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Abstract

This paper proposes a density model transformation for speaker

recognition systems based on i–vectors and Probabilistic Lin-

ear Discriminant Analysis (PLDA) classification. The PLDA

model assumes that the i-vectors are distributed according to the

standard normal distribution, whereas it is well known that this

is not the case. Experiments have shown that the i–vector are

better modeled, for example, by an Heavy–Tailed distribution,

and that significant improvement of the classification perfor-

mance can be obtained by whitening and length normalizing the

i-vectors. In this work we propose to transform the i–vectors,

extracted ignoring the classifier that will be used, so that their

distribution becomes more suitable to discriminate speakers us-

ing PLDA. This is performed by means of a sequence of affine

and non–linear transformations, the parameters of which are ob-

tained by Maximum Likelihood (ML) estimation on the train-

ing set. The second contribution of this work is the reduction

of the mismatch between the development and test i–vector dis-

tributions by means of a scaling factor tuned for the estimated

i–vector distribution, rather than by means of a blind length nor-

malization. Our tests performed on the NIST SRE-2010 and

SRE-2012 evaluation sets show that improvement of their Cost

Functions of the order of 10% can be obtained for both evalua-

tion data.

1. Introduction

Systems based on i–vectors [1] and on Probabilistic Linear

Discriminant Analysis (PLDA) [2, 3, 4], or discriminative

classifiers [5], represent the current state–of–the–art in text–

independent speaker recognition. The i–vector is a compact

representation of a speech segment, obtained from the statis-

tics of a Gaussian Mixture Model (GMM) supervector [6] by a

Maximum a Posteriori point estimate of a posterior distribution

[1].

It has been shown that better i–vectors can be obtained by

means of hybrid DNN/GMM architectures that may take advan-

tage of the information that is not exploited by the traditional

GMM approach: the phonetic content of a rather large window

of frames [7, 8]. In particular, in this approach, a fine–grained

’phonetic’ Universal Background Model (UBM) is obtained by

associating one or more Gaussians [9] to each output unit of

a DNN, trained to discriminate among the states of a set of

context–dependent phonetic units. Another approach for ob-

taining better i–vectors exploits DNN bottleneck features, de-

rived form the input of a layer with a small number of units

located in the middle of a DNN architecture. These features

have been used as a replacement of, or in combination with,

the standard MFCC features, showing good performance im-

provement [10, 11, 12] in text–independent and also in text–

dependent speaker recognition [13].
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All these methods of i–vector extraction are performed ig-

noring the model that will be used for classification, but better

results are expected if the features provided to a classifier fulfill

its assumptions. In this work we focus on an i–vector post–

processing technique that allows obtaining better features for a

PLDA classifier.

A PLDA classifier models the underlying distribution of the

speaker and channel components of the i–vectors in a proba-

bilistic framework. From these distributions it is possible to

evaluate the likelihood ratio between the “same speaker” hy-

pothesis and “different speaker” hypothesis for a pair of i–

vectors. In particular, PLDA assumes that the i–vector genera-

tion process can be described by means of a latent variable prob-

abilistic model where an i–vector φ is modeled as the sum of

three factors, namely a speaker factor y, an inter–session (chan-

nel) factor x and the residual noise ǫ as:

φ = U1y +U2x+ ǫ .

Matrices U1 and U2 typically constrain the speaker and inter–

session factors to be of lower dimension than the i–vectors

space. PLDA estimates the matrices U1, U2, and the values of

the hyper–parameters of possible parametric priors [2], which

maximize the likelihood of the observed i–vectors, assuming

that i–vectors from the same speaker share the same speaker

factor, i.e., the same value for latent variable y.

The simplest PLDA model (G–PLDA) assumes also a

Gaussian distribution for the latent variables and i–vectors.

However, in [2] it has been shown that ML estimation of the

PLDA parameters under Gaussian assumption fails to produce

accurate models for i-vectors. Thus, heavy–tailed distributions

for the model priors have been proposed leading to the Heavy-

Tailed PLDA model. This model, however, is computationally

expensive both in training and in testing, thus will be not con-

sidered in our experiments.

A simpler approach has been proposed in [14] that tries to

make more Gaussian-like the distribution of the i–vectors. It

incorporates a pre–processing step where the vector dimension-

ality is possibly further reduced by Linear Discriminant Anal-

ysis (LDA), and, what is more important, length normalization

(LN) is applied to the resulting features. Using these normal-

ized i–vectors, the performance of the Heavy–Tailed and Gaus-

sian PLDA models is comparable, the latter being much faster

both in training and in testing. A similar approach was also pro-

posed in [15]. Another technique to better fit the assumption of

PLDA that the i–vectors are Gaussian distributed is the Spheri-

cal Nuisance normalization applied to the development and test

i–vectors [16].

