcome the scalability issues and lists of 

supporting SDN controllers are also presented. At the end of 

the section, we will discuss the multi-domain SDN 

architectures.   

3.1. Challenges in SDN Controller Design 

Controller design requires substantial effort if the 

controller is to provide flexible interfaces for network 

services and applications and a verified OpenFlow interface. 

It is more than just a matter of designing and implementing 

the interfaces, matching the interfaces with the network and 

applications, programming languages, and software 

architecture in the controller; the design also relates to the 

performance of SDN-enabled networks.  

3.1.1.  Scalability 

An initial concern that arises when offloading control from 

the switching hardware is the scalability and performance of 

the network controller(s). SDN’s centralized control 

methodology naturally faces scalability issues. The controller 

is the most important artifact in the SDN architecture and a 

single controller elucidation may result in a single point of 

failure and performance bottleneck problems in a wide area 

SDN (Farhady et al., 2015; Nunes et al., 2014). The entire 

network will break down if the controller fails. On the other 

hand, no matter where we place the controller, it will be 

farther away from some of the switches under its control. 

These switches will experience higher flow setup latency 

(Karakus & Durresi, 2016). Clearly, a single controller 

solution is not suitable for wide-area SDN and some 

enterprise networks.   

Other concerns on the scalability of SDN in large network 

are the aggregating and disseminating a huge number of 

information, both from and throughout the network (Shuhao 

& Baochun, 2015). Those processes need to be done in real-

time, which make things worse. The proposed solutions from 

control plane design to cope with scalability issues can be 

classified in two categories. The first category is using a 

single-controller approach. In this category, improvements 

are done by reducing the overhead of the centralized 

controller in several aspects (Farhady et al., 2015; Karakus & 

Durresi, 2016).  

The second category is using multi-controller approach. 

For a multi-controller SDN wide area solution, two 

alternatives are possible: replicated and distributed (Kreutz et 

al., 2015). Multiple replicated controllers can improve fault 

resilience. A replicated approach is to maintain an online 

shadow controller that will take over only if the primary 

controller fails. Switches are configured to communicate with 

both controllers simultaneously as the alternative approach, 

which is switch replication, remains to be implemented 

(Shuhao & Baochun, 2015). Using a shadow switch may 

produce a significant communication overhead in a WAN, 

where the controller and switches could be several hops apart. 

For short flows, this might generate more flow setup traffic 

than the flow itself. In distributed controller architecture, 

controllers are responsible for a portion of the network. 

Therefore, distributed controller solution should yield 

improved performance and robustness than replicated 

solution (Ahmed & Boutaba, 2014). 

3.1.2. Placement and Reliability 

In the wide area SDN implementation, controller(s) 

location may impact on the overall network performance. 

Whether the SDN consists of single or multiple controllers, 

the placement of the controller(s) will have an impact on the 

performance and the cost of the network. Research is ongoing 

into architecture, location and the number of controllers with 

respect to the average and worst case latencies of control 

plane (Heller, Sherwood, & McKeown, 2012) and other 

metrics, e.g. latency in case of failure and inter-controller 

latency (Vizarreta, Machuca, & Kellerer, 2016)  

The research shows that latency drives the overall behavior 

of the network, and bandwidth for the control traffic affects 

the number of flows that the controller can process. The 

modeling of the network is used to identify controller 

locations that enhance reliability and limit control message 

latency (Sallahi & St-Hilaire, 2015). While other alternative 

approach tries to solve the controller(s) placement issue, 

focuses on optimizing the reliability of the control network 

and identifies several placement algorithms and strategies 

along with metrics to characterize the reliability of SDN 

control networks (Jimenez, Cervello-Pastor, & Garcia, 2014; 

Vizarreta et al., 2016). 

3.1.3. Security 

SDN controllers may suffer from a range of security 

problems, which can reduce the performance of the network. 

The attacks might affect performance due to the lack of 

controller scalability in the event of a denial of service attack. 

The impact could be worst in the large network with only a 

single controller or even for the multiple controllers. 

