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Abstract—traceroute is the most widely used Internet path
analysis tool today to study the topology of the Internet and to
diagnose routing failures as well as poor performance events. A
major limitation of traceroute when the destination is not
controllable by the user is its inability to measure reverse paths,
i.e., the path from any given destination back to the source.
This is a major drawback for ISPs, who need to understand the
performance of the Internet paths connecting popular services
(e.g., YouTube and Facebook) to their customers. Even if public
servers and distributed measurement platforms can provide
partial reverse path visibility through ad-hoc measurements,
there is still a need for a structured approach capable of
analyzing the performance of Internet paths connecting any pair
of nodes (servers, routers, hosts, etc.). While the problem of
reverse traceroute has been addressed in the past, proposed
techniques rely on IP address spoofing – which might lead
to security concerns, and assume the availability of certain
route-tracking options –, which might not be available. In this
paper, we introduce and evaluate DisNETPerf, a new tool which
provides exactly the same type of information as traceroute,
but for paths connecting arbitrarily selected nodes. DisNETPerf
works by firstly locating probes (i.e., measurement points) that
are the closest to a given target node, using them to perform
traceroute measurements from the target point-of-view to a
given destination for path performance monitoring and trou-
bleshooting purposes. We propose two techniques for probe
location, and demonstrate that the reverse path (from server
to users) can be measured with very high accuracy in certain
scenarios. We also analyze relevant characteristics of Internet
paths and distributed measurement platforms, which reinforce
the applicability and relevance of DisNETPerf in current Internet.

Index Terms—Distributed Active Measurements; Reverse
Traceroute; Internet Paths’ Symmetry; RIPE Atlas Measurement
Framework

I. INTRODUCTION

Which are the Internet paths connecting a certain server
to my customers? How many hops have these paths? What is
the performance of these paths? Which parts of the paths are
congested? These are standard questions a network operator
poses herself when she needs to diagnose performance issues
impacting her customers, potentially originating outside the
boundaries of her own network. A normal approach the

operator would follow to answer these questions is to run
traceroute measurements from some controlled node at
the edge of her network (connecting her customers to the
Internet) toward some servers which are getting impacted (e.g.,
YouTube and Facebook servers). Indeed, traceroute is
still today the de-facto standard tool used by operators to
investigate routing failures and performance problems [1]. By
assuming path symmetry between her controlled node and the
targeted servers, she would be able to get some initial hints on
the performance of the end-to-end paths. However, assuming
path symmetry at the Internet level is a major mistake [2], [3],
[4], as Internet paths often become asymmetric, especially at
network boundaries, due to administration policies changes
among others. This has been flagged as the number one
“plague” of traceroute [1], and one can only assume
that traceroute shows relevant information for the forward
path. The reverse path itself is therefore completely invisible.
However, traceroute has a major limitation when the
destination is not accessible: it cannot measure the reverse
path (i.e., from destination back to the source) as one cannot
run measurements from the inaccessible destination. This is
exactly the problem we tackle in this paper: performing reverse
traceroute measurements.

Let us present as motivation example a real performance
degradation event impacting a large number of customers dur-
ing several days for a specific bandwidth-demanding service:
YouTube.

Internet-scale services such as YouTube are provisioned
from geo-distributed servers, using large Content Delivery
Networks (CDNs). While user-requests are normally redi-
rected to the closest servers (in terms of latency), internal
CDN load-balancing policies may select servers which lie
at hundreds of milliseconds from customers, potentially im-
pacting their Quality of Experience (QoE), especially under
congestion of the downlink paths connecting YouTube servers
to customers. In such a context, it is very difficult for an
ISP to find the root cause of the problem, as reported in
previous work [5]. The authors of the latter show that a drop
in the throughput has a major impact on the customers’ QoE.



At the same time of this anomaly, the minimum RTT to
YouTube servers increases by more than 300%, corresponding
to a different load balancing policy selecting servers at much
farther locations [6]. The root causes behind the anomaly could
be either that the selected YouTube servers were not correctly
dimensioned, or that there is some heavy network congestion
at peak time in the paths from the selected servers to the
customers. Having a tool that can measure the performance of
the paths from these YouTube servers toward the monitored
customers becomes paramount for the ISP, to diagnose and
troubleshoot the detected performance degradation.