It is worth noting that LN aims at reducing both the non-

Gaussian behavior of the i–vector, and the mismatch between

the development and test i-vector length distributions. However,

as well documented in [14], keeping the development i-vectors

in their original form does not affect the performance once LN

has been applied to the test data. This suggests that LN mostly



compensates the mismatch between the development and test

i–vector length distributions, rather than obtaining a transfor-

mation of the i–vectors that fits a standard normal distribution.

In this work we cope with both problems:

• i–vectors are transformed so that their distribution be-

comes more Gaussian–like by means of a sequence of

affine and non–linear transformations, the parameters of

which are obtained by Maximum Likelihood (ML) esti-

mation on the development set.

• the mismatch between the development and test i-vector

length distributions is reduced by estimating an i–vector

dependent scaling factor.

We show that this approach, due to the gaussianization of the i–

vectors, is able to improve the performance of a PLDA classifier

when LN is not used, and to produce better results, compared

to the standard G–PLDA with LN, when the density transfor-

mation is performed in conjunction with either LN or scaling–

factor normalization.

The paper is organized as follows: Section 2 introduces and

analyzes the density model transformations. The i–vector post–

processing transformations that we have used is illustrated in

Section 3. Section 4 presents the proposed scaling–factor nor-

malization technique. Sections 5 and 6 are devoted to the exper-

imental settings and results, respectively, and conclusions are

drawn in Section 7.

2. Density function transformations

Since we are interested in mapping a set of i–vectors so that

their (unknown) distribution becomes Gaussian–like, we are

facing the problem that given two probability density functions

(pdf), we need a function which is able to transform one into the

other. We can cast this problem as estimating the pdf of a ran-

dom variable whose distribution is unknown by means of ML

estimation of a parametric transformation of a random variable

with known pdf.

Let function

f : S1 ×Q → S2

(x,ϑ) 7→ f(x,ϑ) (1)

be continuously differentiable with respect to both x ∈ S1 and

ϑ ∈ Q, invertible with respect to x, with S1 ⊆ R
N , S2 ⊆ R

N

and Q ⊆ R
M , and let

fϑ(x) = f(x,ϑ) (2)

where the notation fϑ(x) is used whenever the function param-

eters are considered constants.

Let also Y be a continuous random variable over S2 with

pdf PY(y), and X be the random variable obtained applying

the inverse function:

X = f
−1

ϑ (Y) (3)

The pdf of X is given by [17] (pp.149–150):

PX(x) = PY(fϑ(x)) log
∣

∣

∣
J
fϑ
x (x)

∣

∣

∣
, (4)

where J
fϑ
x (x) is the Jacobian of fϑ(x) w.r.t. x, computed at x,

with elements (i, j):

J
fϑ
x (x)

i,j
=

∂fϑ,i

∂xj

∣

∣

∣

∣

x

, (5)

and |·| denotes the absolute value of the determinant. Consid-

ering the parameters ϑ as the variables to be estimated, we can

rewrite J
fϑ
x (x) as:

J
fϑ
x (x) = J

f
x(x,ϑ). (6)

The ML estimate of the parameters ϑ is more easily per-

formed using as objective function the logarithm of the proba-

bility PX(x), which requires the evaluation of the gradients:

∇ϑ

(

logPY (f(x,ϑ)) + log
∣

∣

∣J
f
x(x,ϑ)

∣

∣

∣

)

. (7)

Since in the next section we will use a cascade of density

function transformations, it is worth recalling the composition

of transformation functions [18].