Those attacks can aim the forwarding layer, control layer, 

and application layer, and their types can be discussed as 

follow (Dabbagh, Hamdaoui, Guizani, & Rayes, 2015; Kaur, 

Singh, Singh, & Sharma, 2016). On the application layer, the 

attacks could be trough unauthenticated application and 

policy enforcements. Denial of Service (DoS) are the attack 

that target the forwarding and control layer. DoS could be 

caused by the massive flows that flood the switches and 

controllers which cause processing delay or device collapsed. 
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Other type of attacks is the compromised controller attack, 

which happens when the attacker somehow gain access to the 

controller and could take over all the network. Data leakage 

and flow rule modification are the impact of attacks on 

forwarding layer input buffers. is often disastrous. Controller 

hijacking and fraudulent rule Insertion attacks are types of 

malicious applications. DOS (Denial of services) are related 

to availability related attacks. Type of DOS attack is 

Controller-Switch Communication Flood between the switch 

and the main controller.  

There are some possible countermeasures for those 

attacks. Attacks targeted the forwarding plane could be 

avoided by proactive rule caching, rule aggregation, 

increasing switch’s buffering capacity, decreasing switch-

controller communication delay, and packet type 

classification based on traffic analysis. Other attacks that 

targeted control and application plane could be mitigated by 

controller replication, dynamic master controller assignment, 

efficient controller placement, controller replication with 

diversity, and efficient controller assignments (Dabbagh et 

al., 2015). 

3.1.4. Availability 

SDN in large network could suffer from various failures 

Those failures including controller/switch failure and link 

failure. SDN controller can be overloaded due enormous 

request from networks. A SDN-enabled switch could 

confront with a failure if any of its sub-component does not 

function correctly. This causes the traffic routing/forwarding 

functions of the network not constantly retained. While link 

failures can occur on a network link as device connection is 

broken. The cause of this failure could be from network 

connectivity and hardware problems, or software problem in 

any network device that generate link down notifications 

falsely (Nguyen et al., 2015).  

In SDN networks, the overall design, including placement 

and selection of network devices such as the controllers and 

switches, should be robust, and this should be tested for a 

range of anticipated scenarios. An approach that improves the 

robustness of SDN is to use a runtime system that automates 

failure recovery by spawning a new controller instance and 

replaying inputs observed by the old controller. The 

controller can install static rules on the switches to verify 

topology connectivity and locate link failures based on those 

rules. Another approach is to try to improve recovery time by 

the frequent issuing and receipt of monitoring messages, but 

this may place a significant load on the control plane 

(Farhady et al., 2015). In multi-controllers SDN, a load 

balancing mechanism based on a load informing strategy is 

proposed to dynamically balance the load among controllers 

(Jinke, Ying, Keke, Shujuan, & Jiacong, 2016). 

3.2. Wide Area SDN Control Plane Design  

SDN controller designs for large or wide area network 

mainly aimed to solve the scalability issue. As presented in 

Error! Reference source not found., the approaches 

proposed to overcome this challenge can be categorized in 

two big categories, i.e. single controller solution and multiple 

controller solution (Xia et al., 2015). The single controller 

approach implements multi-thread hardware and the 

overhead reduction of the centralized controller in certain 

scenarios. The multiple controller approach consists of 

logically centralized and fully distributed or multi-domain 

approaches (Xia et al., 2015). In this section, we will discuss 

both approaches and the summary of supporting controller 

platforms. 

3.2.1. List of Available of Controller  

Currently, many SDN controllers are available, both open 

source and commercial ones. Those controllers have their 

own specific features and support, especially in wide area 

implementation. A summary of those controller is presented 

in Table 2.    

3.2.2.  Single Controller Approach 

SDN may have either a centralized or distributed control 

plane (Hakiri et al., 2014; Kreutz et al., 2015), although the 

protocols such as OpenFlow specify that a controller controls 

a switch, and this seems to imply centralization. OpenFlow is 

not defined for controller-to-controller communication, but it 

is apparent that something similar is needed for distribution 

or redundancy in the control plane.  