Previous work proposed a tool to perform reverse
traceroute [7], i.e., from the YouTube servers to the
customers. A major drawback of the proposed approach is
that it heavily relies on IP-spoofing and IP Record Route
Option, both being not necessarily allowed everywhere [8],
[9] and potentially leading to security concerns for the case
of IP-spoofing. Therefore, in this paper, we introduce Dis-
NETPerf, a Distributed Internet Paths Performance Analyzer,
which can monitor any Internet path using distributed active
measurements. While DisNETPerf is not strictly tied to any
particular distributed measurement platform, in this paper
– as well as in current DisNETPerf implementation –, we
rely on the RIPE Atlas framework [10] 1 for running and
evaluating the proposed solution. While recent studies have
shown that RIPE Atlas might incur into biased results due
to measurement interference issues [11], its large scale in
terms of deployed nodes and geographical diversity provides
a better framework for DisNETPerf, as compared to other
popular distributed measurement frameworks such as CAIDA’s
Ark [12] or PlanetLab [13].

DisNETPerf uses a combined topology- and delay-based
distance notion to locate a probe that is as close as possible to
a desired target destination, from which reverse traceroute
measurements should be run. By doing so, DisNETPerf aims
at locating probes which offer a very high path similarity to
the real reverse path. In our study, we evaluate two different
probe selection techniques to locate these probes, and show
that reverse Internet paths can be measured with relatively high
accuracy at the AS level, PoP level, and even router-interface
level. This paper represents a continuation of our first research
efforts around the DisNETPerf system [14].

The remainder of this paper is organized as follows: Sec. II
describes the basics behind DisNETPerf, focusing on the
different probe selection techniques. Sec. III presents an evalu-
ation on the performance achieved by the probe selection tech-
niques used by DisNETPerf, using RIPE Atlas as distributed
measurement platform. In this section, we additionally provide
characterization results on the topology and diversity of RIPE
Atlas, which is critical to the proper operation of DisNETPerf.
Finally, we also perform an Internet paths symmetry analysis
using RIPE Atlas, to further support the paramount contri-
butions of DisNETPerf. In Sec. IV, we provide additional

1This research is supported by measurements obtained from RIPE Atlas,
an open measurements platform operated by the RIPE NCC.

Figure 1. DisNETPerf overview. The first step of DisNETPerf consists of
selecting a monitoring point or probe located as close as possible to a target
server, to later on perform traceroute measurements towards specific
destinations.

discussion on the obtained results, presenting some highlights
on the application of DisNETPerf in the practice. Sec. V
briefly reviews the related work. Finally, Sec. VI concludes
this work.

II. REVERSE TRACEROUTE WITH DISNETPERF

To compute and monitor the path from a given con-
tent server to a specific user, we developed DisNETPerf,
a distributed Internet paths performance analyzer. Current
implementation of DisNETPerf locates the closest RIPE Atlas
probe to this content server, and gathers information about
the path leading from the selected probe to the customer.
DisNETPerf is open source and freely available (https://github.
com/SAWassermann/DisNETPerf).

Fig. 1 describes the overall idea behind the DisNETPerf
approach. In a nutshell, given a certain content server with
IP address 𝐼𝑃𝑠, and a destination customer with IP address
𝐼𝑃𝑑, DisNETPerf pinpoints the closest box, namely 𝐼𝑃𝑐, using
a combined topology- and delay-based distance: probes are
located first by AS – using BGP routing proximity to select
probes in the same AS as 𝐼𝑃𝑠 – and then by propagation
delay – for electing the closest probe to 𝐼𝑃𝑠. DisNETPerf
then periodically runs traceroute measurements from 𝐼𝑃𝑐

to 𝐼𝑃𝑑, collecting different path performance metrics such as
RTT per hop, end-to-end RTT, etc. This data might then be
used to troubleshoot paths from the content server (mimicked
by 𝐼𝑃𝑐) to the target customer.

