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“Proof is boring. Proof is tiresome. Proof is an irrelevance.
People would far rather be handed an easy lie
than sear for a difficult truth,
eecially if it suits their own purposes.”

—Joe Abercrombie, Last Argument of Kings, .









ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Jure Demšar
Evolution of fuzzy animats in a competitive environment

Collective behaviour is a fascinating field that studies coordinated motion of large
groups of similar entities. Probably the most common hypothesis about the origins of
collective animal behaviour suggests that it might function as a defensive mechanism
against predation.

In this thesis we used various computational techniques to study this hypothesis.
We started by expanding an existing fuzzy model for the computer simulation of bird
flocking with predators and visual perception. We implemented three target selection
tactics that take into account the visual perspective of the predator (attack the nearest
visible individual, attack the most visually isolated individual, and attack the centre
of the visible group). Our results suggest that for prey individuals social behaviour
(governed by the separation, alignment and cohesion drives) as opposed to individu-
alistic (governed exclusively by the separation drive) is the most beneficial (predators
take longer to capture their target). Predators, on the other hand, capture social prey
individuals quicker when they attack the most visually isolated individual, but capture
individualistic prey faster if they focus on the nearest prey individual.

In the next stage we developed an evolutionary model for tuning hand-crafted com-
posite predator attack/target selection tactics. For reasons of computational simplicity
we here expanded on a known mathematical model of prey collective behaviour. This
allowed us to concentrate on predator target selection tactics. We investigated the
evolution of the optimal tactic with respect to prey behaving collectively and prey that
performed a delayed response. With the latter prey individuals instead of responding
immediately at the first sight of the predator delay the response to a later point in time
and then try to outsmart the predator by performing rapid twists and turns. This might
be an advantageous defensive manoeuvre because prey can remain in a compact group
for as long as possible and because prey individuals are usually smaller than predators
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and as such have a higher turn rate. Our results suggest that a composite tactic termed
dispersing tactic, where the predator first dives deep into the group of prey and then
targets the most peripheral individual, is the best tactic. Experiments with prey’s de-
layed response suggest that prey individuals can indeed increase their survivability by
using this defensive manoeuvre and the dispersing tactics seems to be the only tactic
capable of at least partially diminishing the effectiveness of the preys’ delayed response.
This was a clear indication of potential interplay between target selection tactics and
prey behaviour.

Armed with this knowledge, we developed an artificial life-like open-ended evolu-
tionary model, where the behaviour of prey and predator individuals is governed by
fuzzy logic. In this model we focused on the evolution of prey behaviour when prey
individuals face different predation tactics. We demonstrated that in this model prey
individuals evolve different types of collective behaviour (swarm, milling, polarized,
dynamic). Interestingly, the analysis of the evolved rule bases showed a statistically
significant difference between different types of behaviour in the proportion of rules
that take into account predator related information. This suggested that the preda-
tion pressures the prey are subject to during evolution might have an influence on the
behaviour that evolves.

Our last step of research was thus a controlled experiment where prey evolve under
various predation tactics. Here we let prey evolve under four predation tactics, two
of which according to previous research pressure prey to evolve dispersing and two
pressure prey to evolve grouping. Our results suggest that antagonism in predation
pressures, where prey are exposed to predation pressures for which the best response
is both grouping and dispersing simultaneously, might be necessary for prey to evolve
polarized movement.

Key words: artificial life, collective behaviour, fuzzy logic, genetic algorithms, predator-
prey interaction



POVZETEK
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Jure Demšar
Evolucija mehkih animatov v tekmovalnem okolju

Skupinsko vedenje je fascinantno področje, ki preučuje dinamiko gibanja velikih sku-
pin podobnih si entitet. Verjetno najbolj pogosta hipoteza glede skupinskega vedenja
živali pravi, da združevanje in gibanje živali v skupinah deluje kot obrambni mehani-
zem pred plenilci.

V tej disertaciji smo za namene raziskovanja te in sorodnih hipotez razvili več teh-
nik računalniškega modeliranja. V prvem delu smo najprej razširili obstoječi mehki
model za računalniško simulacijo letenja ptic v jati, v katerega smo dodali plenilce ter
nadgradili realizem pri simuliranju vida. Nato smo implementirali tri taktike napada,
ki temeljijo na vizualnem zaznavanju plenilca in omejitvah kratkotrajnega delovnega
spomina. Naši rezultati kažejo, da plenilec potrebuje dalj časa za ulov, če napada plen,
ki se zadržuje v skupinah, kot če napada plen, ki ga združevanje v skupine ne zanima.
Iz stališča plenilca je, pri napadu na plen, ki se zadržuje v skupinah, najboljša takti-
ka napad najbolj vizualno izoliranega izmed vidnih posameznikov. Če pa se plen ne
združuje v skupine, je najboljša taktika napad najbližje vidne tarče.

V naslednji fazi doktorske disertacije smo razvili računalniški model, v katerem lah-
ko plenilci, s pomočjo simulirane evolucije, prilagajajo ročno konstruirane taktike na-
pada ter tako povečujejo svojo uspešnost. Zanimala nas je optimalna taktika napada,
ko se plen zadržuje v skupinah ter optimalna taktika napada, če plen na napad reagira
z zakasnjenim odzivom. Pri zakasnjenem odzivu posamezen plen z bežanjem ne začne
takoj ko plenilca opazi, ampak z odzivom počaka in nato poskuša zbežati s pomočjo
hitrih in ostrih zavojev. Pristop lahko predstavlja neke vrste obrambni mehanizem, saj
lahko zaradi razlike v velikosti plen običajno izvaja hitrejše in ostrejše zavoje kot pleni-
lec. Sodeč po naših simulacijah je napredna taktika, ki smo jo poimenovali razpršilna,
iz stališča plenilca najuspešnejša. Pri tej taktiki se plenilec najprej zapodi v sredino
skupine plena, da jo razprši. Ko se to zgodi, plenilec napada izolirane posameznike.

iii
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Simulacije z zakasnjenim odzivom plena nakazujejo, da plen lahko zniža učinkovitost
plenilcev z uporabo tega obrambnega mehanizma. Pri tem je bila razpršilna taktika
edina, s katero so lahko plenilci delno izničili prednosti, ki jih plenu nudi zakasnjeni
odziv.

S pomočjo pridobljenega znanja smo nato razvili mehki evolucijski model primeren
za simuliranje evolucije skupinskega vedenja. Osredotočili smo se na simuliranje evo-
lucije skupinskega vedenja plena, če je le-ta podvržen pritiskom s strani večjega števila
plenilcev, ki pri lovu uporabljajo različne ročno načrtovane taktike napada. Pokazali
smo, da se s pomočjo našega modela lahko razvije več različnih režimov skupinskega
vedenja, ki so sorodni tistim, ki jih lahko opazimo v naravi (rojenje, kroženje okrog
praznega jedra, usklajeno gibanje, dinamično gibanje). Ko smo pri analizi naborov pra-
vil opazovali delež pravil, ki upošteva informacijo o plenilcih, smo opazili statistično
signifikantno razliko med nabori pravil, ki se skrivajo za različnimi režimi skupinskega
vedenja. Ta ugotovitev nakazuje na to, da taktike napadov, ki jih uporabljajo plenilci,
verjetno vplivajo na smer evolucije vedenja plena.

V zadnjem delu disertacije smo s sistematično izbiro ročno načrtovanih taktik napa-
da analizirali, kako razni pritiski plenilcev vplivajo na evolucijo vedenja plena. Taktike
napada, ki smo jih pri tem uporabili, lahko razvrstimo v dve skupini. V prvi so ti-
ste, pred katerimi se plen lahko ubrani z združevanjem v skupine, v drugi pa tiste, pri
katerih je za plen bolje, če se ne zadržuje v skupinah. V naši raziskavi je plen razvil
usklajeno dinamično gibanje zgolj v primerih, ko se je razvijal, ob prisotnosti taktik
iz obeh skupin sočasno in nikoli, ko so bile prisotne zgolj taktike iz ene same skupi-
ne. Rezultat nakazuje, da so konfliktni pritiski možen predpogoj za razvoj usklajenega
gibanja skupin.

Ključne besede: umetno življenje, skupinsko vedenje, mehka logika, genetski algoritmi,
interakcija plenilec-plen
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  Introduction J. Demšar

OO
ne might ask what flocks of birds, schools of fish, herds of ungulates,
swarms of insects, mexican waves, mosh pits, the stock exchange and
biological cells have in common? They are all examples of collective
(animal) behaviour (see Figure .). The study of collective behaviour

is fascinating as it analyses how simple actions of an individual influence the complex
dynamics of a group. Aristotle once stated, “The whole is more than the sum of its
parts.” – a statement that describes the essence of collective behaviour. Because the
phenomenon is so widespread results from studies of collective behaviour are useful for
scientists from many different research fields – from biology, physics, and medicine,
to social studies, computer science, and control theory [–].

The collective behaviour research field (in certain research communities known also
by the names collective animal behaviour or swarm behaviour) is very active as even
though the phenomenon can be easily observed in nature, many scientific questions
remain unanswered [, , ]. In the biological community examples of such ques-
tions are why groups, especially organized ones, form in the first place, and why we
see so much variation in behaviour []. For example, why do so few bird species that
fly together display organized behaviour, and why do even closely related species []
display major differences in flocking behaviour []? The literature about collective be-
haviour contains several different and sometimes contradictory hypotheses about why
animals coalesce into groups. Some studies advocate that aggregations boost mating
and foraging efficiency [], others claim that fish and birds in highly organized groups
save energy because of hydrodynamic or aerodynamic benefits [–].

Probably the most common hypotheses about the origins of collective behaviour
state that grouping functions as an effective defence against predators [, , –].
The selfish herd hypothesis [] suggests that animals form groups in order to reduce
their domain of danger – an area surrounding an individual in which all points within
that area are closer to the observed individual than to any other []. The dilution of
risk hypothesis suggests that the chance of a single prey being selected as the predator’s
target is lower in larger groups []. The many eyes hypothesis suggests that as the
size of the group increases the probability of detecting a predator also increases []
and the amount of time individuals in the group need to be vigilant against predators
decreases [–], giving them more time for other tasks (e.g. foraging). Last but not
least, the confusion hypothesis states that a predator attacking a group of visually similar
prey might have a hard time tracking and capturing its target [, –].
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Figure .
Examples of various forms
of collective behaviour
found in nature. A) a mur-
muration of stralings (©
Tim Regan, flickr.com). B)
a squadron of pelicans fly-
ing in formation (© Daniel
D’Auria, flickr.com). C) a
swarm of locusts (© FAO
emergencies, flickr.com).
D) a swarm of bats (©
Amanda, flickr.com). E) a
mosh pit on a rock concert
(© Amanda Mustard,
amandamustard.com). F)
a herd of sheep (© Dariusz
Paciorek, aeroart.com.pl).
G) the bait ball phe-
nomenon (© Bo Pardau,
flickr.com). H) milling
fish (© Robin Hughes,
flickr.com).

http://www.flickr.com
http://www.flickr.com
http://www.flickr.com
http://www.flickr.com
http://www.amandamustard.com/
http://www.aeroart.com.pl/
http://www.flickr.com
http://www.flickr.com
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Some manifestations of collective behaviour (e.g. schools of fish and flocks of birds)
are quite large in scale and as such hard to enclose in a controlled environment in
which scientists could then test the hypotheses about the “whys” and “hows” of such
behaviour []. In addition in nature different predators with different hunting tactics
exist in different environments, meaning that it is difficult to compare the effects of
predation pressures on the behaviour without the confounding effects of environmen-
tal context. With computational approaches one can develop models that reproduce
the studied behaviour and at the same time diminish the confounding effects of the
environment. It comes as no surprise then that computational approaches are a more
and more frequently used tool for studying various hypotheses concerning collective
behaviour [, , ]. Because computational approaches give scientists full control
over the involved parameters, the results are usually also not species specific but more
general.

. Individual-based models

There are two prominent computational approaches suitable for studying collective
behaviour. The first one is called Eulerian modelling, which typically uses partial dif-
ferential equations to describe the flux of a property – how that property changes
through time and space. In the case of collective behaviour studies the property in
question is usually population density []. However, Eulerian modelling has two
weaknesses, the individual variations (e.g. in speed, body size, vision, etc.) cannot be
easily incorporated [], and it does not allow to trace the properties on the group level
back to the behaviour of individuals []. Eulerian modelling can thus be interpreted
as a top-down approach to modelling collective behaviour, where one single equation
is sought, an equation which describes the dynamics of the property in question on a
global level. Needless to say, Eulerian modelling is suitable for tackling with research
questions related to the global properties of collective behaviour assuming that one
exists; questions related to how or why such behaviour emerges, on the other hand,
are extremely difficult or impossible to answer.

Because of these reasons the most common computational approach to the study
of collective behaviour is the so called individual-based modelling (also known as La-
grangian modelling, or agent-based modelling). The reasoning behind such modelling
is that to be able to address questions related to how or why collective behaviour
emerges the focus should be on the individual, and thus the approach can be viewed
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also as a bottom-up approach to modelling collective behaviour. In individual-based
models the behaviour of each individual is defined by its local algorithm (local pro-
gram). A local algorithm describes how an individual reacts to its neighbours, nearby
environment, and possibly its own internal state. Once researches define the behaviour
(reactions) of individuals they run computer simulations where many of these individ-
uals reside in a shared environment. In these simulations, the behaviour of individuals
results from local interactions and is usually calculated in turn for each individual
and integrated over time. During simulations researchers observe and try to explain
the patterns that emerge on a group level via local interactions []. In other words,
researchers program the behaviour of individuals (local level) and then observe the be-
haviour at the global level that emerges from interactions at the local level []. In
individual-based models there is usually no central or external mechanism that would
impose order and structure on the global level. The emergence of order and struc-
ture from local interactions on the global level is also known as self-organization. Self-
organization is a very interesting research topic on its own as besides biological systems
(e.g. animal aggregations) it exists also in the world of physics (e.g. Rayleigh-Bénard
convection cells []) and chemistry (e.g. Belousov–Zhabotinsky reaction []). An
interesting, but rather unconventional approach used for the study of self-organizing
patterns is amorphous computing [, ], which builds computational systems made
from very large numbers of identical, parallel processors each having limited computa-
tional ability and local interactions. For example, Coore [] demonstrated that local
entities in amorphous computing can be configured to generate pre-specified patterns
that resemble self-organization.

In biological studies devoted to answering questions why or how collective be-
haviour emerges, most often the individual-based models for simulating the motion
of groups of animals are designed by hand. In such hand-crafted, or pre-set, mod-
els the behaviour of artificial animals, or animats [–], is designed by the re-
searchers/programmers and then fine-tuned to as closely as possible mimic the be-
haviour of animals in nature [, , , , , , ]. When fine-tunning and vali-
dating the researchers resort to various metrics by which they compare the behaviour
of animats to the behaviour of the modelled animals. The developed models (designed
and fine-tuned) are then used to study the behaviour of animals by simulating various
situations in a controlled environment and observing the reactions and interactions of
large numbers of animats.
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. The animat

The animat can be defined as a Moore automaton [] with a three stage transition
function (see Definition . and Figure .) [, –]. It abstracts the basic char-
acteristics of a real animal. Just like a real animal, it exists in time and space and is
surrounded by inanimate and animate objects (i.e. the universe). It is aware of its cur-
rent state and capable of perceiving the state of the universe. By performing actions,
governed by its drives, the animat is capable of influencing its own state and the state
of the universe [].

Definition .: An animat A = ⟨X,Q,Y, δ, λ,P,D, S⟩ is an extended Moore au-
tomaton, where X, Q and Y are non-empty sets representing the input alphabet,
the internal states and the output alphabet respectively; δ ∶ X×Q→ Q is a mapping
called the transition function and λ ∶ Q → Y is a mapping called the output func-
tion. At any discrete time step t ∈ T, where T is a non-empty set of discrete time
steps, the automaton is in a state qt ∈ Q. The state determines the future input-
output behaviour. If an input xt ∈ X is applied, then, in the next discrete time
step t + , the automaton assumes a new state qt+ = δ(xt, qt) that depends both
on the current state and the input. In addition, the automaton emits the output
λ(qt+) ∈ Y, which depends on the new state. In the case of the animat its input in
a given discrete time step is the perceived state of the universe (a collection of ani-
mats) at the same time step and for that reason its input alphabet is X = Y×⋯×Yn,
where Y, . . . ,Yn are output alphabets of the n animats that represent the universe.
In addition P = ⟨P, . . . ,Pk⟩, D = ⟨D, . . . ,Dl⟩, and S are a k-tuple of perception
functions, an l-tuple of drive functions, and an action selection function respectively
and the transition function δ is defined as:

pi = Pi(x, q), i = , . . . , k, (.)

aj = Dj(⟨p, ..., pk⟩, q), j = , . . . , l, (.)

δ(x, q) = S(⟨a, ..., al⟩, q). (.)

As animals in nature are able to monitor their surroundings via their senses (sight,
lateral line, hearing, etc.), animats are able to perceive their neighbourhood, the current
state of the universe nearby. Animats continuously attempt to optimise the rate of
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Figure .
A visual representation
of the processes and
terminology associated
with an artificial animal,
the animat.

occurrences of events that will fulfil their drives. Drives in animats thus imitate the
instinctive needs that make real animals tick and perform actions that are necessary to
survive in their natural habitat. A few examples of such drives are: the drive to feed,
the drive to mate, social drives, etc. More often than not there is no “one action to rule
them all,” meaning that there is no single action that could satisfy all of the animat’s
drives at the same time. For example, let us consider a hungry animal with a feeding
area nearby. If there are no predators roaming around the feeding area, the decision of
the animal (action selection) is trivial – move towards the food. If there are predators
nearby, however, the animal’s decision becomes a bit more complicated as it has to
meld the actions that will satisfy the drive to feed with those that will satisfy the drive
to flee. If the animal is facing the threat of dying by starvation it might decide to move
towards the food despite the danger of being eaten by a predator. On the other hand,
if it is just slightly hungry it might decide that a better option would be to try and
find a different source of food, a source of food that does not have predators lurking
around. Therefore, the animat has to perform some kind of action selection in order
to appease its drives. In other words the action selection tries to satisfy as many of the
animat’s drives as posible given the animat’s current state and the state of the universe
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Figure .
Visualization of the three
basic drives: (a) cohesion,
(b) separation, and (c)
alignment. The black
animat is the observed
individual. The grey
animats are the perceived
neighbours that influence
the observed animat’s
behaviour. The white
and outlined animats
are neighbours that have
no direct influence on
the observed animat’s
behaviour.

cba

nearby.
With individual-based models it has been demonstrated that complex collective

behaviour can emerge if individuals follow relatively simple drives. The first attempts
at modelling collective behaviour via individual-based models were made in the s.
Aoki [] proposed a bottom-up approach to the simulation of schooling mechanisms
in fish. Reynolds [] presented the first computer model for procedural animation
of flocking birds. Heppner & Grenander [], working on a similar project, modelled
the behaviour of birds with stochastic non-linear differential equations. These and
subsequent individual-based models [, , , , , , –] differ in the way they
implement individual parts, but in most models the behaviour is a constant blending
of three drives called cohesion, separation, and alignment (see Figure .). Cohesion
denotes the attraction toward other individuals and is usually modelled as the tendency
to move towards distant individuals when there are none nearby; separation models
the tendency to move away from neighbours that are too close, to avoid collisions.
The third drive, alignment, models the tendency to synchronize velocity (direction
and speed of movement) with nearby neighbours. As a perfect synchronization of
movements will prevent collisions and lead to the formation of groups the alignment
drive can be interpreted also as a passive form of avoidance and attraction, and due to
this some models concentrate exclusively on the alignment drive [].

. Evolvable animats

An alternative approach to hand-crafted models is to design a system in which ani-
mats can adapt to the environment by tweaking the parameters that define their own
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behaviour. The animats change their behaviour to satisfy their drives in a more effi-
cient way. Traditionally this is achieved through the application of genetic algorithms
– algorithms that by means of selection, crossover, and mutation imitate natural evolu-
tion for finding solutions to various problems [–]. Here, every potential solution
to the problem that is being solved is represented by its own chromosome. Selection
mimics the survival of the fittest principle in nature, where the best specimens of a cer-
tain species have a higher probability of reproductive success than the weak ones, thus
stronger individuals will leave the most copies of their genetic material in successive
generations. Crossover emulates the exchange of genetic material during reproduction.
When two parents produce an offspring their chromosomes are recombined to form
the chromosome of the child and in the process the traits of parents are transfered to
the child. As in nature the anomalies in the process may result in insertion or deletion
of genetic information into the child’s chromosome, genetic algorithms in their last
operation perform mutation, where on rare occasions parts of the child’s chromosome
will randomly change.

In most applications of genetic algorithms the generational boundaries are clearly
defined. In every generation the whole population of potential solutions to the prob-
lem that is being solved (chromosomes) is evaluated via simulation to extrapolate the
fitness (assess the quality) of every individual solution. The fitness is then used for
selection, followed by crossover and mutation so that the whole population of possible
solutions (chromosomes) is created anew and is defined as a new generation.

In recent years a number of hi-impact studies [–, , , , ] used genetic
algorithms to gain new insight into how external pressures shape the behaviour of
animals and what type of external pressures promote the evolution of collective be-
haviour. A number of researchers evolved only various parameters required for the
implementation of drives by means of differential equations [, , ]. The main
issue of this approach is that using known and predefined drives will most likely steer
the evolution towards known forms of collective behaviour. Reynolds [] was the
first to use genetic algorithms [] in combination with genetic programming [] to
attempt the evolution of collective behaviour without predefined drives. The simple
behaviour that emerged, however, cannot be compared to the complexity of collective
behaviour that can be observed in nature, mainly because Reynolds made too many
simplifications. Zaera et al. [] attempted to evolve fish schooling with artificial neu-
ral networks and genetic algorithms, but they did not succeed in completing the task



  Introduction J. Demšar

at hand. They suggest that the main reason for failure was in the fitness function as it
is hard to define the perfect one because it is hard to measure collective behaviour on
the global level from the point of view of an individual. Indeed, the fitness function
is the key element of genetic algorithms; it determines which solutions will continue
the process of evolution and which will die out.

Assessing collective behaviour from the point of view of an individual is problematic
from at least two perspectives. First, the definition of the degree of collective behaviour
is not clear. There are several different forms of collective behaviour in nature, each
one spectacular and beautiful in its own way. And second, assessing the degree of col-
lective behaviour from the point of view of an individual for the purpose of evaluating
its fitness explicitly defines the direction of evolution; individuals are steered into find-
ing actions that will lead to an increase of the degree of collective behaviour. While
this might be non problematic in traditional use of genetic algorithms (finding near-
optimal solutions to difficult problems), it becomes problematic when one wants to
investigate the reasons that might have led to the emergence of collective behaviour,
i.e. when one wants to answer questions such as why or how collective behaviour
emerges. For such questions one should instead be interested if animats will resort to
collective behaviour as a result of natural evolution, without an explicit fitness function
– an approach typical for investigations in the field of Artificial life. As a matter of fact,
a number of studies [, , , , , ] successfully overcame the issue by using a
more subtle fitness function. In these studies fitness was assesed through the ability of
individuals to survive in various hostile artificial environments. The actions required
to survive were similar to those that living animals perform in nature – avoid predators,
search for food, etc. The animats that were successful at surviving had more opportu-
nities and a higher probability of reproducing. With this they had a higher chance of
spreading their genetic material. And since offspring inherit the traits of parents, they
were also traditionally more successful at staying alive. Collective behaviour emerged
if and only if it had a positive effect on prey survivability. However, the collective
behavior that emerged can in most cases [, , , , , ] be classified into two
forms – clumping and swarming. None of these studies succeeded in producing the
highly organized forms of collective behaviour that we admire in flocks of birds and
schools of fish, namely their dynamic parallel motion and/or milling [, ]. And this
is what we aimed to achieve in this thesis.
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. The fuzzy animat

The two most common approaches for implementing animats adopt either differential
equations [, , , ] or artificial neural networks [, , ]. Artificial neural
networks [] are universal and highly flexible function approximators that loosely
model the behaviour of neural units in human brains. Even though these two ap-
proaches gave us a tremendous amount of new insight into the fascinating field of
collective behaviour, they have some drawbacks that are potentially problematic for
future advances. The two main problems of differential equations are that the exact
values of several parameters in the equations are often unknown, and that researchers
usually need solid mathematical knowledge to modify and tune the behaviour of an-
imats. The main issue of artificial neural networks is that the models based on them
are usually hard to interpret and understand from a human point of view. This is why
artificial neural networks are sometimes labelled as the “black box” approach [–].

Lebar Bajec et al. [, ] suggested that the above and some other pitfalls may
be alleviated by using fuzzy logic []. Just like artificial neural networks, fuzzy logic
is a universal and highly flexible function approximator. One of the main advantages
of fuzzy logic is its power when dealing with ambiguous (uncertain, vague, etc.) or
unknown parameters of the models. Another advantage of fuzzy logic based modelling
is that fuzzy models are described with linguistic rules similar to sentences that humans
use for communication on a daily basis [, , –]. The idea that with fuzzy logic
one can transform the on-field observations made by biologists into computer models
with relative ease has been supported by numerous studies [, , , –, –].

Indeed, starting from this idea Lebar Bajec et al. in  defined the fuzzy animat
[, ], an artificial animal based on fuzzy logic. From the formal standpoint the
main difference between the classic animat and the fuzzy animat is in the approach
used to implement the animat’s transition function. In the case of a fuzzy animat
fuzzy logic can be used for the description of perception functions, drive functions,
and the action selection function (see Definition .). Most often [, , –, ]
the biggest difference is probably in terms of drives; in the case of the classic animat
the drives are usually implemented with differential equations while in the case of the
fuzzy animat the drives are implemented as fuzzy rule-based systems.

A fuzzy rule-based system is defined through a so called fuzzy knowledge base, which
consists of two components: a fuzzy data base and a fuzzy rule base []. The data
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Figure .
An example of a simple
fuzzy knowledge base.
It describes a fuzzy rule-
based system of a room
temperature controller.
The top part is a visual
representation of the fuzzy
data base. It defines two
fuzzy variables, one input
and one output. The input
variable is the current
room temperature, which
is mesaured by the system
via a temperature sensor.
The rule base (bottom
part) describes how input
variables are translated into
actions (output variables)
via fuzzy if-then rules. In
our case the action of the
temperature controller is a
change in room heating.

if temperature is too cold, then heating change is increase
if temperature is too hot, then heating change is decrease
if temperature is just right, then heating change is none
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base declares the fuzzy variables, the linguistic terms, and the interpretation of logic
connectives, while the rule base uses a collection of if-then rules (a linguistic descrip-
tion) to describe the system’s behaviour. An example of a simple fuzzy knowledge base
of a fuzzy rule-based system used for a room temperature controller is presented in
Figure ..

In the case of animats the fuzzy data base describes how they perceive and inter-
pret their neighbourhood and what actions they can execute to change their state and
consequently the state of the universe. As such, the fuzzy data base defines the in-
terpretation of various data obtained by the fuzzy animat’s sensory system (e.g. the
distance to the nearest neighbour animat, heading direction of the predator animat,
position of obstacles, etc.), and the actions availabe to the animat (e.g. speed change,
heading change, etc.). How the fuzzy animat translates the available information into
actions is then defined with the fuzzy rule base.
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. Goal: evolvable fuzzy animats

The main goal we set ourselves for this thesis was to develop an evolutionary model,
based around fuzzy logic, suitable for simulating evolution of collective behaviour in-
side an artificial world. As the most common hypothesis about the origins of col-
lective behaviour states that collective behaviour might have evolved as a protection
from predators [, , –] it is to be expected that the direct competition between
predators and prey should most likely be part of an evolutionary model that wishes
to study the origins of collective behaviour. In order to properly design the model,
and later evaluate it, we, for this reason, first studied the predator-prey relation and
interactions in a hand-crafted model. By analysing the target selection (predation)
tactics in a hand-crafted model we gained important insight into the complex world
of predation tactics and prey responses to attacks. During this process we also discov-
ered that existing models most often use basic predation tactics, whereas predators in
nature adopt quite advanced approaches when hunting prey. Thus we next developed
an evolutionary model where predators can tune their hand-crafted predation tactics
to increase their hunting success, which could potentially give us the answer to what
predation tactic is optimal for certain forms of collective behaviour or prey responses.

By using the results obtained by these two studies [, ] we then designed a genetic
fuzzy system for the simulation of evolution of collective behaviour. Genetic fuzzy
systems [–] use genetic algorithms for optimizing existing or constructing new
knowledge bases of fuzzy rule-based systems. Most genetic fuzzy systems focus on the
optimization of hand-crafted fuzzy systems [–]. A more demanding approach is
genetic learning of fuzzy systems, where components of a fuzzy system (the rule base, the
data base, or the entire knowledge base) are not only tuned but constructed via genetic
algorithms.

There are two prominent approaches for genetic rule learning – the Michigan [],
and the Pittsburgh [] approach. With the Michigan the chromosome, as defined
by the genetic algorithm, represents an individual rule and a rule base is presented by
the entire population of chromosomes in a generation. The quality of the rule base
(its capability of solving the problem at hand) therefore progresses through clearly
defined generations. As this would lead to all animats having the same rule base we
opted to use the Pittsburgh approach. With it the chromosome represents an entire
rule base. This allowed us to interpret each animat individually (defined by a single
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chromosome) and move away from the traditional use of genetic algorithms with clear
generational boundaries and closer to artificial life where there is no clear generational
boundary (selection, crossover and mutation are simply part of evolution). As each
animat is defined through its own chromosome, this also means that the population
of animats is heterogeneous (if not by physiology by behaviour at least). This also
means that the differences in individual chromosomes (rule bases) represent a source
of indirect competition in the model (via their rule bases the animats compete for
survival in the artificial world). One could say that prey animats in our model have to
survive in an environment that is competitive in two ways. First, prey animats compete
with predators for survival, and second they compete with each other to have a higher
chance for reproduciton. With this and the consideration of various predation tactics
we managed to design an evolutionary system that is capable of generating a wider
repertoire of collective behaviours than previous approaches [, , , –, ].

. Research methodology

We split our research into four stages, each with a specific sub-goal. During these
stages we developed three different individual-based models. Figure . visualizes the
four sub-goals and the main differences between the models used for achieving these
sub-goals.

In the first model we upgraded an existing fuzzy model for computer simulation of
bird flocking [, ]. Our principal contributions were a) the design of a perception
function which mimics vision and takes into account limitations in cognitive capabili-
ties, and b) introduction of a predator animat. The behaviour of both types of animats
(the predator and prey animats) was hand-crafted. The introduction of the preda-
tor animat necessitated also the revision of the prey animats with additional drives.
The behaviour of prey animats was thus based on five drives: cohesion, separation,
alignment, regulate speed, and hide (escape). Cohesion, separation and alignment are
visualized in Figure .. The regulate speed drive implements the tendency to move
with an optimal speed if there is no predator nearby. The hide drive, on the other
hand, implements the tendency to escape from predators. As the behaviour of all
prey animats was governed by exactly the same drives and there was no variability in
their parameters prey groups were homogeneous. The behaviour of the predator was
governed only by the seek (hunt) drive. A drive which implemented the tendency of
predators to chase their targeted prey individual. For further details of the model refer
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A visual representation
of models used in all four
stages of this thesis.
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to Chapter . The model was used to investigate the general hypothesis that grouping
may serve as a protection from predation.

In the second stage we developed an individual-based model where the drives are
implemented via differential equations (non-fuzzy). This was done to achieve compa-
rability with previous similar models and to keep computational complexity as low as
possible. The drives for both types of animats (predator and prey) were hand-crafted.
In the case of prey animats the behaviour was based on previous zone-based models
[, ] and governed by the cohesion, separation, alignment and escape drive. Prey
groups were homogeneous – there was no variability in neither drives nor parameters
of prey animats. The behaviour of the predator was governed only by the hunt drive.
The model was used to study the evolution of composite predation tactics. To do so the
parameters of each tactic were tuned with genetic algorithms, meaning that a predator
was able to adapt its target selection tactic in order to increase its hunting success. See
Chapter  for further details of the model.