The single controller approach, shown in Fig.  5, is based 

on a single centralized controller that manages and supervises 

the entire network, which is already supported by the ONF. 

In this model, network intelligence and states are logically 

centralized inside a single decision point. This centralized 

controller uses the southbound protocol (e.g. OpenFlow) to 

conduct global management and control operations. The 

centralized controller must have a global view of the entire 

network, including the load on each switch along the routing 

path. It also has to monitor link bottlenecks between the 

remote SDN nodes. Additionally, statistical information, 

errors and faults from each network device can be collected 

by the controller from the attached switches and this 

information is passed on to another entity, which is often a 

database and analytic system that identifies switch and 

network loads and predicts future loads. 

As mentioned before, single controller approach exploits 

two methods, i.e. utilizing the hardware and reducing the 

overhead to minimize controller loads. The first method 

provides performance scalability at times of high load or 

when a controller failure occurs. Conventional software 

optimization techniques can be used to improve the 

controller’s performance. Multi-core hardware that supports 

multi-threading can be used to support parallel process 

optimization, load balancing, and replication. High-

performance controllers, such as McNettle (Voellmy & 

Wang, 2012), target powerful multi-core servers and are 
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being designed to scale up to handle large data center 

workloads (around 20 million flow requests per second and 

up to 5000 switches).  

Despite the performance improvements presented in this 

approach, there are limitations and challenges. The hardware 

setup cannot be easily modified due its rigid nature. Another 

limitation is that this approach retains a Single Point of 

Failure due its single-controller architecture 

The second method tries to reduce the controller load, as 

highlighted by proposals including as DIFANE (M. Yu, 

Rexford, Freedman, & Wang, 2010) and DevoFlow (Curtis 

et al., 2011), by extending the switch data plane mechanism. 

DIFANE partly uses intermediate switches called authority 

switches to make the forwarding decisions instead of totally 

relying on the centralized controller to reduce the load and 

the latencies of rule installation. A similar approach is also 

proposed in DevoFlow with the selection of particular flows 

to be directed to the controller, while switches handle the 

other flows. 

3.2.3. Multiple Controller Approach 

Multiple controllers approach, as shown in Fig.  6, offers 

solutions to solve the SDN scalability issues. This approach 

uses multiple controllers that manage and supervise the 

network.  These controllers are distributed along the network 

and can be called distributed controllers. There are two 

classes of distributed SDN controllers, i.e. logically 

centralized but physically distributed controller, and the 

completely distributed controller.  

Distributed controllers have several key challenges that 

should be addressed to improve the scalability and robustness 

of networks. The first challenge is the requirement of a 

consistent network-wide view in all controllers. Static 

configuration could not be used to overcome this challenge, 

because it can cause uneven load distribution between 

controllers. The mapping between control planes and 

forwarding planes must be automated. The second challenge 

is to gain an optimal global view of the whole network. Not 

to mention, identification of an optimal number of distributed 

controller that guarantee the linear scale up of SDN network, 

is another hard effort. The last challenge is how synchronize 

the overall local and distributed events to provide a global 

picture of the network. Most of the approaches use local 

algorithms to develop coordination protocols, in which each 

controller needs to respond only to events that take place in 

its local neighbourhood.  

The first class of distributed controllers is the logically 

centralized but physically distributed controller. These 

controllers have to share information with each other so as to 

build a consistent view of the entire network. They are using 

either distributed file system, a distributed hash table, or a 

pre-computation of all possible combination to centralized 

their logic. This approaches impose a strong requirement: a 

strongly consistent network-wide view in all the controllers.  

The network-wide view is maintained via controller-to-

controller synchronization. When the local view of a 

controller changes, the controller will synchronize the 

updated state information with the other controllers. The 

information exchange or state synchronization among 

controllers consumes network resources; therefore, it is 

critical to reduce the resulting network load, while keeping 

the information consistent for the logically-centralized 

control plane. The example of this implementation are:  

a. Onix (Koponen et al., 2010) focuses on the problem by 

providing generic distributed state management APIs. 