Current DisNETPerf implementation uses two different
probe selection approaches for locating 𝐼𝑃𝑐, partially proposed
in the literature for IP geolocation [15], [16], [17]. We called
these selection approaches the smallest latency (SL) approach
(Sec. II-A) and the landmark (LM) approach (Sec. II-B),
which we describe next.

A. Probe Selection by Smallest Latency

The SL approach starts by determining whether RIPE Atlas
probes are located in the same AS as the targeted content
server 𝐼𝑃𝑠. If this is not the case, the SL approach tries to



locate probes in the neighbor ASes of 𝐼𝑃𝑠. Neighborhood
information is obtained through AS relationships. In this paper,
we use CAIDA’s AS relationships dataset [18]. If no probes
are found in the neighbor ASes neither, then the SL approach
randomly selects a large (and configurable) set of boxes among
all the available ones. Once RIPE Atlas probes have been
identified or pre-selected, the selection of 𝐼𝑃𝑐 can start. We
call these pre-selected probes the “candidate probes”.

The SL approach then selects as 𝐼𝑃𝑐 the candidate probe
with the smallest latency to the target 𝐼𝑃𝑠. Latency is
computed on the basis of standard ping measurements; in
particular, the SL approach issues ten ping measurements
from each of the candidate probes toward 𝐼𝑃𝑠. The candidate
probe with the smallest minimum RTT to 𝐼𝑃𝑠 is finally elected
as the representative probe of the content server, i.e., 𝐼𝑃𝑐. We
consider the minimum RTT, as it provides a rough estimation
of the propagation delay between two IP addresses.

B. Probe Selection using Landmarks

The first step of the LM approach is exactly the same as the
one followed by the SL approach, i.e., candidate probes are
firstly selected based on their AS. However, the continuation
is slightly different. The next step consists of grouping the
candidate probes in two different sets: the landmarks and the
probes that can be elected as 𝐼𝑃𝑐. Landmarks are chosen
randomly among all the candidate probes. Then, ten ping
measurements are issued from each of the landmarks toward
𝐼𝑃𝑠 and toward all the candidate probes belonging to the
other set. For each pinged IP address, a feature vector 𝑑 is
computed, containing the minimum RTT from each landmark
to this IP address. Finally, 𝐼𝑃𝑐 is selected as the probe with
the most similar feature vector to the one of 𝐼𝑃𝑠, according
to the following normalized distance:

𝐷𝑖𝑗 =
1

𝐾

𝐾∑

𝑙=1

∣𝑑𝑖𝑙 − 𝑑𝑗𝑙∣,

where 𝐾 is the number of landmarks providing a RTT for both
𝐼𝑃𝑖 and 𝐼𝑃𝑗 , and 𝑑𝑖𝑙 is the minimum RTT between 𝐼𝑃𝑖 and
landmark 𝑙. When 𝐷𝑖𝑗 is small, we assume that 𝐼𝑃𝑖 and 𝐼𝑃𝑗

are close to each other. In the evaluations section, we select
20 landmarks for each 𝐼𝑃𝑠.

III. EVALUATION

In this section, we evaluate the performance achieved by
the two probe selection approaches used by DisNETPerf,
namely SL and LM approaches. Given that, in this paper,
we rely on RIPE Atlas, we firstly provide a brief study on
the characteristics of the RIPE Atlas measurement platform
(Sec. III-A). As described in Sec. II, both the SL and the LM
probe selection approaches depend on the distribution of the
available RIPE Atlas probes. We thus shed some light on how
distributed the probes in current RIPE Atlas deployment are.

Also, given that DisNETPerf is mainly needed in regions
where Internet paths are not symmetric – even if this is not
exclusive, as explained in [1] –, we perform an analysis on

Table I
TOP 5 ASES W.R.T. NUMBER OF HOSTED PROBES.