Let fi,ϑi
(x) = fi(x,ϑi) , i = n, . . . , 2, 1, be a set

of n continuously differentiable and invertible functions, with

dom(fi+1) = im(fi), and let ϑ = (ϑn, . . . ,ϑ2,ϑ1) be the

set of the corresponding parameters. Applying k of these func-

tions to x gives:

Fk(x,ϑ) = Fk,ϑ(x)
.
= (fk,ϑk

◦ · · · ◦ f2,ϑ2
◦ f1,ϑ1

) (x) (8)

Let, for convenience, set F0(x,ϑ) = x. Noting that the

transformation function (8) can be rewritten as:

Fk(x,ϑ) = fk(Fk−1(x,ϑ),ϑk), (9)

and also recalling that X = F−1

n,ϑ(Y), the log–pdf of X be-

comes:

logPX(x) = logPY(Fn(x,ϑ)) + log
∣

∣

∣
J
Fn

x (x,ϑ)
∣

∣

∣

= logPY(Fn(x,ϑ))+
n
∑

i=1

log
∣

∣

∣
J
fi
x (Fi−1 (x,ϑ) ,ϑi)

∣

∣

∣
(10)

The gradient expressions of this objective function with respect

to the parameters ϑ can be derived by means of a forward and

a backward recursion. The gradients are passed as arguments,

together with the objective function, to a BFGS optimizer for

obtaining the parameters that maximize the log–probability of

the development set.

3. I–vector post–processing

In this section we present the building blocks, consisting of a

composition of affine and non–linear functions, which allow

us to estimate the pdf of the i–vectors produced by a generic

extraction module. Since G–PLDA assumes a Gaussian distri-

bution of the i–vectors, it is natural to select as pdf for Y the

standard normal:

PY(y) = N (0, I) . (11)

In the following, the pdf associated to a function f will refer to

the pdf of (4), where fϑ = f , and PY(y) is given by (11).

A simple and flexible non–linear function that fits our aims

is the ”sinh–arcsinh transformation” in [19]:

f(x, δ, ε) = sinh(δ sinh−1(x) + ε) , (12)

It can be generalized for n–dimensional variables as:

f(x, δ, ε) =







f(x1, δ1, ε1)
..
.

f(xN , δn, εn)






, (13)
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Figure 1: (a) Plot of sinh-arcsinh transformation functions, with fixed ε = 0, and variable value of δ. (b) Pdf of the

corresponding sinh-arcsinh functions. (c) and (d) Same as (a) and (b) but with fixed δ = 1.0, and variable value of ε.

where δi > 0, i = 1, . . . , n and εi control the tailweight and

skewness of the distribution of each variable, respectively. We

will refer in the following to this function as SAS. Figure 1a

plots a family of SAS functions of a mono-dimensional vari-

able, with fixed ε = 0, and variable value of δ, whereas

Figure 1b plots the corresponding pdfs. Figure 1c and Figure 1d

show the same plots of the previous figures, but with fixed

δ = 1.0, and variable value of ε. It can be noticed that by

changing the two parameters of the SAS function, a wide vari-

ety of mappings can be performed, ranging from linear mapping

(with ε = 0 and δ = 1.0 , which keeps a standard normal dis-

tribution, shown by the red curves), to semi–heavy–tailed sym-

metric or skewed distributions (see Figure 1b, and Figure 1d,

respectively).

We can also observe that if:

y = f(x, δ, ε) = fδ,ε(x) , (14)

is the forward SAS transformation, the inverse transformation

belongs to the same class, and can be easily obtained as:

x = f
−1

δ,ε(y) = f(y, δ−1
,−δ

−1 ◦ ε) (15)

where δ−1 denotes the element–wise inverse of δ and ◦ the

element–wise product. The inverse transformation, which can

be used for sampling a distribution and generating a trans-

formed sample, is not necessary for i–vector post–processing,

because our goal is to estimate the i–vector unknown distribu-

tion, and to transform it to better fit the Gaussian assumptions

by the G–PLDA model.

 
Affine 

transformation 

SAS 

transformation 

Figure 2: Basic block of transformation functions.

The second transformation that we propose to apply to i–

vectors is an affine transformation defined by the function:

f(x,A,b) = Ax+ b , (16)

where A is a full–rank matrix, and b is an offset vector.

The pdf transformation building block that we propose is

the concatenation of these two functions, shown in Figure 2. We

will refer to this module as an AS (Affine–SAS) block. The aim

of the first affine transformation is to de–correlate the i–vector

variables so that they can be independently transformed by the

SAS function, and to re–scale their values toward the range that

is most useful for the SAS function.

A number of AS blocks can be concatenated to form a more

complex model. For example, the samples of a multi–modal

distribution can be transformed into samples approximately dis-

tributed according to the standard normal distribution by esti-

mating the parameters of a chain of AS blocks, terminated by

an additional affine function.