The research in the third and fourth stage was conducted with the same individual-
bsaed model, an artificial life-like genetic fuzzy system suitable for simulating the evo-
lution of prey behaviour. The only difference was that in the third stage predators used
random predation tactics while in the fourth stage the predation tactics were carefully
picked to put certain evolutionary pressures on prey. Both types of animats (predators
and prey) were modelled with fuzzy logic. The behaviour of predators was hand-crafted
and very similar as in the first stage of our research. Predators only had one drive, the
hunt drive, which implements their tendency to chase the targeted prey individual. In
contrast to stage two, the predators did not adapt their behaviour through evolution.
The behaviour of prey animats, on the other hand, evolved through time. Evolution
of prey animats in the third and fourth stage was performed via genetic rule learning
(construction of fuzzy rule bases with genetic algorithms). As we used the Pittsburgh
approach for genetic rule learning each prey animat was governed by its own set of
rules and could behave differently from all the other prey animats. This in turn means
that prey groups were heterogeneous See Chapters  and  for further details of the
model. In the third stage we investigated if the model is capable of evolving a wider
repertoire of collective behaviours than previous approaches, and in the fourth stage
we investigated what predation pressures lead to the emergence of specific forms of
collective behaviour.
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. Scientific contributions

We started this research with two goals in mind. The first goal was an analysis of how
predator strategy and prey grouping (e.g. bird flocking, fish schooling, etc.) influence
prey survivability. Research devoted to achieving this gaol resulted in two scientific
contributions, listed at the end of this section as a) A hand-crafted fuzzy model with vi-
sion based target selection tactics and b) A genetic model for tuning hand-crafted composite
target selection tactics at the end of this section. Each contribution was presented on its
own in the form of an original scientific paper in a renowned scientific journal. The
manuscripts are included in this thesis in their entirety as Chapters  and .

The second goal was the development of a co-evolutionary genetic fuzzy system
suitable for simulating the evolution of collective behaviour. While we were working
on our first goal Olson et al. [, , ] developed a model similar to the one we
set to develop as part of our second goal. They designed a probabilistic version of
the animat based on Markov Networks and simulated co-evolution of predators and
prey that lived in a shared environment. Results from these studies suggest that prey
individuals in their case always evolved a swarming behaviour. In nature, however,
collective behaviour can be observed in many forms –- swarming, milling, dynamic
polarized motion, etc. Other existing evolutionary models [, , , –, ] were
aslo unable to reproduce such a wide repertoire of collective behaviours. We view this
gap between the forms of collective behaviour that can be observed in nature and those
evolved via artificial evolution as the major weakness of current evolutionary models.
For this reason, we decided that in lieu of focusing on co-evolution of predators and
prey we will focus on designing a genetic fuzzy system capable of evolving a wider
repertoire of collective behaviours. The co-evolution of predators and prey usually
leads to a continuous co-adaptation of predator and prey behaviours. Needless to say
such an analysis although interesting would be extremely time consuming. Thus, for
reasons of simplicity the predator animat in our model is hand-crafted, i.e. excluded
from evolution, only prey animats co-evolve through time. Their co-evolution is the
result of their direct competition with predators for survival, them being heterogeneous
in behaviour, and their indirect competition where they compete with each other to
have a higher chance of reproduction. This also allowed us to analyse the evolved
behaviours in a more controlled manner. Research devoted to achieving our new gaol
resulted in two scientific contributions, listed at the end of this section as a) Genetic
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fuzzy system for a computer simulation of the evolution of collective behaviour and b)
Analysis of the influence of predation pressures on the form of evolved collective behaviour
at the end of this section. Each contribution was presented on its own in the form
of an original scientific paper in renowned scientific journal and the manuscripts are
included in this thesis in their entirety as Chapters  and .

A hand-crafted fuzzy model with vision based target selection tactics We started our re-
search by expanding an existing fuzzy logic based model [, ] with predators and
visual perception. Here we implemented three target selection tactics, all from the
visual perspective of the predator (attack the nearest visible individual, attack the most
visually isolated individual, and attack the centre of the visible group). This allowed us
to study the influence of predation tactics and the impact of collective behaviour on
survivability of prey individuals [] . Our results suggest that for prey individuals so-
cial behaviour (governed by the separation, alignment, and cohesion drives) as opposed
to individualistic (governed exclusively by the separation drive) is the most beneficial
(predators take longer to capture their target). Predators, on the other hand, capture
social prey individuals quicker when they attack the most visually isolated individual,
but capture individualistic prey faster if they focus on the nearest prey individual.

A genetic model for tuning hand-crafted composite target selection tactics In the next
stage we developed an evolutionary model with which we studied composite target
selection tactics []. For reasons of computational simplicity we here expanded on a
known mathematical model of prey collective behaviour. This allowed us to concen-
trate on predator target selection tactics. We investigated the evolution of the optimal
tactic with respect to prey behaving collectively and prey that performed a delayed
response as a form of a defensive manoeuvre []. Our results suggest that a compos-
ite tactic termed dispersing tactic, where the predator first dives deep into the group
of prey and then targets the most peripheral individual, is the best tactic. This tactic
seems to be the only tactic capable of at least partially diminishing the effectiveness of
the preys’ delayed response. This was a clear indication of potential interplay between
target selection tactics and prey behaviour.

Genetic fuzzy system for a computer simulation of the evolution of collective behaviour
Armed with this knowledge, we developed an artificial life-like open-ended evolution-
ary model, where the behaviour of prey and predator individuals is governed by fuzzy
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logic []. In this model we focused on the evolution of prey behaviour when prey
individuals face different predation tactics. We demonstrated that in this model prey
individuals are capable of evolving a varied spectre of collective behaviours (swarming,
milling, polarized motion, dynamic motion). Interestingly, the analysis of the evolved
rule bases showed a statistically significant difference between different types of be-
haviour in the proportion of rules that take into account predator related information.
This suggested that the predation pressures the prey are subject to during evolution
might have a crucial influence on the behaviour that evolves.

Analysis of the influence of predation pressures on the form of evolved collective behaviour
The last step of our research was thus a controlled experiment where prey evolved
under various predation tactics []. Here we let prey individuals evolve under four
predation tactics, two of which according to previous research pressure prey to evolve
dispersing and two pressure prey to evolve grouping. Our results suggest that antago-
nism in pressures, where prey are exposed to pressures for which the best response is
both grouping and dispersing simultaneously, might be necessary for prey to evolve
polarized movement.
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TT
his thesis can be divided into four separate stages. In the first two stages,
Simulated predator attacks on flocks: a comparison of tactics, and Simulat-
ing predator attacks on schools: evolving composite tactics, we studied how
various predation tactics influence the survivability of prey and what

kind of adaptations by prey individuals decrease the predation success of predators.
In the third stage, Evolution of collective behaviour in an artificial world using linguistic
fuzzy rule-based systems, we developed a genetic fuzzy system that is capable of simu-
lating artificial evolution and thus generating a number of diverse forms of collective
behaviour observable in nature. In the last stage, A balanced mixture of antagonis-
tic pressures promotes the evolution of parallel movement, we systematically investigated
how various predation tactics influence the evolved behaviour of prey.

. Simulated predator attacks on flocks:
a comparison of tactics

Starting with an existing fuzzy logic based model [, ] we integrated recent discov-
eries about vision based interaction (topologic interaction [] and occlusion [])
and introduced vision based predators []. This allowed us to study the behaviour of
systems that contain several types of animats including predator-prey interaction. In
most individual-based models that simulated predator-prey interactions at the time of
that study, predators attacked the centre of prey groups. This appears contradictory to
the hypothesis that collective behaviour evolved as a protection against predators. For
this reason we investigated how predator attack tactics and prey behaviour influence
the survivability of prey individuals. We tuned the parameters that define the move-
ment characteristics of animats, e.g. speed and manoeuvrability, on empirical data so
that the group dynamics and escape patterns were similar to those in nature.

Our results suggest that prey individuals that exhibit social behaviour (governed
by the separation, alignment and cohesion drives) have a higher chance of surviving
predator attacks opposed to prey individuals with individualistic behaviour (governed
exclusively by the separation drive). The results support the hypothesis that grouping
might function as a defensive mechanism. By implementing three target selection
tactics that take into account the visual perspective of the predator (attack the nearest
visible individual, attack the most visually isolated individual, and attack the centre
of the visible group) we were able to provide support for this hypothesis from the
predator’s perspective as well. When predators attacked social prey individuals, they
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captured their targets faster if they attacked the most visually isolated individual, which
suggest that moving in tight and evenly spaced groups might make it hard for predators
to select and track their targets. When predators attacked prey with individualistic
behaviour they were the most successful if they focused on the nearest prey individual.
The reason might be because in the absence of social behaviour predators can reach the
nearest prey individual the fastest. In nature this tactic is typically used by predators
that try to minimize energy costs for prey capture.

. Simulating predator attacks on schools:
evolving composite tactics

In previous individual-based models of predator-prey interactions, including ours,
predators mainly used one of several basic attack tactics; attack the centre of the
group/the most central individual, attack the nearest individual, or attack the most
(visually) isolated individual. In nature however, predators appear to use elaborate tar-
get selection and pursuit/hunting tactics [, –] and prey vice-versa resort to
different defensive tactics (e.g. grouping, grouping with a delayed response). In ad-
dition, results of our first stage of research suggested that the predator’s optimal tactic
depends on the prey’s behaviour. This motivated us into developing an evolutionary
model that tunes the parameters of hand-crafted predators []. For reasons of compa-
rability and computational simplicity we opted to expand on an existing hand-crafted
non-fuzzy prey and predator model. In the developed model predators were able to
adapt their target selection tactic to diminish the effectiveness of the defensive actions
of prey and increase their hunting efficiency.

Our results suggest that the basic attack tactics (attack the most peripheral prey in-
dividual, attack the nearest or attack the most central prey individual) are suboptimal,
as they were all outperformed by a composite attack tactic, which we named as the
dispersing tactic. With the dispersing tactic the predators first dived deep into the cen-
tre of a nearby group of prey and then after causing chaos and dispersion of the group
focused on isolated individuals. Interestingly this tactic can be commonly seen in na-
ture when various predators, e.g. swordfish (Xiphias gladius), attack groups of prey
[, ]. In turn our results corroborate with the hypothesis that late but rapid group
escape patterns commonly observed in nature [] help prey individuals decrease the
efficiency of predators. Our results also suggest that when predators attack groups of
prey that delay their escape response the dispersing tactic is again the most successful



  Review of published work J. Demšar

one from the predator’s perspective. The dispersing tactic seems to be the only tactic
capable of at least partially diminishing the effectiveness of the preys’ delayed response.

During this study we also investigated the impact of the confusion hypothesis on the
evolution of composite predation tactics. The confusion hypothesis suggests that prey
groups work as a defensive mechanism because predators have a hard time tracking a
single target in a vast group of visually similar animals. Because without consideration
of predator confusion all tactics converged to similar values, our findings seem to sug-
gest that predator confusion might have played an important role in the evolution of
composite predation tactics, as well. The results of this study were a clear indication
of potential interplay between target selection tactics and prey group behaviour.

. Evolution of collective behaviour in an artificial world
using linguistic fuzzy rule-based systems

Armed with the knowledge gained in the first two stages of this research we devel-
oped an artificial life-like, open-ended, evolutionary model where competition be-
tween predators and prey in the battle for survival is the principal force that steers the
evolution of prey []. In this model the behaviour of prey and predator individuals
was governed by fuzzy logic. We used the model to study the evolution of prey be-
haviour when prey individuals are forced to live in a shared environment with various
types of predators using diverse predation tactics. The predators were hand-crafted
and tuned based on results from the previous stages of this research.

We demonstrated that the newly developed model is capable of producing a num-
ber of different forms of collective behaviour that both visually and quantitatively
[, , ] resemble collective motion commonly observed in nature (swarming,
milling, polarized motion, dynamic motion). Since the behaviour of every individual
prey animat was described in the form of linguistic if-then rules this allowed us to study
the logic behind the evolved behaviours. Interestingly, the analysis of the evolved rule
bases showed a statistically significant difference between different forms of collective
behaviour in the proportion of rules that take into account predator related informa-
tion. This suggests that the predation pressures the prey are subject to during evolution
might have an influence on the behaviour that evolves.



Evolution of fuzzy animats 

. A balanced mixture of antagonistic pressures promotes
the evolution of parallel movement

Based on the indication that predation pressure might influence the form of evolved
collective behaviour the last stage of research was a controlled experiment where prey
evolved while subject to multiple simultaneous predation pressures. We investigated
the influence of four predation tactics, two of which according to previous research
pressure prey to evolve dispersing and two that pressure prey to evolve grouping. We
analyzed the evolved behaviour via the prey density, polarization, and angular momen-
tum metrics [, , ].

Experiments with predators to which the expected natural defensive response was
either grouping or dispersing corroborate previous studies [, , , ]. When
predators pressure prey towards grouping, prey evolve behaviours that result in an
increase in prey density. When they pressure prey towards dispersing, prey evolve
behaviours that result in a decrease in prey density. In all of these cases prey most
often resorted to collective motion similar to swarming and milling. More interesting
results came from experiments where prey evolved while under threat from predators
that use antagonistic predation pressures. Pressures that push prey to evolve grouping
and dispersing simultaneously. Our results suggest that antagonism in pressures, where
prey are exposed to pressures for which there is no clear best response (grouping or
dispersing), might be necessary for prey to evolve polarized movement.
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Abstract It is not exactly known why birds aggregate in coordinated
flocks. The most common hypothesis proposes that the reason is
protection from predators. Most of the currently developed examples
of individual-based predator-prey models assume predators are
attracted to the center of a highly coordinated flock. This proposed
attraction of a predator to a flock would appear to be contradictory
to an alternate hypothesis that flocks evolved as a protection
against predation. In an attempt to resolve this apparent conflict,
in this article we use a fuzzy individual-based model to study three
attack tactics (attack center, attack nearest, attack isolated) and
analyze the success of predation on two types of prey (social
and individualistic). Our simulations revealed that social flocking
(as opposed to individualistic behavior ) is the optimal anti-predatory
response to predators attacking mainly isolated individuals.

1 Introduction

The study of collective behavior is a fascinating field that analyzes how simple actions of an individual
influence the complex global dynamics of a group. Aristotle once stated: “The whole is greater than the
sum of its parts”—a statement that describes the essence of collective behavior. Typical examples of
collective behavior are flocks of birds, schools of fish, and swarms of insects—phenomena that can
be easily observed in nature. Collective behavior is also interesting because similar patterns emerge at
smaller scales (cellular level) [6, 44].
Even though collective behavior is a common sight, it is still surrounded by mystery [27]. Several

different hypotheses in the literature suggest reasons why animals sometimes coalesce into organized
groups. The most common one proposes that such groups may function as an effective defense against
predators [12, 22, 27, 37]. This hypothesis is supported by evidence that animals in groups may bene-
fit from an increased probability of detecting a predator [9], individuals in groups may reduce the
amount of time spent for predator vigilance [7, 42], and an individual in a large group may have a lower
probability of being attacked by a predator [10]. Other hypotheses suggest that aggregating animals may
benefit through higher mating efficiency, and more efficient foraging [23]. Some studies claim that fish
schools or bird flocks save energy because of hydrodynamic or aerodynamic benefits [30]; however, the
opinions on this matter are contradictory [3, 38, 48]. Our work focuses mainly on bird flocks; however,
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. Introduction

The study of collective behaviour is a fascinating field that analyses how simple actions
of an individual influence the complex global dynamics of a group. Aristotle once
stated: “The whole is greater than the sum of its parts.” – a statement that describes
the essence of collective behaviour. Typical examples of collective behaviour are flocks
of birds, schools of fish and swarms of insects; phenomena that can be easily observed
in nature. Collective behaviour is also interesting because similar patterns emerge at
smaller scales (cellular level) [, ]. Even though collective behaviour is a common
sight, it is still surrounded by mystery []. Several different hypotheses in the litera-
ture suggest reasons why animals sometimes coalesce into organized groups. The most
common one proposes that such groups may function as an effective defence against
predators [, , , ]. This hypothesis is supported by evidence that animals in
groups may benefit from an increased probability of detecting a predator [], indi-
viduals in groups may reduce the amount of time spent for predator vigilance [, ],
and an individual in a large group may have a lower probability of being attacked by a
predator []. Other hypotheses suggest that aggregating animals may benefit through
higher mating efficiency, and more efficient foraging []. Some studies claim that fish
schools or bird flocks save energy because of hydrodynamic or aerodynamic benefits
[], however the opinions on this matter are contradictory [–]. Our work
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focuses mainly on bird flocks, however some results can also be applied to fish schools,
since they have some similarities in structure and behaviour, as they both operate in a
three-dimensional world [].

Bird flocks are among the most widely observed, yet least understood phenomena of
collective behaviour, mostly because of the difficulty of obtaining field data, and with
the exception of a few types of urban flocks, the unpredictability of the appearance
of highly organized flocks in nature []. Two types of highly organized bird flocks
emerge in nature – luster flocks, demonstrated by pigeons and starlings, and line flocks,
such as can be seen in groups of geese flying in a vee []. Every evening, when
birds that fly in organized groups return to their roosting areas, small flocks coalesce
into giant cluster flocks, often numbering tens of thousands of birds. Birds may then
perform complex aerial manoeuvres before finally settling in their roosts []. Such
behaviour can often be seen every evening at the same place, so it might appear that
birds flying in such flocks are actually attracting predators, and making it easy for them
to attack the flock, which is counter intuitive with the idea that highly coordinated
flocks evolved to reduce the impact of predation.

Complex flocking behaviour can emerge if individuals follow simple rules. In ,
Reynolds [] published a ground-breaking paper that presented the first computer
flocking animation (boids). At the same time Heppner & Grenander [] were work-
ing on a similar project in which they modelled birds’ behaviour with stochastic non-
linear differential equations. In these two and most subsequent models equations gov-
ern the behaviour of the artificial animals (animats). Our model uses fuzzy logic []
and fuzzy rule-based systems [, ] to develop the behaviour of artificial animals,
rather than equations.

Some current state-of-the-art models are in three dimensions and incorporate some
simplified aerodynamics []. To make an in-depth study of shapes and patterns that
emerge within the flock during a predator attack a three-dimensional model would
be required [], but for the purpose of our study a two-dimensional model suffices,
since some researchers suggest that the dimensionality of the model minimally affects
the results of the simulations [, , ] and others believe that models should
be as simple as possible [].

Various authors have upgraded the basic models to add additional functionalities.
Moškon et al., for example, used fuzzy logic to simulate the foraging behaviour of
artificial birds []. There are also several models that implement predators. All of
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them are based on Reynolds’ model and most of them use a predator that attacks the
centre of the flock [, ]. This predator attack tactic might be true for some
species of real fish; a swordfish, for example, in nature typically attacks the centre of
a prey school. In the first attack it disperses the school, and in the following attacks
the swordfish focuses on the individual fish that become separated from the rest of
the group []. Compared to birds, however fish may have better perception of the
environment than birds because of the lateral line, and schooling might be used to
confuse the lateral line of predators []. Assuming that birds do not have a sense
like the lateral line, avian predators in nature might not attack in such a fashion.

Others that studied predator-prey dynamics in collective behaviour mostly focused
on a flock’s response to the predator’s attack. For example, Inada, et. al focused on
common escape patterns that emerge [], while Lee, et. al analysed how the size of
the flocks changes during an attack [].

In both cases the predator attacked the centre of the flock. With respect to the hy-
pothesis that flocks form as a defensive mechanism, targeting the centre of the flock
in hope of catching a prey might be viewed as a tactic based on pure luck. As already
stated this attack tactic might not be used by avian predators, except maybe for the
first attacks, where the goal might be to disperse the prey in order to prepare for other
tactics whose positive outcome might be more probable. This research is not the first
to propose different attack tactics; Nishimura [, ] was the first to study target
selection mechanisms. The key differences of this research compared to Nishimura’s
studies are: ) we use fuzzy logic; Nishimura used differential equations; ) we model
target selection through “realistic” visual perception; Nishimura defined the probabil-
ity of a prey becoming a target through a mathematical equation that does not take
into account the position of the predator relative to the flock, nor its orientation; )
in our model the prey that “sees” the predator tries to escape; in Nishimura’s model
it does not; and ) we study social versus individualistic prey behaviour; Nishimura
studies ordered, partially disordered and fully disordered prey motion.

According to Nishimura’s study [] the best predator tactic is to attack a peripheral
target and not the attack of an isolated target, as it can be observed in nature [, ].
The reasons for this conclusion are two: a) the equation Nishimura uses for a predator
targeting isolated prey (Nishimura’s strategy S) will not select any target if none exists
that has a large enough separation from the flock; and b) Nishimura’s predator has
perfect vision (i.e. it is able to perceive all prey) and it can happen that the predator
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will select a target that is on the opposite side of the flock and therefore require a
substantial amount of time to reach it. The first reason is unrealistic as from the three
types of motion that Nishimura studies (i.e. ordered, partially disordered, and fully
disordered) ordered motion, a rare event in nature, is a clear favourite. The second is
unrealistic as the selected target potentially might not be visible to the predator at all,
due to occlusion.

The analysis of predator-prey pursuit is interesting not only from a biological per-
spective but also from the perspective of control theory [, ]. The control theory
approach could potentially represent an alternative, more mathematical approach to
our study. However, we believe our fuzzy, individual based model with its differences
from Nishimura’s approach permit a simulation whose behaviour is closer to that of
real birds.

. Methods

The basis for our work is an existing fuzzy logic based bird flocking model made by
Lebar Bajec et al. [], called synflocks. An artificial animal, an animat, can be de-
scribed using three qualities: a) its perception of the environment, b) its drives, c) its
action selection. Perception acts as a filter of important information. Drives define de-
sired actions that will fulfil the animal’s needs. Action selection combines these actions
and performs the appropriate locomotor response. Assuming the artificial universe
constitutes only of artificial animals with no environmental factors like artificial trees,
then an artificial animal’s behaviour is dependent mostly on the position, direction,
and speed of the neighbours it perceives.

The animats in our model use the basic Reynolds drives – cohesion, separation and
alignment []. Cohesion simulates attraction toward flock-mates and is modelled as
the animat’s tendency to fly towards distant flock-mates when there are none nearby.
Separation is a drive which helps the animats to avoid collisions – it forces an individ-
ual to fly away from flock-mates that are too close. With the third drive – alignment –
animats synchronize their velocity (direction and speed of flight) with flock-mates. A
visual representation of the drives can be seen in Figure .. In our model the drives
are described with simple linguistic if-then rules. Fuzzy logic is used for the transfor-
mation of the rules into numerical values; the desired change in direction and speed of
each individual animat. More precisely the if-then rules are used in a Mamdani fuzzy
inference system [] (see supplementary material).
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Figure .
Perception of nearby
neighbours (a). The black
bird is the observed indi-
vidual. The dark grey birds
are the perceived nearby
birds that influence the
observed bird’s behaviour.
The white and outlined
birds are either occluded
by nearer birds (shaded
areas), outside of the ob-
served bird’s field of vision
(dashed area) or outside
the number-limited range.
Red arrows represent the
resulting force vectors of
the three basic drives –
lignment (b), cohesion
(c), separation (d). The
black bird is the observed
individual, the dark grey
birds are the influencing
neighbours.
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The original Reynolds’ model and most existing models are based on metric dis-
tance. In these models every animat within a limited radius influences the behaviour
of the observed animat; if an animat is outside that radius it does not have any in-
fluence on the observed individual. Nevertheless, recent research [, ] suggests
that in nature only around seven nearest neighbours influence an individual. As this
technique is already gaining support in current state-of-the-art models [], we use
a number-limited neighbourhood (topological distance) instead of a radius-limited
neighbourhood (metric distance) as well. In models based on topological distance,
only a fixed number of nearest animats is influential, regardless of their distance.

Our model uses topological distance and concentrates on vision as the principal
means of neighbourhood perception. Our animat’s field of vision is ○ wide, with
a blind angle of ○ directly behind it. Most current models presume that birds have
“perfect” vision and do not account for the occlusion of distant birds due to other birds
flying in the flock. Yet a recent study by Kunz et al. [] shows that obstruction of
vision increases the realism of simulations. Our model thus takes into account only
seven visible (non-occluded) nearby animats (see Figure .).

Predator and prey behaviours in our study are based on rules extracted from rele-
vant theoretical literature and field observations. We modelled our simulations after
a common scenario, where a Peregrine Falcon (Falco peregrinus) is attacking a flock of
European Starlings (Sturnus vulgaris). In horizontal flight, the most economical flight
speed (as to the amount of energy spent for flight propulsion) is around  of the
bird’s maximum speed []. Let us call this speed the optimal cruising speed. The op-
timal cruising speed of European Starling is  m/s, and the optimal cruising speed of
a Peregrine Falcon is  m/s []. In accordance to these values we set the maximum
speed of our prey animat to  m/s, and the maximum speed of our predator animat
to  m/s. Note that we presumed that the Peregrine Falcon was not hunting by us-
ing its characteristic hunting stoop (high speed dive), when it can reach speeds up to
 m/s []. The minimum flight speed, in nature and in our model, is around 
of maximum flight speed [], which results in . m/s for prey animats and . m/s
for the predator animat. To define the predator-prey relationship we introduced three
additional drives – hide, seek, and regulate speed. The prey’s behaviour is governed by
the three basic drives (cohesion, separation, and alignment), and in addition hide, and
regulate speed (see supplementary material for their explanation). The hide drive helps
the prey to survive, as it forces it fly away from the attacking predator; it was tuned
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Figure .
The three attack tactics –
(a) the predator attacks
the centre of the seven
perceived prey, (b) the
predator attacks the nearest
of the seven perceived prey,
(c) the predator attacks the
most isolated of the seven
perceived prey. The red
bird is the predator and the
red arrow represents the
resulting force vector of the
predator’s seek drive.

so that the direction of the prey’s escape matches field observations by Handegard et
al. []. Regulate speed is only active when the hide drive is inactive – when the
predator is hidden from the prey’s sight. This drive encourages prey to fly with their
optimal cruising speed. The predator’s behaviour is guided only by the seek drive (see
supplementary material for its detailed explanation). With the seek drive the predator
tries to catch the selected target.

We implemented three different attack tactics (see Figure .). In our first tactic the
predator attacks the centre point of the seven perceived prey. This mimics the tactic in
which a predator attacks the centre of the flock in hope of hitting a target, but takes
into account the limited amount of information available – distance, relative position,
difference in speed, and difference in heading of the perceived artificial animals.

In the second tactic, the predator attacks the nearest of the seven perceived prey.
The nearest prey might be the one that is also the fastest to reach therefore making
it a logical target for a predator. If a real predator chooses its prey in such a fashion
then flocking might work as a mechanism to reduce an individuals’ domain of danger
[]. The domain of danger is defined as the area in which the observed individual
is the predator’s nearest neighbour. Obviously the average value of the domain of
danger decreases if the number of birds in the flock increases, thus favouring tight
highly organized flocks. By reducing the domain of danger an individual lowers the
probability of being attacked by the predator, thus possibly increasing its chances of
survival.

A predator using the third tactic attacks the most isolated of the seven perceived
prey. In our study the most isolated prey is the one that has the largest angular distance
to its nearest neighbour. We defined angular distance as the angle between a potential
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target and its nearest neighbour – from the predator’s viewpoint. From a predator’s
viewpoint, isolated prey appear to have a large domain of danger because they are the
most separated from the rest of the perceived prey. From the predator’s perspective
they would require the largest amount of time to decrease their domain of danger;
time that is available to the predator to catch them. If we presume that flocking is
indeed a protection mechanism, we can assume that the most isolated bird is the one
that is the most vulnerable, making it a logical target for a predator.

. Results and discussion

To recapitulate, the predator in our model uses one of the following three attack tactics:
) attack centre (i.e. attack the centre point of the seven perceived prey), ) attack
nearest (i.e. attack the nearest of the seven perceived prey), ) attack isolated (i.e.
attack the most isolated, from the predator’s point of view, of the seven perceived
prey). In addition to escaping predator attacks and regulating their flight speed the prey
can exhibit two types of behaviour: ) social behaviour (i.e. prey obey the cohesion,
separation, and alignment drives) or ) individualistic behaviour (i.e. prey ignore the
cohesion and alignment drives, but obey the separation drive to avoid collisions). In
total this gives  combinations, through which we wished to answer the following
questions: ) what is the optimal predator tactic given a certain prey behaviour, )
what is the optimal prey behaviour given a certain predator tactic.

To provide answers to these questions we ran simulations where small cluster flocks
consisting of ,  or  social or individualistic prey were attacked by a predator from
eight different bearings, relative to the flock. One of the starting configurations along
with the eight bearings can be seen in Figure .. The different bearings were used to
eliminate any dependency of the simulation’s results on the predator’s bearing (e.g. a
head on attack vs an attack from behind). This gives a total of  simulations ( per
configuration; selected predator attack tactic and prey behaviour). Each simulation
was ran for  steps (frames) –  seconds in our visualizations. We measured the
time the predator needed to catch a prey. If the predator failed to catch the prey,
the time-to-catch was set to  frames. The histograms of the time-to-catch for all
simulations can be seen in Figure ., with a more in depth discussion given in the
following subsections.



Evolution of fuzzy animats 

Figure .
One of the starting
configurations along
with eight bearings of the
predator’s attack.
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Figure .
The influence of the preda-
tor’s attack tactic and prey’s
behaviour on survivabil-
ity of prey. Presented
are six histograms of the
predator’s time-to-catch
in corresponding sim-
ulation runs (n = ).
Dark grey histograms
present the time-to-catch
in simulations with social
prey, whereas light grey
histograms present the
time-to-catch in simula-
tions with individualistic
prey (cohesion and align-
ment drives not used).
Red lines present the
corresponding median
time-to-catch.
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.. Optimal predator tactic

Our simulations suggest that the best tactic for a predator attacking flocks of social prey
is the attack isolated tactic (t = ., df = , p = .). It would appear that isolated
prey benefit the least from the advantages of flocking. On average the predator needed
. frames (sd = .) to catch an isolated prey. The predator whose tactic was
to attack the nearest prey, needed . frames (sd = .) to catch its target, and
the one, whose tactic was attack the centre of the seven perceived prey, needed .
frames (sd = .).

With individualistic prey the best tactic for the predator is the attack nearest tactic
(t = ., df = , p < .). This finding makes sense, since the predator will get
to the nearest prey faster than to those that are farther away. Predators that used this,
attack nearest, tactic needed, on average, . frames (sd = .) to catch a prey.
Predators that attacked isolated prey caught a prey in . frames sd = .). The
attack centre tactic proved to be the worst as the predator required . frames
(sd = .) to catch a prey.

The predator that used the attack centre tactic was, in most cases, not successful. In
other words it did not catch a prey in the  frames for which we ran the simulations
(regardless if the prey was social or non-social). Thus the attack centre tactic proved to
be the worst tactic regardless of the prey’s behaviour.

As for the predator’s best tactic overall, regardless of the prey’s social or individualistic
behaviour, no difference was found between the two most successful tactics, attack
nearest and attack isolated (t = ., df = , p = .).

.. Optimal prey behaviour

When the predator used the attack centre tactic no difference was found for the average
time-to-catch between social and individualistic prey (t = ., df = , p = .). In
both cases the predator was rarely successful, which is a direct result of the predator’s
tactic that is based on pure luck.

With predators, whose tactic actually tries to optimize the chance of a positive result,
however, the average time-to-catch is higher when prey behaviour is social than when
prey behaviour is individualistic, more so when the predator targets the nearest prey
(t = ., df = , p < .) than when the predator uses the attack isolated tactic
(t = ., df = , p < .).
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Figure .
Predator attacking a single
prey from three main
directions: (a) behind, (b)
head on, (c) side.

The best tactic for prey attacked by a predator appears to be social behaviour.

.. Biological relevance

Sonar fine-scale tracking of interactions among predatory fish and their schooling prey
performed by Handegard et al. [] suggests that the most successful predators attack
from behind. In our simulations, when the predator attacked from the side or front,
the prey always managed to escape the initial attack. The predator was successful in
one of the successive attacks that occurred from behind. Attacks from behind appear
to be much more successful than other strategies as in some cases, when the predator
attacked from behind, his initial attack was already fruitful. An example of the corre-
sponding chase and escape paths in the case of a single predator attacking a single prey
is presented in Figure ..