# probes % probes AS Org.

348 4% AS7922 Comcast
299 3% AS6830 Liberty Global
232 2.5% AS3320 Deutsche Telekom
228 2.5% AS12322 Free SAS
148 1.6% AS3215 Orange
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Figure 2. Number of probes hosted per AS. The distribution of probes per
AS is highly concentrated on small values, and for more than 96% of the
ASes covered by RIPE Atlas, there are at most 10 active probes. Still, some
ASes host a large share of probes, with more than 300 boxes in some cases.

the path asymmetry in specific regions of the world, using
the RIPE Atlas framework for conducting the measurements
(Sec. III-B).

Finally, we evaluate DisNETPerf, and show that the tool
yields very accurate results under certain evaluation scenarios
(Sec. III-C).

A. Study of the RIPE Atlas Framework

To gain a better understanding of the RIPE Atlas framework,
we study the distribution of their probes across the network.
Approximately 9,200 connected boxes are hosted by about
3,300 different ASes all over the world, while a significant
part of the probes are located in Europe and the United States.
AS7922 (Comcast Cable Communications, Inc.) is the one
including the highest number of probes. Indeed, we found 348
probes connected through this AS, which corresponds to about
4% of all the active boxes. Table I indicates the five ASes
anchoring most of the connected RIPE Atlas probes. RIPE
Atlas boxes are scattered across a large number of ASes, and
the majority of ASes only host a limited number of probes: in
96% of the ASes, less than 10 probes are actively contributing
to the RIPE Atlas network. It is also worth mentioning that
the top five ASes – controlled by large ISPs – host 13.6%
of all the available probes. Fig. 2 underlines this unequal
repartition among ASes, depicting the distribution of probes
per AS. As a first conclusion, we expect that the performance
of DisNETPerf when using RIPE Atlas would be much better
in EU countries and major ISPs, where a large number of
probes are available.
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(c) Intercontinental level.
Figure 3. Path symmetry analysis in different regions at the AS level. Even at this level, the prevalence of path asymmetry is notorious at all the analyzed
scales. As expected, highly connected and dense regions such as the EU and the US show the highest degree of asymmetric paths. The intercontinental
asymmetry suggests a highly dense network connecting the US and the EU.

B. Analysis of Path Asymmetry

We study next the path asymmetry between a set of RIPE
Atlas probes in several areas of the world. A path is considered
as being asymmetric if the path taken from probe 𝐴 toward
probe 𝐵 is distinct from the one from 𝐵 to 𝐴. Similarly
to Hu and Steenkiste [19], we define path similarity as the
ratio between the number of shared links among both paths
and the total number of links, using the Route Similarity
index (RSIM), a value in the interval [0, 1], where 0 means
completely different paths and 1 means exactly the same path.
More precisely, for each pair of probes 𝐴 and 𝐵, we compute
the RSIM of the path leading from 𝐴 to 𝐵, and the opposite
path from 𝐵 to 𝐴 to assess path asymmetry. Given a generic
Internet path from 𝐼𝑃𝐴 to 𝐼𝑃𝐶 , and another path from 𝐼𝑃𝐵

to 𝐼𝑃𝐶 , we define the RSIM index as:

𝑅𝑆𝐼𝑀(𝐼𝑃𝐴, 𝐼𝑃𝐵 , 𝐼𝑃𝐶) =
2× 𝐶𝑙𝑖𝑛𝑘𝑠(𝐼𝑃𝐴, 𝐼𝑃𝐵 , 𝐼𝑃𝐶)

𝑇𝑙𝑖𝑛𝑘𝑠(𝐼𝑃𝐴, 𝐼𝑃𝐵 , 𝐼𝑃𝐶)
,

where 𝐶𝑙𝑖𝑛𝑘𝑠 refers to the links shared in common by both
𝐼𝑃𝐴 → 𝐼𝑃𝐶 and 𝐼𝑃𝐵 → 𝐼𝑃𝐶 paths, and 𝑇𝑙𝑖𝑛𝑘𝑠 to the total
number of links. A high RSIM indicates a high similarity be-
tween the considered paths. To evaluate the similarity between
a forward path 𝐼𝑃𝐴 → 𝐼𝑃𝐵 and a reverse path 𝐼𝑃𝐵 → 𝐼𝑃𝐴,
we simply reverse the latter and compare it to the former, using
RSIM. A path pair is thus considered as being asymmetric if
and only if the computed RSIM is strictly lower than 1.

