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Abstract: The paper presents a new prefabricated bio-engineering structure for the support of unstable soil. This prefabricated structure is made of a 

steel frame which is completely filled with soil and a face made of tree trunks among which scions or autochthonous bushes are planted. Due to the 

difficulties in interpreting the complex interaction between soil and structure during the installation and lifetime, an in situ test was carried out in order 

to evaluate the state of stress in the steel frame and to understand the global behavior of the structure under service loads. On the basis of the obtained 

results, a procedure for checking the structure safety was proposed and discussed. An easy design method was developed during the research. 

Moreover, the use of this type of prefabricated structure shows several advantages, such as good performances in terms of stabilizing effects, and easy 

assembly and transport. 

Keywords: bio-engineering; test site; landslide; live cribwall; unstable soil 

 

 

1. Introduction 
  

Bio-engineering measures for shallow landslide stabilization, erosion 

prevention and/or control are widely used in engineering practice 

(Greenway, 1987; Victor and Bary, 1997; Morgan and Rickson, 2004; 

Norris et al., 2008). To achieve the desired engineering goals, live plants 

and natural elements such as tree trunks or stones can be used (Gray and 

Sotir, 1996; Campbell et al., 2006). Live cribwalls, vegetated rock 

gabions, vegetated rock, walls and joint plantings are common soil bio-

engineering techniques that use “porous structures”, through which 

vegetative cuttings are inserted and established. These structural elements 

provide resistance to sliding, erosion and washout immediately after the 

installation. As soon as vegetation becomes established, plant roots invade 

and permeate the external face of the slope and the tree trunks, binding 

them together into a unified, coherent mass. Over time, the structural 

elements decrease in importance as the vegetation increases in strength 

and functionality (USDA and NRCS, 1992). 

Over a century, the most widely used structure in bio-engineering has 

been the double cribwall or some variation on this basic scheme, such as 

the cribwalls named Vesuvio, Roma or Latina (Greenway, 1987; 

Cornelini, 2001; Cornelini and Sauli, 2005, 2012) whose composition is 

complex and subsequently the realization will be more expensive (Fig. 1). 

The realization of cribwalls, also called retaining structures or mixed 

wood-rocks structures (Fig. 2a and b), makes use of tree trunks and 

nowadays they are designed and used as gravity walls to resist shallow 

displacements, namely for the reshaping of unstable slopes or at the toe of 

embankments.  

In some cases, a larger mechanical strength is needed, so the use of a 

retaining structure not completely biodegradable would be more suitable 

(Carbonari and Mezzanotte, 2000; De Antonis and Molinari, 2003; Stokes 

et al., 2004, 2007, 2010, 2014). Following this observation, a new hybrid 

prototype has been developed and presented in this paper. It is made of a 

prefabricated steel frame lying on the ground, and a wooden frame where 

vegetation is established (Gray and Sotir, 1996). This prototype, called 

“palificata viva loricata Terrasafe” (plT), has been subjected to an 

extensive set of full-scale in situ tests to verify the states of strain and 

stress in the steel frame and in the wooden elements. Moreover, the 

complex interaction between soil and structure has been investigated. The 

installation of the plT is quick and easy due to the usage of prefabricated 
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elements consisting of tree trunks and metal profiles that are light and 

easy to transport. The trunks are previously cut following the planned 

measure and do not need fastening with nails and bolts, thus eliminating 

the drilling. Furthermore, the plT is a durable structure due to the non-

biodegradability of its metal elements. Finally, the plT is easily 

maintainable and environmental sustainable by replacing the trunks of the 

front face. 

The experimental activities consist in the realization of a test site, in 

which some parts of the plT were assembled and properly instrumented in 

order to verify its behavior under applied load. After the experimental 

study, a structural design method has been proposed, based on the 

principles of the European regulation EN 1997-1 (2004) for assessment of 

structural safety which is described in the paper. The prototype was 

verified from the structural and geotechnical point of view, letting to say 

the proposed design method can be considered reliable. For these reasons, 

the plT is currently used as sustainable solution to some shallow 

landslides stabilization (i.e. Roatto and Fuscaldo, Italy). The strains 

measured by transducers were significantly lower than those calculated 

within the ultimate limit state theory, allowing to understand that the 

uniform overload applied on the plT during the experimental campaign 

was not equal to that required for the mobilization of the active thrust. 

 

2. Description of the structure and test site 

 

The single element of the plT, considered as a set of steel support and 

tree trunks (Figs. 3 and 4), is 3 m wide and 1.8 m high. The wooden frame 

is inclined by 60° with respect to the horizontal line. The resistant 

structure consists in a frame made of steel sections, welded or bolted 

together, ending with a stem connected to an anchor plate, a rope or a bar 

anchor cemented into the ground. 