In , Pitcher and Wyche [] defined several escape patterns. In our simu-
lations, when the predator attacks the centre point of the seven perceived prey, prey
show similar escape patterns as in nature and existing fish school models. Indeed we
managed to spot three of the escape patterns defined by Pitcher & Wyche []: herd,
split, and fountain. The herd pattern can be seen at the beginning of a predator ap-
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Figure .
Three common patterns
in the artificial flock’s
response to a predator
attack: (above) from
herd (frames –) to
split (frames –),
(below) from herd (frames
–) to fountain
(frames –). In
the below snapshots one
can also notice the phases
in the flock’s response:
before attack (frame ),
compression (frames –
and –), expansion
(frames –) and
relaxation (frames –
). The red bird is
the predator, black birds
represent prey. For the sake
of clarity the birds were
scaled by  (above)
and  (below).

proach. The herd pattern then morphs into either split or fountain. Split occurs when
a large flock is divided into smaller ones. A typical characteristic of the fountain pat-
tern is that the split flock rejoins behind the predator. These patterns can be seen in
Figure ..

A more quantifiable measure was defined by Lee et al. [], who defined three
phases that can be seen in artificial flocks during a predator attack – compression, expan-
sion and relaxation (Figure .). In the first phase of an attack the flock’s size decreases;
this phase is called compression. In the second phase – expansion – prey try to move
away from the predator. By doing this, the flock’s size increases. In the last phase prey
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Figure .
Plot of the flock size of an
artificial flock consisting
 animats. The black
line shows the flock size
over  simulation steps
when there is no predator
nearby. The red line shows
the flock size over 
simulation steps when the
flock is under predator
attack. A clear example
of flock expansion is
marked with a light grey
background, and dark grey
is used to mark an example
of flock compression. As
predator attacks occur
one after the other there is
no clear example of flock
relaxation.

try to regroup, so the flock’s size again decreases. This last phase is called relaxation.
The three phases can easily be observed by tracing the artificial flock’s flock size, as

defined by Lee et al. []:

σ =

√
∑N

i= ri
N

, (.)

where ri is the distance from the centre of the flock to the i-th individual, and N is
the total number of animats in the flock. All of our simulations showed a similar
response of the artificial flock to a predator’s attack. Figure . visualizes how, in
our simulations, the flock size changes through time, both when the artificial flock is
under threat from the predator and when there is no predator nearby. The flock size is
measured in body lengths, one body length equals  centimetres, which is the size of
a European Starling.

. Conclusion

Our simulations show that the least successful predator is the one that attacks the cen-
tre of the flock. They suggest that with predators whose tactic tries to optimize the
chance of a positive outcome, social behaviour is more advantageous than individu-
alistic behaviour, which strengthens our belief in the hypothesis that cluster flocking
can be a mechanism for protection from predators.
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The behaviour of our artificial flocks appears to be comparable with that seen in
flocks in nature. The average distance from nearest neighbour is around four body
lengths (one body length equals  centimetres) [, , ], the response of an
artificial flock to a predator attack is similar to field observations [], and similar es-
cape patterns emerge as in nature []. Our results also shows that the most successful
predators attack from behind [], and seek isolated targets [].

Our results seem to suggest that cluster flocking around a roost is paradoxical be-
cause although its structure might provide some protection against a predator attack,
its very existence invites a predator attack, and at least in nature, there are always
isolated individuals that can be picked off. It suggests also that at least in some cir-
cumstances, which may or may not be common in nature, tight cluster flocking can
be of benefit to the flock as a whole, although it does not provide absolute protection
to individuals in the flock.
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Supplementary material

In our model the animat is defined as a three stage process []: perception, drives,
action selection. For each animat the perception stage extrapolates data about the
universe (other animats) that is available to the observed animat. In the drives stage,
based on these data, a set of actions is computed that would fulfil individual needs
of the modelled artificial animal. The action selection stage merges the actions and
executes the locomotor response, thus changing the state of the universe.

A. Perception

In our model the universe consists of animats only; the universe is in essence a list of
animats. To extrapolate data about the universe, as a first step, the observed animat
is removed from this list, and the animats remaining in the list sorted based on their
distance from the observed animat. Animats hidden by those that are closer to the
observed animat or outside its field of view are then filtered out. The nearest seven
animats remaining in the list provide the data about the universe. Only information
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about the relative position (i.e. angular offset with respect to the observed animat’s
heading), distance, speed difference, and heading difference is passed on to the next
stage.

Our approach differs from other existing models of number-limited neighbourhood
(topological distance) [] in that it always takes into account a fixed number of near-
est neighbours. Other models typically implement the number-limited neighbour-
hood as a variable radius-limited neighbourhood []. In a variable radius-limited
neighbourhood the observed animat will increase its radius of perception, if in the
previous step it perceived less than the specified number of animats, and decrease it
if in the previous step it perceived more than the specified number of animats. This
approach in truth varies the number of perceived animats on every step of the simula-
tion, but limits it to the specified number. The principal reason this approach is taken
is probably the speed of computation. Its drawback is that the observed animat could
potentially perceive all of the other animats, provided these were distributed so that
they were all at the same distance from the observed animat.

The number of objects that can be stored in working memory in humans and other
mammals is small, – [, ]. The hippocampus, the structure in the brain primar-
ily responsible for working memory, is generally similar in birds and mammals [].
Our use of seven nearest animats in the perceptual world of the prey and predator is
thus based on research on working memory. In addition once the predator selects it
target, in our model, it filters out all other potential prey, mimicking selective attention
[].

A. Drives

The drives that result in actions that would fulfil the animat’s individual needs are
modelled using Mamdani fuzzy rules []. For a detailed description of the cohesion,
separation, and alignment drives, as well as a brief explanation of how a specific action
is computed, the reader is invited to refer to []. An in-depth description is available
in [].

The data extrapolated in the previous stage are fuzzified as singletons and used as
inputs for the fuzzy rules. The fuzzy variables, membership functions, and control
rules for the hide drive can be seen in Figure A.. Figure A. presents the regulate
speed drive, and Figure A. presents the seek drive. The fuzzy rules are evaluated per
individual perceived animat and the fuzzy outputs aggregated.
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Figure A.
Detailed description of
the hide drive. On the
membership function
charts that describe speed
the value  represents the
appropriate maximum
speed (predator’s or prey’s)
while − represents the
negative value of the
appropriate maximum
speed. While these are the
desired changes in speed,
the action selection stage
ensures that the current
speed of the observed
individual never falls under
the appropriate minimum
speed (predator’s or prey’s).
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Figure A.
Detailed description of the
regulate speed drive. On
the membership function
charts that describe speed
the value  represents the
prey’s maximum speed
while − represents the
negative value of the
prey’s maximum speed.
While these are the desired
changes in speed, the
action selection stage
ensures that the current
speed of the observed
individual never falls under
the appropriate minimum
speed (predator’s or prey’s).
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Detailed description of
the seek drive. On the
membership function
charts that describe speed
the value  represents
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predator’s maximum
speed. While these are the
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ensures that the current
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speed (predator’s or prey’s).
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The fuzzy outputs are then defuzzified and a force vector computed. This force
vector represents the action that will fulfil the individual need. It gives the direction
and magnitude of the individual drive (the desired change in speed and direction).

A. Action selection

In the action selection stage the force vectors resulting from individual drives are
merged together and a resulting force vector computed. The merging is achieved
through a simple weighted sum of the individual force vectors. The resulting force
vector is interpreted as a Newtonian force based on which the observed animat’s speed,
heading and position are updated.

A. Parameter values

All of our model’s parameters were either extrapolated from relevant theoretical litera-
ture (e.g. speed, field of view, etc.) or tuned (e.g. fuzzy membership functions, action
selection mixing weights, etc.) so that the resemblance of the displayed behaviour to
that observed in nature was visually as close as possible. For example, the action se-
lection mixing weights have been configured so that the simulations visually resemble
(as close as possible) field observations of flocking behaviour. In the prey’s case these
were (, , ,  and ) for cohesion, separation, alignment, hide and regulate speed
respectively. Table A. presents all of the remaining parameters of the model.
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Table A.
Default parameter values.

Parameter Description Default value

Δt Time step  frame (/ s)
T Maximum length of one simulation  frames ( s)
vaM Maximum speed of the predator animat  m/s
vam Minimum speed of the predator animat . m/s
vpM Maximum speed of prey animats  m/s
vpm Minimum speed of prey animats . m/s
φ Animat field of view ○

n Number of influential nearest neighbours 
wc Weight for cohesion drive 
ws Weight for separation drive 
wa Weight for alignment drive 
we Weight for hide drive 
wrs Weight for regulate speed drive 
wh Weight for seek drive 
l Body length . m

Fuzzification singleton
Fuzzy conjunction product
Fuzzy disjunction probabilistic sum
Fuzzy implication product
Fuzzy aggregation probabilistic sum
Defuzzification centrer of gravity
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a  b  s  t  r a  c t

One  hypothesis about the  origins  and  evolution  of coordinated  animal  movements is that  they may  serve

as  a defensive mechanism  against  predation. Earlier  studies  of the possible  evolution  of coordinated

movement  in prey concentrated  on predators  with  simple  attack tactics.  Numerous  studies,  however, sug­

gest  that  to overcome the  apparent defensive mechanisms  which  grouping and  coordinated  movement

may  provide to prey,  predators  in  nature appear  to use elaborate target  selection and  pursuit/hunting

tactics.  We here  study  predators  that  use  composite  tactics,  (a)  predators  that  in  successive  attacks based

on probability  choose one  of several simple  attack tactics,  (b) predators  that  first disperse  prey  and then

pick  off  isolated  individuals.  We develop  an  individual  based  model of a  group  of prey  that  is attacked

by  a solitary  predator  agent.  By using genetic algorithms, we  enable  the  predator  agent  to  adapt  (a)  the

probability  that  a  specific  tactic  will be  selected  in the  next  attack, (b) the  distance  at which  it stops

dispersing  the  prey  and the  radius  within  which  it searches  for  the  most  isolated  prey. With  a direct

competition  of the  evolved  predator  agents we  examine  which  is the better  tactic  against  a  group  of

prey  moving  in a polarized  cohesive  manner  in three  different settings.  Our  results suggest  that, (a)  a

delayed  response  is an efficient advanced  prey  defence tactic, (b) predator confusion  plays  an important

role  in the  evolution  of composite tactics,  and (c) when  confusion  is at  play, the  dispersing  predator  is

a  much  better  hunter,  capable of at least partially diminishing the effectiveness  of  the prey’s delayed

response.

© 2015  Elsevier  B.V.  All rights  reserved.

1. Introduction

Collective behaviour is  a  phenomenon that can easily be

observed in nature, where the most typical examples are schools

of fish, flocks of birds, swarms of insects, and herds of ungulates.

Studies of collective behaviour are interesting not only because

they give a better insight into the behaviour of animals, but also

because humans behave in a similar fashion in  a  wide repertoire of

situations. Similar behaviour (as in animal groups) can be seen in

stop and start traffic jams, crowd behaviour at various events, e.g.

at football games or music concerts (Silverberg et al., 2013), and

even in the bureaucracy of the European Union (Sumpter, 2006).

Comparable patterns can also be observed at much smaller scales

like cancerous cells (Deisboeck and Couzin, 2009).
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(I.L. Bajec).

The literature about collective behaviour contains several

hypotheses about why animals coalesce into groups. Some studies

suggest that animal groups may  increase the mating and foraging

efficiency of their members (Krebs and Davies, 1997), or that group­

ing could save energy because of hydrodynamic or aerodynamic

benefits (Lissaman and Shollenberger, 1970; Bill and Herrnkind,

1976; Partridge and Pitcher, 1979; Hemelrijk et al., 2014). Other

studies propose that such groups might function as a  defensive

mechanism against predators (Pavlov and Kasumyan, 2000; Krause

and Ruxton, 2002; Nishimura, 2002; Hart and Freed, 2005; Lebar

Bajec and Heppner, 2009; Cresswell and Quinn, 2011; Larsson,

2012; Demšar and Lebar Bajec, 2014).

Collective behaviour in animals is  in  some cases (e.g. flocks of

birds) quite large in scale and as such hard to enclose in a  con­

trolled environment in  which scientists could then perform various

test of hypotheses about the “whys” and “hows” of such behaviour

of the animal groups (Lebar Bajec and Heppner, 2009). If we  look

at the case of a solitary predator attacking a  group of prey, it is

evident that in nature different predators with different hunting

tactics exist in different environments, meaning that it is  difficult to

http://dx.doi.org/10.1016/j.ecolmodel.2015.02.018

0304­3800/© 2015 Elsevier B.V. All  rights reserved.
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ABSTRACT. One hypothesis about the origins and evolution of coordinated animal movements is that they may serve as a

defensive mechanism against predation. Earlier studies of the possible evolution of coordinated movement in prey concen-

trated onpredatorswith simple attack tactics. Numerous studies, however, suggest that to overcome the apparent defensive

mechanisms which grouping and coordinated movement may provide to prey, predators in nature appear to use elaborate

target selection and pursuit/hunting tactics. We here study predators that use composite tactics, a) predators that in succes-

sive attacks based on probability choose one of several simple attack tactics, b) predators that first disperse prey and then

pick off isolated individuals. We develop an individual based model of a group of prey that is attacked by a solitary preda-

tor agent. By using genetic algorithms, we enable the predator agent to adapt a) the probability that a specific tactic will

be selected in the next attack, b) the distance at which it stops dispersing the prey and the radius within which it searches

for the most isolated prey. With a direct competition of the evolved predator agents we examine which is the better tactic

against a group of prey moving in a polarised cohesive manner in three different settings. Our results suggest that, a) a de-

layed response is an efficient advanced prey defence tactic, b) predator confusion plays an important role in the evolution

of composite tactics, and c) when confusion is at play, the dispersing predator is a much better hunter, capable of at least

partially diminishing the effectiveness of the prey’s delayed response.

KEY WORDS. Predator-prey interactions, predator attack tactics, individual basedmodel, predator tactic evolution

. Introduction

Collective behaviour is a phenomenon that can easily be observed in nature, where
the most typical examples are schools of fish, flocks of birds, swarms of insects, and
herds of ungulates. Studies of collective behaviour are interesting not only because they
give a better insight into the behaviour of animals, but also because humans behave
in a similar fashion in a wide repertoire of situations. Similar behaviour (as in animal
groups) can be seen in stop and start traffic jams, crowd behaviour at various events, e.g.
at football games or music concerts [], and even in the bureaucracy of the European
Union []. Comparable patterns can also be observed at much smaller scales like
cancerous cells [].

The literature about collective behaviour contains several hypotheses about why an-
imals coalesce into groups. Some studies suggest that animal groups may increase the
mating and foraging efficiency of their members [], or that grouping could save en-
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ergy because of hydrodynamic or aerodynamic benefits [, –]. Other studies
propose that such groups might function as a defensive mechanism against predators
[, , –, , , ].

Collective behaviour in animals is in some cases (e.g. flocks of birds) quite large
in scale and as such hard to enclose in a controlled environment in which scientists
could then perform various test of hypotheses about the “whys” and “hows” of such
behaviour of the animal groups []. If we look at the case of a solitary predator at-
tacking a group of prey, it is evident that in nature different predators with different
hunting tactics exist in different environments, meaning that it is difficult to compare
the tactics without the confounding effects of environmental context. As computa-
tional approaches usually remove the effects of the environment they proved to be a
good tool for studying various hypotheses concerning collective behaviour [, , ],
and the results obtained with such methods are usually more general.

Several computer models suggest that animal grouping may indeed act as a defensive
mechanism against predators. Some models [, , , ] focused on the selfish
herd theory [] and its effect on the safety of prey individuals. The selfish herd theory
suggests that individuals try to reduce their predation risk by reducing their domain
of danger, where an individual’s domain of danger is defined as the area in which
any point is nearer to the observed individual than it is to any other individual [].
A number of studies [, , , ] suggest that predator confusion might play
an important role in defence against predators and evolution of grouping behaviour.
Ruxton & Beauchamp [] and Haley et al. [] investigated the many eyes theory,
which suggests that as the size of the group increases the amount of time an individual
has to scan the environment decreases. As larger groups are usually more conspicuous
to the predator, Tosh [] concentrated on density dependant selection of individuals
in prey aggregations and the dilution of risk theory, which suggests that the chance
of a single prey to be targeted is lower in larger groups. Some models [, , ],
however, did not focus on a specific hypothesis about why animals are safer in groups.

Natural observations [, –] suggest that predators can decrease the defen-
sive advantages of grouping by using sophisticated target selection and pursuit/hun-
ting tactics. In turn prey can also use sophisticated escape manoeuvres to increase
their chances of survival [, ]. For example a fish school often delays its escape
response to a later point in time, and then tries to outsmart the predator with rapid
movement such as the flash expansion or the fountain effect [].
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To enhance their chances of a successful hunt goshawks (Accipiter gentilis) in large
flocks of feral pigeons (Columba livia) single out odd-coloured birds as target prey, pre-
sumably because targeting rare coloured birds in large uniform flocks might help them
overcome confusion []. Once a target is selected, some predators in nature also use
various pursuit tactics, for example as a recent experimental study reported [] some
species of falcons during pursuit use the technique of motion camouflage. They either
camouflage themselves against a fixed background object so that the prey observes no
relative motion between them and the fixed object or they approach the prey so that,
from the point of view of the prey, they always appear to be on the same bearing
[]. While peregrine falcons (Falco peregrinus) normally attack from the open and
use aerial pursuit, sparrow hawks (Accipiter nisus) prefer to ambush prey from cover
[]. To increase their hunting success several species have even evolved to hunt their
prey by working together with other members of the species [, , ]. Bot-
tlenose dolphins (Tursiops truncatus) have distinctive behavioural roles during group
feeding, one individual herds the attacked fish towards the remaining dolphins, to
make them leap into the air and become easy prey for the team [, ]. Killer
whales (Orcinus orca) congregate in large groups, dive to the limit of their capacity,
force tens of tons of herrring (Clupea harengus) out of their safe deep-water habitat by
coordinated action, and split large aggregations of fish into small, dense schools be-
fore attacking them []. On the other hand, some predator species that often hunt
alone (for example swordfish, Xiphias gladius) use a different tactic, and approach the
centre of the school to disperse it and when it does, they lock on isolated individuals
[, ]. Lett et al. [] showed that predators can efficiently disturb fish schools if
they attack them with a high enough frequency, however they did not measure how
these disturbances influence the predator’s hunting success.

Since several empirical studies suggest that predator animals in nature use very elab-
orate hunting techniques, the simple attack tactics used in previous computer models
might be naïve. This research focuses on how a solitary predator might adapt its at-
tack tactic to overcome the defensive benefits provided by collective behaviour and
increase its hunting success. To our knowledge, this has been investigated (to some
degree) by Nishimura [], Demšar & Lebar Bajec [], Kunz et al. [], and Ol-
son et al. [, , ], but all of these studies concentrated on simple attack tactics.
In this study we use genetic algorithms [] to investigate the adaptation of a solitary
predator that uses composite tactics. First we study the adaptation of a predator that
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on each individual attack chooses between three simple tactics (attack nearest prey,
attack central prey, attack peripheral prey). With this we analyse to which tactic an
evolved solitary predator will resort to use the most when released to attack a group of
prey moving in a polarised cohesive manner (mixture of simple tactics). Next we study
the adaptation of a predator that initially chases the nearby group of prey in order to
disperse it and then locks on the most peripheral prey the (dispersing tactic). More
specifically we investigate how the predator adapts the parameters of this composite
tactic (i.e. the distance at which to stop dispersing and the radius in which to search
for the most peripheral target) in order to increase the hunting success. Note that in
the case of predators that use the dispersing tactic, the line between target selection
and hunting/pursuit tactic becomes less clear, as the predator intentionally defers the
decision about its target to a later point in time.

. Methods

Scientists that use computational approaches to study collective behaviour usually de-
sign computer models in which the behaviour of the modelled animals is in most cases
constructed around drives [, , ]. These are designed so that the behaviour of arti-
ficial animals in the computer model resembles the behaviour of their counterparts in
nature. The drives are implemented in various ways and the parameters of the drives
that govern the behaviour of individuals are usually pre-set by hand (i.e. pre-set mod-
els); some researchers, as in our case, however, use genetic algorithms [] to let certain
parameters evolve through time (i.e. evolvable models) and by means of that the authors
study the possible evolution of collective behaviour or attack tactics.

Since several studies [, ] showed that the dimensionality of the model mini-
mally affects the results of the simulations of schooling systems without a predator, our
model is for computational simplicity also two-dimensional. It consists of two types
of agents – a solitary predator and a group of prey. The behaviour of an individual
depends on its nearby neighbours. The goal of prey individuals is to survive, while the
predator tries to catch as many prey individuals as possible. In our model the behaviour
of prey is not a part of the evolutionary process, it is pre-set so that the group of prey
moves in a polarized cohesive manner; only the behaviour of the predator evolves.

Our prey and predator models are zone-based [, ], meaning that in the process
of calculating the acceleration that represents a particular drive only the individuals
that are located within the boundaries of that particular drive’s zone are taken into
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Table .
Values for zone radii, weights and other parameters of our model.

Parameter Description Default value Tested value

Prey
vm Maximum speed of prey  bl/s
vc Cruising speed of prey  bl/s
ϕ Prey’s field of view ○

rs Zone radius for the separation drive  bl
ra Zone radius for the alignment drive  bl
rc Zone radius for the cohesion drive  bl
re Zone radius for the escape drive  bl  bl
ws Weight for the separation drive . s−

wa Weight for the alignment drive . s−

wc Weight for the cohesion drive . s−

we Weight for the escape drive  s−  s−

am Prey’s maximum acceleration  bl/s

L Body length (bl) . m
Predator
Lp Predator body length (pbl)  bl
vmp Maximum speed of the predator  bl/s
vcp Cruising speed of the predator  bl/s
rh Zone radius for the hunt drive  bl
rco Confusability radius  bl  bl
ah Hunting acceleration . bl/s

dc Catch distance  pbl( bl)
th Handling time  s
tr Refocus time  s
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account. The final acceleration that represents the individual’s action is a weighted sum
of the drives. Parameters of the prey agent were set as in an earlier model [] based
on empirical research of mullets (Chelon labrosus) []. Following Inada & Kawachi
[], the parameters of the predator agent were set so that it was . times faster than
the prey, but we also made it less manoeuvrable []. Preliminary simulations where
the predator’s speed was equal to that of the prey showed that in this case the predator
almost never catches the targeted prey. The only exception is when it approaches an
isolated prey directly from behind. In this case the prey is unable to see the predator
approaching (as the predator is in its blind spot) and therefore it is not even trying to
escape. A short descriptions of all of the model’s parameters and their default values
can be seen in Table ..

.. Prey

In our model the principal mechanism of neighbourhood perception is vision; the
prey’s field of view is ○ wide with a blind angle of ○ behind it [, ]. The
field of view limited neighbourhood is the set of agents that consists of agents that are
a) not the observed individual itself, and b) within the ○ degree visual range of the
observed individual:

N = {j ∈ A∣ j ≠ i, v̂ ⋅ d̂j ≥ ϑ}, (.)

where A is a set consisting of the predator agent and prey agents, i is the observed prey
agent, v its current velocity and v̂ = v/∥v∥ its current heading, d̂j = (pj−p)/∥pj−p∥ is
the unit direction vector pointing from the current position of the observed prey agent
to the current position of agent j and ϑ is the cosine of the prey’s field of view. The
field of view limited neighbourhoodN is used for computing the observed individual’s
drives.

A prey agent has four drives and thus four zones – separation, alignment, cohesion,
and escape zone. The separation drive takes into account only prey that are in the
separation zone; i.e. all prey that are closer than the separation zone radius. The
alignment drive takes into account only prey that are in the alignment zone; i.e. those
that are more distant than the separation zone radius but closer than the alignment
zone radius. The cohesion drive takes into account only prey that are in the cohesion
zone; i.e. those that are more distant than the alignment zone radius but closer than
the cohesion zone radius. The escape drive is used in combination with the other drives
only if the predator is inside the escape zone; i.e. closer than the escape zone radius. In
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our model the default values for the separation, alignment, cohesion, and escape zone
radii are , ,  and  body lengths (bl) respectively so prey can perceive other
prey and the predator in a radius of  bl.

Each of the four drives returns an acceleration vector that represents the prey’s action
according to the specific drive. The actual acceleration that is used to update the prey’s
velocity, is calculated as a weighted sum of all four drives:

a = wsas + waaa + wcac + weae, (.)

where ws, wa, wc, we are the weights and as, aa, ac, ae the corresponding accelerations
for the separation, alignment, cohesion and escape drive respectively. The weights
were pre-set to  s−, . s−, . s− and  s− respectively, so that the prey moved in
a cohesive polarised manner. If the length of the acceleration vector exceeds the prey’s
maximum acceleration ( bl/s) the acceleration vector is shortened so that its length
equals the prey’s maximum acceleration and the length of the updated velocity vector
is kept within the prey’s cruising and maximum speed:

v′ = [v + [a][,am]Δt][vc,vm], (.)

p′ = p + v′Δt, (.)

where v is the current velocity of the observed prey agent, p its current position, am

and vm the prey’s maximum acceleration and maximum speed, vc the prey’s cruising
speed, Δt the simulation time step, v′ and p′ the velocity and position of the observed
prey agent in the next simulation time step respectively, and

[x][a,b] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ax̂ iff ∥x∥ < a

bx̂ iff ∥x∥ > b

x otherwise,

(.)

where x is a vector and a and b are the lower and upper length bounds.
The three drives, separation, alignment, and cohesion, are the drives that are most

commonly used in computer models of collective behaviour []. The separation drive
helps prey avoid collisions. The acceleration that represents the prey’s action (change
in speed and heading) according to this drive is defined as:

as =

∣Ns∣
∑
j∈Ns

(−d̂j ( −
∥dj∥
rs
)) , Ns = {j ∈ N∣ j ≠ p, ∥dj∥ ≤ rs}, (.)
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where j is an influencing neighbour, p the predator, dj = pj − p is the offset vector
pointing from the current position of the observed prey agent to the current position of
agent j, rs is the separation zone radius and N the field of view limited neighbourhood
as defined in Eq. (.).

With the alignment drive, prey synchronize their velocities. The acceleration that
represents the prey’s action is defined as:

aa =
⎛
⎝


∣Na∣
∑
j∈Na

vj
⎞
⎠
− v, Na = {j ∈ N∣ j ≠ p, rs ≤ ∥dj∥ ≤ ra}, (.)

where v is the velocity of the observed prey agent, vj is the velocity of agent j and ra is
the alignment zone radius.

The cohesion drive simulates attraction toward distant prey and the acceleration
that represents the prey’s action is defined as:

ac =

∣Nc∣
∑
j∈Nc

dj, Nc = {j ∈ N∣ j ≠ p, ra ≤ ∥dj∥ ≤ rc}, (.)

where rs is the separation zone radius.
The escape drive represents the prey’s tendency to escape from the predator. It is rep-

resented as the acceleration away from the predator’s current position, and calculated
as

ae =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−d̂p ( −
∥dp∥
re
) iff p ∈ N ∧ ∥dp∥ ≤ re

 otherwise,
(.)

where p is the predator and re is the escape zone radius.
The maximum speed of prey was set to  bl/s, and the cruising speed was set to

 bl/s, the cruising speed of mullets []. Zone sizes and zone weights were set in a
way that when prey was not under the threat of predation, prey moved in a synchro-
nized cohesive manner while maintaining an inter-individual distance of – body
lengths [, ].

.. The predator

During foraging in nature some avian visual sit-and-wait predators [, ] scan
the neighbourhood by turning their head, while some aquatic predators reduce travel
speed and increase turning rate in areas where resources are relatively more abundant,
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a behaviour termed “area-restricted search” []. Some avian visual predatory species
in nature have a higher visual acuity than prey and detect prey at far distances [],
while some aquatic predators, e.g. swordfish (Xiphias gladius), warm their retina to
significantly improve temporal resolution, and hence the detection of rapid motion
[]. Since the goal of this research is not the investigation of the relationship be-
tween the predator foraging strategy and prey encounter/foraging success, but rather
the target selection tactics and hunting success the predator field of view in our model
is ○ wide – there is no blind angle. Additionally, in order to diminish the occur-
rences when the predator “did not see a potential prey” our predator agent can perceive
prey in a radius of  bl.

Like in other studies [, , , ] our study focuses on the target selection phase
of the predator attack. Once the target is selected, the predator uses classical pursuit
[] to chase the prey, i.e. it heads directly toward the evading prey, so that the image of
the prey is centred on its visual field. Thus the behaviour of the predator is governed
only by the hunt drive; the hunt drive is defined as an acceleration that points towards
the position of the current target:

ah =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ahd̂t iff ∥dt∥ ≤ rh
 otherwise,

(.)

where t is the target prey agent, ah is the hunting acceleration, and rh the hunt zone
radius. Which prey is targeted depends on the predator’s tactic – see sections ..
(Mixture of simple tactics) and .. (The dispersing tactic).

The predator moving forward at its current velocity with no change in heading
when it does not see any prey, might appear an unrealistic foraging pattern for preda-
tors. However, as our study did not concentrate on foraging patterns when there is no
potential prey nearby but rather on target selection and hunting tactics when multiple
potential prey are visible, the handling time, refocus time and perception radius of
the predator were set to be such that the occasions when the predator “did not see a
potential prey” were extremely rare.

Since the predator uses only the hunt drive, Eq. (.) in the case of the predator
becomes

v′ = [v + ahΔt][vcp,vmp], (.)

where v is the current velocity of the predator agent, vcp and vmp are the predator’s
cruising and maximum speed respectively, and v′ is the predator’s velocity in the next
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simulation time step. Other than that the process of updating the velocity and position
of the predator agent is the same as in the case of the prey agent.

The maximum speed of the predator agent was set to  bl/s, and its cruising speed
to  bl/s. So just like in Inada & Kawachi’s [] model of fish schooling, the predator
agent was . times faster than prey agents. Since in nature predators are usually faster,
but less manoeuvrable [] we set the hunting acceleration to . bl/s so that the
same holds for our model.

.. Experiments

Our experiments can be described as a two-phase cycle composed of ) the evaluation
phase, and ) the evolution phase. The experiments were run with a population of 
solitary predators. During the evaluation phase each of these  predators (current
generation) was released to solitarily attack five different groups of prey. On each occa-
sion it was observed for  time steps. The performance of a predator was recorded by
counting the cumulative number of caught prey from the five attacked groups. Once
the current generation of predators completed their runs, the evaluation phase finished
and the evolution phase began. In the evolution phase a new generation consisting of
the same number of predators was generated from the current generation of predators.
For each predator in the new generation two predators from the current generation
were chosen as its parents. Predators that had a higher fitness, i.e. caught more prey
during the evaluation phase, had a higher chance to be selected as parents. The two
parent predators were merged using the cross-over operator, a technique that mixes
tactic specific parameters of both parents to create an offspring []; a new preda-
tor. Occasionally the tactic specific parameters of the offspring mutated (their values
changed slightly). The two-phase cycle was then repeated with the new generation of
predators.

Each experiment lasted  such cycles ( generations) and was repeated  times.
Default values for the mutation rate, mutation factor and other genetic algorithm pa-
rameters are given in Table .. Our preliminary simulations using various mutation
rates ranging from  to  matched with the general knowledge about genetic algo-
rithms. In general the final result was very similar for all of the tested mutation rates. A
lower mutation rate resulted in less noise in the evolved parameters but the algorithm
needed more time (more generations) to produce the near optimal solution. Since in
our case we are more interested in the general resulting behaviour rather than the exact



Evolution of fuzzy animats 

Table .
Values for the parameters used in our experiments.

Parameter Description Default value

Δt Time step  s
T Duration of the evaluation phase per predator  time steps
Na Number of groups attacked by predators of one

generation


Ng Number of generations 
mr Mutation rate 
mf Mutation factor (“intensity of mutations”) 
na Number of prey individuals in the group 
np Predator population size 
D Initial predator’s distance from the centre of the

prey group
 bl

S Initial area of the prey group  bl

parameter values we can afford some noise in the parameter values. The preliminary
tests revealed that the mutation rate of  gives good results while keeping the time
complexity of the algorithm in reasonable limits.