With Onix, the control plane operates with a global view 

of the network. 

b. Hyperflow (Tootoonchian & Ganjali, 2010) suggests a 

logically centralized control which consists of many 

distributed controllers and exhibits excellent scalability. 

It has been implemented as an application for a NOX. In 

reality, network operators can deploy any number of 

controllers on demand. By propagating events that affect 

the controller’s state, HyperFlow can enable all of the 

controllers to obtain a network-wide view by passively 

synchronizing network-wide views of OpenFlow-

enabled controllers. Since each controller has a global 

view, HyperFlow minimizes the response time of the 

control plane through local decision making by each 

controller. 

c. Google has presented their experience with B4 (Jain et 

al., 2013), a global SDN deployment interconnecting 

their data centers, using a logically centralized Traffic 

Engineering (TE) service to decide on path computation. 

d. Devolved controllers (Tam et al., 2011) propose control 

plane distribution using pre-computation of other inter-

relationships. Devolved controllers require a strongly 

consistent network-wide view to be maintained in the 

controllers. 
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Table 2 

Summary of Controller Platforms 

Controller Name  Prog. 

Language 

Organization Open 

Source 

Architecture Description  

Beacon  Java Stanford Yes 
Centralized 

Multi-threaded 
Cross-platform, modular, Java based OpenFlow Controller that support event-based and threaded operation (Erickson, 2013). 

Maestro  Java Rice Univ. Yes 
Centralized 

Multi-threaded 

A network operating system based on Java which provides interfaces for implementing modular network control applications (Cai, 

2011). 

FloodLight  Java Big Switch Network Yes 
Centralized 

Multi-threaded 

Java-based OpenFlow Controller, based on the Beacon implementation, works with physical and virtual OpenFlow switches 

(Floodlight).  

RISE  C & Ruby NEC Yes Centralized OpenFlow Controller based on Trema, which is an OpenFlow stack based on Ruby and C (Ishii et al., 2012).  

ONOS  Java ON.Lab Yes Distributed 

Open source SDN controller platform designed specifically for scalability and high-availability. With this design, ONOS projects 

itself as a network operating system, with separation of control and data planes for Wide Area Network (WAN) and service provider 

networks (Berde et al., 2014). 

RYU  Python NTT Yes 
Centralized 

Multi-threaded 

SDN operating system that aims for logically centralized control and APIs, to create new network management and control 

applications  (Kubo, Fujita, Agawa, & Suzuki, 2014). 

NOX/POX  Python Nicira  Yes Centralized The first OpenFlow controller (Gude et al., 2008). 

OpenContrail  Python Juniper Yes Distributed An open source version of Juniper’s Contrail controller (Lin et al., 2015; Singla & Rijsman, 2013) 

OpenDaylight   Java  Linux Foundation Yes Distributed 
An open source project based on Java. It supports OSGi Framework for local controller programmability and bidirectional REST for 

remote programmability as Northbound APIs (Medved, Varga, Tkacik, & Gray, 2014; Phemius et al., 2014).  

OpenMUL  C KulCloud Yes 
Centralized 

Multi-threaded 

C-based multi-threaded OpenFlow SDN controller that supports a multi-level northbound interface for attaching applications (Saikia 

& Malik, 2015).  

Big Cloud Fabric controller Java Big Switch Network No 
Centralized 

Multi-threaded 

The controller is part of Big Switch’s SDN-based Data Center solutions. It is hierarchically implemented SDN controller that capable 

to be implemented as a cluster of virtual machines or hardware appliances for high availability ("Big Cloud Fabric: Hyperscale 

Networking for All," 2014)   

Brocade Vyatta Controller  Java  Brocade No Distributed OpenDaylight Based Controller with additional support services from Brocade ("Brocade Vyatta Controller," 2015).  

Ericsson SDN Controller Java  Ericsson No Distributed 
Ericsson used the OpenDaylight as the base of its controller and bind a Policy Control to drive end-user service personalization in 

network connectivity  ("The Real-Time Cloud," 2014). 