 
(a) 
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(b) 

Fig. 1. Roma double cribwall (a) perspective, and (b) cross-section (modified from 

Provincia di Terni, 2003). 

 

A transverse horizontal beam is attached to the stem, and two uprights 

are welded to the cross and sustain the front trunks that are restrained by a 

chain to prevent large outward movements. The trunks create a grating 

that provides support for the filling soil and, not being continuous and 

closed, allows the planting of cuttings and facilitates drainage. Geometric 

and mechanical characteristics of the structural elements are as follows 

(Fig. 3): 

 

(1) Stem: hollow steel section UNI EN 10210 50 mm × 50 mm × 3 mm 

S235JRH; 

(2) Uprights and transversal beam: hollow steel section UNI EN 10210 

70 mm × 70 mm × 3 mm S235JRH; 

(3) Foundation: steel plate 750 mm × 750 mm × 5 mm; 

(4) Six wooden trunks with 160−200 mm diameter and 3 m length. 

 

Geometric sizes of the steel structure (1 kN weight) can be summarized 

as follow: 

 

(1) l = 0.75 m (side of the foundation plate); 

(2) h = 1.8 m (height of the structure); 

(3) d = 3 m (depth of a standard module of structure); 

(4) α = β = 30° (angle between the front grid and the vertical line); 

(5) b = htanα = 1.04 m. 

(6) c = 0.785 m (half length of the horizontal beam).  

 

In testing phases, chestnut debarked trunks (total weight equal to 3 kN) 

were used. In practice, larch trunks or other species can be adopted, 

depending on the characteristics of the installation site and design 

specifications. The debarking of trunks is strongly recommended because 

it is critical for the longevity of the wood by preventing the establishment 

of many animals, fungi and other vectors that speed its decay.  

The assembly phases of the structure are summarized below: 

 

(1) Preparation of the support surface of the structure, which should be 

made flat, possibly by digging. 

(2) Positioning of anchorage plate or injected anchor, following the 

design prescriptions. 

(3) Assembly of the structure in a suitable place. 

(4) Installation of the metal structure and its connection to the anchor. 

(5) Positioning of the trunks. 

(6) Filling with soil (Fig. 5a). This operation can be carried out by acting 

either from upslope or from downslope. The filling soil must be 

compacted. 

(7) Alignments can be made on multiple lines after finishing the filling 

phase of the bottom row (Figs. 5b and 6). 

 

 

   

(a)                                                                      (b)                                                                                    (c) 

Fig. 2. (a) Double cribwall, and (b) its scheme and (c) construction phases (modified from Provincia di Terni, 2003). 
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(a)                                                                                                            (b) 

Fig. 3. Schematic drawing of a “TerraSafe” element with indication of its main components and both the foundation types: (a) plate and (b) anchorage. 

 

  
(a)                                                                                                        (b) 

Fig. 4. Example of the structure installed at Roatto (Asti, Italy): (a) the element before the filling, and (b) final configuration when the bushes start growing. 
 

   

(a)                                                                                                        (b) 

Fig. 5. (a) Filling phase and (b) placing of the upper alignments. 

 

 

Fig. 6. View of the Fuscaldo (Cosenza) installation on the mountainside along a road. 

Elements of the structure were installed on two alignments one upon the other 

(Barbero et al., 2013). 

 

Operational variations in this sequence may be caused by local aspects 

of the yards, because this modular structure can be easily transported in 

many parts and then assembled on site.  

In order to evaluate the stresses induced in the structure by applying the 

loads during installation phases and lifetime, a test site in real scale has 

been created and some elements of plT were installed. The plT was 

instrumented to detect the following items:  

 

(1) The longitudinal strain in some sections of the steel frame using 

strain gage transducers (Fig. 7a); 
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(2) The displacement and the stress of the anchor plate using linear 

variable differential transformer (LVDT) and load cells, respectively 

(Figs. 8 and 9a); 

(3) The global displacement of some points of the structure by using 

four topographic targets connected to the steel frame and installed 

on the front part of the plT. Their positions were monitored during 

the test using a Leica total topographical station placed at a distance 

of about 15 m in front of the plT (Fig. 9b). 

 

The test site is a sand pit in Castello di Annone (Asti, Italy), whose soil 

has been used for the filling of the experimental prototype. The sand was 

classified in terms of grain size distribution (Fig. 10) and characterized in 

terms of shear strength (Table 1) by performing direct shearing tests at 

different density values. A friction angle, between those obtained at peak 

and those at critical state, was chosen equal to ��=40°. The heterogeneity 

of the face of the structure, made of steel and tree trucks, leads to an 

assumption that the friction angle δ between the filling soil and the face is 

equal to that of the filling soil (�� = �). Considering that the specific 

weight of the soil γ is equal to 15 kN/m3, the friction angle δa between the 

foundation plate and the filling soil is then assumed equal to δa=2��/
3=28° because of the knurled steel surface of the base plate. 