In the study, we evaluate path asymmetry country-wise
within France and the US, continent-wise within Europe and
South America, and intercontinental-wise between Europe
and the US. We randomly select 100 RIPE Atlas boxes
in the country- and continent-wise scenarios (50 for the
intercontinental-wise analysis) and run traceroute mea-
surements between them, analyzing the path symmetry at
the AS level. We focus on the analysis at the AS level for
practical reasons: AS routing represents the most relevant level
for our purposes of detecting which AS on the Internet path
from servers to customers might be responsible for certain
performance degradation, and thus do not take into account
the intra-AS routing. In addition, analyzing paths at the IP

level is subject to inaccuracies when comparing a forward to its
corresponding reverse path. For instance, traceroute might
overestimate load balancers on the paths, and thus provide
measurement results indicating multiple IP paths whereas they
are actually the same on the router level [20]. Another source
of inaccuracy is the problem of zero-TTL forwarding [21],
which implies that mis-configured routers potentially forward
packets whose TTL is equal to zero, leading to a wrong IP
path inference.
In this study, as well as in the evaluation presented in Sec.
III-C, IP2AS mapping is done through the database provided
by MaxMind [22] – note that, even if MaxMind is less accurate
than other IP2AS mapping solutions, we have verified that,
in our measurements, MaxMind provides the same results as
other solutions such as Team Cymru (http://www.team-cymru.
org/).

Fig. 3 depicts the obtained results at the AS level, for the
three proposed scenarios. The number of asymmetric path
pairs is higher in larger areas. Indeed, only about 10% of
the evaluated AS paths in France are asymmetric (fully or
partially) whereas this number increases to approximately 45%
when considering the whole European continent. However, the
prevalence of path asymmetry is notorious at all the analyzed
scales. As expected, highly connected and dense regions such
as the EU and the US show the highest degree of asymmetric
paths. The intercontinental asymmetry suggests a highly dense
network connecting the US and the EU. This brief study
demonstrates that the phenomenon of path asymmetry is far
from negligible at the Internet scale, and that a dedicated
tool which can accurately measure the reverse path such as
DisNETPerf is highly needed to track path performance issues
on server-to-customer paths.

C. DisNETPerf Evaluation

Let us now focus on the evaluation of the accuracy provided
by the probe selection approaches used by DisNETPerf. We
say that 𝐼𝑃𝑐 is a good probe with respect to 𝐼𝑃𝑠 and 𝐼𝑃𝑑

if the path from 𝐼𝑃𝑐 to 𝐼𝑃𝑑 is highly similar to the path
from 𝐼𝑃𝑠 to 𝐼𝑃𝑑. As in Sec. III-B, we use RSIM as path
similarity metric, computing 𝑅𝑆𝐼𝑀(𝐼𝑃𝑐, 𝐼𝑃𝑠, 𝐼𝑃𝑑). In this
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(b) RSIM – PoP level.
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(c) RSIM – IP level.
Figure 4. Probe selection evaluation, based on RSIM. There is a significant difference between groups at the AS level, and the case of same AS co-location
results in near optimal results.
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Figure 5. Difference between the RSIM of selected probe and highest observed RSIM. The most significant differences are observed at the AS level.
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Figure 6. Number of probes presenting the highest RSIM. In most of the cases, we observe less than 50 such probes, which is influenced by the characteristics
of the RIPE Atlas framework.

evaluation, we consider links at multiple granularities; in
particular, we consider links at the AS level, at the PoP
level, and the IP interface level. IP2AS mapping is achieved
through MaxMind’s database already referred to in Sec. III-B;
IP2PoP mapping is done through the datasets made available
by iPlane [23].