One Controller  Java  Extreme Networks No Distributed 

Extreme Networks offers its SDN controller (OneController) in form of hardware appliance based on OpenDaylight controller and 

provides Extreme Network’s OpenDaylight-based API, Software Development Kit (SDK) and a developer community 

("OneController™ OpenDaylight-based SDN Controller," 2015).    

HP VAN SDN Controller  Java  HP No Distributed 

OpenDaylight based controller with HP contributions in AAA, device drivers, OpenFlow and Hybrid Mode, clustering for High 

Availability, multi-application support including the Network Intent Composition (NIC) API, Persistence, Service Function Chaining, 

OpenStack integration and federation of controllers ("HP VAN SDN Controller Software,").  

Programmable Network 

Controller  
Java IBM No Distributed 

OpenDaylight based controller offered by IBM as part of its Data Center Solution  ("IBM Programmable Network Controller V3.0," 

2012). 

Contrail  Python Juniper No Distributed 
Contrail Controller is a software controller that is designed to operate on a virtual machine (VM). It exposes a set of REST APIs for 

northbound interaction with cloud orchestration tools, as well as other applications ("Contrail Architecture," 2013). 

Programmable Flow 

Controller  
Java  NEC No Centralized 

It provides a high performance, fabric-based SDN with advanced network automation, control, and flexibility, enabling full network 

virtualization and secure, multi-tenant networks  ("Award-winning Software-defined Networking NEC ProgrammableFlow® 

Networking Suite," 2013). 

Open SDN Controller Java Cisco No Distributed 

OpenDaylight based SDN Controller with additional Cisco’s embedded applications, robust application development environment and 

additional OpenFlow protocol support for Cisco Multiprotocol Label Switching (MPLS) extensions ("Cisco Open SDN Controller 

1.1," 2015).  

Huawei IP SDN Controller  Java Huawei No Distributed 
OpenDaylight based SDN controller with addition of Huawei’s Open Programmability System (OPS), which implements multi-layer 

capability openness including network control and management ("Huawei IP SDN Controller Open and Application," 2013) 

 



The second type of distributed controller model is the 

completely distributed controller. It introduces a physically 

distributed control plane state and logic; therefore, there is no 

synchronization of network states between controllers to 

maintain a global view. Synchronization could lead to a 

network overload due to the frequent network changes and it 

suffers from control state inconsistency which will degrade 

the performance of applications running on top of SDN.  

For the distributed control plane, each controller handles 

its local domain and attempts to make improved routing 

decisions at each controller by using a local algorithm that 

can be utilized to develop efficient coordination using 

available protocols and messages, whereby each controller 

cooperates only with its neighboring controllers. Although 

the existing distributed algorithms may be used, there are also 

demands for a SDN dedicated distributed algorithm.  

A multi-domain SDN architecture refers to a network 

architecture that connects multiple SDN domains. SDN 

domain refers to the administrative SDN domain, which 

might be a sub-network in a data center network, or a carrier 

or an enterprise network, or an Autonomous System (AS). 

Most of the distributed control plane architectures with a 

logically centralized approach such as Onix, Hyperflow, and 

Elasticon currently cannot manage inter-domain flows 

between SDN domains. According to  (Egilmez, 2014), the 

fully distributed SDN controller architectures, both vertical 

and horizontal approaches could be utilized for multi-domain  

SDN communication. A summary of contributions in multi-

domain SDN is presented in Table 3.  

Different approaches to the distributed SDN controllers 

are proposed by Elasticon, Pratyaastha, DISCO (Distributed 

Multi-domain SDN Controllers), ONOS, and Kandoo. Those 

controllers are designed to support fully distributed 

architecture and have the potential to support multi-domain 

SDN implementation. 

ElastiCon (Dixit, Hao, Mukherjee, Lakshman, & 

Kompella, 2013) proposes a controller pool which 

dynamically grows or shrinks corresponding to traffic 

conditions, and the workload is dynamically allocated among 

the controllers.  