 

    

(a)                                                                                                                 (b) 

Fig. 7. (a) Locations of the strain transducers 1−8 installed, and (b) global view of the test site after overloading. 
 

 
Fig. 8. View of the devices used for the measurement of the anchoring plate 

displacements. 

 

3. Experimental tests and results 

 

The experimental test involved the installation of an alignment of three 

elements of the plT. As stated previously, the central one was 

instrumented with: 

 

(1) Strain transducers (HBM SLB700A produced by HBM 

Messtechnik) in order to evaluate the state of stress at different 

sections (Fig. 7a) corresponding to the transducers from 1 to 8. Their 

properties are reported in Table 2. 

(2) Force and displacement transducers in order to evaluate the states of 

stress and strain at the foundation plate. The horizontal 

displacements of the foundation plate were measured using two 

displacement transducers (LVDT RDP DCW 1000B: ±25 mm run), 

placed in front of the structure. Each transducer was placed in 

contact with the end of a steel bar, connected by a threaded ball joint 

to one side of the plate (Fig. 8). In order to assess the vertical forces 

acting on the anchor plate, four piezo-resistive transducers 

(Automation Projects AP400-6, capacity: 500 kg, precision: 1%) 

were placed at the four vertices of the foundation plate. A steel 

ribbed plate, placed above the transducers with the same size of the 

foundation plate and a central hole for the passage of the stem, was 

used to distribute the vertical load onto the four measuring 

instruments (Fig. 9a). 

(3) A topographical survey in order to evaluate the displacements of the 

entire structure (Fig. 9b). 
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(a)                                                                                                        (b) 

Fig. 9. (a) Load transducers (LT1, LT2, LT3, LT4) at the anchor plate, and (b) locations of the targets (T1, T2, T3, T4) for topographic measurements (modified from Barbero et al., 

2013). 
 

 
Fig. 10. Grain size distributions of three sandy samples used for the tests. 

 
Table 1. Geotechnical parameters of the filling sand. 

Soil type γ (kN/m3) ϕpeak (°) ϕcritical state (°) c' (MPa) 

Loose sand 12.5 42.6 37.1 0 

Thickened sand 14.8 52.2 40.8 0 

Note: ϕpeak = peak friction angle; ϕcritical state = friction angle at critical state; c' = 

cohesion. 
 

Table 2. Characteristics of the strain transducers. 

Nominal strain 

(µm/m) 

Nominal sensitivity 

(mV/V) 

Maximum 

operative strain 

Failure 

strain 

Nominal displacement 

(mm) 

500 1.5+0.15 1.5 3 ∼0.038 

 

The upslope filling phase of the plT was followed by the application of 

an overload made of eight cubic concrete blocks, each one having 1 m 

side length and 2400 kg mass (Fig. 7b). The eight concrete blocks are 

considered acting as a uniform load q equal to 32 kN/m2.  

The topographic measurements on targets T1, T2, T3 and T4 showed 

that the displacements of the structure during the filling phase are 

generally vertical (Fig. 11). The uprights do not end with a base plate, so 

they sink into the ground and the sinking continues until the first bottom 

trunk reaches the ground, acting as a support for the structure. The 

downslope displacement of the structure is 70−90 mm for the lower 

targets and 130−150 mm with reference to the upper ones. These results 

show that, with increasing load, there is a small rotation of the structure 

induced by the soil filling. 

The displacement measurement of the base plate has highlighted a 

downslope sliding of about 2 mm during the loading phase. These 

movements reached 10 mm with the application of the further overload 

(Fig. 12).  

Fig. 9 and Table 3 give the location and the readings of force 

transducers located below the foundation plate. Transducer at location 

LT3 reached the full scale during the filling phase and then its last two 

readings cannot be interpreted. Transducer at location LT4 appeared to be 

at full scale from the beginning of the test, therefore it is supposed to be 

damaged. Remaining readings let to state that the soil above acts with the 

weight of a parallelepiped having base equal to that of the foundation 

plate and height equal to that of the filling sand. 

Finally, the strain transducers on the steel frame allowed the evaluation 

of the internal forces (normal forces and bending moments) acting at 

selected sections (Fig. 13). When the structure is loaded, the strain 

transducers show a change in voltage corresponding to a certain strain. 