The five groups of prey, that a predator was released to attack in the evaluation phase,
were the same for the whole population of predators in one repetition of the evaluation
phase, but were different for each repetition of the two-phase cycle. Each of the five
groups consisted of  prey randomly distributed within a square area of  bl

(Figure .). The velocity vector, which determines the heading and speed of prey, was
generated so that the headings of prey had already been approximately aligned before
the first attack of the predator. To achieve this, the preys’ speeds were set to a uniformly
distributed random number between the prey cruising and maximum speed ( and
 bl/s) and the preys’ headings were set to north rotated by a uniformly distributed
random number between −. rad and +. rad. The predator’s first attack was
from behind [, ] (i.e. from the south), its starting position was located  bl
south from the centre of the prey group and its heading was north towards the centre
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Figure .
An example of a starting
configuration, where the
black triangle represents
the predator; its bearing is
north. The shaded area is
the area in which the prey
group is generated. Grey
dots are the prey, and the
grey arrow is their average
bearing.

of the group. The predator’s speed was set to a uniformly distributed random number
between its cruising and maximum speed ( and  bl/s).

When the predator selected a target it started hunting it. Which target was selected
depended on the predator’s tactic – see sections .. (Mixture of simple tactics) and
.. (The dispersing tactic). The predator kept hunting the same target until the
target was caught, the predator got confused, the target escaped from the predator’s
hunting zone radius, or the simulation time ( steps) ran out. When the predator
came close to the target, i.e. within a distance that was less than the catch distance it
made an attempt to catch the prey. The probability that this attempt was successful was
inversely proportional to the number of individuals within the predator’s confusability
zone [, ]:

Psuccess =

∣Nco∣

, Nco = {j ∈ A∣ j ≠ p, ∥dj∥ ≤ rco}, (.)

where A is the set consisting of the predator agent and prey agents, j is a prey agent,
dj = pj−p is the offset vector pointing from the current position of the observed agent
(the predator) to the current position of agent j, and rco is the predator’s confusability
zone radius.

In order to take into account the effort required to eat the prey, the predator did not
look for a new target prey immediately after it had successfully caught one. A certain
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amount of simulation time steps, handling time (see Table .), had to pass before the
predator selected a new target. If the predator failed to catch the targeted prey due to
confusion a certain amount of simulation time steps, refocus time (see Table .) had to
pass as well. If, however, the currently targeted prey would escape from the predator’s
field of view, the predator would immediately select a new target. Note that due to
the choice of the model parameters, more specifically the predator and prey maximum
speeds, in our model this does not happen.

In nature there are many types of prey behaving in many different ways and pre-
sumably if predators use sophisticated target selection and pursuit/hunting tactics, the
prey might use sophisticated escape manoeuvres to outsmart the predator. Indeed a
number of studies [, , , ] suggest that confusion might play an important
role in the evolution of grouping behaviour. For these reasons we ran three sets of
evolutions of the two composite tactics, a) with parameters set to their default values
as listed in Table ., b) with the prey escape zone set to  bl, the weight of the escape
drive set to  s− and the rest of the parameters set to default, and c) with Psuccess, Eq.
(.), set to be always equal to  and the rest set to default. The first case, named
default prey, represents the typical scenario of a solitary predator attacking a group of
prey. The second case, named prey with delayed response, represents a group of prey that
allows the solitary predator to get close and then performs a rapid escape manoeuvre.
The third case, named non-confusing prey, investigates if confusability might play a role
in the evolution of target selection and pursuit/hunting tactics as well.

.. Mixture of simple tactics

In the first part of our research, the predator that used a mixture of simple tactics was
based on similar tactics as predators presented in previous research [, ]: attack
nearest prey, attack the most peripheral prey, and attack the most central prey. The
nearest prey was simply the one that was the closest to the predator. To determine
which prey was most peripheral or central we used the measure of peripherality. In
previous research [, , ] this measure was called centrality, but since a lower
degree of centrality means that the individual is more central and less peripheral, the
term peripherality is more appropriate. Peripherality of prey agent i is calculated as
the length of Pi, i.e. the average vector of direction towards the group of potentially
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influencing neighbours:

Pi =

∣G∣∑j∈G

d̂j, G = {j ∈ A∣ j ≠ i, j ≠ p, ∥dj∥ ≤ rc}, (.)

where i is the observed prey agent, j is an agent, p is the predator agent, d̂j = dj/∥dj∥
the unit vector pointing from the current position of the observed agent (prey agent
i) to the current position of agent j, rc the prey’s cohesion zone radius and G the set
of potentially influencing neighbours of the observed prey agent. If a prey agent was
isolated (i.e. the set of potentially influencing neighbours was empty) its peripherality
was set to +∞, meaning that the predator that targeted peripheral targets preferred to
attack isolated targets [, ].

The prey that is the nearest is simply the one whose distance from the predator is
the smallest:

tn = t ∶ ∥dt∥ = min
j∈T
∥dj∥, T = {j ∈ A∣ j ≠ p, ∥dj∥ ≤ rh}. (.)

The prey that is the most central is the one with the lowest measure of peripherality:

tm = t ∶ ∥Pt∥ = min
j∈T
∥Pj∥, T = {j ∈ A∣ j ≠ p, ∥dj∥ ≤ rh}. (.)

By definition the prey that is the most peripheral is the one with the highest mea-
sure of peripherality. However, as the measure of peripherality is defined via the prey’s
cohesion zone radius (i.e. the set of potentially influencing neighbours) and does not
consider the predator’s angle of approach an additional constraint was taken into ac-
count. Only prey whose peripherality vector was pointing in the same direction (±○)
as the unit vector pointing from the current position of the predator to the current po-
sition of the prey agent were regarded as possible targets:

tp = t ∶ ∥Pt∥ = max
j∈T
∥Pj∥, T = {j ∈ A∣ j ≠ p, ∥dj∥ ≤ rh, d̂j ⋅ P̂j > }. (.)

With this constraint we prevented the predator agent from targeting prey that were
on the opposite side of the group (as viewed from the predator’s point of view), because
in nature they would probably not be visible to the predator.

The chromosome of the predator, which was used to construct a generation of preda-
tors, consisted of probabilities that determined the likelihood that the predator will



Evolution of fuzzy animats 

Table .
Parameters that evolve during the evolution of a simple predator.

Parameter Description Interval Initial value

pn Target the nearest prey probability [, ] Random
pm Target the most central prey probability [, ] Random
pp Target the most peripheral probability [, ] Random

use a particular tactic (i.e. the probabilities represent genes in the chromosome). Ev-
ery predator had three probabilities – one for each of the three tactics, see Table ..
For the initial generation of predators the probabilities were assigned normalized uni-
formly distributed random values between  and  (see Table .) so that the sum of
all probabilities was equal to :

pn =
ξn

ξn + ξp + ξm
, pm =

ξm

ξn + ξp + ξm
, pp =

ξp

ξn + ξp + ξm
, (.)

where ξn, ξm, ξp are uniformly distributed random values between  and , and pn, pm,
pp are the probabilities that the predator will attack the nearest, the most peripheral,
and the most central target respectively. As already stated, at the start of an evaluation
phase, the predators had no target. In the initial step of the evaluation phase the
predator selected a target as:

t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tn iff ξ ∈ (, pn]

tm iff ξ ∈ (pn, pn + pm]

tp iff ξ ∈ (pn + pm, ],

(.)

where ξ is a uniformly distributed random value in the interval (, ], tn, tm, tp are
the nearest, the most central, and the most peripheral prey respectively. The target
selection process, Eq. (.), was repeated every time a) the predator’s attempt to
catch the targeted prey was unsuccessful and the refocus time passed, or b) the predator
caught the targeted prey and the handling time passed. That means that the predator
could use different simple tactics on successive attacks during one simulation run (
time steps).
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Table .
Parameters that evolve during the evolution of the dispersing predator.

Parameter Description Interval (bl) Initial value

dl Lock-on distance [, ] Random
rl Lock-on radius [, ] Random

In the evolution phase the chromosome of a new predator (offspring) was gener-
ated by using the coin-flip crossover, a type of crossover operator that chooses a gene
from one of the parents at random (uniform distribution). The coin-flip crossover
was repeated for all genes. Occasionally, being governed by the mutation rate ( per
parameter), the genes mutated. The mutation of a specific gene, i.e. probability of
a specific tactic, was simulated as either an increase or a decrease (chosen at random)
of the likelihood that the predator will use that particular tactic. The amount of in-
crease/decrease was governed by the mutation factor (). Because the cross-over
and mutation could lead to the sum of probabilities not being equal to , the last step
in the creation of a new chromosome was renormalization, i.e. division of individual
probabilities by their sum.

.. The dispersing tactic

In the second part of our study the predator’s tactic was as follows. Initially (Figure .)
the predator chased the centre of the nearby group. The nearest prey (with respect to
the predator) and all prey within this prey’s set of potentially influencing neighbours,
G in Eq. (.), were interpreted as the nearby group. The prey within this group
that had the lowest measure of peripherality, Eq. (.), i.e. was the most central, was
interpreted as the group’s centre. The nearby group and its centre were determined
once per attack and remained unchanged for the duration of the attack. Once the
distance of the nearby group’s centre was less than the lock-on distance the predator
locked on the most peripheral prey within its lock-on radius (Table .). The locked-
on individual was then hunted until captured, or the attempt failed due to confusion.

During the evolution phase the predators that caught more prey in the evaluation
phase had a higher chance of being selected as parents. The offspring predator inherited
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Figure .
The dispersing tactic; a
predator (black triangle)
that uses this tactic initially
(a) chases the most central
prey (light grey dot) in
the nearby group of prey,
grey dots, (i.e. prey that are
within the cohesion zone
radius, shaded area, of the
nearest prey, black dot).
When the predator comes
close enough (b), i.e.
within lock-on distance,
dotted circle, it selects as
its target prey the most
peripheral prey within
its lock-on zone radius,
shaded area.

the value of the lock-on distance from the first parent and the value of the lock-on
radius from the second parent. Once in a while the parameters would mutate; the
probability of mutation was governed by the mutation rate ( per parameter). The
mutation was in the form of either an increase or decrease (chosen at random) and
the amount was governed by the mutation factor (). The parameters that evolved
during our experiments and their initial values can be seen in Table ..

. Results and Discussion

Mixture of simple tactics. In the first part of our research we investigated which of the
simple tactics an evolved solitary predator will resort to use the most. This was mea-
sured by observing the probabilities that determined the likelihood that a particular
tactic would be employed. Figure . shows the averages and bootstrapped  con-
fidence interval of the  runs for the cases of default prey, prey with delayed response
and non-confusing prey.

As it can be seen, in the case of default prey, an evolved predator (predator of the last,
th, generation) attacked almost exclusively the most peripheral prey,  ( ci,
.–.), meaning that during the course of the evolution predators that attacked
the most peripheral targets were more successful than those whose ratio of attacking the
nearest or most central prey was higher. For this reason the probability of using these
two tactics was very low,  ( ci, .–) and . ( ci, –.), respectively.
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Figure .
Evolution of the prob-
abilities that determine
the likelihood that the
predator will use a partic-
ular simple tactic when
choosing its next target.
Visualized are the averages
and the bootstrapped 
confidence intervals based
on  replicates of our
experiments in three dif-
ferent settings – predators
facing a group of prey with
default parameters as in
Table . (default prey),
predators facing a group
of prey with a delayed
response, and predators
with confusability radius
set to  (non-confusing
prey).
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In the case of prey with delayed response the evolved predator again mainly attacked
the most peripheral prey,  ( ci, –.). The decrease in probability was
mostly due to the increase of the probability of attacking the nearest prey,  ( ci,
.–.), while the probability of attacking the most central prey still remained very
low  ( ci, .–.). The adaptation seems quite reasonable as due to the prey’s
delayed response there is also a higher chance of success when attacking the nearest
prey as it might not be able to escape due to overcrowding.

In the case of non-confusing prey, however, the evolved predator adapted to at-
tacking the most central,  ( ci, .–.), and nearest prey,  ( ci,
.–). In this case the probability of attacking the most peripheral prey was very
low  ( ci, .–). This result again seems reasonable as attacking peripheral
prey builds on the reduction of the chance of the predator getting confused due to the
abundance of prey in the vicinity of the chosen target.

Dispersing tactic In the second part of our research we investigated how an evolving
solitary predator that uses the dispersing tactic will adapt the distance at which it will
stop chasing the centre of the nearest group and select its actual target prey individual,
as well as the radius within which it will search for it. In Figure ., which shows the
means and bootstrapped  confidence interval of the  runs for the cases of default
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Figure .
Evolution of the lock-on
distance and lock-on
radius in the case of the
dispersing predator. Vi-
sualized are the averages
and the bootstrapped 
confidence intervals based
on  replicates of our
experiments in three dif-
ferent settings – predators
facing a group of prey with
default parameters as in
Table . (default prey),
predators facing a group
of prey with a delayed
response, and predators
with confusability radius
set to  (non-confusing
prey).

prey, prey with delayed response and non-confusing prey, it can be seen that in the case
of default prey the evolved predator (predator of the last, th, generation) stopped
chasing the centre of the nearest group when  bl ( ci, .–.) from it. Then
it locked-on the most peripheral prey in a radius of  bl ( ci, .–).

In the case of prey with delayed response the chasing stopped when . bl ( ci,
–.) away from the centre of the nearest group and the final target was searched
within  bl ( ci, .–.). Interestingly, in the case of prey with delayed
response, the predator adapted to dive significantly deeper (t =−., df = .,
p = .×−) but there was no significant difference between the radii within which
the final targets were chosen (t =−., df = ., p = .).

In both cases the predator locked on its target when it came quite close to the cen-
tre of the nearest group. As possible values for the lock-on distance ranged from  to
 bl we can assume that dispersing a school, flock or herd greatly reduces its defen-
sive benefits. When the evolved predator locked on its target, it locked on the most
peripheral prey in a radius that is lower than the midpoint of possible values ( to
 bl), therefore we can assume that in both cases the dispersing predator preferred
isolated but somewhat nearby prey. This suggests that the best potential targets might
be prey that are close to the periphery of a school, flock, or herd while at the same time
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somewhat close to the predator.
In the case of non-confusing prey, however, the chasing stopped when  bl (

ci, .–.) from the centre of the nearest group, and the final target was searched
within  bl ( ci, .–). Surprisingly there was no significant difference
between the two parameters (t = ., df = ., p = .). What is even more
interesting is that the values are close to the midpoint of possible values ( to  bl),
and since there is no significant difference between the two values, the end result is a
behaviour very similar to attacking the nearest prey. Note that the dispersing predator
initially chases the centre of the nearest group and when close enough locks-on the
most peripheral target within the lock-on radius. Since the lock-on radius and lock-
on distance are very similar, the end result is that the nearest prey and most peripheral
prey within the searched radius often coincide.

Comparison between tactics via direct competition. In the third part of our research we
used direct competition in order to assess the quality of the evolved tactics from the
predator’s point of view. Each individual predator that emerged from the  replicates
of an experiment (mixture of simple tactics, and dispersing tactic) was released to in-
dependently attack the same  distinct groups of prey, each for  time steps and
the number of caught prey recorded. This was repeated  times, a) with  distinct
groups of default prey, b) with  distinct groups of prey with delayed response,
and c) with  distinct groups of non-confusing prey. As a control group we also
observed the number of caught prey for predators that a) attacked random prey, b)
always attacked the most peripheral prey, c) always attacked the nearest prey, and d)
always attacked the most central prey. In total  simulations were performed
and Figure . presents the distributions, boxplots and averages of the distributions of
the number of caught prey per tactic per specific setting.

The number of caught prey in general ranged from  to  in a single  time steps
long run. In the cases of default prey and prey with delayed response the number of
caught prey ranged only from  to  and  to , respectively, and the averages were
. ( ci, .–.) and . ( ci, .–.), respectively. In the
case of non-confusing prey the average was substantially higher, i.e. . ( ci,
.–.). The lowest average number of caught prey was thus in the case of prey
with delayed response and the highest in the case of non-confusing prey. This suggests
that a delayed response might be a successful advanced defence tactic against predation,
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Figure .
Results of a direct com-
petition between the
individual predators that
emerged from the 
replicates of each of our
experiments and a control
group consisting of preda-
tors that attack exclusively
the most peripheral prey,
exclusively the nearest
prey, exclusively the most
central prey, or a random
individual. Presented are
the distributions, boxplots
and averages of the distri-
butions of the number of
caught prey per tactic per
specific setting.

a response to predator attacks that is not uncommon in nature [].
In the case of default prey the most successful predator was the predator that used

the dispersing tactic with the tactic’s parameters adapted to default prey, it caught on
average . ( ci, .–.) prey. The next best was the dispersing preda-
tor with the tactic’s parameters adapted to prey with delayed response, which caught
on average . ( ci, .–.) prey. Third best, with a substantial gap of
approximately , were the predators that attacked exclusively the most peripheral
prey with an average of . ( ci, .–.) and the predator that used the
mixture of simple tactics with parameters adapted to default prey, whose average was
. ( ci, .–.). The difference between these two tactics was statistically
not significant (t = ., df = ., p = .), which is not surprising as the
predator that uses the mixture of simple tactics adapted to default prey in roughly 
of cases attacks the most peripheral prey. Composite tactics (mixture of simple tactics,
and dispersing tactic) adapted to prey with delayed response registered lower averages
than those adapted to default prey; in both cases the difference was less than . Not
surprisingly the composite tactics adapted to non-confusing prey fared the worst from
the three possible adaptations, but surprisingly the dispersing tactic adapted to non-
confusing prey with an average of . ( ci, .–.) came sixth and still
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had a higher success rate than attacking exclusively the nearest prey (.;  ci,
.–.). Interestingly as well, attacking exclusively the most central prey came
in last with an average of . ( ci, .–.), worse even than attacking
random prey whose average was . ( ci, .–.).

In the case of prey with delayed response the average number of caught prey lowered,
but the dispersing tactic yet again turned to be the best tactic. This time the best tactic
was the dispersing tactic with parameters adapted to prey with delayed response, with
an average of . ( ci, .–.), followed by the dispersing tactic adapted to
default prey, with an average of . ( ci, .–.). Again, with a substantial
gap of roughly , the third best tactic were attacking exclusively peripheral prey
and, surprisingly, the mixture of simple tactics adapted to default prey, with averages
of . ( ci, .–.) and . ( ci, .–.), respectively. As
in the case of default prey there was no significant difference between the two tactics
(t =−., df = ., p = .). Interestingly in the case of the mixture of
simple tactics the adaptation to the specific setting did not help, the mixture of simple
tactics adapted to prey with delayed response with an average of . ( ci, .–
.) actually performed worse than the one adapted to default prey (t =−.,
df = ., p = .). The results seem to suggest that although from the
prey’s point of view delaying the response might be a successful advanced defence
tactic against predation, certain composite predation tactics, like the dispersing tactic,
could potentially adapt and at least partially diminish its effectiveness. Surprisingly
the dispersing tactic adapted to non-confusing prey, with an average of . ( ci,
.–.), again came in sixth, but this time reduced the gap to the mixture of
simple tactics adapted to prey with delayed response from  to merely . As in
the case of default prey, worse even than attacking random prey, whose average was
. ( ci, .–.), was attacking exclusively the most central prey, the worst
tactic of all, but this time with a higher average of . ( ci, .–.). The
substantial, , increase in success rate might be attributed to the fact that delaying
the response to a predator attack also increases the chance for prey to be unable to
escape due to overcrowding.

In the case of non-confusing prey the picture was completely different. The average
number of caught prey was obviously substantially higher as once the predator selected
its target it was impossible for the predator to fail catching the targeted prey. Hence the
difference in tactics came from the amount of time that was lost during pursuit and the
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most successful tactics were the ones that successfully mitigated between the abundance
of possible targets and the distance that had to be travelled for the next kill. This time
the best tactic was to attack the nearest prey, with an average of . ( ci, .–
.), closely followed by the mixture of simple tactics adapted to non-confusing
prey, with an average of . ( ci, .–.), and attack the most central
prey . ( ci, .–.). The dispersing tactic adapted to non-confusing prey
came in fourth with an average of . ( ci, .–.). Not surprisingly, as
in the case of non-confusing prey the adaptations of the two composite tactics were
closely related to the two best tactics (attack the nearest prey and attack the most central
prey). Indeed, recall that the mixture of simple tactics adapted to attacking the most
central prey in  of cases and attacking the nearest prey in  of cases. Similarly
the adaptation of the dispersing tactic was to have the lock on distance and lock on
radius almost the same ( bl and  bl, respectively), which could be interpreted
as attacking the nearest prey, even more so because the prey started escaping when
the predator was  bl from it. Surprisingly, the tactic where the predator attacked
random prey came in fifth, with an average of . ( ci, .–.). This was
followed by the mixture of simple tactics adapted to prey with delayed response, with
an average of . ( ci, .–.), mixture of simple tactics adapted to default
prey, with an average of . ( ci, .–.), and attacking exclusively the most
peripheral prey, with an average of . ( ci, .–.). Interestingly, in
contrast to the other two cases in this case there was a statistically significant difference
between the mixture of simple tactics adapted to default prey and the tactic of attacking
exclusively peripheral prey (t =−., df = ., p = .×−). This could
be attributed to the small, but obviously important,  and  probability that the
predator using the mixture of simple tactics adapted to default prey will attack the
nearest or most central prey, respectively. What is even more interesting is that the
dispersing tactics adapted to default prey and the dispersing tactic adapted to prey with
delayed response fared the worst, with averages of . ( ci, .–.) and
. ( ci, .–.), respectively. The results suggest that confusion might not
play an important role only in the evolution of schooling like previous studies suggest
[, , , ], but also an important role in the evolution of sophisticated predator
target selection, pursuit/hunting and prey evasion tactics. As Lett et al. [] showed
frequent sequential attacks are a good tactic for disturbing a prey school and intuitively
it seems that the success of a specific tactic could be attributed to the frequency of
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sequential attacks, but we reserve the study of this particular case for future research.

. Conclusion

Most of the existing research on the evolution of collective behaviour concentrates on
the behaviour of prey under threat of predation. Even research that studies the co-
evolution of collective behaviour and attack tactics or deals with attack tactics alone
concentrates mainly on simple tactics (attack nearest prey, attack the most central prey,
attack the most peripheral prey) [, –, , ]. In this study we investigated
two composite tactics a) a tactic where the predator in successive attacks based on
probability chooses one of several simple attack tactics (mixture of simple tactics), and
b) the dispersing tactic, where the predator intentionally defers the decision about
its actual target to a later point in time. Both tactics were evolved in three settings,
one default, and two special, namely a) on prey with delayed response and b) on non-
confusing prey. A direct competition between the evolved predators (instances of tactic
parameters adapted to specific settings) of   simulations revealed that attacking
the nearest prey or the most central prey is the best tactic when confusability is not at
play, while simply attacking a random individual is not far behind (with only a 
lower success rate than attacking the nearest prey). The competition results suggest that
confusability might play an important role in the evolution of target selection/hunting
tactics and/or prey evasion tactics. The competition results show that the dispersing
tactic is the best tactic when confusability is at play. Additionally, the results suggest
that advanced evasion tactics, like a delayed response [], are from the prey’s point
of view successful as they generally reduce the number of caught prey, but also that
the dispersing tactic is capable of adapting to at least partially counter the effect. The
adaptation is simply diving deeper into the group of prey before selecting the final
target.
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Supplementary material

Video B.
Solitary predator attacking
a group of one hundred
prey moving in a polarised
cohesive manner. Com-
parison between predator
attack tactics: attacking
a random prey, attacking
the most central prey,
attacking the nearest prey,
attacking the most pe-
ripheral prey, mixture of
simple tactics, dispersing
tactic. Available online at
vimeo.com/.

https://vimeo.com/119847644
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Video B.
Solitary predator attacking
a group of one hundred
prey moving in a polarised
cohesive manner. Com-
parison between predator
attack tactics for the case
of prey with a delayed
response: attacking a
random prey, attacking
the most central prey,
attacking the nearest prey,
attacking the most pe-
ripheral prey, mixture of
simple tactics, dispersing
tactic. Available online at
vimeo.com/.

Video B.
Solitary predator attacking
a group of one hundred
prey moving in a polarised
cohesive manner. Com-
parison between predator
attack tactics for the case
of non-confusing prey:
attacking a random prey,
attacking the most central
prey, attacking the nearest
prey, attacking the most
peripheral prey, mixture of
simple tactics, dispersing
tactic. Available online at
vimeo.com/.

https://vimeo.com/119847316
https://vimeo.com/119846051
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Abstract

Collective behaviour is a fascinating and easily observable phenomenon, attractive to a

wide range of researchers. In biology, computational models have been extensively used to

investigate various properties of collective behaviour, such as: transfer of information across

the group, benefits of grouping (defence against predation, foraging), group decision-mak-

ing process, and group behaviour types. The question ‘why,’ however remains largely unan-

swered. Here the interest goes into which pressures led to the evolution of such behaviour,

and evolutionary computational models have already been used to test various biological

hypotheses. Most of these models use genetic algorithms to tune the parameters of previ-

ously presented non-evolutionary models, but very few attempt to evolve collective behav-

iour from scratch. Of these last, the successful attempts display clumping or swarming

behaviour. Empirical evidence suggests that in fish schools there exist three classes of

behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-

like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based

systems, which is capable of evolving all three classes of behaviour.

Introduction

The intricate patterns of collective motion, observable in flocks of birds, schools of fish, herds

of ungulates, swarms of insects, and human crowds [1–4] are a special treat. It is no wonder

that the study of computational modelling of collective behaviour has a broad interdisciplinary

appeal, more so as recent studies suggest similar patterns even in cancerous cells [5]. Research-

ers come from various areas: ethology, biology, mathematics, physics, computer science and

robotics/control theory.

The first attempts at modelling collective behaviour date to the early 1980s, when Aoki [6]

and Okubo [7] proposed an individual-based approach to the simulation of schooling mecha-

nisms in fish, but it was Reynolds’ 1987 seminal paper [8] that attracted computer scientists to

the field. Current models are presented by an interdisciplinary community and are either

minimalistic with the goal of being as mathematically tractable as possible [9–14], or far more
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Copyright: © 2017 Demšar, Lebar Bajec. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data associated

with the manuscript as well as a demo application

displaying the evolved behaviours are available at

https://dx.doi.org/10.6084/m9.figshare.4212117.

v1.

Funding: The work is part of the PhD thesis that is

being prepared by J. Demšar at the Faculty of

Computer and Information Science, University of

Ljubljana, Slovenia. It was funded in part by the

Slovenian Research Agency (ARRS) through the

Pervasive Computing research programme (P2-

0395).



Evolution of fuzzy animats 

ABSTRACT. Collectivebehaviour is a fascinatingandeasilyobservablephenomenon, attractive toawide rangeof researchers.

In biology, computational models have been extensively used to investigate various properties of collective behaviour, such

as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision–

making process, and group behaviour types. The question “why,” however remains largely unanswered. Here the interest

goes intowhich pressures led to the evolution of such behaviour, and evolutionary computationalmodels have already been

used to test various biological hypotheses. Most of thesemodels use genetic algorithms to tune the parameters of previously

presented non-evolutionarymodels, but very few attempt to evolve collective behaviour from scratch. Of these last, the suc-

cessful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three

classes of behaviour; swarming,milling andpolarized. In this paperwepresent a novel, artificial life-like evolutionarymodel,

where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of

behaviour.

. Introduction

The intricate patterns of collective motion, observable in flocks of birds, schools of
fish, herds of ungulates, swarms of insects, and human crowds [, , , ] are a special
treat. It is no wonder that the study of computational modelling of collective behaviour
has a broad interdisciplinary appeal, more so as recent studies suggest similar patterns
even in cancerous cells []. Researchers come from various areas: ethology, biology,
mathematics, physics, computer science and robotics/control theory.

The first attempts at modelling collective behaviour date to the early s, when
Aoki [] and Okubo [] proposed an individual-based approach to the simulation
of schooling mechanisms in fish, but it was Reynolds’  seminal paper [] that
attracted computer scientists to the field. Current models are presented by an inter-
disciplinary community and are either minimalistic with the goal of being as mathe-
matically tractable as possible [, –], or far more complex than the early ones
[, , , , ]. However, the basic principles have stayed the same for over 
years of active research.

Nowadays, collective behaviour is most often modelled on a per individual basis,
where one models a single individual and observes the emergent behaviour that arises
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when a number of these individuals interact, thus closely following Aristotle’s concept
of “the whole is more than the sum of its parts.” An individual is typically modelled
as a multi-stage process [, ], in the minimal form consisting of perception, drives
and action selection. Perception mimics the animal’s act of filtering out only the most
important information about the surrounding environment (in most cases this is a
subset of position and orientation data about nearby neighbours). Drives reproduce
the modelled animal’s needs, where (with the notable exception of the most mini-
malistic models) these are typically the animal’s tendency to a) avoid collisions with
nearby neighbours, termed separation, b) to surround itself with neighbours, termed
cohesion, and c) to align in speed and velocity with neighbours, termed alignment. As
the drives are potentially contradictory, e.g. separation and cohesion, the third stage,
action selection, is responsible for devising the final action of the modelled animal,
typically a change in heading and/or speed. Most of the models encode the drives by
means of equations, where for example cohesion is typically encoded as a force vector
directing the individual towards the centroid of nearby neighbours [, ]. Action
selection is then most often a weighed sum of force vectors; actions that would fulfil
individual drives.

A review of biological literature suggests that since the early days not much has
changed in view of encoding the animal’s drives, whereas a lot of research has been
devoted to perception and interaction. All because it is still not completely known
“how” when a flock of tens of thousands individuals is turning and wheeling it seems
that all turn at once, reminiscent of “thought transference” or “telepathy” [, ].
Ballerini et al. [] based on d data collected from live flocks of birds argued that
interaction is not metric, i.e. distance limited, as in [], but rather topological, i.e.
number limited. While some earlier studies proposed a zone based interaction [,
] and later studies investigated the effects of visual occlusion [, , ] current
research suggests that one can reproduce empirical data from physicists in Rome [,
] if either a) one assumes the probability of interaction between two individuals is
inversely proportional to their distance [], or b) one assumes that individual birds
avoid a single closest neighbour only and they align with and are attracted to their
seven closest neighbours [], as assumed in Ballerini et al. [].

The use of fuzzy logic as the means of encoding the simulated animal’s drives was
first proposed in [, , , ] and later followed by others [, –]. While
with the premise of easing the construction of new, yet unknown, drives to ethologists
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the first studies proposed a linguistic fuzzy rule-based system the later ones were more
control centric and most of them proposed a Takagi-Sugeno rule base. A linguistic
fuzzy rule-base was used also in [] and [], but contrary to [] where a) the
drives are encoded indirectly, b) no-uncertainty is assumed and c) collective behaviour
emerges with no designated leader, [] was based on the leader-follower concept and
[] while concentrating on noisy sensor measurements presented an interval-valued
fuzzy controller.

Some researchers from the artificial life community might argue that most of the
aforementioned models are in essence top-down models of collective behaviour in that
their drives were designed by observing high-level behaviours of the group, regardless
if these same drives dictate the behaviour of the individuals in the group. For a true
bottom-up model then, where the individuals have their own individual movement
rules that “may” lead to collective behaviour when simulated, one would need to in-
vestigate the evolution of an individuals’ movement rules. Indeed, regardless of all re-
search that has been done the biological question “why” collective behaviour evolved
still remains largely unanswered. Here the interest goes more into which pressures
have led to the evolution of collective animal behaviour. From the early days of re-
search in the field several studies attempted the evolution of collective behaviour. The
methods range from genetic programming with lisp [], push [], neuroevolu-
tion [, , ] to evolutionary optimization of the complete sensory-motor flow
via Kuramoto oscillators bound to a synthetic optic flow retina []. These studies
were mostly concerned if an evolutionary computation system can be used to evolve
collective behaviour from scratch and had various degrees of success, where the latter
can most often be attributed to steered evolution. More recently evolutionary models
are being used to test the biological hypothesis that collective behaviour evolved due
to combined search for food resources [], or as protection from predation [],
which can be split further by the key ideas; selfish herd [, , , , , ],
predator confusion [, , , , ], many eyes [, ], and dilution of risk
[]. Most of the aforementioned evolutionary models use genetic algorithms to tune
a) the importance of known drives (cohesion, separation, alignment) and/or additional
drives (e.g. escape), and/or b) model parameters (field of view, escape distance, etc.).
Very few studies attempted and successfully evolved collective behaviour from scratch,
and in these cases the evolved behaviour can be termed as “crude”; portraying only
clumping [, ], or swarming with collisions [, , , ].
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In this paper we present an evolutionary model where the drives are encoded by
means of linguistic fuzzy rule-based systems and is capable of evolving more “refined”
behaviours.