We assessed the potential of this approach using artificial

mono–dimensional data.
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Figure 3: (a) Estimation of the pdf of a t–student distribution with two degrees of freedom by means of a one or two

AS blocks (AS1 and AS2, respectively). (b) Corresponding transfer functions. (c) and (d) Same as (a) and (b), but for a

Gamma distribution with location, scale, and shape equal to -2, 1, and 5, respectively.
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Figure 4: (a) Estimation of the pdf of a misture of two t–student distributions with parameters: weights = [0.7, 0.3],

degree of freedom = [3, 2], location = [-2, 4], and scale = [1, 1] by means of a one or two AS blocks. (b) Corresponding

transfer functions.
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Figure 5: (a) Estimation of the pdf of a t–student distribution with two degrees of freedom by means of a one or two AS

blocks. Only 50 samples of the t-student distribution available. (b) Corresponding transfer functions.

−1.0 −0.5 0.0 0.5 1.0
x

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f(x
)

Transform function for the estimated pdf

Target transform
AS1  transform
AS2  transform

Figure 6: Zoom of a section of the transfer functions, showing

a sharp derivative corresponding to the high peak in Figure 5a

for the two AS block model.

We generated 10000 samples from different distributions, and

estimated the parameters of a single or two AS block functions.

Some results are shown in Figures 3 to 6, where label AS1 and

AS2 refer to the single block and two AS blocks, respectively.

Figure 3a has been obtained using samples generated by a t–

student distribution with two degrees of freedom. It shows

the original t–student distribution, which is heavy–tailed com-

pared with a reference standard Gaussian pdf, also shown are

the Gaussian obtained by ML estimation, and the distributions

obtained after AS transformations. The corresponding transfor-

mation functions are plotted in Figure 3b. A similar plot for a

Gamma pdf with location, scale, and shape equal to -2, 1, and

5, respectively, is shown in Figure 3c and Figure 3d. Of course,

a single ML estimated Gaussian cannot fit a t–student distribu-

tion, because it tries to fit the tails of the distribution, whereas a

normal distribution, transformed by an AS2 function, provides

a much better fitting of the original pdf. AS transformations

do also a good job fitting the Gamma distribution even if it is

worth noting that a Gamma distribution is defined in the in-

terval (0,∞), whereas its AS approximation can also generate

negative samples.

A chain of AS blocks allows also approximating a multi–modal

distribution as shown in Figure 4a and Figure 4b, where the

original samples are generated from a mixture of two t–student

distributions with parameters: weights = [0.7, 0.3], degrees of

freedom = [3, 2], location = [-2, 4], and scale = [1, 1]. In this

case, even a mixture of two Gaussians does not fit well the orig-

inal distribution.

Finally, the plots of Figure 5a and Figure 5b are an example of

incorrect estimation, due to the scarcity of samples. The orig-

inal pdf is the same t–student distribution with two degrees of

freedom of Figure 3a, but the estimation is performed with 50

samples only. In this case, the AS2 model has too much free-

dom (and too many parameters), thus it generates a distribution

with two sharp peaks. The highest peak corresponds to the sharp

derivative visible in Figure 6, which is a magnified version of a

section of the transformation functions shown in figure 5b.

We will show, in Section 5, devoted to the experimental re-

sults, that this density transformation approach allows produc-

ing better i–vectors for PLDA, i.e., i–vectors that obtain better

results using PLDA with respect to the standard i–vectors.

4. I–vector scaling

As stated in [14], LN allows reducing the mismatch between the

development and test i-vector length distributions.

We propose a different technique to estimate scaling fac-

tors that aim at compensating this dataset mismatch. We as-

sume that i–vectors are affected by independent scaling factors:

an i–vector φi is generated by a random variable whose pdf is

described by the transformation:

Φi = α
−1

i f
−1

ϑ (Φ)

= (fϑ ◦ gαi
)−1(Φ) , (17)

where Φ ∼ N (0, I), αi is an i–vector dependent scaling term,

and gαi
(x) = αix. The terms αi can be obtained by ML esti-

mation similarly to the ϑ parameters.

It is worth noting that LN can be obtained as an approxi-

mate solution of our AS transformation function, when it de-

generates to a linear function, i.e., the SAS parameters are set
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Figure 7: Chain of transformation functions including the scal-

ing factor block.

to δ = 1 and ε = 0, respectively, and are not re–estimated, and

i–vectors have zero mean.