Knowledge of the elastic moduli makes possible to obtain the state of 

stress and so internal forces can be computed. The sections corresponding 

to the transducers from 1 to 6 are only subjected to bending moment, 

while at the attachment section of the stem with the horizontal beam, both 

bending moment and normal force act simultaneously. 
 

Table 3. Readings of force transducers installed below the foundation plate. 

Time (hh:mm) Stage 
Force (kN) 

LT1 LT2 LT3 LT4 

16:06 Initial reading 0 0 0 0 

16:27 Filling phase (at half height) 1.59 1.47 2.95 0 

16:48 End of filling phase 3.4 3.46 4.52 0 

17:18 End of overloading phase 4.89 4.81 4.52 0 
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Fig. 11. Settlements obtained by topographic measurements on the targets T1, T2, T3 and T4. 

 

 
Fig. 12. Anchor plate displacements obtained by transducers 1 and 2 during the test. 

 

The calculations were performed in the two final configurations of the 

test: when filling is completed (configuration I) and when overload is 

applied (configuration II). Tables 4 and 5 show the induced internal forces 

in the steel metal frame. 

 

Table 4. Computed bending moments MX for the reference sections 1-6. 

Configuration
MX (kN m) 

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

I 0.169 0.169 0.777 0.338 0.118 0.203 

II 0.253 0.203 1.081 0.405 0.203 0.253 

 

 

Table 5. Bending moments MX and normal stresses N at the upper section of the 

anchor beam. 

Configuration N (kN) MX (kN m) 

I 11.1 −0.176 

II 18.9 −0.209 

 

Results show that, under the load presumably acting during lifetime 

(filling soil and possible overload), the stresses on the structure are 

compatible with the strength of steel frame and far from elastic limits. 

Following the reference frame as shown in Fig. 14a, the safety check, 

carried at the upper section of the anchor beam after overload (Eq. (1)), 

confirms that the maximum stress σmax obtained by applying Navier 

formula is far from elastic limit fYK of the steel frame: 

σ�	
 =
�
� ±

�
���,�

< ���																																																																																				(1) 
i.e. 

58.57	MPa = 18900
564 + 209000

8340 < 235	MPa		 
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where A is the area of the steel cross-section, and Wel,X is the elastic 

modulus along X axis of the upper section of the anchor beam. It should 

be noted that the study involved a configuration similar to that typical of 

serviceability conditions and it was not possible to analyze the ultimate 

strength of the plT, due to the technical difficulty of applying such high 

loads.  
 

 

 
Fig. 13. Measured strains (ε) on the steel frame obtained by transducers 1−8 during the test. 

 

The base plate must be adequately dimensioned in relation to the 

geotechnical properties of the foundation soil, in order to control the 

displacements. Taking into account the geological and geotechnical 

characteristics of the soil, it is also possible to increase the sliding strength 

by means of suitable fixing pegs. Additional measures could be also 

adopted to increase the roughness of the base plate and/or its size. 

Alternatively, same results can be obtained by fixing the end of the stem 

with an anchor rope or bar properly dimensioned and cemented into the 

ground. 

 

 

(a)                                                                                         (b) 

Fig. 14. (a) Reference system and position of the cross-sections used for the ultimate limit state check of the metallic frame, (b) internal forces and moments in the studied 

sections A, B and C. 

 
4. Safety check procedure 

 

The structure was developed to accept not negligible displacements and 

settlings during installation phase, therefore, the active thrust of the earth 

acting at the back of plT is assumed to be mobilized. It is necessary to 

divide the dimensioning procedure into two different analyses, as is 

frequently done for reinforced earth walls, gravity walls made with 

gabions, or other similar retaining structures (Lancellotta, 2009): 

 

(1) Internal stability (ultimate limit state) aimed at verifying the strength 

of the rod, the steel frame and the foundation anchor (with plate or 

rod); 

(2) External or global stability, which considers soil-cribwall as a gravity 

retaining wall. The earth thrust and any other possible overload are 

applied on it. 

 
4.1. Internal stability 

The internal stability analysis is aimed at checking against the sliding 

of the foundation (ultimate limit state) and the internal force capacity of 

the steel frame. The simplified two-dimensional geometry of the structure 

used for the static analysis is shown in Fig. 15 with all the symbols which 

will be used in the following procedure. 

 

εε εε  
( ×× ××

10
−− −−6

) 
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Fig. 15. Schematic diagram proposed for the check of the structure. The figure also 

shows the used geometry, reactions and the applied forces (Barbero et al., 2014). 

 

4.1.1. Reactions and sliding of the foundation 

Assuming no water table, the actions to be considered are the active 

thrust of the soil (Sγ) and the active thrust due to the overload on the top of 

the backfill (Sq). The active thrust coefficient Kaγ and the thrust coefficient 

for the overload Kaq used in the calculations, proposed by Absi and 

Kerisel (1990), are listed in Table 6. The top of the backfill is assumed 

horizontal. 