. Materials and Methods

Our model is an individual-based model consisting of predator and prey agents that
coexist in a D environment (artificial world). The simulation runs at discrete updates,
where each individual agent (predator or prey) based on the perceived state of the
environment computes its drives, and with respect to the desired change in speed and
heading updates its velocity and position [, ]. For the sake of simplicity the time
steps and distances in the simulations are given in arbitrary units, have no physical
meaning and are used for comparative purposes only. To keep the model’s complexity
as low as possible we also assume constant, but different speeds for predator and prey
agents. The following sections provide more details about the implementation of the
predator and prey agents, as well as specifics about the evolutionary process.

.. The predator agent

Since some avian visual sit-and-wait predators scan the neighbourhood by turning their
head [, ] and some aquatic predators perform area-restricted search [], our
predator agents are capable of perceiving prey agents regardless of their relative bearing.
For simplicity reasons, perception is limited only by distance, i.e. we also do not
consider visual occlusion. Following our previous research [] the predator agent’s
drives for target prey pursuit are encoded by means of a linguistic fuzzy rule-based
system and pre-set, i.e. excluded from evolution.

The goal of predator agents is to capture prey agents. We let multiple predator agents
coexist, as recent studies suggest that the cumulative effect of high frequency attacks
(through disorganisation of school cohesiveness) may increase the feeding success of
each individual [, ]. Individual predator agents enter the artificial world after
an initial random interval of update steps (re-enter time). Each predator agent contin-
uously attacks prey agents for hunt duration update steps, then they are removed from
the environment and a new predator agent enters after a random interval of update
steps (re-enter time). Predator agents appear at random locations that are ambush dis-
tance from the artificial world centre, with their initial heading towards the centre. An
attack involves target-selection, pursuit and capture attempt.
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Table .
Predator agent parameter values.

Description Value
number of predator agents 
ambush distance 
re-enter time (update steps) –
hunt duration (update steps) 
type st predator hda predator
size  
speed  .
perception distance  
catch distance  

Following previous research [, , ] we implemented four target-selection tac-
tics; attack the nearest prey agent, attack the most isolated prey agent, attack the most
central prey agent, and high density area attack. Predators that attack the nearest, most
isolated or most central prey individual, focus their attention on a single member of
the prey group (st), i.e. they select a single prey agent as target, and pursue it until
captured. Predators that attack high density areas are larger than a single prey individ-
ual and do not select as target, pursue, and capture a single prey individual, but can
capture several prey individuals in a single predation event. In view of recent results
that attribute the evolution of clumping to the dilution of risk [] rather than preda-
tor confusion [], we opted to model our agents as non-confusable. This served also
not to overly promote collective behaviour, as one could argue that outside attacks on
the nearest or most isolated prey individual in combination with confusion pressures
prey into grouping and thus might be viewed as a form of steered evolution. Addi-
tionally, if from an evolutionary perspective outside attacks on the nearest or most
isolated prey individual have a positive influence on grouping, attacks on the most
central prey individual or high density area attacks (hda) should have a negative one
[]. Since our primary interest was the discovery of a wide variety of behaviours,
we for this reason let the specific tactic an individual predator agent uses be chosen
randomly (uniform probability). The complete set of predator agent parameters can
be viewed in Table ..
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Table .
Prey agent parameter values.

Description Value
number of prey agents 
spawn area radius 
living area side length 
size 
speed 
perception distance 
initial energy 
foraging gain 
collision penalty -
wandering penalty -

.. The prey agent

Similar to predator agents, the prey agent’s perception is limited by distance only, i.e.
we ignore the visual field blind area and visual occlusion. However, following recent
research on perception models capable of reproducing empirical data [, ] we
chose to model the probability of interaction between two prey agents as inversely
proportional to their distance. Since every individual prey agent’s drives are encoded
by means of a linguistic fuzzy rule-based system and evolve through time, the approach
goes also in our favour as it reduces the number of rules that have to be evaluated per
agent.

The goal of prey agents is to live as long as possible in the artificial world. When
born, a prey agent is assigned a specific amount of initial energy (see Table .) and
on every update step it is rewarded for “living” (foraging gain). Prey agents that collide
or wander outside a square living area are penalized with a reduction of energy. One
could argue that thewandering penalty is a form of steered evolution, but the living area
side length was set to a large enough size that this does not overly promote grouping
behaviour (see Figure C. and Video C.). The living area represents an area rich with
food, shelter, or in another sense, attractive area. In our model the only purpose of this
area is to keep prey agents inside a limited area of the artificial world, which could be
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achieved also by using periodic boundary conditions to create an infinite lattice, but
we opted for an approach where prey agents learn to keep within the restricted area
themselves.

A prey agent dies when its energy drops to  or is caught by a predator agent. When
a prey agent dies it is removed from the environment and a new prey agent is created,
so that the group of “live” prey agents is kept constant through time. The new prey
agent, initially heading in a random direction, appears at a random location on a closed
disc centred to the living area (spawn area). The linguistic rule base of the new prey
agent is subject to evolution via crossover and mutation (see Evolutionary process).

The prey agent is capable of perceiving a) the distance, relative bearing, and relative
heading of the interacting prey individual, b) the distance, relative bearing, and relative
heading of the nearest predator, as well as c) the distance and relative bearing to the
closest point on the square that represents the outside edge of the living area. We
assume no uncertainty in the data and model all inputs as singleton fuzzy values [].
If either all other prey individuals, predators, or living area borders are outside of the
prey agent’s perception distance, the corresponding linguistic variables are set to null,
so that none of the fuzzy rules that contain the variable as part of the premise fire.
In fuzzy reasoning (see Figure .) we use the product t-norm for conjunction and
implication, aggregate rules via the probabilistic sum s-norm, and compute the crisp
output (desired change in heading) by means of the centre-of-gravity defuzzification
method. The linguistic variables (Table .) are decomposed into linguistic values,
which are defined as either triangular fuzzy numbers

µ(x) = ⟨l,m, r⟩ = max(min( x − l
m − l

,
r − x
r −m

) , ), (.)

or periodic triangular fuzzy numbers

µ(x) = ⟨l,m, r⟩c = max(min( (x − l) mod c
(m − l) mod c

,
(r − x) mod c
(r −m) mod c

) , ) . (.)

.. Evolutionary process

Genetic algorithms have a long history in providing learning and adaptation capabil-
ities to fuzzy rule-based systems [, ]. While in most applications the desired
outcome of the evolutionary process is a better, faster, more accurate or interpretable
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Table .
Prey agent fuzzy data base.

Linguistic variable Linguistic value Triangular
fuzzy number

interaction distance next ⟨, , ⟩
close ⟨, , ⟩
near ⟨, , ⟩
away ⟨, , ⟩
far ⟨, , ⟩

relative bearing left ⟨−,−, ⟩
in front ⟨−, , ⟩
right ⟨, , ⟩
behind ⟨, ,−⟩

relative heading left ⟨−,−, ⟩
same ⟨−, , ⟩
right ⟨, , ⟩
opposite ⟨, ,−⟩

living area distance next ⟨, , ⟩
close ⟨, , ⟩
near ⟨, , ⟩
away ⟨, , ⟩
far ⟨, , ⟩

relative bearing left ⟨−,−, ⟩
in front ⟨−, , ⟩
right ⟨, , ⟩
behind ⟨, ,−⟩

action heading change hard left ⟨−,−,−⟩
left ⟨−,−, ⟩
none ⟨−, , ⟩
right ⟨, , ⟩
hard right ⟨, , ⟩
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Section A shows the current state of the artificial world. The observed prey agent is depicted in black and the nearest predator in red. In this
simplified example the observed prey agent performs fuzzy reasoning solely based on the nearest predator’s relative bearing (in this case
-126○ ). The left part of section B presents the evaluation of the degree of truth of the antecedents of individual if-then rules that are listed
at the bottom of this section. We assume no uncertainty in the data andmodel all inputs as singleton fuzzy values. For example, the degree
of truth of the antecedent “nearest predator relative bearing is left” is therefore computed as ⟨−,−, ⟩ (−) = .. The right
part of section B presents fuzzy inference or the evaluation of the consequent part of individual rules. Since we use the product t-norm
(x ○ y = xy) for implication this translates to scaling the triangular fuzzy number that is used to define the corresponding output linguistic
variable’s value (shaded areas). For example, in the case of consequent “heading change is right,” thismeans.○ ⟨, , ⟩. Section
C presents the aggregation of individual consequent parts and based on that the computation of the final, crisp output, the conclusion
(desired change in heading). We aggregate rules via the probabilistic sum s-norm (x ◇ y = x + y − xy), and compute the crisp output by
means of the centre-of-gravity defuzzificationmethod. Thismeans that the shaded area in section C (aggregated shaded areas from section
B) gets translated into ., the desired change in heading for the observed prey agent in this simplified example. For further details on
fuzzy reasoning in general and its application to the modelling of collective behaviour consult [48, 52, 54, 55, 87].

Figure .
A simplified example of
fuzzy reasoning.
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rule-based system [–] in our case the goal of the evolutionary process is discov-
ery through exploration. In other words the only objective considered by our fitness
function is the survivability of prey agents, assessed via their energy level and therefore
the fitness function does not consider collective behaviour directly.

In our artificial world predator and prey agents coexist and the goal of predator
agents is to capture prey agents, while the goal of prey agents is to survive. The direct
competition of individual prey agents by way of their drives (i.e. rules of motion
encoded via a linguistic fuzzy rule-based system) will lead to the emergence of collective
behaviour only if such behaviour helps individual prey agents to “live” longer. Artificial
life based evolutionary computation like this tries to mimic open-ended evolution
[–]. To our knowledge there have been only few similar evolutionary fuzzy
systems [, ] and none devoted to the evolution of collective behaviour.

As we wished to focus on human interpretable rules and keep the complexity as low
as possible, we opted to use a fixed data base and evolve only the rule base []. In
addition, as the order of importance of individual inputs is unknown, we allowed for
incomplete rule sets, i.e. we limited only the number of rules in the rule base as well
as the number of antecedents per individual rule.

To recapitulate, prey agent behaviour was evolved via an open-ended like evolution
where the behaviour of an individual prey agent is defined by the complete fuzzy rule
base with a variable-length (messy) coding scheme []. The chromosome of each
individual was thus its set of rules, in genetic fuzzy systems labeled as the Pittsburg
approach []. Individual prey agents of the initial population were assigned random
behaviours (i.e. a set of random fuzzy rules). They were placed at random locations on
a closed disc centred to the living area and assigned random headings. When a prey
agent was caught by a predator agent or died due to numerous collisions or wanderings
outside of the living area, it was removed and a new prey agent was created. Two “live”
prey agents were chosen as its parents, where selection was fitness-proportional. The
fuzzy rule base of the new prey agent was constructed by first choosing a random rule
base length, and then randomly selecting individual rules from the joint sets of its
parents’ rules. Following that, a mutation could occur; it triggered either an addition
of new totally random rules or removal of existing rules from the new prey agent’s rule
base.
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Table .
Evolutionary process parameter values.

Description Value
number of evolutions 
total length (update steps)   
rule base upper bound 
antecedents upper bound 
mutation probability 
upper bound of add rules mutation 
upper bound of remove rules mutation 

Table .
Validation process parameter values.

Description Value
replicates of validation 
stabilisation period (update steps) 
predator introduction (update step) 
total length (update steps) 

. Results and discussion

We performed  individual evolutionary runs (Table .). Each evolved behaviour
was then evaluated by running  replicates of a separate simulation (Table .). In
this simulation, prey agents were initially placed at random locations on a closed disc
centred to the living area and assigned random headings. After an initial stabilisation
period, the observed parameters were first recorded without the presence of preda-
tors; only then a predator was introduced and another set of observed parameters was
recorded.

.. Behaviour analysis

For the analysis of the evolved behaviour we resorted to both visual inspection []
and biologically relevant observables. Here we concentrated on local density [],



  Evolution of collective behaviour in a fuzzy artificial world J. Demšar

Figure .
Prey agents that can
influence each other either
directly or indirectly via
others are considered as
being part of the same
group.

Presented are two groups (one in amilling state, green shading, and one in a polar state, blue shading) and one straggler (a prey agent that
can neither influence nor be influenced by any other prey individual, grey shading).

number of groups [, ], polarization and rotation [, , ]. Polarization

p = 
n
∣
n

∑
i=

v̂i∣ , (.)

where n is the number of agents and v̂i is the unit direction vector of agent i, provides
a measure of how aligned the individuals in a group are. Rotation

m = 
n
∣
n

∑
i=

ĉi × v̂i∣ , (.)

where ĉi is the position of agent i in the local coordinate frame of the group, on the
other hand, expresses the degree of rotation of the group about its centre. Polarization
and rotation were computed on the local scale, i.e. considering only prey agents that
are part of the same group, as well as on the global scale, i.e. considering all prey
agents as being part of one single group. Groups were established based on potential
interaction (direct or indirect) [, ]. In other words, for an observed prey agent, all
prey individuals that were inside its perception distance were considered as being part
of its group, as well as, recursively all prey individuals that were inside the perception
distance of any of this group’s members. Prey agents that had all prey individuals
outside their perception distance were marked as stragglers and excluded from the
analysis on the local scale (see Figure .).
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Figure .
Local density, number of
groups, and time spent in a
specific collective state for
each evolutionary run.

As based on the relation between polarization and rotation Couzin et al. [] de-
fined four classes of collective behaviour, namely swarming, milling, dynamic parallel
group and highly parallel group we, in addition to assessing the behaviour visually, also
classify it based on the corresponding representative values of polarization and rota-
tion. Here we followed recent research by Tunstrøm et al. [], who defined that
a group is in: the polar state (P) when polarization > . and rotation < .; the
milling state (M) when polarization < . and rotation > .; and the swarm state
(S) when polarization < . and rotation < .. Outside these ranges it is said to be
in transition (T).

As it can be seen in Figure ., all  evolutions led to an increase in local density.
Overall the mean local density at update step  was . ( ci, .–.), and
the average local density during update steps – was . ( ci, .–
.). It ranged from . ( ci, .–.) in the case of evolution no. , to
. ( ci, .–.) in the case of evolution no. . In all cases the increase
was statistically significant (p < .). The overall average number of groups dur-
ing update steps - was . ( ci, .–.), and ranged from .
( ci, –.) in the case of evolution no.  to . ( ci, .–.) in
the case of evolution no. .

The proportion of time spent in a specific collective state (P, M, S, T) was deter-
mined by counting the cumulative number of update steps over all  replicates that
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individual groups spent in a specific state. When there was more than one group, each
group’s state was allocated a corresponding proportion of update steps, e.g. when there
were three groups in one step their respective states were assigned one third of the up-
date step each. Based on the state in which the largest proportion of time was spent
in, the evolved behaviours were classified as: polarized (evolutions no. , , , 
and ), milling (evolutions no. –, –, , and ), and swarming (evolution
no. ). Evolutions no. ,  and  spent the largest proportion of time in transi-
tion between states. This was confirmed through visual inspection. As we also noticed
that the groups continuously transitioned between different states (polarized-milling-
swarming), a characteristic associated with schooling fish (golden shiner, Notemigonus
crysoleucas) [], we classified this type of evolved behaviour as dynamic (D). Fig-
ure . shows representative time series of global polarization and rotation for each
of the four types of evolved behaviour. Evolutions no. , ,  and  were selected
based on high mean local density and low mean number of groups (marked as bold in
Figure .).

To gain further understanding of the evolved behaviour in the case of evolution no.
, we performed an experiment similar to the one Tunstrøm et al. [, Figure ]
used to evaluate the relationship between group size and behaviour stability. Note that
a) in our case the speed was not varied, but kept constant (see Table .), b) in our
case there was a boundary interaction (living area), c) global polarization and rotation
were recorded during update steps –, e)  replicates were performed, and d)
the rule bases of the , , ,  agents were on each replicate chosen randomly
from the pool of  rule bases that resulted from evolution no. . The density
plot in Figure . shows qualitatively similar results to those presented by Tunstrøm
et al. [, Figure ]. With increasing the number of agents, the global behaviour
changes from predominately polarized to predominately milling. In addition, visual
inspection revealed that, like in the case of schooling fish [, Figure ], transitions
from polarized to the milling state and back were initiated mainly by a) interaction
with the living area boundary or b) agents located in the frontal region of the group,
which after a turn spotted the back of the group (see Video C.).

A Wilcoxon Signed-Ranks Test was used to compare the local density and number
of groups during update steps –, in which the predator was not present, to
the local density and number of groups during these update steps in which the predator
was present. With the exception of evolution no. , the presence of a predator caused
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Evolutions no. 12, 6, 4 and 10 (marked as bold in Figure 5.3) were selected as representatives of polarized, milling, swarming and dynamic
behaviour based on the proportion of time spent in a specific state, high mean local density and low mean number of groups. For video
sequences of the representative evolved behaviours see Videos C.2–C.6.

Figure .
Time series of global
polarization and rotation
for each of the four classes
of evolved behaviour.
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Figure .
Density plot of global
polarization versus rotation
for various group sizes
in the case of evolution
no. .
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The density plots visualize the relationship between group size and behaviour stability. Increasing the number of agents leads global be-
haviour to change from predominantly polarized to predominantly milling.
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a statistically significant (p < .) change in local prey density and the number of
groups. An increase in local density in combination with a decrease in the number
of groups was seen in evolutions no. ,  and . A decrease in local density in
combination with an increase in number of groups was seen in evolutions no. , , , ,
, , , , , . A decrease in both local density and number of groups was noted
in evolutions no. , , ,  and . Finally, an increase in both local density and
number of groups occurred in the case of evolution no. . In the case of evolution no.
 no significant difference was observed in both local density (Z =−., p = .)
and the number of groups (Z =−., p = .). Visual inspection revealed that even
in the case of evolution no.  individual prey agents did react to predators by turning
away from it, however this had no notable effect on local density or the number of
groups.

.. Rule base analysis

Since in our case the data base was fixed, the evolved rule bases were summarized
by means of six parameters, namely living area, predator, prey, specificity, bias, and
size. The first three were computed as the average proportion of rule antecedents that
contain linguistic variables related to the living area, nearest predator, and interacting
individual, respectively:

ρ
α = 

n

n

∑
i=

aαi
ai

, (.)

where n is the number of rules in the rule base, ai the number of antecedents in rule i,
α either living area, nearest predator, or interacting individual, and aαi the number of
antecedents in rule i that contain linguistic variables related to α. These three parame-
ters provide a rough approximation of the amount of attention the prey agent gives to
a specific aspect of the artificial world. The parameters sum to . Since the living area
is described with two linguistic variables, and the nearest predator and the interacting
individual are with three, an equal attention to all three aspects would result in their
values being /, and /, respectively.

Rule base specificity was determined as:

ς = 
n

n

∑
i=

ai − 
m − 

, (.)

where n is the number of rules, m the maximum number of antecedents (antecedents
upper bound in Table .), and ai the number of antecedents in rule i. A value of 
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indicates all rules in the rule base use only one antecedent, thus individual rules are
very general as the outcome is determined by a single input only. A value of , on
the other hand, indicates that all rules in the rule base use the maximum number of
antecedents, thus individual rules are highly specific as the outcome is determined by
the highest number of inputs.

Bias provides a rough approximation of the prey agent turning side preference. It
was computed as:

β = 
n

n

∑
i=

 + oi


, (.)

where n is the number of rules, and oi is the centroid of the output linguistic value of
rule i. Values below . thus indicate a bias towards left turns, and values above . a
bias towards right turns. Last but not least, size is simply the number of rules in the
rule base divided by the maximum number of rules possible (rule base upper bound
in Table .).

We first noted that overall prey agents based their decisions more on predator related
linguistic variables (Mdn = .) than interacting individual related ones (Mdn =
.; Z = −., p <.). The amount of attention given to the living area
(Mdn = .) was significantly different (Z = −., p = .×−) than what
would be expected if an equal attention was given to all three aspects of the artificial
world. Similarly, a slight preference for turning to the right is present (Mdn = .;
Z = −., p <.).

The evolved rule bases of individual evolutions were then grouped based on the type
of evolved behaviour (polarized, milling, swarming, or dynamic) and a pairwise multi-
ple comparison was made using a Benjamini-Yekutieli adjusted Dunn test. Figure .
shows box plots of the distributions of all six parameters, and statistical significance of
the inter group differences.

In the pairwise comparison between all four groups a difference at p < . was
observed only in the case of the average proportion of rule antecedents that contain
predator related linguistic variables. Interestingly non significant differences were ob-
served between the dynamic and swarming group in the cases of a) the average pro-
portion of rule antecedents that contain living area related linguistic variables, b) the
average proportion of rule antecedents that contain linguistic variables related to the
interacting individual, and c) rule base size. In the case of rule base specificity no
statistically significant difference was observed between a) the dynamic and polarized
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Figure .
Box plots of the distribu-
tions of the six parameters
through which the evolved
rule sets were summarized.
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group, and b) the swarming and milling group. The dynamic and swarming group
had a significantly higher bias (Mdn = .) than the polarized (Mdn = .) and
milling group (Mdn = .). Surprisingly, in the case of the milling group, the median
rank was not statistically different than . (Z =−., p = .), which indicates
no preference for the side of turning.

. Conclusion

The study of collective behaviour has a broad interdisciplinary appeal. Numerous
studies have attempted to evolve collective behaviour, most by tuning parameters of
previously presented non-evolutionary models. Very few succeeded to evolve it from
scratch, and even in these cases the evolved behaviour can be termed as “crude.” Based
on presented images and available video footage they portray only clumping [, ],
or swarming with collisions [, , , ]. In this work we have presented an open-
ended, artificial life-like evolutionary model where the drives of individual agents are
encoded via linguistic fuzzy rule-based systems. We analysed the evolved behaviour
and showed that based on biologically relevant observables [, , ] the system
is capable of evolving a wide range of behaviours, some qualitatively similar to those
reported in experimental research []. Through the analysis of the evolved rule bases
we have also shown that when grouping the evolved rule bases by the type of evolved
behaviour and observing the average proportion of rule antecedents that contain preda-
tor related linguistic variables there exists a statistically significant difference between
the evolved rule bases. We believe that artificial life-like evolutionary modelling based
on linguistic fuzzy rule-based systems might prove very useful in answering the bio-
logical question “why” collective behaviour evolved, and due to their linguistic nature
also provide a deeper insight into the “how.”
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To verify that the living area does not overly promote grouping behaviour we performed 20 evolutionary runs with no predators present.
Each evolved behaviour was evaluated by running 20 replicates of a separate simulation. For ease of comparison the graphs present the
samedata as in Figure 5.3, this time however for evolutionary runswith no predators present. In all cases therewas practically no grouping.
Note that local density in all but two cases decreased rather then increased. The prey agents learned to spread out over the entire living
area, to stay inside the borders of the living area, and to avoid each other (prevent collisions). In all cases the local density, polarization
and rotation were very low, which resulted in a scattered swarming behaviour (see Video C.1). Note that the evolved swarming behaviour
is very different with respect to the behaviour that evolved in the case when predators were present (see Video C.2). In the latter case prey
learned also to group and react to predator attacks.

Figure C.
Local density, number of
groups and time spent in a
specific collective state for
control evolutionary runs.

Local density, polarization and rotation are very low throughout the entire simulation run and the evolved behaviour can be classified as
scattered swarming behaviour. The prey agents learned to spread out over the entire living area, to stay inside the borders of the living area,
and to avoid each other (prevent collisions). Note that the evolved swarming behaviour is very different with respect to the behaviour that
evolved in the casewhen predators were present (see Video C.2). In the latter case prey learned also to group and react to predator attacks.

Video C.
Video sequence portraying
a representative behaviour
for the case of evolutionary
runs with no predator
present.
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Video C.
Video sequence portray-
ing a representative of
the evolved swarming
behaviour (evolution
no. ).

Polarization and rotation are very low throughout the entire simulation run and the evolved behaviour can be classified as swarming be-
haviour. Note that the local density is higher than in the case of evolutions with no predator present (see Video C.1). Prey agents learned to
stay inside the borders of the living area, and to avoid each other (prevent collisions). They learned also to group (by circling each other in
an unordered fashion) and react to predator attacks (see frames 3700–3800 and 4600–5000). Note that soon after the disturbances induced
by the predator attacks the swarming behaviour re-stabilizes.

Video C.
Video sequence portraying
a representative of the
evolved milling behaviour
(evolution no. ).

Polarization is low and rotation high throughout the entire simulation run and the evolved behaviour can be classified asmilling behaviour.
Note that the local density is higher than in the case when prey behaviour evolved with no predator present (see Video C.1). Prey agents
learned to stay inside the borders of the living area, to avoid each other (prevent collisions) and group (by circling around an empty core
in an ordered fashion), as well as react to predator attacks (see frames 1900–2100, 2700–2900 and 4700–5000). At frame 4900–4950 one
can also observe the formation of a vacuole. Note that soon after the disturbances induced by the predator attacks the milling behaviour
re-stabilizes.
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Polarization is very high and rotation low throughout the entire simulation run and the evolved behaviour can be classified as polarized
behaviour. Note that the local density is higher than in the casewhen prey behaviour evolvedwith no predator present (see Video C.1). Prey
agents learned to stay inside the borders of the living area, to avoid each other (prevent collisions) and group (by matching each other’s
heading). Prey agents learned also to react to predator attacks (see frames 1800–2000, 2700–2900, 3600–3900 and 4500-5100). Note that
soon after the disturbances induced by the predator attacks the polarized behaviour re-stabilizes. Note also that apart from one individual
all otherpreyagents resort togroupingandpolarizedbehaviour,whereas theaforementioned individualdoes soonlyoccasionally, evidence
that in our case the behaviours of prey agents are heterogeneous (see frames 900–2700). For this reason the individual, however, becomes
an easy target for the predator that attacks peripheral prey (see frames 2700–2900).

Video C.
Video sequence portray-
ing a representative of
the evolved polarized
behaviour (evolution
no. ).

Prey agents learned to stay inside the borders of the living area, to avoid each other (prevent collisions), to react to predator attacks (see
frames 1900–2100, 2700–2900, 3700–3800 and 4700-5100), and to group. Note, however, that in contrast to Videos C.1–C.5 the prey agents
in this case continuously transition between different states (polarized-milling-swarming) which results in the largest proportion of time
spent in transition between states. This dynamic behaviour re-stabilizes soon after the disturbances induced by the predator attacks.

Video C.
Video sequence portraying
a representative of the
evolved dynamic behaviour
(evolution no. ).
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Video C.
HD video sequence where
representative evolved
behaviours can be observed
simultaneously.

A 2x2 HD version where video sequences from Videos S2-S5 are played in synchrony and can be observed simultaneously was constructed
to ease the comparison of the representative evolved behaviours. Here available for download only. An online viewable version is available
at vimeo.com/190425371. See captions of Video C.2–C.5 for details.

https://vimeo.com/190425371
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A Balanced Mixture of Antagonistic 
Pressures Promotes the Evolution 
of Parallel Movement
Jure Demšar, Erik Štrumbelj & Iztok Lebar Bajec

A common hypothesis about the origins of collective behaviour suggests that animals might live and 
move in groups to increase their chances of surviving predator attacks. This hypothesis is supported by 
several studies that use computational models to simulate natural evolution. These studies, however, 
either tune an ad-hoc model to ‘reproduce’ collective behaviour, or concentrate on a single type of 
predation pressure, or infer the emergence of collective behaviour from an increase in prey density. 
In nature, prey are often targeted by multiple predator species simultaneously and this might have 
played a pivotal role in the evolution of collective behaviour. We expand on previous research by using 
an evolutionary rule-based system to simulate the evolution of prey behaviour when prey are subject 
to multiple simultaneous predation pressures. We analyse the evolved behaviour via prey density, 
polarization, and angular momentum. Our results suggest that a mixture of antagonistic external 
pressures that simultaneously steer prey towards grouping and dispersing might be required for prey 
individuals to evolve dynamic parallel movement.

Results from studies of collective behaviour are useful for scientists from many different research fields–from 
biology, physics and medicine, to computer science1–5. Because humans behave similarly as groups of animals in 
a wide repertoire of situations, such as traffic jams and behaviour at large-scale events (e.g. sport games, music 
concerts), collective behaviour is also interesting from the social studies perspective3,5.

The literature about collective behaviour contains several hypotheses about why animals, such as schools of 
fish, flocks of birds, swarms of insects, and herds of ungulates coalesce into groups. Some studies suggest that 
animal groups may increase the mating and foraging efficiency of their members6, or that grouping could save 
energy because of hydrodynamic or aerodynamic benefits7–9.

Probably the most common hypotheses about the evolution of collective behaviour are related to protection 
from predation2,10–15. The selfish herd hypothesis suggests that animals form groups in order to reduce their indi-
vidual domain of danger16–18. The confusion effect hypothesis states that a predator attacking a group of visually 
similar prey might have a hard time tracking and capturing its target14,19–23. The many eyes hypothesis suggests 
that as the size of the group increases the amount of time an individual has to scan the environment decreases24,25. 
And the dilution of risk hypothesis suggests that the chance of a single prey being selected as the predator’s target 
is lower in larger groups26.

Computational models are becoming a frequent tool for studying various hypotheses concerning collective 
behaviour2,3,27. In computational models genetic algorithms28 and genetic programming29 are usually used to 
simulate artificial evolution. Artificial evolution can help us understand which selective pressures may have been 
the reason for collective behaviour to evolve. Wood and Ackland30 used genetic algorithms to tune parameters of 
the model that was originally presented by Couzin et al.31 to suggest that predation might promote the evolution 
of laterally expanded visual perception. Kunz et al.20 evolved artificial neural networks to show that the presence 
of a confusable predator might be a sufficient condition for prey individuals to evolve collective behaviour. Using 
a comparable technique, a similar result was achieved by Olson et al.21,22, who in addition showed that predators 
may reduce the benefits of prey grouping by attacking peripheral targets and that grouping evolves when the pred-
ators attack prey individuals that are located nearby. Morrell et al.17 showed that complex rules outperform simple 
ones under a range of predator attack strategies. As a contrast Demšar et al.19 used genetic algorithms to evolve 
composite predation tactics and showed that confusion might play an important role in the evolution of these.  
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ABSTRACT. A common hypothesis about the origins of collective behaviour suggests that animals might live and move in

groups to increase their chances of surviving predator attacks. This hypothesis is supported by several studies that use com-

putational models to simulate natural evolution. These studies, however, either tune an ad-hoc model to “reproduce” col-

lective behaviour, or concentrate on a single type of predation pressure, or infer the emergence of collective behaviour from

an increase in prey density. In nature, prey are often targeted by multiple predator species simultaneously and this might

have played a pivotal role in the evolution of collective behaviour. We expand on previous research by using an evolutionary

rule-based system to simulate the evolution of prey behaviour when prey are subject to multiple simultaneous predation

pressures. We analyse the evolved behaviour via prey density, polarization, and angular momentum. Our results suggest

that a mixture of antagonistic external pressures that simultaneously steer prey towards grouping and dispersing might be

required for prey individuals to evolve dynamic parallel movement.

KEY WORDS. Collective behaviour, evolution, fuzzy logic, predator-prey interaction, dynamic parallel group

. Introduction

Results from studies of collective behaviour are useful for scientists from many different
research fields – from biology, physics and medicine, to computer science [, , , , ].
Because humans behave similarly as groups of animals in a wide repertoire of situa-
tions, such as traffic jams and behaviour at large-scale events (e.g. sport games, music
concerts), collective behaviour is also interesting from the social studies perspective
[, ].

The literature about collective behaviour contains several hypotheses about why an-
imals, such as schools of fish, flocks of birds, swarms of insects, and herds of ungulates
coalesce into groups. Some studies suggest that animal groups may increase the mat-
ing and foraging efficiency of their members [], or that grouping could save energy
because of hydrodynamic or aerodynamic benefits [–].

Probably the most common hypotheses about the evolution of collective behaviour
are related to protection from predation [, , –]. The selfish herd hypothesis
suggests that animals form groups in order to reduce their individual domain of danger
[, , ]. The confusion effect hypothesis states that a predator attacking a group
of visually similar prey might have a hard time tracking and capturing its target [, –
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]. The many eyes hypothesis suggests that as the size of the group increases the
amount of time an individual has to scan the environment decreases [, ]. And the
dilution of risk hypothesis suggests that the chance of a single prey being selected as
the predator’s target is lower in larger groups [].