Fig. 4 presents the results showing the applicability of
DisNETPerf in terms of path similarity. The goal is to assess
whether the probe selection approaches select probes with the
highest path similarity to the one we want to actually monitor.
We use RIPE Atlas probes as source and destination (i.e., 𝐼𝑃𝑠

and 𝐼𝑃𝑑) so as to compute the real path (i.e., the ground
truth) between servers and customers. We randomly select
300 RIPE Atlas source probes 𝐼𝑃𝑠𝑖 , and consider a single
fixed destination probe 𝐼𝑃𝑑. For each source 𝐼𝑃𝑠𝑖 , we run

DisNETPerf to locate the closest probe 𝐼𝑃𝑐𝑖 , obtain both the
ground-truth path 𝐼𝑃𝑠𝑖 → 𝐼𝑃𝑑 and the DisNETPerf path 𝐼𝑃𝑐𝑖

→ 𝐼𝑃𝑑, and compute 𝑅𝑆𝐼𝑀(𝐼𝑃𝑐𝑖 , 𝐼𝑃𝑠𝑖 , 𝐼𝑃𝑑).
We compute the RSIMs at the AS level, PoP level, and IP

level, and plot the resulting distributions. Results are reported
for the two probe selection approaches and for two different
groups, the first one in which 𝐼𝑃𝑐𝑖 and 𝐼𝑃𝑠𝑖 are located in
the same AS (black lines), and the second one in which 𝐼𝑃𝑐𝑖

is located in a neighbor AS (gray lines). SL/LM-approach
results are depicted by plain/dotted lines. There is a significant
difference between groups at the AS level, and the case of
same AS co-location results in near optimal results, with more
than 80% of the tests resulting in a perfect path matching (i.e.,
RSIM equals to one). Nevertheless, we observe that about
40% of the tests carried out for the SL approach and 45%
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Figure 7. Minimum RTTs from candidate probes towards the target. A non-
negligible fraction of probes are located near the target, at less than 20 ms
for 20% of the candidate probes.

of the tests performed for the LM approach yield a RSIM
index ≥ 0.5. Note that the most relevant segment of the path
to monitor for troubleshooting purposes is the one closer to
the customer (where problems generally occur), thus a RSIM
≥ 0.5 is actually very good.

Differences between both groups are less relevant for paths
at the PoP and IP level. At the PoP level, the RSIM index
computed using the SL and LM approaches is ≥ 0.5 for about
50% of the tests when 𝐼𝑃𝑐𝑖 and 𝐼𝑃𝑠𝑖 are in different ASes,
and for more than 80% of the tests when they are in the same
AS. We observe the highest rate of low RSIM indexes at the
IP level: only about 20% of the tests yield a RSIM index
≥ 0.5 when 𝐼𝑃𝑐𝑖 and 𝐼𝑃𝑠𝑖 are not co-located in the same
AS. However, IP-level paths are generally less relevant, and
we plan to evolve to router-based paths, clustering interfaces
belonging to the same router (IP aliases) [24]. In general,
we note that the results for both SL and LM approaches
are comparable and highly similar. Moreover, we observed
that probes selected by DisNETPerf using both approaches
generally correspond to paths with the highest similarity to
the ground-truth ones: in more than 80% of the performed
tests for the two techniques, 𝑅𝑆𝐼𝑀(𝐼𝑃𝑐𝑖 , 𝐼𝑃𝑠𝑖 , 𝐼𝑃𝑑) results
in the highest RSIM among all the selected candidates when
considering the AS level, which, as we said, is the most
relevant level for our purposes.

In the case where DisNETPerf does not choose a probe
among the ones presenting the highest RSIM, we compute the
difference between the RSIM of 𝐼𝑃𝑐𝑖 and the best one. Fig. 5
summarizes the obtained results for the SL and LM approaches
at the AS, PoP, and IP level. We notice that the most significant
differences are observed at the AS level: considering the SL
approach, the difference is above 0.5 for 54% of the measured
paths whereas this is the case for approximately 57% of the
selected probes in the context of the LM approach. The RSIMs
at the PoP and IP level are much more similar. Indeed, more
than 75% and 95% of the selected 𝐼𝑃𝑐𝑖 yield a RSIM with
a difference below 0.5 with respect to the highest RSIM
respectively. This can be explained by the paths length. They
are actually much shorter at the AS level, and thus one single
link difference becomes more relevant when calculating and

comparing RSIMs at this level.
Another point we consider is the number of candidate

probes with the best path. Fig. 6 shows that this number is
in most of the cases lower than 50. The reason for this can
be two-fold. Firstly, as exposed in Sec. III-A, RIPE Atlas
boxes are quite well distributed over the world, but most of
the ASes only host a fairly restricted amount of probes. This
implies that, in some cases, not many probes can be selected
as candidate probes. Secondly, identical paths are rarer when
the analysis is done at more fine-grained levels (the PoP and
IP level, for instance).