 

Table 6. Thrust coefficients of horizontal top plane (α = 30°) (Absi and Kerisel, 1990). 

'� (°) Kaγ Kaq 

10 0.425 0.545 

15 0.302 0.408 

20 0.216 0.307 

25 0.154 0.23 

30 0.109 0.172 

35 0.075 0.13 

40 0.05 0.093 

45 0.031 0.066 

 

The active thrust of the soil mass is 

(γ = )
*+	γγ,(2-)

*	                                                                                   (2) 

This force is supposed to be applied to one-third of the height of the 

structure. The presence of a vertical overload q produces the thrust Sq: 
(. = +	./(2-)                                                                                         (3) 

This force is supposed to be applied at one-half of the height of the 

structure. 

The unknown reaction components at the center of the plate and at the 

foot of the structure V, H and F (Fig. 15) are obtained as solutions of the 

following equations: 

 

(1) Horizontal equilibrium 

0 − 2(γ + (.3 cos(� − 7) + 8sinβ = 0                                                 (4) 

(2) Vertical equilibrium 

; − < + 8cosβ− 2(γ + (.3sin(� − 7) = 0		                                        (5) 

(3) Rotation around point O 

−2;- + < =
* + (. sin(� − 7) =* + (γ sin(� − 7) => − (. cos(� − 7) ?* −

(γ cos(� − 7) ?> = 0                                                                                 (6) 

 

Solving simultaneously Eqs. (4)−(6), H, F and V are obtained: 

0 = )
)* @6√32(γ + (.3 BCD	(βEF)BCDβ + 62(γ + (.3sin� + 22(γcos� − 9<3tanβH  

                                                                                                                  (7) 

; = I
J −

)
K 22(γ + 3(.3cos�                                                                     (8) 

8 = )
)*BCDβ L9< − 2(γcos� + 6√32(γ + (.3sin�M                                    (9) 

Knowledge of V, H and F makes possible to check the sliding 

conditions of the foundation plate. 

4.1.2. Internal forces in the steel frame 

The safety check of the steel frame is carried out in three different 

sections (Fig. 14a). The following internal forces acting at sections A, B 

and C are computed: 

 

(1) Section C 
�N = 0cos7 − ;sin7                                                                            (10) 
O�N = −(0sin7 + ;cos7), O�N = 0                                                      (11) 

�N = >
*-; + )

*ℎ0,�N = 0,QN = 0                                                 (12) 

(2) Section B 
�R = 0                                                                                                   (13) 

O�R = STUV
* , O�R = WV

*                                                                             (14) 

�R = STUVX
* , �R = SWVX

* , QR = YZV
*                                                  (15) 

(3) Section A 

�[ + \
* −

>
] (γsin� −

I
J cos7 −

^_
J sin� = 0                                           (16) 

O�[ − >
] (γcos� +

I
J sin7 −

^_
J cos� = 0                                                (17) 

�[ − `?
)]

>
] (γcos� +

?
J
I
J sin� −

?
J
^_
J cos� = 0                                      (18) 

where N is the axial force; TX and TY are the shear forces along X and Y 

axes, respectively; MX and MY are the bending moments around X and Y 

axes, respectively; and MZ is the torque around the longitudinal axis Z 

(Fig. 14b). 

 

4.2. External stability 

In the external analysis, thrusts are applied on a virtual vertical plane 

located at the back of the anchor plate (Fig. 16). The loads transmitted to 

the plT by the soil can be computed in a way similar to the usual retaining 

structures, considering the achievement of a condition of active thrust. 

Since the plT allows drainage, calculations can be carried out in the 

absence of hydraulic thrust. If the soil used during the filling phase is 

considered not sufficiently permeable, it could be necessary to install a 

suitable drainage system behind and within the backfill, in order to 

minimize the water load. Assuming that this requirement is satisfied, Fig. 

16 shows the following forces, per unit length, acting on the structure: 

 

(1) The active thrust Sγ, mobilized on the vertical plane at the back of 

the foundation plate; 

(2) The vertical force W, which is the sum of two components: the 

weight of the filling soil and the weight of the structure itself; and 

(3) The possible overload q, acting on the upper surface of the backfill, 

giving the thrust Sq. 

 

The gradual filling phase on the backside was investigated 

experimentally in site test (Fig. 17). In this temporary situation, the safety 

of the structure can be verified, emphasizing the need for operators to act 

in order to prevent local instability phenomena. As it is frequently done 

for retaining structures (Lancellotta, 2009), also for the plT, the 

external/global analysis should include the following items: 

 

(1) Check of the sliding conditions of the entire structure. 