Pratyaastha (Krishnamurthy et al., 2014) is an Efficient 

Elastic Distributed SDN Control Plane; it proposes a novel 

method for assigning SDN switches and partitions of SDN 

application state to distributed controller instances. 

DISCO (Phemius et al., 2014) is another open and 

extensible SDN control plane architecture intended to address 

the distributed and heterogeneous characteristic of wide area 

networks and modern overlay networks. DISCO is 

implemented on top of Floodlight, an open source OpenFlow-

enabled controller and consists of two parts: an intra-domain 

part where each controller manages its network domain, and 

an inter-domain part, which manages the communication 

with other DISCO controllers, through a lightweight control 

channel, to ensure end-to-end network services.  

The Open Network Operating System (ONOS) (Berde et 

al., 2014) followed in the footsteps of previous SDN 

controllers such as Onix but is intended for release as an open 

source project which relies on the SDN community to 

contribute, examine, evaluate, and extend it. ONOS adopts 

the distributed architecture for high availability and scale-out. 

The ONOS characteristic abstract device approach means 

that the core operating system does not have to be aware of 

the particular protocol being used to control a device.  

As shown in Fig.  7, in the distributed ONOS core, the 

ONOS instances work together to create what appears to the 

rest of the network and applications as a single platform. 

ONOS allows applications to examine the global network 

view and create flow paths that specify full or partial routes 

along with traffic that should flow over that route and other 

actions that should be taken, or use a global match-action (or 

match-instruction) abstraction which provides the full power 

of OpenFlow to enable an application to program any switch 

from a single vantage point. 

OpenDaylight (ODL) (Jahan et al., 2014; Medved et al., 

2014) makes it possible for the network to be logically and/or 

physically split into different slices or tenants. The split can 

be with parts of the controller, modules, explicitly dedicated 

Table 3 
Summary of Contributions in Multi-Domain SDN 

Contributions Descriptions 

Elasticon  
Proposed an IETF draft to connect SDN domains 

using an automated system (Yin et al., 2012). 

Pratyaastha 

Proposes a novel method for assigning SDN 

switches and partitions of SDN application state to 

distributed controller instances (Krishnamurthy, 

Chandrabose, & Gember-Jacobson, 2014) 

DISCO 

Proposed an open and extensible distributed SDN 

control plane able to deal with the distributed and 

heterogeneous properties of modern overlay 

networks and WAN (Phemius, Bouet, & Leguay, 

2014) 

Kandoo 

Proposed a hierarchical model of distributed 

controllers, i.e. root controller and local controllers 

(Hassas Yeganeh & Ganjali, 2012) 

ONOS 
Propose the distributed architecture for high 

availability and scale-out SDN (Berde et al., 2014) 

ODL SDNi 
Propose an application that can connects multiple 

controllers in different domains (Jahan et al., 2014) 

IETF SDNi  
Proposed an IETF draft to connect SDN domains 

using an automated system (Yin et al., 2012). 

West-East Bridge 
Proposes an information exchange platform for 

inter-domain SDN peering (Lin et al., 2015), 

Novel SDN Multi-

Domain 

Architecture 

Proposed multi-domain SDN architecture and 

defined an interconnection protocol (Helebrandt & 

Kotuliak, 2014). 

 

 
Fig.  7 ONOS Architecture (Berde et al., 2014) 
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to one or a subset of these slices. A multi-controller instance 

is developed by using an inter-SDN controller 

communication application called ODL-SDNi (Software 

Defined Network interface), which includes the SDNi 

Aggregator, a Northbound SDNi plugin that acts as an 

aggregator for collecting network information to be shared 

across federated SDN controllers, SDNi RestAPI, that is used 

to fetch the network information from the Northbound plugin, 

and SDNi Wrapper, which is responsible for collecting and 

sharing information to/from federated controllers. The ODL-

SDNi architecture is shown in Fig.  9. 

Kandoo (Hassas Yeganeh & Ganjali, 2012) is another 

distributed control plane design, which has a hierarchical 

architecture. Kandoo employs two layers of controllers, i.e. 

root controller (top layer) and local controller (bottom layer). 