Computational models are becoming a frequent tool for studying various hypothe-
ses concerning collective behaviour [, , ]. In computational models genetic al-
gorithms [] and genetic programming [] are usually used to simulate artificial
evolution. Artificial evolution can help us understand which selective pressures may
have been the reason for collective behaviour to evolve. Wood & Ackland [] used
genetic algorithms to tune parameters of the model that was originally presented by
Couzin et al. [] to suggest that predation might promote the evolution of laterally
expanded visual perception. Kunz et al. [] evolved artificial neural networks to show
that the presence of a confusable predator might be a sufficient condition for prey indi-
viduals to evolve collective behaviour. Using a comparable technique, a similar result
was achieved by Olson et al. [, ], who in addition showed that predators may
reduce the benefits of prey grouping by attacking peripheral targets and that grouping
evolves when the predators attack prey individuals that are located nearby. Morrell et
al. [] showed that complex rules outperform simple ones under a range of predator
attack strategies. As a contrast Demšar et al. [] used genetic algorithms to evolve
composite predation tactics and showed that confusion might play an important role
in the evolution of these. A recent study by Biswas et al. [] suggests that the dilu-
tion of risk is the most prominent factor for the evolution of clumping and not the
confusion effect as suggested by previous research.

In the studies that investigated the evolution of collective behaviour under various
predation tactics [, , , ] researchers were mostly interested in whether prey
individuals start to group or not (i.e. whether as a result of the artificial evolution the
prey density increased or decreased). As groups of animals in nature move in many
different regimes (clumping, swarming, milling, schooling, etc.) [, ] and dif-
ferent predation pressures are countered by different responses of prey groups, we can
hypothesise that the type of predation tactic has an influence on the type of collective
behaviour that evolves.

In this study we focus on how predation from various types of predators influences
the evolution of collective behaviour in prey individuals. We let prey individuals evolve
their behaviour while experiencing predation from a) predators for which grouping
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might be a natural response and b) predators for which dispersing might be a natural
response. According to previous research there are several predation tactics that pres-
sure prey individuals to evolve grouping behaviour [–, ]. Two of these are a)
attack prey individuals located at the periphery of the prey group (P, periphery) and
b) attack the nearest prey individual (N, nearest). Predation tactics that pressure prey
towards dispersing (against grouping behaviour), are a) attack the most central prey
individual in a prey group (C, centre) and b) high density area attacks (H, density)
[].

Predators that attack the nearest, the most peripheral or the most central prey indi-
vidual usually detect, pursue, attack and capture a single prey individual. For example,
black seabass, Centropristis striata, in attacks on schools of Atlantic silversides, Meni-
dia menidia, focus on stragglers when these are available, otherwise they most often
target central prey []. Predators that focus on nearest prey individuals are typically
sit-and-wait, ambush or surprise-attack predators (e.g. largemouth bass, Micropterus
salmoides [] or peregrine falcons, Falco peregrinus[]) who try to minimize energy
costs required for prey capture. However, rather than relying on a single predation tac-
tic predators usually adapt their tactic with respect to the prey species. For example, in
attacks on either free-swimming whirligig beetles, Dineutes discolor, or a constrained
group of tadpoles, Bufo bufo, largemouth bass, Micropterous salmoides, like goldfish,
Carassius auratus, preferentially attack prey on the periphery []. Recent research
by Ioannou et al. [] showed that bluegill sunfish, Lepomis macrochirus, when hunt-
ing virtual prey disproportionately more often attack prey relatively far from the group
centre, but only in the case when prey individuals are moving with relatively low tor-
tuosity. In attacks on groups, on the other hand, prey in groups with a coordinated
direction of motion (i.e., with high polarization) were at less risk than their counter-
parts in unpolarized swarms.

Density attacking predators are usually larger than a single prey individual and do
not necessarily detect, pursue, attack and capture a single prey individual, but can
attack and capture several prey individuals in a single predation event (e.g. whales).
Minke whales, Balaenoptera acutorostrata, lunge feed on small schooling fish [].
Killer whales, Orcinus orca, are known to use cooperative hunting [, ]. Bask-
ing sharks, Cetorhinus maximus, on the other hand, are filter-feeders and feed while
cruising at a relatively low and constant speed []. In these cases, while the prey
may be able to accelerate and manoeuvre at a higher rate than the predator, the dif-
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Figure .
Normalized prey density,
polarization, and angular
momentum for conform-
ing predation pressure
mixtures.
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P – attack prey individuals located at the periphery of prey groups, N – attack the nearest prey individual, C – attack the most central prey
individual in a prey group, and H – high density area attacks. The predation pressure mixture ratio a ∶ b denotes the number of predators
using a specific predation tactic, e.g. in the case of C:H, 0:8 (top row, right side of the plot) all predators (eight) use high density area attacks.
Points and whiskers represent the estimated posterior means and 95% posterior confidence intervals. Individual draws from the poste-
rior distributions are connected with lines to visualize posterior uncertainty and aid in the interpretation of how the means vary across the
predation pressuremixtures. To summarize the results, the predationmixtures were grouped into groups of three: predation pressure pre-
dominantly from centre (C:H) or periphery (P:N) attacking predators (8:0, 1:7, 2:6), balanced pressure (5:3, 4:4, 3:5), and predation pressure
predominantly from high density area (C:H) or nearest prey individual (P:N) attacking predators (6:2, 7:1, 0:8). The shaded bars show, for
each group, the probability that that group has the highest mean. These probabilities were estimated with draws from the posterior distri-
butions in which each groupmember had an equal probability of being selected. That is, each predation mixture was weighted equally.

ference in size is such that, once the prey is aimed at, its speed is too low to avoid the
predator’s large gape []. In nature, prey living in groups are often targeted by such
predators [, , , ], and scenarios where prey are subject to multiple preda-
tion tactics simultaneously (e.g. attack single peripheral prey individuals, and density
attacks) are not uncommon (e.g. multi-species feedings)[, , ]. Exposure
to such conflicting, antagonistic predation pressures might have played a pivotal role
in the evolution of collective behaviour. For this reason we investigated the type of
evolved behaviour when varying exposure to multiple (conforming and antagonistic)
simultaneous predation pressures.

. Results

The influence of predation pressures on the evolution of prey behaviour was studied
by varying the number of predators using different specific predation tactics. The total
number of predators used to obtain results reported in this study was eight, but no
significant difference was observed while performing preliminary tests with larger or
smaller numbers of predators.

According to previous studies[–, ] predation pressure from predators that
attack the most central prey individual in a prey group (C) or use high density area at-
tacks (H) should promote the evolution of the tendency to disperse in prey individuals.
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On the other hand, predation pressure from predators that attack prey individuals lo-
cated at the periphery of the prey groups (P) or the nearest prey individual (N) should
lead to the evolution of the tendency to group. As from the point of view of the
expected outcome in both cases the two predation tactics agree, regardless of the num-
ber of predators using a specific tactic (dispersion for combination C:H, grouping for
P:N), we call such predation pressures conforming. Our results (Figure .) support
previous studies. With conforming pressures towards dispersing by centre and density
attacking predators the mean normalized prey density consistently stayed below .,
regardless of the number of predators using a specific tactic. On the other hand, with
conforming pressures towards grouping by periphery and nearest prey individual at-
tacking predators the mean normalized prey density remained above ., regardless
of the number of predators using a specific tactic.

Couzin et al. [] introduced the measures of polarization and angular momentum.
They express the degree of consensus in a common heading of the group (polarization),
and the degree of rotation of the group about the group’s centre (angular momentum).
By means of these two measures Couzin et al. [] defined four collective dynamical
behaviours: swarm (low polarization and low angular momentum), torus or milling
(low polarization and high angular momentum), dynamic parallel group (high polar-
ization and low angular momentum), and highly parallel group (very high polarization
and low angular momentum) [].

Conforming predation pressures (combinations C:H and P:N in Figure .) re-
sulted in behaviours with medium to high angular momentum and low polarization.
While polarization was low for all pressure mixtures, its mean was highest when preda-
tion pressure came predominantly from centre or periphery attacking predators. Pre-
dation pressures for which the response was grouping led to consistently high angular
momentum with low variability. Here attacks directed predominantly on the nearest
prey individual gave rise to the highest mean angular momentum. The high angular
momentum combined with the consistently low polarization suggests the evolution of
milling behaviours. Pressure towards dispersing, on the other hand, resulted in sub-
stantially lower angular momentum with a higher variability. Here, domination by
centre attacking predators induced the highest mean angular momentum. As polar-
ization was low the medium to high angular momentum with high variability suggests
the evolution of either swarming or milling behaviours. Note here that even in cases
where polarization was the highest it was not high enough to suggest the observed
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Figure .
Normalized prey density,
polarization, and angular
momentum for antago-
nistic predation pressure
mixtures.
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P – attack prey individuals located at the periphery of prey groups, N – attack the nearest prey individual, C – attack the most central prey
individual in a prey group, andH–high density area attacks. The predationpressuremixture ratioa ∶ bdenotes the proportion of predators
using a specific predation tactic, e.g. in the case of N:C, 0:8 (top row, right side of the plot) all predators (eight) attack themost central prey
individual in a prey group. Points andwhiskers represent the estimated posteriormeans and 95%posterior confidence intervals. Individual
draws from the posterior distributions are connected with lines to visualize posterior uncertainty and aid in the interpretation of how the
means vary across the predation pressure mixtures. To summarize the results, the predation mixtures were grouped into groups of three:
low degree of antagonism in predation pressures with predominant pressure from predators that force prey into grouping (8:0, 1:7, 2:6),
high degree of antagonism in predation pressures (5:3, 4:4, 3:5), and low degree of antagonism in predation pressures with predominant
pressure from predators that force prey into dispersion (6:2, 7:1, 0:8). The shaded bars show, for each group, the probability that that group
has the highest mean. These probabilities were estimatedwith draws from the posterior distributions in which each groupmember had an
equal probability of being selected. That is, each predation mixture was weighted equally.

behaviour could be classified as polarized.
In the case of antagonistic predation pressures (combinations N:C, N:H, P:C and

P:H, see Figure .) the highest mean normalized prey density emerged when preda-
tion pressure came predominantly from the nearest or the most peripheral prey indi-
vidual attacking predators (predators that in a conforming setting pressure prey into
grouping; mixtures :, :, :). On the other hand, domination by predators for
which the expected outcome is dispersing (mixtures :, :, :) led to the lowest
mean normalized prey density. Domination by either pressure to group or pressure
to disperse can be interpreted as a low degree of antagonism in predation pressures.
A high degree of antagonism, where neither the pressure to disperse nor the pressure
to group dominates (mixtures :, :, :), led to the evolution of low to high mean
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normalized prey density. The lowest in the case of periphery and centre attacking
predators (P:C) and highest in the case of nearest prey individual and high density
area directed attacks (P:H).

Evolution under antagonistic predation pressures resulted in medium to high angu-
lar momentum and low to medium polarization. Compared to the case of conforming
predation pressures, there was a considerably higher variability in the values of angular
momentum and polarization, suggesting a wider range of evolved behaviours. In all
but the P:H case, predation pressure predominantly from predators that result in prey
individuals that favour grouping gave rise to the highest angular momentum. In the
P:H case, on the other hand, it was highest when the pressure to disperse dominated.
Note that angular momentum was never the highest when antagonism in predation
pressures was high (predation pressure mixtures :, :, :). High antagonism, how-
ever, always generated the highest mean polarization.

Observing all three parameters in unison (see Supplementary information, Fig-
ure D.) suggests that increasing the pressure towards dispersing from centre or high
density area attacking predators leads to a general decrease in normalized prey den-
sity, angular momentum and polarization (top and right portion of the figure). An
increase in pressure towards grouping from predators that attack the nearest or the
most peripheral prey individual, on the other hand, causes an increase in density and
a favouring of higher momentum with low polarization (bottom and left portion of
the figure). Higher values of polarization with low momentum and medium density
emerge when the mixture in pressures towards and against grouping (towards dispers-
ing) is somewhat balanced. This suggests a possible emergence of polarized behaviour.

Note that polarization and angular momentum reported in Figures ., . and
D., although indicative of the resulting behaviour, cannot be used for such a clas-
sification directly, because they were computed as weighted sums of polarization and
angular momentum of individual groups and averaged over a number of frames (see
Methods). Therefore, to further analyse the influence of predation pressures on the
evolution of prey behaviour, we categorized the behaviour of individual groups with
respect to their polarization and angular momentum in the last frame of of every simu-
lation run. Here we followed Tunstrøm et al. [], who used polarization and angu-
lar momentum and a simple threshold to categorize the behaviour of groups of golden
shiners,Notemigonus crysoleucas, into one of three collective states; swarm, milling, and
polarized state. Based on that we computed the probability of observing a particular
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Figure .
The probability of observ-
ing a specific collective
state at the end of the
simulation run for all pre-
dation pressure mixtures.
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collective state (see Methods). This analysis provides further insight into what kind
of behaviour evolves under a particular predation pressure mixture ratio. Figure .
confirms what was suggested by data presented in Figures ., . and D.: the prob-
ability of observing the swarm state is present mainly in cases when prey individuals
evolved while under predation pressure from centre or high density area attacking
predators. The probability of observing a swarm state is the highest when prey indi-
viduals evolved under conforming pressures towards dispersing by centre and density
attacking predators. Overall, the probability of observing a milling state dominates,
and is high in most cases, except when: a) prey individuals evolved under conforming
pressures towards dispersing by centre and density attacking predators, and b) prey in-
dividuals evolved under certain antagonistic pressures. On the other hand, evolution
under antagonistic pressures produced the highest probability of observing a polarized
state. This suggests that a mixture of antagonistic pressures that simultaneously steer
prey towards grouping and dispersing might be required for prey individuals to evolve
parallel movement.

Visual inspections of the evolved behaviours confirmed that the domination of pre-
dation pressures towards dispersing led prey to evolve behaviours where they in general
tend to disperse. This tendency to disperse at times leads to the wall-following of the
living area border and thus while keeping a low density causes a relatively high angu-
lar momentum (see Supplementary information, Video D.). As this is classified as
milling, the probability of observing the milling state dominates in Figure .. The
solution being classified as milling is probably irrelevant for biological organisms as it
is determined by the artificial ecology used for this computational study (i.e. crossing
the living area border would sooner or later be lethal for the prey individual). Never-
theless, in an experiment with zebrafish, Danio rerio, the distribution of the positions
detected in the tank showed that the fish avoid the centre of the tank and the higher
probability of presence is along the walls [], which might be indicative of a similar
form of wall-following. On other occasions with low density the evolved behaviour
resembled collective motion typically identified as swarming, associated with low an-
gular momentum, and low polarization (see Supplementary information, Video D.).
Predation pressure predominantly from predators that push prey into grouping led
prey individuals to evolve behaviours that usually resulted in high density, high an-
gular momentum and low polarization, values typically associated with milling (see
Supplementary information, Video D.). On few occasions the evolved behaviour
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resulted in high density, low angular momentum and low polarization, indicative of
high density swarming (see Supplementary information, Video D.). As suggested by
data presented in Figures . and . behaviours with higher values of polarization
emerged mostly when there was a high degree of antagonism in predation pressures
(i.e. when there was a balanced mixture of pressure towards and against grouping).
Here prey individuals often evolved behaviours that resulted in parameter values typi-
cal for dynamic and highly parallel motion; medium to high normalized density, low
to medium angular momentum and medium to high polarization (see Supplementary
information, Videos D.–D.).

. Discussion

Previous research that used evolutionary computational models to study the evolu-
tion of collective behaviour[–, , ] suggests that prey grouping might have
evolved as a defensive mechanism against predation. Most of the existing studies were
principally interested in whether prey evolve a) grouping behaviour (defined as an
increase in prey density) or b) dispersing behaviour (defined as a decrease in prey den-
sity). Our study corroborates previous findings in that prey density is high when prey
individuals evolve while under predation pressure from predators for which grouping
might be a natural response (attack peripheral prey individuals, or attack the nearest
prey individual), and low when prey individuals evolve while under predation pres-
sure from predators for which dispersing might be a natural response (attack the most
central prey individual, or attack high density areas).

Groups of animals in nature, however, move in many different fashions (clumping,
swarming, milling, schooling, etc.) [, ] and different predation pressures are
countered by different responses. As these responses are experience dependant[,
], we can hypothesise that if collective behaviour evolved as an anti-predator re-
sponse it might as well have been shaped by the predation pressures the prey faced. In
this study we therefore expanded on previous research by focusing on how predation
from various types of predators might influence the evolution of collective behaviour
in prey individuals. More specifically we investigated the influence of antagonism be-
tween predation pressures towards and against grouping (towards dispersing) on the
type of evolved collective behaviour (evaluated via prey density, polarization and an-
gular momentum []). Our results suggest that when prey individuals evolve while
under conforming predation pressures (either towards grouping or towards dispersing)
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the resulting behaviour has low polarization and medium to high angular momentum.
When prey individuals evolve while subject to antagonistic predation pressures (to-
wards grouping and towards dispersing, simultaneously) density and angular momen-
tum increase with the number of predators forcing prey into grouping and decrease
with the number of predators that force prey individuals into dispersing. Polarization,
on the other hand, is highest when antagonism in predation pressures is high.

Our results therefore suggest that antagonism might have played an important role
in the evolution of collective behaviour; that antagonism from predation pressures,
environmental or internal factors could have been responsible for the evolution of a
multitude of different behaviours. They could also indicate that in nature the evo-
lution of highly polarized movement might be a result of the co-evolution of prey
evasion and composite predator attack tactics []. Another possibility is that not
only variation in swimming performance [], but also the amount of variation in
group behaviours might be linked to environmental factors. This supports the hy-
pothesis that ecological constraints may shape the process used to regulate activity in
many biological species []. Indeed, evolution of group responses to predation in
nature is not universal, and different species might evolve very different responses to
predation. This is not restricted to fish schools, as it is evident also in avian group
behaviour, where the magnitude in variation of behaviours has always been a major
puzzle. Why do so few bird species that fly together display organized behaviour, and
why do even closely related species display major differences in flocking behaviour [].
For example, pigeons are more closely related to swifts than they are to starlings [],
but they flock much more like starlings. Similarly, geese are more closely related to
chickens than they are to cormorants [], but they fly like cormorants.¹ In view of
our results one possible explanation for these observations might be that organized
flight has evolved independently, and several times, and the differences in behaviour
might have emerged because, although closely related, individual species were subject
to different pressures.

In marine ecology Rieucau et al.’s recent studies suggest that collective anti-predator
responses in herring increase with the density of the school [], and the number of
sensory cues [, ]. Our results suggest that the increase might be accentuated
by the conflict in sensory cues. This corroborates recent results by Lemasson et al.
[], who suggest that the benefits of coordinated motion are context dependent, i.e.

¹Heppner FH, personal communication, February, 
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they can potentially reduce the time prey individuals spend in dangerous areas and
help them to avoid becoming isolated, yet such movement patterns can also alleviate
predator confusion during a directed attack. It is important to note that exposure
to predators affects prey both directly and indirectly and that plasticity in response
to risk might relate to an individual’s willingness to take risks []. As our model
is heterogeneous in the behaviour of prey individuals, our findings seem to suggest
that this individuality in susceptibility to predation risk, might inevitably also lead to
changes in the behaviour of the group.

In summary, while the dilution of risk might be sufficient for prey individuals to
evolve grouping [], and predator confusion might lead prey individuals to evolve
swarming [–], our results suggest that exposure to antagonistic predation pressures
might be a necessary requirement for prey individuals to evolve parallel movement.
This could indicate that the direction of evolution (grouping or dispersing) is not A
versus B, but a labile result – whether grouping or dispersing evolves depends on a)
the nature of the group, and b) the pressures that the group finds itself facing.

. Methods

Our individual based model consists of two types of artificial animals – predators and
prey. They coexist in a two dimensional environment confined by a circular living
area, with their positions and headings at time instant t given by r(i)t , ϕ(i)t . Following
previous research [, , , , ], the behaviour of every artificial animal in
our model is governed by fuzzy logic [] via a fuzzy-rule-based system []. A fuzzy-
rule-based system enables the use of linguistic if-then rules to describe the behaviour
of the artificial animals. It is specified via a fuzzy knowledge base, which consists
of a fuzzy data base and a fuzzy rule base. The data base lists all input and output
variables, as well as the linguistic terms (e.g. near, far, etc.) that can appear in if-
then rules. In addition it includes information necessary for fuzzy reasoning, i.e. the
method for transforming crisp data into fuzzy sets (fuzzification), the interpretation of
logical connectives necessary for fuzzy reasoning, and the method for converting the
fuzzy result into a real action (defuzzification). The fuzzy rule base on the other hand
comprises the list of if-then rules that are assumed to be joined by the connective “also,”
so multiple rules can fire simultaneously. When used in combination with artificial
evolution a fuzzy-rule-based system is called a genetic fuzzy system [–].

The fuzzy knowledge base of the predators was set following previous research []
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Figure .
A schematic showing the
predator and prey fuzzy-
rule-based system’s input
and output variables.

(see Supplementary information for details). In the case of prey individuals we, for
reasons of simplicity, locked the fuzzy data base and evolved only the fuzzy rule base
(see Supplementary information for details), but given that fuzzy-rule-based systems
are deemed universal approximators [] this still provides the opportunity to poten-
tially discover a wide repertoire of behaviours.

At every update step the fuzzy-rule-based systems (i.e. the pre-set fuzzy knowledge
base in the case of predators, and the evolving fuzzy knowledge bases in the case of
prey individuals) were used to compute the new heading (see Figure .) and position
of every artificial animal as:

ω
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t+τ = min(ϕ(i)FS , ω

(i)
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(i)
t+τ , (.)

where ϕ(i)FS is the desired heading in the local coordinate frame of individual i returned
by the corresponding fuzzy-rule-based system, ω(i)max is its manoeuvrability and v(i)

is the animal’s speed. See Supplementary information, Table D. for a full list of
parameters. The following sections provide more details about the evolutionary process
and analysis of the evolved behaviour. For more details about the implementation of
the predator and prey artificial animal see Supplementary information.
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.. Evolutionary process

Most of the previous studies concerning the evolution of collective behaviour [–,
] used a genetic algorithm, with clearly defined generational boundaries. This is the
most frequently used application of genetic algorithms, where in every generation the
whole population of potential solutions to the problem is evaluated via simulation in
order to evaluate the fitness (assess the quality) of every individual solution. The fitness
is then used for selection, followed by reproduction and mutation so that the whole
population of possible solutions is created anew and is defined as a new generation.
Additionally, with the only exception of Wood & Ackland [] in most of the previous
studies [–] all of the prey individuals behaved in exactly the same way – the prey
groups were homogeneous.

Some recent studies suggest that heterogeneous groups might evolve a different be-
haviour in an algorithm mimicking artificial evolution []. Others suggest that het-
erogeneous groups might be necessary to achieve a more “natural” behaviour [],
and that differences among individuals might be essential for group coordination
[, ]. For this reason in our approach, similar to Biswas et al. [], selection, fol-
lowed by reproduction and mutation are part of the simulation so that there is no clear
generational boundary. When a prey individual (a potential solution to the problem)
in our system dies, two of the remaining prey individuals are selected based on their
current fitness, and via reproduction and mutation a new prey individual is created (a
new potential solution to the problem). Since every prey individual is governed by its
own fuzzy-rule-based system, this essentially makes the prey group heterogeneous.

The fitness of a prey individual was evaluated via its energy level ϵ(i)t , which encodes
the individual’s capability to stay in the designated living area, avoid collisions with
other prey individuals, and successfully avoid predation. When a new prey individual
was created, it was assigned an initial level of energy, ϵ, and with every update step the
energy level was increased by ϵl. As in the case of Kunz et al. [] inter-prey collisions
were penalized to promote collision avoidance, i.e. in the event of a collision the energy
level of the involved prey individuals was decreased by ϵc. Similarly, to promote staying
inside the living area, wandering outside of it (i.e. ∥r(i)t ∥ ≥ rLA) was penalized by ϵw.
A prey individual died if its energy level depleted to  or was marked as captured by
a predator (see Supplementary information). Since a new prey individual was created
(i.e. it appeared at a random location heading in a random direction) whenever one
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a) b)

a) one straggler and two proper groups; the straggler does not see any prey individual from either of the two groups, and nomember from
one group is able to see neither the straggler nor any prey individual from the other group; potential influence (direct or indirect) is limited
to members of the same group only; b) one proper group where all members can potentially (directly or indirectly) influence each other’s
behaviour.

Figure .
Prey individuals split into
groups based on direct and
indirect influence.

died, the number of prey individuals was constant throughout the entire evolution.
Individual predators appeared at random time instants at random locations outside

of the living area. Their initial heading was towards the centre of the living area, so
as to promote the speed of convergence of the evolutionary algorithm []. High
density area attacking predators hunted until their hunt duration elapsed. Single-
target (neatest, centre, and periphery) attacking predators hunted until they caught
the currently targeted prey individual, or until their hunt duration elapsed. Once
a predator finished its hunt, it was removed, and re-appeared after a random time
interval. The initial delay before a predator first appeared, and the time interval before
it re-appeared after a hunt were uniformly distributed on the predator re-appearance
time interval, tr. At maximum eight predators were simultaneously present at one time
instant.

In order to investigate the type of evolved behaviour when varying exposure to
conforming and antagonistic predation pressures we ran individual evolutions while
varying the number of predators using a specific predation tactic. In total we ran 
experiments with different conditions (mixtures of different predation pressure com-
binations). Each evolutionary run lasted ten million update steps and was repeated 
times.
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.. Analysis of the evolved behaviour

To classify the evolved behaviour we ran five separate simulation runs where on each
occasion the artificial world comprised only the prey individuals from the last update
step of the corresponding evolutionary run. This was done to preclude the possibility
of the behaviour being classified as collective, when in reality all prey are individually
trying to escape the predator in a common direction, hence we analysed the evolved
behaviour with no predator present. Each simulation run lasted  update steps
and on each occasion the type of behaviour was analysed after it reached a dynamically
stable state (i.e. after  update steps). For the analysis we turned to the observation
of density [], polarization, and angular momentum [], properties that allow for
the categorization of the type of collective behaviour [, , , , ]. Density,
eq. (.), can be used to assess the degree of grouping, or clumping. Polarization,
eq. (.), express the degree of consensus in a common heading. Angular momentum,
eq. (.), the degree of rotation of the group about the group’s centre. Together they
can be used to assess the type of collective behaviour (i.e. swarm, torus, dynamic
parallel group, or highly parallel group) []. The quantities were recorded over the
remaining  update steps of a simulation, and their individual averages were used
as an indication of the evolved behaviour.

Normalized prey density

ρt =


∣I∣ − ∣I∣
∑
i∈I
∣N(i)t ∣, N(i)t = {j ∈ I∣ j ≠ i, ∥r

(j)
t − r

(i)
t ∥ ≤ r

(i)
v } (.)

where N(i)t is the neighbourhood of prey individual i, was recorded on a global level.
However, in view of recent research [], which emphasizes the importance of calcu-
lating the observed quantities on a group-by-group basis, for polarization and angular
momentum the prey individuals were first split into groups based on direct and indi-
rect influence (see Figure .)[], where

. G(i)t ⊆ I, . i ∈ G(i)t , . if j ∈ G(i)t then, N(j)t ⊂ G
(i)
t , (.)

is a recursive definition of a group of prey individuals. Prey individuals pertaining to
groups of size one, S = {i ∈ I∣ ∣G(i)t ∣ = }, are termed stragglers [] and proper
groups can be defined as

G = {i, . . . , in} ∶ ⋃
i∈G∪S

G(i)t = I, ∀i, j ∈ G ∶ G
(i)
t ∩G

(j)
t = ∅. (.)
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Polarization and angular momentum were computed based on proper groups only
and in order to diminish the possible bias induced by many small groups the two
quantities at time instant t were computed as weighted averages, where group size was
used as the weighting function. Hence polarization was computed as

pt =∑
g∈G

∣G(g)t ∣ p
(g)
t

∣∪g∈GG(g)t ∣
, p(g)t =



∣G(g)t ∣

XXXXXXXXXXXXX
∑

i∈G(g)t

v̂(i)t

XXXXXXXXXXXXX
, (.)

and angular momentum as

mt =∑
g∈G

∣G(g)t ∣m
(g)
t

∣∪g∈GG(g)t ∣
, m(g)t =



∣G(g)t ∣

XXXXXXXXXXXXX
∑

i∈G(g)t

r̂(G,i)
t × v̂(i)t

XXXXXXXXXXXXX
, (.)

where p(g)t and m(g)t are the polarization and angular momentum of group g, respec-
tively and

r(G,i)
t = r(i)t −



∣G(i)t ∣
∑

j∈G(i)t

r(j)t (.)

is the relative position of prey individual i with respect to the centroid of its group.

.. Statistical analysis

The main goal of our experiments (evolution + simulation) was to investigate how the
mean of three metrics of interest (normalized prey density, polarization and angular
momentum) varies across six different pairs of the four predation tactics (C:H, N:C,
P:C, P:H, N:H, P:N) and nine different predation mixtures (:, :, ..., :).

Each combination of the three dimensions above is considered a separate experi-
ment. The experiments are not deterministic – both the evolution and simulation are
stochastic in nature and therefore a source of (random) measurement error. To esti-
mate and account for this, each experiment consisted of n =  different evolutionary
runs (iterations), each followed by m =  simulation runs (repetitions). The metrics
also vary across individual frames, however, low variability and a relatively high num-
ber of frames () leads to a negligible standard error, therefore, instead of modelling
individual frames, the average across all frames was used.
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For each experiment separately, we used the following Bayesian hierarchical model
to estimate the mean:

yij ∼ N (µi, σi)

µi ∼ N (µ, σ)

µ ∝ 

logσ⋅ ∝ ,

(.)

where yij is the metric measurement for the j-th repetition of the i-th iteration. That
is, we model each iteration with its own distribution with potentially different means
µi and standard deviations σi. These means are assumed to be drawn from a popu-
lation of means, with grand mean µ, which is what we are interested in estimating.
Flat (improper) priors are placed on the (hyper-)parameters. Note that we are only
interested in the mean, so the normal model is adequate, although the data are not
normally distributed.

We used the Stan tool for Bayesian inference to draw samples from the posterior dis-
tribution []. Each model was run for  warm-up and  sampling iterations,
which was sufficient to reduce approximation errors to negligible levels.

In addition to analysing how a specific predation mixture influences the mean of
the three metrics (normalized prey density, polarization, angular momentum) we also
categorized the behaviour in the last frame () of each simulation run. The cate-
gorization was executed on a group-by-group basis following Tunstrøm et al. [],
who defined that a group is in: the polarized state (O) when the group’s polarization
> . and angular momentum < .; the milling state (M) when polarization < .
and angular momentum > .; and the swarm state (S) when polarization < . and
angular momentum < .. Outside these ranges it is said to be in transition (T). In
addition, a threshold was used to sub-categorize collective states O, M and S as either
low < . or high density > .. The probability of observing a specific collective state
was computed by counting the number of groups in that specific collective state over
all evolution iterations and simulation run repetitions of an experiment. To diminish
the possible bias induced by small groups, each group contributed only a share pro-
portionate to the size of the group. For example, if G(ij) denotes the set of proper
groups at the end of iteration i, repetition j and S(ij) the corresponding subset of proper
groups that are in the swarm state, the probability of observing the swarm state was
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computed as

P(S) = 
nm

n

∑
i=

m

∑
j=
∑

g∈S(ij)

∣G(g)∣

∣∪g∈G(ij)G
(g)
∣

. (.)

ACKNOWLEDGMENTS Thework ispart of thePhD thesis that is beingpreparedbyJ.Demšarat theFacultyofComputerand

Information Science, University of Ljubljana, Slovenia. It was funded in part by the Slovenian Research Agency (ARRS) through

the Pervasive Computing research programme (P2-0395). We sincerely thank Janez Demšar for advice on themethods for inter-

preting results, and Davor Sluga for providing access to computational resources. Wewould also like to thankMaja Lebar Bajec,

Randal S. Olson and Frank H. Heppner for reading and reviewing early versions of this manuscript. Last but not least we would

like to thank James Herbert-Read for his assistance with tuning the parameters of our model to biologically relevant values.