Let f be the linear transformation:

fA(x) = Ax . (18)

The distribution for i–vector φi is given by:

φi ∼ N (0, α−2

i A
−1

A
−T ) . (19)

ML optimization can be performed by alternating the estimation

of the parameters of A and of each αi. Starting from αi = 1,

an optimal solution for A is given by:

A
T
A = Σ

−1
, (20)

where Σ denotes the i–vector covariance (assuming zero–mean

i–vectors). Given A, the ML estimate αML
i of each αi is then:

(

α
ML
i

)−1

=

√

φT
i Σ

−1φ

D
, (21)

where D is the dimension of the i–vectors. Applying the full

transformation fϑ ◦ gαi
to an i–vector using these estimates

leads to the classical length–normalized i–vector (up to a linear

transformation, which is irrelevant for PLDA).

In general, the effect of the application of the function gαi

can be interpreted as a length normalization tuned for the i–

vector distribution described by the transformation fϑ.

In order to estimate both the parameters of the transforma-

tion ϑ and the scaling factors αi we adopt an iterative pro-

cedure. During training, the parameters ϑ, which are shared

among all i–vectors, and the parameters αi, which are i–vector

dependent, are alternatively estimated. At testing time, we only

estimate the parameters αi of the test i–vectors. Once the pa-

rameters are estimated, we apply the transformation fϑ ◦ gαi

to each i–vector. The full chain of transformations is shown in

Figure 7.

5. Experiments

The performance of the proposed approaches has been mostly

assessed performing a set of experiments on the NIST extended

core SRE 2010 female tests [20]. Other experiments, that con-

firm the results of the former tests, were also performed on the

SRE 2012 [21].

For the SRE 2010 experiments we used cepstral features,

extracted using a 25 ms Hamming window. We extract every

10 ms 19 Mel frequency cepstral coefficients together with log-

energy. These 20-dimensional feature vectors are subjected to

short time mean and variance normalization using a 3s sliding

window. Delta and double delta coefficients are then computed

using a 5-frame window giving 60-dimensional feature vectors.

The i–vector extractor is based on a 2048–component full co-

variance gender–independent UBM, trained using NIST SRE

2004–2006 data. Gender–dependent i–vector extractors were

trained using the data of NIST SRE 2004–2006, Switchboard

II Phases 2 and 3, Switchboard Cellular Parts 1 and 2, Fisher

English Parts 1 and 2.

The PLDA classifier was implemented according to the

framework illustrated in [4]. All the experiments were per-

formed using i–vectors with dimension D = 400. In these ex-

periments the i–vector extraction post–processing includes also

a preliminary Linear Discriminant Analysis (LDA), which re-

duced the vector dimensionality to 150. This value has been

selected according to the results of previous experiments with

standard i–vectors, and for reducing the complexity of the AS

approach.

For the SRE 2012 experiments we used, instead, 45-

dimensional feature vectors obtained by stacking 18 cepstral

(c1-c18), 19 delta (∆c0-∆c18) and 8 double–delta (∆∆c0-

∆∆c7) parameters. We trained a gender–independent i–vector

extractor, based on a 1024–component diagonal covariance

UBMs, estimated with data from NIST SRE 2004–2010, and

additionally with the Switchboard II, Phases 2 and 3, and

Switchboard Cellular, Parts 1 and 2 datasets. The i-vector di-

mension was again set to d = 400. In these experiments the

i–vector extraction post–processing does not include any di-

mensionality reduction. Previous experiments with the base-

line PLDA system have shown that LDA is not effective for this

dataset, probably due to the larger number of training speakers.

The estimated model uses a single AS block and the addi-

tional final affine transformation. More complex models did not

improve the performance. The BFGS optimization was termi-

nated when the log-likelihood of the development data stopped

improving.

A set of experiments were also performed on the SRE 2010

evaluation using the Spherical Nuisance normalization applied

to the development and test i–vectors [16].

6. Results

Table 1 summarizes the results of the evaluated approaches on

the female part of all extended core conditions in the NIST

2010 evaluation. The recognition accuracy is given in terms of

percent Equal Error Rate (EER) and Minimum Detection Cost

Function defined by NIST for that evaluation (minDCF10). The

scores are not normalized. Last column shows the percentage of

the average minDCF10 improvement with respect to the base-

line G–PLDA system using length normalized i–vectors.

The performance of the G–PLDA system using i–vectors

without length normalization is shown in the first row of

Table 1. Excluding the EER in condition 1, all other results

show a significant improvement. This suggests that the gaus-

sianization of the i–vector pdf is effective for PLDA classifi-

cation, giving on average approximately 16% improvement of

minDCF10.

In the fourth and fifth rows of Table 1 it is possible compare the

performance of the Spherical Nuisance normalization, after a

single or three iterations (no improvements was observed using

more iterations).