Kandoo enables network operators to deploy local controllers 

on demand and relieve the load on the top layer controller, 

which is the only potential bottleneck regarding scalability. 

Apart from the limited control plane architecture support 

for multi-domain SDN, the SDN interface, especially the 

Eastbound/Westbound interface, plays a significant role. 

SDN interconnect (SDNi), was among the first to connect 

SDN domains using an automated system (Yin et al., 2012). 

However, the SDNi draft form that was placed on the IETF 

data tracker in mid-2012 expired in December 2012; no 

further work was done, and it appears to have been 

abandoned. Another approach to the interconnection of SDN 

controllers is the West-East Bridge (Lin et al., 2015), which 

is an ongoing project. It has already successfully 

implemented an international test bed that connects 

heterogeneous controllers across four SDN domains 

(CERNET, CSTNET, Internet2, and SURFnet). Lastly, 

(Helebrandt & Kotuliak, 2014) proposed a novel multi-

domain SDN architecture and defined an interconnection 

protocol. However, little information is currently available in 

the literature. 

Hence, there are two implementation approaches for 

completely distributed controllers: the horizontal approach 

and the vertical approach, as shown in Fig.  8. In horizontally 

distributed controllers, multiple controllers are organized in a 

flat control plane where each one governs a subset of the 

network switches. This can be done either with state 

replication or without state replication. Vertically distributed 

controllers are a hierarchical control plane where the 

controller functionality is organized vertically. In this 

deployment model, control tasks are distributed to different 

controllers depending on selected criteria such as network 

view and locality requirements. Thus, local events are 

handled by the controller that is lower in the hierarchy, and 

global events are handled at the higher level. 

4. Multi-Domain SDN Challenges 

Despite the ongoing work being done on distributed SDN 

architectures and the SDN controller interconnection, several 

challenges remain. We will discuss some of those challenges 

and future works of multi-domain SDN below.  

4.1. Controller Scalability 

As mentioned in the previous section, the logically 

centralized control plane typically consists of multiple 

distributed controllers. The distributed controllers help to 

improve the number of flow requests handled per controller 

and to reduce the flow request response time. The logically 

centralized control plane architecture aims to maintain a 

consistent global network view and the controllers share 

information through a state synchronization mechanism 

which can overload the network due to the frequent changes 

that occur in the network. To improve scalability, the state 

synchronization load should be reduced to maintain a 

consistent information state among controllers. 

A Load Variance-based Synchronization (LVS) method is 

proposed in (Guo et al., 2014) to cope with this challenge. 

LVS-based schemes conduct effective state synchronization 

among controllers only when the load of a specific network 

or domain exceeds a certain threshold. Therefore, the LVS 

can effectively reduce the synchronization overhead among 

controllers. 

Another approach to achieve a global network view was 

proposed that utilizes local algorithms in a distributed control 

plane (Schmid & Suomela, 2013). The improvement is based 

on the reasoning that each controller needs to communicate 

only with its local neighbors, within a predefined number of 

hops. Accordingly, the controller load can be reduced and 

load balance among neighbouring controllers is achieved.  

4.2. Controller Placement 

The distributed control plane leads to open challenges, 

such as determining the number of controllers required. The 
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number of controllers and their location has a direct impact 

on SDN performance. Characterization of the placement 

problem of controllers was formally introduced by Heller et 

al. (Heller et al., 2012). The authors consider the optimal 

controller placement problem in an attempt to minimize the 

propagation delay between controllers or controller-switch in 

the WAN. This work identifies open issues for future work. 

Other work undertaken by (Jimenez et al., 2014) defines 

the principles for designing a scalable control plane so as to 

address the controller placement problem. They use an 

algorithm called k-Critica to find the minimum number of 

controllers and their locations to build a robust control 

network topology.  

However, the methods discussed focus on static networks 

and do not support dynamic networks. In (Bari et al., 2013), 

a framework for dynamically deploying multiple controllers 

in the WAN is proposed. According to the network status, the 

number of required active and inactive controllers and their 

locations could be identified, and this work could effectively 

decrease the set-up time for traffic flows.   