Finally, we gain some insight on the distance in terms of
delay of the candidate probes with respect to 𝐼𝑃𝑠𝑖 for the
SL approach. For this purpose, we record, for each candidate
probe, its minimum RTT towards 𝐼𝑃𝑠𝑖 . Fig. 7 depicts the
distribution of the measured minimum RTTs. We note that
a non negligible fraction of probes are located near the target:
about 20% of the candidate probes are less than 20 ms away
from their target.

IV. DISCUSSION

The results obtained by the presented probe selection ap-
proaches are encouraging, especially as the best results are
obtained at the AS level, which is the most relevant level for
our monitoring and performance diagnosis purposes. However,
we have observed less promising results when moving to more
fine-grained levels, such as the PoP and IP level. We intend to
consider more complex probe-selection approaches to improve
results. Candidate techniques are the so-called Routing State
Distance by Gürsun et al. [25], and the combined topology
and routing techniques presented in [26]. Even though these
techniques would probably provide more accurate results,
we foresee a much heavier computational and instrumental
complexity than in the considered SL and LM approaches.
We are therefore investigating whether the gain in precision is
worth switching to a computationally intensive algorithm.

To conclude with the study, we provide some discussion on
the applicability of DisNETPerf in practice for continuous re-
verse path performance monitoring and analysis. Traditionally,
either active or passive measurements are considered for mon-
itoring large-scale networks such as the Internet. While active
measurements allow to know exactly the workload injected
by the application into the network, the passive measurements
can offer a more detailed view of transport and network layer
impacts. The combination and correlation of active and passive
measurements for troubleshooting purposes at the Internet
scale has been almost neglected so far. DisNETPerf offers
the possibility of running continuous reverse path performance
measurements, for example from servers provisioning relevant
services to the customers of a certain ISP. As a preliminary
example analysis, we have been running DisNETPerf for
several days, monitoring the reverse paths from a set of 50
Google servers provisioning YouTube traffic in Italy, to a set
of ISP customers. More precisely, DisNETPerf firstly elected
the closest probes to the corresponding YouTube servers, and
issued traceroute measurements towards an entry point at
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Figure 8. Results obtained by monitoring 50 Google servers in Italy with DisNETPerf; each point in both plots corresponds to one measurement. While
the observed Internet paths tend to remain stable in terms of number of traversed ASes, the RTTs measured by DisNETPerf show high variability for some
specific reverse paths, suggesting both transient as well as periodical congestion events, in some cases during several hours.

the edge of an ISP where customers connect to the Internet
every 30 minutes, during one week.

Fig. 8 depicts the collected results, both in terms of number
of traversed ASes (top) as well as RTT (bottom). While the ob-
served Internet paths tend to remain stable in terms of number
of traversed ASes, the RTTs measured by DisNETPerf show
high variability for some specific reverse paths, suggesting
both transient as well as periodical congestion events, in some
cases lasting several hours. For example, some reverse paths
show a latency increase higher than 300%, potentially resulting
in serious performance degradation during such events. In
some cases, major RTT variations span several hours, leading
to overall RTTs as high as one second, thus clearly suggesting
underlying performance issues. Even more, in some of the
monitored paths, there is a noticeable correlation between
changes in the number of traversed ASes and a strong variation
on the measured RTTs, suggesting that path inflation/deflation
and routing issues might also be involved in those cases.
Combining the monitoring results provided by DisNETPerf
with the ones of passive measurements is a promising approach
to locate and redress these issues.