Supplementary information: individual based model

The behaviour of the artificial animals – predators and prey – in our individual based
model is governed by fuzzy logic [] via fuzzy-rule-based systems []. Every fuzzy-
rule-based system is specified via a fuzzy knowledge base, which is made from two
parts – a data base and a rule base. The rule base lists if-then rules that describe the
behaviour of the artificial animal in question. The rules are assumed to be joined by
the connective “also,” so multiple rules can fire simultaneously. The antecedent and
consequent parts of individual if-then rules use linguistic terms (near, far, left, right,
etc.), which are defined in the data base of the fuzzy-rule-based system. In addition the
data base includes information necessary for fuzzy reasoning (see Table D.), i.e. the
method for transforming crisp data into fuzzy sets (fuzzification), the interpretation
of logical connectives necessary for fuzzy reasoning, and the method for converting
the fuzzy result into a real action (defuzzification). For a detailed description of how a
fuzzy rule base is evaluated the reader is invited to refer to [, , ].

In our model, at every update step the fuzzy-rule-based systems (i.e. the pre-set
fuzzy knowledge base in the case of predators, and the evolving fuzzy knowledge bases
in the case of prey individuals) were used to compute the new heading and position of
every artificial animal. Table D. shows the values of all our model’s parameters, while
the following sections provide more details about the implementation of the predator
and prey artificial animal.
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Table D.
Fuzzy data base settings common to predator and prey fuzzy-rule-based systems.

Description Default value

Fuzzification Singleton
Fuzzy conjunction Product
Fuzzy disjunction Probabilistic sum
Fuzzy implication Product
Fuzzy aggregation Probabilistic sum
Defuzzification Center of gravity

D. Predators

The predators in our model were hand-tuned and their behaviour was not subject to
evolution. Their fuzzy knowledge base (see Figure D.) was set as in previous research
[], with the only difference being that the predators moved at a constant speed. The
fuzzy-rule-based system computed the predator’s desired heading direction based on
its current target prey individual; it implemented classical pursuit, where the predator
moves directly toward the evading target prey individual [, ].

Let d(i,j)t = ∥r(j)t −r
(i)
t ∥ denote the distance between artificial animals i and j at time

instant t and d̂(i,j)t = (r(j)t − r
(i)
t )/d

(i,j)
t the unit vector pointing from i to j at time

instant t. The angular position of artificial animal j with respect to i is then

θ
(i,j)
t = arccos(v̂(i)t ⋅ d̂

(i,j)
t ) ()

and the relative orientation of artificial animal j with respect to i

ϕ
(i,j)
t = ϕ(j)t − ϕ

(i)
t . ()

Let κ be a predator andα its current target. To compute the predator’s desired head-
ing its fuzzy-rule-based system input variables target position and target heading
were set to θ

(κ,α)
t and ϕ

(κ,α)
t , respectively.

The principal focus of the study was the analysis of the evolved behaviour when
varying exposure to multiple simultaneous predation pressures. We used predators that
according to previous research might pressure prey towards a) grouping [–, ]
(i.e. attack the most peripheral prey individual or attack the nearest prey individual)
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Figure D.
The hand-tuned fuzzy
knowledge base of the
predator fuzzy-rule-based
system.

and b) dispersing [] (i.e. attack the most central prey individual or attack high
density areas).

Let N(i)t = {j ∈ I∣ j ≠ i, d
(i,j)
t ≤ r(i)v } denote the neighbourhood of prey individual

i. High density area attacking predators (h) detected and pursued the prey individual
with the highest amount of nearby neighbours;

α
(h)
t = argmax

i∈I
∣N(i)t ∣ . ()

Note that in the case of a high density area attacking predator (hdaa predator) the
targeted prey individual constantly changed, so that the hdaa predator effectively de-
tected and pursued the highest density area. Following Olson et al. [] the hdaa
predators moved at a slower speed than prey and were also less manoeuvrable. If the
hdaa predator was close enough to any of the prey individuals (i.e. d(h,i)t ≤ r(h)c , i ∈ I)
they were marked as captured. Note also that the hdaa predator could consume any
prey individual and not only the targeted prey individual, therefore mimicking preda-
tors capable of attacking and capturing several prey individuals in a single predation
event [, , , ].

Predators that attack the nearest, the most peripheral or the most central prey indi-
vidual detect, pursue, attack and capture a single prey individual []. In this study we
label them with the common name single-target attack or st predators. Note that in
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contrast to hdaa predators, in the case of an st predator the target prey individual was
detected only on special occasions and then pursued until captured or until the preda-
tor’s hunt duration expired. The detection of the target prey individual occurred at the
time instant when the st predator appeared or the currently targeted prey individual
died during pursuit.

Following previous research [, , , ]

P(i)t =


∣N(i)t ∣

XXXXXXXXXXXXX
∑

j∈N(i)t

d̂(i,j)t

XXXXXXXXXXXXX
()

is the peripherality of prey individual i at time instant t. The peripherality of stragglers,
prey individuals with no visible neighbour, i.e. N(i)t = ∅, was set to +∞. Let s be an
st predator. The nearest, α(s)n , the most peripheral, α(s)p , and the most central prey
individual, α(s)c , were defined as

α
(s)
n = argmin

i∈I
d(s,i)σ , ()

α
(s)
c = argmin

i∈I
P(i)σ , ()

α
(s)
p = argmax

i∈I
P(i)σ , ()

where σ is the time instant of target prey individual detection. In view of recent re-
search by Biswas et al., which suggests that prey clumping emerges regardless of preda-
tor confusion[], when an st predator was close enough to its targeted prey individual
(i.e. d(s,α)t ≤ r(s)c , where α is the currently targeted prey) the latter was marked as cap-
tured. Meaning that in contrast to previous research [–], the possibility of the
predator getting confused was not explicitly modelled. In other words, predators in
our model did not change their target and remained focused throughout the whole
hunt event. As a contrast to hdaa predators, st predators were faster than prey, but
were also less manoeuvrable.

D. Prey

Every prey individual’s behaviour was governed by its own fuzzy-rule-based system,
which by the application of fuzzy reasoning over an evolving set of if-then rules de-
termined the individual’s desired heading in the next time step. Only the fuzzy rule
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generated using genetic
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dt
(i,κ)

θt
(i,κ)

φt
(i,κ)

θt
(i)

φt
(i)

dt
(i)

θt
(i,j)

φt
(i,j)

dt
(i,j)

a) b) c)

a) distance, d(i)t , and angular position θ(i)t of the nearest point on the border of the living area, b) distance, d(i,κ)t , angular position,

θ(i,κ)t , and relative orientation,ϕ(i,κ)t , of the nearest predator, c) distance, d(i,j)t , angular position, θ(i,j)t , and relative orientation,

ϕ(i,j)t , of the interacting neighbour.

Figure D.
Quantities available to
prey individuals in order
to determine their desired
heading.

base was evolved; the fuzzy data base was kept constant (see Figure D.). The in-
put variables can be decomposed into three parts: a) information regarding the living
area, b) information regarding the nearest predator, and c) information regarding the
interacting neighbour.

At all times prey individuals were aware of the distance and angular position of the
nearest point on the border of the living area (Figure D.a), so the input variables
living area distance and living area position of prey individual i were set to

d(i)t = min(, max(rLA − ∥r(i)t ∥), r
(i)
v ) ()

and
θ
(i)
t = arccos (v̂(i)t ⋅ r̂

(i)
t ) , ()

respectively.
As empirical data suggests that animals in groups usually react to predator attacks[,

], it is safe to assume that in most cases prey individuals can detect the incoming
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predator attack at some point in time. For this reason, in our model, prey individuals
were aware of the nearest visible predator. From the prey individual’s point of view
this is the predator that poses the highest threat []. The input variables preda-
tor distance, predator position, and predator heading were set to d(i,κ)t , θ(i,κ)t ,
and ϕ

(i,κ)
t , respectively (Figure D.b). Here κ denotes the nearest currently visible

predator of prey individual i, computed as

κ = argmin
k∈K

d(i,k)t , K = {k ∈ S ∪H∣ d(i,k)t ≤ r(i)v }, ()

where K is the set of predators (st or hdaa) currently visible by prey individual i.
If the prey individual did not see any predators the input variables were marked as
undefined. If-then rules with any of their input variables marked as undefined were
excluded from fuzzy reasoning.

A large-scale empirical study conducted in Rome [] discovered an anisotropic
nature of interactions in starling flocks. This type of interaction became known as
topological interaction, where an individual interacts with ≈. of its nearest neigh-
bours. Bode et al. [] proposed a much simpler interaction model capable of repli-
cating the anisotropic nature of the interactions observed in the empirical study. In
their model interaction is stochastic in nature and the probability of prey individual i
interacting with prey individual j depends on visibility of individual j and is inversely
proportional to its distance,

p(i, j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩


d(i,j)t

, iff j ∈ N(i)t

, otherwise.
()

Following Bode et al. [] prey individuals in our model at every time instant
interacted with only one other prey individual, as this greatly reduces the number of
fuzzy-rules that have to be evaluated per prey individual. The fuzzy-rule-based system
input variables neighbour distance, neighbour position, and neighbour head-
ing were set to d(i,j)t , θ(i,j)t , and ϕ

(i,j)
t , respectively (Figure D.c). Like in the case of

the input variables related to the nearest predator, if the prey individual had no visible
neighbour, i.e N(i)t = ∅ in eq. (), the input variables were marked as undefined.

Evolution was achieved by the application of genetic algorithms over the fuzzy-
rule-based systems, i.e. by genetic fuzzy systems. Genetic fuzzy systems have been
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Table D.
Parameters of the genetic fuzzy system.

Description Default (tested) value

Number of if-then rules per individual – (–)
Number of antecedents per rule – (–)
Mutation rate 
Mutation intensity 

extensively used for the optimization of hand-crafted fuzzy knowledge bases, and evo-
lution of data bases, rule bases or the whole fuzzy knowledge base [–]. In our case
we pre-specified the data base and used a genetic fuzzy system to evolve only the rule
bases of every prey individual. Our inspiration were messy genetic algorithms []
which use the Pittsburgh approach: each individual in the population is a complete
rule base [, ].

The initial population of prey individuals had a randomly generated rule base. The
only constraints were the number of if-then rules per individual and the number of
antecedents per rule (see Table D.). The constraints were selected to keep an indi-
vidual’s reasoning as simple as possible. Preliminary tests of the influence of these two
constraints on the resulting behaviour by performing evolutions with a higher maximal
number of rules () and/or antecedents () showed results similar to those reported
in the main article.

When a prey individual died a new prey individual (child) was created by merging
the rule bases of two prey individuals (parents) that were still alive. Selection of parents
was fitness proportionate, where the fitness was based on the prey individual’s energy
level. The number of rules in the rule base of the child prey individual was a uniformly
distributed random number between the number of rules in the parent’s rule base,
whose rule base had the lowest number of rules, and the number of rules in the other
parent’s rule base. For example, if the rule base of one parent had  rules and the
other  the child could have anywhere between  and  rules.

Rules in the rule bases of the two parents that had the same antecedent part and
the same consequent part of the if-then rule were treated as equal. First equal rules
were copied to the child’s rule base. Following that the remaining slots were filled
with random rules from the set of non-equal rules. Once the child’s rule base had the
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required number of rules there was a  chance a mutation could trigger (mutation
rate). There were two kinds of mutations in our genetic fuzzy system; the first type
inserted new random rules into the child’s rule base, the other removed existing rules.
The amount of rules inserted or removed was a uniformly distributed random number
between  and  (mutation intensity). Note that each mutation type could trigger
independently so every time a new child prey individual was created each mutation
type (insert rules, remove rules) had a  chance of triggering.

D. Biological relevance of the parameters

Where possible we attempted to set the model’s parameters to biologically relevant
values (see Table D.). We modelled the prey species after the Pacific Blue-eye (Pseu-
domugil signifier), a fish species that is well known for schooling [–]. In the case
of Herbert-Read et al. [] the body lengths (bl) of captured Pacific Blue-eyes were
from  to  cm. Other studies [] report an average bl of approximately . cm. In
our case we used a body length value of  cm. The cruising speed of Pacific Blue-eyes
is approximately . m/s ≈  bl/s []. For prey visibility distance we used the
equation provided by Tyrell et al. []. We could not find the exact spatial resolving
power of the Pacific Blue-eye so we used the value of a fish of similar size, the zebrafish
(Danio rerio) []. This value is relevant since fish of similar size, have similar sized
retinas, and thus similar vision capabilities []. The zebrafish can spot an object of
size  cm (the size of a prey individual in our model) at a distance of  cm. Because
the zebrafish is slightly larger than the Pacific Blue-eye and fish with larger retinas can
see farther [], we set the visibility distance of prey individuals to  bl. As pointed
out by Domenici [], speed changes and body size play a major role in turning rates
of fish. Because the speed in our model is constant we could not use the empirical
data about fish turning rates. Which is why the maximum manoeuvrability of prey
individuals was tuned by hand in such a way that with a hand-tuned fuzzy-rule-based
system prey individuals were able to avoid others effectively but without introducing
too erratic or jerky movements.

An example of a single-target attack predator that attacks schools of Pacific Blue-
eyes is the flathead Gudgeon (Philypnodon grandiceps) []. The flathead Gudgeon is
usually around  cm in length, but it can sometimes grow up to  cm in length [],
so we set the size of st predators in our model to  bl( cm). The linear regression
formula provided by Domenici [] suggests that a predator that is  times larger than
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the prey is also approximately . times faster than the prey. Based on that we set the
speed of st predators in our model to . bl/s. The st predator vision radius calculated
using the same approach as for prey individual’s [–], would be approximately
 bl. However, in mammals [], once the effects of eye size and phylogeny have
been statistically controlled, predatory habits are associated with a higher visual acuity.
In addition, some aquatic predators, e.g. swordfish (Xiphias gladius), warm their retina
to significantly improve temporal resolution, and hence the detection of rapid motion
[]. Since the goal of this research is the investigation of behaviour that evolves
under various predation pressure mixtures, we wanted to guarantee that the predators
can always find and target the most vulnerable prey individual (with respect to the
predator’s predation tactic). Which is why the vision of predators in our model is not
limited. With this we also removed the occurrences when the predator “did not see a
potential prey target.” To calculate the manoeuvrability of st predators we used the
equation designed on empirical data by McKenzie et al. []. Using this equation,
we calculated that a single target predator should be . times less manoeuvrable than
prey.
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Table D.
Default parameter values of the individual based model; st– single-target attack, hdaa– high density area attack.

Parameter Description Default value
τ Update step  s
bl Body length  cm
rLA Living area radius  bl
I Set of prey individuals (size) 
b(i) Prey appearance area radius  bl
s(i) Prey size  bl
v(i) Prey speed  bl/s
r(i)v Prey vision radius  bl
ω
(i)
max Prey maximum manoeuvrability . rad/s

ϵ Prey initial energy 
ϵl Prey living energy gain 
ϵc Prey collision penalty -
ϵw Prey wandering penalty -
tr Predator re-appearance time – s
th Predator hunt duration  s
S Set of st predators (size) –
b(s) st predator appearance distance  bl
s(s) st predator size  bl
v(s) st predator speed . bl/s
r(s)c st predator catch distance  bl
ω
(s)
max st predator maximum manoeuvrability . rad/s

H Set of hdaa predators (size) –
b(h) hdaa predator appearance distance  bl
s(h) hdaa predator size  bl
v(h) hdaa predator speed  bl/s
r(h)c hdaa predator catch distance  bl
ω
(h)
max hdaa predator maximum manoeuvrability . rad/s

E Duration of evolution    s
I Number of iterations 
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P–attackprey individuals locatedat theperiphery of theprey groups, N – attack thenearest prey individual, C – attack themost central prey
individual in a prey group, and H – high density area attacks. The predator pressure combinations and mixtures were ordered so that the
top row and left column, represent the highest pressure towards grouping, the right column and bottom row the highest pressure towards
dispersing. The middle section represents antagonistic predation pressures. The scales of the ternary plot were arranged so that the top
corner indicates low density, the bottom left corner indicates high density and angular momentum, and the bottom right corner indicates
high density and polarization. Note that the ternary plot shows the relationship between the three variables (which one dominates, in
relative terms). Since the same point can represent completely different behaviours the sum of the three dimensions is used for colour
coding.

Figure D.
Normalized prey density
(d), polarization (p) and
angular momentum (m)
for all predation pressure
mixtures, N=.
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Video D.
Conformity in predation
pressures. The behaviour
of prey individuals in
this video is the result of
evolution while under
predation pressure from
predators that either a)
attack the most central
prey individual (C),
or b) use high density
area attacks (H). The
specific predation pressure
mixture was C:H, :. The
conformity in predation
pressures leads prey
individuals to evolve
individual behaviours
that result in low density,
high momentum, and low
polarization, which could
be interpreted as milling.

Video D.
Conformity in predation
pressures. The behaviour
of prey individuals in
this video is the result of
evolution while under
predation pressure from
predators that either a)
attack the most central
prey individual (C),
or b) use high density
area attacks (H). The
specific predation pressure
mixture was C:H, :. The
conformity in predation
pressures leads prey
individuals to evolve
individual behaviours
that result in low density,
low momentum, and low
polarization, which could
be interpreted as swarming.
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Video D.
Low degree of antagonism
in predation pressuress.
The behaviour of prey
individuals in this video
is the result of evolution
while under predation
pressure from predators
that either a) attack the
most peripheral prey
individual (P), or b)
use high density area
attacks (H). The specific
predation pressure mixture
was P:H, :. A low
degree of antagonism in
predation pressures leads
prey individuals to evolve
individual behaviours
that result in high density,
high momentum, and low
polarization, which are
typically associated with
milling.

Video D.
Low degree of antagonism
in predation pressuress.
The behaviour of prey
individuals in this video
is the result of evolution
while under predation
pressure from predators
that either a) attack the
most peripheral prey
individual (P), or b)
use high density area
attacks (H). The specific
predation pressure mixture
was P:H, :. A low
degree of antagonism in
predation pressures leads
prey individuals to evolve
individual behaviours
that result in high density,
low momentum, and low
polarization, which are
typically associated with
swarming.
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Video D.
High degree of antagonism
in predation pressuress.
The behaviour of prey
individuals in this video
is the result of evolution
while under predation
pressure from predators
that either a) attack the
most peripheral prey
individual (P), or b) attack
the most central prey
individual (C). The specific
predation pressure mixture
was P:C, :. A high
degree of antagonism in
predation pressures leads
prey individuals to evolve
individual behaviours that
result in medium density,
low momentum, and high
polarization, which are
typically associated with
dynamic polarized motion.

Video D.
High degree of antagonism
in predation pressuress.
The behaviour of prey
individuals in this video
is the result of evolution
while under predation
pressure from predators
that either a) attack the
most peripheral prey
individual (P), or b)
use high density area
attacks (H). The specific
predation pressure mixture
was P:H, :. A high
degree of antagonism in
predation pressures leads
prey individuals to evolve
individual behaviours that
result in medium density,
low momentum, and high
polarization, which are
typically associated with
dynamic polarized motion.
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Video D.
High degree of antagonism
in predation pressuress.
The behaviour of prey
individuals in this video
is the result of evolution
while under predation
pressure from predators
that either a) attack the
nearest prey individual
(N), or b) use high density
area attacks (H). The
specific predation pressure
mixture was N:H, :. A
high degree of antagonism
in predation pressures leads
prey individuals to evolve
individual behaviours that
result in high density, low
momentum, and high
polarization, which are
typically associated with
highly polarized motion.
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TT
he phenomenon known as collective animal behaviour is one of the
most beautiful spectacles one can observe in nature. Although researched
and analysed by scientists from many disciplines and perspectives it is
still puzzling in many ways. Examples of such puzzling questions are

why did collective behaviour (especially highly organized forms) evolve and why do
we see so much variation in behaviour even in closely related species. Through the
construction of a genetic fuzzy system capable of evolving various forms of collective
behaviour this study represents an attempt in shedding additional light on potential
reasons why highly organized collective behaviour evolved.

We started the study by expanding on a known fuzzy model [, ] for the pur-
pose of studying predator-prey dynamics in hand-crafted models. Prey animats in this
model [] could exhibit two types of behaviour – a social one where they actively
strived for grouping (via cohesion and alignment drives) and an individualistic one
where they did not. We focused on vision as the principal means of perception, took
into account occlusion [] and working memory limitations [, , ], and
considered three target selection (predation) tactics. With the first tactic predators at-
tacked the nearest out of visible prey individuals, with the second the most visually
isolated prey individual out of the visible ones, and with the third the centre of the
visible group (visible prey individuals). To achieve biological relevance we tuned the
parameters based on realistic data about birds (starlings, Sturnus vulgaris, for prey, and
peregrine falcon, Falco peregrinus, for the predator). The study suggests that the most
successful predator is the one that attacks the most visually isolated individual, while
the least successful predator is the one that attacks the centre of the visible group,
a result similar to those reported by field observations []. As a plus, results ob-
tained by our study suggest that, from a prey individual’s perspective, social behaviour
is more advantageous than individualistic behaviour, which strengthens our belief in
the hypothesis that cluster flocking might serve as be a mechanism for protection from
predation.

Field observations suggest that predators in nature are able to, at least partially,
overcome the defensive benefits of prey grouping by using an assortment of sophis-
ticated hunting strategies [, –]. As the parametrization and tuning of such
tactics in a hand-crafted model would be a tiresome task we developed an evolutionary
model that simulates the evolution of composite target selection tactics []. The most
successful predators were those that first dived deep into the centre of the nearby prey
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group causing chaos and dispersal of the group. Following that they targeted stragglers
(individuals that in the process got separated from the rest of the group). The tactic,
which we termed as the dispersing tactic, is similar in function to the tactics used by
several predators in nature [, ]. In our study predators that used the dispersing
tactic came out as significantly more successful hunters in a direct competition with
predators that used a mixture of simple tactics. Again a result corroborating field obser-
vations []. However, this was true only in the case when our model took into account
the possibility of predator confusion. The concept of predator confusion is based on
the confusability hypothesis, which suggests that a group of visually similar prey might
make it difficult for the predator to select and track its target [, –, ]. A dif-
ferent story was the case of the prey’s delayed response, a defensive manoeuvre where
prey rather then escaping on first sight of the predator, delay their response to a later
point in time, and then try to outsmart the predator with rapid movement []. The
only predators able to, at least to some degree, overcome the defensive benefits of this
escape manoeuvre, were again the predators that used the dispersing tactic. Because
the dispersing tactic yields higher success to predators we can assume that dispersing
the group reduces the group’s defensive benefits. This strengthens our belief in the hy-
pothesis that compact groups of prey might function as a defensive mechanism from
predation. The absence of an advantage of the dispersing tactic over simple preda-
tion tactics when predator confusion is not at play indicates that predator confusion
might have played an important role in the evolution of advanced predation tactics, as
well. All of these findings were a clear indication of potential interplay between target
selection tactics and the evolution of prey group behaviour.

Several studies already pursued the artificial evolution of collective animal behaviour,
most by tuning parameters of previously presented non-evolutionary models. Very few
succeeded to evolve it from scratch, and even in these cases the evolved behaviour can
be termed as “crude.” Based on presented material the successful studies portray either
clumping [, , ], or swarming with collisions [, , , ]. To study how
predation tactics influence the evolution of prey behaviour we designed a novel open-
ended, artificial life-like evolutionary model where the drives of individual animats are
encoded via linguistic fuzzy rules []. In our genetic fuzzy system prey and predator
animats coexist in a shared environment. Based on knowledge about predator target
selection tactics gained from our previous research [, ] we designed several types of
hand-crafted predators that attack evolving prey. Subsequently, in our model only the
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survival instincts of prey animats steer the evolution of their behaviour and collective
behaviour will emerge only if it will help prey animats survive. We analysed the evolved
prey behaviour and showed that based on biologically relevant metrics [, , ]
our evolutionary model is capable of producing a wide range of behaviours, some qual-
itatively and visually similar to those reported by experimental studies []. Since we
used a genetic fuzzy system we were able to further analyse the evolved behaviours by
studying the fuzzy rule bases that govern the actions of individual animats. Doing so
we showed that when clustering the rule bases by the type of evolved behaviour and
observing the average proportion of rule antecedents that contain predator related lin-
guistic variables there exists a statistically significant difference between the rule bases.
This gives us confidence in advocating that artificial life-like evolutionary modelling
based on linguistic fuzzy rule-based systems could be used for answering the illusive
biological questions “why” collective animal behaviour evolved, and due to their lin-
guistic nature also provide a deeper insight into the “how.”

To gain further insight into potential “whys” we used the newly developed genetic
fuzzy system in a controlled experiment where prey evolved while subject to multiple,
systematically picked predation tactics simultaneously []. The predation tactics can
be split into two groups; those for which the natural defensive response of prey might
be grouping and those for which the natural response might be dispersing. We classi-
fied the evolved behaviours using quantitative metrics in a similar fashion as previous
studies [, , ]. When prey evolved while exposed to predators that adopted tac-
tics from only one group the results of evolution corroborated with previous studies
[, , , ]; prey animats evolved either grouping or dispersing behaviour, with
values of metrics characteristic for milling or swarming. When prey animats evolved
while exposed to antagonistic pressures that at the same time steered the evolution
towards grouping and towards dispersing we detected a significant increase of polar-
ization in motion of prey groups. This suggest that exposure to antagonistic predation
pressures might be a necessary requirement for prey individuals to evolve parallel move-
ment. This could indicate that the direction of evolution (grouping or dispersing) is
not A versus B, but a labile result – whether grouping or dispersing evolves depends
on a) the nature of the group, and b) the pressures that the group finds itself facing.

Limitations of this study and future work Throughout our research we devised
a number of ideas which could potentially lead to interesting future studies of collec-
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tive animal behaviour. When it comes to application of evolutionary models for help
with providing answers to biological questions the most obvious research advances lie
in upgrades towards a higher biological relevance. Evolutionary models are usually
simplified due to high computational demands of genetic algorithms and as a result
the models are most often restricted to two dimensions, animats in them have unre-
alistic perception systems, and animats traditionally move with constant speeds, etc.
To allow the animats to vary their speed in an evolutionary model we would proba-
bly need to implement some kind of fatigue system as well, so that, just like in nature
[, ], animats would not be able to move with their maximum speed indefinitely.

Another possible direction would be the investigation of how heterogeneity influ-
ences the evolved behaviour. Some recent studies suggest that heterogeneous groups
might evolve a different behaviour in an algorithm mimicking artificial evolution [].
Others suggest that heterogeneous groups might be necessary to achieve a more “nat-
ural” behaviour [], and that differences among individuals might be essential for
group coordination [, ]. In nature heterogeneity (both in behaviour as well as
in physiology) is always present, for example birds in a flock often differ in size, gender,
age, and some times even species [, ]. It is not uncommon that stronger members
of the group are positioned at the safer parts of it [], which leaves the weaker indi-
viduals more exposed to predator attacks. Some predators often intentionally target
weak prey individuals [, ], and by using models that consider also physiologi-
cal heterogeneity one could, apart from studying its influence on prey behaviour, also
study how it influences the adaptation of predator target selection tactics.

To our knowledge, in most of the existing models [, , , , , ], the
predator animat, once it selects its target, uses classical pursuit [] to chase its target.
In nature some predators use advanced pursuit tactics, for example some species of
falcons use the technique of motion camouflage []. With this technique they either
camouflage themselves against a fixed background object so that the targeted individual
observes no relative motion between them and the fixed object, or they approach the
targeted individual in a way that, from the targeted individual’s point of view the
predators always appear to be on the same bearing []. One possible future study
might therefore be a genetic fuzzy system for the evolution of predator pursuit tactics.
Or co-evolution of prey behaviour and predator pursuit tactics.

In nature predators often resort to group hunting [, –]. Occasionally
they cooperate (i.e. cooperative hunting) to increase the probability of a successful
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hunting event [, ]. Even though in our current model prey animats are of-
ten attacked by several predators at once the predators do not cooperate in any way.
Studying the evolution of predator cooperation during hunting events would probably
also lead to an interesting study.

Another possible upgrade would be the consideration of short term memory, which
comes to play when, for example a predator moves out of view of the targeted indi-
vidual (out of range or in its blind area). In current models, the targeted individual
completely forgets that the predator was attacking it just a moment ago.

An important question is also flight initiation distance. In certain fish species prey
as a defence mechanism delay their response []. Our research already showed, that
a delayed response is quite effective with certain target selection tactics. With an evo-
lutionary model, however, we can study under what conditions (if ) such a delayed
reaction will emerge. Research in this this direction is already on its way, our cur-
rent provisional results suggest that the answer might be related to the ratio between
predator and prey speed.

The rule base is probably the most important part of a fuzzy animat since it defines
the drives of the animat, which have the highest influence on the animat’s behaviour.
In genetic rule learning the data base of a fuzzy system is static, it does not evolve. As
our genetic fuzzy system executes genetic rule learning, fuzzy variables, the linguistic
terms, and the interpretation of logic connectives, which are all defined in the data
base of a genetic fuzzy systems were hand-crafted. In our research this did not appear
to be a limitation as our genetic fuzzy system is capable of evolving many of the forms
of collective behaviour that can be commonly observed in nature.

The degree of truth for each fuzzy term is defined by its membership function, these
functions come in many shapes (triangular, trapezoidal, singleton, Gaussian, etc.).
Even though our algorithm supports many different types of membership functions
we developed all models by means of trapezoidal/triangular functions only. These pro-
vide the lowest ratio between computational complexity and ease of conceptualization,
visualization, and explanation. Again, in the case of our genetic fuzzy system the use
of triangular functions did not seem to be a limiting factor as the repertoire of evolved
collective behaviours is wider than in previous similar studies [, , , –, ].
Nevertheless, the evolution of rule bases with more sophisticated types of membership
functions and the evolution of the whole fuzzy knowledge base seem like promising
research directions for our future work.
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To conclude, evolutionary models allowed us to untangle a number of interesting
riddles related to collective behaviour already, but judging by the current trends we
believe that the best is yet to come.
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AA
li imajo jate ptic, jate rib, črede kopitarjev, roji mušic, mehiški val,
trume ljudi na koncertu, borza in biološke celice kaj skupnega? S tem
se ukvarjajo znanstveniki, ki raziskujejo področje skupinskega vedenja.
Primere skupinskega vedenja iz narave prikazuje slika I.. Skupinsko

vedenje je fascinantno področje, ki analizira, kako preproste odločitve posameznikov
vplivajo na dinamiko celotne skupine. Aristotel je nekoč izjavil: »Celota je več kot vso-
ta sestavnih delov.« – trditev, ki zelo lepo opiše bistvo skupinskega vedenja. Rezultati
raziskav iz področja skupinskega vedenja so zanimivi za znanstvenike z več različnih
področij, od biologije, fizike in medicine do družboslovnih ved in računalništva [–].

Področje skupinskega vedenja (angl. collective behaviour, collective animal behaviour,
swarming behaviour) je tako zelo aktualno, saj kljub temu, da gre za pojav, ki ga lahko
praktično vsak dan srečamo v naravi, mnoga raziskovalna vprašanja ostajajo nerešena
[, , ]. Tako še vedno nismo povsem prepričani, zakaj se nekatere skupine živali
(predvsem tiste, kjer se živali gibajo močno usklajeno) pravzaprav sploh tvorijo [].
Zakaj v naravi obstaja toliko različnih oblik skupinskega vedenja? Zakaj zgolj nekaj
vrst ptic, ki letijo v skupinah, to počne v močno usklajenih oblikah? Zakaj so si ptice,
ki pripadajo sorodnim vrstam [], po obliki skupinskega vedenja tako različne []?
V literaturi o skupinskem vedenju lahko najdemo vrsto različnih, tudi nasprotujočih
si hipotez o tem, zakaj se živali združujejo v skupine. Nekatere pravijo, da živali tako
povečajo učinkovitost pri razmnoževanju in iskanju hrane [], druge trdijo, da ribe
in ptice z usklajenim gibanjem varčujejo z energijo [–].