4.3. Multi-Domain SDN Communication Protocol 

Communication between multiple controllers utilizing the 

eastbound/westbound interface is the important key 

component of multi-domain SDN architecture. Despite 

alternate approaches being proposed, the logical approach for 

IP-based computer networking is to use existing inter-domain 

protocols, as there remains a requirement to communicate 

with legacy network devices.  

The peering between autonomous systems or domains in 

current global networks supporting the Internet typically 

utilize the Border Gateway Protocol (BGP). An comparative 

experiment highlighting the use of BGP in multi-domain 

SDN and an ordinary IP network is presented in (Wibowo & 

Gregory, 2016). This comparative study suggested BGP 

works in both type of network and despite its mediocre 

operational performance compared to existing IP multi-

domain networks, SDN propounds the flexibility and more 

advance network management interaction. Therefore, 

enhancements in the eastbound/westbound interface to 

accommodate improved multi-domain solutions would be 

beneficial and provide an overall performance improvement 

for multi-domain SDN communication. 

4.4. Discussion and Future Work 

SDN offers improved control of a network by introducing 

a programmability capability and the separation of the control 

plane from the data plane. The potential benefits of these 

features are enhanced configuration, improved performance, 

and innovation in future network architecture design. With its 

ability to gather the instantaneous network status, SDN 

allows for the real-time centralized control of a network 

based on both the instantaneous network status and user-

defined policies. This leads to benefits in optimizing network 

configurations and improving network performance. The 

potential benefit of SDN is further evidenced by the fact that 

SDN offers a convenient platform for the development of 

new techniques and encourages innovative network design, 

attributed to its programmability and the ability to define 

isolated virtual networks via the control plane. In addition to 

the benefits described, SDN facilitates virtualization, device 

configuration, and troubleshooting. The ONF describe 

several use cases for SDN such as campus networks, data 

centers, and Cloud computing. 

This paper has provided a review of the SDN architecture 

for multi-domain networks and examines the significant work 

being done in the area of distributed SDN controller 

architecture supporting these networks. For the carriage 

service provider, a multi-domain SDN makes it possible to 

have optimum Capital Expenditure (Capex), and to reduce 

Operational Expenditure (Opex) while operating a network 

that might comprise both national and international networks. 

However, several issues still need to be tackled to improve 

the development and use of multi-domain SDN, especially in 

carriage service provider networks.  

The horizontal and vertical approaches in a distributed 

SDN control plane can support multi-domain SDN. From the 

perspective of carriage service providers, factors such as 

network cost, QoS, and network performance still need to be 

analyzed. Scalability problems should also be studied, and 

this is an area of current research. The location and the 

number of controllers also significantly affects network 

performance. The coordination between controllers is an 

essential mechanism that warrants investigation. The 

Eastbound/Westbound interface still requires more work to 

find an efficient means of communication between SDN 

domains. An increase in the number of efficient interfaces 

will significantly enhance SDN development. Controller 

security is an important issue since attacks on the controllers 

could compromise the entire network, which spells disaster 

for a carriage service provider. The issues of controller 

security and the techniques to secure communication between 

controllers and controller switches are major issues that 

should be tackled in future work.  

5. Conclusions   

This paper provides a survey of the research literature 

pertaining to various approaches for a multi-domain SDN 

architecture. A description of the SDN architecture and its 

major elements, including OpenFlow, is provided as well as 

a comparative guide to selected controllers and their features. 

We classified the centralized and distributed SDN models, 

which leads to our understanding of the current status of 

research on multi-domain SDN. The key challenges that 

affect performance including scalability, number and 

placement of the controllers has been discussed.  

As SDN is beginning to attract the attention of carriage 

service providers, the need for a multi-domain SDN solution, 

with scalability support, is one of the critical challenges.  

From the perspective of carriage service providers, research 

related to multi-domain SDN, including a comparative 

analysis of approaches to network cost, QoS and 

performance, will be very beneficial. Challenges remain 

including security, interoperability, and reliability.  
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