(2) Bearing capacity check aimed at verifying the strength of the 

foundation soil. 

(3) Check of the toppling conditions. It is usually verified due to the 

squat sizes of the plT. 

(4) Overall stability check. It is extremely meaningful if the plT, 

suitable for shallow landslide stabilization, is placed in a slope. 
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Fig. 16. Schematic diagram of the actions to be considered in the external design of the 

structure. The force Sγ must be considered by taking into account the surcharge on the 

backfill and the local seismicity conditions (Barbero et al., 2014). 

 

 
(a)                                                                                                 (b) 

Fig. 17. (a) Scheme of the various phases of back-filling during the full-scale test, and (b) in situ test (Barbero et al., 2014). 

 

5. Numerical example 

 

A numerical analysis of the structure without overload is presented as 

an example of the design scheme previously described. The internal and 

external checks of the ultimate limit state of the structure can be 

performed according to the rules in force in each country. Among the 

different possibilities, the present example refers to Italian rules NTC08 

(2008). According to NTC08 (2008), the input data (Table 7) are assumed 

as characteristic values of the real parameters obtained from laboratory 

tests. The given sizes correspond to the real dimensions of the tested 

prototype. The design values are then obtained by using the safety 

coefficients imposed by combination known as DA2 (Tables 6.2.I, 6.2.II 

and 6.5.I in NTC08 (2008)). 

 

Table 7. An example of application of the design scheme: Characteristic values of input data. 

β (°) �� (°) P (kN) δa (°) γ (kN/m3) l (m) h (m) q (kPa) d (m) c (m) Kaγ Kaq fYK (MPa) Sq (kN) 

30 40 4 28 15 0.75 1.8 0 3 0.785 0.05 0.09 235 0 

5.1. Internal stability: Reactions 

The characteristic value of the active thrust of the soil is 

(γ,a = )
*+γγ,(2-)

* = 4.86	kN                                                              (19) 

The design thrust of the soil Sγ,d, assumed as permanent non-structural 

unfavorable action, is obtained by considering the safety coefficient γG2 

(Table 6.2.I in NTC08 (2008)): 
(γ,d = (γ,aγe* = 4.86 × 1.3 = 6.3	kN                                                  (20) 

Accordingly, using Eqs. (7)−(9), the design values of the reactions Hd, 

Vd and Fd are obtained as 2.93 kN, −0.61 kN and 6.59 kN, respectively. 

5.2. Internal stability: Sliding of the foundation 

The foundation plate has two faces in contact with the soil (top and 

bottom) and it is also subjected to reaction’s component Vd. The sliding 

strength Rd is calculated as 

gd = (2�D − ;d)tan�	                                                                          (21) 

where Ws is the weight of the soil acting above the foundation plate, in 

accordance to the recorded data by the load transducers at the anchor plate 

(Fig. 9a): 
�D = γℎ�h�	i� = 15 × 1.8 × 0.75 × 0.75 = 15.2	kN																														(22) 

Therefore, the internal sliding strength can be calculated according to 

Eq. (21): gd = (2 × 15.2 + 0.6)tan28° = 16.5	kN. 

Safety against the ultimate limit state of sliding requires the following 

inequality: 

0d < kl
γm
																																																																																																															(23) 

Knowledge of the safety coefficient γR from the Italian rules (Table 

6.5.I in NTC08 (2008)) shows that the check is therefore satisfied by the 

example data, because 2.9	kN < 16.5/1.1 = 15	kN. 

5.3. Internal stability: Structural check of the steel frame 

In order to perform the internal structural check, c = 0.785 m is defined 

as the half-distance between the uprights. Geometric input data of steel 

sections (area A and strength module W) are given: (1) For section C: AC = 

0.000564 m2, WC = 8.34×10−6 m3; (2) For sections A and B: AA = AB = 

0.000804 m2, WA = WB = 17.2×10−6 m3. 

With reference to the design approach previously proposed, internal 

forces σn  in sections A, B and C computed using Eq. (10)–(18) are 

summarized in Table 8. In each section, knowledge of the safety 

coefficient γM from the Italian rules (Table 4.2.V in NTC08 (2008)) makes 

the check satisfied if the following inequality is met: 

σn < oUp
γq

= *>`
).r` = 224	MPa                                                                  (24) 

In this case, all sections are verified:  
 

(1) Section A 

σn =
�
� + �

��
−�
��

= −0.91	
8.04 × 10SJ +

0.68	
17.2 × 10SK −

0	
17.2 × 10SK 

= 38.4	MPa < 224	MPa                                                                      (25) 
(2) Section B 