V. RELATED WORK

There is a very rich literature in the problem of using
active measurements such as traceroute to understand
the Internet topology [27] as well as diagnosing performance
issues. In this paper, we focus on three specific aspects
of this broad literature: (𝑖) similar systems to DisNETPerf
[23], [7], [28], relying on traceroute measurements to
evaluate the performance of Internet paths; (𝑖𝑖) techniques
for (geo)location of probes at the Internet scale [16], [26],
[15], [17]; and (𝑖𝑖𝑖) metrics and approaches for assessing
the similarity [25], [19], [29] and Internet paths (a)symmetry
[2], [3], [4]. The starting point of DisNETPerf is the reverse
traceroute system proposed by Katz-Bassett et al. [7].
They proposed a combined active measurement technique to
incrementally piece together the path from a certain destination

back to the source, and test its performance using PlanetLab.
While the proposed solution shows accurate results in many
different evaluation scenarios, the – already mentioned – main
limitation of this approach is the usage of IP-spoofing and
IP Record Route Option, both being not necessarily allowed
everywhere. Reverse traceroute is built upon a more
complete and exhaustive Internet path measurement system
called iPlane [23]; iPlane offers a service for predicting the
performance of Internet paths by building a structural model of
the Internet using traceroute and opportunistic bandwidth-
measurements. In a nutshell, iPlane constructs a periodically
updated sort of annotated map of the Internet to predict latency,
bandwidth, capacity, and loss rates between arbitrary Internet
hosts. Authors from these papers took a further step in this
direction very recently, by proposing Sibyl [28], a query-based
system capable of providing traceroute measurements on
arbitrarily selected Internet paths. Similar to iPlane, Sibyl
combines multiple historical traceroute measurements
with prediction techniques to reconstruct measurements on
segments not necessarily measured before. These papers show
the relevance and (still) novelty of the addressed problem.

When it comes to (geo)location of probes in the Internet,
there is also an assorted list of papers worth mentioning. Works
such as [15] and [16] study the problem using a combination
of techniques, including delay-based measurements, network
topology measurements, and geo-constrained measurements.
Madhyastha et al. [26] also tackle the same problem, for
the specific case of predicting path latencies. To do so, they
introduce a complex yet effective approach to locate probes
at relevant locations, using a combination of Internet’s routing
topology, PoP connectivity, and routing policies. One of the
probe location techniques used in this paper is inspired by our
previous work on network probe proximity and neighborhood
models [17], where we infer proximity among nodes without
measuring the latency between them, but rather relying on a
set of stable landmark probes to define latency-based location



coordinates, similar to [16].
When it comes to the evaluation of path similarity at the

Internet level, different papers propose multiple metrics based
on routing [25], path-segments matching [19], and Bloom
filters [29]. In the evaluations done in this paper, we use the
notions of path similarity defined in [19], due to their simplic-
ity and very intuitive interpretation. Finally, multiple papers
have studied the problem of path asymmetry in the Internet
at the routing level, performing analysis on both AS-level and
link-level paths [2], [3], [4]. The overall understanding is that
assuming symmetric paths at the Internet level does not hold in
many cases, especially in highly dense and connected regions.

VI. CONCLUSION

Tracking the performance of Internet paths is a very im-
portant task for ISPs to diagnose the Quality of Experience of
their customers when problems occur. This task is challenging,
as paths are in general not symmetric, and thus standard
tools such as traceroute do not suffice to troubleshoot
paths performance degradations. In this paper, we introduced
DisNETPerf, a Distributed Internet Paths Performance Ana-
lyzer, capable to measure reverse paths. Our evaluation shows
that DisNETPerf computes the reverse path with very high
accuracy in some scenarios. The best results are obtained at
the AS level, which is the most relevant level for our purposes.
Indeed, our primary goal is to pinpoint the potential guilty AS
for the performance issues on the path connecting servers to
customers.

We are investigating other probe location techniques pre-
viously proposed in the literature to improve the accuracy
of DisNETPerf, but still, we acknowledge that the simplicity
behind the currently employed techniques provides relatively
high accuracy with a very fast computation, which is another
element to take into account, more particularly when thinking
about using DisNETPerf in near real time monitoring scenar-
ios.

Finally, we leave for future work a deep comparison be-
tween DisNETPerf and the reverse traceroute system.
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