Verjetno najbolj pogosta hipoteza o skupinskem vedenju trdi, da pri živalih združe-
vanje v skupine služi kot učinkovit obrambni mehanizem pred plenilci [, , –].
Hipoteza o sebični čredi (angl. the selfish-herd hypothesis) trdi, da posamezne živali z
združevanjem v skupine zmanjšujejo svoje območje ogroženosti [, ]. Hipoteza o
zmanjševanju tveganja (angl. the dilution of risk hypothesis) razlaga, da ima posameznik
manjšo verjetnost, da bo izbran kot tarča plenilca v večjih skupinah []. Hipoteza
mnogih oči (angl. the many eyes hypothesis) pravi, da se z velikostjo skupine zmanjšuje
čas, ki ga mora za odkrivanje nevarnosti vsak posameznik nameniti opazovanju okolice
[–] ter da se z večanjem skupine povečuje verjetnost pravočasne zaznave plenilca
[]. Hipoteza o zmedljivosti (angl. the confusability hypothesis) predvideva, da ima
plenilec težave pri izbiri in sledenju tarče, če se ta nahaja v skupini, ki si je medsebojno
vizualno podobna [, –].

Številčnost nekaterih primerkov skupin (na primer jate rib in ptic) je zelo velika
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Slika I.
Primeri različnih režimov
skupinskega vedenja,
ki jih lahko opazimo v
naravi. A) jata škorcev (©
Tim Regan, flickr.com).
B) pelikani, ki letijo v
formaciji (© Daniel
D’Auria, flickr.com).
C) roj kobilic (© FAO
emergencies, flickr.com).
D) roj netopirjev (©
Amanda, flickr.com).
E) ljudje na koncertu
(© Amanda Mustard,
amandamustard.com/).
F) čreda ovc (© Dariusz
Paciorek, aeroart.com.pl/).
G) ribe v jati, ki ima obliko
krogle (© Bo Pardau,
flickr.com). H) kroženje
rib okoli praznega jedra (©
Robin Hughes, flickr.com).
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in jih težko zapremo v nadzorovano okolje, kjer bi nato znanstveniki lahko preisko-
vali različne hipoteze o njihovem obnašanju []. Obenem v naravi živali prebivajo v
različnih okoljih in so podvržene pritiskom različnih plenilcev, ki uporabljalo različne
taktike napada. To pomeni, da težko analiziramo zgolj vpliv plenilcev na skupinsko
vedenje živali brez posrednega vpliva okolja, v katerem se le-te gibljejo. Računalniški
pristopi nam po drugi strani omogočajo razvoj modelov, ki so sposobni reproducirati
opazovano vedenje in hkrati odstraniti nezaželene vplive okolja, ki otežujejo empirič-
ne raziskave. Prav računalniški pristopi so v zadnjem obdobju vedno bolj pogosti pri
raziskovanju raznih hipotez o skupinskem vedenju [, , ]. Ker imajo pri računal-
niških pristopih znanstveniki popoln nadzor nad vsemi parametri modela, zaključki
običajno ne veljajo zgolj za eno samo živalsko vrsto, ampak so lahko tudi bolj splošni.

Animat Eden izmed računalniških pristopov k obravnavi skupinskega vedenja je gra-
dnja modelov, zasnovanih na nivoju posameznika (angl. individual-based models). Pri
tem pristopu raziskovalci modelirajo lokalni program, ki definira vedenje posamezne
simulirane živali (animata, angl. animat [–], slika I.), nato pa opazujejo dogaja-
nje pri medsebojni interakciji velikega števila animatov. Običajno je lokalni program,
ki definira vedenje posameznika, načrtovan povsem ročno ter se nato skozi čas ne spre-
minja. To naredi programer/znanstvenik, ki nato v nadaljnjih korakih s spreminjanjem
parametrov animata njegovo vedenje priredi do te mere, da slednje čim bolje ponazar-
ja vedenje živali v naravi [, , , , , , ]. Pri tem si pomaga z različnimi
metrikami, ki so jih raziskovalci zabeležili pri empiričnih študijah. Tako načrtovan in
pripravljen model se potem s pomočjo izvajanja simulacij nad animati v nadzorovanem
umetnem okolju uporabi za različne raziskave skupinskega vedenja.

Animat torej povzema osnovne lastnosti pravih živali []. Prav tako kot prave
živali obstaja v prostoru in času, obkrožajo pa ga živi in neživi objekti, kar pomeni,
da animat prebiva v nekem prostoru Animat se zaveda svojega trenutnega stanja in
je sposoben zaznavanja stanja bližnje okolice. Ima težnje, ki jih preko izvajanja akcij
poskuša zadovoljiti. Tako lahko preko akcij vpliva na svoje stanje ter na stanje prostora.

S pomočjo modelov, zasnovanih na nivoju posameznika, je bilo pokazano, da lah-
ko do zapletenih dinamik skupinskega vedenja pridemo že, če posamezniki sledijo
dokaj preprostim težnjam. Prvi poskusi modeliranja skupinskega vedenja s pomočjo
modelov zasnovanih na nivoju posameznika segajo v osemdeseta leta prejšnjega stole-
tja. Aoki [] je predlagal pristop od spodaj navzgor za simuliranje jat rib. Reynolds
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novo stanje animata in sveta
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Slika I.
Vizualizacija procesov in
terminologije povezanih z
animatom.

[] je razvil prvi računalniški model za proceduralno animiranje jat ptic. Podobno
kot Reynolds sta tudi Heppner in Grenander [] modelirala jate ptic, a s pomočjo
stohastičnih nelinearnih diferencialnih enačb. Poleg naštetih modelov se tudi večina
novejših [, , , , , , –] razlikuje zgolj v implementaciji določenega se-
gmenta animata, glavni del, ki definira vedenje, pa je v večini modelov zelo podoben.
Vedenje animatov v večini primerov temelji na treh težnjah (Slika I.), ki se imenujejo
razmik (angl. separation), poravnava (angl. alignment) in kohezija (angl. cohesion). S
kohezijo modeliramo težnjo biti blizu drug drugemu. Tako se animat, če nima bližnjih
sosedov, želi približati tistim, ki so bolj oddaljeni. S pomočjo težnje razmika animati
ohranjajo osebni prostor ter preprečujejo trke. S pomočjo poravnave usklajujejo smer
in hitrost gibanja s sosedi. Ker se lahko že zgolj s poravnavo smeri gibanja prepreči raz-
padanje skupin ter medsebojne trke, nekateri modeli uporabljajo izključno to težnjo
[].

Evolucijski animati Nekoliko drugačen pristop predstavljajo modeli, kjer vedenje
animatov ni načrtovano povsem ročno, ampak lahko animati svoje vedenje skozi čas
spreminjajo samodejno (pri ročno načrtovanih modelih se obnašanje animatov skozi
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Slika I.
Vizualizacije treh osnovnih
teženj: (a) kohezija, (b)
razmik in (c) poravnava.
Črni animat je opazovani
posameznik. Sivi animati
so sosedi, ki neposredno
vplivajo na vedenje
opazovanega posameznika.
Beli animati s sivo obrobo
so sosedi, ki nimajo
neposrednega vpliva na
vedenje opazovanega
posameznika.

cba

čas ne spreminja). Spremembe vedenja izvajajo za dosego čimbolj učinkovitega zado-
voljevanja teženj v danem okolju oziroma prostoru. Običajno so taki modeli osnovani
na genetskih algoritmih, ki s pomočjo selekcije, križanja in mutacije posnemajo narav-
no evolucijo in tako iščejo rešitve za razne kompleksne probleme [–]. Selekcija
zagotavlja, da imajo boljše rešitve oziroma boljši osebki večjo možnost za reproduk-
cijo. S tem se zagotovi prenos dobrega genetskega materiala v naslednje generacije.
Kvaliteta posamezne rešitve se ocenjuje s pomočjo ocenjevalne funkcije. Križanje po-
snema izmenjavo genetskega materiala pri reprodukciji. Pri formiranju novega osebka
se tako kromosomi staršev združijo v en kromosom, ki opredeljuje otroka. S tem se
lastnosti staršev prenesejo na otroke. V naravi razne anomalije v reprodukcijskem pro-
cesu povzročijo spremembe v genetskem materialu, kar vodi v mutacije, zato genetski
algoritmi v zadnjem koraku opravljajo še mutacije – redke naključne spremembe otro-
kovega kromosoma.

Pri najbolj pogosti uporabi genetskih algoritmov so generacije osebkov med seboj
običajno povsem ločene. Pred generiranjem nove generacije se najprej oceni kvaliteta
vseh rešitev v trenutni generaciji, nato pa se preko izvajanja operacij selekcije, križanja
in mutacije ustvari nova enako velika generacija.

V zadnjem času je bilo obljavljenih več pomembnih člankov [–, , , , ],
ki so uporabili genetske algoritme za analizo različnih hipotez o evoluciji skupinske-
ga vedenja. Nekateri izmed teh [, , ] so genetske algoritme uporabili predvsem
za prilagajanje parametrov v diferencialnih enačbah, ki definirajo znane težnje (težnje
izhajajoče iz ne-evolucijskih modelov). Glavna težava pristopa je, da uporaba zna-
nih teženj verjetno usmerja tok evolucije proti razvoju znanega (skupinskega vedenja).
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Reynolds je bil prvi, ki je uporabil kombinacijo genetskih algoritmov in genetskega
programiranja [] za simuliranje evolucije skupinskega vedenja, ne da bi uporabil
vnaprej definirane težnje []. Vedenje, ki se je v njegovem primeru razvilo, težko
primerjamo s kompleksnimi pojavi skupinskega vedenja v naravi. Glavni razlog verje-
tno tiči v tem, da je bil Reynoldsov model pretirano poenostavljen. Zaera in sod. so
pri poskusu simuliranja evolucije skupinskega vedenja uporabili kombinacijo umetnih
nevronskih mrež in genetskih algoritmov. Njihov poskus se ni končal najbolje, saj jim
ni uspelo razviti vedenja, ki bi bilo podobno primerom iz narave. Po prepričanju av-
torjev je glavni razlog za spodletel poskus v ocenjevalni funkciji. Ugotovili so, da je
težko definirati ocenjevalno funkcijo, ki dobro opiše pojav skupinskega vedenja s sta-
lišča posameznika. Ocenjevalna funkcija je ključni element pri genetskih algoritmih,
saj določa, katere rešitve bodo v procesu evolucije vplivale na prihodnje rodove, katere
pa bodo izumrle.

Ocenjevanje skupinskega vedenja s stališča posameznika je problematično vsaj z
dveh stališč. Definicija stopnje oziroma kvalitete skupinskega vedenja ni najbolj jasna,
tako s stališča posameznika kot skupine. V naravi namreč obstaja mnogo različnih
režimov skupinskega vedenja. Vsak izmed njih je čudovit in spektakularen na svoj na-
čin. Neposredno ocenjevanje stopnje skupinskega vedenja obenem eksplicitno usmerja
evolucijo proti razvoju skupinskega vedenja – posameznike sili k izvajanju akcij, ki po-
večajo stopnjo skupinskega vedenja. Pri tradicionalni rabi genetskih algoritmov (ko
gre za iskanje čim bolj optimalnih rešitev pri kompleksnih nalogah) takšno usmerjanje
sicer ni problematično, se pa izkaže kot problematično, ko želimo uporabiti genetske
algoritme za raziskovanje možnih vzrokov za razvoj skupinskega vedenja. Pri tovrstnih
raziskavah nas bolj kot optimalna znana rešitev zanima, če se bo med animati skupin-
sko vedenje razvilo samodejno (brez eksplicitnega siljenja s strani ocenjevalne funkcije),
kot odgovor na razne zunanje pritiske, ki so prisotni med simulirano evolucijo.

Vrsta novejših raziskav [, , , , , ] je pokazala, da se skupinsko vedenje
razvije tudi z uporabo bolj prikrite ocenjevalne funkcije, in sicer takšne, ki ne usmerja
evolucije k razvoju skupinskega vedenja eksplicitno. V omenjenih raziskavah je bila
ocenjevalna funkcija zasnovana na sposobnosti preživetja v raznih neugodnih umetnih
okoljih. Za preživetje v teh okoljih so animati morali izvajati akcije podobne tistim, ki
jih izvajajo živali v naravi – izmikanje plenilcem, iskanje hrane, itd. Animati, ki so bili
pri tem bolj uspešni, so imeli več priložnosti za reprodukcijo. Na ta način so se skozi
evolucijo ohranjali zgolj tisti animati, ki so izvajali akcije, s katerimi so uspeli čim več
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časa preživeti v danem neugodnem okolju. Skupinska vedenja, ki so se v omenjenih
raziskavah razvila [, , , , , ], lahko uvrstimo v dva režima vedenja –
gručenje (angl. clumping) in rojenje (angl. swarming). V nobeni izmed omenjenih
študij se niso razvile usklajene oblike gibanja, ki jih v naravi lahko občudujemo pri
jatah rib in ptic – kroženje okrog praznega jedra (angl. milling) oziroma dinamično
usklajeno gibanje (angl. dynamic parallel movement) [, ].

Mehki animat Najbolj pogosta pristopa za implementacijo animatov sta uporaba
diferencialnih enačb [, , , ] ali umetnih nevronskih mrež [, , ]. Ume-
tne nevronske mreže so univerzalni funkcijski aproksimator, ki deluje po vzoru člo-
veških oziroma živalskih možganov. Pristopa sta bila osnova številnih raziskav, ki so
pripomogle k večjemu poznavanju skupinskega vedenja. Toda vsak izmed njiju ima
določene pomanjkljivosti, ki zavirajo morebiten nadaljnji napredek. Pri diferencial-
nih enačbah je potrebno podrobno poznavanje vrednosti vseh parametrov modela, za
prilagajanje in nadgrajevanje pa potrebujemo dobro matematično znanje. Glavna hi-
ba pristopov, ki uporabljajo umetne nevronske mreže, je težavnost izluščevanja logike
delovanja. Hiba je splošno znana in nekateri raziskovalci umetne nevronske mreže
posledično označujejo kot pristop s »črno škatlo« [–].

Lebar Bajec in sod. [, ] so za reševanje nekaterih od naštetih težav predlagali
uporabo mehke logike (angl. fuzzy logic) []. Mehka logika je univerzalni funkcijski
aproksimator, tako kot umetne nevronske mreže. Ena izmed glavnih prednosti mehke
logike je njena moč, ko operiramo s parametri modela, ki niso povsem natančno znani
(so pomanjkljivi, dvoumni, oziroma dvomni). Druga prednost mehke logike je ta,
da pri modeliranju uporablja lingvistične opise (če-potem pravila), ki so zelo podobni
stavkom, ki jih ljudje tvorimo pri vsakodnevni komunikaciji [, , , , , ].
Uporabnost mehke logike za razmeroma preprost prenos opažanj iz narave v modele
ter učinkovito modeliranje naravnih pojavov so potrdile že številne raziskave [, ,
, –, , ].

Leta  so Lebar Bajec in sod. predstavili definicijo mehkega animata (angl. fuzzy
animat) [, ], umetnega živega bitja, zasnovanega s pomočjo mehke logike. Glav-
na razlika med klasičnim animatom in mehkim animatom je v definiciji pristopa k
implementaciji teženj. V primeru klasičnega animata so težnje običajno zapisane v
obliki diferencialnih enačb, pri mehkih animatih pa so težnje zapisane v obliki meh-
kega odločitvenega sistema (angl. fuzzy rule-based system). Mehki odločitveni sistem
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Slika I.
Primer enostavne mehke
baze znanja. Primer pri-
kazuje mehki sistem za
gretje prostora. Zgornji
del vizualizira mehko
bazo podatkov, definirani
imamo dve mehki spre-
menljivki – eno vhodno
in eno izhodno. Vhodna
spremenljivka je trenutna
temperatura v prosto-
ru, ki jo sistem pridobi
s pomočjo senzorja za
temperaturo. Mehka
baza pravil (spodnji del)
opisuje, kako se vhodne
spremenljivke pretvorijo v
akcije (izhodne spremen-
ljivke) preko če-potem
pravil. V našem primeru
je akcija sistema za gretje
sprememba v temperaturi
prostora.

je opredeljen z mehko bazo znanja (angl. fuzzy knowledge base), ki je sestavljena iz
mehke baze podatkov (angl. fuzzy data base) in mehke baze pravil (angl. fuzzy rule
base). V prvi so deklarirane mehke spremenljivke, mehke vrednosti in interpretacija
logičnih povezav. Mehka baza pravil podaja opis obnašanja sistema. V ta namen upo-
rablja lingvistični opis, če-potem pravila v katerih nastopajo logične povezave, mehke
spremenljivke in vrednosti. Primer enostavne mehke baze znanja pri sistemu za gretje
prostora je predstavljen na sliki I..

V primeru animatov mehka baza podatkov definira, kako animati interpretirajo
svojo okolico oziroma informacije, ki jih dobijo iz okolice s pomočjo zaznavanja (na
primer razdaljo do najbližjega soseda, smer gibanja plenilca, položaj ovire, itd..) ter
definira akcije, ki jih lahko izvajajo za spremembo lastnega stanja in/ali stanja prostora
(na primer spremembo hitrosti, spremembo smeri gibanjam itd.). Kako mehki animat
pretvori pridobljene informacije v akcije je definirano v mehki bazi pravil.

Cilj: evolucijski mehki animat Glavni cilj pričujoče disertacije je bil razvoj ume-
tnega genetskega sistema, primernega za simuliranje evolucije pojavov skupinskega ve-
denja s pomočjo mehke logike. Ker najbolj pogosta hipoteza o nastankih skupinskega
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vedenja trdi, da se je pojav morda razvil kot zaščita pred plenilci [, , –], lah-
ko predpostavimo, da je boj za preživetje med plenilci in plenom verjetno smiseln del
evolucijskega modela. Da bi pri konstrukciji in validaciji evolucijskega modela naleteli
na čim manj težav, smo se odločili, da bomo najprej preučili dinamiko med plenilci
in plenom v ročno načrtovanem modelu. S pomočjo analize taktik napada v ročno
načrtovanem modelu [] smo pridobili tako znanje o taktikah napada, ki jih upo-
rabljajo plenilci, kot tudi vpogled v reakcije plena ob napadu plenilca. Med študijo
smo spoznali, da plenilci v računalniških modelih večinoma uporabljajo zgolj osnovne
taktike napada. Po drugi strani pa plenilci, ki v naravi napadajo plen, ki se zadržuje v
skupinah, uporabljajo različne in pogostokrat zelo izdelane taktike napada. Zato smo
v naslednjem koraku razvili evolucijski model, v katerem plenilci prilagajajo taktike
napada s ciljem doseganja čim višje uspešnosti pri lovu. Z raziskavo smo skušali dobiti
odgovor na vprašanje o optimalni taktiki napada v odvisnosti od režima skupinskega
vedenja oziroma odziva plena [].

S pomočjo znanja, pridobljenega v okviru teh dveh raziskav, smo nato razvili ume-
tni genetski mehki sistem (angl. genetic fuzzy system), ki je primeren za simuliranje
evolucije skupinskega vedenja. Genetski mehki sistemi [–] izkoriščajo genetske
algoritme za optimizacijo ali konstrukcijo mehkih baz znanja. Večina genetskih meh-
kih sistemov se ukvarja z optimizacijo ročno načrtovanih mehkih sistemov [–].
Zahtevnejši pristop je genetsko učenje mehkih sistemov (angl. genetic learning of fuzzy
systems), pri katerem se genetski algoritmi ne uporabljajo zgolj za optimizacijo obsto-
ječih mehkih sistemov, ampak se komponente sistema (mehko bazo znanja, mehko
bazo podatkov, ali mehko bazo pravil) ustvari kar s pomočjo genetskih algoritmov. V
tej disertaciji se osredotočamo na ustvarjanje mehkih baz pravil (tudi genetsko učenje
pravil) animatov. Pri animatih je mehka baza pravil verjetno najbolj pomemben del
mehkega sistema, saj je v njej zapisano kako animat zaznane informacije pretvori v
akcije.

V literaturi lahko najdemo dva prevladujoča pristopa k genetskemu učenju pravil
– michiganski pristop [] in pittsburški [] pristop. Pri prvem kromosom v ge-
netskem algoritmu predstavlja posamezno pravilo, kar pomeni, da celotna generacija
predstavlja eno samo mehko bazo pravil. Kvaliteta (ocena) mehke baze pravil (ustre-
znost za reševanje danega problema) torej narašča skozi povsem ločene generacije. V
našem primeru bi to pomenilo, da je vsem animatom dodeljena identična baza pravil.
Ker tega nismo želeli, smo se odločili za uporabo pittsburškega pristopa. Pri tem po-
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samezen kromosom predstavlja celotno mehko bazo pravil. Na tak način smo lahko
vsak animat obravnavali kot posameznika (vsak animat je definiran s svojim kromoso-
mom). S tem smo se tudi odmaknili od klasične uporabe genetskih algoritmov, kjer
so generacije med seboj povsem ločene in se približali simuliranju umetnega življenja
(angl. artificial life), kjer ni povsem jasnih medgeneracijskih mej – selekcija, križanje
in mutacija so del odvijajoče se evolucije. Ker je v našem sistemu vsak animat defini-
ran s svojim kromosomom, je rezultat heterogena populacija animatov (heterogena po
obnašanju in ne po fiziologiji). Tako bi lahko rekli, da se animati, preko svojih meh-
kih baz pravil, borijo za preživetje v okolju, ki je tekmovalno iz dveh pogledov. Prvi
del boja za preživetje animati bijejo s plenilci, drugi del pa med seboj, ko si poskušajo
izboriti večjo možnost za reprodukcijo. S tem pristopom ter z uporabo različnih taktik
napada pri plenilcih nam je uspelo razviti mehki genetski sistem, ki je sposoben gene-
rirati večji nabor režimov skupinskega vedenja [], kot so jih sposobne reproducirati
obstoječe raziskave [, , , –, ]. Sistem smo nato v nadaljevanju uporabili
za analizo vpliva različnih sočasnih pritiskov na obliko skupinskega vedenja, ki nastane
ob evoluciji [].

Rezultati V prvi fazi raziskav smo razvili nov mehki model [] za simulacijo lete-
nja ptic v jati, ko so te izpostavljene napadom plenilca. Interakcija v modelu in taktike
napada temeljijo na vizualni zaznavi. Pri tem upoštevajo prekrivanje oddaljenih pred-
metov s strani bližnjih [] in omejitve delovnega spomina [, , ]. Taktike
napada plenilca so bile tri – napad najbližjega izmed vidnih animatov, napad najbolj
vizualno ločenega izmed vidnih animatov in sredine skupine vidnih animatov. V raz-
iskavi smo obravnavali dva režima vedenja plena, in sicer socialno, kjer se animati z
upoštevanjem nagonov kohezije in poravnave aktivno združujejo v jate in individu-
alno, kjer tega ne počnejo (izogibajo se zgolj trkom). Rezultati kažejo, da je najbolj
uspešen plenilec tisti, ki lovi vizualno ločene osebke, a to predvsem v primerih, ko je
vedenje plena socialno. Ko je vedenje plena individualno, je s stališča plenilca najboljša
taktika napad najbližjega. S stališča plena je socialno vedenje boljše, saj ne glede na
taktiko napada plenilca podaljša čas, ki ga slednji potrebuje za ulov. To krepi hipote-
zo, da se je združevanje v skupine lahko razvilo kot zaščita pred plenilci. Obenem pa
nakazuje, da je najboljša taktika plenilca močno odvisna od vedenja plena.

V drugi fazi smo nato razvili evolucijski model [], v katerem smo s pomočjo
genetskih algoritmov prilagajali parametre, s katerimi so bile definirane ročno načrto-
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vane taktike napada. S pomočjo prilagajanja parametrov taktik se je plenilcem skozi
čas povečala uspešnost pri lovu. Z namenom lažje primerljivosti z ostalimi raziska-
vami smo se osredotočili na znane osnovne taktike napada (napad najbližjega, napad
najbolj izoliranega in napad najbolj središčnega animata, ki predstavlja plen), a tem
dodali še napredno dvofazno taktiko. S to taktiko, ki smo jo poimenovali razpršilna
(angl. dispersing), se plenilec najprej usmeri v središče jate, da bi v njej povzročil kaos
in njen razkroj, nato pa se osredotoči na najbolj izolirane posameznike. Taktiko upo-
rablja več vrst plenilcev v naravi [, ]. V raziskavi smo nato obravnavali tako vpliv
zmedljivosti plenilca, kot tudi kaj se zgodi, če plen, ki se združuje v jate, kot obrambni
mehanizem izvaja manever zakasnjenega odziva, kjer se na napad ne odzove ob prvi
zaznavi plenilca, ampak odziv zakasni. Rezultati kažejo, da je razpršilna taktika naju-
spešnejša in edina sposobna vsaj v določeni meri izničiti uspešnost zakasnjenega odziva
kot obrambne taktike plena. Ker je uspešnost plenilca s prilagajanjem razpršilne tak-
tike bistveno upadla, če ta ni bil zmedljiv, slednje nakazuje, da je zmedljivost lahko
igrala pomembno vlogo v evoluciji naprednih taktik napada.

Glede na znanje pridobljeno s predhodnimi fazami raziskave smo z namenom evo-
lucije skupinskega vedenja v tretji fazi razvili genetski mehki sistem [], ki temelji
na umetnem življenju. Animati, ki predstavljajo plen, so se razvijali pod sočasnimi
pritiski plenilcev, ki uporabljajo več ročno načrtovanih taktik napada (napad najbliž-
jega posameznika, napad najbolj izoliranega posameznika, napad najbolj središčnega
posameznika in napad najgostejšega predela skupine). S prvimi tremi taktikami ple-
nilec lovi in ujame zgolj enega samega posameznika, pri zadnji pa plenilec lahko lovi
in ujame več posameznikov hkrati (kot to v naravi počno nekatere vrste morskih kitov
[, , , ]). Ker so animati, ki predstavljajo plen, sobivali v okolju s plenilci,
pri čemer je bil cilj prvih preživeti, drugih pa ujeti čim več posameznikov, je nastanek
skupinskega vedenja pogojen zgolj s tem, da animatom v tem okolju pomaga preživeti
čim dlje. Rezultati kažejo, da model razvije večje število režimov skupinskega vedenja,
kot obstoječe raziskave [, , , –, ]. Analiza mehkih pravil je pokazala, da se
režimi vedenja statistično značilno razlikujejo po deležu pravil, ki upoštevajo plenilca.

V četrti fazi raziskav smo zato izvedli kontroliran eksperiment evolucije, kjer smo
sistematično izbirali taktike napada, katerim so bili animati med evolucijo izpostavlje-
ni []. Osredotočili smo se na to, kako različni pritiski vplivajo na režim skupinskega
vedenja, ki se razvije. Rezultati potrjujejo dotedanje raziskave [, , , ], da se
a) v primeru taktik napada na najbližjega oz. najbolj izoliranega posameznika razvi-
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je združevanje v skupine, ter da se b) v primeru taktik napada na najbolj središčnega
posameznika oz. najgostejši del jate razvije razprševanje. V teh primerih so se razvile
oblike gibanja, ki so najbolj podobne rojenju oziroma kroženju okrog praznega jedra.
Najbolj zanimivi rezultati so nastali v primerih, ko so bili animati izpostavljeni takti-
kam, od katerih nekatere usmerjajo evolucijo plena k združevanju v skupine, nekatere
pa k razpršitvi. Zgolj v teh primerih so se namreč razvile usklajene oblike gibanja, ki
jih v naravi občudujemo v jatah ptic in rib (dinamično usklajeno gibanje in močno
usklajeno gibanje).

Vsaka izmed faz predstavlja lasten izviren doprinos k znanosti in vsaka je bila pred-
stavljena v svojem izvirnem znanstvenem prispevku [, , , ].

Nadaljnje raziskave V procesu raziskav, predstavljenih v pričujoči disertaciji, se
nam je porodilo več idej, ki bi lahko bile potencialno zanimive za nadaljnje raziskave
skupinskega vedenja. Pri uporabi evolucijskih modelov za iskanje odgovora na bio-
loška vprašanja so verjetno trenutno največja hiba poenostavitve modelov, ki se jih
raziskovalci poslužujejo zaradi velike računske zahtevnosti tako genetskih algoritmov,
kot že samih računalniških modelov skupinskega vedenja. Za zvišanje biološke rele-
vantnosti evolucijskih modelov bi bilo dobro odstraniti čim več poenostavitev. Med
najbolj pogoste sodijo omejitev gibanja animatov na dve dimenziji, nerealistični sis-
temi zaznavanja, gibanje s konstanto hitrostjo, itd. Če na primer hočemo animatom
v evolucijskih modelih omogočiti spreminjanje hitrosti, bo verjetno potrebno najprej
implementirati porabo energije, ki bo posledično vodila v to, da se animati lahko tudi
utrudijo. S tem se animati, prav tako kot živa bitja v naravi [, ], ne bi mogli
ves čas premikati z maksimalno hitrostjo, ki jo lahko dosežejo.

Ena izmed možnih smeri nadaljnih raziskav bi lahko bila tudi analiza vpliva hete-
rogenosti v fiziologiji na evolucijo skupinskega vedenja. Nekatere aktualne raziskave
namigujejo, da heterogene skupine v evolucijskem modelu razvijejo drugačno vedenje,
kot homogene []. Druge nakazujejo, da je heterogenost morda pomembna za dose-
go bolj “naravnega” vedenja [] in da so morda razlike med posamezniki pomembne
za koordinacijo skupine [, ]. V naravi je heterogenost (tako v vedenju kot v
fiziologiji) vedno prisotna. Na primer ptice se v jatah pogosto razlikujejo v velikosti,
spolu, starosti in včasih celo v vrsti [, ]. Tako pogosto vidimo, da se močnejši
posamezniki nahajajo v najbolj varnih predelih skupine [], posledično pa so šibkejši
posamezniki bolj izpostavljeni napadom plenilcev. Nekateri plenilci v naravi celo na-
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menoma napadajo šibkejše posameznike [, ]. Z razvojem modela, v katerem bi
bili animati heterogeni tudi po fiziologiji, bi lahko, poleg vpliva heterogenosti na evo-
lucijo skupinskega vedenja, analizirali tudi to, kako plenilci prilagodijo svoje taktike
napada pri napadu heterogenih skupin.

V večini obstoječih modelov [, , , , , ] plenilec za sledenje izbrani
tarči uporablja tehniko klasičnega zasledovanja (angl. classical pursuit) []. V naravi
najdemo tudi plenilce, ki uporabljajo bolj napredne tehnike sledenja tarči. Nekatere
vrste sokolov uporabljajo tehnike sledenja, s katerimi zakrivajo svojo smer gibanja (an-
gl. motion camouflage) []. To dosežejo na več načinov. Tarčo lahko pretentajo s
pomočjo objektov v ozadju, ali pa se ji približujejo pod takim kotom, da tarča tega pri-
bliževanja ne opazi []. Tako bi lahko s pomočjo genetskih algoritmov poleg taktik
napada razvijali tudi taktike sledenja, ali pa bi celo sočasno razvijali skupinsko vede-
nje in taktike sledenja plenilcev. Na njihovo soodvisnost so opozorile že naše uvodne
raziskave.

V naravi pogosto lahko opazimo tudi pojav skupinskega lova [, –]. Pri
skupinskem lovu več plenilcev sodeluje med sabo in si s tem izboljša možnosti za uspe-
šen ulov. Čeprav je v naših modelih lahko sočasno aktivnih več plenilcev, le-ti ne
sodelujejo med sabo. Analiza evolucije sodelovanja plenilcev med lovom bi verjetno
privedla do zanimive raziskave in rezultatov.

Nenazadnje, eno izmed pomembnih vprašanj je, kdaj se bo plen po zaznavi napada
odločil začeti bežati. V naravi nekatere vrste rib kot obrambni mehanizem namensko
zakasnijo odziv []. Naše raziskave so že nakazale, da je omenjeni manever pri dolo-
čenih taktikah napada uspešen. Evolucijski model pa omogoča pridobiti odgovore na
vprašanje pod kakšnimi pogoji se tak zakasnjen odziv razvije. Raziskave v tej smeri že
izvajamo in trenutni rezultati nakazujejo, da se odgovor morda navezuje na razmerja
v hitrostih med plenilcem in plenom.

S pomočjo evolucijskih modelov smo razvozlali že marsikatero uganko glede skupin-
skega vedenja, glede na trenutne smernice pa verjamemo, da najzanimivejši odgovori
šele prihajajo.
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