σn =
�
� + �

��
−�
��

= 0	
8.04 × 10SJ +

−0.37	
17.2 × 10SK −

−1.11	
17.2 × 10SK

= 43	MPa < 224	MPa																																																																																		(26)	 
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(3) Section C 

σn =
�
� + �

��
−�
��

= 2.84	
5.64 × 10SJ +

1.68	
17.2 × 10SK −

0	
17.2 × 10SK 

= 206.4	MPa < 224	MPa																																																																												(27) 
 

5.4. External stability 

As previously mentioned, all the external analysis should include: (1) 

bearing capacity check, by applying Brinch-Hansen formula; (2) check of 

the toppling conditions, here neglected due to the squat sizes of the 

structure; and (3) the overall stability check. 

As an example, only the check of the external sliding condition is 

shown in detail. This check is carried out by considering the active thrust 

Sγ acting on the vertical plane at the back of the foundation plate, and the 

vertical force W, which is the sum of the weight of the filling soil and the 

weight of the structure itself. According to Italian rules NTC08 (2008), 

the characteristic values Wk and design values Wd of the vertical force are 

calculated as 

�a = (2- + -) ?* ,γ = (2.08 + 1.04) × ).]
* × 3 × 15 = 126.36	kN	    (28) 

�d = �aγe = 126.36 × 1 = 126.36	kN                                              (29) 

The external sliding strength is 

gd = �dtan�	 = 126.36 tan28° = 67.19	kN																																										(30) 

Characteristic values of active thrust (Sγk) and design values of active 

thrust (Sγ,d) due to the upslope soil are obtained: 

(s,a = )
*+γγ(2-)

*, = )
*× 0.05 × 15 × (21.04)* × 3 = 4.86	kN         (31) 

Ss,d = Ss,aγe = 4.86 × 1.5 = 7.3	kN                                                    (32) 

Safety against the ultimate limit state of external sliding requires the 

following inequality: 
kl
^u,l

> γk                                                                                                  (33) 

As in the previous case, γR=1.1 lets to assume that the check is satisfied 

by the example data, because 9.2＞1.1. 

 

6. Numerical model 

 

With reference to the strain measurements recorded by gage transducers 

placed on the metallic frame, a numerical simulation of the structure was 

carried out. A finite element code Dolmen was used for modeling the plT 

in the configuration in which it is loaded by the upslope overload 

consisting of eight concrete blocks. The numerical model was 

successfully validated by applying on the top of the oblique uprights two 

concentrated forces F (1000 N each one) perpendicular to the uprights. 

Elastic materials properties are summarized in Table 9. 

 

Table 8. Values of internal forces (TX, TY, N), bending moments (MX, MY, MZ) and maximum stresses (Max. σX, Max. τ) computed for the structural design in sections A, B 

and C. 

Section TX (kN) TY (kN) N (kN) MX (kN m) MY (kN m) MZ (kN m) Max. σX (MPa) Max. τ (MPa) σi (MPa) 

A 0 1.31 −0.91 0.68 0 0 41 ~0 41 

B 1.42 0.47 0 −0.37 −1.11 0.84 86 1 86 

C 0 −0.93 2.84 1.68 0 0 206 5.4 206 

Defining m as the mass of each of the n blocks placed in order to have a 

total footprint equal to A = 6 m2, the overload q was calculated and 

applied to the structure as an uniform load: 

/ = wx
y = *Jrr×]

K = 32	kPa                                                                   (34) 

The presence of the vertical overload q produces a thrust Sq: 
(. = +	./(2-) = +	./(2ℎtan7) = 5.08	kN																																												(35) 

Considering the influence width Li of each trunk, the thrust Sq,i of each 

trunk is obtained: 
(.,z = (.{z                                                                                             (36) 

This thrust is considered in the numerical model as permanent load. 

Then, in the same location of the instrumented points, normal force (N) 

and bending moments (MY, MZ) are obtained. Stresses (σ) due to the 

overload were then calculated by using Navier formula, in order to 

evaluate the corresponding strains (ε): 

ε = σ

| =
�
� + �

��
−Q
�Q

| 																																																																																			(37) 
Such strains ε are compared with strains ε* recorded by gage 

transducers located at the same positions (Fig. 7a). These strains ε* were 

obtained as the difference between the strains ε'(I) and ε'(II)  due to the 

thrust of the filling soil under configurations I and II, as shown in Table 

10. Before comparing ε and ε*, the measured strains ε' were appropriately 

adjusted in order to consider the influence of the thickness (t) and the 

width (w) of the plate on which the measurement takes place (Fig. 18): 
}∗ = �}�(II) − }�(I)��(�, �)                                                                  (38) 

 

Table 9. Material properties of the TerraSafe structure. 