The last three rows of the table show the improvement obtained

by iterating the estimation of the parameters of the AS model,

and of the scaling factors. One can observe that our approach

achieves approximately 13% average improvement with respect

to G–PLDA with LN.

Finally, the row labeled ”AS with LN” refers to a system that

uses the AS model, but replaces the scaling factor function with

the standard LN. This comparison is useful to assess the impor-

tance of using both techniques of our proposed approach. Over-

all, it can be noticed that the largest performance improvement



Table 1: Results for the core extended NIST SRE2010 female tests in terms of % EER and minDCF10 using different models. α–AS

refers to the AS model with scaling factor.

System
Cond 1 Cond 2 Cond 3 Cond 4 Cond 5 DCF10 average

EER DCF10 EER DCF10 EER DCF10 EER DCF10 EER DCF10 improvement

G–PLDA 2.06 0.288 3.60 0.541 3.27 0.481 1.71 0.335 3.91 0.417 -
AS without scaling 2.15 0.221 3.36 0.462 2.96 0.414 1.61 0.290 3.19 0.391 -

G–PLDA with LN 1.81 0.255 2.83 0.476 1.95 0.367 1.21 0.295 2.19 0.347 0 %

G–PLDA with Sph iter. 1 1.81 0.254 2.60 0.458 2.04 0.379 1.15 0.303 2.08 0.351 -0,3 %
G–PLDA with Sph iter. 3 1.88 0.249 2.53 0.448 2.04 0.372 1.15 0.298 2.08 0.352 1,2 %

AS with LN 1.63 0.223 2.86 0.432 2.25 0.402 1.31 0.273 2.06 0.344 3,8 %

α–AS iter. 1 1.80 0.204 2.83 0.424 2.15 0.373 1.20 0.280 2.03 0.333 7,2 %
α–AS iter. 2 1.63 0.192 2.61 0.408 2.20 0.355 1.14 0.237 2.24 0.345 11,7 %
α–AS iter. 3 1.38 0.192 2.58 0.406 2.30 0.361 1.20 0.237 2.16 0.322 12,8 %

Table 2: Cprimary for the core extended NIST SRE 2012 tests using different models. α–AS refers to the AS model with scaling factor.

System
Cond 1 Cond 2 Cond 3 Cond 4 Cond 5

interview phone call interview phone call phone call
without added noise without added noise with added noise with added noise noisy environment

G–PLDA 0.311 0.429 0.245 0.590 0.486
AS without scaling 0.337 0.446 0.275 0.615 0.497

G–PLDA with LN 0.316 0.323 0.255 0.457 0.366

α–AS iter. 1 0.268 0.313 0.236 0.474 0.357
α–AS iter. 2 0.264 0.301 0.246 0.472 0.342
α–AS iter. 3 0.261 0.299 0.240 0.470 0.342

is obtained on the microphone conditions (Cond 1, 3, and 4),

suggesting that the i–vectors extracted in these conditions most

benefit of the proposed transformations.

The tests on the SRE 2012 show that AS without scaling

gives worse results with respect to G–PLDA without LN. We

believe that this is caused by two effects. The i–vector di-

mensions are not reduced, thus the model has more parameters,

which can lead the overfitting. Moreover, it is possible that the

mismatch between the development and test i–vectors is more

relevant, thus its effects could be amplified by the non–linear

transformation. On conditions 1, 2, and 5, which do not include

artificial added noise in test, AS with scaling confirms its effec-

tiveness with respect to G–PLDA with LN. Since the artificial

noise does not appear in the development set, for the other two

conditions, our approach is probably less effective in modeling

the distribution of the test i–vectors, thus it produces worse re-

sults.

7. Conclusions

We have presented a method for transforming the i–vectors so

that their distribution becomes more suitable to discriminate

speakers using PLDA. We employ a sequence of affine and non–

linear transformations, the parameters of which are obtained by

Maximum Likelihood (ML) estimation on the development set.

We have also proposed a complementary technique to address

the mismatch between the development and test i–vector distri-

butions. Our approach is beneficial for G–PLDA based speaker

recognition, in particular for the microphone conditions. Al-

though LN is a fast and effective technique, we achieved a sig-

nificant improvement (up to 13% relative, on average). Our i–

vector processing is more complex, but its computational cost

is comparable to the standard i–vector extraction, thus it does

not sensibly affect the PLDA classification costs.

Future work will be devoted to the evaluation of the capability

and limits of more complex models.
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