Material E (MPa) ν G (MPa) α* (°C-1) 

Steel 2.1×105 0.3 8.1×104 1×10-5 

Wood 1×104 0.25 6×103 0 

Note: E = elastic modulus; ν = Poisson’s ratio; G = shear modulus; α*  = thermal 

coefficient. 
 

Table 10. Recorded values of the strains in the reference configurations, multiplied 

by 10-6. 

Configuration 1ε′  2ε′  3ε′  4ε′  5ε′  6ε′  7ε′  8ε′  

I 50 50 230 100 35 60 210 −10 

II 75 60 320 120 60 75 300 40 

 

Strains ε'(I) and ε'(II)  are the recorded values for configurations I and 

II, while λ is the correction factor related to the thickness (3 mm) and the 

width (70 mm and 50 mm for strain transducers 1−6 and 7 and 8, 

respectively) of the plate. The modeling was then repeated by changing 

the boundary conditions, according to three different constraints applied at 

the base of the steel uprights: 

 

(1) Spherical hinge. As external constraint, a spherical hinge was chosen 

and placed at the base of the uprights, thus allowing their rotation. 

(2) Inclined roller. As external constraint, an inclined roller was chosen. 

It has the same angle of the face of the plT. 

(3) Vertical roller. As external constraint, a vertical roller was chosen and 

placed at the base of the uprights, thus allowing the horizontal 

shifting along X direction, following the reference system OXYZ, as 

shown in Fig. 14a. 
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Fig. 18. Relationships between correction factor (λ) and thickness (t) of the plate for 

different values of width w (Borri-Brunetto et al., 2016). 

 

Strains measured on the structure (ε*) are listed in Table 11. They are 

one or two orders of magnitude lower than strains (ε) calculated within 

the Caquot-Kerisel theory, as shown in Table 12. Finally, numerical 

modeling shows that the strains and stresses obtained at locations 1−8 

seem not to change significantly by applying different constraints at the 

base of the steel uprights. 

 

Table 11. Recorded values of the strains multiplied by 10-5 and corrected basing on 

the thickness of the plate and the width of the side on which the measurement takes 

place. 

1ε∗  2ε∗  3ε∗  4ε∗  5ε∗  6ε ∗  7ε ∗  8ε ∗  

7.13 2.85 0.257 5.7 7.13 4.28 0.311 0.104 
 

Table 12. Computed values of the strains multiplied by 10-4 obtained from finite 

element analysis. 

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 

8.894 6.44 8.3 6.31 34.3 33.7 2.95 2.95 

 

7. Conclusions 

 

An in situ campaign, described in Section 2, allowed to study the stress-

strain behavior of an innovative prefabricated structure, plT, for shallow 

landslide stabilization. The plT consists of a metal frame completely 

immersed in the soil and a face made of tree trunks acting as containment 

for the unstable wedge, among which scions or autochthonous bushes are 

planted. As shown in Section 3, the use of a metal frame allows to obtain 

good performance, in terms of strength and rate of assembly. Indeed, the 

plT is a prefabricated structure, economical and easy to assemble or 

transport. It does not need any concrete foundation, but only an anchor 

plate, a rope or a bar anchor cemented into the ground. Because of its steel 

frame, the plT has a higher structural resistance and durability if 

compared to other bio-engineering structures made entirely of wood, such 

as Roma or Vesuvio double cribwalls. Furthermore, the plT is currently 

adopted as an environmental sustainable solution for several landslide 

stabilization (Roatto and Fuscaldo, Italy), by creating multiple alignment 

lines of each modular element. 

A simple design method, shown in Section 4 and applied in Section 5, 

was proposed for the structural and geotechnical design of plT. Despite 

the introduction of some simplifications about geometry and behavior of 

the structure, as shown in Section 5, the plT was verified from the 

structural and geotechnical point of view, letting to assume the proposed 

approach is reliable and realistic. 

Numerical modeling with a finite element code, described in Section 6, 

allowed to understand that the overload applied on the structure was not 

equal to that required for the mobilization of the active thrust and for the 

creation of the failure wedge at upslope of the plT. Strains measured on 

the structure are significantly lower, one or two orders of magnitude, than 

those calculated within the ultimate limit state by Caquot-Kerisel theory. 

Moreover, it has to be highlighted that the numerical models represent an 

ideal situation of symmetry of loading and strain. Indeed, the measured 

strain values are affected by the history of the operations performed on 

site, such as the non-simultaneous positioning of the overload. 

Finally, the presented design method must be adapted to the conditions 

of the site, taking into account the site-specific geotechnical parameters 

and boundary conditions, and considering the overall procedure as a 

useful reference guideline.  
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